Home

SHELF Tutorial Collection

image

Contents

1. J Download coastline files from the Internet 1 bh mmm mmm mm EE ne en p Import and display coast line or ON N O Locate the folder called Coast Lines in your Geocap project under 1 Maritime Lines Right click the folder and select Import gt Generic The format should be set to Automatic Click the browse e button and locate the files you downloaded in the previous exercise Select the file called gshhs h b this is a high resolution but not the full resolution and click Click the Area of Interest tab Check the Import Area check box Type in the minimum and maximum latitude and longitude in decimal degrees Click Execute Geocap will recognize the datum and coordinate system of the file If it doesn t it will ask you to Geocap will confirm that the file has been read Click OK After the file has been read click the Cancel button in the Generic reader dialog Observe that the imported dataset is stored in the Coast lines folder Right click the dataset and select Zoom to Data Right click the dataset and select Display Open a web browser and go to this NGDC web page http www ngdc noaa gov mgg shorelin es gshhs html Click Download GSHHS Data Download and save the file gshhs 2 2 2 zip Uncompress th
2. 1 In a workflow you will need to browse in an object from the project The command usually requires a dataset to do an action on such as a type of display dis Browse to the coastline folder under 1 Maritime lines highlight The Kingdom of Atlantis an d click OK Choose the display settings you like color glue to surface or not etc and click OK again Right click the element in the workflow and choose Execute Alternatively click the Execute ic on Examine how your display looks and edit the command if necessary to achieve the results you want by right clicking on the command and choosing edit In order to keep your workflow organized it is recommended to change the name of the newly added commands from Display to something more descriptive like Display Coastline Yellow which is done by right clicking the command and choosing Rename Note that commands may be copied from Shared commands Item commands and Schema commands and pasted into the workflow de Right click the Map sea command in the Toolbox and select Copy Tu It should be located under Schema Commands if you have selected a Seabed Surface _ Glick the Paste M button in the workflow 3 Again you must edit it and browse your seabed surface into the panel 4 Remember to save the workflow by clicking L mmmm ee ee am
3. EE EE EE EE eee ee al Page 43 N Sediment Thickness Introduction Aim of this tutorial 1 Generate Sediment Profile from seismic interpretation 2 Import Sediment Thickness points from ASCII file 3 Import Sediment Thickness Grid 4 Compute Sediment points gt 1 of distance to FOS Exercises Pt ee mmm ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee eee eH Generate a sediment profile The velocity profile holds all the data necessary to do generate a sediment thickness It holds both the interpretations in time and the interval velocities to use in the interval between the interpretations 1 Right click the a velocity profile and select Calculate Sediment thickness 2 Make sure that Calculate Sediment Thickness as been selected 3 Click Execute A new data set will be created in 3 Sediment Data Sediment profiles 4 Right click the new data set and select Table view T able view The x y and z is the position and the sea depth at that point The scalar value is the sediment thickness The Shot point column is the points corresponding shot point from the seismic line 1 Click Close in order to close the Table View 2 Right click the data set again and select Display profile as cross section A sediment profile should now be displayed you may need to un toggle the Velocity display and the seismic display if
4. Page 58 T Image Georeferencing Introduction This tutorial will guide you through the process of georeferencing a map To georeference a map or image you need 3 tie points These points should cover as much of the map as possible In this tutorial we will use a map of the structural elements of the Norwegian continental shelf which can be downloaded from Norwegian Petroleum Directorate website This map has a graticule showing latitude and longitude which works great as tie points Exercises gt ND DDD LL LLE DN TDN TN aD FD ll NN DN Import an image into your project 1 Create a Generic folder i e a folder with schema Generic and rename that folder to My Maps 2 Right click the My Maps folder and go to Import gt Generic Browse for a jpg or a png 3 Make sure the schema of the image set to Image Data ee Georeference an image Use the Georeferencing wizard to georeference an image Follow the step by step procedure below Georeferencing step by step Display the map You may also have to right click and Zoom to data Generic Generic Display Make sure the image is selected in the project and double click Geo Reference
5. A EE EE EE m EE EE o m m m There are also two tools which have been developed in order to Optimize the outer limit and to Maximize the outer limit These tools should be used with great care in order for them to be utilized correctly It cannot be assumed these tools will automatically produce the absolute maximum achievable area They are interactive tools that should be experimented with using different settings until the desired result is obtained lt f Maximize outer limit p OX o 9 Ul Mi Selected data from project Atlantis 14 Outer limit Outer Limit Constraint Line Display points vital for outer limit calculation Show 60 NM circle at cursor position X Cursor Y cursor e B lt f Optimize outer limit Show last cursor positions to be used in calculations Show last two cursor positions Execution Mode Filters a Maximize bays gt 60 NM Maximize bays lt 60 NM Ga Use two cursor positions to maximize the outer limit across a b Maximize Parameters Maximum point spacing Maximizing outer limit line using three cursor positions Calculate outer limit line using three cursor positions Calculate area and length between two cursor positions at the dimme Display and saving of generated data Display data New outer limit line Status calculation Maximize direction Save data in project The Maximize outer limit panel together with the Optimi
6. Note that there are two modes of the project view Switch between these two by clicking on the tabs Li st and Tree List view sorts folder content into a separate window while Tree view sorts everything into the tree itself mm mmm EE Em mm Em EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE mmm mm sp Explore the project folder structure Navigate through the folder structure taking notice of how folders and datasets are organized Datasets and folders can be cut copied pasted renamed and deleted This is performed from the popup menu which appears when right clicking a dataset 1 Expand the folders and observe the subfolders 2 Look at the right click menus On folders the Multiple will allow multiple folders to be selected for cutting copying or deleting The right click popup menu also contains commands which may be executed on the datasets Notice the different icons of the different datasets They correspond to the schema of the data set The name of the schema is written in the second column mm mm mm wa momo momo m mt mn
7. Introduction Geocap has a very customable interface The user may even program a new interface and develop new functionality The concept of commands and schemas are Key elements of understanding and operating Geocap Exercises Geocap project Geocap is operated through projects The project holds the data in a folder like structure similar to Windows File Explorer All datasets are children of either a folder or another dataset Geocap offers different project templates giving you a pre defined folder structure that fits your workflow for a specific type of work Open the Atlantis project 1 Click File gt Open gt Project and browse to the location of the Atlantis project 2 Select the Atlantis db file and click Open A window similar to the one below will appear Name Schema E amp 0 Scenes Generic gt D L Maritime lines Limit Lines gt 119 2 Seabed Generic gt E 3 Sediment Data Generic gt 1 3 4 Outer limit Outer Limits gt E 5 Geography Generic E 3 6 Camera positions Generic gt 9 Various Generic An open project Tip Next time you can open the project by using File Recent Projects Pressing the small triangles or in older Windows versions to the left of a folder will display the folder s contents Datasets and folders are organized very similarly to a file tree structure A folder can contain other folders or datasets
8. L eee Important Toolbar Buttons LESERE Xx e wot POA 5 BHOUS Basic Concepts in Geocap The interface to the UNCLOS specific features in Geocap are through the use of schemas on datasets and com mands The commands can be found in the Toolbox to the right in the Geocap interface or at the top of the menu which appear when you right click a dataset Which commands are displayed in the right click menu depend on the schema of the dataset A Base Line will contain commands appropriate for the Base Line schem a while a Bathymetric Profile will contain different commands Schemas Geocap uses schemas to classify a dataset The Shelf Module contains several schemas Some of the schemas used in the Shelf Module are coast line base line limit line seabed sediment thickness You can define the schema of a dataset in the project by right clicking it and selecting set schema in the pop up menu The choice of a dataset s schema controls which commands you see in the pop up menu when you right click the dataset You may create your own schemas as well as edit existing schemas by selecting schemas under edit in the main menu You can also edit the commands associated with the schemas Commands Commands are operations which can be performed on a dataset Commands can for example be used to display a dataset in the display window or to generate new datasets You can even create your own scripted commands to cater to your spe
9. L eee eee ee ee ee ee AA A A A A A A A A A A AAAA A A A A A AA A A A A A A A mm wa mm ma wa omn nm mu mm um EE ME EE EE EE EE EE RHONE EM EH WE UE EM EE ME EEN EE EE UM ER EE EE EM EE WE UE EEN ME EH EE RHONE EM EH N EE EM EE ME EEN EE EH EORR EE EE RH NH UE EM EE ME EEN EM EH EE ER EM EE EM EH EN OU EM WE EH EM EE EE EM EH EE EE EM EH ME UE EE EH NH EE EH EE EM ER EE Eed EM ME EE EM EE ES EE EE EE UE EM EE ME US EM EH EH RR EM EE E EM EE EE EM WE EE EM EEN NS EE EE EE EE EM EE WE UE EM EE EE ER RM EE EE EE EE Eed EM EE EE E ER EE EE EE EE EE EORR EE EE E EE US UR EE EE EROR ROO my Interpreting with auto tracking 1 To select Snap mode look at the seismic display and identify the reflector representing the seabed Compare the color of the seabed reflector with the seismic color table The color on the left side of the color table represents minima the color on the right represents maxima The seismic color table used is one of three a current active seismic color table look in the lower right corner of Geocap b the color table specified in Seismic display if any c the color table dragged and dropped on top of the seismic line if any 2 Select Snap mode accordingly Select Track mode to be Auto
10. M M M M M M M gt 1 In this exercise we are going to create a bathymetric profile from a digitized or already existing line to sample the sticky surface to create a bathymetric profile The exercise assumes that a seabed surface is activated as the sticky surface Right click on the surface in the project and select Copy to sticky surface A line of any kind can be used e g a digitized line To digitize a line use Tools Quick Digitizing o r View Digitizer Create a new shared command of type Script and rename the command to Generate Bathymetric profile on sticky surface Enter this content mak lin grid sticky surface mhi bathymetric profile qinformation Mission accomplished New profile is found in workspace bathymetric profile Execute on the line to produce bathymetric profiles Set the filter on the command to run on Generic folders and Polydata only www geocap no Oslo office Geocap AS Industrigaten 46 A 0357 Oslo Norway Phone 47 22 95 56 60 Mail info geocap no Stavanger office Geocap AS Valberget 11 4006 Stavanger Norway Phone 47 51 11 04 32 Mail stavanger geocap no
11. SHELF ey Lull 1007 De ok N eN 8 oe 5 PN 4 b i X oa map NS 4 y n yf PA A MR ap o WR i OR s gm RE Or ee ME YE UT HAN a MPs Ye s Me uw v D KAI VE ARO SUME de M E AT gt T Le 7 s o RE HA a aq sth trl ETTE VANT TA M No gt eX 1 OS l 0 TT SN NS Ay 4 GEIR Yn E LJ 2 2 e 49 E 1 7 e 7 P 7 4 A me 2 4 d Ad p zm Ba pe SM LF 4 d E y JI D E E 1 2 gt 5 ETES 7 ght L i 04 PIN i 3 hs 2 v Ne UMS OO s i y a i m M BRA 77 2 E N LR N Ty ha gi 121 R 4 LJ 5 NN EUM er af 5 4 LJ S 1 2 0 Nr Vane 0 TM ue E 00 GU AY 7 Wed i y M VS N 4 rg 3 1 f Va B gt DP CN i ge 7 74 d C I x ka gt VAR NS l X 3 Y right by Vs NN ORS pe y INA A op intec Ar Il 2 1 a y i X Dc 1 A nf Bg L n Ua 4 Je Y A TS v 0 ol 5 To 2 5 r j 1 77 xd z 7 0 T MN 1 3 N ime ei QS e SP l Y m Ua gt E a MI I n A N m hy N gt ie ip 2 r Yrs N gt gt 7 nee ur f E 17 i A he 3 A las v 5 amp Y PT EL RE ed NS CE FR Se OR OR 4 d p 2 AN NS n c ASA VH i be a Pe eu J a 7 2 o Page 1 Shelf UNCLOS Art 76 Tutorial This tutorial collection is specific to UNCLOS article 76
12. Warning Note that points and lines displayed onto a sticky surface are displayed without their original z values and this may not be what you intend to do when displaying a foot of slope point or a bathymetric line Keep that in mind Keyboard shortcuts Geocap has several keyboard shortcuts or hotkeys Go Help Keyboard shortcuts to bring up a list A selection of the most important keyboard shortcuts Key Explanation Key Explanation 0 Toggle color code for last used map command Zoom in on off S Turn graphics into surface mode Zoom out V Value of height depth z coordinate from 2 Toggle graphics to 2d mode graphics W Turn graphics into wire mode 3 Toggle graphics to 3d mode X Setting the focal point The graphics will rotate 3 Toggle stereo view on off when stereo is around this point activated y Cursor point is set at the surface of the graphical z Zoom by drawing a rubber band with left element button on the mouse j Snap to any point on a displayed line 2 When using j or y to snap to lines or surfaces Geocap will report what you have snapped to in the lower left corner f sm gt 7 Keyboard shortcuts Visualize a seabed surface and test all the above mentioned keyboard shortcuts Page 13 C Create a New Shelf UNCLOS Project Introduc
