Home
Special Report No. 16 GREAT-ER User Manual
Contents
1. Airerivmon Name LAS Monitoring mean concentration 0 01500 LAS Monitoring standard deviation 0 00700 LAS Monitoring number of samples 19 Boron Monitoring mean concentration 0 17760 Boron Monitoring standard deviation 0 09360 Boron Monitoring numberofsamples 19 R Aire Apperley Br Figure 2 31 Monitoring Data Identify Dialog 34 ECETOC Special Report No 16 2 7 DATA EXCHANGE There are two options to exchange simulation results or complete scenarios using GREAT ER m to share scenarios with other users for further discussion m to generate a report with results for further analysis or inclusion in other documents The first option is supported by providing an export import functionality Selecting Export an export file will be created in the directory of the active scenario The export file will cover all scenario settings and additional data derived from the results Please note that the export import feature does not include geographic data such as river network due to possible licence restrictions Therefore users have to ensure that they are working on equal geographic data sets if they want to exchange and work with scenario data Conversely an export file can be selected using the mport item and will then be added as a new scenario to the scenario database GREAT ER provides some features for the second option within the expert mode The menu item Report under the GREAT ER menu can be used to write
2. After using Save Scenario As a message will appear reporting successful completion and reminding the user of something very important The active scenario stays the original one This means that if you intend to continue working on the scenario just saved you have to load it again separately To avoid confusion it is recommended that the original scenario is also closed prior to loading in the new one Warning If you make changes to a scenario then use Save As then subsequently use Save the ORIGINAL scenario is overwritten This is different to the way other familiar programs work e g WORD or EXCEL which is why it is being highlighted here 28 ECETOC Special Report No 16 2 5 ANALYSING MODEL RESULTS Display GREAT H Calculate River Csim zs Csim Classes River Combine Csim Flow PECinitial PECcatchment Discharge Influent Csim Discharge Effluent Csim Concentration Profile Expon Prone Figure 2 24 Analysis Menu After a model run has been completed the analysis menu provides various facilities for analysing the results Since the results are stored as frequency distributions it is possible to calculate percentiles of concentrations using Calculate River Csim X for the different river stretches Alternatively the menu provides you with features to modify the presentation of results either by classification or a colour coded combination of concentrations with flows The analysis tools most relevant to r
3. General physico chemical properties can be edited on this card More process specific physico chemical parameters are placed on the related cards partitioning The necessity of declaring partitioning coefficients depends on the selected model degradation The degradation card covers some very specific parameters for biodegradation and Mooned kinetics See the model technical documentation description for a more detailed explanation of parameters sewage treatment removal Depending on the selected models various parameters have to be entered to describe the substance fate in sewer and the different treatment plants in stream removal As with sewage treatment removal more or less detailed elimination rates have to be entered depending on the selected mode for the river sub model 44 ECETOC Special Report No 16 market information You can specify a default consumption kg per capita and year of the substance assumed for any discharge site in the simulation area See Edit Market Data to edit more site specific data Cancelling the dialog will cause you to return to the previous state Otherwise confirm the new substance by selecting OK The substance is then added to the active scenario If the previous substance of the scenario has been modified a confirmation dialog will appear If there is an open scenario with a substance that has the same ID a hint will be prompted 3 2 2 Open Substance This item is enable
4. more detailed models are used 68 ECETOC Special Report No 16 General Fate Pathway Structure The general structure of the aquatic fate pathway within one segment without a waste water emission point is shown in Figure A 1 For a segment which contains an emission it is given in Figure A 2 The treated sewer flow fraction which enters the WWTP is given in the geo referenced parameter set for each waste water emission point Figure A 1 Fate pathway structure without emission domestic non domestic runoff emission emission emission I untreated I Figure A 2 Fate pathway structure with emission Emission The emission models are identical in all complexity modes Domestic emission fluxes are calculated from population numbers market data and water consumption For other emissions non domestic GREAT ER User Manual 69 and runoff the chemical mass fluxes are taken directly from the emission data The flows are taken directly from the geo referenced parameter set Transport Conversion Complexity Mode 1 Complexity Mode 1 allows GREAT ER simulations with a minimal geographically referenced and chemical input data set No in sewer removal is assumed to occur Chemical elimination ina WWTP is described by a fixed removal efficiency which depends on the type of treatment Chemical elimination in rivers is described by firs
5. Edit Market Data Dialog Edit Discharge Site Data 20 ECETOC Special Report No 16 Similar to the Edit Market Data dialog the Discharge Site Data dialog enables users to modify the parameters of a specific treatment plant Several site specific parameters can be changed These include population the elimination rate used for complexity mode the treated fraction of incoming sewage e g bypass or overflow and in general the type of treatment plant Incoming waste waters from separate sources are also considered such as domestic input non domestic input this covers mainly industrial inputs and run off If only an overall value is available for treatment plants this should be entered as domestic flow Please note that domestic flow is given in litre capita day whilst non domestic flow and run off are considered as m second Please note furthermore that it is possible to specify a distribution for a general removal efficiency but not for a site specific removal efficiency Nevertheless it is possible to have a distributed removal efficiency for e g activated sludge plants and a fixed rate for a selected site Edit Discharge Data Rawdon STW x Population 6642 cap Cancel Domestic flow 2979624240000 L cap d Non domestic flow Run m 3 s Runoff flow Dun m 3 s WTP removal efficiency for LAS i treated fraction fi 00000 WWTP type trickling filter plant primary y
6. Theis C V 1941 The effects of a well on the flow of a nearby stream EOS Trans AGU 22 734 738 Trapp S and Matthies M 1996 Dynamik von Schadstoffen Umweltmodellierung mit CemoS Eine Einf hrung Springer Verlag Berlin 276 p GREAT ER User Manual 89 T Feijtel G Cassani J Ferrer K Fox C Gandolfi C Heidorn V Koch M Matthies E Matthijs G Morris R Murray Smith J Rosenblom D Schowanek R Schr der P Vanrolleghem A Young M Holt MEMBERS OF THE TASK FORCE Procter and Gamble B Strombeek Bever Condea Augusta I Padermo Dugnano Petresa E San Roque Unilever UK Bebington Universit Degli Studi di Milano Milano European Chemicals Bureau Ispra Clariant D Frankfurt am Main Universit t Osnabr ck D Osnabr ck Procter and Gamble B Strombeek Bever Environment Agency UK Leeds Zeneca UK Brixham Akzo Nobel S Stenungsund Procter and Gamble B Strombeek Bever Henkel D D sseldorf Universiteit Gent B Gent Institute of Hydrology UK Wallingford ECETOC B Brussels 90 ECETOC Special Report No 16 The Task Force would like to acknowledge the special contributions of F Koorman and J O Wagner University of Osnabr ck for chapters 2 3 and 4 G Boeije University of Gent for Appendix A and A Young Institute of Hydrology for Appendix B GREAT ER User
7. appears asking you if the simulation should be continued GREAT ER User Manual 25 A le 5 finished RZ FIR estimated time left 00 02 37 ME elapsed time 00 00 09 zu Y Discharge connecti Y Catchment Area EA pat ou Exporting river dbf Start E MAIL BMU s Mic BY Microsoft Word u By Active Scenario al Are LA Simulation Interru tot 16 02 Figure 2 20 Process of simulation abortion If you then select No the simulation will be aborted and a report will inform you about the message sent back from the simulation system to the GREAT ER user interface Simulation failed Error report x ERROR simulation stopped by user a 5 percent completed Figure 2 21 Process of simulation abortion 26 ECETOC Special Report No 16 The meaning of the menu item Stop Simulation is not the same This item is a kind of safety guard If a simulation fails for some reason identified for example by an error message titled rsxnt you should select the Stop Simulation menu item This will change some settings behind the user interface and enable you to safely save any remaining open scenarios After selecting this item you should close GREAT ER and restart Errors may occur if attempting a very large number of Monte Carlo shots for example or if the numerical solution becomes unstable for some reason 2 4 1 Save a Scenario Before proceeding to analyse the model results it is ad
8. groups 3 1 GREAT ER 3 1 1 New Scenario This item is always enabled A dialog for the specification of a new scenario appears The minimum set is to specify a scenario name for identification The entered name is checked against the existing scenarios in the scenario database Optionally a substance and a catchment may be selected from the related databases The editing of a comment is also optional Leaving the dialog with Cancel will abort the creation of a new scenario OK will bring you to a dialog in which to specify a non existing directory for the new scenario It will be created automatically The dialogs Model Selection and Edit Catchment Parameters then appear sequentially Their invocation is necessary at this stage to complete the scenario data set Finally the new scenario is made active and the previously active scenario is deactivated It is not possible to create a new scenario without a title nor to specify a title already used for another open scenario If a catchment has not been selected the new scenario view will display a map of Europe 3 1 2 Open Scenario This item is only enabled if the scenario database contains at least one scenario The scanning of the scenario database could take a while if you have already created a number of scenarios The dialog that appears is separated into two areas on the left a list is presented containing all available scenarios Select one by click or enter a name in the
9. predicted flow estimates Q95 estimation Flow distribution curves FDCs standardised by mean flow were produced for all flow gauges from suitable periods of actual flow data FDCs produced from different periods of time at the same gauging station were compared to allow the temporal consistency of the variability of flows to be investigated Standardising the FDC from a period by the mean flow over the period identified that the form of the GREAT ER User Manual 85 FDC for each sub catchment was independent of the period of record from which it was derived Hence the standardised Q95 statistic determined from actual data was used in combination with the contemporary estimate of mean flow to calculate an estimate of Q95 in flow units Incorporation of artificial influences The information regarding artificial influences within the Lambro catchment could not be well quantified in terms of actual discharge abstraction volumes or the location of these influences with respect to the river network It was generally thought that the majority of influences would be discharges rather than abstractions since abstractions for Milano s water supply were known to be outside the catchment area This was confirmed by runoff accretion profiles which showed an increase incremental runoff between Monza and Milano The only documented discharge in this area was that from the Monza sewer treatment plant This artificial influence was included as a cons
10. tool to the scenario directory Neither CAS nor Name specified The last changes have been lost because the data set has no CAS number or name which are the minimum requirements to identify a substance data set 10 Not able to open database keeping previous Two reasons are possible here Either due to access limitations the database is not accessible or the database has somehow been deleted which should not normally be the case 58 ECETOC Special Report No 16 11 River network theme missing Function not available The river network theme cannot be found which means it is no longer a theme of the active view or it has been renamed The easy to use way to fix both is to save and close the scenario and reopen it When using the expert mode the problem can be solved by adding the river network theme to the active view or by renaming it to River Net in the Theme Properties window 12 Discharge sites theme missing Function not available The discharge site theme can not found which means it is no longer a theme of the active view or it was renamed The easy to use mode way to fix both is to save and close the scenario and reopen it When using the expert mode the problem can be solved by adding the rivernet theme to the active view or by renaming it again to River Net in the Theme Properties window 13 Discharge table is not editable This is due to access restrictions To enable the discharge table to become editable
