Home

CSFRT 2013 - 中四国放射線医療技術フォーラム

image

Contents

1.
2.
3. OOM
4. Cams w
5. 1 RSNA Radiologi cal Society of North America ECR European Congress of Radiology Abstract
6. 5 2
7. B OEM
8. 17 CSFRT2013 HI CSFRT 5 4
9. EZ 5 WHO
10. Fig 1 Fig 1 At 90 120 160 180 210ms 2 E Student A 3 f Student B 3
11. 2 5 3 X 3 5
12. HR Fast 1 6 3 5 0 3 6 2 8 2 0 1 2ms 6 1 10 2 3 Contrast to noise ratio CNR figure of merit FOM 1
13. time density curve TDC TDC som vee lO CHE CT Aquilion64 GX AAA TDC e ZIO STATTON e ImageJ 300 mel TDC
14. X 174 NN N 2 dN WRI ROME b X
15. LEL PACS MO X
16. 1 1 1 HAY
17. RIS
18. We can do it lt We must do it Enjoy your challenge 4
19. 25 2 Co 1 2 10 2012 49 i KHE Up BD EAE EL 1
20. 7 Wendy real time position manage ment system RPM VMS RPM CLINAC iX VMS Farmer 20 MU 100 MU TPR 10
21. 7 M GTA Research Question SCQRM Structure Construction Qualitative Research Method Research Ques tion Research Question
22. AA ER GER GAP
23. A A B A 2009 6 2011 5 CT 57 35 22 66 9 59 6 kg 64 MDCT Aquilion64 CT AZE Virtual Place Raijinn Plus CT
24. 2012 209 930 189 190 187 607 20 740 22 323 273 940 216 458 208 173 57 482 65 767 198 786 184 354 181 504 14 432 17 282
25. QOL Bee is 2012 4739 20 CR 65 FPD 15
26. functional MRI study 3 014 How does the environment sound affect a calculation program Functional MRI diem 1 2 3 4 7e PIS IL BOM WHR ER Re SER RFD 74 eA CRE L BGM JRA IRER Bc R bN cel T
27. JSRT 1 3 2 3 2006 2013 10 160 6 21 2013 7 21 7 28 CHS MR CT Molecular Imaging 3D
28. RF RF 270 1 The angle of implant and the calorific value in 1 5 T MRI 2 1ST 3 0T 1 Shellock FG et al Evaluation of magnetic resonance safety for heart valve prostheses and annuluoplasty rings Shellock R amp D Services Los Angeles 2002 2 Knal E MRI Q amp A 29 7 482 489 1999
29. aBSI p 0 5404 aBSI saBSI aBSI p lt 0 001 1 aBSI aBSI 82 51 ANN 0 5 12 BSI ANN BSI
30. 6 JSRT
31. RPT Foes 2 1 21
32. amp amp OUP amp VED Preparation Vantage Titan 3T a 1 5T 3TMRI R 9 1 JA 2 MRI 3 0 3T 1 5T MRI 3T MRI R 1 5T MRI PAG
33. Eclipse Ver 11 0 VARIAN AAPM TG 119 IMRT 3 4 5 7 9FY 2Gy AAA Auto Optimization Process on 1 Auto inter mediate dose on Target OAR Das Dan Dmean MU era PTV Dos 95 Vi20 lt 10 OAR V 5 1 3 5 9 Target OAR 2 4
34. CT transmission 1 AY CT transmission PET CT 600 2010 66 7 743 748 166 29 127 CT ORT GSE FA A ee EDD 1 3 1 a m x CT Az 085 4
35. X X X 1 4652 EGS5 X 29 3 2012 62 67 2 EGS5 http rcwww kek jp egsconf AO00 X 1 CNR
36. REAVER TTT AEE CBU AAG ICANT FHESA AHRR AE EE ARIORA VRE DE Co 22 SH REOM Bild AITE CRA Se Ob PIRI HUI ee COMER A SNS
37. SD SD SD Ra oy a SD FETS DGB CARD o 2010 X 2013 CT 154 ee BEL WR 1
38. JSRT Bae far 21
39. CSFRT2013 ts fie yi EEUN CT CT E CT H C Bauknecht 320 16 lt 1 6 4 64 CT
40. Sugiyama PAVF PAVF Ai 2010 1 2013 5 39 PAVF RA x KL 7 3 PIC TARR A 2 36 Tc MAA 10
41. 130 mR WU Lee Om BIC FS mae BRD JRO HERE HEE DOE RL 1 2 4
42. SUVmax SUVmax ROI TH 2012 10 2013 7 FDG PET 1 037 SUVmax 3 4 11 12 14 15 SUVmax F 3 SUV3 SUV5 SUVmax Fig 1 3 15 Fig 2 15 SUVmax 3 48 SUVmax 5 72 Table 1 r 0 06 SUVmax Co op 3 2 0 0 5 10 15 20 25 Fasting period hour
43. 1997 RSNA Obtaining Ultra Thin Slice Thickness with a Combined Use of the Small Heli cal Pitch and Deconvolution Technique 2 3 3 2
44. 120 kV 0 6mm x 128 0 625 mm x 64 0 5mm x 80 PF 0 6 0 984 0 813 B40 medium standard FC09 DFOV 300 mm 1 0 mm 0 8 m 1 25mm 1 0mm 1 0mm 0 8mm Axial B G SD SD 8 0 CT TOS 66 CTDI 25 100 SAFIRE 0 FBP 1 2 3 4 5 ASiR 0 FBP 20 40 60 80 100 FBP 0 Weak 25 Mild 50 Standard 75 Strong 75 a Volume Data AZE Work Station
45. TARGETING CANCER CARE ASTRO s Virtual Poster Library is your online a Beach FL on October 2 6 2011 Potential of Direct Conversion Flat Panel Detector FPO a ITZI High Dose Rate HOR Remote Afterioading Units Presenter Yoshinori Miyahara BSc debate Anyone who has never made a mistake has never tried anything new by Albert Einstein RN
46. Bs ROD conference Sharing skills and knowledge BES a Write a paper Searching for papers CITED S The most important thing ASTRO SSTH ANNUAL MEETING tag tee eee tam PATIENTS To provide patients high quality medical care 2012 discussion
47. 66 75 1 CT FOV REBBE SE T1 T1WI TR OHE RA fae A IP 1 T2
48. CD CF 22 4 30 0430 1 25 CF 23 12 22 A nn 24 35 25 11 8 IGRT 26
49. PMMA 50 mm Mo Rh 34kV 90 0mAs PMMA 30mm Mo Rh 34kV 52 2mAs AGD3mGy AGD Mo Rh CNR AGD 3mGy OF CNR PMMA 50mm Mo Rh 34kV 90 0 mAs CH V PMMA 30 mm Mo Rh 34kV 52 2mAs Table 1 AGD3mGy PMMA 50 mm mAs CNR 26 219 7 23 4 9 7 28 102 2 21 9 9 4 Mo Mo 30 12 35 20 5 8 8 32 99 1 19 7 8 4 34 80 9 18 9 19 26 240 9 18 6 10 5 28 176 3 17 6 10 4 Mo Rh 30 134 9 16 9 10 2 32 107 8 16 3 9 7 34 90 0 16 1 9 1 Table 2 AGD3mGy PMMA 30 mm mAs CNR fs ey rm mAs ene CNR 26 118 9 11 9 16 9 28 88 2 11 1 16 5 Mo Mo 30 63
50. le hae X 55 100 EGS5 X 1 X 1 2 k 4 3 3 1 k n w Oy te EEE 0 5 0 T r r a 40 ET ah Lo 120 keV 1 100 kV O 025 5 002 4 OO o 01 4 i E O05 4 th mic He Oo H 10 HO BO Lihi 12 Laid 0 008 4 E m Oh 1 O15 ZERU Ek 2
51. 2 EEk TH TER CL 4 40 160 35 140 30 120 25 100 20 80 4 15 60 yP d ia ml g PILhmliklhlM 0 0 83868 78889909 192939495969 79899000 102030405060 70809101 11213 a
52. 18 38 1 19 26 2 2012
53. 1 John F Schenck The role of magnetic susceptibility in magnetic resonance imaging MRI magnetic compatibility of the first and second kinds Medical Physics Vol 23 No 6 815 850 June 1996 FES PN EE B45 SAKE MRI T2WI Sagittal Flow Artifact Flow Artifact Artifact Flow Artifact Flow Artifact MRI GE SIGNA EXCITE HDx1 5T 6CNC1 MEDRAD Spectris Solaris EP FRFSE XL FOV 24 x 24cm
54. 0 3 TG 43 1 12 Meisberger LK lt WBE L 7Zo R x Re i 2 1 000 ei enee Hi a tt EERE cm cm 3 432 Oncentra 10 cm Oncentra 180
55. MRI SIEMENS MAG NETOM ESSENZA 1 5T VC15 Dot VD14 8ch 16ch SIEMENS MAGNETOM ESSENZA 1 5T Body Matrix Coil Spine Matrix Coil PVA 90 401 SNR SNR SNR TR 800ms
56. BASG Balanced SARGE 1 2 T MRI 17 G IceSeed GALIL MED ICAL RAPID body BASG 35deg 168 1 5mm 512 x 512 FOV 230mm 2c 0 120k 168 256 TE 3 0 6 5msec AP HEF
57. fMRI fIMRI 14 3 7 7 7 30 MRI Signa HDxp 3 0T GE Healthcare SPM8 ITOT
58. 3 4 T FLAIR 5 6 STTIR 7 8
59. RFA 100deg XX Y 1 10 cm sec
60. oos P lt 0 05 p i 6 SWI R SWI ORE 90 a T1WI SWI T1WI a eA TIWI p REY YOR eR RT F 772 FeLi SWI TIWI Slice thickness 2mm Matrix 256 x 256 FOV 300mm Fig 1 SWI 0 90 Tl1WI SWI
61. Student A 120 ms 120ms
62. 3 IKEE MEE BAS 2 BA6 Z score 1 43 46 2005 2 BGM 7 45 53 2012 MRI
63. 29 131 CT Session 30 9 10 9 40 1 L X 30 132 QA ORJE BEM BH ALYY AH 1 2 3 30 133 S We uh 30 134 S
64. 2 TmRT SCANDITRONIX WELL HOFER 1cm X Y 3 IMRT 7 1 100MU 250MU 0 35cm 0 35cm Fig 1 1 MU 5 1 5 Fig 2 3 Xio Xio
65. 0 3 A ECR LEIBINGER 27 205 B Vac Lok Kneefix CIVCO 20 205 C BR 1 SA 18 205 LG DRR X L R Y A P Z S T setup error setup margin stroom LG DRR Ginternal error L internal error Inter fraction Setup error 1
66. CSFRT2013 9 54 AG 2014 1 2013 755 8505 1 1 1 CSFRT 2013 TEL 0836 22 2631 FAX 0836 22 2635 E mail csfrt013 yamaguchi u acJD HP http csfrt013 uminJp ie ale WAVE S SeGand W http www secand jp T 862 0950 4 39 11 1F TEL 096 382 7793 FAX 096 386 2025
67. 1 MRI 2012 8 25 Azua 8 WEK UR 1 2 Susceptibility weight ed imaging SWI LL D 2 MRI MAGNETOM Skyra 3 0T SIE MENS
68. BSI 1 Sabbatini P Prognostic significance of extent of disease in bone in patients with androgen indepen dent prostate cancer J Clin Oncol 1999 17 948 57 2 Ulmert D JA novel automated platform for quantifying the extent of skeletal tumour involvement in prostate cancer patients using the Bone Scan Index Eur Urol 2012 62 78 84 3 Dennis ER Bone scan index a quantitative treatment response biomarker for castration resls tant metastatic prostate cancer J Clin Oncol 2012 30 019 24 4 Mariana Reza Prognostic value of Bone Scan Index for survival in patients with prostate cancer EANM 2012 AR Sb 1 2 pulmonary arteriovenous fistula PAVF
69. X FSR ACN BRA CT MPR X CT LID Crs Se Rid AEE CHE Ly WA EAA ACT a X Vacuum Cleft RISE ASHEAD ILS L EBC Ze V REAL OAR X
70. 1 2 Multiple Fast Field Echo 4 2 MATER 2 ANS SHIRA HL A Y MRI oo 2 Multiple Fast Echo m FFE MRI Achieva 3 0 TX PHILIPS 32ch SENCE Torso Cardiac Fig 1 SNR
71. 24 1 65 5 57 9 IGRT A 0 50 100 150 200 250 300 211 3 3 31 267 7 4 27 241 5 4 1 B B 3 4 IGRT 1 PORZ Image Guided Radiation Therapy IGRT
72. A 1 2 3 6 6 6 e Linac Novalis Tx BrainLAB Varian Exact couch base BrainLAB e EPID Portal imaging Varian ExacTrac X ray ExacTrac BrainLAB 6 imaging couch top BrainLAB e Winston Lutz test 7 BrainLAB isocenter phantom BrainLAB 54 Winston Lutz WLT Clk Novalis Tx WLT Linac Ex acTrac
73. SPECT SPECT KE Infnia 3 RI D530c Infinia 3 180 360 SPECT SPECT Bulls eye map TLR Lo SPECT Bulls eye map LAD Mik Segment 2 8 14 LCX Segment 5 6 11 12 16 180 D530c
74. RKO FDG PET OH RE M Protocol Discovery ST Elite GE FDG 5 0MBq kg AKA 4bECO RB PET CT Protocol Fig 1 PET FDG 3 5MBq kg 5 0MBaq kg 3 CT 60 110 300 PET SNR PET CT PET CT CT3 Early phase Delayed phase 0 00 0 50 2 00 3 00 500ml 500ml PET CT 1000mn1 Fig 1
75. SPECT in HFV QGS EDV ESV EF HFV QGS HFV 1 Ernest V Garcia PhD Tracy L Faber PhD C David Cooke MSEE Russell D Folks BS ji Chen PhD and Cesar Santana MD PhD The increasing role of quantification in clinical nuclear cardiology The Emory approach Journal of Nuclear Cardiology Vol 14 No 4 pp 420 432 2007 SPECT 2
76. RERE 22 2 20 22 21 9 5 2 MRI Signa HDxt 3 0T GE Healthcare TR 2 000msec TE 30 msec FA 90 FOV 192 m 3mm 4 mm 39 39 x 195 7 605 10mm u u u 3 BOLD 6 12 1 7 6 40 SPM8
77. 1 10 CT CNR CT CNR 120 kV CNR
78. CT Aquil ion64 helical pitch HP HP pitch factor PF gt 1 PF 0 828 X CT AEC PE CT AEC SD 3 SD PF CNR PF
79. Field of view FOV FOV SNR 1 5T 3 0T MRI aa ad SNR CV LOR EXCELART Vantage 1 5T MRT 2003 Vantage Titan 3 0T MRT 3010 1 5T 3 0T MRI T2 TIWA Anterial Signal to Noise Ratio Pixel 1 6 x 1 0mm Atlas SPEEDER Atlas SPEEDER GE 22 Quality Control QC Phantom15 x 15 x 38 cmn 0 263 Gd TMHD 3 FOV 25 30
80. FA 22 ARE 55 ARE CSFRT 2014 CSFRT 2 1 6 T 710 8602 Z014 10 4 5 700 0024 14 1 TEL 086 214 1000 2014 10 4 2014 4
81. Real time Position Management System RPM CLINAC RPM Varian Dy namic Thorax Phantom CIRS TN30013Farmer PTW CC13 IBA at RAMTEC Smart DD System R Tech Radiochro mic film EBT3 ASHLAND 1cm Sin 2 4 6 Field size 5cm x 5cm 10cm x 10cm 300 600 MU min TH 10 50 profile coronal EBT3
82. FA JB eS 1 PRE 67 9 1164 1173 2011 147 ABB SEH AR 1 2 Setup Error internal motion Setup Error
83. Fig 2 1 F FDG PET 2 T Sato K Niita N Matsuda S Hashimoto Y Iwamoto S Noda T Ogawa H Iwase H Nakashima T Fukahori K Okumura T Kai S Chiba T Furuta and L Sihver Particle and Heavy Ion Transport CodeSystem PHITS Version 2 52 J Nucl Sci Technol 50 9 913 923 2013 http dx doi org 10 1080 00223131 2013 814553 lol PET Z Evaluation for spatial resolution of location with varying Z axis filter in PET image 1 OP AT 2
84. We FE 1 2 3 amp CASTI POBA VAI TEETE RF H 2012 JSRT2013 1 cm MRI
85. C YA B A YB D Slice thickness 2 mm Collimation 64 0 625 Beam pitch 0 64 Tube voltage 120kv Focus size large Filter C FOV 450mm iDos level 2 Scan type Pelvis Rotational speed 0 5s WETER GAS ve Ze amp O MAR Changes in CT value due to the difference Changes in CT value due to the difference of collimation of beam pitch f z m a oma com igan paa rm Fig 1 Fig 2 Changes in CT value duc to the difference Changes in CT value due to the difference of Ky of Focal spot size large i EE ma ee ee eo r big EE Fig 3 Fig 4 Changes in the image due to the difference of Focal spot size Large Changes in CT value Collimation Fig 5 Fig 6 Changes in CT value Beam pitch Changes in CT value KV We y Fig Fig 8 Changes in CT value Large focus ES Be H
86. 1 2 3 IMRT IMRT Fig 1 MAGAT PAGAT MgCl Fig 2 4cm 110mL Novalis Tx Varian BrainLAB 6MV X 5cm x 5cm Hg
87. 5 2 1 33 Fig 1 3 Fig 2 CNR FOM Fig 3 33 CNR FOM CN gt N on N on dose mGy
88. MLL Sern sea 1 1 1 TEL 086 422 0210 2809 FAX 086 422 8254 E mail Csfrt2014 kchnet orjp 2014 22 55 RAR CSFRT 2014 1 2014 6 1 30 FE 2
89. 3D FFE AFIO Acq CF 1 WHR EH OBJ HE BE lt vy Parallel MRI SNR 2008 8 2 MRI CNR 2008 2 3 BRL EH F MR 2008 2 4 Se REP HE FR TMR 2011 4 1 32 151 EaR SII T2 prep Pulse FLAIR VISTA ECR PA Men i T2
90. MRI MRI TVo LITORA lk AARC LAITY ITY h 1 5T 3 0T MRI Philips Achiva 1 5 T SIE MENS MAGNETOM Skyra 3 0T ASTM SUS9161 0 10mm Ti 6 4 10m 1 cm
91. Ao S CR CNR S Image DR
92. 8 9 CDMAM 2009 35 1 3 E o 5 E R y IS wo gt gt R J J 3 Sta m en ico a J 5 sas aS wta OM s ae EIR SK 4 S Ss 4 b gt gt o R a v a J 3 pe mo S y m N w aR ROS
93. PTV OAR OAR Clinac iX Varian TypeS CIVCO MT Silver CIVCO Moldcare ALCARE Vac Lok CIVCO 3 1 15 MT Silver 5 68 Moldcare 5 116 Vac Lok 5 167 1 MT Silver Moldcare Vac Lok DRR OBI 2 5 ROI A
94. k space GRE T1 TFE MR Angiography T1 TFE k space Segmentation TR MRI PHILIPS Achieva1 5T SENSE Head coil 8ch 1 TFE turbo direction radial Y TFE factor 2 10 MTC pulse yes no FOV 200 mm Matrixsize 256 152 512r SENSE factor 2 0 slice 120 slicethickness 1 4 mm 0 7r chunk 3 TR 24ms TE shortest TONE pulse yes Fat suppression SPIR Flow compensation yes NEX 1 R MTC TFE factor CNR MTC TFE factor
95. S S LEIER 3 0 ZO HE 1 8 2 0 S 150 ATOZ 350 300 250 janj 200 150 100 150 350 300 250 200 150 100 50 S S 450 400 350 300
96. Fig 2 Fig 3 Fig 4 2 4 Fig 4 176 OSJ BKP
97. A B Pf m ee MTF TSP MTF Pf P2726 alan oh fie 0 8 2 gt 06 B Cc gt 9 4 0 2 0 0 Time s B 0 8 F gt 0 6 0 4 pa F 0 1 1 1 1 1 1 1 1 a2 J O8 Q6 4 0 2 0 0 2 0 4 0 6 0 8 1 T2 Time s Fig 1 Pf TSP 1 0 8 0 6 H 0 4 0 2 O 0 1 2 3 4 5 Frequency cycles s Fig 2 MTF 1 Ph CT 200
98. E0 HAO 1 2 BARZ PIL ONE 2 2
99. DMLC IMRT VMAT MLC a 1 2 DMLC IMRT VMAT Nova HD120MLC lis Tx HD120MLC 2 5mm Multi Target Mock Prostate Sp Plan goal Gy IMRT Gy VMAT Gy Plan goal Gy IMRT Gy VMAT Gy R bd gt entra Tar gt ostate gt 75 77 7 Clinac iX M120MLC 5mm ee Superior Target Dy F aS o Rectum Dy os pes gt Ry a gt gt gt uperio Target Ds 31 2 Rectum Dy 75 4 gt 125 14 13 15 29 lt 700 38 11 35 13 Inferior Target Dy lt 25 0 1834 18 73 Bladder Ds lt 750 59 43 5787 gt 4o Mock Head Neck C Shape Plan goal Gy IMRT Gy VMAT Gy Plan goal Gy IMRT Gy VMAT Gy PTY Dw 500 50 00 5000 PTV Dys 50 0 50 87 50 07 2 PTV Dp 4
100. Session 12 9 50 10 40 4 8 801 SPECT J 12 054 SPECT HFV QGS 2 1 2 3 4 12 055 SPECT OR AB KR 1 2 3 4 12 056 CT E pR
101. Tafa SNR Parallel imaging BR Dar 16ch Neuro Vascular coil LAF NV coil NV coil 15ch SENSE SPINE coil SPINE coil dual coil SPINE coil Flex L coil
102. ODM 35 ODM 7 ODM 30 30 25 25 lt 20 lt 20 3 15 15 j or or 0 12345678910 12345678910 Image number Image number Fig 1 SD ODM ODM O 30 30 z 25 25 P 15 15 z 10 10 5 5 0 0 12345678910 Image number 12345678910 Image number Fig 2 SD ODM ODM TANA KM Fig 3 ODM ODM Fig 4 Ts BUR ES WW 69 ae FOV CT
103. SCQRM SCQRM 134 1 2 3 4 5 RENE 6 BA PRink CSFRT JART JSRT JSRT JSRT JART
104. 60 1 1 fry SC X 1895 100 Re FAV 7 AR SRR ICAL TR ET CO 20 1 Interventional Radiology CT Interventional Radiolo gy
105. 2500 2000 1500 1000 0 0 2 0 4 0 6 0 8 1 Efiiciency Fig 1 2500 2000 1500 1000 0 0 2 0 4 0 6 0 8 Efficiency Fig 2 1 5mm da 2 5mm NNN tai Re FE
106. IE Al
107. OTIR CT CT CBCT CBCT CBCT CT CBCT Veraview epocs 3DA Veraview epocs CT TOSHIBA Aquilion one CBCT X
108. BE WH 1 2 EOB Dynamic scan 3D FFE Fast Field Echo 3D FEE AFI Asymmetric Fourier Imag ing AFI AFI Cla Acquisition ratio Acq Correction Factor LAF CF Acq CF 3D FFE AFIO Acq CF CE COAs
109. 25 CT 2 25 25 3 CT 20 CT 3 25 CT A 350 63 294 16 314 79 BB 308 01 208 87 281 54 C 298 72 251 86 259 22 319 12 268 30 280 18 25
110. 2012 EC ET ONG AFA Fe RAD OV IV ASTRO American Society for Radiation Oncology Virtual Posters Sharing skills and knowledge skills knowledge
111. Bl Giese FI ee OL 25 cm 465 kg CTA 24 EF AR BRAS GE 64 CT organ dose modulation ODM ODM XX AUS
112. A 1 2 Session 10 15 40 16 40 3 9 IGRT CS 10 043 IGRT ABRERA 10 044 Cone Beam CT 0 TEAR RA 1 2 3 10 045 MV CBCT
113. MDCT 1mm OLT 779 CE CHA CT JPEG image 16g AS CT OPR Ghee ON FEO LGM Ze L OMR CHEE ee MEST HE
114. CT 16 CTA Bolus Tracking BT CT CT 300HU Test Bolus Tracking TBT BT Aquilion PRIME AA Hat Dual Shot GX7 2013 3 10 BT 22 11 71 3 10 35 59 7 10 4 kg TBT 22 8 68 1 9 97 62 1 11 3ke Helical Scan 0 5mm 80 120kv V EC 5mmSD6 0 5 rot 350 mm 7 65 FC21 BHC AIDR 3D mild 300 mgI kg BT main bolus 15 30m DA TBT test bolus 2 5 30 main bolus