13. i When you have made changes to the project it is always a very good idea to store them Click the save button in the project tool bar in order to save your project Page 35 L Seismic Interpretation Introduction In order to use the sediment formulae criterion in UNGLOS Article 76 we need a dataset containing the sediment thickness This dataset can be based on seismic data This tutorial has some exercises which cover the basics for working with seismic data Exercises mm mm mm Em um wa wa mm ma ONE EE ma EE EN EM EE WE UE EE EH EH El RHONE EM EH EE EEN EM WE N EM RR NE EE EE RHONE EM EE ME UR EM EH NH EE EE RE RH EE UE EM EH WE OUS EM eee Import SEG Y files This exercise will guide you through import of a seismic line It will cover the simple case for a plain SEG Y file which follows the SEG Y standard and has navigation stored in the trace header In the example we will use the SEG Y file which is stored with the Atlantis project A SEG Y file can only be imported into a seismic data folder If you are using Geocap s standard UNCLOS folder structure then such a folder is located in 3 Sediment Data Seismic Lines In this exercise we will also generate a sub folder in order to organize our data 1 2 3 C1 Locate the folder 3 Sediment Data Seismic Lines in your project Right click the folder and select New Folder Right click the folder and select Rename Give the folder the name of the survey In this c
14. command in the Operations folder Change the result combo box to Replace input Click Execute Agree to replace the existing dataset by clicking Yes ork OD The data is now converted Let us re display in new coordinate system 1 Right click the dataset and select Zoom to Data 2 Right click the dataset and select Display If you have a data set with the base line of your country you can import it and use that as a base for the distance lines If you do not have such a base line skip this exercise and generate a false base line in the next exercise instead Import Base line ASCII lat lon format 1 Locate the folder called Base Lines in your Geocap project under 1 Maritime Lines 2 Right click the folder and select Import gt ASCII Column and the ASCII Column import dialog will appear You can make dialog bigger by clicking in one of the corners and drag 3 Click the browse e button and select your base line file There may be a suitable file somewhere under Atlantis Data 4 Adjust the number of header lines in your file with the Adjust header spin box The header lines should be displayed in the top part of the file preview while the bottom part of the file preview should hold the coordinates 5 f the columns are delimited by space or tab characters you should keep the column separator at white space If the file uses a special character change the combo box to MySeparator and change the value by typin
15. e Set Snap mode to Pott 7 mmm mm EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE mmm mm sp We have now set up everything we need and are ready to start interpreting Interpreting manually 1 Click the e button 2 Pick points on the seismic line by pointing the mouse cursor on the seismic line and clicking the p or space key on the keyboard If you want to undo a pick you can click the d key 3 When you are finished interpreting click the button Editing an interpretation 1 Click the e button 2 Re pick points in an area where you have picked points before You pick points the same way as you did the first time 3 When you are finished interpreting click the button 4 Observe that the old interpretation is updated with the new interpretation Deleting parts of an interpretation 1 Click the e Erase _ button 2 Pick two points the start and the end point of the part of the interpretation that you want to delete 3 The part of the interpretation between the two points is automatically deleted
16. 4 Set Delta Z Delta Z is the maximum allowable vertical distance between two auto tracked points Z is usually time in ms A good rule of thumb is that Delta Z should be the double of the sample interval in the seismic In our case that is 8 5 Pick the horizon to autotrack by pressing the space or p key on the keyboard 6 The horizon is automatically interpreted 7 lf the interpretation stopped at one point press space or p again to continue where it stopped es 8 When you are happy with the interpretation click the button Lee ee ee ee ee EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE A EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE ee mm mm mm mm me al mm mmm EE Em EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE mmm mm sg Interpreting with insertion semi auto p Keep the Snap mode to be same as you used before Select Track mode t
17. 53 mmm mm EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE mmm mm sp Extract soundings 1 Click Extract Soundings 2 Check the box next to the XYZ data folder 3 Select the Chart folder so it is marked 4 Click Execute 5 You will now see that the Chart folder has been updated with a Soundings dataset Pe ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee eee eee F Gridding chart 1 Click Gridding Chart 2 Select Parabolic gridding algorithm with an appropriate x increment and YInc XInc Use the Tools gt Distance calculator to find an appropriate increment 3 Algorithm Parameters may have search radius 5 Use Boundary Polygon and Automaticall y Create Boundary Polygon should be checked 4 Use filter input points and save filtered points with standard deviation shallow factor 2 and deep factor 2 5 Use Apply smoothing to result grid with convolution filter width 1 3x3 and filter weight 0 5 6 Select the Chart and click Execute 7 When the gridding has finished you are presented with a dialog box
18. EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE gt sp Generate velocity profile from seismic interpretation using interval velocity dataset This exercise is quite similar to the first exercise in this tutorial The only difference is that we will base the velocities on a data set in the project instead of a look up table In order to generate the sediment thickness we need at least an interpretation of the sediment base and the seabed surface Geocap can also use more interpreted horizons if you provide them Locate the folder 3 Sediment Data Velocities Velocity Profiles Right click the folder and select the command object Generate Velocity Profile Browse in the Seismic line and the interpretation folder in the Input data group box Select Use interval velocities from Data set in Project Browse in the Interval velocities input data group box E pex e NUI It is important that the Interval velocity data set has the same name as the corresponding seismic line It is also important that the shot point numbering in the velocity file correspond to the shot point numbering of the seismic line e Click Execute If you select folders containing the seismic lines and the velocity data as input instead of the data sets Geocap will match the names and try to generate more velocity profiles in one go A dialog with a list of the matching seismic lines will appear 1 Click OK and the velocity profiles will be generated in the Velocity Pr
19. Right click the Display command under Schema commands in the Toolbox and select Copy Right click Schema commands in the Toolbox select Paste and observe that a copy of the selected command called Display 1 will appear in the schema command list Right click the new command in the command list and select Rename Name the command Display Thick Yellow Right click the command and select Edit The command editor for the selected command will appear Set Line width to 6 Check the User defined color box and click the Palette button Select a yellow color and click OK 10 Wi Click OK to close the Display command editor Right click the same data set and observe that our new command is present in the right click menu This is because the Pin to Menu check box next to the Display Thick Yellow comman d in the Toolbox is checked Un check the Pin to Menu check box next to the Display Thick Yellow command in the Tool box Right click the same data set again and observe that our new command is not present in the right click menu Execute the command by double clicking Display Thick Yellow in the Toolbox Observe that the line is displayed in yellow Check the Pin to Menu check box next to the Display Thick Yellow command in the Toolbo x again Now right click a different dataset with the same schema limit line and observe that the new command can be executed on this right click menu as well The Pin to Menu check box lets you d
20. Seismic display 2 Right click the seismic line and select Zoom to Data Next we open the Seismic Interpretation Xi dialog Locate Seismic Interpretation under Tools in the main menu First we need to select where our interpretations should be stored 1 Click Browse button to select the interpretation folder 2 Select the seismic interpretation folder 3 Sediment Data Seismic Interpretations Next we need to specify the horizons we want to interpret 1 Click the button in order to create a new IHorizon The IHorizon dialog will appear 2 Type in Seafloor as the name of the new horizon and click OK 3 Click the Graphical Settings tab 4 Set Line Width to 5 5 Check the User Defined Color and pick a color for the horizon 6 Click OK 7 Click the same new button again and call the next horizon Sediment Base f m J Before we can start interpreting we need to specify which horizon it is that we want to interpret Click the Browse button in the IHorizon row Select Seabed and click OK Next we need to select which seismic line we want to interpret e Click the BR Select button and click on the seismic line in the display window with your left mouse button Finally since we re starting off with manual interpreting we turn off the snap
21. below 4 Toggle the display between polygon mode and wire mode with the W and S keys ee mm me ml Page 25 m M 1 Generate 350M line The same procedure as above f mm M 17 Try the Distance Calculation tool Use the Distance Calculations tool to verify that the distance between the baseline and the generated 200M line is correct 1 Open the tool from Tools gt Distance Calculations 2 Select an appropriate datum and coordinate system 3 For distance calculation method select Vincenty calculation Flat earth calculates in the metric values of the projections 4 To measure the distance between two points press j on the keyboard to snap to them 5 The distance is displayed in the lower part of the panel Notice that vertical horizontal and total distance is measured and that lat long of the select point is listed f mm Clean up the distance lines Remove the parts of the generated distance lines that are outside our
22. changes in the Edit points and lines menu click the Execute button at the bottom A new copy of the data set is stored in the folder 10 2 3 Click the Cancel button in the Edit points and Lines menu Clear the display window again Display the edited isobaths and confirm that the unwanted parts have been removed i When you have made changes to the project it is always a very good idea to store them Click the save button in the project tool bar in order to save your project Ordinarily a 2500m isobath generated on a surface as a contour contains very many points often thousands of points It is recommended to snap a subset of these data to create a much smaller dataset containing fifty to a few hundred more or less critical points to use as input for the 2500m 100M generation For this we use the command Red Snapper fee p Use the Red Snapper to prepare for generating the 2500m 100M 1 Blank the screen 2 Select the 2500m isobath
23. click ATL LOS 00 2 and click Copy Right click on the Sediment profiles folder and click Paste twice Name the new datasets ATL LOS 00 2 max and ATL LOS 00 2 min Right click on ATL LOS 00 2 max and click Make active Go to the shell in the toolbox and type mul sca 1 1 O A O N Now the scalar i e the thickness is increased by 10 1 Right click on ATL LOS 00 2 max gt Assign from workspace gt active 2 Right click on ATL LOS 00 2 max gt Generate 1 dist to FOS area You may be asked for projection which is Mercator central meridian 0 3 You will be asked for foot of slope point s and you can select the FOS s Northern Plateau 4 Repeat this for ATL LOS 00 2 min but multiply by 0 91 The two new datasets that are created have all points on the lines that falls within the 1 thickness criterion Page 52 Q Gridding Introduction Read about gridding in the User Manual The gridding commands collection can be reached on the right click menu on any dataset of schema Poly Data Below follows a step by step procedure for gridding using the Seafloor functionality in Geocap Exercises Gridding multibeam XYZ data in Seafloor This demo will take you through the steps from importing Multibeam XYZ data to displaying the final grid The multibeam XYZ data can be found in the Data Seafloor folder in the Atlantis project Note that the Atlantis project is in Mercator central meridian 0 Pe ee ee LLE EE ee
24. command in the Toolbox Notice that the graphic window was changed to 2D mode e In the first menu set geodetic properties of the map Select datum Ellipsoid WGS 84 Select coordinate system Universal Transverse Mercator UTM Hemisphere Geo Reference Image voring_map Tie point Coordinate Format 1 Tie point Lat Pixel Coordinate e Type in the Lat 70 and Lon 0 for the first tie point click Pick and click on the corresponding point in the map Page 59 Tie point Coordinate Format 1 Tie point Lat 70 Pixel Coordinate 359 486 e Type in the Lat 70 and Lon 16 for the second tie point click Pick and click on the corresponding point in the map eo Reference Image voring_map Tie point Coordinate Format 1 Tie point Lat 70 Pixel Coordinate 359 486 2 Tie point Lat 70 Pixel Coordinate 2081 38 Type in the Lat 62 and Lon 4 for the third tie point click Pick and click on the corresponding point in the map Reference Image voring map Tie point Coordinate Format 1 Tie point Lat 70 Pixel Coordinate 359 486 2 Tie point Lat 70 Pixel Coordinate 2081 38 3 Tie point Lat 62 Pixel Coordinate 587 529 Previous e Click Next Evaluate the result The Deviance at tie point represents the accuracy of the georeferencing The value should not exceed more than 1 pixel on each point Page 60 Computed Values Image Orig
25. datasets using this schema The schema commands of a dataset are listed on the top of the right click menu Page 10 Toolbox OG Operation Modes Commands Filter 2 a m 4 Item Commands gt Label my FOS points in yellow 4 Schema Commands gt 2 Export Append to active foot of slope amp Display Display FOS points 2 Display Points d Generate 60 Mile Line FQ One percent line from thickness grid Set as active foot of slope 4 Shared Commands gt 3 L Shared By Harald gt Analysis gt Editing HO OOF 0823338888 3 Color Tables Shell and Workspace The Geocap Toolbox Note that the _ Filter _ is checked meaning that commands not specifically relevant are invisible Untick the filter to show all commands Pe ee mmm ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee HF Get familiar with schema commands e Right click the different datasets in the project and see how the right click menu changes from schema to schema ee ee ee EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE eee EE EE EE EE EE EE EE EE ee ee Default command The default command is the command that is executed when you tick the box next to a dataset in the project By default a dataset will have one of the schema commands as a default command This can however be changed 0 ee ee ee ee eee ee ee ee ee ee ee ee eee M 1 Ch
26. ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee eee eH Creating a Seafloor project 1 Click File gt New gt Project 2 Select the Seafloor project template and a name and path for your project Click Finish 3 Click Seafloor at the menu bar and open the Seafloor Module Main Panel 4 Click Settings and Geodetic Settings Select an appropriate datum and coordinate system and click OK Pe ee eee eee ee ee ee ee ee ee ee ees M 1 Importing data 1 Click Import to XYZ data folder 2 Import all the XYZ files with an appropriate import method 3 You should now be able to see your data in the XYZ data folder under the 1 Survey Data fold Fm mm EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE Ee EE Ee EE EE EE EE EE EE Ee EE Ee EE EE eee m mm my Displaying raw point data soundings 1 Right click the XYZ data folder and select Display Soundings 2 Select Show soundings Use colour range and Use same range for all 3 Select all files click one and then ctrl a 4 Select Scale to selected files and click Execute Fm mm EE EE EE EE ee eee ee m my Creating a chart 1 Click Create and Modify Chart 2 Select the Create Single Chart tab 3 Click Scale to soundings 4 Check the box next to the XYZ data folder and click ok 5 Click Execute 6 You can now find your chart frame in the Chart folder under the 2 Charts folder Page
27. folder browse button and select the folder where you want your vertically calibrated image to be stored Vertical Calibration The vertical calibration uses a cut off range and 3 calibration points The cut off range usually starts at 0 and stops at the max depth time of your seismic image Everything above or below this cut off range will be eliminated from the completed VCI The 3 calibration points specify the orientation and scale in vertical direction of the image 1 Click the 2 Vertical Calibration tab to start the vertical calibration 2 Set the Stop value in the Vertical Cut Off Range to the max time depth in your image 3 Set the first calibration point to 0 click the Pick button and click on the corresponding value to the left in your image 4 Set the second calibration point to the stop value in your cut off range click the Pick button and click on the corresponding value in the middle of your image 5 Set the third calibration point to 0 click the Pick button and click on the corresponding value to the right in your image 6 Use the Focus buttons to zoom closer to each point and re pick them for a more accurate selection Page 62 You should now see two white horizontal lines across your image One at 0 depth and one at max depth 2 If you want to keep parts of the image above 0 or below the max depth of the seismic image you can do it by adjusting the cut off range after you have set the calibration points In th
28. the area you are working in Page 23 G Generation Of Distance Lines And Mid Lines Introduction Calculating distances can be done in many different ways Geocap uses algorithms that take into account the curvature of the Earth which provides for better accuracy and is in accordance with the scientific and technical guidelines established by the Commission on the Limits of the Continental Shelf CLCS for UNCLOS Article 76 12M Territorial Seas e 24M Contiguous Zones e 200M Exclusive Economic Zones e 60M Formula Lines e 100M Constraint Lines e 350M Constraint Lines Exercises The 200M constraint line is measured from the baseline Pe mmm mmm mmm ee gt 17 Generate the 200M line 1 Display the baseline you imported or generated in a previous exercise 2 Make sure the baseline has the Base Lines schema in the project window If it uses a different schema right click the dataset and select Set Schema gt Base Line 3 Right click the baseline and select the command Generate 200M Line 4 Keep the default settings and click Execute 5 The new line should now be available under 1 Maritime Lines 200M Lines Click OK 6 Display the 200M line Execution Mode Filters d La Distance properties Distance 200 nautical miles 1852 m gt Calculate distance from Distance Calculation Method Vincenty Calculation Result line Point Spacing 1 nautical miles 1852 m v Insert equidistance points
29. 1 Maritime Lines 60M Lines 4 Display the 60M line Pe ee mmm mmm ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee eee M 1 FOS 60M table view Open the Table view of a 60M distance line Look at the various field data and compare to the field data of the FOS points TTT It is possible to show crossing lines in the analysis window Click the browse icon to the right in the analysis panel and browse for a line the crosses the profile i When you have made changes to the project it is always a very good idea to store them Click the save button El in the project tool bar in order to save your project It is possible to filter e g smooth the bathymetry and then click the Tables of values button The filtered result i e the smoothed bathymetry is then available in a tab and may be extracted as a project dataset D LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL gt 1 Smoothen the bathymetry It is possible to filter e g smooth the bathymetry and create a new dataset You may use one of the Atlantis singlebeam datasets for this Open the analysis panel Seta filter e g Gliding Average Double click the 1 Filter in the lower left corner and change the seitings of the line to be a thick orange line Observe the smoothed filtered seabed 6 Click the Tables of v
30. E EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE mmm mm sp The data set has now been imported into your project However it does not yet hold any coordinates In order to visualize the stacking velocities with the seismic data we need to assign navigation to the velocities Geocap will use the shot point number in the velocity data set and match them with the shot points in a navigation file Either a separate navigation file or the actual seismic line can be used as source of navigation Geocap will match the shot points in the navigation file with the shot points in the velocity file Right click one of the velocity data sets and select the command object Assign Navigation Browse to 3 Sediment Data Seismic Lines and highlight the corresponding seismic line Click OK Right click the velocity data set again and click Map Data ee E A color map of the velocity data should appear If you display the seismic line at the same time you should be able to see that the velocities match the seismic line The velocity data sets should have the exact same name as the seismic line If this is the case then you can use the assign navigation command object on the folder containing the velocity data You should then browse in the folder containing the navigation Geocap will match the data sets by their name and assign navigation accordingly This way you do not need to assign navigation to one and one data set but ca
31. E EE EE ME EE EE EE RA ME EE EE EE EE ME ME EE ME EE EE EE EE EE ME EE EE EE EE ME EE EE M EE EE EE mm mmm EE Em Page 22 EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE gt sp Display a detailed contour pattern on the seabed surface Use the command e General Display to display contours Try to display line contours at depths relevant to base of slope and see if you can observe the area of the deep ocean floor and areas of base of slope from the contour pattern Explore the different display options of this command and observe that this command is different from most other commands Observe that this command can produce several actors visualizations p M 17 Generate a Bathymetric Profile from a grid 1 O Cc N 10 11 12 13 14 15 Locate the dataset you imported in the previous exercise which should be located in 2 Seabed Grids The data set should have the schema Seabed Surface If it does not have this schema right click it and select Set Schema gt Seabed Surface Display the seabed by right clicking it and selecting Map
32. Generate base point connection polygon Generate 200M line menu i When you have made changes to the project it is always a very good idea to store them Click the save button in the project tool bar in order to save your project Page 24 mmm mm EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE gt sp Read about distance lines in the in panel help 1 Open the command Generate 200M Line from the toolbox 2 Click the icon with the question mark to open the in panel help 3 Read the information that pops up If you want to use the method of traces paralleles you may consider resampling geodetically correct your baselines and use distance from points Fl ll TD Tl TT tee Check Table View for the 200M line 1 Right click the 200M line and select Table View 2 Observe the columns Base Line Base Line Index and Second Base Line Index This tells you which baseline and which point on the baseline that contributed to the point on the 200M line 3 Scroll down to a point that has values in both Base Line Index and Second Base Line Index and highlight this point 4 Observe that this is the crossing points between two arcs in an envelope of arcs calculation equidistance point That is
33. Save Profile As e Save Analysis As Calculation interval Browse crossing lines or grids from the project Depth scale Various Filters for smoothing noisy data or complicated morphology Exercises mm mmm EE Em Page 29 EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE gt Calculating the Foot of Slope FOS Use the analysis panel to set foot of slope points 1 2 7 Right click the profile you generated in the previous exercise Select the command object called Analyze Profile The profile analysis tool will appear at the bottom of your screen You may need to un dock the panel or expand it by dragging the edge of the window up allowing more space to view it properly The black line with gray dots is the seafloor the red dotted line is the change of gradient and the thicker red vertical line marks the point of the maximum change of gradient on your profile The same profile is also visible in the 3D window above the analysis panel where you will notice the red vertical line marking the maximum change of gradient If you want to flip the direction of the profile in the 2D window you may do so with the flip profile direction button Click the select area button Click with th
34. Sea Right click the dataset and select the command Display contours A menu will appear We will just use the default settings Click Execute and Cancel Right click the dataset and select the command Generate Bathymetric Profile A menu will appear Click the Start button then digitize the first point of the profile by clicking with the left mouse button where you want the profile to start on the seafloor in the display window Digitize the last point of the bathymetric profile by clicking with the left mouse button where you want the profile to stop on the seafloor After you have digitized both the start and stop point you will be prompted with a dialog asking you to provide a name for the profile Keep the default name and click OK Geocap will notify you where the resulting Bathymetric profile has been stored in the project Click OK Locate the new profile in 2 Seabed Bathymetric Profiles this is the default position of bathymetric profiles In order to structure our project we want to move the profile into a sub folder and rename the profile Right click the folder 2 Seabed Bathymetric Profiles and select New gt Folder Change the folder name to Etopo1 and click OK Right click the profile and select Cut Right click the new folder and select Paste The profile is now moved into the new folder Right click the data set and select Rename Give the profile a suitable name for example the name of
35. Slope 12 Right click the same dataset again and select Rename Give the foot of slope a proper name for example the area you are working in Fm mm EE EE EE EE EE EE EE EE eee eee Merge all FOS points into one datasets This is an alternative to the exercise above Instead of grabbing point by point the FOS points can be merged into one group by running a ccommand that has a filter 1 Find the command Merge all FOS points on a bathymetric profiles folder 2 Try it 3 Check the filter settings for that command to understand how it works Pe ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee FOS table view Open the Table view of a FOS group Look at the various field data Page 31 mmm mm EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE mmm mm sp Adding 60M to the FOS points 1 Display the FOS points which you created in the previous exercise 2 Right click the dataset and select the command object Generate 60M Line 3 The new line should now be available under
36. Stacking Velocities no navigation Execution Mode Fillers Co Pg File name C dataset Atlantis ATL LOS DD vel File preview SP time vel ATL LOo03 00 1 ATL LOS 00 1 ATL LOS O0 1 ATL LOS O0 1 ATL LOS O0 1 Adjust header Column separator Fixed columns Time m D Cell Data E 4168 1479 ATL LOS 00 1 121 ATL LOS OO 1 4540 1530 ATL LOS 00 1 121 ATL LOS OO 1 allez 1601 ATL LOS O0 1 121 ATL LOS OO 1 Cell type Separate cells Separate data sets Separate folders Schema Stacking Velocities import menu Velocities are often provided as ASCII column files The file should contain the shot point time and velocity The file may also contain coordinates In our training data set there are no coordinates therefore we need to assign navigation from a navigation data set If the file contains velocities from 2 Right click the folder and select the command object Import gt Stacking Velocities no 4 Adjust the columns according to the following screen shot and click Execute Page 40 m mm m al mmm mm EE EE EE EE EE EE EE EE EE EE 0 EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE E
37. aint in UNCLOS Article 76 which is the 2500m isobaths plus 100 nautical miles The 2500m isobaths can be generated based on bathymetry grids or on bathymetric profiles from single beam bathymetry The only ones that can be used for an actual submission to the CLCS are 2500m isobath points generated from real bathymetry data For a grid the resulting 2500m isobath will be a contour line A bathymetric profile will produce one or more points wherever the profile value is 2500m Exercises p Generate the 2500m isobath from a Seabed Surface 1 mm mm mm mm momo momo Locate the etopo1 dataset which is located in 2 Seabed Grids The dataset should have the schema Seabed Surface If it does not have this schema right click it and select Set schema gt Seabed Surface Right click the dataset and select Display 2500m isobath Black lines will appear where the 2500m isobaths are located You may notice that the isobaths cover a larger area than