11. use Save As Background concentration Background Concentrations are included to consider additional loads within the river network which may be found upstream from the first known discharge Note that the given value is simply added to the model results after the simulation The background concentration is not considered within the elimination processes Background Concentration Please enter the background concentration a value added to the Csim mean for all stretches Unit maL Cancel Figure 2 17 Background Concentration Dialog GREAT ER User Manual 23 You are now able to start a simulation Click on Start Simulation Initially GREAT ER exports all the data needed for the simulation Depending on your computer system this could take a while Then a new window appears displaying the progress of the simulation GREAT ER Tutorial odel Analysis Display GREAT Help 4 finished estimated time left 00 11 07 pa time 00 00 33 0 m 7 Aire running Y Discharge sites e Y Ri ver net Y Discharge connection Y Catchment Area EZA Figure 2 18 Running simulation on Aire catchment Due to some system timings it is not possible to change to another window during this initial phase After a short delay window control becomes available again and you may change back to the ArcView window running the simulation in the background A remark running in the window title bar identifies t
12. 3 Editing Substance Data Having selected a substance within the scenario creation the substance data set is loaded from the database To view the data select Edit Substance from the substance menu Substance Catchment New Substance Open Substance Pick Substance Edit Substance Close Substance Save Substance Delete Substance Change Database Figure 2 10 Substance Menu The substance menu is split into seven categories presented on seven different cards Substance data x identification sewage treatment removal sewer model sewer removal efficiency WANTP model removal efficiency in primary settler removal efficiency in act sludge removal efficiency in TF Distribution rate for non biological degrade correction for biodegradation ir physico chemical properties partitioning degradation K in stream removal market parameters Cancel 0 25 Comment x _ Comcel _ Comment Distribution a 0 980 998 In nan no e s Parameter chemical removal in act sludge Cancel C none min value 0 38 C normal max value IER C log normal uniform Figure 2 11 Substance Data GREAT ER User Manual 17 The various substance data are described briefly below identification The identification card is the first one presented to the user upon entering the substance data It is compulsory to give the substance a name all other pa
13. A 1987 A study of compensation flows in the UK Institute of Hydrology Report 99 Jenkins C T 1970 Computation of rate and volume of stream depletion by wells Techniques of Water Resources Investigations of the USGS Book 4 Hydrologist Analysis and Interpretation US Govt Printing Officer Washington DC Littlewood 1 G and Jakeman A J 1994 A new method of rainfall runoff modelling and its application in catchment hydrology In P Zannetti eds Environmental Modelling Vol Il 143 171 Computational Mechanics Publications Southampton UK National Rivers Authority 1993 River Calder Catchment Management Plan Consultation Report Northumbria and Yorkshire Region National Rivers Authority 1995 River Aire Catchment Management Plan Northumbria and Yorkshire Region Natural Environment Research Council NERC 1980 Low Flow Studies report Wallingford UK Sekulin A E Bullock A and Gustard A 1992 Rapid calculation of catchment boundaries using an 88 ECETOC Special Report No 16 automated river network overlay technique Wat Resour Res 28 2101 2109 Struijs J 1996 SimpleTreat 3 0 a model to predict the distribution and elimination of chemicals by sewage treatment plants Report nr 719101025 National Institute of Public Health and Environmental Protection RIVM Bilthoven The Netherlands Tattersall K H 1980 Resource management of an industrial river system J IWES 34 453 473
14. CD to the appropriate location in your installation see Table Properties for the correct location QueryString for xxx table has errors A wrong query string suggests impossible field names and therefore a corrupt table You have to reinstall the table by extracting it a dbf file from the file greater zip stored on the CD to the appropriate location in your installation see Table Properties for the correct location More than one entry for WWIP WWIP data table seems to be corrupt The query to obtain the wwtp data from the database resulted in more than one data record for one wwip It may be fixed by manually deleting one of the entries i e by editing the table WWTP data in the Expert mode Can not find field fff in xxx table Simulation aborted The table seems to be corrupt or has been edited manually You have to reinstall it by extracting it a dbf file from the file greater zip stored on the CD to the appropriate location in your GREAT ER User Manual 63 24 25 26 27 28 29 30 31 installation see Table Properties for the correct location Required parameter ppp not found in xxx dataset Simulation aborted The dataset seems to be corrupt or has been edited manually You have to reinstall it by extracting it from the file greater zip stored on the CD to the appropriate location in your installation Simulation results the Csim xxx field was not found This error should ne
15. Figure 2 14 Edit Discharge Site Data Dialog GREAT ER User Manual 21 2 4 RUNNING A SIMULATION Analysis Display GRE Select Model Edit Model Parameters Background Concentration Start Simulation Stop Simulation Figure 2 15 Model Menu Having created a scenario and selected the substance and catchment data the user can then select the required model parameters and start a simulation There are three additional dialog options which the user can select at this stage Select Model Edit Model Parameters and Background Concentration These are described briefly below Select Model The Select Model dialog also allows the user to select the complexity mode for the different models Figure 2 16 shows the options for the river model and similar options exist for the sewer and wastewater treatment models Model Selection Monte Carlo shots for simulation fi 000 Sewer WWTP River Cancel S Hint Default complexi x Bey Lumped first order degradation ER Y rate C mode 2 basic removal processes This rate is a substance parameter ofthe group C mode 3 considering the processes in stream removal Vv E KE KE M impose default complexity mode Figure 2 16 Model Selection Dialog 22 ECETOC Special Report No 16 The text field on the right provides some summary information hints on the selected mode If you increase complexity modes it may be necessary to go back to earlier data dialog
16. access restrictions Change these settings by yourself if possible or ask your system administrator c Your catchment database has been seriously corrupted Try to restore the catchment data by reinstalling GREAT ER over your existing installation The essential basic catchment coverages are catchbound disch_river rivernet discharges Not able to get information about scenario The communication between this dialog and the GREAT ER core application has failed ArcView has run into an unstable mode It is recommended to leave GREAT ER immediately without saving and to restart it Substance not found Database seems to be corrupt Although the substance you have selected is listed in the database there seems to be no data for it This suggests that the substance s data set or more generally the substance database itself is damaged The result theme data structure seems to be corrupt The result theme data structure seems to be corrupted You should try to recreate the scenario and restart the same simulation If the problem should occur again one of the needed idfields are missing Can not open scenario odb The basic scenario settings are not accessible This may be caused by the wrong access restrictions which can be fixed by changing them to read write permission or by a loss of data In 62 ECETOC Special Report No 16 20 21 22 23 the latter case you need to reconstruct th
17. an additional input into the treatment plant This input reflects discharges resulting from the production processes and can be calculated from the production volume Please note that the calculation of the fraction of the production volume which will be released is not part of GREAT ER but must be calculated manually beforehand The input considered here is the mass flow of substance into the treatment plant in kg a As with the loads from domestic inputs the industrial input is subsequently processed by the treatment plant model if present for the selected location After leaving the dialog the market data tool is still active 3 3 5 Edit Discharge site Data Similar to the edit market data dialog the discharge site data dialog enables users to modify the parameters of a specific treatment plant Several site specific parameters can be changed These include population the elimination rate used for complexity mode one the treated fraction of incoming sewage water e g bypass or overflow and in general the type of treatment plant Incoming water from separate sources is also considered such as domestic input non domestic use this covers mainly industrial inputs and run off If only an overall value is available for treatment plants this should be entered as domestic flow Please note that domestic flow is given in litre capita day where non domestic flow and run off are considered as Im second GREAT ER User Manual 4
18. as a flow diagram in Figure B 1 The individual stages are briefly summarised here A more detailed description of the models is presented in Gustard et al 1992 DEFINE CATCHMENT BOUNDARY E AND OVERLAY ONTO MAPS TO DETERMINE CATCHMENT AREA y y y FRACTIONAL EXTENT AVERAGE ANNUAL AVERAGE ANNUAL OF SOIL CLASSES RAINFALL POTENTIAL EVAPORATION y wl ESTIMATE MEAN FLOW USING Le CALCULATE STANDARDISED Q95 SIMPLE WATER BALANCE MODEL USING A REGRESSION MODEL RELATING Q95 TO SOIL CLASS RESCALE TYPE CURVE BY il ESTIMATE OF MF IDENTIFY STANDARDISED FLOW DURATION TYPE CURVE ASSOCIATED WITH THE ESTIMATED Q95 Flow Exceedence probability Figure B 1 Procedure for Estimating Natural Annual Flow Statistics 72 ECETOC Special Report No 16 Annual mean flow The mean flow at an ungauged site is estimated using a simple conceptual water balance model in which mean flow is estimated from catchment average values of long term annual rainfall SAAR and potential evaporation PE The average annual runoff depth is derived using a simple water balance given by AARD SAAR r x PE where r 0 00061 x SAAR 0 475 for SAAR lt 850mm yr r 1 for SAAR gt 850mm yr The actual evaporation is equal to the potential evaporation in catchments with annual average rainfall in excess of 850mm where evapotranspiration rat
19. be displayed The necessary script is given in the file backgroundlst dbf in the catchment specific subdirectory of the overview directory The table can be added in the Expert mode to look and then search for the script Error occurred compiling display script xxx The background data table indicates a special script to be used for displaying the selected data The script seems to have some errors hence compiling which is previous to executing has failed This makes it impossible to visualise the selected background data automatically The file must be 64 ECETOC Special Report No 16 32 33 34 35 36 37 38 39 40 edited by an AVENUE programmer to fix the error Background data information not complete The background information table backgroundlst dbf is not complete Refer to the technical manual for the required structure and then look to see whether this is the same for the table which is stored in the catchment specific subdirectory of the overview directory Unsupported background data format The background data is of a type not considered in the current implementation The data can therefore not be displayed Supported types are point arc polygon shape grid and image Cannot make xxx theme The background theme could not be loaded Check whether the name and the path given in the background information table backgroundlst dbf are valid If not change them in the Expert mod
20. e the permeability of the catchment Bullock et al 1994 In Great Britain the more impermeable catchments i e those with Q95 values of less than 30 of the mean flow demonstrate significant regional as well as seasonal variations in the partitioning of annual mean runoff between calendar months Using multivariate interpolation techniques grids of the variation in monthly runoff as a function of catchment permeability as represented by the standardised Q95 value have been derived In application the partitioning of the annual mean flow between calendar months is achieved by identifying the appropriate set of grids using the estimated Q95 values and deriving catchment average values of the variation monthly runoff Monthly Flow duration curves The seasonal variations of the flow regime are lost when the flows are represented using the long term annual FDC However Bullock ef a 1994 identified that the family of type curves used for estimating the annual FDC at an ungauged site can also be used to represent the variation in monthly curves when expressed as a percentage of the monthly mean flow In common with the annual FDC the estimation of the standardised monthly FDCs requires the estimated natural annual Q95 which is used to identify the appropriate type curves for the individual months based upon a selection matrix IMPLEMENTATION OF THE NATURAL LOW FLOW ESTIMATION MODELS WITHIN THE MICRO LOW FLOWS SOFTWARE Estimating Catch
21. entry field at the top of the list Selecting a scenario by a single click the fields in the right area display additional information on the scenario for better identification substance catchment comment and the scenario directory 40 ECETOC Special Report No 16 To load the scenario leave the dialog with OK or double click the selected scenario If there is already an open scenario with the same title the specified one will not be loaded The one already open must be closed first 3 1 3 Edit Scenario This item is only enabled if there is at least one open scenario The dialog is the same as under New Scenario to enable the user to modify the main settings of a scenario in a single dialog name substance catchment and comment If the name has been modified a following dialog will ask you to change the scenario directory If the dialog is cancelled or the directory name not changed the scenario will be kept in the current scenario directory 3 1 4 Close Scenario This item is only enabled if there is at least one open scenario If the active scenario is not identical to the scenario in the database with the same title a dialog will appear giving the option to save the scenario Confirmation of saving will also be requested if the active scenario is not in the scenario database However if Close Scenario is selected the active scenario will be closed and removed from the list of open scenarios 3 1 5 Save Scena