115. MRI 1 2 Lares ART VS VY TIL SIL CALF ERE O 1B ELBE L 72
116. Image 120 kV CNR Z Haw LZ CNR CNR ROI SDs AE E E 1 CT 350HU CT 120HU 470HU back ground BG SD25 CNR 18 8 0 35s rot 40mm 0 625mm x 64 0 2 0 625 mm A 0 625 mm scan FOV 32cm display FOV 20cm matrix 512 x 512 standard A 60 bpm 285mA CHA 100 kV 80kV CNR Axial 1 10 20 roundness R area A perimeter P
117. BKP O 1 2 SSD Source Surface Distance 1 EGS5
118. 16ch Fig 3 Body Matrix Coil Spine Matrix Coil Fig 3 SNR A Spine Matrix Coil Body Matrix Coil Spine Matrix Coil AP P A A
119. 1 e 39 20 ale MU HEED 10 mm 10 10 048 MU Enhanced Dynamic Wedge Factor FE MU R TECH MU CHECK gn hanced Dynamic Wedge Factor EDWE
120. SOMATOM Definition Flash X monochromatic CT CR a Cares 40 60 keV monochromatic CT 90keV CNR LTV Aa Monochromatic CT 70 keV 70 keV SECT CNR 80keV fF
121. R KE 1 2 3 4 5 SPECT QPS Quantitative Perfusion SPECT HSV Heart Score View QPS HSV
122. PET Radial Fy A D 22 FA Ee HIER LB SFE MIS Ko CHR 770 tangential 5 PSF SUV RIF hNUBOR UC KORE Sh JEP PSF PSF SUVmax FOV PSF SUVmax PET CT Biograph mCT Syngo via 19 6 cm 9293 ml 1 cm 3 7 cm BG Hic 5 3kKBq ml F FDG FDG
123. 10 m s cSt x 0 1 57 1 350 300 350 300 i 3 0 0 300 XK cS 300 350
124. PET CT F FDG PET CT SUV PET CT 12 F FDG 10MBq 20 CT 40 PET static Respira tion sensor pad
125. 2 3 10 1 10 2 9 10 1 30 HeadCoil T2 medic 3D HeadCoil T2stir space 2 HeadCoil 2 medic 3D HeadCoil HeadCoil 7z T2 medic 3D
126. CT Metal Artifact CT Metal Artifact Undershoot 3 B69 Metal artifact 7 O MAR Orthopedic Metal Artifact Reduc tion LAL Metal Artifact O MAR Artifact 1 Body type CTDI Phantom 5cm Bellows CT scan Metal Artifact Undershoot 2 Gammex Tissue Characterization Phan tom Model467 CT Rod materials Water Adipose
127. IMRT 2010 IMRT 2
128. MIP 1 7 5 3 5 Kruskal wallis Kruskal wallis 5 10 25 30 15 30 Kruskal wallis 20 25 MO 30 5 10 15 5 15 25 30 1 5 S 4 O 3 50 2 2 lt 0 5 10 15 20 25 30 Kruska wallis p 0 05 1
129. radial scan Low refocusing FA LrFA BB imaging OFX BB imaging LrFA FA radial scan TIW BB echo space ES k space echo PHILIPS Achieva 1 5T PVA 6mm 1 1097msec matrix 5 10 20 30cm sec profile order low high linear Dummy pulse 0 1 ES 4 9 8 5msec ETL 3 4 SNR 3 1 K 0 1 echo 2 echo BB 2 K 0 1 2 3 3 4 BB 3 Echo
130. ERR CT SPECT CT SPECT RCO CT 11 CT SPECT 3 SYNAPSE VINCENT SPECT 11 SHEN WMMISELAAY ECE SPECT Rest Stress Fig 1 15 Stress Rest Stress
131. Max Iteration Max Iteration 2 Acuros IMRT Automatic In termediate dose On Off ESN 192 31 143 IMRT AE REA SEF 1 2 3 IMRT
132. 0 9 y 7 0 y SPECT QGS HFV As lias Table 1 EDV ESV EF 0 925 0 994 WW ANDERE meansSO ey MOE RM means SO ssc Ee Sse Racy Peak Phase Phase SD asan Bandwidth SPECT fe WW BLOT RE mean SD e XOERG meanss0 1 21 F 2
133. 5 RFA 160deg 100deg RFA MR Angiography 1 VRFA 3DTSE VISTA1009 Rad Fan 7 5 19 22 2009 2 ARK 3T MRA 3T TRANCE JJ INNERVISION 23 9 3 MRI MRI 581 584 e MRA O 1 2
134. X X X X X X X X
135. 3D CTA ERR Ava 120kV CTA ae 100kV e Brilliance iCT Philips lt 300mgl 20mL 18 25 30cm 1 25cm 0 0 5 1 0 1 5 2 0 3 0 4 5 6 0 8 0 10 120kV 100kV CT 2 120kV 100kV CT 3 2011 11 2013 10 120kV 100kV
136. CNR a el 100 X 2 Phantom 20cm r 12 40 60 80 100 120 140 Tube voltage kV 1 Relative value 40 60 80 100 120 140 Tube voltage kV 2 RR Y ed CNR 60kV IP 80kV IP X 60kV 2 CNR 6 TP X 2 S 1 2 CNR CNR
137. 1 2 3 4 JA IMRT TIMRT 3 MgeC
138. 1 2 CsI Flat Panel Detector FPD Gd D Cs tei ae CsI D Burger phantom CsI D Aero DR KONICA MINOLUTA Gd D CXDI 50G Canon X KXO 80G TOSHIBA 50kV 70kV 90kV 1 2 2 Burger phantom 2M TOTOKU 10 Contrast Detail C D Image Quality Figure IQF IQF i FDE D C
139. CNR CaCO Al 1 0 mm CdTe 0 2 mm mAs 16 mAs mm Base mm kV MTF Fig 1 1 CNR Base 200mm 100kV 16mAs Fig 1 CNR I CaCO Water CNR Fig 2 Fig 1 Thickness of Base 200mm Tube Voltage 100kV I 100kV Water 100kV CaCO3 100V 0 0 004 0 008 0 012 Thickness of Iodine mm Fig 1
140. FPD X CT CBCT X X CT Cla BIG PRR ECL X CT 120kV 300mA CBCT 7mm XX CBCT 200 400Gy 20 u Gy CBCT CT 1 125 1 FREAD A FIR gt
141. Artificial Neural Network ANN 0 1 Bone Scan Index BSI ANN 0 5 BSI BSI BSI BSI BSI 2005 4 2013 7 PTc MDP 2 100 82 18
142. mAs 80mAs 50mAs CAET A l KEK 38 Fig 2 2 5 2 1 83mGy lt CADW Ha SiS EH Yt NE X 0 5 20 30 40 50 60 70 80 90 mAs Fig 2 38 SR S WAS
143. 54 21 2005 9 CSFRT2013 2013 ee 1 a Zx F 2014 RAY wong 1 1 ER L E a 7S 1 i A LS A 2014 WERN
144. BE WH 1 2 T2 prep pulse FLAIR VISTA JSRT 1 Globalization 2 Glocalization Global Lo calization 3 Reverse innovation nt sr ipa a a on reverse innovation or developing products in emerging for sila te ein to my pos on Immoelt said today in an article co written
145. IMRT 3 4 5 7 9 2Gy PBC AAA Acuros Auto intermediate dose on off Target OAR Das Da D MU 1 Target Homogeneity Index HI 2 OAR E PBC pbc AAA AAA m Acuros Acuros 17 E PBC AAA E PBC Acuros E AAA PBC AAA Acuros m Acuros PBC E Acuros AAA E PBC nointermediate m AAA nointermediate E Acuros nointermediate 3 4 5 7 9 2 Target HI Daas 3 m PBC pbc E AAA AAA Acuros Acuros 80 m PBC AAA m PBC Acuros m AAA PBC a m AAA Acuros Acuros PBC m Acuros AAA m PBC nointermediate m AAA nointermediate E Acur
146. NC Fig 1 Dual energy 275mA 0 6s rot 0 984 0 625mm 0 625mm soft standard detail K Iodine water image Fig 2 Water iodine image Fig 3 Fat Water Iodine Material density value 10m 5 Standard Deviation SD SD L 10 5
147. 1 2 S 600 500 lt F o 400 5 3 a i i 200 l 1E 100 0 I i Hi HHI aag aaga aise f Jf BIR 1 ye BAAS 1 lt O S 2 S BERE Rg eh 1321 593 492 11 Bil ii 125 52 7 333 14 134 67 6 409 49 136 5 65 4 382 45 50 28 7 175 15 50 233 156 14 52 1 25 1 179 22 Aly He s 63 7 32 5 183 33 42 16 1 129 12 ne 44 2 18 3 142 16 S
148. ART JIE Ae 1 2 3 10 046 VMAT 10 047 MU 2 2 1 2 10 048 MU Enhanced Dynamic Wedge Factor E R Session 11 9 00 9 50 4 8 801 SPECT fh 11 049
149. 1 2 3 4 Session 4 9 00 10 00 2 10 L MR J 4 015 MRI 4 016 dual coil RE JIE 4 017 g factor SAAR BD RE Br 1 2
150. Session 2 9 50 10 40 1 1 CT 2 006 Dualenergy CT X RHA FG 2 007 Virtual Monochromatic Imaging 1 2 2 008 Metal Artifact 2 009 CTangiography ORA 2 010
151. True Positive Fraction MRI D PP False Positive Fraction False Positive Fraction CT 4 MRI 4 ROC Fig 1 167 GR WW tsk EH MIR GE optima 660 ultra CT bonne plus ultra MTF CT EOE ZIRE 7cm ultra bone plus MTF
152. 90kV CsI D Gd D 1 2 109 ai ASF RR RNY CT mAs 6 CT DP
153. 5 31 140 lr 192 WP RE EE E 1 2 3 4 Tr EGS5 Electron Gamma Shower Version5 CERT Do EGS5 Nucletron Ir
154. 27 117 Imagining Plate IP S Wia 27 118 ERCP JA 27 119 Trancecatheter Arterial Chemoembolization TACE fee PSH 27 120 CT Sm WU 1 2 27 121 PET Session 26 11 00 11 50 4 BRE 801
155. EL A MU MU MU 4 MU 8 4 5 coplanar non coplanar 10 MU 2010 1 18 2013 5 31 10 80 5 5 5 i 8 2 15 2 2 re ad ii a a j hey vey m on gt S CT 0 5 10 15 20 cm 1 iy BE 2cm 4cm 6cm 0 14cm
156. MTF MTF NPS SNR CTDIvol DLP 70 4 64 MTF NPS 1 HC Bauknecht 320 row volume acquisition in temporal bone CT equivalent image quality to 16 row CT while decreasing radiation exposure figures Dentomaxillofacial Radiology 2010 vol 39 no 4 199 206 TDC
157. 2 CT RE 16 64 1 AA IVR CT E 16 64 120kV 20mA FOV 320 m L 30sec 0 5sec rot 4mmX1 4mmx3 Amm REA CT 1 70 mE X 45keV 1 2 0 96 1cm
158. TOSHIBA X 130HT CR FCR IP ST VA MS X F MS 3P N34 r3 f 100cm 20cm X 30x 30 cm Imagej 1 48e EIZO 3M 21 2 100kV mAs 1 0mAs SID 150 cm 1cm 5 60 30 30 60 30 30 WL WW WL 887 WW 1774
159. 2 5 5 0 10mm MRI FLIET TIREE R 1 T 30 slices 20 slices AR 2 s 71 10 slices Distance mm Fig 1 R X CT Fig 1 30 14mm 20 14mm 10 16mm 14 Fig 2 AR 2 s 71 10 _ 0 10 20 Distance mm Fig 2 R2
160. CNR 5 flip angle FA 30 45 60 75 90 FA FI NO NMSE MR 6 LT Image J SNR CNR HELZ CNR SNR1 SNR2 3 NMSE DRIP SNR CNR NMSE SNR NAQ64 CNR FA90 NMSE SNR CNR Fig 3 Fig 4 NMSE SNR CNR Fig 2 CNR FA90 PI PI 0 0035 y 0 00001x 0 003 0 0035 y 0 00001x 0 0031 0 0030 r 0 927 0 0030 r 0 879 m 0 0025 lt naat 0 0025 Ma 0 0020 NAQ 2 0 0020 NAQ 2 A NAQ 4 S 0 0015 wane 20005 0 0010 NAQ 9 0 0010
161. ee KER 1 Transversal O upper parallel FH par allel RL SNR middle parallel RL parallel FH SNR lower parallel FH parallel RL SNR dual coil CS JILE 909 E upper middle 600 E lower ad z 400 RL paralle FH parallel RL SPINE Coils position 1 Transversal SNR 800 600 x Z 400 200 parallel FH paralle RL SPINE cr position B42 Coronal SNR Coronal 2 par allel FH parallel RL SNR parallel FH paral penne AP RL SPINE coil ee SPINE coil SNR
162. CT SIEMENS SOMATOM Definition A GE Optima660 B A Pf 0 5 0 9 1 0 1 1 1 2 1 3 1 4 1 5 B 0 516 0 984 1 375 1 531 Pf TSP MTF CNR Gupta Fig 1 Pf TSP A Pf TSP Pf B Pf PP Fig 2 MTF men B A Pf MTF CNR Pf
163. SPECT HFV Heart Function View QGS Quantitative gated SPECT BBE AW AR 1 2 3 4 5 SPECT HFV QGS 2012 3 10 PPTc Tetrofosmin Tc TF 21 15 6 4
164. X 80 keV a 31 142 IMRT AZ RHA gt 1 2 3 HS IMRT Eclipse Ver 11 0 VARIAN AAPM TG 119
165. CR 90kV 240 cm mAs 20mAs 110mAs 10mAs 3M 5 5 18 3 A 7 C7 B 1 L1 5 L5 C 5 A B C D E 11
166. OE GAP 3 1 a b TPO 2 a b c 3 a b c
167. 7 1 2 3 4 4 5 6 7 at 26 6 11 X 43 58
168. IRC RC Asia Pacifc Radiology Congress Mx JSRT 2013 9 JRC2014 JSRT JSMP 4 12 JSRT ETIESE H ya AR 1 47
169. phase 3 Fig 1 phase2 phase 169 PET CT FLAY FE SED THAR 1 2 E3 PET CT CT trans mission Emission stan dard uptake value SUV CT free breathing FB normal expira tion NormExp
170. e GafchromicFilm EBT3 Multi Target Fig 1 Mock Pros tate Fig 2 Mock Head Neck Fig 3 C Shape Fig 4 Fig 1 Fig 2 Fig 3 Fig 4 GafchromicFilm EBT3 TImRT GafchromicEilm EBT3 LC Coronal M Sagittal HD120MLC M120MLC ER Fig 5 HD120 MLC M120 MLC Test Pattern Location IMRT VMAT Test Pattern Location IMRT VMAT lsocenter 0 18 1 19 lsocenter 0 57 0 83 Multi target 4cm superior 0 56 2 31 Multi target 4cm superior 0 20W 2 08 4cm inferior 1 72 0 78 4cm inferior 0 29 1 98 EA lsocenter 0 25 0 25 Prostat Isocenter 0 44 0 64 3cm posterior 0 99 2 59 3cm posterior 2 92 1 44 huaina 0 42 0 41 ai i eee 1 01 0 52 cm posterior 0 61 2 89 4cm posterior 2 75 2 34 lsocenter 0 67 1 16 ls
171. ABS BEAMnrc Varian Clinac 21EX 4MV 10MV X ABS 1cm x lem 40cm x 40cm PDD PDI ABS PWM me a 2 2 10 20cm PDD 5 5 10 15 20 25cm PDD c ZIT Hpk ABS 4MV 10MV PDD
172. SAKIC BITS dual coil PHILIPS Intera 1 5T R2 6 Flex L coil SPINE coil SPINE coil Flex L coil AP RL FH paral lel FH RL parallel RL SPINE coil 5 Transversal mid dle middle 15 cm upper middle 15 cm lower NAM Coronal 4 SNR J Vay eee
173. Session 9 9 50 10 40 3 9 9 038 DMLC IMRT VMAT MLC 1 2 9 039 DMLC IMRT VMAT MLC RA DA WE EAR RA 1 2 9 040 9 041 AR TRE 9 042 4
174. 11 40 12 10 1 MRI ASL IOF SPECT i RE 1 2 3 RI MR BLACE 1 2 MRI 2 WFA giy 1 2 3D FFE AFI Asymmetric Fourier Imaging
175. BSI BEAD WE 1 2 RI 11 050 AAR SRP HEB Bloc 1 2 11 051 11 052 123I MIBG OE 2 1 2 RI 11 053 CTAC SPECT
176. PAGAT Fig 6 400MU min R PAGAT MgCl MAGAT R Fig 7 1 R MAGAT R PAGAT MgCl PAGAT MAGAT PAGAT MgCl lt IMRT MAGAT MAGAT O PAGAT MgCL 1 15 o PAGAT MgCl Relative R 95 100 200 300 400 500 600 Dose Gy Dose Rate MU min Fig 5
177. 3 C RE g a b PUREE a b x 100 X 1 2 IRI 3 4 S M 3
178. Pe OGL SONA HCAS ZRH ORY TBT CT HR OWEAYY VOM EOE Fig 2 TBT 3 CT CT BT CT CT TBT Fig 2 TDC CT CTA TBT CT BT CT CT
179. 3 0 5 mm OER Rare AC Le 30cm 50cm 100cm 1mm 30cm 1 x 10 0 2 3 5mm 30cm 1 x10 0 2 Nucletron Oncetra 2Ir 296keV 28 7 308keV 30 0 317keV 82 7 468keV 47 8 589keV 4 5 604keV 8 2 612keV 5 3 30x30x30 cm 50x50x50 cm3 100x100x100 cm3 0 5mm lmmd 30cmp
180. BMI 15 2 QOL 2004 OLT CT SingleCT X vigor 2002 2005 MDCT Asteion4 2006 2013 ImageJ MRIcro Image ConvertTosigned16 SyncMeasure3D Image 2 3 ImageJ SingleCT MDCT SingleCT CT 33006
181. Mo Rh W Al Ag DR SCTF MTF 2Ilp mm 4jp mm 40mm 6cm X 6cm 1
182. Superior Target s Dit 35 0 ee oc Dia lt 25 0 Left Parotid Dso lt 20 0 oe er Pec sd Mock Prostate ida Dp 75 6 C Shape Prostate Dc830 Das 50 0 oO ms l X 1D r i Dan 70 0 a a L MOID Rectum De lt 55 0 1 os Dit 75 0 om Da lt 700 we Yra Bladder th Ds lt 10 0 10 Fig 5 Fig 1 a Multi Target is Mock Prostate 100 z n 80 1 HD12 DMLC IMRT VMAT io 1 of oe 6X 6X k 1 Rs 300cGy min 600cGy min ot 0 2000 4000 6000 0 2000 4000 6000 8000 1 3 5 7 9 1 2Arc Dose cGy Dose cGy 3P3 0 120 240 2Arc CW181 179 COW179 181 5 0 72 144 216 288 1Arc 181 179 vo Mock Head Neck a p 0 50 100 150 i E mV oo 1P 210 260 310 1 Hp122 1 M120 9 0 40 80 120 160 LE items 4 sae 200 240 280 320 ra i All 0 All 45 315 Sees eee ee O o o wo on wo Fig 2 Fig 6 HD120 Fig 3 M120 MLC Fig 4 2 MLC
183. 9 3 1 1 1 2 3 4 1 2 1 2 14 3 1 4 1 5 2 2 6 1 4 1 5 6
184. 1 81 2 99 103 2004 2 Abel 2010 27 3 412 416 3 04 Vol 29 No 5 444 457 2009 3 013 Validation of voice therapeutic method by mental rehearsal based on an fMRI study comparative vice and mental rehearsal activated regions RE APR wE 1 2 3 4 fMRI
185. ISRRT AACRT EACRT 10 5 1ISRRT AACRT EACRT 25 12 2 2 1 4 26 CT MRI 2014 6 18 ISRRT 2014 9 EACRT Japan 2015 EACRT WE 2015 AACRT 2016 ISRRT 2016 EACRT 2017 EACRT
186. m Radiochromic Film Co y Farmer Radiochromic Film EBT3 Farmer PTW30013 PTW31014 Radiochromic Film EB
187. 3 h 1
188. BASG 1807 A D RF A D TE RF A D AP 1 2T MRI TE 1 L deke KM Roschmann P Tischler R Susceptibility artefacts in NMR imagin
189. CAIPRINHA SNR 1 Parallel MRI SNR 2 Felix Breuer Martin Blaimer Mark Griswold Peter Jakob Controlled Aliasing in Parallel Imaging Results in Higher Acceleration CAIPIRINHA 118 7 078 Dual Gradient Mode Diffusion Weighted Image SOR TRS Dual Gradient Mode Single Gradient Mode Slew Rate Diffusion Weighted Image DWI Echo Time TE Gradient Mode Regular Maximum Enhanced 3 B Gradient Mode 38 v DWTI Signal Noise Ratio SNR Distortion
190. T2 FLAIR Multi slice FLAIR thin slice SNR FLAIR VISTA 3D thin slice IR pulse non selective FLAIR VISTA T2 prep Pulse IR delay T2 prep pulse FLAIR VISTA Philips Intera1 5T null point IR delay turbo direction Y Radial Half factor
191. TACE TACE lt in fades 4 re DO ZEEE aA Rand Phantom we nail 1 5 mmAl fa Fz TACE emm 1uG 10Gy min Fig 1 0 06 mmTa 1 5 mm Al rey Wo ae OS Jak LK 5LGy min T 10uGy min Fig 2 Rand Phantom Image Intensifier Doctor JouGy min Fig 1 1 5mmAl ERRE Fig 2 0 06 mmTa 27 119 Trancecatheter Arterial Chemoembolization TACE KE 0 06mmTa L FAZED int 5uGy min Ze GSA GB HA Fig 3 KIZ TACE 46 6min DSA 299frame 85
192. X SD CNR 100mAs UUmA 0 50 100 150 200 X keV 1 X SD 100mAs 200mAs 300mAs 1 0 50 100 150 200 X keV 2 X CNR 1200 1000 800 600 ml 400 200 0 0 50 100 150 200 X keV 3 X Mark Lewis Karen Reid Andoni P Toms Reducing the effects of metal artefact using high keV monoenergetic reconstruction of dual energy CT DECT in hip replacements 2 007 Virtual Monochromatic Imaging FR IY 2 1 2 GE Medical
193. 254 195 216 864 204 401 37 331 49 794 11 144 4 836 6 103 24 439 4 177 1 697 4 1 H 10 23 8 8 19 0 5 11 9 iF 5 11 9 23 8
194. 3 4 018 1 5TMRI 3 0TMRI SAAR AE 1 2 3 4 019 Large Bore 4 020 2 3T MRI SNR EMM AEP Session 10 00 10 40 2 S15 10 MR I 5 021 1 2
195. CT 25 FBP 75 1 FETE 2 3 S854 FU g 8 8 s D pa 8 3 ml 6 AY 175 FBP SAFIRE1 SAFIRE2 SAFIRE3 SAFIRE4 SAFIRE5 1 FBP SEMENS 190 100 cv 7 8 l 95 ASiIR20 ASiR403 ASiR603 ASiR80 ASiR100 2 FBP GE 190 100 ml s m 97 96 175 95 FBP Weak Mild Standard Strong 3 FBP 66
196. OX Fig 1 RIS eee FS foe ae een ie Fig 1 web csv comma separated value pdf por table document format Fig 2 Fig 2
197. Student t 5OkV no top board SOKV acryl 50kV polyurethane 100 70kV no top board 7OkKV acryl es 70kV polyurethane er 90kV no top board 90kV acryl i 90kV polyurethane i 6 E 4 E 0 40 so 60 current time product mA lt Fig 1 2 7 x 7cm 30 x 30cm FPD Fig 2 Fig 3 1 Student t FPD SOkV no top board SOkV acryl SOkV polyurethane gue 70kV no nop board a 70kV acryl 7 70kV polyurethane i 90kV no top board 90kV acryl 90kV polyurethane measurement dose uC kg
198. MR 15 6 5 2 1 3 3
199. 3 70Gy 35fr 7w 74Gy 37fr Sw 78Gy 39fr 8w 4 5 TCP TIIS KORWE ES a b EER SER TCP g TcP95 TCP95 70 o D 10GY ops3Gy ws 1Gy 40 a Bei0Gy lt al5 3Gy we1Gr 60 39 50 sorot i 25 40 years a em bs e cm 00 os 10 15 20 25 89 as 10 1 5 20 2 5 XB cm x cm 3 70Gy 35fr 7w TCP95 Tor BE ee TOMARA hide bee TePoP EE I BIO CTO Se bay Fr TE tps Kallen
200. 1 5 11 16 17 10 18 00 54 LA 25 11 17 10 00 10 50 WER 21 1 25 11 16 9 00 18 00 17 9 00 12 00 11 16 Session 1 9 00 9 50 1 1
201. 30km 29 1 2 3 4
202. CT CT 80kV 120kV 120kV 80 120 100kV DEO CT CT Asteion4 CT MTF Scano MIP VR 80kV CT CT
203. P 1 2 3 4 JA 8 035 1 2 8 036 BAY IS RT 1 2 8 037 MLC