38. alues button The filtered result i e the smoothed bathymetry is then available in a tab 7 Select all points Click in the upper left corner and then right click inside the table and select E xtract points to create a new project data set RR OND C1 Page 32 J Real Bathymetric Profiles Introduction Real bathymetric profiles are measured usually by sonar They are not generated by extracting values from a seabed grid or from any other data derived mainly from satellite altimetry such as ETOPO1 An example of real bathymetry is Corrected Depth Bathymetry from the U S National Oceanic and Atmospheric Administration s NOAA Geophysical Data System GEODAS 2 To locate a specific line amongst hundreds of lines in a folder display them all then click at the icon Hh Locate project object from graphics then point at the relevant line This action will select your line in the project Exercises The GEODAS bathymetric profiles can sometimes be very long covering areas that you are not interested in It is possible to adjust the length of the profiles in Geocap so that you will only analyse the part you need Pt mmm mmm ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee eee eH Save an adjusted bathymetric profile as a new bathymetric profile 1 Right click a real bathymetric profile not one created from a seabed surface and selec
39. ange the default display for seabed surfaces The seabed surfaces has a default command Map sea or something similar 1 Click on the Seabed datasets in the 2 Seabed Grids folder 2 In the Toolbox right click another command i e LOD Grid Display and select Set as default command 3 Tick the checkbox next to the Seabed dataset and notice that the new command is executed En Shared Commands Shared Commands are commands which are shared with all datasets and folders The shared commands are listed in the Toolbox under Shared commands If you cannot see the Toolbox it can be opened from View on the main menu Page 11 All commands have a command editor where you may change the properties thus affecting the way it is executed p Create a new command for custom display of limit lines 12 13 14 15 Tip Click on one of the datasets with the limit line schema inside the 1 Maritime lines folder
40. approximation of the sediment thicknesses covering the entire world It is available from the internet with the link http ww w ngdc noaa gov mgg sedthick sedthick html Import that grid 1 Open the link in your internet browser Geocap should be able to import all of the formats which are presented For this exercise you may download the GMT NetCDF file 2 Click the Download GMT NetCDF grd file Store the file and Unzip the grid to your hard drive 3 Locate the folder 3 Sediment Data Grids If you do not have this folder you may create it Use the generic folder type which is the default option 4 Right click the folder and select Import Generic and the Generic import dialog will appear Click the browse button and select the sediment thickness file 5 Click the Area of Interest tab Here you will see extent of the file You may specify the import area at the bottom 6 Check the import area button type in the coordinates of your area in decimal degrees 7 Click Execute 8 You will now be prompted with a question of the coordinate system and datum Select World Geodetic system 1984 Geodetic Click OK 9 Click close The data is imported in Geodetic with latitudes as Y coordinates and longitudes as X coordinates In order to view the data with the other data we have imported need to convert the grid to Mercator coordinates 1 Right click the dataset and select Shared commands Convert to Mercator 2 Change the
41. area of interest Right click on the dataset and select Edit points and lines Click on the Delete tab then on the By closed line tab You may want to redisplay your data using the Display button in the lower part of the panel Click the Start button and start digitizing encircling the parts of the lines that should be removed 5 When encircling is almost complete click the Connect to start and End button Then press D elete points INSIDE to remove the encircled points Alternatively use OUTSIDE 6 The edited dataset is not written back into the project until Execute is clicked Observe the options for Save as an extra copy Overwrite input dataset etc a eel N mmm mm EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE mmm mm sp Generate mid lines Generate mid lines between The Kingdom of Atlantis the Republic of Starfish Islands and The Federate States of Five Stone Islands 1 Display the three baselines in the project 2 Right click one of the baselines in the project and select Generate midline 3 Tick th
42. ase ATL LOS 00 or give it another name if you are importing into the Atlantis project and the folder already exists Right click the folder and select Import SEG Y 2D The SEG Y import menu will appear Click the Defaults button in order to reset the menu to the default options Click the file browse button and select the ATL LOS 00 1 segy file located in the Atlantis folder structure on disk Atlantis data Atl los 1 segy Click Open The file follows the SEG Y standard and we do not have to change the default settings It might be a good idea to check that the Storage in the lower right corner is set to 8 bit Click Execute and the file is imported Click close in order to close the SEG Y import command In order to calculate the sediment thickness based on a seismic line we have to interpret the seabed surface and the base of sediments This is done by using the Seismic Interpretation Xi functionality mmm mm EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE gt sp Interpret a seismic line In this exercise we are going to interpret the seabed and basement of the seismic line First we need to display the seismic line we want to interpret 1 Right click the seismic line and select
43. ase of slope region Exercises p 1 Download the ETOPO1 grid from the Internet i bene eee ee eee Open a web browser and go to the following address http www ngdc noaa gov mgg global g lobal html Click the link Extract Custom Grids in the left column on the page below the globe A new web page with a interactive map should appear Zoom into the area where you want to extract the grid Click the icon with and i in the upper left corner of the map window Drag a rectangle over the area where you want to extract the grid You should see a red rectangle on the map Keep Layer as ETOPO ice Select Output Format XYZ Click click here to download EA m m Em Em Em EE EE EE EE EE RE EE EE EE EE EE EE EE RE EE EE EE EE EE EE MS EE EE EE EE EE EE RE EE EE EE EE EE RE EE EE EE EE ME EE EE EE EE RE EE EE RM MS EE EE EE EE RE EE EE EE EE ME RM EE RE EE EE EE EE EE ME EE EE EE EE ME EE EE RE MS EE EE EE EE RE EE EE EE EE EE ME EE RE EE EE ME EE EE RM EE EE EE EE RM EE EE RM EE EE EE EE EE RE EE EE EE EE EE ME EE EE EE EE EE EE EE RE EE EE EE EE E ME EE RM EE EE ME EE EE EE EE EE EE EE eee me me me me me n me m me ml The following exercise can be used on most binary grids which Geocap supports You normally do not have to specify the grid file f
44. cific needs You execute a command by right clicking the dataset or folder you want to run it on and then selecting the relevant command in the pop up menu You can give different parameters to a command in the command editor These parameters are stored with the command and used during execution Commands can be stored in three categories 1 Item commands 2 Schema commands Page 9 3 Shared commands You will find the commands sorted into the different categories in the Toolbox see illustration below or on the right click menu of a dataset or a folder Commands are also put together in sequence in Workflows to perform visualizations or data operations see chapter S All commands have a front end panel and most of them have settings that may be customized Make a copy with current settings to an item command lf Execution mode is Interactive the command setting panel will pop up when the commands is executed If set to Direct it will On panel Help execute without popping up the Distance properties settings Distance 200 Calculate distance fram Filters are used for limiting execution and visibility of the OK will close the panel and Distance Calculation Methad command to CETAN schemas etc Cancel will close the panel Paint Spacing 1 rine ae LU without making any changes 4 Insert equidistance points Various buttons to the command Generate base paint connection palygon input fields etc for Execu
45. ck the start button then digitize a closed polygon around the part you want to delete by clicking with the left mouse button Click Connect to Start and End in order to connect the last digitized point with the start point and end the digitizing Click Delete points INSIDE wm ma ma um OE EE EE EE mm EE EE EE EE EE EE EE EE EE RAD EE EE RA GM EE EE EE EE EE EN EE EE EE RAS EE EE RAS EE EE EE EE EE EE EE EE EE Ee RM EE Ee me EE EE EE EE MAS RAS EE EE RAS RAD EE EE RA EE EE EE EE EE MAS RAD EE EE RAS me EE EE EE ORA UNS RAS EE EE EE RAS EE EE me UA EE RAS EE EE EE RAD EE EE RAS RAS EE EE EE EE UNS EE EE EE EN RAD EE EE me GA EE EE EE EE EE EN EE EE EE RAS EE EE EE EE EE EE EE EE EN EE EE EE RR EE EE RR UR EE EE RR RR EE me Gn m m ee m me m m m ml mm mmm EE Em Page 34 EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE mmm mm sp The part inside the closed polygon is now deleted You may repeat the three last points in order to delete some more The changes you make are not performed on the dataset directly but as a local copy In order to store the
46. construction may still be a complex logical and strategical operation The Geocap Final Outer Limit tool is designed to digitize to combine line segments and keep distances between points less than 60M Exercises About the Outer Limit Menu The Outer Limit Menu is used in order to select the final outer limit points from the formula and constraint lines You may open the outer limit menu by right clicking on the project folder 4 Outer limit and selecting Generate Outer Limit gt E Constraints gt Fl if Formulae gt 7 Outer Limit The Outer Limit Menu The blue question mark in the top right corner of this menu contains instructions on how to use this menu The folders in the Outer Limit menu correspond to the sub folders in 4 Outer limit You will also be able to see the datasets in this list Before opening this menu you can copy the files you want to use in your outer limit to the correct folders You can display the different data sets by checking the data sets you want to display and clicking the pencil Multiple select is allowed in this list You can scale the display window to the data sets the same way by checking the datasets and clicking the scale button The digitize button is used to digitize points from the checked data sets You can use this to pick points on your final outer limit Each time you pick a point a white circle of 60M will be displayed around the last picked point The circle is geodetic c
47. ctly click OK and close the conversion dialog by clicking Cancel Check that the schema of the dataset is seabed surface If not then right click the dataset choose Set Schema and choose seabed surface The data is now converted and ready to be displayed 1 2 3 Right click the dataset and select Zoom to Data Right click the dataset and select Map Sea Right click the dataset and select Map Land i When you have made changes to the project it is always a very good idea to store them Click the save button in the project tool bar in order to save your project p 4 Crop out smaller grids from your Seabed surface Use the command Crop to chop out 2 4 smaller grids from your main seabed surface Use keyboard shortcut z in 2d mode to set a window frame he mm mm mm eee mom A m EE m Mm EE EE ME EE EE EE EE ME EE EE ME EE EE EE A ME EE EE EE EE ME EE EE ME EE EE ME EE ME ME EE EE EE EE ME EE EE ME EE M
48. d click OK Geocap will report if the grid has been imported correctly click OK and close the import dialog by clicking Cancel Observe that the new data set has appeared in the Grids folder Convert the grid to Mercator coordinate system The data is imported in Geodetic with latitudes as Y coordinates and longitudes as X coordinates In order to view the grid with the data we have already imported and converted to a Mercator coordinate system we need to convert this grid to match the same coordinate system as the other data in the project Mercator 1 2 O of OW Click the dataset and go to the Shared commands section in the Toolbox Double click the Convert to Mercator command in the Operations folder or another relevant datum coordinate system Change the result combo box to Replace input Click Execute Agree to replace the existing dataset by clicking Yes Geocap will report if the grid has been converted corre
49. data set contained any points thicker than 1 of the distance to the nearest FOS point it will display the sediment profile in green Points less than 1 distance to FOS will be displayed in red 1 To store the resulting 1 sediment thickness points check the box Store in project 2 Click Execute A new data set will be created in 3 Sediment Data Sediment Thickness Points p mem eee Observe the Table View for the Sediment Thickness Points The table view for sediment thickness points contains a lot of relevant metadata 1 Right click the sediment thickness points dataset in the folder 3 Sediment Data Sediment Thickness Points and select Table View 2 Observe that that each 1 sediment thickness point refers back to a profile an analysis anda FOS point It also reports the thickness shot point distance in m and percent of distance to ee ee EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE ee EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE ee EE EE EE ee mm mm 1 Page 47 O Final Outer Limits Introduction The construction of outer limits is obviously a complex operation Sometimes it is best to do this area by area and in multiple steps then combining points into one or more final outer limits Sometimes the outer limit line may be constructed from a combined formula line and a combined constraint line The ultimate
50. dataset in the project Tip 3 Double click the 7 Red Snapper command which can be found in the Editing folder under Shared commands in the Toolbox The Red snapper dialog will appear Click the Display selected data with green points button This will display the points that the coastline is generated from Click Start snapping Keep your cursor at a distance outside the 2500m isobath and observe how nearest point is snapped when clicking the left mouse button Continue snapping a representative critical points dataset from your original 2500m isobath When you are finished digitizing click the End snapping button The red snapper line should appear in workspace or folder according to your settings Observe that in the Hed Snapper command and also in the Tools Quick Digitizer you may enhance functionality by enabling more keys E g m can be used to snap all points up to next picked point This is probably not needed here p Generate 2500m isobath 100M constraint line 1 Display the 2500m isobath which you created in the previous exercise 2 Right click the isobath and select the command Generate 100M Line 3 The new line should now be available under 1 Maritime Lines 100M Lines 4 Display the 100M line