22. final dialog enables you to review your settings Click back to modify your settings or complete the installation The set up program evaluates the source files and starts to install GREAT ER Please note that on some systems the progress bar reporting the process of installation will not function properly It is recommended to restart the computer after installation to ensure correct recognition of new system settings Finally you can create a link to the GREAT ER program in any of the Start Menu program groups or on the desktop The link target should be as follows lt ArcView path gt arcview exe GHOME great er apr where lt ArcView path gt has to be replaced by the path to your ArcView installation e g C ESRI AV_GIS30 ARCVIEW BIN32 Alternatively the link or shortcut can point directly to great er apr and ArcView will normally be started automatically GREAT ER User Manual 5 1 3 GREAT ER AND ArcView As GREAT ER is a software system built on top of the GIS ArcView some familiarisation with the basic ArcView terminology and functions is recommended It is outside the scope of this tutorial to explain all ArcView specific terms used below This is especially the case for all the ArcView features used to create a user specific presentation of data The ArcView handbook gives some tutorials about how to use the basic functions of ArcView In addition the on line help provides some useful
23. full installation The CD based installation should only be chosen for evaluation purposes The required disk space is reduced to the amount of data resulting from simulation runs all scripts programs and additional data are loaded for a GREAT ER application from the CD ROM This means the CD ROM needs to be inserted in your CD ROM drive while working with GREAT ER On the other hand it is not possible to add new substances to the systems data base or to include further catchments or additional geo referenced data If you have selected the full installation the following dialog will enable you to specify the directory in which to install GREAT ER A directory can be specified by typing in the path directly or by browsing through the directory tree If you type in a non existing directory the setup program will create it for you Please note that only the last directory in a path can be created new multi stage directories are not possible E g if C programs is an existing path greater and therefore C programs greater would be a possible directory for the GREAT ER installation C programs models greater would not be allowed if models is not an existing directory It has to be created manually using the Windows NT options before proceeding with the installation For both types of installation a directory to store the scenarios has to be specified see below Restrictions are the same as for the GREAT ER installation directory A
24. it is impossible to harm the system and or the underlying GREAT ER data sets For undertaking model simulations and viewing the basic results this mode is sufficient 2 1 4 Model System The current version of GREAT ER comes with a model system covering three sub models sewer treatment plant and river There are three complexity modes for each of these sub models In the simplest mode only first order elimination rates or percentage removal are considered whereas higher modes consider elimination processes in more detail All of the sub models are deterministic in principle However using the Monte Carlo method set on top of these models results are returned as distributions of concentrations GREAT ER delivers results for all considered geographic objects sewers i e the influent of a treatment plant all treatment plants effluent and all river stretches within the catchment under investigation See the model description for more details Model results are displayed by colouring river stretches on a map or as concentration profiles along a river GREAT ER provides users with several options to analyse the results and to derive further values from them For further details see below in the tutorial and menu description 2 1 5 Parameter Handling Depending on the selected models different parameters will be used to run a simulation These parameters are sorted according to their relation to a substance catchment or model GREAT ER p
25. stored within a scenario The user can safely make changes to the substance properties for specific simulations without affecting the data stored in the substance database 4 Release Data Although the positions and number of discharge sites within a catchment are not editable the attributes of the discharge sites can be modified For this the set of attributes is stored with the scenario In contrast to the substance database modified data sets can not be written back to the GREAT ER catchment database 5 Modified Flag The flag is set to true if any element of the scenario has been changed since the last save and hence the scenario is different to the scenario in the database with the same title The flag is displayed in the scenario s view window title bar see below 6 Model Parameter The complete model parameter data set needed by the GREAT ER model is stored within a scenario The most important data of a scenario are given in the title bar of the corresponding view window This makes the title catchment ID substance ID modified state of scenario substance and the simulation state permanently visible and avoids confusion when managing several open scenarios 2 1 1 1 Scenario Database A GREAT ER installation always has only one scenario database As mentioned in the section 1 2 on installation the basis for the GREAT ER scenario database is a directory All scenarios are stored in 8 ECETOC Special Report No 16 se
26. the mean of the weighted concentrations of the selected stretches Possible selections are A all stretches within a catchment or B only polluted stretches Option A is more comparable to the current regional exposure assessment approach unit world models in which all surface waters in a region are considered to be available for the dilution of the chemical mass loading In contrast option B considers only the loaded river stretches and allows the user to focus on the river stretches potentially at risk Both approaches have to deal with different issues concerning scale dependencies or data requirements The different weighting methods are discussed below 1 Weighting by stretch volume for both stretch selections The volume is calculated assuming a rectangular cross section by flow flow velocity and length This method places more weight and therefore importance on large rivers and therefore on high dilution situations 2 Weighting by stretch length for both stretch selections The interpretation of this weighting method is that stretches with equal length are of equal importance Small rivers are considered to be equally valuable as large rivers Methods 1 and 2 depend on the scale and detail of the underlying digital river network and the more that unpolluted headwaters are included the lower the aggregated PEC catchment Will be Conversely in a low detailed river network small and possibly more valuable stretches ar
27. the old 8 3 convention In this case use the set up program recommended or a newer version of ZIP Error occurred compiling script xxx This indicates that the script has errors e it has somehow been modified lt needs to be reinstalled by either reinstalling the whole GREAT ER software or by installing i e extracting only the scripts that contain errors from the file greater zip on the CD into the directory GHOME lave No catchment database found GREAT ER User Manual 61 The essential file catchments dbf is missing You have to reinstall GREAT ER or only the file by extracting it from the file greater zip stored on the CD to the directory SGHOME catchments Internal Error StretchID field missing The field to identify river stretches in the simulation result table is missing Either the field name has been changed manually it has to be stretchid or the data is seriously corrupt You should start a new simulation using the same parameters Catchment CCC can not be opened The basic catchment data or parts of it are missing There are three possibilities for this a You imported a scenario for a catchment you do not have the data for Check your installation and contact the party from which you obtained the scenario to update your catchment database b Your catchment database under your GREAT ER installation in the directory catchments and its sub directories has the wrong read
28. the set up program recommended or a newer version of ZIP Cannot get script load procedure This makes it impossible to launch GREAT ER This indicates that the script ReloadScript ave is not loadable The problem may in some cases be solved by changing access restrictions Otherwise ReloadScript ave can be read from the CD by extracting it from the file greater zip on the CD into the directory GHOME ave This message also arises when the set up has been performed manually using an old version of ZIP that cuts the filenames to the old 8 3 convention In this case use the set up program recommended or a newer version of ZIP Cannot compile load procedure This makes it impossible to launch GREAT ER This indicates that the script has errors i e it has somehow been modified It needs to be reinstalled by either reinstalling the whole GREAT ER software or by installing i e extracting only the scripts that contain errors from the file greater zip on the CD into the directory GHOMES lave Error occurred opening script file xxx The script could not be opened The problem may in some cases be solved by changing access restrictions Otherwise ReloadScript ave can be read from the CD by extracting it from the file greater zip on the CD into the directory sGHOME ave This message also arises when the set up has been performed manually using an old version of ZIP that cuts the filenames to
29. was developed for optimising the global percentage return figures for individual purposes This procedure was based upon minimising the standardised sum of squared differences between the estimated influenced mean flows at a gauged reach and the gauged influenced mean flows across all gauging stations The use of a standardised sum of squares gave equal weight to the fit at each gauging station The optimised return factors for individual purposes derived in this way are presented in Table B 1 Table B 1 shows that 98 percent of the water abstracted for cooling water is returned to the river Similarly fish farming can be considered as a non consumptive purpose with only 2 of the abstracted volume being lost from the system By comparison it is assumed that all of the water abstracted for spray irrigation is lost through evaporation The final calibrated fit of the model for the Aire Calder catchments at gauging stations within the catchment is summarised in Figure B 6 and Figure B 7 for Q95 and Mean Flow respectively Predicted MF N o E 3 O E E Lo 2 Lo Be CO 1 10 gauged mean flow m3 s Figure B 6 Final calibrated influenced estimates of mean flow at gauging stations 82 ECETOC Special Report No 16 Predicted Q95 YN Lag E 2 _ LO o O bet Be a gauged Q95 flow m3 s Figure B 7 Final calibrated influenced
30. 000 are gauged and furthermore less than 20 of gauged catchments can be regarded as being natural The development and application of steady state hydrological models by the Institute of Hydrology for predicting flow statistics and flow velocities at ungauged river reaches are presented in this appendix Central to the models is the use of a digital river network and thematic digital grids of relevant catchment characteristics The structure of the digital river network facilitates the estimation of catchment boundaries catchment characteristics and indexing of artificial influences abstractions discharges and impounding reservoirs the influence of which are incorporated into the model The flow models are incorporated into an Institute of Hydrology PC based software product which has been in operational use since 1991 within all of the environmental protection agencies within the UK The steady state hydrological models applied within the UK Pilot Study catchments to generate reach based estimates of both the natural and artificially influenced flow regimes using catchment characteristic based regional flow models are also described The use of this type of model is recommended by the Institute of Hydrology for use within GREAT ER The models are intensive in terms of the spatial data and sample set of gauged data required but once developed they can be applied within any catchment described by the spatial data in this case the UK Section thr
31. 7 Please note furthermore that it is possible to specify a distribution for a general removal efficiency but not for a site specific removal efficiency Nevertheless it is possible to have a distributed removal efficiency for e g activated sludge plants and a fixed rate for a selected site Leaving the dialog the discharge data tool is still active 3 4 MODEL The Model menu provides items for model control This includes the input of model related parameters and settings and the control of a simulation run itself The items in this menu are only enabled if there is an open scenario 3 4 1 Select Model The text field on the right provides some summary information hints on the selected mode If you increase complexity modes it may be necessary to go back to earlier data dialogs to enter additional parameters For example if you need in sewer removal to be considered you have to go back to the substance data dialog to enter a removal rate for sewers Please note that in sewer removal is the only higher model in which only one parameter has to be entered All other higher models require a somewhat larger data set The impose default complexity mode check button should usually be checked After reference to the technical description of the model input tables the expert user has the option to specify different complexity modes for selected geographic objects However these options are beyond the scope of this user m