204. X X X X CNR X X Al CaCo 1 X XX X 5 25cm Al CaCo 1 Al 0 1 mm CdT1 0 2mm mAs
205. statcel 3 1 SD Axial Coronal NO Fig 1 l Axial Fig 1 Axial Coronal 1 2 4 6 Fig 2 2 1 SD SD 70 0 60 0 51 8 52 3 50 45 Z 0 37 7 40 0 i 30 0 23 7 20 0 15 0 14 9 i 9 2 gh 0 0 2 5 a 0 0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 Fig 2 Axil SD Fig 3 Coronal SD Score Scoreaye 3 50 3140 3 00 2 50 2 00 1 50 1 00 0 50 0 00 1 2 3 4 s 6 7 8 ommo 1 2 3 a 5 6 7 8 ofi Fig 4 Axil Scoring Fig 5 Coronal Scor
206. Min Dose Max Nose A Mean Dose Min Dose Max Dose A Mean Dose OAR Dose uw o gt gt gt F 40 te hk hk Target Dose 10 ee 0 T 0 50 100 150 200 BLA 2 3 Target OAR MinDose M MaxDose Mean Dose MinDuse Max Duse A Mean Dose 120 16 100 5 3o 1 110 T 1 5 B 80 4 umant nn u a 70 M oS Eng E p a 100 AAAAA A 1 4 1 A a hk p gt Asii Aiii A Target Dose 0 50 100 150 200 EELER JELAH 3 5 Target OAR Hl MinDose WMaxDose Mean Dose Min Dose Max Dose AMcan Dox 110 15 tee ccs I TT 70 100 A 1 4 a A my v 0 SHE Se 13 8 50 AAAA AMAA A A A cl 50 00 150 200 a i pa b 0 50 100 150 200 cota LROm rget Dose 4 9 Target OAR Target OAR
207. HAs F S BI mA FE A 194 Dasa RAR oh S i IEA pee ZS CSFRT 2013 EXHIBITION 6 O AZE O O O O B HI
208. Ao B LR SI AP Inter fraction prostate motion 1 AP 1 Beha est 100kVCT
209. 1 2 PET 2009 PET response criteria in solid tumors PERCIST SUVpeak SULpeak SUVpeak 1cm VOI SUVpeak SUVmax ROI SUVmax SUVpeak SUVpeak AK PET CT Biograph mCT syngo_via
210. Re et KK a S oe eens ee Pike 120kV me ALE 100kV 120kV ookeV SokeV 120kV 100kV CT LAL ee 120kV 100kV ROI 350HU F Vacs au bdo me ae
211. 35 x 35 x 20cm 2 PDD Percent Depth Dose OCR Off Center Ratio 3 1 x 10 1 ae PDD OCR KN LOT RO R50 15MeV 16MeV 17MeV 15MeV 16MeV 17MeV 6 14 5 52 6 15 6 61 mm 0 70 0 78 0 76 15MeV 16MeV 17MeV RA 15MeV 16MeV 1 MeV 6 8 20 0 20 40 60 80 Depth mm Depth mm 2mm 0 3mm 1 R50 SD 0 5 SD 1 0 S D 0 5 S D 1 0 6 14 6 15 6 12 6 11 mm 0 78 1 39 0 85 S D 0 5 D 1 0 80 60 40 20 0 20 40 60 80 Depth mm Depth mm 16MeV 2mm 0 3mm 2 R50
212. CSIT KSRS 2011 CSIT 3 6 KSRS 1 2 Cid HFE aa Cees CSIT KSRS bia
213. ORI Table 1 CNR kV mAs CNR MAMMO En ie MAT Novation DMQC a 9 CNR Contrast Noise Ratio Mo Mo 30 000 29 8 0 2mm 99 5 ALDE 32 450 24 6 ioe 27 Mo Mo Mo Rh 26 28 30 32 34kV mAs 16 32 63 125 250 lt a 400 34kV 450 32kV 500 28 500 23 5 26 28 30kV Mo Rh 30 500 24 4 HOARE IC BVT CNR CNR DMQC 39 450 93 6 Yh ADTEHATEICIEL Chex HAT 34 400 22 4 CNR mAs
214. A B CT Hic 4 plist Aas lk ATE CILIA O B 57 SD 2 B 6 Fig 1 FiE 1 Fig 2 Fig 3 A B 2 A B SD 400 PS gt 0 05 300 ml N 8 my SD A B Fig 2 A B
215. CT trans mission PET CT PET CT tix 100 PET CT Fig 1 CT coronal PET coronal Fig 1 PET CT mm 3 6mm 3 1mm 1 9m Chor
216. Eclipse Ver 11 0 VARIAN 1cm GTV 10 cm 1 Box g 8 TCP JE 95 909 2 1 10cm 2 1 cm GTV 3 6MV X 4 Box4 1 rr pr me _ semie wee mge nts me a TCP 95 90 a ss TCP Curve 2 TCP 70Gy 35fr 7w TCP95
217. 2012 68 10 132771332 10 044 mA BOA Rt Cone Beam CT cBlF Sry AR RABAT IHAL 1 2 Cone Beam CT CBCT QA TG 142 DoseLab QA Full Scan Half Scan Cat phan DICOM DoseLab HCR LCR HCR
218. 1 1 MRI 2000 10 1 a 18 082 MR Preparation Oka EF U MRI MR MR MRI
219. 2 fb 6 ea eases em 5 em ameome 10 6m2 s 0 0 10 20 30 40 50 60 C 1 35 a 0 80pm BAX A 0 66um 25 10Sm27al 0 10 20 30 40 50 60 C 2 BAX A
220. 1 2 CD 4 5 11 2 8 50 2 19 34
221. 130keV 3 X SD CNR T SD CNR 70 80keV 70 80keV SD CNR 120kV mix 130keV
222. FWHM RI THRO DRIP radial tangential 2 FWHM Fig 1 FWHM Standard radial 9 58 mm tangential 9 71 mm Z 6 68mm Heavy FWHM radial 9 40 mm tangential 9 56mm Z 6 92mm Lite FWHM radial 9 64mm tangential 9 83 mm Z 6 59 mm Non FWHM radial 9 87 mm tangential 10 06mm Z 6 35mm FWHM radial tangential 12 0 12 0 10 10 E Jiasi iik E sg 8 0 Heavy e Heavy sis Lite Lite 6 0L 6 04 Standard Standard f Non Non asso Sr os ol 35 30
223. Refocus ing Flip Angle RFA TE IR delay T2 prep Pulse prep TE TSE factor delay 5 null point IR delay prep TE 0ms T2 prep Fig 1 1700 7 1600 1500 T2 prep 0ms 1400 f T2 prep 50ms IR delay ms gt T2 prep 200ms TSE factor Fig 1 IR delay turbo direction Y Radial Half factor 1 0 turbo directon Y Half factor 0 7 turbo direction Radial Half scan TE 150 210ms RFA RFA RFA
224. 1 2 SD full width at half max imum FWHM feels CT SD 5mm ROI 5 FWHM CT AFD MPR FWHM ROI 5 CT ROI FBP AIDR 3D FWHM CT FWHM CT AIDR 3D FBP FBP x 100 1 FOV kV mA sec rot mm DAS X mm 100 120 50 500 0 5 320 0 994 160 X0 5 50mA 2 FBP 100 120 kV AIDR 3D 100 kV AIDR 3D Weak Mild lt Standard STD lt Strong STR E i JE Xi e gt mm FC14 0 5 0 25 1 SD 2 5
225. 1 mm XX Z Y B X Y Z HEA Setup margin mm A 6 6 3 7 5 6 B 4 7 6 7 4 6 C 3 3 3409 oe aT 2 Inter fraction prostate motion internal error 2 Y Z 1 SD Y Inter fraction Setup error Setup error 1 mm 148 Setup Error mmj o ees gt X Y Z direction 1 Setup error Mean SD Internal error mm X Y Z direction 2 Internal error Mean SD A LR SI
226. AEC AEC AEC INSTRUMENTARIUM alphaRT FUJIFILM FCR PROFECT CS IP FUJIFILM HR BD Radcal Accu Dose 2186 10 x 5 6M BAK 250mm x 300mm 99 1 mAs 2 mAs mAs n 5 2 mAs 3 CNR 2 n 3 CNR 2
227. SNR TE Enh Max Reg 40 Enh Max Gradient Mode TE SNR b SNR Distortion Enh Max Reg Enh Max b Distortion b1000 b1000 Reg 0 Reg Max 500 Max 700 600 500 P 4 Enh 400 Enh 400 200 3 200 2 100 0 0 0 100 i0 DO j TE ms Coordinates SNR 8 B b 16 1000 eee Reg Max Enh 28 Reg Max Enh SNR Enh Max Reg Distortion SNR Reg TE Enh Gradient Mode Enh TE
228. a S OTJ SSE H Be X S XX HA 1 2012 7 1 2013 6 30 X S
229. 1 2 OLT 2002 2013 CT 2003 TImage E 42 2013 21 26 DO CT TERAK CRE AE COR FE ESWL 29 CT 1 32
230. 3 4 28 126 PET CT RH 1 2 Session 29 8 40 9 10 1 LCT 29 127 CT RIE FA SESE HARE 29 128 Tah AR BOR AB RA EH 29 129 imageJ BY 29 130 CT
231. 3cm Image Ver 1 47v National Institutes of Health 1 TE 1 NY PII EA FEB EI AP 11 33 mm 11 68 mm HF 12 70 mm 13 05 mm 0 35 mm AP 11 33 mm 11 68 mm HF 12 71 mm 13 05 mm 0 35mm TE AP 10 64 mm 13 48 mm HF 11 33 mm 14 08 mm TE HF AP RI mm INT FAG AP HF INY PI Lingo 1106 12 015 05 1L 99 I100 12 71 13 05 TE 10 64 13 48 11 33 14 08 TE msec 1 TE
232. 5 BAX A JER BAX M BAX 100 57 8 54C 4C 10C 1 g ml 3 6 W V 0 9 W V 30 W V 572 1
233. Cat Phantom CTP528 7 Catphan DoseLab MTF MTF LCR Catphantom CTP515 Image 15mm 7 SD SD Contrast to Noise Ratio CNR QA QA Image DoseLab HCR LCR HU DD
234. RH BRIG Bek HEC Session 3 15 40 16 20 1 1 MR 3 011 Spin Echo SE T1 T1WI TR OHE 3 012 3 U13 Validation of voice therapeutic method by mental rehearsal based on an fMRI study 1 2 3 4 3 014 How does the environment sound affect a calculation program functional MRI study Z
235. 2 m 10 f sec Result of Detection Time 30 f sec 9 8 7 E 6 5 4 3 2 1 0 A B C D F F G Observer Number Fig 1 Wi 7 7 6 10 b PE 30 m 10 f sec Result of Positioning Accurately 30 f sec Distance Pixel 8 A B C D E F G Observer Number Fig 2 7 5 10 30 p 1 2 30 p 24 9 30
236. 23 101 IVR CT BHRORAR EDR Ok BA AUR 23 102 RAO PR EX K 1 2 3 SIEMENS Session 24 38 40 9 40 3 9 T 24 103 6 1 2 3 24 104 Roll Pitch
237. FOV 100kV 149 BESE CNR TaN CTA HU IL MITREI E CNR CNR CNR SD CTA CNR CT 64 CT LightSpeed VCT Advantage Workstation 4 5 GE 6cm x 10cm x 2cm 4mm 0 8 1 1 2 1 4 2 2 5 3 3 5 mm EOD zA
238. PDD OCR 1 16 0 MeV 2 1 0 3 1mm 4 Upper 0 3mm Lower 0 3mm 6 31 139 ABS EKR RE 1 2 3 Me LAL BATT 7 b PWR
239. 10 CT BiG sell nove Filtered Back Projection FBP X CT Aquilion ONE TOSHIBA 220mm 2 0 mm 1 35 mm 250HU 120kV
240. Fig 2 MR TIWI SWI SWI T1 WI SWI 1 WI 90 2 6 74mm N Fig 1 300 90 SS n s p 0 059 ise 5 200 3 150 100 Syringe Fig 2 5 022 1 2T MRI P aai AI AZ Fe 1 2 3 MRI OASIS 1 2T Hitachi Medical Corporation MRI
241. TTarget OAR Target OAR on 1 Target 1 3 1 4 OAR 1 2 2 3 on
242. 30 E 5 f sec Result of Detection Time Ba A B C D Observer Number Fig 3 4 5 15 5 15 2 30 107 15 067 FPD OR Tat YAH 2013 5 KONICA MINOLTA
243. 10 mm 14 mm 5 0 mm 8mm 2 5mm 4mm X CT QA QC 3 oo 27 116 Imaging Plate IP Imaging Plate IP Ac ie E KMS Hospital g 80 90 100kV 400mA 0 2s
244. 2 VERA LK AK 1 2 3 4 1 5mm 2 4
245. 2 3 X TP IP 3 IP TP X IP IP IP TIP IP 31 x 41 mm Soredex Palodex IP DIGORA OPTIME Soredex Palodex X
246. IVR IVR 1 InterventionalRadiology IVR Intervene TRY EREA 1 IVR IVR 1 1 IVR IBS ative AMSA ZEAE Aso SVC Budd Chiari Snetawt IVR 2 3 7 TAE 8 ee ppe 4 e 4 A Zie w aa pa r 4 T SOS
247. 1 6Gy HOE we HN ATO 2Gy 100 600MU min ESE CHE L Et ICTR ELH GE amp HN Tod 2Gy 1 2 4 8 1 MRI SIGNA Excite HD 1 5T GE Healthcare k V R 1 T TT Image J R map Fig 3 MRI MAGAT TE1 20ms TE2 100ms PAGAT MgCla TE1 20ms TE2 250ms Fig 1 Polymer gel Fig 2 Water equivalent phantom Fig 3 Remap Fig 4 Gel samples irradiated with X ray and a non irradiated sample Fig 4 Fig 5 Rs MAGAT PAGAT MgCl Relative R R PAGAT MAGAT 20 PAGAT MgCl MAGAT 5
248. 2009 1 248mSv 2013 0 965mSv 3 2 1 300 2009 374mSv 2013 289mSy 85mSv 9 23 500mSv 1 CT 3 1 1 160 PET 19 F FDG
249. ROI Fig 1 1 4 Fig 2 ROI ROI Fig 2 ROI size CNR Fig 3 Contrast Noise Fig 4 ROI size Noise CNR AGD 2mGy 63mAs ROI size CNR ROI size 1 256 8 ROI Fig 2 ROI size ROI SD ol ariel sali Fig 2 ROI ROI ROI size SD ROI size ROI SD CNR ELUA ROA 005 Contrast Alsager A Young K C Oduko J M Impact of heel effect and ROI size on the determination of contrast to noise ratio for digital mammography systems Proc of SPIE Vol 6913 91341 2008 Fig 4 Contrast and Noise DMQC
250. 4mm 1 mm 320 X 256 NEX 1 TR 3 200ms TE 100ms ETL 2 RBW 31 2kHz FC Flow Compensation 1 Flow Artifact 2 Flow Comp FOV Fig 1 3 T Flow Artifact Fig 2 Fig 2 Flow Artifact Flow Artifact Flow Artifact ELT amp AME APEC ERED HEN AZO WTO Flow Comp Oft Fig 1 Flow Comp NO AEC 1 2 AEC
251. 30cm 5cm CT PET 5 Fig 1 256 x 25610 T Z VUE Point HD AERA IAA BART GE Sharp IR Brae subset 20 iteration 2 radial tangential FWHM DRIP RI aspect ratio ASR resolution recovery ratio RRR Fig 1 radial 5 IHOFWHM ASR 1 tangential GIHOFWHM VUE Point HD OFWHM RRR 2 Sharp IROFWHM Radial D FWHM VUE Point HD 9 7mm Sharp IRO FWHM 9 3mm 15cm 7 7 mm 30cm OME 9 9mm ASR
252. Fig 2 Refocusing Flip Angle S y Ti 180 As 4 210 s as 4 hes A Fig 2 RFA TE prep TE null point T2 prep Pulse IR pulse 90 180 180 90 2 IR delay prep TE T2 TIR delay turbo direction Y Half factor Half scan RFA 2 FLAIR VISTA T2 T2
253. 12 100mm X 3mmAl 40 60 80 100 120 kV KETTI o Y FORA gt lore il ORY bh mle L CHBICAR Sth SLT LFV AW 1 keV X X X X X X
254. 6MV X 0 6Gy 2Gy 40mm 110 me 2 MRI R Dose A R2 10 x 10 x 10cm Fig 1 Dose R Fig 2 R 1 5T 3T RS R Fig 3 3T Fig 4 0 2Gy 4 6Gy 1 5T 3 3T 6 5 A 4 A 1 5T 3 4 3 0T 2 1 0 0 2 4 6 8 Gy
255. QC QA MRI TAERE R 1 T MgCl PAGAT 10 mL 18mm 110mL 40mm 1000mL 10 x 10 x 10cm 10 x 10 x 10cm
256. 1 2 3 4 4MV X 1 012 0 006 2 1 012 0 003 5 ED HJJ 10MV X 1 007 0 019 2 1 003 0 009 5 4MV 4MV 4MV X 10MV X 4MV PD
257. MRI scanner Intera Achieva 1 5T Nova Dual Coil QD Head Coil PHILIPS Phantom MRI Phantom 90 401 Gradient Mode Regular Reg Single Gradient Mode SNR RERI So GR RE Id AE Vo A aS hike b 1000 Slew Rate TE 87ms Fig 1 Maximum Max t4 Single Gradient Mode Slew Rate b 1000 TE72ms Enhanced Enh Dual Gradient Mode Regular 2 1 2 Slew Rate b 1000 TE53ms Fig 1 Ai Gradient Mode TE b SNR Distortion SNR Fig 2 ROI Distortion Fig 3 Fig 2 Fig 3 Phase Encode Direction Profile Curve wep SNR Swean SDinean Sean Phantom ROI SD Phantom ROI
258. Mo Mo Fig Table 2 AGD3mGy CNR mAs er IS 24E CNR Mo Rh o mAs ff anion CNR CNR _ 26 164 8 17 6 12 9 mAs CNR Table 1 28 123 16 6 25 CNR Mo Mo 30 94 15 6 11 9 CNR 39 75 8 151 11 3 A T ae mae IAEA AGD 3mGy 20 180 9 14 3 13 4 CNR 28 135 7 13 5 13 3 AGD 3mGy Mo Rh 30 1038 13 12 8 CNR Table 2 32 83 1 12 6 12 3 34 69 6 12 5 jl Mo Rh CNR
259. PSF TOF FEDV ESV PSF Table 1 PSF TOF PSF TOF PSF TOF PSF TOF 4 AW AC h TREDE V H HH AN PET PSF PSF Wiel ce 7 08 LLa PSF
260. Research Question GTA SCQRM Structure Construction Qualitative Research Method ER
261. heart mediastinal activity ratio HM HM MIBG calibration phantom RI GCA7200 DI A HM Reference HM DiscoveryNM CT670 GE GCA7200 DI A SymbiaT 16 SIEMENS ProminenceProcessorVer sion3 1 HM 1 4 0 38kBq me 1 21 3 64 6 07 8 49 10 92kBq m6 DI MIBG Discovery NM CT670 ELEGP MEGP GCA7200 DI A MEGP SymbiaT 16 LMEGP MELP
262. 1 575 1 cm 70 m 1 03 1 1 1 CT 1 70 mm 64 16 64 5 24 4 40 uSv sec 1 3 16 16 X 3 2 REA 2009 1 1 320 5 2013 3 1 115 7 64 1
263. FDG PET AIMCO AOR F FDG PET viability PET CT MRI SNR PSF Time of Flight TOF SNR PET PSF TOF PET PET
264. Parallel imaging Parallel imaging SNR g SNR SNR g RY SNR Parallel imaging SNR SNR Parallel imaging SNR g Geometry factor g factor R Reduction factor Parallel imaging g factor MRI Vantage Titan 3T 16ch SPEEDER 16ch SPEEDER GE Healthcare QC 15x15x 38cm parallel imaging FSE T2 SPEED ER factor 1 0 3 0 1 0 image ZHE MRI parallel imaging SNR SNR gr factor ROI
265. 12 Monochromatic CT X monochromatic CT NIST XCOM mono chromatic CT 3 X 4MV 10 MV 10 cm x 10cm Superposi tion WI FRR ERY ty h 100MU 10cm X DECT 120kV X Single energy
266. 6 026 CR mammography CNR ROI size 9 1 2 3 4 6 027 DMQC ORJI 6 028 Session 7 16 20 17 00 2 10 X 7 029 OR REA
267. 1 2 PACS 2012 3 4 2013 7 31 PACS 477 Lees Table1
268. 1 5mSv EE a i TE ee oT ee wm mi wi wm mi Se SS SAAS SE TT LR OO FN Nn OR OO FN Rn FN or na od ad am wo gt gt gt gt ooo O 0 Ont Be gt NN NN NNN NOOSE mm mm m mn oo oo oO Oo ol coo GG OO Oo CO oo a oo oo oo Co SC un Oooo oo nn n nn N NN NN A A A O O O N CN ON NN NN NS SN A NN NN Dr Ns Dr D Ns Olt ARR RE CHS E 28
269. FOV LCI AEC KOE FOV 6cm 8 Fig 1 LCI 1 FOV ae ei eC AEC 1 1 2 Axial Coronal MPR Image J SD 5 45 4 38 12 5 2 Axial Coronal MPR SD 5
270. rn IOF 2 C C D CsI D Gd D 50kV 70kV IQF CsI D 90kV IQF Gd D 1 CsI D 1 2 ear ed D a Cs I D E ame e e pared t test p lt 0 05 0 5 1 2 a Relative exposure 10 rc eeeoee x1 2 CsI D x1 CsI D ee x Csl D Thickness mml 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 Diameter mm 0 5 1 2 b Relative exposure ay ate Gd D 250 a Csl D 200 F 150 100 ns ns not significant 0 5 1 2 c Relative exposure Fig 1 C D diagram 90kV Fig 2 Image Quality Figure a 50kV b 70kV c 90kV 2 C D CsI D IQF 90kV 1 2 CsI D Gd D
271. 106 IVR 1 10 15 1 10 30
272. 1mm 2mm 3 mm 1mm 2mm 3mm 6 14 6 12 6 23 6 09 mm 1 39 0 59 1 00 1 mm 2 mm 3 mm 1 mm 2 mm 3 mm 20 0 20 40 60 80 Depth mm Depth mm 16MeV 0 3mm S D 1 0 3 R50 0 2mm 0 3mm 0 5mm 0 2 mm 0 3 mm 0 5 mm 6 14 6 30 6 11 5 87 mm 0 49 0 85 1 69 scat 0 2 mm 00 SCat 0 3 mm SCat 0 5 mm 0 Scat 0 2 mm SCat 0 3 mm 20 scat 0 5 mm 0 80 60 40 20 0 20 40 60 80 Depth mm Depth mm 16MeV 1mm S D 1 0 4 PDD OCR ts PDD OCR PDD OCR
273. Flex s C1 TFE factor FA FA35 FOV Coronal Axial score ihe Fig 1 RVS EA FOV 50mm Axial Coronal M Score FOV 100m Axial Coronal score sagittal FOV 150mm Axial Axial RVS FOV 50 mm Azxial
274. cm 12cm cm 00 it 12cm cm 2 TIWI FOV 44 0 CV FOV TS FOV 40 1 5T T2WI 484 3 0T T2WI Clk 64 1 5T T1WI 454 3 0T T1WI 15 CV Fig 3 BOT MRR K 2 TIWI OT 12WI 2 7 Fig 4 TIWI A 1 5T A 3 0T p Feet Feet 0 a 0 Center J Center X Sy sa 9 9 10 I p 5 0 HW 4 0 HV W FOV em FOV em L5T ch 30T eet p eet t 9 ia 0 ie Center ad W Center X 9 Si y g 0 Wg 1 0 0 0
275. 1 2 n 257 53 102 102 LG gt n 361 119 130 112 ExacTrac lt gt n 108 21 60 27 2D 1 IGRT IE DBT BPE ERS AM D Ea SS Be Se HG I 2 4 240 PERE CHO Ko HR 74 3
276. 2 3 RAR YS BARE 4 3 3 QA QC X CT QA QC MAGAT MgCl 40 mm x 50 mm 60mL PET X CT 10 30
277. GAEL KAR HCR Full Scan 0 6lp mm Half Scan 0 7lp mm MTF Fig 1 a Full Scan 0 3 b Half Scan 0 25 LCR SD 19 CNR 5 57 123 DoseLab 25 QA _ 3 1 b 1 09 09 0 8 08 8 07 07 N 06 0 6 E 05 E 0 5 S 04 04 0 3 0 3 0 25 gt 0 3 0 2 L lMig 4 L LM 1 0 0 2 0 4 0 6 0 8 0 0 2 0 4 0 6 0 8 f k 0 6 Spatial frequency Ip mm Spatial frequency p mm HCR MTF Fig 1 ImageJ DoseLab Fig 2 DoseLab QA QA
278. J 6 Fig 1 1985 3 2013 28 45 28 o 1905 1 1
279. PTV56 TEZ ONA EZ FO Du Nishi IMRT 2step Drean STB VMAT SIB VMAT 1 Nishi et al Volume and dosimetric changes and initial clinical experience of a two step adaptive intensity modulated radiation therapy IMRT scheme for head and neck cancer 2013 106 85 89 Radiother Oncol MU
280. S MR 24 105 IMRT Intra fraction motion PTV ER GR 1 2 24 106 IMRT VMAT EX EB BRR 1 2 3 24 107 IMRT 2 1 2 24 108
281. noise curves Toshiba C Veradius io FPD CT trancecatheter arterial chemoembolization TACE Low Contrast Imaging LCI LCI FOV FOV 00 Auto Exporsure Control AEC 1 CT 60
282. 1 2 3 31 143 31 144 31 145 31 146 Session 32 MR 32 147 32 148 32 149 32 150 32 151 IMRT ORE RE ZE 1 2 3 Radiochromic Film se WP WE vel OT ea XH