51. e Shared commands section in the Toolbox Double click the Convert to Mercator command in the Operations folder Change the result combo box to Replace input Click Execute Agree to replace the existing dataset by clicking Yes EE CDI The data is now converted Let us display the data 1 Right click the dataset and select Zoom to Data 2 Right click the dataset and select Display du Note that the conversion is not needed if the Project Projection is activated under Project settings Pe ee mmm ee ee gt 1 Open the base line in table view 1 Select some points in the table view and observe that points selected in the table view are highlighted in yellow in the display 2 Observe that you can copy entries from the table view and export to a text editor 3 Click Edit mode Try to add an extra column and or change names on the base line points gt DTD a Na NT TD TaD DD a NaN FD ll NNN aD a DN LLE Export the baseline Export the baseline in Ascii column format as Degrees Minutes Second Page 18 E Baseline Generation Simplified Introduction The baseline is needed in order to generate distance lines The coast may also be used as a baseline by changing the schema accordingly but then the computing time may be very long If you do not have a ba
52. e example above we could set the cut off start to 100 This would preserve the well information at the top of the image Navigation Calibration 1 Click the 3 Navigation Calibration tab to start the navigation calibration 2 Locate the first shot point in your image and find the corresponding shot point in the Tie Points list in the menu 3 Select the Tie Point in the list then click the Pick button and click on the shot point in the image 4 Locate the last shot point in your image and find the corresponding shot point in the Tie Points list in the menu 5 Select the Tie Point in the list then click the Pick button and click on the shot point in the image You should now see a line of points along the shot point line 6 Continue this process with the points between the start and end points if needed Note that everything to the left and right of the dotted line and everything above and below the white lines will be cut off on the completed VCI e Click the Save button in order to create the VCI Display 1 Locate your VCI in your result folder 2 Right click the VCI dataset and select i Display 9 It is possible to do seismic interpretation on the vertical calibrated image Just open the Tools gt Seismic Interpretation panel and pick the Vertical Calibrated Image instead of Seismic 2 It is possible to convert a VCI to a seismic by Convert to Seismic Then the result may be exported as a SEG Y Page 63 Z Additiona
53. e files to a folder on your hard disk mm ma mm RE UE EE UE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE RN EE EE EE RN EE EE EE EE RS EE EE RN RS ROS RN EE EE EE RN Open a Max Y Northern boundary of import area Min X Western boundary of import area b Max X Eastern boundary of import area Min Y Southern boundary of import area specify this In that case select datum World Geodetic System 1984 and coordinate system Geodetic The data is imported in Geodetic with latitudes as Y coordinates and longitudes as X coordinates In order to view the data in a proper projection we convert the data to Mercator coordinates Page 16 mmm mm EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE mmm mm sp Convert coast line to the right projection and display Click the dataset and go to the Shared commands section in the Toolbox Double click the Convert to Mercator
54. e left mouse button in the profile window and keep the left button pressed Drag the mouse to the side and release the button This is how you select the area where the software will calculate the change of gradient If you do not use evidence to the contrary the foot of the continental slope should be placed at maximum change of gradient at the base of the slope So we want to restrict the calculation of the change of gradient to the base of the slope Determining the Base of the Slope may be quite complicated and is subject to individual interpretation therefore we will not go into details about determining the base of slope zone in this tutorial For more information refer to the Scientific and Technical Guidelines of the Commission on the Limits of the Continental Shelf found here http www un org Depts los cles new commission guidelines htm Click the select area button again and select the part of the profile which you want to use as the base of the slope You may change the parameters of the algorithm several times but for this exercise we will keep the default settings Click the Save Analysis as button You will be asked for an analysis name and a foot of slope point name Click the plus sign or triangle next to the profile in the project manager and you will see that the FOS analysis is stored as a child of the profile in the tree Click the plus sign or triangle next to the FOS analysis dataset and you will see the Foot of Sl
55. e project are checked all data will be converted to these settings on import e Set Geocap to automatically zoom to your project area when the project is opened by first zooming to your area Then in the Data section click Use current and tick Set data window when loading project Click Apply and OK eee Pe ee ee ee ee ee ee ee ee ee ee ee M J Copy data into your new project 1 Open your Atlantis project or another project 2 Right click and copy a Seabed surface from the Atlantis project 3 In your new project go to the 2 Seabed Grids folder right click and do Paste 4 Do the same for a coastline Page 15 D Import and Export Introduction Geocap can be used to generate accurate distance lines computed by algorithms following the earth curvature The same operation is used when calculating distances from the base line 200M and 350M the depth constraint 2500m depth 100M and the Foot of slope 60M Before we can start generating a distance line we need something to generate the distance line from This tutorial will start by importing a coast line within your area of interest National Geophysical Data Center NGDC provides coast lines covering the entire world in a data set they call GSHHS Global Self consistent Hierarchical High resolution Shoreline Database Geocap can read both the raw data format the files gshhs b files and the shapefiles directly Exercises p
56. e radio button Specify and click Rubberband select the window will be set to 2D mode 4 Drag arectangle around the area where you want the midline to be created Notice that the coordinates are updated accordingly in the menu see image below 5 Keep the default values of the other settings 6 Click Execute 7 In the window that pops up clik OK If you only wanted to calculate against one country you could have selected only that country in this menu 8 Locate the midline in 1 Maritime lines Mid lines and display it Display the points also Lil Generate midline Execution Mode Interactive v Filters Input Options v Use base point weights Calculation Area Scale to Input Scale to active window 9 Specify MaxY 2731449 Min X 2597229 MaxX 993050 Min Y 4007500 Rubberband select Result Line Options Generate base point connection polygons Max distance between result points 10 nautical miles OK Execute Cancel Generating a midline Note that is is generated within the window frame shown in black i It is also possible to generate base point connection polygons to extract critical base points the same way as with distance line generation Pe ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee 11 eH Mid lines using weighted base points Try to add weights on base points and see what happens to your mid
57. eate a new project Import data Create data and analysis e Set Foot Of Slope points nterpret and depth convert Generate constraint lines and delineation lines Generate a final outer limit line Check out workflows in Geocap UNCLOS functionality We need to make sure that the UNCLOS functionality is available by checking that the Shelf Plug in is loaded Geocap will remember this setting so you only need to do it the first time you start up To enable the UNCLOS functionality 1 Open the Geocap Settings dialog under pulldown Tools Options 2 In the plug in section make sure that the following plugins are selected a UNCLOS Article 76 Toolbox This is the main UNCLOS Shelf functionality b Sefloor 3 Click OK and restart Geocap if you need to add new plug ins Page 4 E amp P UNCLOS Article 76 Continental Shelf Shelf Mapping This package is used to establish the outer limit of the continental shelf according to UNCLOS Article 76 Features Distance line calculations Foot of slope profile analysis e 2500m contour generation Seismic 2D interpretation and visualisation Sediment thickness generation Depth conversion 196 of distance to FOS calculations Plug ins 3D Seismics Depth Conversion GIM Oil and Gas Seafloor UNCLOS Article 76 Toolbox Load Plug in file o J canei jJ Geocap plugins Page 5 B Geocap Interface Shelf
58. ecide which commands should be available in the right click menu so it is easy to keep organized Try to experiment with this option to manipulate the right click menu The Sticky Surface Geocap has a concept where any surface can be set to be sticky When a surface is sticky data like points lines or images may be displayed onto that surface This is mainly done by re sampling lines and displaying them a little bit above the sticky surface When a surface is activated or set as a sticky surface it is copied to workspace visualized in the toolbox under the name sticky_surface If this dataset is removed from workspace there is no sticky surface anymore mmm mm EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE gt sp Display onto the Sticky Surface 1 Right click on a Seabed surface dataset and select Clset as sticky surface 2 Select a line e g Atlantis gt 1 Maritime lines gt 200M lines gt atlantis 200M in your project 3 In the Toolbox under Commands gt Schema commands right click and Edit on the a Displ ay command 4 Check the Glue to Sticky Surface and press Execute to do a line display 5 Uncheck the Glue to Sticky Surface and press Execute again and observe the difference
59. ention on the Law of the Sea Article 76 e Seafloor for processing survey data from multibeam echo sounders Oil amp Gas and GIM for oil exploration and reservoir modeling Your Geocap installation will consist of the basic Geocap platform and one or several of these plugins Exercises Start Geocap Open Geocap from the main Windows Start Menu All Programs Geocap di Geocap Geocap64 4 3 38 Help and Support Geocap64 5 0 Beta 2 3 Geocap64 5 0 Beta 2 di Documentation di Licensing 1 Back g 1 JEGFEN programs ana ful 5 Starting Geocap from the startmenu User Documentation Parts of the user documentation is found under the Help pulldown There rest is found here http www geocap no doc Read briefly through the documentation to get an understanding of what you can expect to find in the documents The user documentations consists of User Guide with detailed descriptions of Geocap usage Reference manual with syntax and details of the commands in the Geocap scripting language Page 3 Installation Guide with details on installation dongle drivers etc Release Notes contains incremental updates and bug fix descriptions as well as major releases Articles is a collection of articles on various topics that still is not included in the documentation Tutorials contains thematic tutorials on products The General tutorials mainly contains topics that are put in a better con
60. ew and empty UNCLOS project n the main menu click File gt New gt Project e Select UNCLOS project template e Type in the name of your project in the Name field The name may consist of letters numbers and spaces but special characters like amp Should be avoided e Click the Browse button and select where you want to store your project on your hard disk e Click Finish Name Schema Type E D 1 Maritime lines Limit Lines Collectio G 200M lines Limit Lines Generic E amp Base lines Base Lines Generic E Coast lines Coast Lines Generic gt D 2 Seabed Collection Collectio gt E 3 Sediment Data Collection Collectio 4 C 4 Outer limit Outer Limits Generic E Constraints Limit Lines Generic gt 4 11 t An empty Shelf project Page 14 The idea is that this basic structure is Kept Folders may be added and data imported but the original folders should not be renamed or moved and their schemas should not be changed This is because this folder structure is used when new datasets are generated If an original folder is not present it will be recreated Pe eee ee ee eee ee ee ee ee ee ee ee ee ee M 1 Explore the project settings e Click the icon on the project toolbar to look at the project settings Pay particular attention to Geodetics section Here you may activate geodetic settings for the project If the geodetic settings for th
61. function This is however not covered in this exercise e Click Execute If you select folders containing the seismic lines as input instead of single data sets Geocap will try to generate more velocity profiles in one go A dialog with a list of the matching seismic lines will appear 1 Click OK and the velocity profiles will be generated in the Velocity Profiles folder 2 Click Close in order to close the Generate velocity profile dialog gt EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE Em EE EE EE EE EE EE eee EE EE EE EE EE Em EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE mm mm PSs wa mm ma wa mn um mm mm M EE ee EM EE EE EE EE EE EE RR EE mn mm my Display a Velocity Profile 1 Right click the new velocity profile and select Map Data in order to see the profile 2 The colors in the profile correspond to the average velocity in the interval between the two horizon for each shot point Import a velocity data set more than one line it should also have a column with the line name 1 Locate the folder 3 Sediment Data Velocities Stacking Velocities navigation 3 Browse in the data set called ATL LOS 00 vel
62. functionality in Geocap The Atlantis project will be used as an example project but other projects may be used instead when doing the exercises The order of the tutorials more or less describe the order in which a real project would be done Content Page A Getting Started with Geocap Shelf 2 B Geocap Interface 5 C Create a New Shelf UNCLOS Project 13 D Import and Export 15 E Baseline Generation Simplified 18 F Bathymetric Grids And Generation Of Bathymetric Profiles 20 G Generation Of Distance Lines And Mid Lines 23 H The Analysis Panel 27 l Foot Of Slope FOS Points 28 J Real Bathymetric Profiles 32 K The 2500m Isobath 33 L Seismic Interpretation 35 M Depth Conversion 39 N Sediment Thickness 43 O Final Outer Limits 47 P Uncertainty 90 Q Gridding 52 R Plotting 54 S Workflows 55 T Image Georeferencing 58 U Vertical Image Calibration 61 Z Additional Shelf Exercises 63 Page 2 A Getting Started with Geocap Shelf Introduction Geocap is a software for visualization and manipulation of geodata The core features of Geocap are e 2D 3D visualization of any geodata in the same graphics window e Gridding e Plotting 2D seismic and interpretation Geodetic conversion mage georeferencing e Workflows GIS e Scripting On top of these features Geocap provides a set of plugins that fit perfectly in to your line of work e Shelf for continental shelf delineation in accordance with UN Conv