32. Calculate River Cem 3 49 35 2 Csm Glasses RV iii len 49 3 5 3 Gombine Csim Flo Eeer ees ee NER TREE E ee 49 3 54 PEC IM aiii a bb babas 50 ERR Net 50 3 5 6 Discharge Influent Csim Discharge Effluent Cem 51 35 7 Concentration Proteo aa bid vets Serzevacss sees edhe one A RA Aae AA Tarana 51 3 58 EXPONE PTOS oo A da eae 51 4 ECETOC Special Report No 16 3 6 DISPLAY iii en ARA A AAA 51 3 6 1 Add Background Data Henne ea ee ei Zoe 52 3 6 2 Remove Background Data euere 52 3 6 3 Full Catenment E E 52 AE ZOOM ses Acedensceit sate AA ENER a 52 3 65 ZOOM DU Ad 52 3 6 6 Show River FIOWS c cccccccccsessssececccececsesseaeceeeeeeseeaseaeceeeesceuseaaeseceescesseseaaeseseesesesestsaeeesess 53 3 6 7 Select Rivernet by Elow ennt 53 SN 2 Res IHRER nl 53 36 9 SHOW Site Pictures nase uni 53 3 6 10 Remove Themesi 24 22 ida 54 3 2 GREAT HEER 002 a REN IRRE nn III KR 54 ae Wee TUTE EE 54 9 22s ADOUU GREATHE E ci a a as 54 3 3 AbBOUt Model EE 54 A GREAT ER MESSAGES 00000 A det ees 55 441 CONVENTIONS shaa anlagen E 55 WC CR EE 55 e MEET 56 4 4 ERRORS ua 2 ini BEER A IDEE En ie 59 APPENDIX A CHEMICAL FATE SIMULATOR AND MODELS ursssnnnennnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn anne 66 AT CHEMICAL FATE SIMULATOR un AEE EE tia 66 A 2 CHEMICAL FATE MODELS ici ti a 67 APPENDIX B HYDROLOGICAL MODELLING WITHIN GREAT ER cccceseeeeeeeseeeeeseseeeeseseeees 70 B 1
33. EAT ER help system is implemented as a HTML structure similar to the menu structure description as published in the GREAT ER manual After selecting this menu item the default HTML browser of the user s system will be launched with the table of contents of the on line help as the opening window Please note that the start up phase of the help system may take some time to initiate 3 7 2 About GREAT ER This menu item provides basic information on the user interface and the GREAT ER project itself 3 7 3 About Model This menu item provides basic information about the model system GREAT ER User Manual 55 4 GREAT ER MESSAGES 4 1 CONVENTIONS We have set up certain typographic conventions to accentuate the meaning of words mentioned in this manual The following table describes the main conventions Style Meaning Serif Usual text Italic Emphasis menu items input CAPITALS Products Software Typewriter Software output messages Typewriter italics File names directories lt PATH gt System variables e g PATH 4 2 HINTS Hints are provided to give information They appear as messages informing the user that data cannot be found or some function is not allowed for example If these messages appear it does not normally indicate a serious problem only that the user needs to make some selection or exit from the particular option The following hint messages are given at various times and the additional remarks may help to cla
34. GREAT ER User Manual 1 eceloc Special Report No 16 GREAT ER User Manual March 1999 European Centre for Ecotoxicology Avenue E Nieuwenhuyse 4 Bte 6 and Toxicology of Chemicals B 1160 Brussels Belgium 2 ECETOC Special Report No 16 CONTENTS INTRODUCTION re ceden adecco 1 1 INSTALLATION a aida ace 3 14 REQUIREMENTS aere an Al sind ee inet AA i a a 3 EE E EE 3 1 3 GREAT ER AND AreView smash ht A engel 5 Kamell 6 2 1 BASIG GONGEPRTSiianeuiiaian ait ih ate HER ete a a Ls tt 7 ENNER e ee E Rah iind H 2 1 2 Substance Database AA 8 2 1 3 Expert Mode vs Easy To Use Mode AA 8 E ee EE EE 9 2 1 5 Parameter Handini s ociosa nana 9 2 2 STARTING GREATER ktin il 10 23 SETTING UPA SCENARIO oia a A SS 11 2 3 1 Creating a New Sc nariO sosite aerieni a airis 11 2 312 TE Wille CN 15 2 3 3 Editing Substance Data 16 2 3 4 Pick Substance and Change Database nn 18 2 3 5 Editing Catchment Data 19 2 4 RUNNING A SIMULATION 0 00cccccceceeceeeeeeeeaeeeeeeeeeeeee seas eeeaaeedeaeeseaeeeceaeeesaaeseeeeeseaeessaesseaeeseenees 21 2 4 1 Save a Le sian did eee IHN 26 2 5 ANALYSING MODEL RHEGULTB nn 28 2 5 1 PEG Calculationsivax a E tai aah a thee 28 2 6 ADDITIONAL DISPLAY OPTIONS aaee at eea r aei a a aara a a aa a Aaaa Ae aaa A aAa aa 32 2 7 DATA EXCHANGE ra ee a taa ise 34 2 8 LIMITATIONS 000 a NO ed Li IR Rn 35 LB NAT MI Wisin nta 35 2 8 2 User Interface cositas 35 Mee EE EE 37 2 9 ADDING A NE
35. INTRODUCTION Vii ee dee iii E AA ab 70 B 2 THE UK MODELS AND THE RIVER NETWORK BASED MODEL FRAMEWORK 71 B 3 THE HYDROLOGY OF THE LAMBRO PILOT STUDY ssisnssnnnessnnnnennnnserrnnsrtrnnsrnnnnnrnnnnnennnnne ee 82 BIBLIOGRAPHY E 87 MEMBERS OF THE TASK FORCE 4 44 ENEE en es ie a ae ann 89 MEMBERS OF THE SCIENTIFIC COMMITTEE ooo 91 GREAT ER User Manual 1 INTRODUCTION Risk represents the likelihood that the hazard will be realised i e that due to the exposure an adverse effect may occur Risk assessment is defined as the process that evaluates the likelihood that adverse ecological or human health effects may occur are occurring or have occurred as a result of exposure to one or more physical chemical or biological agents Fundamental to the risk assessment definition is the recognition that risk requires two elements 1 a chemical or material s inherent ability to cause adverse effects and 2 the exposure or interaction of the chemical or material with an ecological component or with a human population at sufficient intensity and duration to elicit the adverse effect s The risk assessment process is a step wise process in which assessment of potential adverse effects and exposure is integrated and compared with increasing realism The ratio of the Predicted Environmental Concentration PEC to the Predicted No Effect Concentration PNEC is used as a measure of this risk The assessment of risk can requi
36. M 1997 A geo referenced aquatic exposure prediction methodology for down the drain chemicals Wat Sci Technol 36 251 258 Boeije G M Wagner J O Koormann F Vanrolleghem P A Schowanek D R and Feijtel T C J 1999 New PEC definitions for river basins applicable to GIS based environmental exposure assessment Submitted to Chemosphere Bullock A Gustard A Irving K Sekulin A and Young A R 1994 NRA R amp D Note 274 Low Flow Estimation in Artificially Influenced Catchments Bullock A Gustard A Irving K M and Young A R 1994 Low flow estimation in artificially influenced catchments National Rivers Authority R amp D Report No 257 EEC 1996 Technical Guidance Document in Support of Commission Directive 93 67 EEC on Risk Assessment of New Notified Substances and Commission Regulation EC No 1488 94 on Risk Assessment of Existing Substances Part Il Luxembourg 1996 EUSES 1996 The European Union System for the Evaluation of Substances National Institute of Public Health and the Environment RIVM the Netherlands Available from the European Chemicals Bureau EC JRC Ispra Italy Gustard A Bullock A and Dixon J M 1992 Institute of Hydrology Report 108 Low Flow Estimation in the United Kingdom Gustard A Bullock A and Dixon J M 1992 Low flow estimation in the United Kingdom Institute of Hydrology Report No 108 Gustard A Cole G Marshall D and Bayliss
37. Manual 91 MEMBERS OF THE SCIENTIFIC COMMITTEE W Tordoir Chairman Group Adviser Environmental Health and Human Toxicology O Bockman Scientific Adviser C Braun Occupational Toxicologist N Carmichael Toxicology Director Worldwide C d Hondt Head Environmental Safety Department T Feijtel Section Manager B Hildebrand Director Experimental Toxicology J Jackson Senior Associate Medical Adviser E L ser Head Institute of Industrial Toxicology R Millischer Head Industrial Toxicology Department G Randall Director Environmental Laboratory A Sarrif Associate Director Toxicology Affairs J Solb Head of SEAC Environment H J Wiegand Head Product Safety Department Peer Review Committee Shell International NL Den Haag Norsk Hydro N Porgrunn Akzo Nobel NL Arnhem Rh ne Poulenc F Lyon Novartis CH Basel Procter and Gamble B Brussels BASF D Ludwigshafen Monsanto B Brussels Bayer D Wuppertal Elf Atochem F Paris Zeneca UK Brixham DuPont D Bad Homburg Unilever UK Bebington H ls AG D Marl
38. Parco Lambro 465 Climatic data including included temperature data on a monthly or daily basis and rainfall data on a daily and monthly basis was available for seven stations within the catchment Verification of data Detailed verification of the data and data sources was conducted prior to hydrologic analysis This process enabled some inconsistencies to be rectified appropriate rating curves to be developed to convert stage records into flow records the most reliable data sources to be identified and the general hydrologic response of the catchment to be investigated 84 ECETOC Special Report No 16 Methodology Traditional hydrologic analysis was used to derive spatially distributed flow statistics of mean flow and Q95 within the Lambro catchment The detailed spatial data sets and gauging station data sets that were available for the Yorkshire catchments were not available for the Lambro catchment The modelling is not as efficient in terms of resources as for the Yorkshire pilot study as the Lambro model is catchment specific The models developed and applied in the Yorkshire Pilot study are applicable to any UK catchment The primary problem associated with the data for the Lambro catchment was that common periods of flow records were not available for the limited flow gauge network and thus differences between the gauged locations will in part be a function of the climatic differences between gauged periods In par
39. REAT ER is to enable the prediction of the concentrations of chemicals at any specific location in EU rivers and river basins from site specific discharges river and effluent flow data The methodology delivered is applicable for the entire EU but the prototype runs in the first instance for the Aire Calder Went Don UK and Lambro I regions and for parts of Belgium and Germany The refined exposure assessment tool should greatly enhance the accuracy of current local and regional exposure estimation methods and ultimately allow assessments on a pan European scale This special report will allow you to install GREAT ER and help you with key questions on how to run GREAT ER GREAT ER User Manual 3 1 INSTALLATION 1 1 REQUIREMENTS GREAT ER is a collection of models and scripts set on top of the geographic information system GIS ArcView a product developed and marketed by the Environmental Systems Research Institute ESRI The development was based on the software package ArcView 3 0 with the patch for version 3 0a GREAT ER is also compatible with the new version ArcView 3 1 The operating system GREAT ER is designed for WINDOWS NT 4 0 Please note that GREAT ER will not work properly under WINDOWS 95 although ArcView 3 0 and 3 1 do Compatibility with WINDOWS 98 was not tested The GREAT ER system contains a set of scripts for ArcView models and other programs for data analysis It also comes with a set of data and ad
40. W GATCHMENT s ni iroeiiieinoiniriniiiaieiooaiiaeaiiiiaeiadsi riain deasa i uaiiie idaki aiaia 37 3 3MENU STRUGTURE een sa ee Ee ee ee eege 39 ENEE EE 39 LT New Scena n iia illa 39 312 Open Scenario EE EE 39 3 13 Edito KT 40 GREAT ER User Manual 3 3 l4 Close SCONANO A eed Silla ee 40 B15 SAVE e WEE 40 3 166 Save Scenaro Astral atada labrada 40 Skr Dekle D 41 3 1 8 ene ana ae A EEE eda 41 SAO RENDO EE 41 3 1 10 Expert Mode Easy to Use Mode 42 IMM AAA A AAA 42 S112 ASCO Nr TEE 42 3 2 SUBSTANCE 242 222 42 32 1 NA NO 42 3 22 Ne le 44 KE le ee ue 44 3 2 4 Edit SUBSTANCE ies iii A is 44 ee ETH 44 3 26 SAVE SUBSTANCE eege Ree eebe ege 45 3 27 Delete Substance u mn nr RE 45 3 2 8 Change Database viii ha ei ne Glee 45 33 GATCHMENT srie asa iE aen E iu Bach alle aunieadieleinunla 45 3 3 1 Select GCatchMeENtiiteritatdadi dd ota 45 Bde Select SUDCA LC Me iii aiii ii id AAA 45 383 3 Unselecet S be tchment 23 22 A A At HAs ease ta 46 3 34 Edt Market DAA O ao Ee 46 3 3 5 Edit Discharge site Data eeror eian anA n E ANAE E EA AE AEREE EA 46 34 MODEL cui A A Aaa 47 3 41 Select Mode eebe Ee ae tee et eh 47 3 4 2 Edit Model Param ter Sae ae aaa ae areae a EE Eeer e 47 3 4 3 Background Concentration ccccccceceeeeeseeceeeeeceeeeeeaeeeeaeeceeeeesaaeeeeaaeseeeeeseaeeesaeeseneeenaees 48 3 4 4 Start Simulahom sa ea a a aae eea e Re a aAA AA 48 KEE ele EE e EE 48 3 5 ANALYSIS Era a ne ia a ale 49 3 5 1
41. a catchment Cancel Title Comment Substance Knone gt D Catchment Knone gt D Figure 2 4 New Scenario Dialog To create a new scenario you have to specify a scenario name at this stage The name is used to identify the scenario in all further steps of GREAT ER application You may also select a substance and a catchment at this stage although this can be left until later Finally you can enter a comment on the scenario to give additional remarks New Scenario 7 SE A Please specify a scenario title Optionally you may select a substance and a catchment Cancel Title GREAT ER Tutorial Comment K II Substance LAS 25496 8 0 v Catchment Aire Comment x GREAT ER Tutorial Substance LAS i Cancel Catchment Aire Ouse Yorkshire UK A Sample scenario for tutorial created with GREAT ER 1 0 Figure 2 5 Scenario Comment Dialog GREAT ER User Manual 13 As an example enter the name GREAT ER Tutorial and select the substance LAS with the catchment Aire then click on OK to leave the New Scenario dialog You are then asked to specify a scenario directory name Enter a non existent subdirectory name e g tutorial The directory will then be created automatically Each scenario is stored in a separate directory New Scenario Scenario data are stored in separate subdirectories under C home fkoorman projects qtutorial scenario Please enter a new sub