283. 1 0 VUE Point HD ASR 4 Wi 30 cm 1 24 Sharp IR ASR 20cm 0 83 Fig 2 Radial RRR 1 04 20 cm 1 36 30 cm 1 28 Tangential RRR 1 10 IN O O o 1 00 B gt 0 80 S 4 radial O 0 60 P tangential S 0 40 B 3 0 20 JO a 40 30 20 10 0 10 20 30 40 Position of sphere phantom cm Fig 2 Radial 20cm 20cm Tangential 1 10
284. 2 3 21 094 OR 21 095 1 2 3 4 5 6 Session 22 11 00 11 40 2 E 10 L X 22 096 OWD AMY PUE ED BR ASE BR 1
285. ASL SPECT SPM Fig 1 Fig 2 MRI SPGR ROI DE papm 5 Smoothing IOF 8mm a0 gpa SPGR Template Normalization Smoothing ASL 8mm Fig 1 Spatial Normalization SPGR template ASL SPECT smoothing FWHM 8 mm a AA gt 0 na Gh MR XD orm Am ay are ate a dit 3 I db ge Ge AR Gad amp 4 Gar Fad FAN FAN au 4 Ge KN CEY we we a A AR ry a amp I 0 SA ye KO ni a ARS SW VARA Wy OF VW Sy WW Ge s a Wy 2001 10 18 Demo Datas 77 ECD3M Template cay Fig 2 ASL SPECT SPM Pier e MRI GE 3 0T DISCOVERY 750 e SPECT Toshiba e
286. tp 0 01 Fig 2 2 30 a 2o 3 6mm 10 3 0 44 22 0 22 44 distance mm 30 520 3 1mm 10 E 0 0 distance mm 30 Oo vy o p P lt 0 01 g 0 44 22 0 22 44 distance mm Fig 2 ET CAI CWB ee FOZ LV Be Cla BF
287. 100kV 1 0mAs 2 0mAs 4 0mAs 6 3mAs SID120 cm ILA 1 83 AeroDR 8 1 AL 40 cm CR 8 1 AL 60 cm 5 EIZO 3M 50 OME EE Cai CA AIRS BETY C D IQE AeroDR CR 2 0mAs TA C D Fig 1 AeroDR CR IQF
288. 360 Walert 360 mE 180 Om DSe Bresril a E Water Er Breage Water Breast 120 100 80 j D530c REST Infinia 360 60 re Infinia 180 40 0 90 180 270 360 Water Breast 120 9 100 80 D530c REST infinia 360 60 Infinia 180 40 0 90 180 270 360 180 D530c SPECT
289. Mo Rh Mo Rh 34kV PMMA JB 40mm PMMA 40 mm are E AGD3mGy Mo Rh 34kV Fig Mo Mo mAs CNR 69 6mAs AGD 3mGy CNR contrast noise ratio V PMMA polymenthyl methacrylate 50 30 mm MAMMOMAT Novation Radcal Radiation Moni tor model 9015 10X5 6M CNR DMQC CNR 0 2 mm Al 99 5
290. 110 KE 16 070 PET CT 4 PET CT PET CT PET CT 45 PET CT PET CT
291. Table3 Table3 G 3 MWM 25 8 8 21 CT 20 4 0 MR 4 20 0 RI 23 0 1 71 2 3 67 2 6 hg 4A 7 0 0 21 3 7 CD CD 1 40 60 1
292. 2 TACE 0 06mmTa 45 4mSv year 19 9mSv year TACE 9 protection screen Seid O FEY CT Wei BIR 1 2 CT RFA 2009 CT 3 IVR Aare CT
293. Session 20 11 00 11 30 1 1 MR AG 20 090 Multiple Fast Field Echo HOHE ARE BY 1 2 20 091 MRI mFFE GAL ci RRO BR TB 1 2 20 092 3D PDW 5 1 2 Session 21 11 30 12 00 1 1 E 21 093 2012 EW BL 1
294. 3 OU DNA DNA SAS IER OMICS ASA DNA DNA
295. AGC FGD 1000 GD 352M MODEL RAN 110 Table 1 Tabe 1 CT 120kV 300mA 4 4sec AUS RSV CT CT CBCT 2 2 6 6 Peer ACG Table 2 CBCT CT 1 125 392 4 329 2 267 4 215 5 186 7 180 2 Jo 18 8 4 CBCT Ic Bw TC Exe DSF PH EY 4 WUE ED Teo PORES Hee E KE
296. 0 5secrrot SB CT AEC R 10mA KI rib I SD20 I SD1g D FoV s FoV 350mm 400mm HREAG acu Bs rr Ae Shee SP Se F C13 E Lg ORR Se ER AL 32mm 1 0 x 32 0 656 0 844 1 408 1 16 7 17 1 14 16 0 02 0 04 Fig 2 DIE IL FLOKU FLO3 10 6 i 10 0 09 FLO1 04 05 5 8 7 6 52 0 20 0 61 Fig 3 FLO1 04 05 PF ier _ mean SD CV Feo 16 59 0 45 0 03 76 97 0 52 0 0 Anea 147 15 0 47 0 03 7 FLO3 416 84 0 47 0 02 N FLO3 16 6720 32 0 02 FLo4 16 8820 40 0 02 SS NN N e y Re t
297. 5 10 25 30 20 TL te DY RFA POET 5 RO10 FED 1596 15 25 30 15 20 15 SE 15 142 6
298. CT PET list 20 static Fig 1 1 phase1 phase2 phase3 3 phase static Thaee phase phases Fig 1 PET VOI Volume of interest SUV SUV 1 Difference Difference 4D PET 3D PET 3D PET 1 phase phase 17 4
299. D O B GE EIZ0 D O O D RI
300. HM i BE 10 92kBq me HM Reference MIBG calibration phantom HM St 1 55 1 80 2 60 3 50 HM 3 5 HM HM 0 00 0 32 1 4 Ref erence LEHR Reference 4 0 GE ELEGP GE ELEGP HM 1 21 3 64 6 07 8 49 10 92 kBq ml Fig 1 HM GE ELEGP Reference 40 SIEMENS LMEGP
301. Se Ey RCATA WEE eb PeA fei S IR PTA MIP ASO 2471240 TREIE L BARRO REX 1 0 1 5 MIP RFA MTIP RFA RFA
302. X WH FER ok RA EU 1 2 X DSCT SOMATOM Defi nition Flash Siemens CNR Monochromatic CT 3 X Single Energy CT SECT y DD 1 DTA 1m X 40 190 keV 10 keV CNR 300 mgI ml 10 20 30 mg ml RMI467
303. 10 3 OTS Non gate SUV Difference
304. 2 20mm 0mm ee 2 Ss ONCORimpression Seimens 6MV X Pinnacle Ver8 0m Philips CC Convolution 0 37g cm RAMTECsmart TN30013 PTW NACP02 SCANDITRONIX 1 02 7 100mm 1 00 33 0 98 ag eH ee 0 96 lt 4cm 6cm 0 94 0 92 5 cm 10 15 4cm 75mm 1 01 1 00 0 99 f 0 98 20mm kx 0 97 10mm 0 96 5mm 4 2mm 0 95 0 94 0 5 cm 10 15 2mm 6 5
305. 20cm MixDP AeroDR 85kV SEFD240 cm mAs 20 40 60 80mAs CR 85kV SEFD270 cm 80mAs LZ FH 6 3M 50 3 FPD 11 85kV FPD 240 cm mAs 20mAs 80mAs 10mAs Image J 1 B mAs C B 1 2 Table1 X
306. 55 75 FA55 SNR mFFE 1 SNR CNR by first TE in phase Fa SNRmuscle Signal Contrast to Noise Ratio 46 9 21 13 81 18 41 23 02 msec First TE 2 SNR CNR by flip angle FA SNRmuscle T Signal Contrast to Noise Ratio Relative signal intensity by flip angle 0 4 muscle Relative signal intensity 0 70 80 90 100 degree FA TR 550ms T1value bone 450ms muscle 850ms a 3 Magnetic Resonance Image 1 2 HS
307. CNR radial T1 TFE MR Angiography TFE factor 3 MRI 67 69 2008 PIEJ 7 2 MR 272 273 2001 a 19 085 Dummy pulse radial scan BB imaging profile order 2 IESE 1 2 MRI Black Blood BB imaging TR T 1
308. HSV QPS HSV QPS gt 0 HSV QPS 0 B HSV QPS lt 0 L 17 3 3 30 50 RCA TICLI I BMIPP 20 30 HSV T 1237 BMIPP Mismatch 100 100 100 80 80 80 60 60 60 40 40 40 20 20 20 0 0 0 LAD LCX RCA
309. SNR CNR RFA RFA SNR SNR RFA50 deg 90deg turbo direction radial y turbo direction radial y RFA Fig 1 9 in pS Water cartilage a Water muscle 5 Cartilage muscle Water cartilage Water muscle Ss 2 amp h w Q Q w w 0 3 1 0 2 Cartilage muscle 8 8 0 0 0 20 40 60 80 100 120 0 20 40 60 80 100 120 Refocusing Flip Angle Refocusing Flip Angle Low High radial Low High y Fig 1 Comparison of CR in each tissue when changing RFA SNR turbo direction RFA 60 deg SNR 9
310. 1 2 Aquilion64 5 FLO1 05 120kV 0 5sec rot 1 0mm X 32 PF 0 656 0 844 1 408 3 CT AEC SD 20 IL 12 5mm FC13 ROI Image J Z 5m ea 1 a ame 65mm ana Rrr BA 2 x el G hi ane wee S Gewn Fig 1 Bc Table 1 HERDE 120Kw 120Ky i Oe AS 4 La FLO1 FLOS
311. 2 0 1 5 5 300 350 300 300 300 SHIBATA 57 6 40C 5C
312. 3 GE PET CT Z Z PET Z PET CT BGO GE Discovery ST Elite F FDG 140 kBq ml 1cm CT PET 5 0 30 cm 5cm 256 x 256 3D OSEM VUE Point Plus Z Non Heavy Lite Standard 4 radial tangential Z FWHM
313. 3D T1 TFE with SPAIR e THRIVE FOV 160mm TR 5 4ms TE 2 8 ms Slice thick ness 10 0mm matrix 272 x 512 recon matrix 1 2 TFE factor Flip angle FA FOV CD axial coronal axial sagittal 45 MRI 5 3 5 score excellent good normal poor bad RVS FOV 50mm C FOV 50 mm 100 mm 150mm 0 PAIX C1 Flex m Flex s Flex m
314. CT CT 100 120 140kV 12 40mAs 2mAs 0 5rot sec 4 8mm Fig 1 20 15 2 100kV 10 E 120kV m 140kV 0 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 mAs Fig 1 CT CNR Fig 2 CNR 1 6 1 2 100kV A 0 8 e 120kV 0 4 140kV 0 12 16 20 24 28 32 36 40 mAs Fig 2 CT CNR SS L SD Fig 3 4 SD SD 350 300 ee 250 2 150 100 50 0 22 32 12 22 32 42 52 62 mAs mAs Fig 3 SS SD Fig 4 L SD SD OB Fig 5 Fig 6 SD 27 40 e on 30 off 20 10 0 1
315. Film Coronal 0 Sagittal 90 1mm 500MU Fig 1 MLC 1 MLC Film PTW 30013 Farmer PTW EBT3 MLC 2 IMRT 6 EBT3 Sagittal 5 Pass MLC IC Phantom IC Manual MLC 0 02 500MU MLC
316. 2 Session 15 10 00 10 30 18 4 15 065 15 066 EAR KF 15 067 FPD OR Fa WH 15 068 FPD BEA fist 1 2 15 069 Ox E ASR Session 15 15 40 16 10 1
317. BatAne torerewo FIBRE Ony FR F BABA SAD X 9 ACS oe es gt ew a SA 2 Lp Fd a USD1000
318. MRA MRA MAGNETOM Skyra SIEMENS 3T HeadCoil 20 Flex Large Coil 29 2 2 T2stir space 3D TOF T 2medic NATIVE space 2D TOF FlexCoil HeadCoil 5 6 HeadCoil EHRE TIIE ZS E FlexCoil
319. SNR Distortion Gradient Mode DWI SNR Distortion KE 2 4 Eo v C HEREN RT XIT 726 Gradient Mode Enhanced TE SNR Distortion gt WWE 1 2 2 MRI CHESS FatSAT Efficiency FE FE PP MRI Signa HDxt 1 5T GE Healthcare
320. 0 3 25 TDC 0 3 25 0 3 25 0 3 25 1 TDC CT
321. Al CaCo I CNR Fig 3 1 1 0 005mm 1 0 02mm 1 0 05mm COM Al CaCo 1 5 1 45 1 4 1 35 1 3 1 25 1 2 1 15 1 1 1 05 1 A Improvement rate lt 150 Ol X ray tube voltage kV Fig 3 Improvement ratio of material thickness CNR 20 CNR CaCO i X
322. preset measured Table 1 Table 1 ERE Pm kV mmAl measured preset keV keV 80 5 98 46 9 55 100 7 28 Sl1 7 63 120 8 41 56 9 72 120kV preset measured CT 100HU 1000HU preset measured 40 03 cm preset measured TNO reference 5 Fig 1 80kV 100kV 120kV ha LT preset ha Ww Pd oi j measured reference attenuation correction coefficient cmm1 0 0 200 0 400 0 600 0 800 0 1 000 0 CT number HU Fig 1 120kV CS lt S55 tH ERA M52
323. 12 AP HF AP lt F ILE HF 0 0 20 40 60 80 100 deg Fig 1 _ 2 gt
324. 2 3 BRAM YS 22 097 BURY SAO Ba Ba 1 2 3 22 098 CT AE PA 22 099 FPD C Veradius Olli NGA Rat Session 23 11 40 12 10 2 10 L X 23 100 FPD CT
325. 2009 11 1 2 20121 CSFRT 2013 AH 7 MIRE FSE JRC RSNA ECR 3
326. Fig 3 TE first SNR nae ie 78 60 First TE 9 2ms We Gartlace TE First 9 2ms ci 40 SNR 7 Flip Angle 15deg SNR 5 10 15 25 deg Flip ra ADR a Fig 4 Flip Angle SNR Las 37 oF ail Tl 1200 ms o a Cartlage 50 E Cavity E Bone 40 30 2 n 10deg n Fa 37C 1 Flg5 WATS SNR 15deg SNR 1 2 1 1 3 3 1 RF 3 N S N O h SNR COS a exp TR T1 2 a TR T1 TE First 9 2ms Fl
327. NPS Virtual Monochromatic Imaging NPS 3 CNR Virtual Monochromatic Imag ing CNR Aquilion 80 100 120 135kV 750HD 80 100 120 140kV SD10 1 CT E EJE Aquilion16 Aquilion64 750HD 80kV 50 45 keV 60 55 keV 50 45 keV 100kV 62 60 keV 62 60 keV 120kV 68 65 keV 68 65 keV 66 64 keV 135kV 74 68 keV 74 68 keV 140kV 74 68 keV Virtual Monochromatic Imaging 2 750HD NPS 50keV ne 750HD 80KV 750HD GSL4SKeV 750HD 100kY 750HD GSI 60keV 0 1 03 0 5 0 7 0 9 14 13 04 0 3 05 0 9 Spatial frequency cycles mm Spatial frequency cycles mm NPS value mm2 74keV 66keV m 750HD 120kV 750HD GSH120KM 750HD 140kV 750HD GSH68keV lt La L
328. PET1 16 070 PETCT KE 16 071 FDG PET 16 072 KREO FDG PET OH RE E 16 073 3D PETCT bed position NECR weight NECR w OR 16 074 FDG PET WA RR 1 2 3 16 075 Evaluation of the SUV values
329. 10 10 30 10 30 L 7 2 1 4 2 5 15 Fig 1
330. 188 IAR EH WAY yey 1 RIUJ MRI 2 2 MRI MRI second look Real time Virtual Sonography RVS Philips Intera Achieva 1 5T re lease 3 2 FURO Tl1 T2 Tl 692 T2 159 1 T2 Sense Head 8ch coil Cl coil Flex s coil Flex m coil
331. 250 ke P lt 0 05 SD A B Fig 3 A B B SD A B 0 ae ee eee CT HER WWR sha AP MDCT Aquil ion64 5 FLO1 FL05 FLO1 FL05 CT AEC
332. PHILIPS Achiva 1 5T R26 43 Flex M 5 First TE Flip Angle FA SNR CNR ML 52 First TE TE SNR CNR TE 9 13ms FA FA SNR CD SNR CNR FA 55 TRAET SIs 2 First TE SNR TE FA mFFE
333. T1W Black Blood image radial scan with Low refo cusing FA Dummy pulse echo K 0 profile order BB imaging TEM cm sec lig 3 Comparison of a SNR in each flow velocity when k 0 is 1 echo even echo odd echo and middle echo 1 BLADE k space trajectry 2009 1 12 19 0 3DPC TRANCE infHow Multi chunk TOF Balanced SSFP TRANCE Multi chunk TOF
334. profiler Sun Nuclear electronic portal imaging device EPID VMS aS1000 RPM beam on beam off 2MU 4 5MU 2 1 MU 2 9 MU cycle 1 2 0 5 3 0 2 4 beam on beam off 0 07 0 01 sec 0 06 0 01 sec X MU AAPM TG 142 Dose e
335. y index Friedman Roll f Volumetric Modulated Pitch 1 5 Arc Therapy VMAT p lt 0 05 Friedman Table 1 CBCT 3 X Y Z DVH 1 0 1 5 Yaw 4 2 5 Roll Pitch CERDEDO No DVH Fig 2 y7index 2010 5 2012 5 50 VMAT 11 50 15 2ARC 1ARC Rol
336. 1 T2 SE TIW SE ETIW TR 7 28 39 T1 TR TE 10 msec TR 5200 700 450 msec 1 TR CNR TR TR 5 34 39 C 2a TR TR 510msec TIWI CNR 3 4 Syn
337. DMQC Microsoft Excel2010 Mo Mo Mo Rh 26 28 30 32 34kV mAs AGD 3mGy 3mGy 3mGy CNR DMQC PMMA JF 50 30 mm PMMA AGD 3mGy CNR CNR AGD3mGy PMMA 50 30mm Table 1 Table 2 AGD3mGy CNR AGD 3mGy
338. 141 N 276 8 kN 498 6 kN Table 1 3 54 W C Unwin DK 5mm 320 mm Table 1 3mm 220 mm 276 6kN 1 96 5 mm 320 mm 498 6kN 3 54 3 100 mm 1 Fig 1
339. 2 BRACE BRACE Fast Hi Quality Table2 Reduction rate Fast Hi Quality 26 9 29 4 29 8 34 9 15 0 26 6 13 7 29 0 14 0 24 5 11 2 32 2 BRACE MIP MR BRACE
340. AIDR 45mA weak 30mA mild 15mA standard strong FBP SD 7 0 FOV 320 mm SD 1 3 5mm MPR CT 1mm 350HU 310HU 350HU 40 x 80pixel ROI Ac iS L FWHM FWTM R MTF 1 MTF standard strong 1mm 2 FWHM FWTM 1 3 5mm 1 mm CT FWHM FWTM AIDR MTF standard strong CT 350HU mil
341. 0 2 Inter Intra leaf transmission 3 Pass 1 2 DEBMBA DNAS og MPhantom IlG ES MLC IGC EManual A O A aT YI m i S kogt o5 e g g a G4 1 3 4A F 5 Patent No Fig 2 2mm 3 40 Dose Vero4DRT MLC 11 cm MLC Phantom IC IC QC QA MLC IC MLC Mie Coos QA MLC
342. 7 IGRT IH IGRT IGRT ExacTrac Ver 6 Brain LAB 2 I IGRT Aik IGRT PExacTrac Ver 6 Brain LAB PEPID aS500 Varian 3
343. CT ODM ODM ODM ODM GE Optima660 5 CT Noise Index 8 65 Image number1 1 2 10 SD Fig 1 SD SD ODM 15 7 ODM 22 9 ODM SD ODM Fig 2
344. CTA standard strong lmm weak CT weak HA BG CT Volume Data CT ECFA ASN HE ETCS l DERENG 3 CT SO MATOM Definition Flash SIEMENS Discov ery CT 750HD GE Aquilion ONE ViSION Edi tion RZ OBA Sh BRIBE B SAFIRE ASiR AIDR 3D
345. FPD AeroDR FUJIFILM CR AeroDR AeroDR CsI DQE CR AeroDR CR CDRAD IQF HA CsI FPD AeroDR IP CR FUJIFILM XL 2 X 130HP 4 8cm CDRAD CDRAD 0 3 8 0mm 15 0 3 8 0mm 15 3 1 4 1 1
346. PET PSF TOF A B 40 1 00 Iterative PSF TOF FWHM mm 3 PSF TOF oso Iterative Iteration number Iteration number Fig 1 FWHM A B PSF TOF Heart insert volume mi True value 173 mi 140 0 c d 0 2 10 12 14 4 6 8 Iteration number Fig 2 a OSEM b PSF c TOF d PSF TOF Table1 IR PSF TOF PSF TOF subset24 Iteration 4 subset 24 Iteration 4 subset 24 Iteration 2 subset 24 Iteration 2 EDV 16 8 17 2 16 1 16 1 18 04 15 4 16 3 16 1 ESV BOET s5 mi I 8 9 7 8 8 5 10 3 LVEF 5 4 6 4 3 82 9 5 4 4 5 4 6 4 0 The difference values ultrasound results PET measured values IO 16 075 Evaluation of the SUV values using maximum and peak a phantom study BA Bk A PIED
347. TE first Flip Angle WATS SNR 1 3 PIP ROI Fig 2 SNR CEDA 2 SN 1 Sp ROI Nar Air 1 Cartilage 2 Cavity 3 Bone 4 Air Fig 1 Fig 2 ROI TE First SNR TE First 9 2ms SNR TE First 9 2ms Fig 3 Flip Angle SNR Flip Angle 15deg Flip Angle 15deg Fig 4 WATS SNR 1 2 1 1 2 1 Fig 5 60 X Flip angle 15deg WATS 1 2 1 Cartilage TE 50 ca SNR Eo TE First 6 9ms 10 tiki 0 SNR 92 115 138 161 ms RE
348. X LAS Catphan500 CTP486 CTP515 40 190keV 10keV SD CNR X CT CT SD SD 70 80keV 1 CNR CNR 70 80keV 2
349. 3 50 Fig 3 1 Flip Angle AB AA AD me 40 Z O 38 36 34 32 Lett tt D O O O O O O O O O O O O O O O Lo a ae Oe ee Me aca aoaaa a O WO Ee Baar A mA ae Ee we Sa OD SF rm rm m rr CC TR msec Fig 1 TR CNR 5 00 p lt 0 05 4 00 3 00 CNR 2 00 1 00 0 00 TR510 msec TR1200 msec Fig 2 CNR 34 39 5 TR 510 msec TR1200 msec TR1200 msec 2 1 2 3min20sec 3min50sec 7min40sec Fig 3 T1WI
350. 5cm 6MV X 2 4 6 8 10 Gy 400 MU min 5cm 4 Gy 400MU min Cha LZ Ha 0 3T MRI T2 R R R 1 10 tube 7 vial R 1 cube 9 R R R MRI R OR R 2
351. Aquilion CXL MTF NPS SNR CTDIvol DLP 120kV 100mAs 32mm FC81 0 5 0 5mm 0 5mm x 4 0 875 0 5s rotation MUSCOT 0 5mm x 64 0 5 0 75 1 0s rotation coneXact KER MTF CFZIRY II CORY Vie Fes MTF NPS Fig 2 SNR SNR Fig 3 CTDIvol 23 3mGy 8 8mGy
352. CNR X 30cm x 30 cm 10 cm 32cm 50kV 140kV 6 16 compact bone 2mm 5mm IP 67 9 mg cm XX CNR 0 7 CNR cm CNR wad eray FET Pe TA HS 1
353. DLP 84 4mGy cm 28 1mGy cm Pa eT hs 0 75s rot kS 4 0 5s rot Modulation transfer function Modulation transferfunction 1 0s rot non a KA os 4 oo a 0 75s r t 0 2 0 4 0 6 0 8 1 0 12 1 4 0 0 0 2 0 4 0 6 0 8 1 0 1 2 1 4 Spatial frequency cycles mm Spatial frequency cycles mm 5 7 non helical 1 0s rot Fig 1 MTF 8 8 helical 8 10000 helical 0 75s rot ah Fax 0 75s rot A a 1 0s rot A Noise power spectrum mm2 AN 10 non helical J US 10 non helical he 1 0s rot 0 5s rot 7 1 T T T 1 T T T 0 1 0 6 LL 1 6 0 1 0 6 1 1 1 6 Spatial frequency cycles mm Spatial frequency cycles mm Fig 2 NPS 1 0s rot 0 75s rot 0 5s rot 0 5s rot Signal to noise ratio 0 75s rot non helical non helical 1 0s rot 0 0 05 10 1 5 0 0 05 10 1 5 Spatial frequency cycles mm Spatial frequency cycles mm Fig 3 SNR MTF NPS
354. NMSE Mean square error MSE MSE NMSE NMSE gt g X y f X y f x y NMSE gt f x y 2 g x y MRI Vantage Titan 3T SNR Atlas SPEEDER CNR Atlas SPEEDER K SNR 90 401 system I CNR Gd DTPA PVA Image DRIP RI 1 SNR 90 401 system I 6 NAQ 1 2 4 6 9 64 NAQ parallel imaging Fig 1 SNR PI NAQ64 6 NAQ64 1 SNR tk Image J MR parallel imag ing SNR
355. 4 0 90 180 270 6 0 30 60 270 300 330 Linac ExacTrac MAC WY bY EY ExacTrac ExacTrac ft isocenter phantom 0 6 0 WLT 6 ExacTrac ExacTrac WLT Fig 1 ExacTrac Fig 2 lt 6 HG RES amp e t ExacTrac Fig 3 Winston Lutz 15 Gantry T ad ps ili rr 0 R ag p rr EH 10 15 1 5 Lo 0 3 ef 2 30 550 Table angles 05 Gantry 1B0 1 1 oS T h 3 TYT i S s 1 Errar mm co al