63. g in the separator directly in the combo box 6 Select a coordinate format a Deg decimal degrees b Deg min degrees and decimal minutes c Deg min sec degrees minutes and decimal seconds d Hemi hemisphere N S for north or south E W for east or west 7 Set the correct file columns for each data column You see the first lines in the table On top of each table is a spin box with the file column number Adjust the file column by clicking the spin boxes so that the file columns are interpreted correctly 8 All other parameters should be OK with the default settings click Execute 9 The file has now been imported Click the Cancel button in order to close the ASCII Column import dialog mmm mm EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE mmm mm sp Convert Base line to Mercator and display The data is imported in Geodetic with latitudes as Y coordinates and longitudes as X coordinates In order to view the data with the coast line we convert the data to Mercator coordinates Click the dataset and go to th
64. in 30386 2 6 829722 06 Image Pixel Size 353 776 X 353 776 Deviance at tie point 1 Tie point 0 496127 2 Tie point 0 63187 3 Tie point 0 213362 Page 61 U Vertical Image Calibration Introduction This tutorial will guide you through creating a vertical calibrated image VCI from an old scanned seismic image The process can however be performed on any image All you need are two datasets Image e Navigation We assume you have already imported the image and navigation or digitized a navigation line Open VCI menu The VCI menu is opened from View gt Vertical Image Calibration XCal in older Geocap versions The menu should appear in the same panel as your project like the screen shot below Vertical Image Calibration 1 Input Output 2 Vertical Calibration 3 Navigation Calibration Operation Create New Vertical Calibrated Image v Image Navigation Result Folder As you can see this menu consists of 3 steps tabs that you need to complete in order to complete the vertical calibration Input Output 1 Click the Image browse button and select the folder where your image resides 2 Select the image you want to vertically calibrate in the drop down box 3 Click the Navigation browse button and select the folder where your navigation digitized line resides 4 Select the navigation digitized line you want to vertically calibrate against in the drop down box 5 Click the Result
65. ites in depth conversion Exercises Pe ee ee ee ee ee ee gt 17 Generate Velocity Profile using a velocity look up table Velocity profiles are used as input for the depth conversion In this exercise we are going to use seismic interpretation of the seabed and the sediment base combined with interval velocity table to generate a velocity profile In order to generate the sediment thickness we need at least an interpretation of the sediment base and the seabed surface Geocap can also use more interpreted horizons if you provide them You will then need to add velocities to these horizons as well The interval velocity used at a horizon should be the interval velocity in the interval between the horizon and the horizon above Locate the folder 3 Sediment Data Velocities Velocity Profiles Right click the folder and select the command Generate Velocity Profile Browse in the Seismic line and the interpretation folder in the Input data group box Select Use interval velocities from table Select the horizon name Seafloor type in the Interval velocity 1500 and click add Select the horizon name Sediment Base type in the interval velocity 2100 and click add ee The velocities are the interval velocity to use in the interval above the specified horizon In this case we use 1500 meter second for the velocity in water and 2100 meter second for the interval velocity in the sediments lt is also possible to use a velocity
66. l Shelf Exercises Introduction The following exercises are just suggested for further training topics and may not be explained in detail Exercises Pe ee ee ee eee ee ee ee ee ee eee M 1 Make a movie Use a workflow or just use a the command Flight Tour to create a movie in avi format Pt ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee eee eH Check my Shared commands Import and activate my shared commands and see if there are commands you do like My shared commands are found here http andeby no geocap Just follow the instructions on the page Lee eee mm ee ee eee mm ad Fm mm ee eee mm my Hello World Type the following line into the shell and press enter qinformation Information Hello World Observe the popup This is a Geocap GUI Graphical User Interface Study the examples in the Ref erence gt QTcl section of the documentation and observe that it is fairly easy to build your own front ends to Geocap Combined with the internal scripting language and Tcl this is a very powerful tool f sm ee M 17 Install the script system Area Generator Mini Read about the Area generator download the scripts and follow the step by step procedure here htt p andeby no geocap Chop out a por
67. line Read the In Panel Help in the Generate midline command to understand how to use weight on base points bo eee s f sm gt J Check Table View for the midline 1 Right click the midline and select Table View 2 Observe the different columns in the Table View Page 2 H The Analysis Panel Introduction The Analysis Panel is the tool used in Geocap to analyze bathymetric profile data which can then be used to determine the Foot of the Continental Slope in accordance with UNCLOS Article 76 This section provides an overview of what the analysis panel looks like how to create new bathymetric profiles from existing profiles when this panel is open and how to change the look of the various displays in the panel The usage and elements of the analysis panel is discussed in greater details in the next chapter Foot Of Slope FOS Points Exercises p J Generating a bathymetric profile from another bathymetric profile Moving your profile to another position on the seabed surface to create a new profile 1 Right click the profile you want to use as a starting point and select Analy
68. ll underlying visualization on off by the checkbox Name Schema A dataset that is not visualized will gt E Coast lines Coast Lines do the default command when 4 J 2 Seabed Collection checked for the first time See Edit gt N V 2500 meter isobath Limit Lines Schemas for default command je Close Project gt V f amp atlantiss 2500 meter isobath Isobath gt 7 Bathymetric Profiles Bathymetric Profiles Actors i e visualizations appears in Foot of slope Generic blue text underneath a dataset It is 4 v Grids Generic 4 2 atlantis Seabed Surface el Land Actor IE Seabed Actor possible to toggle them on off or right click to change appearance or delete Note that actors are not datasets they are visualizations Visualizations are called actors Fm mm EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EN EE Ee EE EE EE EE Ee EE Ee EE ey Commands In panel Help 9 1 Open the command called Generate 200M Line from the toolbox 2 Click the icon with the question mark to open the in panel help 3 Read the information that pops up Navigating the graphics window i Note Operating Geocap with a two button mouse or using the Touch pad is possible but not recommended The recommendation is a three button mouse with a wheel see picture below You may use the computer mouse to move around in the display window You do this by pressing one of the mou
69. n do them all in one go Lam mm mm mm EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE LLL EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE ME EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE Em EE ma mm mm mm mm al pP m mm oa oen eee Convert Stacking velocities or RMS velocities to Interval velocities If you have imported stacking velocities or RMS velocities we need to convert them to interval velocities before we can use them as input to the Generate Velocity Profile command 1 Locate the folder 3 Sediment Data Velocities Stacking Velocities 2 Right click the folder and select the command object Compute Interval Velocities Dix Formula The result will be stored in the folder 3 Sediment Data Velocities Interval Velocities Dix formula will produce interval velocities if it is run on RMS velocities You may also use this formula on stacking velocities and thereby use the stacking velocities as an approximation for RMS velocities mmm mm EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE
70. nd N o dummy baseline Right click the dataset not the folder and select Set Schema gt Base line Digitizing a baseline An alternative is to use the command object Red snapper on the coast line and simply snap the outer points needed for a distance calculation Page 19 mmm mm EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE mmm mm sp Use the Red snapper to generate an alternative baseline 1 Click the coast line called GSHHS 2 Double click the s Red Snapper command which can be found in the Editing folder under Shared commands in the Toolbox The Red snapper dialog will appear 3 Click the Display selected data with green points button This will display the points that the coastline is generated from 4 Check the Save in project box and click the Browse button 5 Select the Base lines folder and click OK 6 Click Start snapping 7 Start clicking on the outer points on the coastline with your left mouse button 8 When you are finished digitizing click the End snapping button The red sna
71. nt lines General gt Outer Limit General Category Atlantis Basic Workflow pF tt _ 1 Examine the contents of the workflow items by clicking on the triangles next to the root folders 2 Click on the Go to first executable element l icon and then click on the Execute next element gt icon display window yet 3 Click on the Execute next element icon again and notice everything in the Base map fold er will be displayed along with a short flight tour animation 4 Continue clicking on the Execute next element icon until you reach the end of the workflow and observe how different elements of the Atlantis project are displayed Following the steps above open and examine the other workflows in the workflows folder This will initialize the basic display settings and nothing will appear in the 2 Note that the user may also execute each element one at a time by right clicking on the command and choosing Execute see the image below Page 56 W f 4 dee Category d IG Initialize w
72. o be Insert Set Interval to 5 This will interpret a point at every fifth trace Click the 9 button Pick a point on a strong reflection for example the seabed Pick a new point a bit to the side on the same reflection Observe that auto tracker automatically interprets the line When you are finished interpreting click the button Observe that the old interpretation is updated with the new interpretation ee The auto tracker can be very useful on strong reflectors However when interpreting the base of sediments the manual approach is probably better 1 2 Use a combination of the editing methods above to do an interpretation of the seabed Before starting on the base of sediments we need to tell the interpreter that we are starting on a new horizon Click Browse on the IHorizon row and select Sediment Base Interpret the sediment base using the same methods as for the seafloor When you are finished with both horizons click the Close button Page 39 M Depth Conversion Introduction In order to use the sediment formula criterion in UNCLOS Article 76 we need a data set containing the sediment thickness a sediment profile The seismic line interpreted in the previous tutorial is stored with milliseconds as a Z coordinate not meters In order to compute a sediment thickness in meters we need to do a depth conversion This tutorial has some exercises which cover the basics for working with seismic data and veloc
73. of the analysis to your project for documentation Alternatively you may use the standard Print Screen windows option to produce a picture to the Windows clip board am all RR OND PSs wa mm mm wa mm um mm mm m eee Joining FOS points into one FOS group dataset It is often useful to work with a group of FOS points instead of working with them individually This exercise will show you how to collect many FOS points into one foot of slope dataset A foot of slope point is stored as a dataset under an analysis which again is stored under a profile 1 Click the small plus signs or triangles to the left of the profiles and the analysis datasets made in the previous exercise to show the foot of slope datasets k 2 Right click the first foot of slope point and select the command set as active foot of slope 3 Right click the next foot of slope point and select the command Append to active foot of slope 4 Repeat the last step as many times as necessary to append all the foot of slope points you want in one collection 5 Right click the folder 2 Seabed and select New gt Folder The New Folder dialog will appear 6 Select the Generic type which is default choice 7 Select the name to be Foot Of Slope 8 Click OK 9 Right click the new folder Foot of slope and select New gt Workspace data gt fos 10 The Foot of Slope collection is now added to the folder 11 Right click the new dataset and select Set Schema gt Foot of
74. ofiles folder 2 Click close in order to close the Generate velocity profile dialog 3 Right click the new velocity profile and select Map Data in order to see the profile Lee mm mm mm EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE Em EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE mm EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE ee mm mm mm mm mm ad LLLLLLLDLLILLILLDLLLLLLLLLLLLLLILLLLLLLLLLLLLLLLLLLLLLLLLLLLLILLLDLLILLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLILLILILDLLLLLLILILLLLILILLLLLLLLLLLLLLLLLLILLLLLLLLLLLLLLLLLL ee ee ee HF Depth Converting horizons It is possible to to depth convert each horizon in Geocap Note that this is not the same as creating a sediment profile We will do that in the next chapter 1 Right click the Velocity profile you have generated and select Calculate Sediment Thickness 2 Tick the Depth Convert horizons radio button 3 Click Execute The depth converted horizons will be placed under 3 Sediment Data Depth Converted Horizons 4 Display the horizons and notice how they have shifted upwards This is because they are now in depth not time l s s
75. older 200M FOS 60 Sed gt 1 points 2 Copy all your constraint lines to the 4 Outer limit Constraints folder 350M 2500m 100M 3 Open the Outer limit menu and check some of the datasets and use the Display and scale bu FT Digitize 4 2 Constraints 7 Atlantis 350M 7 atlantis s 2500 meter isobath 100M 4 Formulae E g ATL LOS 00 03 E EX ATL LOS 00 04 El R ATL LOS 00 05 El EA ATL LOS 00 06 El g ATL LOS 00 1 El ES ATL LOS 00 2 7 E Atlantis 200M 7 East Sea 60M 7 Eastern Spur 60M 7 E North Sea 60M E amp Northern Plateau 60M gt 7 Gy Outer Limit The Outer Limit menu with Datasets Copied mmm mm EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE mm mm 3 Right click the new line in the project and select Table view name such as combined formula line 4 Observe the new columns in the table 1 Digitize a combined formula line by clicking the digitize button and following the instructions 2 When you have finished digitizing and clicked the end digitize button give the new dataset a