42. al minutes A progress bar will index the progress of the calculation After completion the values mentioned above are listed in a small report window Note that the PECcatchment calculation may be based on mean or 90 percentile Csim values PECcatchment Calculation Eq Please select a result theme for calculation of PEC values Ceim 90 fugit _Conce nt Figure 2 26 PEC catchment calculation results PECcatchment x The PECcatchment definition is currently under scientific discussion Therefore several values are calculated a by different weights and stretch selection Weighted by volume and length based on only loaded stretches and all stretches in brackets Weighted by flow incremental based on loaded stretches plus most downstream unloaded stretch per river For the results theme Csim mean ug L Field Csimintid the PECcatchment values are by Volume 37 163 28 9722 by Length 47 7372 5 13526 by Flow Increment 35 1125 All values are given in ug L Figure 2 27 PEC catchment Calculation results 32 ECETOC Special Report No 16 2 6 ADDITIONAL DISPLAY OPTIONS EJEA GREAT Help Add Background Data Remove Background Data Full Catchment Extent Zoom In Zoom Out Show River Flows Select Rivernet by Flow Identify Show Site Pictures Remove Themes Figure 2 28 Display Menu The monitoring programmes undertaken in the pilot areas of GREAT ER form an integral pa
43. ality aspects 2 2 STARTING GREAT ER If you have created a shortcut as mentioned under item 9 of the installation procedure start GREAT ER using its icon Alternatively start ArcView and select from the menu File the item Open Project Browse through the directory tree to the directory of your GREAT ER installation Open the project file great ei aldi After the start up GREAT ER presents the initial screen It shows a map of Europe and all currently available catchments No active scenario GREAT ER Substance Catchment Model Analysis Display GREAT Help D ea 2 European countries and catchments Y Catchment Went ua wi Catchment Unter Main Catchment Lambro Y Catchment Wer Y Catchment Don Y Catchment Calder Y Catchment Aire Y European countries UL Albania EI Austria EI Belgium L Bosnia and Herzegovina ES Bulgaria L Byelarus Croatia E Cyprus EI Czech Republic EL Denmark E Estonia L Finland L_ France L Germany C Greece L Greenland E Hungary Figure 2 2 GREAT ER initial screen GREAT ER User Manual 11 GREAT ER starts by default in the Easy to use mode the ArcView menu bar is replaced by a specific GREAT ER menu bar the number of buttons and tools is reduced to the set needed for GREAT ER Please note that each menu item when highlighted is explained briefly in the bottom left corner of the ArcView window The menu it
44. all scenario data and all results to a specified file Specific parts can then be abstracted from this using a common text editor Another option is to export a concentration profile for a selected river By selecting Analysis Concentration Profile a tool will be activated then select a stretch by clicking on the view Moving downstream the Csim internal values are collected for each stretch The collection will be displayed in a simple X Y profile Alternatively there is the option to export the profile data to create a smarter presentation using a preferred data plotting or spreadsheet program It should be mentioned that the full set of simulation results for a scenario are stored under the scenario directory within the files Csim dbf river and CsimSTP dbf treatment plants Copies of these files may be used to further analyse the data Other options are available under ArcView in the expert mode The most important function might be to export the resulting visualisation onto a map by colouring the river stretches This can be done quite comfortably using the ArcView layout capabilities GREAT ER User Manual 35 2 8 LIMITATIONS 2 8 1 ArcView Chart Display The chart options of ArcView are quite limited Only 50 data points can be displayed within an X Y plot used for the concentration profile along a river For this reason the profile might not display all stretches downstream from the selected stretch To deal with this limita
45. alog and specify a nonexisting directory It will be created automatically 25 Not able to create directory This is due to access restrictions and can be solved by changing them 4 4 ERRORS Errors indicate that something fundamental has gone wrong An error may cause serious consequences especially loss of data But usually an error message indicates that something previous has failed or was deleted Hence a GREAT ER error message is caused by an earlier error 1 Banner file xxx graphics greater gif not found This is usually caused by an impossible setting for the system variable GHOME Check if GHOME is pointing to your GREAT ER installation by using the system settings if not set it correctly 2 The scenario directory named by GSCENARIOS xxx does not exist Please create the directory and restart GREAT ER 60 ECETOC Special Report No 16 Create the directory pointed to by GSCENARIOS as indicated in the system settings and restart GREAT ER Cannot get file xxx Without this file the execution of GREAT ER is not possible The problem may in some cases be solved by changing access restrictions Otherwise the file can be read from the CD by extracting it from the file greater zip on the CD into the directory sGHOME ave This message also arises when the set up has been performed manually using an old version of ZIP that cuts the filenames to the old 8 3 convention In this case use
46. and of the various options available Finally Chapter 3 of this User Manual provides a more detailed description of the different features and options available within GREAT ER Start GREAT ER Create a New Scenario Specify a Scenario Name Select Substance and Catchment Specify Scenario Directory Specify Number of Monte Carlo Shots Run a Simulation Display Results Spatial Distribution Concentration Profile Add Background Data Monitoring Results Y Save the Scenario Y Analyse Model Results Calculate PECinitial Calculate PECcatchment Figure 2 1 Flow Chart of Typical GREAT ER Session GREAT ER User Manual 7 2 1 BASIC CONCEPTS 2 1 1 Scenario Concept The collection of data needed to perform a simulation is called a scenario Scenarios can be stored and loaded and thus offer the quick retrieval of certain situations A unique title for each scenario assists the search of a specific one in a long list Additionally scenarios form the basis of the exchange of complete simulation data sets see Export Import A scenario consists of the following data 1 Title A unique name for the scenario 2 Catchment ID The identity ID is the name of the catchment e g Aire The catchment data themselves are not part of a scenario Such data e g river network are fixed and cannot be edited 3 Substance The whole substance data set is
47. anual for customising a project Look in the GREAT ER menu for the View Doc Scan through the menu items and find the item with the click script Exit GREAT ER ave Rename it to Exit Not able to fully delete the scenario The scenario may now be invalid Possible reason is access violation Because of some file access limitations GREAT ER was not able to delete the scenario data completely One of the files in the directory may be being accessed by another program Please close the file and remove remaining scenario data by deleting the scenario directory manually Creation of export file xxx failed Due to some access limitations the automatic generation of the export file is not possible You might try to change the access restrictions and export again or to export the scenario manually as all scenario data are stored in the related directory under the GREAT ER scenario directory the export file is a zip archive of this subdirectory You can create this archive with you favourite zip tool Importing of file xxx failed Because of some access limitations the automatic unpacking of the export file is not possible You might try to change the access restrictions and import again or to import the scenario manually as all scenario data are stored in the related directory under the GREAT ER scenario directory the export file is a zip archive of this subdirectory You can unpack this archive with you favourite unzip
48. anual and are only available within the expert mode Please refer to the model technical documentation for more information on the model s complexity levels 3 4 2 Edit Model Parameters The Model Parameters dialog allows the user to edit various environmental data and specific properties of the sewer wastewater treatment plant and river models For higher complexity modes a useful feature is the Default button which can be used to assign pre selected values to different parameters However please note that each default value has to be set individually If you want a set of all default values to be used for some scenarios this is currently only possible by creating a generic scenario without a substance or catchment All further scenarios can then be created from this generic one and saved to new scenario use Save As The set of WWTP related parameters is so large that it does not fit on a single card The most 48 ECETOC Special Report No 16 important parameters are grouped on the card To edit the complete data set launch the dialog using the complete list button Please refer to the model documentation for more detailed information on the model s parameters 3 4 3 Background Concentration Background Concentrations are included to consider additional loads within the river network which might be monitored upstream from the first known discharge Note that the given value is simply added to the model results after th
49. ar will indicate the progress of the calculation After completion the values are listed in a small report window Three different results are given based on different weighting methods a weighting by volume based on the subset of loaded stretches and on all stretches within the catchment b weighting by stretch length based on the subset of loaded stretches and on all stretches within the catchment c weighting by flow increment based on all stretches within the catchment GREAT ER User Manual 51 3 5 6 Discharge Influent Csim Discharge Effluent Csim The GREAT ER models calculate concentration distributions for both the catchment river network and the influent and effluent of the catchment s treatment plants These values are stored in the scenario directory in a separate file CsimSTP dbf Using the corresponding menu item a new theme appears on the view displaying the discharge sites classified by either influent or effluent concentration After executing one of these menu items once the model results for treatment plants can be investigated using the identify tool 3 5 7 Concentration Profile Selecting the Profile menu item the cursor shape changes to identify the new mode You then have to select a stretch by clicking on the view Moving downstream the C ze interna Values are collected for each stretch The collection will be displayed in a simple X Y profile Alternatively you have the option to export the profil
50. ata were loaded the final stage of the procedure was to calibrate the representation of the artificial influences to account for incorrectly characterised or missing influence features This latter point is particularly pertinent to the representation of discharges The calibration procedure was based on minimising the differences between the gauged mean flow and predicted influenced mean flow at all gauging stations Having undertaken the initial data load the influenced mean flows were compared with the gauged mean flows for the selected stations and were found to be systematically and significantly smaller with negative mean flows observed at many stations This is a direct consequence of the omission of cooling water returns and other industrial discharges and the omission of the smaller waste water treatment plants To address these issues a global percentage return factor was introduced for each purpose type At each abstraction site the purpose monthly profiles were rescaled by the relevant global percentage return A percentage return of zero for a particular purpose indicates that the purpose is entirely consumptive with the water being lost from the system Spray irrigation is an GREAT ER User Manual 81 example of a highly consumptive water use A percentage return of 100 indicates that that most of the water that is abstracted from the system is returned for example low temperature cooling water from power stations Automated procedure
51. atchment water is abstracted from reservoirs and rivers for public water supply and industrial use including cooling water for two large power stations and fish farms Abstractions from the carboniferous limestone are predominantly used for industrial purposes Water for public water supply is taken from the Sherwood Sandstone aquifers near Selby Goole Askern and Pontefract Within the Aire catchment there are 18 impounding reservoirs used for public water supply and one for supporting the Leeds Liverpool Canal In contrast to the Calder catchment a significant amount of water is transferred into the catchment from the Wharfe Ouse and Derwent catchments for public water supply Tattersall 1980 There are also 12 reservoirs which are not are not used for public supply Within the major river catchments many of the reservoirs are linked together in conjunctive use schemes and are often located in pairs In these pairs the upper reservoirs are often used for supply and the lower reservoir used for releasing compensation flows The overall impact of the transfer of potable water and subsequent discharging of treated effluent is that the actual low flows in the river within these catchments are significantly higher than the natural flows Data used within the Study to Characterise Water Usage within the Aire and Calder Catchments Abstraction data The Environment Agency provided information for 547 licenced abstractions within the Aire and Cald
52. ates are then used to scale the appropriate monthly flow duration curves which are subsequently combined to yield an influenced annual flow duration curve The Catchment Characteristics and Water Use of The Aire and Calder Catchments The headwaters of the River Aire drain from the carboniferous limestone on the edge of the Pennines through Skipton Keighly and the Leeds Bradford conurbation to its confluence with the River Ouse near Goole an overall distance of 148 km The area of the Aire sub catchment is 1100 km excluding the Calder catchment NRA 1993 The River Calder flows from the Pennine Moors eastwards to its confluence with the River Aire at Castleford a distance of 109 km NRA 1995 and drains a total area of 957 km The Calder catchment is heavily industrialised including textile manufacturers chemical plants and dye works The catchment has been a traditional mining area Some groundwater is abstracted for industrial purposes although some parts of the Millstone Grit are also exploited to provide some water for public water supply There are a total of 66 reservoirs dams within the catchment There are 39 impounding reservoirs operated by Yorkshire Water Services Ltd YWS who are licensed to provide water for public supply Another 4 impounding reservoirs supply water to the canals reservoirs and GREAT ER User Manual 79 there are 23 primary sewage treatment works supporting a population of 790 000 Within the Aire c