356. 70 g factor map 1 16ch SPEEDER 1 4 2 3 4 g factor 2 2 2 center 2 of set Fig 1 3 SPEEDER SPEEDER
357. O SE Gl Bor Waa 30 135 30 136 30 137 Session 31 11 00 11 40 1 31 138 BY IDS TERRY Hee FEY HEA 1 2
358. a ae R ERE KR RE 1 2 3 4 HBS 5 HBS 6 7 HBS 8 12 057 CZT SPECT CTAC 12 058 SPECT SPECT Session 13 15 40 16 20 4 8 801 13 059 X OFLA 13 060 EGSS AFA LI
359. 2 l 2 1 Co 3 Preparation MR Preparation MR
360. D95 V100 PTV Rectum 76 or 78Gy CTV 99 5 k3 V40 V60 lt 50 lt 25 lt 15 lt 5 lt 65 lt 35 lt 25 lt 50 lt 25 lt 65 lt 35 15X IMRT 7P 0 55 105 155 205 255 305 VMAT 2arc 181 179 179 181 Fig 1 PTV PTV DVH IMRT CTV PTV overlap overlap O R PTV PTV DVH Fig 2 PTV DVH Fig 3 O R PTV Fig 4 PTV DVH ny Ti IMAT g0 E TBGY IMAT 78Gy VMAT Ew ee 20 chi Dose cGy Dose cGy Fig 2 DVH 76Gy IMRT 78Gy IMRT 78Gy VMAT E 0 2000 4000 6000 8000 Volume go8 ae oe 8 8 8 8 Volume o8 8888 fi Volume o8 8388 0 2000 4000 6000 8000 Dose cGy Dos
361. Z Z NL 164 PET 1 2 3 Positron emission tomography PET CT MRI PET Sb 76 PET A PET CT Discovery PET CT 600 GE Healthcare F FDG 140kBq m 10mm
362. mAs CNR 4 eae SO AD BHU CNR AEC Target Filter Mo Mo Mo Rh 25kV 30kV 35kV 20mm 45mm 70mm mAs Mo Mo CNR Fig 1 3 Mo Rh Mo Mo Target Filter 60 Gy 30kV 70mm Mo Mo TOWBAR nD AWG lt BEER NO AGT 800 Mo Rh 567 CNR Target Filter ey Lo AEC XX X 1000000 100000 10000 3 1000 100 WY O Exposure 10 Fo Incident Exposure 1 ACNR 20 25 30 35 40 tube voltage kV Fig 1 Mo Mo 20mm CNR 1000000 12 0 100000 10 0 1
363. test bolus TDC test bolus CT 0 7 Table1 BT TBT BT TBT Delay time 4 37 ICA CCA AAo CT Unpaired t test KR Table 2 ICA Fig 1 o Table2 BT TBT CT BT n 33 TBT n 30 D021 E 9U 6 31 1 06 2 52 01 n s 382 17 48 93 409 42 56 87 p lt 0 05 316 26 43 20 334 86 44 47 n s ICA CCA AAo Test Bolus Tracking TBT CTA 600 TBT R 0 5711 x BT CT HU 5 10 15 20 Vea Fig 1 ICA CT BT CT
364. 10 2 164 yO FP Y ar SSS CES Fig 2 AT ZKA fi RSNA 90 ECR 32 Fig 2 2006 1 1 20 160 MR CT PET Molecular imaging 3D NGI JSRT
365. 7 11 mm pixel newIP oldIP 0 10s Fig newIP 8mm pixel oldIP pixel 0 Table 260 OldIP jal M225 newlP 190 0 6 12 mm Fig 0 10s pixel Table 7 11mm pixel newIP oldiP 7 8 mm 3 78 O22 8 9 mm 1 87 0 9 19 mm 1 81 0 10 11 mm 0 17 0 oldIP pixel newIP oldIP newIP pixel oldIP newIP pixel oldIP 0 105 pixel 0 oldIP
366. 72 gt Ow Rest 1S s gt s s e gt gt z i3 i4 zs gt 15 Stece Amm Fig 1 Stress Rest Fig 1 SPECT N o 8 8 8 8 N 6 9 7 z s 3 12 23 24 is Fig 2 Fig 2 4 100 14
367. BG HOT 1 16 HOT 3 7cm PSF SUVmax 1 HOT 3 7 cm BG HOT 1 16 1 4 PSF PSF Ll 4 50 B HOT 1 16 HOT 1 cm PSF SUVmax 2 PSF FOV 50 FOV 12 cm 30 SUVmax FOV SUVmax PSF PSF FOV SUVmax 3 mmm PSF X mmm PSF SUV TE QXeWANS tH L ANS ON A 0 X12 X4 X8 1 1 16 3 7cm BG HOT SUVmax MEL X mm PSF PSF 70 SUV m m N oO AYO HANS FEQXeWANS O N oo X12 X4 X8 2 1 16 1cm BG HOT SUVmax X
368. CNR MTC TFE factor CNR MTC MTC TFE factor Turbo direction SNR radial CNR radial Y k space shutter radial MTC MTC MTC TFE factor TFE factor shot MTC Turbo direction radial Y SNR
369. 1 2 30cm 3 30cm 50 cm 100cm mm Oncentra Oncentra 2 4cm 0 4 15cm 0 2 1cm
370. A th A E B C 0 BHR Fig 2 PAVF ww 0 0 Fig 3 PAVF Sugiyama 1 Scintigraphic evaluation of small pulmonary right to left shunt and therapeutic effect in pulmonary arteriovenous malformation Clin Nucl Med 2001 Sep 26 9 757 60 1
371. CR 1 S 1 D TRER RREN AIRE RIRS TRER JE EEMI ALMENU SE E ANo LL 1 8 2 2 20 2 271 1 250 150 BA iz 140 RRR Lauenstein 140 BA 150 200 ARF 140 Ek BS Bi 150 BAW 140 RER Mi BA 100 120 TR BA iz 140 120 150 E 150 BAC BA i 140 OOxXEXOOOOOOOO FCR Speedia CS FUJI FILM FCR PROFECT CS FUJI FILM ST VI FUJI FILM DR PRELIO U FUJI FILM DR PRELIO T FUJI FILM
372. CSFRT 9 2 CSFRT2013 St 7 7 100
373. Coronal Coronal Axial RVS RVS _ scare 1 38 3 14 1 76 2 63 1 75 2 19 EE 5 5 2 4 gt 4 rs a 3 3 3 a 2 ae 2 2 a dhA 1 1 1 0 Oo COR TRA COR TRA COR TRA TRAMA SAG45 SAGAS SAG 8AG pp lt 01 mpc 05 Mann Whitney U test Fig 1 Axial Sagittal45 Sagittal score loo 3D FFE AFI Asymmetric Fourier Imaging
374. Fig 2 IQF 10 00 CR T J a Q 100 L 5 t AeroDR 2 ero 0 10 1 1 1 1 1 0 1 10 10 0 Disk diameter mm Fig 1 2 0mAs C D CR AeroDR IQF 4UCW ZI DEST ACK 4 0mAs IQF AeroDR 2 0mAs IQF 60 WE IQF R 20 F AeroDR 0 0 2 0 40 6 0 8 0 mAs Fig 2 IQF AeroDR CR AeroDR X CR AeroDR 48 108 FPD
375. T2 T2 turbo direction y RFA 90deg 1 MR 2008 189 191 132 2012 OU HE RL 1 2 2005 2011 2012
376. 08 CT 075 _ ID Kare OAT DIT VS Mix CT STV Hc ix 7 ar 8 a MRI A MRI B MRI C MRI D H24 1 3 20 10 10 Fig 2 CT MRI 51 9 8 9 ink ROC Az CT Az 0 88 MRI 3 60 FOV 32cm Az 0 85 CT Ns CT 4 MRI 4 oss 7 12 1 30 nen
377. 5 022 1 2 MRI HE WE FZ Be 1 2 3 5 023 1 2 MRI FZ Be 1 2 3 5 024 8tt F486 MRI IISI Flow Artifact FES RE Session 6 15 40 16 20 2 HERRE 10 L X 6 025 AEC
378. 7 030 Hip Spine Syndrom Be AH 7 031 Sko RIRE RRI Bort Get We AF DE maA Mz 7 032 OPIS Till JAS K FRE Session 8 9 00 9 50 3 9 8 033 R RA 2 AR 1 2 3 4 JA 8 034
379. Lies col SNR 2 3T MRI SNR Ei AYE 3T MRI ia SEIMENS MAGNETOM Skyra DirectRF RF 3T MRI SITEMENS MAGNETOM Verio RF 3T MRI MAGNE TOM Skyra Verio 2 SNR SEIMENS MAGNETOM Skyra Verio Body Coil Spin Echo Gradient Echo
380. PEED DR AR 1 2 Session 25 11 00 11 40 3 9 CT 25 109 100kVCT RE 25 110 BESE ONR CTA d KH RH 38 ZH 25 111 CT 25 112 3D CTA 9G ARE ARR TER Session 26 11 40 12 1
381. PIG a Pt L_ ImageJ Fig 1 PIG J J PIG 100 1 33 1 26 1 500MBa 110 uSv h PETRERE AO BSS PET RARER ORIRE 174 68 35 F 4 2 H 4 3 78 5 6 6258 8 14 10 3 11228 0 3 17 5 6 6 25 8 4 10 3 11 22 RHA 24 8 Fig 2 1 6 1 2
382. 0 aun 100 ROC F x J 1 CT 4 MRI 4 aan a T Az False Positive Fraction 2 CT MRI Az Fig 2 Fig 1 k Az 0 81 0 92 CT MRI AB CT MRI Az Az CT Az CT MRI
383. 78 SPECT HSV Heart Score View WDD 2011 8 29 2012 9 13 I BMIPP TIC 2 20 11 9 ROI SPECT IL BMIPP TIC1 Mismatch 3 HSV QPS 17 3 TOOT es
384. lt RTPS 3 SIMENS PRI MUS MD2 10MV X 300MU min N30013 0 6m PTW RAMTEC 1000plus RTPS XioVer 4 70 ELEKTA EBT2 ISP DD System Ver 9 0 R Tech 1 1 Mix DP 5cm SSD 95cm Cy EBT2 Ag Au 0 28 x 5mm 0 35 1 2cm 0 35 1 2cm 1 MU 2 4 6 8 10 30 50 100 250 EBT2 Xio EBT2 Xio
385. 1 1 kV mAs 80 100 65 56 60 56 HEYF 55 50 50 40 S 150 S S 150 1 891 S 1 1 S 150 150 100
386. 1 Dummy pulse k space diphase FSE echo 5 10cm sec Dummy pulse diphase FSE echo 2 echo Dummy pulse k 0 1 echo ecen echo rephasing echo k 0 echo 3 Echo space TE profile order TE dephasse Echo space TE Echo space
387. 10 x 10cm 1 J U Wuerfel Dose measurements in small fields J vol l No 1 2013 Medical physics international journal 2 IndraJ Das Small fields Nonequilibrium radiation dosimetry 35 1 Jan 2008 Med Phys 184 31 145 FEEL HUT
388. PET CT Biograph mCT RH 2 8 1 2 3D Iterative PSF TOF PSF TOF Iteration 1 10 FWHM Iteration 8 EDV DEKATE ESV ZAMEK EF E FWHM TIteration PSF TOF Fig 1 Iteration PSF TOF Fig 2
389. Profile 9 042 4D dose calculation for SBRT using deformable image registration and probability density function of lung tumor OTakehiro Shiinoki Shinji Kawamura Hideki Hanazawa Ryuji Kanzaki Takuya Uehara Yuki Yuasa Sung Chul Park Kai Takaki Shotaro Takahashi Keiko Shibuya 1 Department of Therapeutic Radiology Graduate School of Medicine Yamaguchi University 2 Department of Radiological technology Yamaguchi University hospital Introduction Purpose In radiation therapy RT tumor motion during respiration results in signifi cant geometric and dosimetric uncertainties in the dose delivery to the thorax Internal target volume based treatment planning can provide coverage of moving target however the effects of the respira tory motion on dose during free breathing RT could not be reflected The purposes of this study were to develop four di mensional 4D dose calculation method for stereo tactic body RT SBRT using end inhalation EI end exhalation EE CTs and probability density function PDF of the lung tumor motion and to compare the three dimensional 3D dose calcula tion Methods Materials A patient having fiducial markers closely implanted to the lung tumor was enrolled in this study For treatment planning the whole lung was scanned under an EE EI breath hold condi
390. R Out Put Factor OPF 3 5 x 5cm 3 5 x 5 3 2cm OPF 5 1 cm OPF PAGATMgCh 0 5 M 1 5TIMEI o 3 4 b ooo oad a Position 1 PR Gel Fitting R3 s 2 4 Dose Gy 2 R Output factor co e PAGAT MgCl 0 5M Ion chamber 0 7 2 3 Field width cm 3 OPF 1 SHayashi et al 2013 Comparison of the influence of inorganic salts on the NMR dose sensitivity of polyacrylamide based gel dosimeter J Phys Conf Ser 444 012094 4pp
391. SNR SNR Sp Ns vV 2 Sp Ns HEME Spin Echo Gradient Echo SNR Spin Echo TR 800ms TE 20ms FOV 140ms Matrix 256 Xx 256 Slice 1 Grarient Echo TR 150ms TE 5ms FOV 140ms Matrix 256 x 256 Slice 1 Body Coil Spin Echo Fig 1 2 1 25 SNR 120 000 y 1 2243x 20 954x 22 166 R 0 9996 y 1 1132x 17 618x 16 168 R 0 9986 e Skyra spin echo e Verio spin echo Skyra Verio 0 000 1 2 3 Fig 1 Spin Echo SNR Gradient Echo Fig 2 2 1 4 SNR y 1 1224x 19 361x 23 75 R 0 9996 y 1 2107x 20 025x 23 202 SNR
392. 0 01mm a X b Water CaCO 1 a b Water 1 a b Fig 2 100kV 16mAs Water I OF CNR 1 Fig 1 I 0 007 mm 103 14 063 RIS
393. 2009 4 2 JH CT 2009 1 10 3 25 2 2012 9 135 22 099 FPD C Veradius Oli 854 JERE Toshiba STX900 A 2011 4 9 Philips FPD C Veradius Extremities Extremities
394. Megavoltage Cone beam CT MVision MU Image Quality Phantom Siemens MVision Simens MU Field Size Image Quality Phantom Siemens 15MU 8MU 5MU 3MU 2 H amp N Pelvis Field Size Y jaw 27 4 20 15 10 cm image MVisionQA CNR MU Field size 27 4 20 15cm 15cm 10cm 0 9LP mm MU
395. PET F FDG PET PHITS FDG PET PHITS ver2 52 5 ml PIG 3dshow gshow 100cm 50cm 1cm 400X200 10 t track GIF
396. 105 OFS TACE Tik A 1CRP2011 lt 20mSv TACE TACE ee FET SEDC MOR RRO BCR EIS Leo Radcal RC180 1 5mmAl 0 06 mmTa 250 x 150 cm 50 cm 150cm KIZ TACE 0 06mmTa DSA
397. 2 Rand Phantom X ray Image 10uGy min Fig 3 0 06 mmTa IRE t TACE 45 4mSv 8 9mSv 19 9mSv Table 1 TACE mSv year 98 38 3B 150cm 45 4 19 9 110cm 7 1 7 7 70cm 1 7 1 9 l mSv ear 6 4mSv Table 1 TACE 56 1CRP Statement April 2011 20mSy TACE 1 TACE 0 06 mmTa 10 Gy min
398. Chamber Depth at marker Depth of mark EBT2 E or Fig 1 Chamber Xio EBT2 o 8 2 8 o Sh oo oo liso 200 250 300 by os 18 150 200 28 ag o 5 00 8 Fig 2 1 Lig 2 oe EBT2 MU 1 Table 1 Case 1 No a pk WwW WY Average SD 0 vs 0 15 1 22 1 13 0 12 0 35 2 41 2 86 0 33 0 02 5 02 vs Xio 0 48 0 52 0 53 0 49 0 51 1 09 0 93 0 07 0 01 9 92 vs EBT2 2 20 2 74 0 21 0 00 0 90 1 99 1 21 0 72 0 02 2 20 Table 1 IMRT RTPS 3 A HATCH o Tes
399. S ee HOSED i PoE C Ss 2 1 2 HBS X X X X HLA XX X X BRAS EGS XX X X
400. UML M DVH Fig 5 Fig 6 DVH DMLC IMRT VMAT MLC RRA DCE 1 2 TG119 IMRT Commissioning Tests 4 Multi Target Mock Pros tate Mock Head Neck C Shape Nova lis Tx HD120 MLC 25mm amp Clinac iX M120 MLC 5m MLC e Novalis Tx BrainLAB Varian e Clinac iX Varian e Eclipse Ver 8 9 17 Varian e Eclipse Ver 10 Varian CCO1 IBA TmRT IBA GafchromicFilm EBT3 IBA DMLC IMRT VMAT 2
401. body array coil spine coil 6 6 mm 17 2mm 2 16 04m 90 SWI 0 90 VIII ORNS SPANT AEs MRT FIT SWI 90
402. 0 60 15 1m Dr Ns Dr 0 35m Ns X 0 13mm Dr 100 90 Ns Ns Dr 66 FE 1 5m Dr 1m Ns 1m
403. 31 139 ABS OK HWE UT 1 2 3 31 140 Ir 192 BOP SEH 1 2 3 31 141 X 2 1 2 31 142 IMRT WA RHA
404. Hitachi Medical Corporation BASG TE 3 0msec TR 6 0 msec 35deg 120 kHz 256 x 168 1 AP HF 5mn 512 x 512 FOV 230mm Ly ZH fa REDS REG 0 90deg 15 deg 0 45deg 30 90 deg C22 FETA GB IC EAE L OHA HATE ICO VYT ImageJ NIH National Institutes of Health AP 1 048 3 743 mm 1 348 8 835 mm wea EIA 3 885 5 170 mm CH or 7 ERA HE 9 134 10 482 mm IRRE 4 7 039 19 915 mm hk HF 1 198 4 030 mm 1 647 9 883 mm 3 698 5 401 mm 8 835 10 781 mm BAKKE 278 1X 7 701 18 717 mm Sem AC HERI S kU FIVMEOR REAR LI Fig 1
405. MPR VR WW WL CT 80kV 80kV CT 100 120kV Scano CT Scano MINE CT Scano 100kV CT 200 WL Change Absorption difference value average 84 6 9 Apsorption difference value average 75 3 60 70 80 90 100 Absorption difference value of Scano Scano absorption difference value measurement 80ormore i F 120kV o 80 orless Average value Maximum valu
406. NEMA IEC 4 1 30 TOF PSF OSEM Gauss ian filter D FWHM 0 2 5 7 10mm NENO FWHM 10 1 acquisition time 2 3D VOI SUVmax SUVpeak 10 SD Gaussian filter FWHM SUV Gaussian filter FWHM SD Gaussian filter FWHM SUV Fig 1 37 mm SUVmax Gauss ian filter 2 FWHM 0mm 5 8 10 mm 4 2 FWHM 28 SUVpeak 4 4 4 1 7 DJ FWHM SUVpeak Gau
407. PLANMECA intra PLANMEC A Excel 2013 Microsoft Image IP newIP 3 IP oldIP TIP EKF 20mm 1 2 4 5 6 7 8 9 10 11mm IP 60kV 8mA SID45 cm 0 10s 0 116s 0J25s 0 185s 0 156 0 163 0 205 0 25s 0 325 amp LT DICOM ROI ROI pixel Do AF Y TEL pixel 7 11mm pixel KER pixel oldIP newIP newIP oldIP pixel pixel pixel
408. R dr 2 1 1 10 Axial X Y BGCT Axial MPR MIP VR 5 Axial MPR MIP o WW WL VR CT Mann Whitney s U test 120 kV 100 kV 80kV p 0 05 3 5 mm CT HU BGSD CNR CTDIvol mGy 120 kV 459 7 25 2 18 2 34 7 100kV 568 9 30 6 18 6 25 3 80kV 744 2 39 6 18 8 18 8 CNR CT DIvol 100 kV 27 80kV 46 1 10 Fig 1 Fig 1 AE Axial VR MPR MIP
409. Student C 3 Student D g 50 gt Student E 60 90 120 150 180 210 240 difference ms Fig 2 150 r 1 T T r Student A Student B wir Student C Student D te Student E Relative time required 60 90 120 150 180 210 240 difference ms Fig 3 Fig 2 90ms 100 Fig 3 HDS 90 ms 90ms 120ms Student A 210ms 210 ms
410. TP 1 P X EE KMS Hospital i so 60 70 80 90 100 110 kV 2006 Fig 4 EE KMS Hospital FIg 5 156 27 117 Imaging Plate IP IP 1 IP 2 IP mR gSv 3 IP 4095 Digital a 4095 OR 220 ep ett 73 17400 Fig 1 FID 200cm
411. 120cm 80cm cm 90 100 110kV 400mA 0 2sec Pb 0 2Smm 0 3Smm 0 Smm Fig 2 EJE 90 100 110kV 400mA 0 2sec 200cm 14 x 28inch O 45 2 30 50 70cm 3 80 120cm 2 0 25 0 35 0 5mmPb 4 IP 1 Pb 45 30cm 363 2 uSv Fok 0 25 mmPb 91 0 35 mmPb 97 0 5 mmPb 98 2 120 cm 80 cm 1 04 3 45 0 1 9 4 3 TP 3
412. 3 MRI MRI Preparation MR Preparation EAA MR 5 4 7 4
413. 512 x 512 300 1 5 SymbiaT 16 1 45 En ergyWindow 159keV 10 GCA7200 DI A 160keV 10 ROI ROI THA HM Reference HM HM Fig 1 GE ELEGP Fig 2 SIEMENS LMEGP HM HM Reference GE ELEGP 1 21kBq m MEGP 8 49 10 92kBq m SIEMENS 10 92kBq m 1 21 8 49kBq me Reference HM
414. CT 1 001 CT 1 002 TDC 1 003 Test Bolus Tracking TBT CTA Ak EAR MARS 1 004 CT 1 005 CT pitch factor ORA 2B AE ak TI
415. CVR 1 Feet Well JRI IMP QSPECT DTARG ARG J 2012 5 3 MIBG 1 2 RI 25
416. Fig 4 SPEEDER factor 2 3 g factor 1 2 3 3 SPEEDER factor MN s not siginificant 2 Fig 3 g factor SPEEDER factor Fig 2 g factor 2 SPEED ER factor 2 center Fig 4 g factor 1 5T MRI 3 0T MRI ORD RU WE GAAS BE RE FE 1 2 3 MRI
417. SD IE ODM 26 5 ODM 27 6 SD Fig 3 4 ODM ODM ODM ODM ODM SD ODM ODM
418. 1 2 3 RIS RIS MWM MPPS RIS 104
419. 2 3 HBS 4 5 6 7 8 ab E Am CT mR CT 7 0 CT 320 CT TER CT CT
420. AeroDR CR AeroDR X 2 CR AeroDR 40 60 80mAs CR Fig 1 AeroDR CR CR 1 2 mAs IET CR 3 mAs 40mAs CR Table 1 mAs u C kg A 14 5 85 7 40 B 16 9 100 0 C 9 2 54 8 A 22 8 88 0 60 B 25 4 100 0 C 12 9 50 8 A 29 9 88 7 80 B 33 7 100 0 C 16 9 50 1 A B C 20mAs ee40m
421. Noise Equivalent Count Ratio weight NECR w OR RE H BEA MA 3D PET CT bed prompt random 1bed NECR NECR w 3 5MBa 1 1bed 2 bed MEHO prompt random prompt random SF 0 35 SF 0 42 bed ED NECR w PET CT Discovery ST Elite GE TELIA 1 40 kg 60 kg bed position prompt 20 30 Mcounts 80 kg 40 60 Mcounts 1 5 Fig 1 100 0 90 0 80 0 gt 70 0 4 40 4kg 60 0 141 4MBo 3 50 0 60 0kg 40 0 210 0MBq E 30 0 2 500
422. PET CT HATRET SSH an 1 3 4 5 6 a B a w PET CT PET CT Er s PET CT rl a h 3 i lala gis g j v g PIB ele SEILER E H L i a oJ 3 E T S 9lalel P le Ria H F j 3 t E Paal 1 D ae ik 5 3 3 a a Boil eee ae eet et ee ea 1BF FOG OT oe 2 et EL T S EA igi 1F F
423. R Multi Slice FSE FE 0 1 0 0 2 1 Ly pl tak BE L Zo 1 11 0 0 5 1 0 2 5 5 0 7 5 10 mm 2 5mm 1 11 21 Head Coil Fast SE TR 4000ms TE 865ms BW 19 23kHz FOV 256mm Matrix 256 x 256 A717 AJE 5mm Loh YA Pe 1 1 O A E E Fig 1 2 Fig 2
424. 1 IP 1 0 35mnPb 2 3 4 40keV oai oa ng IP o Te JA 2010 12 4 6mSv 1 5mSy BREE oRIW 2011 539 2012 649 2013 730 ICRP 5 100mSv
425. 3 4 2 3 MT Silver P lt 0 05 MT Silver SD MT Silver Moldcare Vac Lok 2 MT Silver MT Silver SD Moldcare Vac Lok 186 32 147 MRI AS
426. 90kV 240cm mAs 20mAs 110mAs 10mAs image 3 90kV 240 cm mAs 20mAs 110mAs 10mAs mGy C kg x 35 7 Gy kg C Fig 1 Hip Spine Syn drom 40mAs LAL E mAs E 50mAs 20mAs 30mAs 40mAs EA 52 22 17 50mAs BZ 30 39 26 60mAs A 30 48 17 70mAs 80mAs 90mAs 100mAs 70 17 WS 110mAs 78 9 13 Fig 1