76. ope dataset This is the data set holding the foot of slope point we just made Click the Exit button in the bathymetric profile Dialog in order to close it The area selected by the Select area button should possibly equal the Base of slope BOS area If you have a BOS outline polygon then browse it into your analysis i Info Whether you see a plus sign or a triangle in the project manager is determined by your Windows operating system or settings The default for Windows XP is a plus sign and the default for Windows 7 is a triangle Page 30 mmm mm EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE mmm mm sp Change the settings of the Analysis panel Change the colors and other settings of the lines in the panel Double click the Seafloor entry in the right part of the panel Change line width and color Observe that the settings are remembered by Geocap Change the settings in the way that you want to use for all your FOS analysis documentation in the future 5 Press the Screen Shot button to write an image
77. orkflow General HE Copy to sticky surface Commands x Clear Graphics General Initial settings Commands IG Base map General c Map sea and land General _ Map Sea Map Land ina a 9 Display lines j gt Execute MOM line WE Baseline O Baseline Points Fi Copy em Coastline GY Flight Tour IG Foot of slope x Delete dj Cut Rename Pe ee mmm ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee Create a new workflow In this exercise we will create a workflow that displays seabed and land and some important lines from the project Click File gt New gt Workflow Then a browser pops up The workflow is saved as a single file on disk with file extension gwf Geocap Work Flow A good idea may be to create a folder in your project called Workflows and put the workflow there 1 Press the New Element icon to create the first entry That may also be achieved by a right click New Element 2 Select the Display F command found in the Commands folder and click OK 3 Right click the Display 3 command in the workflow and select Edit Then this panel pops up Execution Mode Direct Filters Cal m vo Display Method 7 Glue to Sticky Surface User Defined Color O Palette ot Execute j cancel The Display edit panel p Page 57
78. ormat Geocap will automatically recognize the file format mm mmm EE Em mm Em EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE mmm mm sp Import the grid into a folder in your project O O ON p Locate the folder called Grids in your Geocap project under 2 Seabed Right click the folder and select Import Generic The format should be set to Automatic Click the browse e button and locate the file you downloaded in the previous exercise If Specify import area is checked uncheck this option This will import the entire grid Click on the Reader Options tab and under polydata and check the box next to Invert The Grid we will import has negative values for sea depths and positive values for heights above sea level Usually bathymetry data has positive values for depths We therefore have to multiply the depth and height values by 1 with this option to flip the data Click Execute You will now be prompted with a question of the coordinate system and datum Select World Geodetic system 1984 Geodetic an
79. orrect This will be a guide to you when digitizing the final outer limit The distance between the final outer limit points should be less than 60M so the next point you pick should be inside the circle mmm mm EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE mmm mm sp 1 Try the Outer Limit tool Before doing the exercise below get a hand on feeling with the functionality of the digitizer just by playing around with two datasets e Copy the 200M line into 4 Outer limit Formulae e Copy your 2500m 100M into 4 Outer limit Constraints Display the data from the Final Outer Limits panel Note that the data may also be displayed from the project e g Display Points e Try the various digitizing operations Pe ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee eee M 7 Generate the Outer Limit In this exercise we are going to digitize the outer limit from your formula and constraint lines using the Outer Limit menu 1 Copy all your formula lines to the 4 Outer limit Formulae f
80. pper line should appear in the Base lines folder 2 Observe that in the Red Snapper command and also in the Tools Quick Digitizer you may enhance functionality by enabling more keys E g m can be used to snap all points up to next picked point This is probably not needed here Page 20 F Bathymetric Grids And Generation Of Bathymetric Profiles Introduction The use of bathymetry is a very central element when working with the determination of the extension of the continental shelf according to UNCLOS Article 76 It is relevant both for the depth constraint 2500m depth 100M and the determination of the foot of the continental slope In Geocap bathymetry can have several different forms e Singlebeam bathymetry may be imported as bathymetric profiles Multibeam bathymetry or other spread point data with depth measurements can also be imported In order to use the foot of slope analysis tool on point data the dataset must be gridded first Grids may be imported directly into Geocap Geocap supports import of several different file formats the most common and useful kind of bathymetric data is the ETOPO1 grid The ETOPO1 Grid is provided by NGDC National Geophysical Data Center This grid will not be accepted by the Commission as a basis for your foot of slope points However once you have imported the grid you will be able to see the shape of the sea floor and in particular the approximate position of the Foot of Slope or b
81. providing you with details and statistics about the gridding process At this point this is not saved but you can copy and paste this into a text document 0 ee 1 Display chart data 1 Click Display Chart Data 2 Have the following options checked Frame Seafloor Use same range for all and Use LOD 3 Select the Chart 4 Have the Scale to selected charts box checked and click Execute 0 Display accepted and rejected points 1 Right click the Soundings Accepted dataset in the Chart folder and select Display 2 Select the Soundings Rejected dataset in the Chart folder and right click the Display comma nd in the Toolbox 3 Select Edit 4 Check the User Defined Color box and select another color using the Palette 5 Click Execute Page 54 R PostScript Plotting Introduction PostScript Plotting Exercises Start the PostScript plotting panel from Tools PostScript Plotting EIE x File Wizards Help Plot directory C Harald Geocap1 Data Atlantis_1_7 Plot Show folder tm ett Action Buttons Various Map Elements vae Click for Settings 1 Open Relevant Projects 9 Lines and Points Generate Plot 2 Layout Margins and Data 10 Scripts and Workflows 3 Axes and Frame 11 Wells and Annotated Points 4 Geographical Axes 12 Navigation UR FUEL ss W 5 Scale Bar 13 Texts Abort 6 Title Field 7 14 Pictures I 7 Index Map E 15 Boxes and Legends E 8 Contour Map E 16 Cul
82. result combo box to Replace input 3 Click Execute The data is now converted Let us display the data 1 Right click the dataset and select Zoom to data 2 Right click the dataset and select Map You should now see the sediment grid in your area mmm mm EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE mmm mm sp Compute Sediment points gt 1 of distance to FOS In the previous exercises we imported and calculated sediment thicknesses In order to apply the sediment thickness formula in UNCLOS Article 76 we need to compare the sediment thickness with the distance to the foot of slope In this exercise we will cover how you can do this calculation We assume that you already have a foot of slope dataset 1 Right click the sediment thickness data set 2 Select the command Generate gt 1 of distance to FOS A dialog asking for the Foot of slope data set will appear 3 Browse and select the Foot of slope data set you want to use for the calculation click OK 4 Uncheck the Store in project box 5 Click Execute If the
83. ry The Scaler S contains the sediment thickness The dataset also contains shotpoint numbers ATL LOS 00 2 X X Z scalars distance to fos nearest fos index percent of distance to fos shot point 2588 2589 2590 2591 2592 1 205 404 7 1 205 383 7 1 205 363 2 1 205 342 5 1 194 745 2 2 750 783 250 2 750 768 000 2 750 753 000 2 750 737 750 2 742 934 000 3 102 073 3 102 083 3 102 094 3 102 260 3 118 961 1 702 056 1 693 096 1 684 157 1 674 997 1 794 460 167 170 7 167 194 3 167 217 4 167 240 9 178 881 6 3 000000 3 000000 3 000000 3 000000 2 000000 1 018154 1 012652 1 007166 1 001548 1 003155 6 430 000 6 431 000 6 432 000 6 433 000 6 944 000 Display marked points Table view Note the checkbox allowing a visualization of the table entries dt mode Page 51 mmm mm EE EE EE EE EE EE EE EE EE EE 0 EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE mmm mm sp We want to create a thinner minimum profile and a thicker maximum profile Right
84. se buttons while the cursor is in the display window and moving the mouse while keeping the button pressed Rotate Left mouse button Pan Middle mouse button or wheel or Shift left mouse button Zoom Right mouse button Scale 2 Mouse wheel scroll e Spin Ctrl left mouse button Middle mouse button 2D and 3D Hold to pan Wheel Scroll to change z relief Right mouse button 2D and 3D Left mouse button Zoom in out by holding and 3D Rotate Movingup down Hold Ctrl Spin eg 2D Position cursor digitize The mouse buttons Page 8 i Scrolling the mouse wheel is one way to scale depth values of the dataset The z values can also be nie scaled by clicking the Actor Scale button in the toolbar and dragging the z slider Tip Set the focal point by positioning the mouse cursor on a desired point in the display window and push the X key on the keyboard This focal point will be the center of the display and the point of rotation Pe mmm mmm ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee HF Navigate using the mouse and navigator panel 1 Use the mouse in the display window to zoom pan and rotate the data view in the graphics window Instead of using the mouse for navigation you may also use the Naviga tor 2 Click the button in the main tool bar and the navigator panel should appear 3 Try the different buttons in the navigator
85. seline for your area you may generate a dummy to use as an approximation based on the coast line you imported in a previous exercise If you already have imported an official baseline you may skip this exercise Exercises p gt Generate dummy baseline In this exercise we will use the digitizer to snap values from the coastline in order to make a baselin e Display the coast line called GSHHS which should have been imported in 1 Maritime Lines Coast lines Open the Digitizer by selecting Tools gt Quick digitizing from the main menu Check the option Save also in folder and click the Browse button The project view dialog will appear Select the Base lines folder under 1 Maritime Lines and click OK Click Start digitizing Digitize the points on the coast line by pressing j on the keyboard The picks will automatically snap to the nearest point on the coast line data set Digitize a rough version of the coast line by picking the outermost points on the coast line When you are finished digitizing click the Stop digitizing button The digitized line should appear in the Base lines folder Locate the digitized baseline in 1 Maritime lines Base lines Right click the dataset and select Rename Rename the data set to your country name a
86. t Analy ze 2 Find the white spheres at the end of the profile in the 3D view and adjust them by dragging the spheres to the desired position 3 In the bottom left corner of the Analysis panel click on Save profile As 4 Specify a new name for the adjusted bathymetric profile and click OK gt OK The new profile will be saved in the same folder as the original 5 Right click the new bathymetric profile and choose Analyze Profile Notice the new bathymetric profile is now a sub set of the original profile Tip In some instances the white spheres may be very small when the analysis panel is first opened It may be necessary to zoom in closer to find one of the ends of the profile Once the white sphere is clicked on once the white spheres on both ends will become larger and easier to see when dragging them to the desired position p m ee eee Combine portions of two or more bathymetric profiles into a new bathymetric profile 1 Combine two or more datasets into one dataset The command Append all lines in folder m ay be used 2 Use the command Red Snapper with the m option to sample points to your new bathymetric profile Note that it may be even easier to flip the folder schema temporarily to Outer limit and use the Outer limit digitizer to combine bits and pieces of bathymetric profiles Page 33 K The 2500m Isobath Introduction Computing the 2500m isobaths is necessary in order to determine the Depth constr
87. te will perform the setting of operation with the current OM performance and settings 7 visualization options An example of a command front end panel Item Commands A command can be stored at the level of a dataset or a folder This is called an item command This command is unique to this dataset or folder it belongs to that dataset You can see these commands on the top of the Tool box or in a sub menu when you right click a dataset and select Item commands Most items in the project do not contain any item commands by default Create an item command Go to 1 Maritime lines 60M lines and select one of the datasets In the Toolbox right click Display Set Line Width to 4 Check User defined Color and set the color to white sr AM re Click the L icon in the upper right corner of the menu and observe that the command appears in the Toolbox under Item Commands 6 Click Cancel the settings will not be saved for the schema command 7 Right click the Display command under Item Commands and select Rename 8 Rename it to Display in white and click OK 9 Select the different lines in 1 Maritime lines 60M lines and observe that the new Display in white command is only available for the one dataset Schema Commands A command stored at a schema level is called a schema command All datasets or folders using the same schema share these commands which also means that editing these commands will affect all the