53. ation anaerobic biodegradation correction factor anoxic biodegradation correction factor affinity constant for aerobic anaerobic sorbed biodegradation correction factor temperature correction for biodegradation In stream removal correction factor for biodegradation in rivers Sewage treatment correction for biodegradation in activated sludge Market Data domestic product consumption Note furthermore that it is possible to specify a distribution for a general elimination rate but not for a site specific elimination rate Nevertheless it is possible to have a distributed elimination rate for e g activated sludge plants and a fixed rate for a selected site Default Values A set of all default values to be used for some scenarios is currently only possible via a workaround Create a generic scenario without a substance or catchment All further scenarios can be created from this generic one by saving them as new scenarios use Save As GREAT ER Analysis Tools Note that the GREAT ER analysis tools are designed to analyse distributions of values Although it is possible to run a simulation with one Monte Carlo shot the analysis functions may fail if this is GREAT ER User Manual 37 attempted Note that PEC calculations are not available if a sub catchment is selected GREAT ER Help System Note that the start up phase of the help system may take some time to initiate Operating System WINDOWS NT 4 0 The operating
54. be selected by a click If this happens the attributes of GREAT ER User Manual 15 each object selected are presented sequentially in separate dialogs To see them all click OK to abort Cancel Identify Discharge sites Rawdon STW x Discharge sites WWTP data of GREAT ER Tutorial Cancel Name Rawdon STW Population 6642 cap domestic flow 297 9524240000 L cap d nondomestic flow 0 00000 m 3 s runoff flow 0 00000 m 3 s connection degree 1 00000 H Figure 2 9 Identify Tool Dialog 2 3 2 Needed Inputs Having now created a new scenario you may use the settings and data loaded from the databases by selecting substance and catchment or modify them As mentioned above GREAT ER provides three complexity modes for each of the various models Obviously the amount of required data increases with the complexity mode of a model The GREAT ER user interface accentuates this by colouring parameter values within the dialogs Parameters coloured green are definitely not used in the current model mode selection whilst those coloured black might be used Please refer to the technical documentation for a detailed description of the model complexity modes and the required parameters By default all sub models Sewer waste water treatment and river are set to complexity mode one The parameters needed at this complexity level are mentioned in the sections below 16 ECETOC Special Report No 16 2 3
55. been modified a confirmation dialog appear GREAT ER User Manual 45 3 2 6 Save Substance This item is enabled if there is an active scenario containing a substance If the substance is not modified in relation to the substance data in the substance data base a hint will be given and nothing will be done Otherwise the substance will be saved to the substance database If there is a substance in the database with the same ID confirmation will be requested 3 2 7 Delete Substance This item is enabled if there is at least one substance in the database A dialog with a list of all substances in the database will appear After confirmation the selected substance will be removed from the database 3 2 8 Change Database Change database will offer a file dialog where another database file odb can be selected It is possible to have many different substance databases The default database delivered with GREAT ER substance odb should only be modified extended if the new values are quality controlled literature laboratory reference If you need to work with a large amount of substances the substance database concept enables you to store substances in different databases by classes This increases the transparency of data storage and speeds up data retrieval 3 3 CATCHMENT The Catchment menu provides the catchment related functions available for a simulation session The items in this menu are only available if there is an open s
56. cenario 3 3 1 Select Catchment A dialog is raised in which you can select a new catchment for the active scenario from the list of catchments in the database If the scenario has been modified you will be requested to save it before selecting a new catchment 3 3 2 Select Subcatchment This item enables the selection of a sub catchment for a simulation by clicking on the appropriate river stretches The new simulation will then only work on all upstream stretches If the active scenario already contains simulation results these will be deleted after confirmation from 46 ECETOC Special Report No 16 the user before the new sub catchment is selected For identification purposes the selected stretch is coloured red and the end of the simulated river network is marked with a red dot This feature reduces the simulation time if only a smaller sub catchment is of interest However it should be noted that not all of the analysis functions will work on sub catchment data 3 3 3 Unselect Subcatchment This item is only enabled if there is a sub catchment selection within the active scenario It will undo a former sub catchment setting If the scenario includes simulation results these will be deleted after confirmation from the user before the entire catchment is once again selected 3 3 4 Edit Market Data The Edit Market Data dialog enables you to specify site specific consumption data To cover industrial sites users can enter
57. ctures theme is a special theme which is only visible if photos are available to give users a better impression of the catchment The view title bar now gives some summary information about the data displayed the name of the scenario the substance and the catchment The m in brackets warns users that there are unsaved changes It can either appear for the scenario or the substance To also see the comments of a scenario click with the right mouse button on the main display map A dialog with the scenario settings will appear Scenario Information Title GREAT ER Tutorial Catchment Aire Substance LAS 25496 8 0 Comment GREAT ER Tutorial substance LAS Catchment Aire Ouse Yorkshire UK Sample scenario for tutorial created with GREAT ER 1 0 Figure 2 8 Scenario Information Dialog The title bar of the ArcView application now displays the name of the active scenario see above This is helpful if more than one scenario is open and visible on the screen At this stage the user can experiment with the some of the tools e g identify zoom pan The identify tool presents the attributes of selected geographic objects The user can select a theme from the table of contents e g discharge sites click on the i icon and then click on a relevant map object e g a discharge site to view the various attributes associated with that object Sometimes due to the scale of detail more than one object might
58. d if the substance database contains at least one substance You will be prompted by a list dialog to select one of the substances from the database The chosen substance will be loaded for the active scenario If the previous substance has been modified a dialog will ask you to save the former substance data to the database If there is an open scenario with a substance that has the same ID a hint will be prompted 3 2 3 Pick Substance This item is enabled if you have more than one open scenario It enables users to transfer substance data from a different scenario By picking a substance it is easy to create a scenario with a substance that was perhaps once edited but not stored in the database e g experimental parameter modifications invalid parameter set If you select a substance a confirmation dialog will ask if you wish to save the current substance data The only way to avoid the replacing of the substance related to the active scenario is to say No at this stage and prevent an existing data set being overwritten in the substance database 3 2 4 Edit Substance This item is enabled if the active scenario has a substance The substance dialog will be shown to allow editing of any substance data in the active scenario The dialog is described under New Substance 3 2 5 Close Substance This item is enabled if the active scenario has a substance This command will remove the substance from the scenario If the substance has
59. directory name tutorial Cancel Figure 2 6 Scenario Directory Dialog Finally to accomplish the generation of scenario data structures two dialogs will be presented to you Model Selection and Catchment Data Once you are more familiar with the software you may use these dialogs to speed up the input process for a simulation Currently you only have to leave them with OK The dialogs will be explained later in this tutorial Upon leaving these dialogs GREAT ER loads the data and displays the selected catchment on the screen Figure 2 7 a Active Scenario GREAT ER Tutorial GREAT ER Substance Catchment Model Analysis Display GREAT Help EN BS GREAT ER Tutorial m LAS 25496 87 0 m Aire Site Pictures Y Discharge sites e Y River net A Y Discharge connection Y Catchment Area Figure 2 7 Scenario Tutorial with Catchment Aire 14 ECETOC Special Report No 16 The view now displays the Aire catchment with river network discharge sites and catchment boundary as mentioned in the view s table of contents to the left of the map The user can check tick the different map themes in this table to select those required on the display The discharge connections are needed because sewage treatment plants may be situated at some distance from the actual discharge point into the river Usually the distance is too small to be seen on the full catchment scale The site pi
60. ditional information for selected pilot regions The installation requires a minimum free hard disk space of approximately 50 MB 1 2 SET UP GREAT ER comes with its own set up program specifically designed for the installation of the complete modelling system It can be found in the root directory of the GREAT ER CD ROM It is recommended to exit all other running applications while installing GREAT ER on your computer Installation steps some terms are language dependent and may be different on your WINDOWS NT 4 0 version 1 Insert the GREAT ER CD ROM into your CD ROM drive Run the setup program by selecting Execute from the WINDOWS NT 4 0 Start Menu Type e g setup exe and click the OK button Please note that D may have to be replaced by the letter of your CD ROM drive 2 The first dialog appears showing you the licence text of GREAT ER Please ensure you have carefully read and understood all the terms of the licence agreement If you agree to the licence agreement proceed with the installation by clicking the Accept button If not select Cancel The installation will then be aborted and GREAT ER will not be installed on your system At any time during the installation you can return to a previous dialog to modify settings by clicking the Back button 4 ECETOC Special Report No 16 3 Select the type of installation either full installation or CD based installation lt is recommended to proceed with the
61. e characterised by estimates of the foul sewage component of the discharge It should be noted that there where many consents for small works that were not considered in this study furthermore there was no attempt to quantify the discharge non YWS consents The reason for this was that the majority of non YWS consents did not hold information related to volumetric limits with volumetric checks not forming part of consent compliance checks within the catchments Reservoir release profiles The primary source of the data used for quantifying reservoir releases was the Institute of Hydrology Report 99 A study of compensation flows in the UK Gustard ef al 1987 Within this Report reservoirs with a capacity greater than 500ML or a catchment area greater than 5km were listed including information on the amount of compensation release and or the release policy from the reservoirs Where multiple reservoirs were linked in a system of supply only and compensation reservoirs the lowest reservoir usually compensation only was taken to represent the whole system In Micro LOW FLOWS influence features lying upstream of an impounding reservoir are ignored in the calculation of downstream flow estimates For this reason in the majority of cases the upper reservoirs were not represented within the software In total 37 reservoirs where included within the software Calibration of the Impacts of the artificial Influence Once the artificial influence d
62. e or more easily make a complete reinstallation First check whether you have read access to the data Background data not loadable ODB either access problems or a file is missing or corrupt Parts of the background data you selected are missing or unreadable First check if data is available and change access restrictions if necessary If the data is missing try to reinstall GREAT ER over your existing installation to restore the data If the data is not part of the original GREAT ER package contact the party you received the data from xxx table not editable Analysis aborted This is usually due to access restrictions You require write access in the directory named by your lt TEMP gt system variable Picture theme missing Function not available The picture theme is not in the scenario dictionary structure This implies a corrupt scenario Create a new scenario using the same catchment If the error persists you need to reinstall GREAT ER over your old installation Picture theme seems to be corrupt Function not available Essential fields are missing due to corrupt or manually changed data If the catchment was part of the CD reinstall GREAT ER over your old installation If not contact the catchment s data provider to enquire how to proceed Not able to save scenario odb This is caused by a missing write access in your scenario directory i e a subdirectory under the directory named by your lt GSCENARIOS gt