427. 93 2014 2 CSFRT 2014 4 e X 2014 3 T 710 8602 URAAN 1 1 1 AWAN ARS ew PRE RS MIRRE TEL 086 422 0210 2809 FAX 086 422 8254 E mail csfrt2014 kchnet orjp N44 54 21 mh KA BR KP ee wR Fb HR Ht i WA 0 HMAF i mH wig SEAR deb EM
428. CTA 19 120kV 100kV CT ROI 3 30 CT Enhancement Unit EU 3 1 CT 120kV 100kV 100kV 120kV 100kV CT 2 120kV 100kV CT CT 120kV 100kV CT 80HU 3 120kV 309 99 44 99HU 100kV 412 97 61 32HU 100HU OZ 1 120kV 100kV CT
429. HCR LEOR DoseLab QA 30 CBCT QA CBCT DoseLab MV CBCT 1 2 3 Siemens
430. SIEMENS LMEGP HM 1 21 3 64 6 07 8 49 10 92 kBq ml Fig 2 HM SIEMENS LMEGP CTAC RR Ma HS SPECT Computed to mography attenuation correction CTAC Xeleris 3 0 GE Healthcare Bao Xeleris3 0 preset measured SPECT CT Discovery NM CT 670pro GE Healthcare Xeleris3 0 GE Healthca
431. SN NNN 2013 54 AAR LA 21 CSFRT 2013 11 16 17 16 8 30 17 12 30 664 150 CSFRT
432. a O Fig 1 4 5 4 3 5 3 2 5 O 2 1 5 1 0 5 0 O OO Fig 2 CNR 1 4 1 3 j2 z 1 1 1 0 9 Fig 3 FOM 2000 RY 1 2 3 4 JA IMRT
433. 2 3 4 5 Mo Mo 30kV 63mAs No 1 CNR CR CR MMG XX wo CNR ROI size IEC CNR ROI size CNR EnO KZE ZIRE LO CHET 40 alpha RT INSTRUMEN Fig 1 HOI TARIUM CR system FUJI PROFECT CS IP FUJI HR BD IEC phantom Contrast Al 99 9 IEC CNR lin earized pixel value 3 160 000 400 x 400 1 1 174 1716 1 64 1 256 ROI size CNR ROI size 1 4 16 64 256 ROI mean SD
434. N FEQXeWANS PSF P SF T T T X4 X8 X12 3 SUVmax MEE PSF FOV HOT 1 cm SUVmax PSF FOV SUVmax follow up 164 F FDG PET WE KA 1 2 3 4 PET CT
435. computed tomography attenuation correction CTAC CZT SPECT CTAC CZT SPECT CZT SPECT CTAC SPECT Nal SPECT 125 me TcO 0 6 MBq m9 CZT SPECT Nal SPECT CT CTAC PolarMap 4walls 17segments CZT SPECT Discovery NM 530c GE Healthcare NaI SPECT Discovery NM CT 670 pro GE Healthcare Xeleris Ver 3 0 GE Healthcare ZFX kA TcOy 0 6 MBq ml CZT SPECT Multi Pinhole 180 XE L MAP EM Itera tions60 Butterworth 0 37 cycles cm Nal SPECT LEHR 90 L 180 OS EM Iterations2 SI 20 Butterworth 0 50
436. AA 2017 AACRT 1 xD 00 From local to international Strategy to be enjoyed into the International Conference TAKANORI MASUDA Tsuchiya General Hospital JART 3 ISRRT JSRT Radiologi cal physics and Technology RPT CSFRT2013
437. AUC Table 1 ROC Hik x Fig 1 Fig 2 Table 1 AUC Reader 1 0 870 0 995 Reader 2 0 824 0 992 Reader 3 0 843 0 994 Reader 4 0 847 0 995 Reader 5 0 930 0 996 0 02 04 06 08 1 FPF Fig 1 ROC
438. Balanced SSFP 3D phase contrast 3DPC PC 3DPC 5 1 VENC 2D Q flow 50 200 VENC TFE acquisition 2D Q flow 2 TFE acquisition 2D Q How 100 180 150 100 80 50 5 TFE acquisition TFE acquisition TFE factor Trigger delay VENC
439. Error iso center Table 1 Difference of calculated EDWF to mesured EDWF at axis Wedge Angle 15 20 A5 REV 7 RICK 5ICTWA EDWE KE KS Same 001 0 18 0 59 Gibbons EDWF NIS EDWF l 5m 0 ar rrr AV Cle ett Reok Vay TBE 30 45 60 In 2 a b Y Ph Gibbons KR a Table 1 so ide a m m ver Fig 1 Difference of calculated EDWF to mesured EDWF at DSHBV IT CSEBEDA SR l ore FE FompHe Ze HAA EP symmetry field FENSEXT BR Ze PRET DF DFID BEG IAE
440. QC SPEEDER 5cm SPEEDER 0 5 10cm 2 center BDY3 BDY4 PH SPN3 SPN4 SPHS off set center Fig 1 2 g factor ALe Fig 2 s center off set Fig 3 16ch 16ch SPEEDER 16ch SPEEDER 1 4 2 16ch cz 2 g factor SPEEDER gr factor
441. S S S Ars FTRS Lauenstein 0 150 S 300 1 S 1 RESO REA PREGA BAG WRBA BACT 0 150 S 300 fl fl AO Fil 2 S 2 S Die eee
442. T2 medic 3D T 2 stir space T2 medic 3D thin MIP a T2 stir space MIP 2 stirr space flow MPR HeadCoil FlexCoil HA
443. T2 prep Pulse FLAIR VISTA A 1 AME ERS kt WH Fluid attenuated inversion recovery FLAIR MR 1996 42 6 411 415 2 HE KE Ae HA 3D 2010 12 42 14 114 123 AR bo AR CD AR i ra 1 AR O gt AR J AR PERRI J ALRK Chugoku Shikoku Forum for Radiological Technology CSFRT 2 1 15 3 v Y oy 1 PR 2 H
444. VENC 1 2 SNR 1 VENC A A MI a N E En Fig 1 VENC VENC 130 SNR VENC SNR VENC 50 VENC VENC 130 2 TFE acquisition Fig 2 TFE acquisition TFE acquisition SNR TFE acquisition 50 TFE acquisition 809 SNR SCA 4 4 SCA BCV 2 20 40 60 80 100 120 140 160 180 200 220 20 40 60 80 100 120 140 160 180 200 TFE acquisition
445. Van tage Titan 3T Ver 2 3 PVA MRI 90 401 Acq 70 95 CF 0 100 SNR Contrast scale repetition time TR 5 8 msec echo time TE 1 9 msec field of view FOV 256mm 256 x 256 slice thickness 1 5mm A 5mm 3 SNR SNR SNR map SNR Contrast scale 2 ROI Contrast scale ERS edge response function FWHM full width at half maximum KER SNR
446. 10 MTF TOS CT 1 bone plus M1 MTF 2 3 7cm 10 MTF bone plus 0 14cycles mm ultra 0 08cycles mm TOS bone plus delrin 340HU CT 980 135HU ultra bone plus 300HU ualtra bone plus MTF 1 4 1 2 0 8 MTF 0 6 0 4 0 2 0 02 04 0 6 08 1 1 2 1 4 sycles mm 2 bone plus MTF 1 4 MTF 0 02 04 06 08 1 1 2 1 4 sycles mm 3 ultra MTF 168 29 129 ImageJ
447. 4 Tabell MWM 477 206 Table2 8 CD CD 71 67 Table3 Table2 271 206 amp i 477 MWM 25 21
448. 49mm 392mm 0 180 T 45 amp 1 5T 1 5T 1 RF RF 16 3 0T X RF
449. Fig 1 Relationships between SUVmax and fasting p lt 0 05 SU Vmax Lom N Ww gt uw Cn Sy 4 11 1214 i322 Fasting period hour Fig 2 Three groups SUVmax Table 1 The percentages of cases with SUVmax thresholds of 3 0 and 5 0 Fasting period hour 4 11 12 14 15 22 SUVmax lt 3 3J 6 23 48 OU thax 60 46 12 3 15 SUV3 48 Ch
450. Gibbons Gibbons Y Gibbons 60 EDWF 832 EDWF PTPS EDWF MU 1 Yjaw EDWF Y EDWF EDWF EDW EDWF Error AEH RTPS MU MU
451. Light Speed Discovery CT750 HD 750HD 80kVp 140kVp Fast kV Switching 40 140keV Virtual Monochromatic Imaging CT CT BEC dO Zo Virtual Monochromatic Imaging CT Aquilion16 Aquilion64 Light Speed Discovery CT750 HD GE Medical Catphan CT The Phantom Laboratory CT AutoQA Lite R2 F4 y 7t ImageJ Excel 1 CT Catphan CT AutoQA Lite 2
452. Proton Density weighted Imaging PDWI 3D volume imaging iso voxel reformation MRI 3D PDWI 3D Volume Isotropic T2w Acquisition VISTA MRI Achieva 1 5T SENSE Knee coil 8ch 1 T2 turbo direction radial y Refocusing Flip Angle 30deg 150deg 1 T2 T1 2850 279 T248 1210 140 T1 1060 155 T2 42 1 7 05 T1 1130 91 7 T28 35 3 3 85
453. parallel FH SNR parallel imaging parallel imaging dual coil parallel FH 1 PRN 3 g factor B YB Pees ae IEJ 1 Ri zA 1 AS AS EA BE REB 2 3T MRI SNR
454. 5MU RPM X 1 Real time Position Management System ak 2012 68 11 1519 1524 Wendy et al Time delays and margins in gated radiotherapy J ApplClin Med Phys 2009 10 3 140 154 2 4 ae UT AR BE
455. 79 8kg o 279 3MBq 0 0 1 2 3 4 5 6 8 bed Fig 1 bed prompt 2 random 0 925 3 prompt random 40 60 0 933 4 NECR w SF 0 35 40 kg 60 kg 30 70 kcps 80 kg 30 90 kcps Fig 2 100 0 90 0 80 0 no or a 2 A 8 60 0 141 4MBa 50 0 Ny 60 0kg oe te A 210 0MBa 2 30 0 Hf Z 79 8kg 20 0 279 3MBq 10 0 0 0 Fig 2 SF 0 35 NECR w SF 0 42 0 35 80 Je Fig 3 O 100 0 90 0 80 0 SN 700 40 4kg 8 60 0 141 4MBaq 90 0 60 0kg 40 0 210 0MBoq a N 79 8kg 279 3MBo 10 0 0 0 if 23 45 6 7 ped Fig 3 SF 0 35 NECR w 40kg 60kg prompt bed count 80 kg bed MEHO count count random NECR w bed 114 16 074
456. E iio om Error bnm o E 8 FA ED ie Tabie angles Fig 1 ExacTrac TFA RAA AA AH e 1 00 aso oon 2 aE nan T T E yra ati mA sop Lid B Pech 1 50 100 mM 7 MO mm a ff 27 Wo 590 Tabie angles Table angles Fig 2 hARSA Eacan ar Pltch Fri Ritch 1 1 00 Pitch 1 ia t F i Eoo i J F e 7 i i EEL e i ETET i La B4 E oe 1 Pitch 40 Em In 2 770 WO 1m xo FO aM 390 Table angles Table angles Fitch 100 mea P PPE ESS r 1 00 EE a Ean I T f Jt ER Fowo E ag F mw aw Bii Tim r A E Roll s BAF Em 4 m Fitch Ait Zid Im 770 mmp 1m 0 6 20 M0 Ja Table angles Table angles Fig 3 6 IGRT 2 5 mm 143 Roll Pitch
457. MR MIP Breast Ac quisition Correction LAF BRACE SIEMENS MRI MAGNETOM Skyra Breast coil 16ch ESSENZA Breast coil 4ch ImageJ 2013 7 10 18 og or Table1 TI1WI Gradient Echo 3D transverse 2 Table1 Imaging conditions TE Scan Time FOV Slice Sickness ms sec mm mm 1 44 53 340 1 00 2 38 60 330 1 50 BRACE Fast Hi Q
458. Plan2 CT CTV Dog PTV D D ER Dineans Do PTV70 70Gy CT 5 8 2 9 9 3 4 4 14 4 13 4 CTV D CTV70 CTV64 Planl 5 CTV56 2 Plan1 5 PTV D95 PTV70 64 2 PTV56 5 Plan1 5 PTV56 2 D 1 7 1 6Gy 1 ETERO Drean DoE PTV PTV56
459. 16 12 00 12 50 F 3 9 AZE 17 8 40 9 50 4 16 12 00 12 50 4 8 RI CT MRI 16 2 10 Be
460. 4 3 SingleCT 32989 33006 EAA ALESIS LAAT H BE amp 33006 2002 2013 CT 1 10 mm3 2000 1800 1600 1400 1200 f 1000 3 S gt yy y F F F F F S y y S gt Sr a S S S S F S S F F 4 TImage CT SingleCT CT 3mm Lie LO Ls mm Image
461. Acq Acq SNR CF CF SNR Contrast scale t Acq CF Acq CF CF 5mm 6mm PEA SNR Acq SNR CF SNR Zero filing Contrast scale TR TE CF
462. DR IN AO DICOM Image CNR Were yas he ey Vee VADs 0 2mm 6 x 6cm 99 9 X Wu Dance 6cm
463. ESAN N Roll Pitch gt i i p al i i af l ie oT Er Fig 2 Difference in DVH by the degree of pitch angle same 1 E i ne a _ ae gt 3 en Roll Pitch VMAT ON EE Gy Fig 1 Change of y pass rate in each angle 1 5 when it compared with a reference 144 24 105 Planning target volume margins for prostate intensity modulated radiotherapy using the real time tumor tracking radiotherapy system OTakuya Uehara Takehiro Shiinoki Yuki Yuasa Masahiro Koike Ryuji Kanzaki Shinji Kawamura Keiko Shibuya 1 Department of Radiological Technology Yamaguchi University Hospital 2 Department of Theraputic Radiology Graduate School of Medicine Yamaguchi University Introduction Real time tumor tracking radiother apy RTRT system is one of the effective tech niques of image guided radiotherapy IGRT In our institution the RTRT system is used to set up the patients implanted three fiducial markers for in tensity modulated radiotherapy IMRT of prostate cancer The purpose of this study is to evaluate planning target volume PTV margins for prostate IMRT with and w
464. HOT Ek BG 4 FDG 1 4 QHOT 1cm 1 4 BG HOT 3 7 cm 1 16 QHOT 1cm 1 16 FOV YY 4 8 12cm list mode 15 BG 5 3kBq m 3D X Y 3 5 256 x 256 subset21 iteration2 gaussian iter4 5 OSEM TOF PSF OSEM TOF PET VOI CHA SUVmax VOI BG VOI 8 SUVmax BG HOT SUVmax PSF FOV SUVmax SUVmax
465. K 1 2 3 SIEMENS onl eee ToT EL E It SEIMENS Artis zee BA Twin 9 MTP 17 cm CT 30 Se 59 30 5
466. Tukey aD 5 Fig 1 Fig 2 Fig 3 Fat Water Iodine Fig 4 ARR CIs Fat Water Fig 5 Todine SD soft standard standard soft detail Fig 6 8 soft m standard I u ree Fig 4 Fat Water Material Fig 5 o 8 8 8 Material density value 100ug cm 8 1050 m soft m standard detail a Material density value mg cmi a soft a standard detail Water iodine image Material density image lodine waterJimage Fig 6 Iodine
467. y 0 VW FOVlem FOVem Fig 3 SNR CV T1WI 15T psor x T 4 10 18 D 4 6 18 DP Distance from center cm Distance from center cm Fig 4 1 5T 3 0T MRI FOV SNR 3 0T MRI Fi DG CH V FOV 40cm Z HAV ea WIKA SNR MRI bore large bore large bore RF NEMA 32ch head coil 24ch head neck coil SNR QD coil NEMA 1 Dee a e FOV 200
468. 0 828 1 328 Fig 4 CT non helical Wiss 4 PF SD 10 20mm 10 20 mm Fig 5 3 4cm 10 20 PF 0641 1 484 ra ee Ge 4 2 4 TETT Wae 0485 0577 120kV 0 5sec rot CT AEC a wa SD8 5 11 pF 1328 0 239 0320 1 ISM eee eS U temporal sensitivity profile TSP Table 1 FWHM FWTM full width at half maximum FWHM full width at tenth maximum FWTM 2 AVEDFIHEMISERT 7 Y bA heli
469. 1 2 BRAY Session 18 16 40 17 00 1 MR 18 080 1 2 3 18 081 MRI OHR EE AA 18 082 MR Preparation BF Fel RE WH 1 2 18 083 1 5T 3TMRI R2 ORR 1 JA 2
470. 1 2 3 IMRT VMAT 3D CRT IMRT VMAT e Linac Novalis Tx BrainLAB Varian Eclipse version 8 9 17 Varian IMRT VMAT 53 76Gy IMRT 16 78Gy IMRT 20 VMAT 78Gy 17 Fig 1
471. 15 0 RCA LAD LCX Fig 3 CT Fig 3 RI y CT
472. 3 Fig 1 100 x100 Fig 1 PAVF 3 1 2 OT a H RADER LUCRE BOTHE 3 Fig 2 ILA HE O TARR BUTEIC BUT D MARROC IA IE 0 Fig 3 10 A _ B Bh xs L5 W 0 5 A
473. D MAR DFF D MAR OH Fig 9 Fig 10 CTangiography Ova 1 5mm CT HLH CIR 20 CTA IR CTA IR MTF CT TOSHIBA Aauilion CXL TIR AIDR 3D MTF CT 380HU 35HU FBP 60mA
474. Fig 1 Dose R response curve R 3TMRI 3T S N 3T 0 20 40 0 20 40 position mm oOo Dose Gy Co N Dose Gy o SY co FTA DA 4 0 2Gy 1 5T e 4 6Gy 1 5T 4 0 2Gy 3T e 4 6Gy 3T Dose Gy hb OF Nw RR MN A DO position mm Fig 4 Dose profiles in acryl box 124 AMT naa CIF T1 TFE MR Angiography ORE tke Hdd TOF Time Of Flight 3D GRE A T1 FFE
475. LAD LCK RCA Fig 2 LAD LCX RCA 201 123 inane TICI a 1 BMIPP Mismatch 80 80 80 60 60 60 40 40 40 20 20 0 20 0 Am PE Am PR Fig 3 E ABA CT E WR 1
476. a 250 200 150 100 50 RIETI ZMES THEO SEIE MEET DS AR Tulse HEIL T SF FICIDR LCRA EM Ala 150 S S RHE ILE ICR Se COPIED SK RAL HAWS MERET RAYAT AREDERH oreo EY S SURE Cd FETE k QE DIC SIAL BoD BPHEIL SRR E CLE 6 WEDER Z MING 4 7 GS S Oig KA ERE
477. cam Signature series IOF RIF r SPM Statistic Parametric Mapping 8 KR ASL SPECT 0 5 0 8 SD 0 61 0 091 Fig 3 SPM p lt 0 05 Fig 4 0 9 0 8 0 7 06 0 5 0 4 0 3 0 2 0 1 0 1 2 3 4 5 6 7 8 9 30 Fig 3 2 C B mASL IOF 1 2 1 0 8 0 6 0 4 0 2 0 Fig 4 iol CBF 22 ASL SPECT SPM 9 32 148 MR BRACE 1 2
478. current time product mA s Fig 2 FPD 7 x 7cm 50kV no top board 50kV acryl 50kV polyurethane 70kv no top board Kk 70kV acryl 70kV polyurethane 90kV no top board 90kV acryl 90kV polyurethane measurement dose uC kg current timeproduct mA s Fig 3 FPD 30 x 30cm 3 IQF Fig 4 IQF Student t X NS E Acryl E polyurethane Fig 4 1IQF FPD FPD 6
479. pixel 1mm 1mm IP XX 60kV 8mA SID45 cm 0 1s pixel IP TIP QA ey ae I S We 4h Boal ah BER WA FEA OL mAs
480. 11 17 Session 19 8 40 9 40 1 1 MR 19 084 T1 TFE MR Angiography 19 085 Dummy Pulse radial scan BBimaging profile order 1 2 19 087 3D PC 19 088 Subtraction MR Angiography 1 2 19 089 MRA tl PR
481. 150 106 CSFRT 44 9
482. 2 Q Tc 10x10 6x6 5x5 4x4 3x3 22 field size cm X cm Fig 2 Comparison of dose difference between the average of ROI and measurement by Farmer chamber 245 m with profile conventional ns al g 20 5 235 a 2 9 a X 230 o ooe 2 225 220 10x10 6x6 5x5 4x4 3x3 2x2 ixi field size cm X cm Fig 3 Comparison of Cross calibration factor between the conventional method and this experiment Farmer ROI Farmer 1 8 6 x 6cm V RAM AAW web S ZEA EBT3
483. BONENAVI BSI aBSI BSI saBSI 1 1 BSI BSI 0 BSI gt C 2 2 1 2 BSI A BSI ABSI lt 0 25 ABSI 0 25 2 Kaplan Meier Log rank 1 1 aBSI p 0 5114 saBSI p lt 0 0001 2 1 2 BSI A aBSI A saBSI AaBSI p 0 0443 AsaBSI p 0 0003 AsaBSI 1 aBSI
484. Development of a Cone Angle Weighted Three dimensional Image Reconstruction Algorithm to Reduce Cone Beam Artifacts Dentmaxillofacial Radiology 35 398 406 2006 140 CT AROHA CARDUCCI BE AE CT HandCARE SD nor A CT mGy sec CT SIEMENS SOMATOM Sen sation Open ICT MHT Water Calibration SS 19cm S 25cm M 33 cm L 40 cm 4 CT CT Ati LTF ONZO CNR SS S M L CT SD SD 10
485. ERCP Dr Ns 90 Dr 0 60 X 40cm Dr 4000 wSv h 1000 Sv h Zo Ns X 80 cm 0 60 100 Sv h 700 uSv h TEA Dr99 Ns909 Ns Dr 6 1 5mSv 0 09mSy 94 so
486. ERR Y KIKO X B6 Pitti O RMT OVC k ARENA 1 X Pee LER ST ALORRA KIR 1 200mm 897 mn 50 70 90kV mAs 10 40 80mAs BRAID X Student t 2 X 1 200mm 70mm 85mm 50 70 90kV mAs 10 40 80mAs 7X7 10 x 10 20 x 20 30 x 30cm amp L FPD Student t 3 Burger Phantom 2 1 35 12 50 C D IQF Student t 1 KERO X Fig 1
487. Ffield Size MU MU X jaw 1 X CT 2007 9 20 VMAT ETA SARIS VMAT Simultaneous Integrated Boost SIB 70Gy 63Gy 54Gy Boost Ha 1 Cone
488. Fig 3 VENC SNR Fig 4 TFE acquisition SNR VENC 50 180 MIC VENC SNR 4 0 TFE acquisition VENC TFE acquisition LOL He Ee EAL elt auld BE PEP KE u MBE HS ORs 19 088 Subtraction MR Angiography 1 2 Subtraction MR Angiography amp L T PHILIPS TRANCE TRigger Acquisition Non Contrast En
489. Protocol KER PET 3 5MBq kg 30 FDG 5 0MBq kg 40 SNR 5 3 SNR gt 10 KER EEDEN Z Fig 2 Fig 3 D 4 M Early phase Delayed phase Fig 2 KES CT Early phase Delayed phase Fig 3 FDG 5 0MBq kg 15 FDG lt AE SNR SNR gt 10 FDG 3 PET CT 16 073 3D PET CT bed
490. wey Ss 30 0 5 50 0 50 Nongate bi Phantom Fix 1 0 0 50 100 150 200 MU Fig 1 Field Size 10cm Xx 10cm Dose Rate 600MU min 4s Cycle DR600 10x10 2s DR600 10x10 4s DR600 10x10 6s R ors DR300 10x10 2s DR300 10x10 4s DR300 10x10 6s x xX 0 05 9 2 x a i i x 10 20 30 40 50 Nongate Phantom Fix Fig 2 Field Size 10cm X 10cm 10 30 50 Nongate Relative Dose Phantom Fix 40 30 20 10 0 10 20 30 40 Inferior Relative Position mm Superior Fig 3 Profle 10 vs 30 vs 50 vs Nongate vs PhantomFix profile 309 600 MU min 30 RPM IU 7 PRATHIOBRI CIS MEREKA L 7e HAY