88. termine the Foot of the Continental Slope in accordance with UNCLOS Article 76 FOS analysis is crucial because both formula lines Gardiner and Hedberg are calculated using FOS positions Profle Moth Seal Anshin FOS anal z 33 1 LE ak FOS ppsition 2 derivative Max 1000 3 F 3 ysisina me Lm i Z exaggeration displayed i i name An Seabed in blue points in yellow set this in SETTINGS C Profile uem Select area Gear area Fp Profle Direction Distances ane calculated using Vindenity caloulstio ad 2 Fiter 3 Calculate change in descent F 4 Select Foot of Slope Em bs TEIT E Change of average gradeqt Latitude Longitude and res MES SEGE is lane on filtered Him 1 XT gen E datait filters are checked ESE ENS ages 108 44 TW 2023 9m Re elke EE eg EL Si alfa ben miea meter Buttons will reflecbavailable options 25200 8 2500 d Calculation method se tooltip hba Save Profile As B r Anabos As Save Analysis changes Undo Analysis changes Image of panel saved in project The elements of the FOS analysis panel Some of the key variables that can be adjusted in calculating the change in gradient are Change of average gradient e Change of gradient e Gradient e Average gradient Some of the other key features are e Select area base of slope zone Clear area Flip Profile Direction
89. text within the more specialized product tutorials FAQ is a list of Frequently asked questions with their corresponding answers Geocap Extensions contains different scripts and add on functionality for Geocap The Options dialog The Options dialog lets you define what Geocap should do on startup This means that you can predefine a background color working directory data window and automatic loading of plugins and scripts etc Pt ee eee mmm ee ee ee gt 17 Explore the different settings in the Option dialog Open the dialog by going to Tools gt Options e Go down section by section and make sure you understand the meaning of each of them Under General set the Working directory to where your data and project is located e Specify your favorite background color in the Graphics section Look at the Plug ins section to make sure that you have activated the right functionality Leave the Projects Sorting algorithm on Alphanumeric unless specifically requesting a numeric sorting About this tutorial collection This tutorial collection is specific to UNCLOS article 76 functionality in Geocap The Atlantis project will be used as an example project but other projects may be used instead when doing the exercises The order of the tutorials is more or less describing the suggested order in which a real project would be done In this set of tutorials we will Learn the basic principles of Geocap Cr
90. tion Geocap provide empty folder structure for various types of projects This will give you a starting point to get organized with your own project A project template either gives you a ready made folder structure or it gives you a suite of folders to choose from 2 An empty project structure may be used for communicating relevant data to colleagues or for analysis and trouble shooting by us To send parts of a project to us in Geocap Support even only a single dataset you may copy the dataset or a folder from your main project and paste it into this empty project Then zip and send the disk folder projectname zip to support 2geocap no Exercises The UNCLOS Project template Geocap can provide an empty folder structure for UNCLOS projects This will give you a starting point to get organized with your own UNCLOS project The default folder structure holds empty folders for most of the data types you will need If you do not find a suitable folder you can create a new folder for that data It is also a good idea to create sub folders if you have a lot of data for example a sub folder for each survey or for each region Other subfolders commonly created are folders for FOS Collections Images etc f sm J Generate a n
91. tion of the world and build the project Pe ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee M 17 The function command Try the function command to time convert your seabed surface z 2000 z 1490 PSS wa mm mm wa omm um mm mm M ER eee Composed grid Use two or more grids of different resolution e g Etopo1 and a multibeam grid and create a composed grid Do an FOS analysis across this composed grid Read more about composed grids in the Article section of the main documentation mm mmm EE Em EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE gt sp Combine parts of two bathymetric lines into one single bathymetric profile Use the Outer Limit Tool to do this p Create a bathymetric profile in a grid using a line 1 Copy two ore more bathymetric lines into a sub folder of 4 Outer limit You may prefere to create a new folder Open the Generate Outer Limit Dialog from the 4 Outer limit folder Carefully read the In panel help under the question mark Use the tool and especially option m to digitize a new bathymetric line Use this new line for an anayysis M M
92. ttom part of the file preview should hold the coordinates Set the column separator to whitespace Select coordinate format X Y Check the Z and the Scalar Columns checkboxes 10 11 Check the Additional attributes Type in Shot point under Additional attributes and select number then click Add A new column will appear for the Shot points Set the cell type to Line Set Separate Data Sets to Value change Set Schema to Sediment Thickness Correct file columns for each data column by adjust the spin boxes x 3 y 4 z 5 Scalar 6 Shot point 2 Data separator 1 click Execute Click the Close button in order to close the ASCII Column import dialog The data has now been imported Let us display the data Right click one of the datasets and select Zoom to data Right click the data set again and select Display profile as cross section Page 45 mmm mm EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE mmm mm sp Import Sediment Thickness Grid The NGDC has made the World sediment thickness grid which is an
93. tural Data Saved C Harald Geocapi Data AHantis 1 7 Plot Atantis 01 saveset The panel for PostScript plotting Read about plotting in Help uick Guide to Plotting with Geocap f sm mg Generate a plot using your seabed surface as the main dataset e Follow the steps in the Help gt Quick Guide to Plotting with Geocap to produce a plot S Workflows Introduction Exercises ft Page 55 A workflow in Geocap is a way of combining datasets and actions or visualizations in sequence to produce visualizations movements and powerpoint style 3D presentations The Atlantis Project is used throughout this tutorial mg Examine the workflows provided in the Atlantis project 1 In Geocap click File gt Open gt File and browse to the Atlantis folder then open the the sub folder called workflow 2 Double click on the file called Atlantis Basic Workflow gwf to open it or single click to highlight it and then click Open This will open the workflow below the project Atlantis Basic Workflow d B D F K Mame Initialize workflow General gt 7 Base map General gt 2 Foot of slope General i Formulae lines General gt Constrai
94. wa wa ma mm ad Eed ma am Eed od ME Eed EE NM NEE ml Em EE Eed am NE Eed EN N N EE ma NEE EEN am an EN Eed NE EE EEN EEN N NEE EE ER EE Em am Eed Eed EE EA EEN EE NaN EE aa OaA EN ER EE EN Eed NE NE EEN EE EE EE EE ER EA Eed EE EE EE EEN N EE EE EE Display data Display the various datasets in the project 1 2 Locate a grid dataset structured points or seabed e g 2 Seabed Grids atlantis Right click the dataset and try a display command e g Display Map Data Map sea or Ma p land Right click the dataset again and select Zoom to Data This will make the display window center the graphics window around the dataset Display some of the lines e g lines found under 1 Maritime Lines by right clicking and selecting the command a Display Check and uncheck the checkboxes to the left of the displayed items and observe that this toggles displayed objects on off You can also check and uncheck the folders containing displayed items Items can also be displayed double clicking on one of the commands in the Toolbox Item Schema and Shared commands 1 Note how the displayed items are shown and hidden from the display window 1 Note that by checking and unchecking the first level folder 1 Maritime Lines or 2 Seabed all datasets displayed under this folder are shown and hidden Page 7 A project item or element that has a visualization is checked All folders EE above are also checked You may toggle a
95. why it is referring to two basepoints ee ee me ml PSs wa mm BB mm um Em mm M eee eee Generate new 200M line with 0 5M point spacing and baseline critical points 1 Select the baseline dataset in your project 2 In the Toolbox right click Generate 200M line and select Edit 3 Type in the new point spacing 0 5 and tick the checkbox that says Generate base point connection polygon 4 Click Execute and OK 5 Note that the line will have Connection Polygon at the end of its name You have now set the Generate 200M Line to use 0 5M point spacing on the distance line Note that if you reduce the point spacing the algorithm needs more time to do the calculation Pt mmm mmm ee DEE ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee M 17 Display base point connection polygon Notice that not all points on the baseline are included as critical points used to generate the 200M i ne This is helpful in determining and visualizing which points on the baseline contribute to the limit lines whether the user generates 200M 24M 12M or any other distance calculation with this option 1 Right click the baseline dataset and click Display Points 2 Now right click the 200M line with Connection Polygon at the end of the name and click Displ ay Also display the points by right clicking and choosing Display Points 3 Notice how the polygons points back to the critical points on your baseline See image
96. you are interested in so we will restrict the area where the isobath is calculated Set the display window to 2D mode by clicking the 2D View button N gn typing 2 on the keyboard Zoom the display window so that it only covers the area you are interested in Right click the seabed surface and use the command Generate 2500m Isobath This will use the full resolution of the grid and calculate the 2500 isobath only in the area we are focused on If the display window is in 3D mode it will create the isobaths for the entire dataset If it is in 2D mode it will only create the isobaths inside the display window Locate the result dataset which should be in 2 Seabed 2500 Isobath The Isobath dataset you have created may still have some line pieces which you want to remove before generating the 100M line for instance the pieces that are seaward of the FOS points mm wa wa mat men 220000 00 Eed wa NE Eed EN NE NE EEN EE NaN EA ma ER EEN Eed NE EE Eed EEN NE EE EE ad EN ER NE a NE N EEN EE EE EE EE ad OM am EE EEN Eed EE N EEN eee Edit the generated 2500m isobath le mm mm mm mm mm mm Em Clear the display window by clicking the X button in the main toolbar Right click the dataset and select the command Edit points and lines Click the Display button near the bottom of the Edit points and lines dialogue box in order to see the isobaths Select the Delete tab Inside the Delete tab select By closed line Cli
97. you are still displaying them in order to get a good view of it mm mmm EE Em Page 44 mm Em EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE mmm mm sp Import Sediment Thickness points from ASCII file This exercise will assume that you have an ASCII Column file containing coordinates with sediment thicknesses In the exercise we will use a file which is included in the Atlantis Project the file includes more than one profile RK ON 12 13 14 15 Locate the folder 3 Sediment Data Sediment profiles Right click the folder and select add folder Add a sub folder with the name of the survey for example ATL LOS 00 Right click the folder and select Import gt ASCII Column and the ASCII Column import dialog will appear Click the browse button and select the sediment thickness file located in the Atlantis folder At lantis Data VATL Sediments txt Adjust the number of header lines in your file with the Adjust header Spin box to one The header lines should be displayed in the top part of the file preview while the bo
98. ze Profile The Bathymetric Profile analysis dialog will appear Locate the profile in the 3D window Click with the left mouse button on the gray transparent part of the frame in the 3D window and some white spheres will become visible in the corners of the frame Click with the left mouse button the gray frame again and keep the button pressed while you move your mouse This will translate the profile to the side Click and drag on the spheres This will rotate the profile around the spheres on the opposite side of the profile Use these controls to move the gray frame to a new position where you would like to store a profile For example next to the original profile Click the Save Profile As button specify a name for the new profile and click OK Observe that a new profile has been stored in the same folder as the original profile Select the Base of Slope with the Select Area button as described in the previous exercise Click New Analysis This will store the analysis and store the Foot of Slope points You may now continue creating new profiles by moving the gray frame in the 3D window i When you have made changes to the project it is always a very good idea to store them Click the save button in the project tool bar in order to save your project Page 28 I Foot Of Slope FOS Points Introduction The Analysis Panel is one of the most important tools in Geocap because it allows you to de
99. ze outer limit panel Page 50 P Uncertainty Introduction Exercises ee n ee ee ee n n ee ee gt ELLA Vertical to horizontal uncertainty In this exercise we will investigate the implications on the 1 thickness points area of varying the sediment thickness Create alternative sediment thicknesses either by 1 Multiplying the thickness by 0 9 to produce a minimum thickness and multiply by 1 1 to produce a maximum thickness 2 Change the depth conversion to produce an alternative thickness How to vary sediment thickness uncertainty in thickness The thickness along a profile can be adjusted up and down in order to measure the horizontal effect on the 1 point 1 point is used in the following for the point used in UNCLOS art 76 where the thickness of sediments are equal to 1 of the distance to the FOS FOS Foot of slope point If you have a seabed in depth and an interpretation of the base of sediments you may use formulas or methods in Geocap to depth convert the base of sediments If you have used Geocap methods with stacking velocities and Dix interval velocities described in chapter 17 in the user manual you will end up with Sediment profiles and Sediment thickness points as present in the Atlantis project Vary sediment thickness e Right click ATL LOS 00 2 in 3 Sediment Data Sediment profiles and click Table view This table contains x y and z for the seabed bathymet

Download Pdf Manuals

image

Related Search

Related Contents

Tesi di Laurea: Manuale del videomacker per la  User`s manual "Sensor Control Panel PU SENS 01" ( PDF 2,42Mb )    9403 - Makita  取扱説明書  PC application for ML7105 evaluation kit User`s Manual  Avis d`appel public à la concurrence  

Copyright © All rights reserved.
Failed to retrieve file