63. e settings behind the user interface and enable you to safely save any remaining open scenarios After selecting this item you should close GREAT ER and restart Errors may occur if attempting a very large number of Monte Carlo shots for example or if the numerical solution becomes unstable for some reason GREAT ER User Manual 49 3 5 ANALYSIS The Analysis menu provides further functions for the analysis of model results The menu items are only enabled if the active scenario contains model results Please note that the GREAT ER analysis tools are designed to analyse distributions of values Although it is possible to run a simulation with one Monte Carlo shot the analysis functions will probably fail if this is attempted 3 5 1 Calculate River Csim X Since GREAT ER calculates a distribution of concentrations for each stretch based on the Monte Carlo simulation this menu item enables users to calculate any percentile from the distribution of C sim internat The model results are considered as log normal distributed After specifying a percentile the unit is per cent hence the specified value must be greater than 0 and less than 100 the values will be derived per stretch and a new field will be added to the results table After calculation a new theme is displayed in the scenarios view entitled Csim xx unit The colouring is the same as that used for the mean values The analysis methods mentioned below are possible for e
64. e data to create a smarter presentation using your favourite data plotting or spreadsheet program The chart options of ArcView are quite limited Only 50 data points can be displayed within an X Y plot used for the concentration profile along a river For this reason the profile might not display all stretches downstream from the selected stretch To deal with this limitation GREAT ER provides users with the Export Profile feature to write the complete stretch set to a file either plain ASCII or dBase for further analysis or more comfortable plotting with the user s favourite data plotting or spreadsheet application 3 5 8 Export Profile This item is only active if there is already a plotted river concentration profile A file selection dialog appears enabling users to specify a file name for the profile It is recommended to first select the target directory by browsing through the directory tree The file type can then be specified by the file name extension use a t xt to export in plain ASCII or dbf to export a dBase file See Section 2 7 for more information 3 6 DISPLAY The Display menu provides several commands for extending or changing the visual appearance of the data under investigation Some commands Full Catchment Extent Zoom In Zoom Out and Identify 52 ECETOC Special Report No 16 are standard ArcView features and also available in the tool bar None of the commands influence or change the simulation input o
65. e neglected Hence these two methods are most relevant for option B where only the loaded stretches are considered 3 Weighting by flow increment considers all stretches within a catchment The weighting of a stretch is calculated by the difference of flow in relation to its upstream stretch two stretches in the case of a confluence Thus the values related to stretches are similar to those in weighting by length A slight accentuation might be given to receiving stretches because in addition to the natural flow increment these are also artificially influenced by the waste water flow The initial stretch of a river is considered with its complete flow there is no longer an upstream stretch and thus the increment is the flow If these stretches are unpolluted the weighting method is largely independent of the scale of detail of the digital river network Regardless of how detailed rivers are digitised the flow of a given stretch can be considered as the sum of all its upstream stretches and therefore the stretch representing the headwaters is of the same value as all stretches considered separately The calculation of PEC catchment can be based on any of the previously derived percentiles of the model results When selecting PECcatchment the existence of previously calculated values is first checked because depending on the catchment extent and detail of the digitised river network the calculation GREAT ER User Manual 31 may take sever
66. e scenario and save it again Wrong number of items in scenario odb The basic scenario settings seem to be damaged This may imply a loss of data You need to reconstruct the scenario and save it again preferably using a different name No view for active scenario This problem should not normally occur It indicates that the system has become unstable You should therefore leave GREAT ER without saving Active scenario not found This problem should not normally occur It indicates that the system has become unstable You should therefore leave GREAT ER without saving Simulation results are stored under your scenario directory in the files pec dbf and pecstp dbf Scenario data seems to be corrupt The scenario data structure would appear to have been seriously corrupted Saving is no longer possible Simulation results which you might want to keep are stored under your scenario directory in the files pec dbf and pecstp dbf Exit the scenario without saving No catchment database found The essential file catchments dbf is missing You have to reinstall GREAT ER or only the file by extracting it from the file greater zip stored on the CD to the directory SGHOME catchments xxx table fields missing Function not available The table seems to be corrupt or has been edited manually You have to reinstall it by extracting it a dbf file from the file greater zip stored on the
67. e simulation The background concentration is not considered within the elimination processes The concentration has to be entered before running a simulation The unit is always mg L After the simulation the specified background concentration will be added to the model results If the model results are displayed in a different unit an automatic conversion will be activated for the background concentration Depending on the extent of the catchment the addition may take some time Finally a remark is added to the scenario s view title bar Background Concentration xxx mg L to indicate that the background value has been added To remove a background concentration enter a concentration of zero in the dialog 3 4 4 Start Simulation This command will start the simulation for the active scenario if all required data have been specified Only one simulation is possible at a time for the same catchment but different catchments can be simulated simultaneously In other words if a simulation is launched for a scenario after some seconds due to precise timing of the system it is possible to proceed with other catchments More details about starting a model are given in the tutorial section 2 4 of this user manual 3 4 5 Stop Simulation This item is a kind of safety guard If a simulation fails for some reason identified for example by an error message titled rsxnt you should select the Stop Simulation menu item This will change som
68. ee describes the hydrological model developed for the Lambro pilot study catchment In this case traditional hydrological techniques were used to harmonise the gauged data associated with five gauged locations within the catchment These data were used to statistically describe the flow regimes The flow statistics were then extrapolated to the ungauged river sites within the network using the river network based modelling framework as that used in the UK Pilot study catchments GREAT ER User Manual 71 B 2 THE UK MODELS AND THE RIVER NETWORK BASED MODEL FRAMEWORK The first major UK study of the relationships between low flow regimes and physiographic and climatic catchment characteristics and associated hydrological models was published by the Institute of Hydrology as the 1980 Low Flow Studies Report NERC 1980 The techniques for estimating annual and monthly low flow statistics are summarised in the following sections Annual Flow Statistics The models used to estimate annual flow statistics are based on a simple conceptual water balance model for estimating mean flow MF and a statistical multivariate model for estimating the Q95 statistic i e the flow equalled or exceeded for 95 of the time from the hydrological response of soil types The mean and Q95 flow statistics estimated from catchment characteristics are used to determine the flow duration curve FDC for an ungauged catchment The overall estimation procedure is presented
69. ems are ordered according to the usual work flow of a simulation session Initially you have to create or select a scenario The next step is to modify the data Usually users will simulate a specific substance with several catchments and may want to use more detailed models if the simple ones identify issues Hence the menu bar reflects this order of steps Substance Catchment and Model The following items enable you to analyse the simulation results and offer various options to display accessory data or to modify the presentation of data based on additional information 2 3 SETTING UP A SCENARIO dar substance C New Scenario Open Scenario Edit Scenario Close Scenario Save Scenario Save Scenario as Delete Scenario Export Import Report Expert Mode Eas yoo use Mode Exit I GREATER terial Figure 2 3 GREAT ER Menu The first menu of the GREAT ER user interface called GREAT ER covers all options to manage scenarios creating new or loading existing ones saving deleting or exchanging with other users As usual for Windows applications this menu also includes the exit item and a list of currently open documents here GREAT ER scenarios 2 3 1 Creating a New Scenario To create a new scenario select the New Scenario item from the GREAT ER menu A new dialog appears ECETOC Special Report No 16 New Scenario ES Please specify a scenario title Optionally you may select a substance and
70. ented in Figure B 2 The regression model relating Q95 to the factional extent of LFHGs was again derived from data relating to 687 UK catchments The model is applied within a catchment by identifying the fractional extents of individual LFHGs within the catchment and taking an average of the parameter estimates for each group weighted by the fractional extent GREAT ER User Manual 73 Low Flow HOST Groups LFHG 1 LFHG 2 LFHG 3 LFHG 4 LFHG 5 LFHG 6 LFHG 7 LFHG 8 LFHG 9 LFHG 10 LFHG 11 LFHG 12 SR ER ER E MEN MURO Figure B 2 Distribution of Low Flow Host Groups across the Yorkshire Region The procedure for deriving the long term flow duration curve at an ungauged site utilises natural long term annual Q95 as described above to select a flow duration curve from a family of type curves standardised by the mean flow Gustard et al 1992 These type curves are illustrated in Figure B 3 The type curves adjacent to the estimated value of Q95 are identified and an FDC that coincides with the predicted value of Q95 is generated by linearly interpolating between these curves The final step in the estimation procedure is to re scale the flow duration statistics by the estimated value of mean flow 74 ECETOC Special Report No 16 1 000 gt SSS E SS i 1 S SS 0 p ED 0 os e i dO g0 of time discharge Figure B 3 Annual fl
71. er catchments For each licence the data consisted of details relating to the number and location of abstraction sites covered by the licence abstraction purposes licensed quantities for purposes licenced season for each purpose and time series of actual annual abstraction volumes for the past 10 years These are provided by abstractors to comply with Section 201 of the 1991 Water Resources Act and the previous 1963 Act Using the actual abstraction volumes an average annual abstraction volume was calculated for each purpose and site Within Micro LOW FLOWS the techniques for incorporating artificial influences require the identification of net monthly influence profiles upstream of a stretch To construct abstraction profiles for each licenced site the annual abstraction rate for each purpose at the site was distributed over the twelve months according to the season specified on the licence for the purpose Where the seasonal period was not available a season was inferred based on existing knowledge of typical profiles for different abstraction purposes Bullock et al 1994 The distributed abstraction profiles for individual purposes at an abstraction site were then summed to give a total abstraction profile for each site 80 ECETOC Special Report No 16 Discharge data The 28 primary waste water treatment plants in the Aire and Calder catchments have been characterised in GREAT ER and were included within the hydrological model These wer
72. es are rarely limited by soil moisture deficit The adjustment factor r reflects the impact of soil moisture deficit and associated reductions in transpiration rates observed in low rainfall catchments The regression model for r used climatic data and gauged runoff data from 687 catchments within the UK The long term mean flow is then estimated by rescaling AARD by catchment area Annual flow duration curve The flow duration curve represents the complement of the cumulative distribution of daily mean flows over a specific period Using the FDC it is possible to identify the percentage of time that any given flow is equalled or exceeded Studies have demonstrated NERC 1980 that in the temperate Europe the gradient of a FDC or variance of a flow distribution is principally controlled by the catchment low flow response which in turn is strongly related to the hydrogeology of the catchment The key low flow statistic used within the model to characterise the low flow regime is the annual Q95 flow standardised by the mean flow to minimise the influence climatic controls Analysis of UK gauged flow records has demonstrated a strong relationship between this Q95 statistic and the gradient of the FDC A statistical multivariate regression model has been derived which relates the standardised Q95 statistic to the hydrological characteristics of soils within gauged catchments The distribution of these hydrological soil groupings in Yorkshire is pres