491. 0 0005 1 0 0005 0 0 0 100 200 300 0 100 200 300 SNR SNR Fig 3 NMSE SNR PI PI 0 035 y 0 0003x 0 0476 0 035 y 0 0004x 0 0444 0 030 1 0 982 0 030 oas 0 025 0 025 LU LU 0 020 0 020 gt 0 015 0 015 0 010 0 010 0 005 0 005 0 0 0 50 100 150 0 50 100 150 CNR CNR Fig 4 NMSE CNR 1 MRI CNR CNR 64 2 268 276 2008 02 20 I CAIPIRINHA OHA PLI Reduction factor ReF ReF SNR g factor Con trolled aliasing in parallel imaging res
492. 1 StH Sf ii 1 16 12 00 12 50 1 1 ol bp 2 CT SWE 2 10 lt 1 3
493. 20 R Gelatin Swt solution R s 0 2 4 6 8 10 12 14 16 18 20 22 24 26 Sample number 1 R 10 0 6 0 R gt s 4 0 0 0 2 0 4 0 6 0 8 0 10 0 Dose Gy 2 R R 40 mm R 1 SHayashi et al 2013 Comparison of the influence of inorganic salts on the NMR dose sensitivity of polyacrylamide based gel dosimeter J Phys Conf Ser 444 012094 4pp
494. 25 20 15 10 5 0 5 10 15 20 25 W 35 35 30 23 20 c 20 25 30 35 cm cm axial 12 0 Heavy 10 w Lite standard E 8 Non Le 35 30 25 20 15 10 5 0 5 10 15 20 25 30 35 cm Fig 1 FWHM FWHM transaxial radial tangential fransax ial PET T radil Z Z FWHM FECL ZZ ZZ FWHM radial tangential FWHM PET ZZ Z
495. Ace AFP KE RIB AE HEP WK APT ARE TH FRE AF Ati F F5 faie R lt T H BE BEW ou PE BEART BB RAR WEAR TEAS perl 5A EHS WA NS its Bi WE 16 11 00 11 40 1 1 BAR JSRT 16 13 30 14 00 2 E 10 J 16 14 00 15 30 1
496. Beam CT CBCT CT O 1 SIB VMAT SIB VMAT TREI bo Clinac iX Varian GE LightSpeed RT16 GE Eclipse ver 8 9 Varian AAA VacLoc CIVCO _ 2011 4 2012 3 y SIB VMAT 10 3 5 eg 2 20 25 v 2 CT Vy ovun CT Plan1 2 MU
497. Bull s eye map D530c 1 PIR SPECT J Cardiol Jpn Ed 2012 fs T 7 OFLA X CR FPD X pn CR
498. CNR SNR P LIe 3 1 SNR 2 CNR SNR mAs CNR Fig 2 EEE MED CNR Fig 2 Photon Counting 02 A Energy 100 Waa om 50 Br 250mm Signal to noise ratio 10 15 20 mAs On Fig 1 Improvement of SNR MRD FON Zo OEY FRECA A X CNR Im 0 50 100 150 X ray tube voltagelkV Fig 2 Improvement raito for KV change 3
499. Dose response Rez Fig 6 Relative Rz response for dose rates 1 3 Oye F MAGAT ne F O PAGAT MgCl 1 26 1 15 F 1 14 F 1 05 F E 1 Fig 7 Relative Re response 1 for Number of fraction OO el ll 1 2 3 4 5 6 7 8 Number of Fraction 1 SHayashi et al J Phys Conf Ser 444 012094 2013 2 S Hayashi et al Radiat Phys Chem 79 803 808 2010 MER E 2 WA 1 2 Introduction Radiochromic flm has been used to verify the dose distribution verification in radiation therapy In quality assurance QA for intensity modulated radiation therapy IMRT the film was inserted to the phantom with axial sagittal and cor onal directions In our institution GAFCHROMIC EBT3 EBT3 was used in QA for IMRT In QA there were differences of gamma pass rates be tween axial and sagittal direction The purpose of this study was to evaluate the direction dependence of EBT3 with some fundamental experiments Methods and materials In this study EBT3 product number A03181301 IPS was used Films were inserted into water
500. Ne i gt lt Post arterial phase Post venous phase 2 Percutaneous Transluminal Renal Angioglasty PTRA Pre PTRA Post PTRA 3 PTA IVR 2 SIE As ie LP wT ICES
501. PET2 28 122 PET Z WE A BRP APG 1 2 28 123 PET WDE PR EBRD BE 1 2 3 28 124 SUV EY EDP 1 2 BIBS PY OIL 28 125 PET SUV 1 2
502. Pitch FAAS 0 2 5 0 vs 2 5 pc005 p lt 005 p lt 0 05 p lt 0 05 p lt 0 05 p lt 0 05 r g 2 0 p 0 05 p005 0 05 pt0 05 p005 p lt 0 05 0 5 ot ve 15 p lt o0s poos ns 5 lt 005 5 lt 005 lt 005 4 Dose Difference DD Dis 0 vs 10 ns ns ns ns ns ee 0 vs 0 5 ns ns ns ns ns tance To Agreement DTA yindex 0 vs 05 ai me VAR i W PRAY gt 0 vs 1 0 ns ns ns ns ns Dose Volume Histogram DVH RI 0 vs 20 pc005 pc005 ns peoos pc005 pcaos 5 vindex 10 Ls O vs 25 p0 05 p005 ps p005 pt0 05 p lt 0 05 Roll Pitch ro DVH me Roll Pitch nr wA NN DD DTA y index DV AB ae sis index m a EN Flg 1 Fig Pitch HOJA EEA mer Ee Roll Pitch 2 5
503. RPM 1 cm Sin 4 feld size 5cm X 5cm 600 MU min DD System film profile z fet L HSH Z Bik Stews 10 50 Field size 10cm x 10 cm 10 50 5MU 0 5 Field size 5cm Xx 5cm 10 50 5MU 0 6 Field size 10cm x 10cm 5cm x 5cm 10 50 0 5 profile RPM Profile RPM 3 5 200 10 Error 3 30 Error 2 5 50 Error s 150 F NonGate Error 2 Y x 1 Fix Error 15 2 100 gt 10
504. Wi FWHM CT 6 9 SD 120kV FBP 100kV FBP AIDR 3D AIDR 3D MILD Dated Ray 120kV FBP SD D an FWHM A IDR 3D FBP CT AIDR 3D g 35 gt O 120kV FBP 100kV FBP 100kV WEAK 100kV MILD 100kV STD 100kV STR 50 100 150 200 250 300 350 400 450 500 1 SD mA 1 75 2 3 2 1 2 ri 2 m M mm 1 9 B12s 120kV FBP 2 1 8 100kV FBP 1 15 100kV WEAK 7 100kV MILD 1 05 100kV STD 1 6 100kV STR 0 95 1 5 50 100 150 200 250 300 350 400 so 20 50 ay lt lt fa 7 2 1 4 mm FWHM 350 350 120kV FBP 4 100KV FBP 300 100kV WEAK 300 100kV MILD 100kV STD 250 100kvSTR 5250 I 21200 5200 5 150 150 100 100 50 100 150 200 250 300 350 400 450 500 5 4 1 4 mm CT 25 100kV Weak 5 100kV Mi
505. cycles cm CT 120 kV 20mA soft adaptive statistical iterative recon struction GE Healthcare 40 Table1 2 PolarMap 4walls CZT SPECT Nal SPECT Fig 1 2 PolarMap 17segments CTAC segment17 CZT SPECT CTAC CZT SPECT CTAC NaI SPECT Table 1 CZT SPECT PolarMap 4walls anterior septum inferior lateral CTAC 6l 53 62 61 CTAC 85 77 84
506. equivalent phantom RT3000 New R tech The phantom was set with source axis distance SAD of 100 cm Irradiation was performed with 10MV photon beam of field size 8 x 8 cm from Linac MHCL 20DP Mitsubishi Electronics Irradiation dose was 200 MU and dose rate was 300 MU min respectively fig 1 a Pixel values of EBT3 were measured using flat bed scanner ES 10000G EPSON First films were po sitioned perpendicular to the beam axis Those were inserted into the phantom at the distance of 2 5 to 16 5 cm from the phantom surface Fig 1 b Film positions were 16 points and films were irra diated at each distance Percent depth dose PDD and off center ratio OCR were measured by each film Second film was positioned along the beam axis The phantom was irradiated in the same con ditions Fig 1 c The PDD and the OCR at each distance were calculated from irradiated film Fi nally absolute dose was measured at the distance of 3 5 to 13 0 cm from the phantom surface using X ray source X ray source X ray source 10MV photon 200MU 300MU min a Er k By i IMRT phantom IMRT phantom IMRT phantom a b c Fig 1 a Experimental setup b EBT3 positioned perpendicular to the beam axis c EBT3 positioned along the beam axis chamber The PDDs and the OCRs obtained from the each film were compared Results Figure 2 shows the PDDs in the direction perpendicular to the beam axis and along the beam
507. space BB AS 1 1 echo o v JE A 2 Q 3 1 3 2 S 4 2 5 1 K 0 1 echo 2 ccho BB 2 3 3 3 2 4 2 K 0 1 2 3 3 4 BB 3 Echo spacc BB wm Lk 0288 ES 8 5 msec ES4 9 msec echo Fig 1 Comparison of a signal intensity in inner cavity in each item when a flow velocity 5cm sec The arrow shows high signal and arrow head shows lowest signal 10 cm sec Fig 1 k 0 2 echo 30 cm sec Dummy pulse 2 4 30 em k 0 30 rm kO 1 IB cm sec ee ICA fa It ies aoe Fig 2 2 k 0 echo Fig 2 Comparison of a SNR in cach flow velocity when k 0 is L echo and 2 echo A 1 echo OME feat PF Fig 3 3 Echo space SNR
508. using maximum and peak a phantom study Ar ME BEY Al SAME FEI aA 1 2 Session 17 16 20 16 40 1 MR 17 076 NMSE MR Peak TE 17 077 CAIPIRINHA OME 17 078 Dual Gradient Mode Diffusion Weighted Image 17 079
509. with Vijay Govindarajan and Chris Trimble professors at Dartmouth s Reverse innovation os ot Desi The process isthe opposite ofthe tradition of developing technology in wealthy countnes that JSRT RSNA BEE FNE E TEs AY CEE LIT TET 7 SRT Reverse innovation JSRT Radiological Physics and Technology
510. y 0 8476x 14 019x 16 243 y 0 8594x 14 058x 16 119 Skyra Gradient echo R 0 9997 Verio Gradient echo e Skyra 9 Verio Fig 2 Gradient Echo SNR SNR Fig 3 1 2 1 4 SNR 300 000 E Verio 250 000 m Skyra 200 000 V oc Z 150 000 100 000 50 000 0 000 Body Body Spin Flex L Flex L Spin Head Head Spin Gradient Echo Gradient Echo Gradient Echo Fig 3 SNR MAGNETOM Skyra SNR DirectRF Fig 2 2 DirectRF Gradient Coil 3T MRI DirectRF SNR
511. 0 3 9 LCT 26 113 HF AR ok fi 26 114 26 115 X CT RR PK ER ER Bk 1 2 3 Session 2 8 40 9 40 4 8 801 27 116 Imaging Plate IP
512. 0 deg Fig 2 o 2 160 160 2120 2120 Cc c 2 80 80 wo 5 5 40 40 0 0 0 20 40 60 80 100 120 0 20 40 60 80 100 120 Refocusing Flip Angle Refocusing Flip Angle Low High radial Low High y Fig 2 Comparison of SNR in each tissue when changing RFA turbo direction y Fig 3 Refocusing Flip Angle Refocusing Flip Angle CR between cartilage and synovial fluid CR between muscle and synovial fluid Radial Y Fig 3 Comparison of CR in each tissue when changing turbo direction RFA SNR 1 RF RFA SNR X Y ETL Blur OF RFA
513. 0000 8 0 gt x 1000 60 E 5 100 4 0 Exposure 19 Incident Exposure 2 0 1 A CNR 0 0 20 25 30 35 40 tube voltage kV Fig 2 Mo Mo 45mm CNR 1000000 12 0 100000 10 0 10000 8 0 1000 60 0 3 100 4 0 D Exposure 10 F Incident Exposure 2 0 A CNR 1 0 0 20 25 30 35 40 tube voltage kV Fig 3 Mo Mo 70mm CNR Mo Mo 0 1 3 Mo Rh 0 2 5 Mo Rh Mo Mo X X Target Filter 45mm CNR Mo Rh CNR AGD AEC CR mammography CNR ROI size 2 3 1
514. 2 1 g factor SNR p SNR XV ReF 2 250 mm x 250 mm A 256 x 256 TR 3 42ms TE 1 42ms 1mm SNR gr factor ROI SNR g factor SNR Fig 1 g factor Fig 2 SNR g factor SNR g factor Fig 3 Fig 4 CAIPIRINHA GRAPPA ReF SNR ReF CAIPIR INHA GRAPPA SNR ReF g factor Fig 1 SNR Fig 2 g factor Enone PI m GRAPPA m GRAPPA m CAIPIRINHA m CAIPIRINHA Fig 4 g factor ReF2 ReF3 CAIPIRNHA GRAPPA g factor SNR
515. 2 22 32 12 16 20 24 28 32 36 40 mAs mAs Fig 5 SD Fig 6 SD CT aa mAs CT SD CT CT CT ee tae SD KCE I7 AEE DRIE CH Keo 14 EX
516. 23I IMP SPECT Dual Table Autoradiography DTARG 1 2 e cam LEHR parallel beam collimator SIEMENS DTARG 41 Estimated blood counts A
517. 24ch head neck coil SNR 32ch head coil 24ch head neck coil SNR Table2 coil SNR OB uniformity SNR 32ch head coil 52 296 7 24ch head neck coil 15 255 0 QD coll axial H coronal sagrittal Z gradient coil X Y large bore phased array coll coil k 4 32ch SNR 24ch
518. 35 40cm Image J WiC SS aR Be ht SH SH Gh PTE HE MR parallel imaging SNR SNR SNRmap 7cm Fig 1 SNR CV SNR SD SNR mean 2 FOV 40 cm QC 12cm 2cm 20cm 4 Fig 2 7cm 10cm Marker Feet CV E gt lt woop Fig 2 Fig 1 SNR O CV 4 12cm Marker
519. 5 PF 1 328 0 828 10 20 250 300 350 CT pitch factor A AE CT CT Pitch factor Pf Pf Catphan CNR
520. 6 85 SPECT 10 21 7 3 EDV ESV EF QGS 5 QGS HFV Peak Phase Phase SD Bandwidth Mean SD EF 0 9 FEF 0 7 0 01
521. 65 47 03 4788 PTV Da lt 55 0 56 36 57 23 e Novalis Tx HD 120 MLC BrainLAB Varian PTV Da lt 550 52 48 52 28 Core D 100 1297 15 38 ajj Lahen lt o 1806 1874 RertpansaD lt 200 17 39 17 35 7beams e Clinac iX M120MLC Varian Fig 3 Eclipse Ver 8 9 17 Varian M120MLC e Eclipse Ver 10 Varian Multi Target Mock Prostate x 7 Plan goal Gy IMRT Gy VMAT Gy Pian goal Gy IMRT Gy VMAT Gy AAPM TG119 IMRT Commis Superior Target Dy gt 25 0 25 75 25 62 Rectum Dy lt 700 44 46 45 36 sioning Tests a oe ee ss m mn ES DVH Mock Head Neck C Shape Plan goal Gy IMRT Gy VMAT Gy Pian goal Gy IMRT Gy VMAT Gy PTV Dy 50 0 50 00 50 00 PTVD 50 0 50 41 50 56 X HEI nS gt T PTVD gt 465 47 55 4780 en lt 5 x AN 550 56 21 56 70 Cord maximum lt 40 0 35 80 31 84 Left parotid Ds lt 20 0 18 41 19 59 7b Right parotid Dy lt 200 17 61 18 12 eams Multi Target Mock Head Neck EL Dins53 0 Dog gt 25 0 Dan gt 50 0 Fig 4 PTV Dag 55 0 Multi Target Mock Prostate maxi lt 40 w
522. 74 ed H 1 393 1 452 Loop 1 213 Table 2 Nal SPECT PolarMap 4walls anterior septum inferior lateral CTAC 57 57 62 63 CTAC 75 74 8 75 CTAC 1 316 1 298 1 306 1 190 CTAC Relative count rate 96 ew ta as E Fig 1 Relative count rate 96 Segments CTAC 2 CTAC 1 9 6 7 8 9 101112131415 1617 CTAC 1 8 1 7 1 6 1 4 1 3 1 2 La 1 CZT SPECT PolarMap 17segments 2 CTAC 1 9 OO Segments 1 8 1 7 1 6 LS 1 4 2 Ta t 2 a He 1 Fig 2 Nal SPECT PolarMap 17segments 12 058 SPECT SPECT OA ASK AN SPECT SPECT Discovery NM530c D530c
523. 8 vol 64 P1172 1176 2 Gupta AK Optimization of eight element multi detecter row helical CT technology for evaluation of the abdomen Radiology 2003 vol 227 3 P739 745 2 006 Dual energy CT X Dual energy CT 2 X SD XX SD
524. 8 7 10 7 15 9 32 99 0 10 3 15 0 34 45 8 10 0 14 1 26 136 6 9 8 16 8 28 101 0 9 4 16 7 Mo Rh 30 ees 9 0 16 3 32 029 8 8 15 7 34 O22 8 7 15 1 E SRE Fae MG Flat Panel Detector FPD AeroDR fe RV AFL AeroDR ti BRO X PERRO CRE CR X AeroDR CR HOPED S ILo 1 FPD A B C 85kV X FPD SFD 240 cm mAs 40 60 80 mAs 2 1 FPD
525. A SE Zo b Fig 1 PO 1 Gibbons JP Calculation of enhanced dynamic wedge factors for symmetric and asymmetric photon fields Med Phys 25 1441 1418 we lt n 2 Enhanced Dynamic a 1 pie on NO a allen Wedge EDWF 1 62 3 Fig 1 ESIE BSI 1 2 RI BONENAVI Tc MDP
526. As 60mAs 80mAs eeeee CR 80mAs mm 0 2 4 6 8 10 mm Fig 1 Burger AeroDR CR 1 2 mAs CR AeroDR 40mAs CR Hip Spine Syndrom ICSF oF Stk Alber Ota RORY R BHA St GI Hip Spine Syndrom 4 M 3 FPD
527. CNR CB2 50 Field size CNR H amp N 5MU 3MU Fig 1 H amp N Fig 1 H amp N Pelvis 15MU 8MU CB2 50 MU Fig 2 Field size Size CNR Pelvis 5 nne Rone ILLT DULIT A one 8MU Error Bar SD Fig 2 Pelvis MU MU CNR CNR CB2 50 MU Field Size
528. CT SECT CT SECT DSCT CNR 80 keV 80keV CNR Monochromatic CT 1 140 g cm IB Inner Bone 80keV X X 40 keV 1 054 g cm BRN SR2 Brain SOMATOM Definition Flash X CT
529. D Wm ge 1040 1505 2020 2000 sowo Fin aE Om o osu os om oox om oan oa ee CE eee 03 os oe 03 0 2 93 oo os 03 o2 04 os 04 o1 oo os 01 02 03 03 os oo o1 as CICI ae AAE c on woe aon aon aa soe faon PDD 4MV 10MV PDD rt Pome oo oo oo om om oo T o E om om om om oo le 0 1 el a a ae ag Soe cc 2 PDD 10MV Asmam es one ss zoan nor ono se ime ET EGE Eee s sm 2m 2am 20 sex 27 2o ex 5 aen aan 2m cam asx aon aan oon o ase aan zan ao 30 aon aau osx e on am am am fa am an om it 20x 2a 2am ax 35 aan 27 sz 3 4MV Cam am aon oo pM ox a Cam sw w 2 2 Som sw asm Cam asm sox ia am 4sm asx ue aan 30m aox 26 aan 4o 32 il 4 10MV ABS
530. EMERS O X BESEDE LARTA I RSD 1 2 13 061 X CNR 13 062 X Session 14 16 20 16 40 4 8 801 14 063 14 064 OFUR D2 1
531. FL05 16 93 10 65 0 02 g iter mean FLO2 17 022 0 74 0 04 a b 3 EE IRon an a PF 0 656 PASS DVN N 1 b PF 0 844 NRE oy NN c PF 1 408 C Z axis position mm Fig 2 1 wetting bevel level A NR Sn J Ore N r N 4 a NS i 2 g NEE mean SD CV Filter 4 sw o r FT 740 4353 423 043 Sp F02 11 03 0 97 R02 11 09 0 68 0 06 EASES Fl03 10 59 0 95 0 0 R03 10 90 058 0 05 AM 7562148 020 R04 9883 154 0 16 F05 581 151 026 R05 203 0 36 Z axis position N PE 0 656 iene a b PF 0 844 ES c PF 1 408 Fig 3 II CT AEC CT AEC K HBTS CEA TIBE NR o QA O 2 ALD BH 1
532. HAZ ARNBADRE ROM HE X He HS We a EXAVISTA HITACHI 450PDESI Victoreen AKA ERCP 70cm X 25 x 25cm 81Kv 1 3mA 15f s X 40cm 1m 1 5m Dr Ns DrX 40cm Ns 80cm
533. J 1 1 0 4 03 05 07 0 9 1 1 13 0 1 03 05 07 09 14 Spatial freguencyfeycles mm Spatial frequency cycles mm Virtual Mono chromatic Imaging 750HD 80kV 50keV 100kV 62keV 120KV 66keV 140kV 74keV NPS Virtual Monochromatic Imaging NPS CNR Virtual Monochromatic Imaging SD Virtual Monochromatic Imaging 80 100 120 135 140kV Virtual Monochromatic Imaging CT Virtual Monochro matic Imaging 1 X CT 2009 9 20
534. L IOF SPECT 1 2 3 RI MRI ASL JESSE BEY CA EE SNR 3DASL MRI IR 3DASL ASL MRI
535. Liver Inner Bone Cortical Bone 5 Les 3 5 SS Recon 6 A B C D YA YB 30 Scheffe 2 1 0 1 2 5 Metal artifact O MAR Collimation Beam pitch KV Focal spot size CT 3 Fig 2 3 6 7 8 M e a O MAR artifact Fig 10 Ts Er fase Jj J JE Metal Artifact
536. OUR A Abha Bue i eISBN TL SS Bi igi F FOGA MAA hT 61 004 ig SHAG SATHE HENH Omih eL TLS LNA Fi SHAG 1F F AREE SLANA Fi SPAR T E d E E E 20 o i CEA FALT N l e E a 0 0 La MEMMIZ207 TRS ET SRLTAREERS on at SEAT R20 ERB RTHMELTiS4 gi 1 Sed E a eleleri a FT aE E a E E TE EA BOLI i BReLTSBERLES ohh BRORRERCARBLTY Eee RS BS 7i PET CT ll 16 071 FDG PET FDG PET
537. T3 10MV X AK ORE 10 x 10cm 10cm 0 600Gy 15 84cGy 420cGy 100MU 500MU Farmer Fig 1 EBT3 Gun Target 10 x 10cm 6 x 6cm 5x 5cm 4 x 4cm 3 x 3cm 2x 2cm 1 x 1 cm EBT3 ROI Fig 1 BEX ES ROI ROI Gun Target 270 90 Fig 1 EBT3 setup and direction of scanning R Farmer ROTI Farmer 1 8 Fig 2 EBT3 Fig 3 ROI measured measured Q
538. TR500 TE15 T2 TR3000 TE100 KER TI 350 400 2 1800 1600 1400 1200 1000 800 4 Ee T2582 R ab HD Ty 600 400 200 50 100 150 200 250 300 350 400 500 x T1 T2 400 2 350 500 TR TT1 SY o 400 TT1 T2 400
539. Urolory Head Vascular Peripheral Spine Vascular Cerebral Pelvis Vascular Thorax Vascular CO2 Pacemaker Coronary Artery 15 ERCP Coronary Artery 23 C Veradius FPD har noise curves off 19 noise curves off noise curves 8 noise curves 3 noise curves 4 Noise curve E 1 off 3 2 off 3 J off 4 4 off 4 off 4 6 off 4 off 4 8 off D REHMET noise curve ld off gt 77 AK noise curve 7 8 gt noise curve 4 Extrimities Noise Curve Noise Curve Noise Curve4 AHWR C
540. a MRI OFFER MRI TT1 MRI 2 MRI BEDS T 1 T2 T1 T2 AE GE MRI Signa holizon 1 5T 50 500 T 1
541. axis The relative dose differences between two PDD curves were increased with the increasing dis tance from the phantom surface At the distance of 12 9 cm from the phantom surface the difference was 7 0 The OCR curves of each direction were almost same in total dose region at 10 cm from the phantom regardless of the film direction Fig 3 a In the case of 12 9 cm distance OCR positioned along the beam axis was slightly higher than OCR positioned perpendicular to the beam axis in low dose region under 20 Fig 3 b 100 80 60 Perpendicular to the beam axis Percent depth dose Along the beam axis ee Absolute dose 0 20 40 60 80 100 120 140 160 180 Distance from the phantom surface mm Fig 2 PDD in each direction of the films Perpendicular to the beam axis Along to the beam axis Off center ratio swm Off center ratio Off center distance mm a Off center distance mm b Fig 3 OCRs at each distance from phantom surface a OCR at depth of 10 cm b OCR at the distance of 12 9 cm Conclusion In this study we evaluated the di rection dependence of EBT3 with some fundamen tal experiments The PDDs and OCRs showed dif ference results in the direction The film direction affected to PDDs and OCRs From here onwards we suggested that EBT3 has the direction depen dence In QA for IMRT considering the effect of the direction dependence we s
542. cal non helical subtraction helical 3 Catphan SD CNR CNR CNR ROIy ROIs SDs 4 PF PF 0 641 1 484 0 828 SD 11 8 5 E 1 PF gt 1Cla FWHM FWTM PF lt 10 Fig 1 Table 1 2 subtraction Fig 2 PF helical Fig 3 Fig 1 TSP Fig 2 subtraction Fig 3 helical PF 1 32830 828 PF 0 828 SD oF NOP am NY oo 0 641 0 828 1 141 1 234 1328 1 484 0 F Fig 4 CNR 100 150 200 mm Fig
543. d 3 5mm 1mm FOV 320mm pixel size 0 625mm CHAC EMH MEL mm Clot y TIR 1mm CT FWHM FWTM Fld partial volume standard strong of mee eak t ind gtandard trong 0 0 5 a Spatial frequency cycles mm 1 AIDR MTF lmm 350 off 300 weak fal mild ues l standard 100 strong 50 2 5 2 1 5 1 0 5 0 05 1 15 2 2 5 position 2 1mm 1 1mm FWHM FWTM IR FWHM mm FWTM mm FBP weak mild standard strong 1 39 1 46 1 60 1 65 1 76 2 80 2 77 2 99 3 04 3 20 IR FOV
544. e FEEFEE 4 SD 80kV mAs SD 100kV70mAs 120kV80mAs 100kV CT 100kV 70mAs 100kV MPR VR 120kV 100kV 120kV mAs 10
545. e cGy Fig 3 i TV OR PTV 8 7000 76Gy IMRT oo 78Gy IMRT 78Gy VMAT 5000 9132 60 472713 2 000 O R volume ratio 0 00 0 05 010 0 15 020 025 0 30 035 et spiune O R volume ratio Rectum goo 70 7000 3 a 3 ms 6000 6000 w N N E sooo es E sooo r as R 0 6798 4009 R 0 6104 3000 2000 0 00 0 065 0 30 0 15 020 025 030 035 0 00 005 0 10 0 15 0 20 025 030 035 O R volume ratio O R volume ratio Fig 4 424 IMRT VMAT O R 146 1 2 IMRT 2 IMRT RTPS
546. ec TE lomsec FOV220mm FA90 MatrixSize256 x 256 BW130Hz Px 5mm 72 Parallel imaging 1 T2 800 130 msec 22C SNRmap Fig 1 5 ROI SNR SNR 5 ROI 16 7 SNR Fig 2 5 ROI 0 A 0 Fig 1 SNRmap Fig 2 Body Matrix Coil 6 Spine Ma trix Col 9 8ch Body Matrix Coil 4 Spine Matrix Coil 6
547. ec Fig 1 1 CR QR QR 220 QR x4 x2 560 cm Fig 2 2 IP mR DAT IP 1cm LuSv 3 IP 1 cm IE KMS Hospital 2006 Fig 3 IP 80kV IP 0 18 Sv 4 4 uSv 90kV IP 9 4 Sv 2 2 Sv 100kV IP 7 4 Sv 1 2 Sv 100kV IP 80kV 50 60kV IP QR
548. ely a woe ity sap is a iny f my m ey Tm J am 40 i e s E fo ke E g uu t z E Ar i yF 5 1 y at ee E C Ea ma i Lr ys t J a ejg z aF RM ag c3 z Um ue ia b HL we ME orn HER orn SES cm 4 tt I Be T i MES 1 Frrni 1 Tee Eee Tey ae iradia TAO 1 1 Tot Cn j ir a WW uw Oo E 18 IFAS im ritim 5 Van Herk TCP DVH lo 31 146 OHH
549. erences be tween the 3D 4D and 4D were 97 2 98 4 in coronal and 90 6 and 94 1 in sagittal plane re spectively Fig 2 Fig 2 Dose distribution of a 3D b 4D and c 4D dose calculation and dose distribution differences d 3D 4D and e 3D 4D in sagittal plane Conclusion We have demonstrated the feasibility of proposed four dimensional dose calculation using DIR between EE and EI CTs and PDF of lung tu mor motion Treatment planning using the 4D dose with a more realistic model to account for re Spiratory motion might provide dose delivered to the target and organs at risk more efficiently 3 83 IGRT EPID
550. g Magn Reson Imaging 1985 3 4 329 343 5 023 1 2T MRI ATR REFRICBIFS RER AZ Fe 1 2 3 1 2T MRI OASIS Hitachi Medical Corporation MRI MRI T2 Balanced SARGE BASG MRI 1 2T MRI MRI ZA F FRIRE H FAET O FNA EKETE BARRE AAS HIST IceSeed GALIL MEDI CAL RAPID body
551. hancement Refocusing Flip Angle MRI PHILIPS Achieva 15T XL Torso coil 16ch 3D T2w VISTA FOV 380 mn matrix size 256 512r slice thickness 3 0mm pro file order Linear Turbo direction y flip angle 90deg TR 1 2 heart beat TE 60ms DRIVE pulse yes flow compensation no NEX 1 Refocusing Flip Angle RFA WIRES SOIL REDIR BU SRK LDS 16 8cm sec 22 7 cm sec 32 4 cm sec ASO 4 39 cm sec 7 35cm sec 5 RFA 100deg 120deg 140deg RFA 160deg
552. hot sphere b 22mm hot sphere c 17mm hot sphere d 13mm hot sphere 0 5 gt a amp t 04 SUVmax SUVmax 0 3 SUVpeak a SUVpeak 5 mathi 2 0 2 0 1 F 0 1 0 0 4 6 8 10 gt Standard Deviation Standard Deviat 0 2 4 8 2 FWHM of Gaussian filter mm FWHM of Gaussian filter mm gt in r rS t SUVmax sSUVpeak SUVmax SUVpeak n oe Standard Deviation Standard Deviation 6 8 10 8 10 m FWHM of Gaussian filter mm 2 4 FWHM of Gaussian filter mm Fig 2 Changes of SD by various FWHM of the gaussian firter a 37 mm hot sphere b 22mm hot sphere c 17mm hot sphere d 13mm hot sphere 116 GAAS THD Beit MR signal to noise ratio SNR contrast to noise ratio CNR normalized mean square error NMSE MR SNR CNR
553. hould avoid the use of EBTS3 positioned along the beam axis 8 037 MLC 1 2 RTPS QA MLC RTPS Vero4DRT MHI EBT3 ISP RT 3000 New R Tech DD System R Tech MLC
554. ing 1 ROI FOV SD 2 SD AEC EO X UOL Do ROI FOV FOV Tsutomu Gomi
555. ip Angle 15 deg WATS 1 2 1 2 1 G J Stanisz et al T1 T2 Relaxation and Magnetization Transfer in Tissue at 3T Magnetic Resonance in Medicine 54 2005 507 512 130 MRI mFFE 2 BRE 1 2 multiple Fast Field Echo mFFE 1TR TE SNR 2 mFFE mFFE
556. ithout correction of intra fraction motion during treatment using the RTRT system Methods The nineteen supine patients who un derwent IMRT for prostate cancer using the RTRT system were enrolled in this study The patients were positioned based on skin markers After that those were repositioned in left right LR anteri or posterior AP and superior inferior SI direc tions after the differences between actual and planned isocenter positions were calculated and cor rected using the RTRT system Those differences were acquired before treatment delivery and dur ing treatment course Three set up methods of IMRT for prostate cancer were simulated using ac quired data for the following situation 1 skin based set up 2 pretreatment set up using three fiducial markers and 3 pretreatment set up using three fiducial markers and correct intra fraction motion for each beam Systematic and random er rors were calculated for these situations PTV mar gins were calculated using Van Herk s formula and compared Results For skin based set up the required PTV margins were 5 0 mm 13 2 mm and 9 0 mm in LR AP and SI directions respectively For pre treatment set up using three fiducial markers the required PTV margins were 1 4 mm 3 4 mm and 2 5 mm in LR AP and SI directions respectively For pretreatment set up using three fiducial mark ers with intra fraction motion correction for each beam the required PTV margin
557. l PAGAT 40 mm 110 mL 10 x 10 x 10 cm 6MV X MU 5 x 1 2 3 5cm 5cm 4Gy R 5 x 5cm 5cm 1 2 4 6Gy 1 5T MRI 2 TE 20 TE 250ms R 1 To R 1 2 5 x 5cm
558. l Pitch Roll Pitch 1 5 1 Pinnacle Roll Pitch Delta Roll Pitch 0 Roll Pitch 2 Delta Roll Pitch 2 5 0 5 Delta Table Result af the Friedman teatipent has teat umn a fulbple compar DD Pitch DTA Roll Pitch Y index Rall Roll Pitch 3 Roll
559. ld 0 100kV STD 9 T 100kV STR T S S 10 0 5 5 0 0 9 11 13 15 17 19 21 23 25 9 100kVFBP SD 120KV FBP 100kV FBP amp 100kV WEAK 100kV MILD F100kV STD 100kV STR _ 100 150 200 250 300 350 400 450 500 3 2 0 mm FWHM mA 120KV FBP 100kV FBP 100kV WEAK 100kV MILD 100kV STD 100KV STR 0 100 150 200 250 300 350 400 459 500 X 5 2 0 mm CT 100kV Weak 100kV Mild 100kV STD 100kV STR 11 13 15 17 19 21 23 25 100kVFBP SD 6 1 4mm FWHM 7 2 0mm FWHM 9 11 13 15 17 19 21 23 25 9 100kV FBP SD 0 100kV Weak 15 100kV Mild 100kV STD 100kV STR 8 1 4mm CT 20 25 25 11 13 15 17 19 21 23 25 100kV FBP SD 100kV Weak 100kV Mild 100kV STD 100kV STR 9 2 0mm CT FBP FWHM CT A
560. mm TR 800ms TE l5ms BW 15 63kHz slice thickness 5mm SNR 2 SI SI SNR SDsup 2 SD is 2 Fig 1 1 table1 Fig 1 axial a coronal b Table1 QD coil uniformity axial 15 5 coronal 2 sagittal 20 6 72 Image J Fig 2 400pixel 20 Black 20 10 Dark Gray 10 10 Natural Gray 10 20 Light Gray 20 White Large Bore table1 coronal sagittal axial Fig 1 Fig 2 OC 0 Fig 2 axial a coronal b Table2 32ch head coil
561. ocenter 0 02 0 32 3cm anterior 1 97 2 24 3cm anterior 1 03 2 59 Fig 5 Head and neck 4 C shape C shape GafchromicFilm EBT3 Fig 6 Fig 7 GafchromicFilm EBT3 HD120 MLC Cor M120 MLC Cor y lt 1 3mm 3 Th 30 Test pattern IDMLC IMRT VMAT Mult Target 96 96 Mock Prostate 97 49 Mock Head Neck 96 13 C Sha 97 13 Average 96 93 y lt 1 3mm 3 Th 30 Test pattern IDMLC IMRT VMAT Fig 6 GafchromicFilm EBT3 HD120 MLC Sag M120 MLC Sag y lt 1 3mm 3 Th 30 y lt 1 3mm 3 Th 30 Test pattern IDMLC IMRT VMAT Test pattern DMLC IMRT VMAT Multi Target 97 09 Multi Target 97 73 Mock Prostate 97 29 Mock Prostate Mock Head Neck 96 19 C Shape Average 96 47 Fig 7 424 MLC HD120MLC 2 5mm M120MLC 5mm PIR RARR RI AT LO Sea REY
562. os nointermediate Dose 3 4 5 7 9 3 OAR Dn Target HI 5 PBC PBC PBC AAA HI PBC Acuros PBC AAA OAR PBC PBC Dmin PBC AAA PBC Acuros PBC AAA MU 7 PBC PBC AAA PBC Acuros PBC PBC MU Automatic intermediate dose Off On Target OAR Thoko KEL K MU
563. phony Maestro Class 1 5T Siemens 8ch Head coil TE 10 msec resolution 256 192 thickness 3 5 mm FOV 150 150 mm flip angle 90 degrees 2 CHA T1 1 2 503 1 703 msec CNR TRIE 1 200 msec Fig 1 TR 1 200msec CNR 3 84 0 34 CNR 1 89 0 27 5 T t Fig 2 0 9 TR 1 200 msec 3 8 TR 1 200 msec TR 1 200 msec 8 TR 1 200 msec 1 CNR
564. re 300 mgI m6 ACCU DOSE MODEL 2186 10X6 3CT Radcal 99 5 1 120kV 10 20 30 50 100 500 1000HU SPECT CT CTAC CT Tc 140keV CT 80 100 120kV reference reference CT XkeV tissure xkev NO gt CO CT 0 LL tissure XkeV CT EX Hw xkev X Ub 140kev Hw 140kev 1000X Up xkev Hw Xkev Uy oky 140keV a ey XkeV Uy uoy 40keV IL BIT SAO MG REC Uy xev XkeV Hw 140kev KER
565. rror w o Non gated co e Gated 2 8MU cycle Dose error N oO N So o 10 15 20 25 0 10 20 30 40 Gated cycle MU cycle oO uo MU MU Error of TPR 1 2 1 5 Gated LU II EE annan f 0 5 ao ate ee eS 15 0 10 20 30 40 50 20 Gated cycle MU cycle o debi aks ire iii cross line 50 3 Beam on beam off amplitude 0 8mm 0 06 sec EIPD 0 392mm VXP 0 033sec Wendy RPM Film beam on beam off 0 07 0 12sec 0 05 0 08sec
566. s were 0 6 mm 1 5 mm and 1 3 mm in LR AP and SI directions re spectively Figure 1 shows the isocenter placement errors in mm of three methods along a SI and AP axes and b SI and LR axes The outer box shows PTV margins 1 set up based on skin markers 2 set up using three fiducial markers with inter fraction motion 3 set up using three fiducial markers and correct intra fraction motion for each beam PTV margin PTV margin lsocenter lsocenter placement placement errors SUPERIOR INFERIOR ANTERIOR at PTV margin Hi PTV margin e lsocenter lsocenter placement placement errors errors SUPERIOR INFERIOR INFERIOR ANTERIOR PTV margin PTV margin lsocenter Isocenter placement placement errors errors SUPERIOR SUPERIOR x x O O o oa W W LL re Z Z POSTERIOR 1s0 ANTERIOR Fig 1 The isocenter placement errors of three methods Conclusion Our research has shown that correc tion of intra fraction motion of prostate in each beam using the RTRT system and PTV margins were reduced suggesting that further investigation may be required to apply the PTV margins in clini cal setting 145 IMRT VMAT EX EB
567. ssian filter FWHM SD Fig 2 SUVmax SD SUVpeak SD Gaussian filter FWHM SUVpeak SUVmax L Gaussian filter D FWHM SUVmax 1cm VOI 6 0 6 0 50 5 0 4 0 4 0 53 0 5 3 0 2 0 SUVmax 2 0 SUVmax 1 0 SUVpeak 1 0 sSUVpeak 0 0 0 0 2 4 8 10 2 4 5 8 10 FWHM of Gaussian filter mm FWHM of Gaussian filter mm 6 0 6 0 5 0 5 0 4 0 4 0 A 3 0 Z 5 3 0 2 0 2 0 SUVmax SUVmax 1 0 1 0 SUVpeak SUVpeak 0 0 0 0 0 2 4 6 8 10 2 10 FWHM of Gaussian filter mm FWHM of Gaussian filter mm Fig 1 Changes of SUV by various FWHM of the gaussian firter a 37 mm
568. tion with 3 0 mm thickness using a 4 slice CT scanner Delineation and treatment plan ning were performed on the EE image and 3D dose was calculated at EE and EI CTs from static treat ment plan using Acuros XB Varian Medical Sys tems Palo Alto CA First deformable image regis tration DIR was performed between EE and EI CTs and a deformable vector field DVF was ac quired Deformed dose on the EE CT was calculat ed by deforming the 3D dose calculated on the EI CT with DVF Second the fiducial marker motions closely implanted to the lung tumor were measured by real time tumor tracking system for about 60s eee a calculation Fig 1 Schema of proposed 4D dose calculation method and PDF of lung tumor motion was calculated Fig 1 Finally the 4D and 4D doses were cal culated to accumulate deformed dose on the EE CT with PDF and no PDF The dosimetric parameters dose differences were compared between the 3D 4D and 4D doses Results The dosimetric parameters of the target volume and organ at risk from the 3D 4D and 4D were compared There was no difference be tween D99 and D1 of gross tumor volume The V5 from the 4D and 4D dose for lung on the af fected side were 4 0 and 2 2 lower than that from the 3D dose respectively The V20 from the 4D and 4D dose for lung on the affected side were 0 8 and 0 3 lower than that from 3D dose respectively The pass ratios of dose diff
569. u Fig 2 Comparison of rest CBF CVR Fig 3 r gt 0 9 4 GO OO 11 0 7 16 ml 100g min 10 5 7 43 D N OO NO y 6 84 1 58x r 0 636 p lt 0 001 y 5 29 1 16x r 0 959 p lt 0 001 SS x gt O D Q 2 2 e D g 5 Lu 0 100 150 20 40 60 0 50 Measured CBF ml 100g min Measured CVR Fig 3 Comparison of CVR CBF LEHR 123I
570. uality VEC Lees ImageJ 1 3 T 9 HET SG AT 5 Re DELTATT AZLI BLACE amp MR 2 ae O High Quality
571. ults in higher acceleration CAIPIRINHA Gener alized autocalibrating partially parallel acquisi tions GRAPPA Vol ume in terpolated breath hold examination VIBE CAIPIRINHA GRAPPA MAGNETOM Skyra 3T SIEMENS Head Neck ReF GRAPPA CAIPIRINHA 2 1 7 x 7pixel ROI ROI 2 SNR 1 SNR g factor 2 g factor SNR X 1
572. uto Match 2 2 A Dez Dopr cz Dorr cz mmj A Dmadibie Dopr mandible DDRR mandible Lmm A Aco Aonr cz 7 Arr cz degree NA ps Aopt mandible Aprr mandible degr ee T es 2 Kruskal wallis Steel Dwass KER 3 4 Positional shift Difference in angle N S N S 10 E A 10 8 8 6 6 4 A fp 2 i E 4 4 3 6 6 H 8 8 10 10 MT Silver Moldcare Vac Lok MT Silver Moldcare a Vac Lok Median 0 0 0 0 0 0 Median 2 05 1 00 1 40 Average 0 32 0 21 0 34 Average 1 68 1 03 L17 SD 2 2 1 0 0 9 SD 2 05 2 06 2 02 3 2 Positional shift Positional shift Pc0 05 NS Difference in angle ae we 10 I 10 8 8 6 6 T E to 2 2 3 0 0 2 2 a 3 6 6 8 P lt 0 05 8 P lt 0 05 m MT Silver Moldcare a Vac Lok 10 MT Silver Moldcare a Vac Lok Median 2 0 0 0 0 0 Median 1 50 0 50 0 60 Average 1 10 0 41 0 69 Average 0 85 0 44 0 57 SD 3 4 ES 2 2 SD 3 01 1 35 1 40 4
573. x injected dose Weight x CCF CBF CVR CVR ROI SEE MCA Fig 1 Comparison of blood counts Fig 1 CBF Bland Altman Plot Fig 2 CBF gt y 16 5 0 711x f r 0 611 p lt 0 001 on gt wo N D Qa 2 oO 2 5 LU 100 200 300 400 500 600 Measured blood counts cps g A E g sg LL a O D 2 u

Download Pdf Manuals

image

Related Search

Related Contents

Mode d`emploi  Philips Dual screen portable DVD player PD7032T  User Manual  repair extrem  Disk Controller User's Guide  Poulan 530088894 Trimmer User Manual  

Copyright © All rights reserved.
Failed to retrieve file