73. es with impermeable soils underlain by dolomite geology GREAT ER User Manual 83 The undulating land between Lake Pusiano and Milan contains large areas of intensive industrial and residential landuse such as the city of Monza and the Brianza area as well as large tracts of arable land Permeable to very permeable gravels and sands characterise the lithology of this portion of the catchment Current indications are that groundwater interactions begin in the vicinity of Monza at the downstream end of the catchment Gandolfi pers comm 1998 The flow regime in the catchment north of Milano is basically natural However the city of Monza to the north east of Milano represents an area where major discharges from sewerage works occur and other minor discharges and abstractions are likely to occur The majority of the water supply for the city of Milano is drawn from groundwater aquifers that do not interact with the Lambro river system and it is likely that returns in the form of sewerage effluent occur downstream of the catchment considered Accurate quantification of discharges and abstractions within the catchment was not possible due to a lack of data Hydrologic and Climatic Data Sources The Pilot Study catchment north of Milan was divided into five sub catchments at the location of flow gauging stations see Table 2 Table 2 Guaging Station Catchment Area km Caslino 53 Colombaio 40 2 Lambrugo 170 Biassono 270
74. estimates of Q95 flow at gauging stations B 3 THE HYDROLOGY OF THE LAMBRO PILOT STUDY The Pilot Study in the Lambro catchment represents a typical traditional analysis of the low flow hydrology of a catchment in a data poor region where it is not practicable to construct a statistical model of the form described for the Yorkshire pilot study The sparse data and simple methodology adopted in this study could be compared to the complex techniques employed using Micro LOW FLOWS within the Yorkshire catchments Catchment Details and Water Use The headwaters of the river Lambro lie in the Pre Alps at approximately 1450m above sea level a s l between the southern arms of Lake Como in northern Italy The river flows southwards approximately 130km to its confluence with the River Po at approximately 50m as L The Pilot Study focussed on the portion of the Lambro catchment to the north of the city of Milano with an approximate catchment area of 465km Average annual rainfall for the catchment varies between 900mm and 1500mm The Lambro catchment north of Milan contains two main topographical zones the Pre Alp mountainous region adjacent to Lake Como and the flatter undulating lands to the north of Milan The headwaters of the catchment discharge into a natural glacial lake Lake Pusiano which then discharges to from the upper reaches of the Lambro south of the town of Erba The headwaters of the Lambro upstream of Lake Pusiano consist of steep slop
75. except that the selected rectangle indicates the area and factor for zooming out The smaller the selected area the higher the zoom out factor GREAT ER User Manual 53 3 6 6 Show River Flows This function creates a copy of the current river network theme and associates the mean river flow m s with the line thickness considering the whole river network The new theme shows a flow classification with 5 classes The functionality of the command can also be reproduced by applying the legend editor except for copying the theme 3 6 7 Select Rivernet by Flow This command allows users to reduce the number of displayed river segments using the criterion of minimum flow A dialog will ask for the minimum flow value m s to be displayed Those river segments with a mean flow lower than this value will then be made invisible This command is directly applied to the river network theme of the active scenario no copy of the theme is created Hence a value of 0 or any negative number means all stretches are displayed 3 6 8 Identify This command works in a similar fashion to the ArcView identify tool By clicking anywhere in a view attributes of features of all active themes are displayed in several subsequent dialogs For some themes more than one data subset is available The data set can be selected in the upper dialog list field Only those items which are known to GREAT ER will be listed together with an appropriate descri
76. ferent chemicals and chemical consumption patterns The simulation input consists of a scenario independent and a scenario dependent data set These data are expressed as statistical frequency distributions incorporating seasonality and parameter uncertainty Environmental characteristics are constant and hence non scenario dependent These include the river network structure flow and flow velocity GREAT ER User Manual 67 distributions discharge point locations treatment plant information emission data properties of sewers and small surface waters etc Chemical specific information is scenario dependent chemical properties i e biological chemical and physical properties specific process rates and chemical market data i e per capita product consumption rates Market data are geo referenced in the same way as the waste water information i e related to waste water discharge points The simulation input data are expressed as statistical frequency distributions This allows to include both seasonality effects and parameter variability and or uncertainty into the simulation input For river flows and flow velocities the lognormal distribution is used after NRA 1995 For hydrological information this distribution is described by the mean and the 5 percentile In the case of flows there is a 95 probability that the 5 percentile low flow also referred to as Q95 is exceeded P Q gt Q95 0 95 The simulation result
77. flow duration curves estimated for the catchment upstream of the dam site If an abstraction licence relate to groundwater abstractions an estimate of the impact of an abstraction profile on the nearest river reach is derived using an algorithm based upon a modified version of the Jenkins superposition method Jenkins 1970 This is applied to the Theis analytical solution for predicting the impact of a groundwater abstraction from a phreatic aquifer Theis 1941 The algorithm requires the user to define values for aquifer transmissivity and storativity The distance of the abstraction site from the nearest stream is calculated automatically using the grid reference of the site in conjunction with the digital river network The derivation of these monthly volumes is presented in the context of the Aire and Calder catchments in the Yorkshire Pilot Study When estimating the flow regime at a site the software uses the river network to identify all upstream influence feature sites discounting those that lie above impounding reservoirs The individual monthly profiles for each upstream site are then accumulated into a total monthly influence profile for each influence feature type The monthly profiles for discharge sites then added to the estimated natural monthly mean flows and the accumulated monthly influence profile for abstractions is subtracted from the natural monthly mean flows to derive influenced monthly mean flow estimates These influenced estim
78. h and does not account for spatial and temporal variability in landscape characteristics river flows and or chemical emissions Hence the results are merely applicable on a generic screening level since these models do not offer a realistic prediction of actual steady state background concentrations In addition the default EU generic regional environment EEC 1996 assumes treatment of only 70 of the waste water mass loading leaving 30 of mass loading to this generic region untreated 2 ECETOC Special Report No 16 The objective of the GREAT ER project is to develop and validate a powerful and accurate chemical exposure prediction tool for use within the EU environmental risk assessment schemes This new database model and software system is developed to calculate the distribution of PECs both in space and time of down the drain chemicals in European surface waters on a river and catchment area level The GREAT ER software system uses a Geographic Information System GIS for data storage and visualization combined with simple mathematical models for the prediction of chemical fate Hydrological databases and models have been used to determine river flows in the pilot study areas GREAT ER provides an accurate prediction of aquatic chemical exposure and allows the calculation of a realistic distribution of environmental concentrations of down the drain chemicals for use within the EU environmental risk assessment schemes The aim of G
79. hat a simulation is running for the active scenario The user may now proceed to work with another scenario or even on the scenario view currently under simulation You should not modify scenario parameters while a simulation is running You should also bear in mind that any user interaction while a simulation is running may significantly increase the simulation running time After the simulation has finished the results will be displayed on the screen The river stretches will be coloured according to the model results A new theme will also be visible in the view s table of contents entitled Csim mean Csim stands for simulated concentration in contrast to monitored concentration mean indicates that the different colours represent the mean concentrations resulting from the Monte Carlo method More specifically the mean value is given aS Csim interna Which is described later in more detail 24 ECETOC Special Report No 16 Active Scenario GREAT ER Tutorial GREAT ER Substance Catchment Model Analysis Display GREAT Help RR aa CH GREAT ER Tutorial m LAS 25496 87 0 m Aire _ Site Pictures Y Discharge sites e Y River net SC Y Csim Get fu Ry 0 70 05 10 05 26 357 26 357 42 661 42 661 Y Discharge connection Y Catchment Area CH Figure 2 19 Visualisation of simulation results for the Aire catchment If you need to abort a simulation for some reason click on the simulation progress window A dialog
80. he Exit command 3 1 12 nascenario title This item list shows all currently opened scenarios Selecting a scenario title makes this scenario the active one The menu item of the active scenario is not selectable given in grey 3 2 SUBSTANCE The Substance menu contains all functions necessary to modify the substance related to a scenario It also offers features to manage the substance database 3 2 1 New Substance This item is only enabled if there is an active scenario because a substance must be connected to a scenario The substance dialog is raised and the substance data should be specified GREAT ER User Manual 43 As GREAT ER uses the Monte Carlo method a distribution can be specified for most of the parameters Depending on the selected distribution various descriptive values have to be entered Conversely switching back from a distribution to a fixed value GREAT ER calculates the mean of the former distribution as its first guess The substance dialog is separated into seven cards identification You can specify the substance name CAS and EINECS number and additional synonyms to aid identification The substance name is essential the other parameters are optional It is not possible to leave the substance dialog with OK i e to use the entered data without specifying a substance name The only possibility would be to abort by Cancel For each parameter a comment can be entered physico chemical properties
81. ic concepts the GREAT ER models perform a stochastic simulation on top of a deterministic model by the Monte Carlo method This covers the variations within the catchment s hydrologic regime but also considers 18 ECETOC Special Report No 16 other parameters For most parameters it is possible to specify a distribution These can be either normal logarithmic normal or uniform Depending on the selected distribution a set of values has to be entered to describe the distribution Leaving the distribution dialog you may notice that distributions are coded by the descriptive values separated by a semicolon Do not try to specify a distribution by entering the values directly Obviously further information is needed to describe a distribution Always use the distribution dialog invoked by the related button if you want a parameter to be considered as distributed in stream removal The in stream removal card enables you to control the elimination processes within the river Only an aggregated first order elimination rate is needed for the simplest river fate model mode 1 The other parameters are only used in higher model modes Another GREAT ER feature is the option to enter a special comment for each value This is useful to document the data sources for the various parameters Try the comment button to obtain further information on the elimination rate market data The market data card enables you to specify a general consumption
82. ined format is given The required files have to be produced from the original 38 ECETOC Special Report No 16 raw data either manually or from some customised software routines which could be developed if required a Ol Data Bice Conversion of data formats manual semi automatic River Network My en ai Ch Raw data in any digital format E 5 Map O Digital k narge Network paste Data in pre defined formats Geo referencing database operations and format conversions gt 90 automatic lt 10 semi automatic Complete processed data set Figure 2 32 Two step data processing Once all the required data have been converted the second step is quite simple Most of the work is done automatically via makefiles and several scripts These will execute the necessary format conversions data joining etc and finally the installation of the new catchment All routines used for the production of the currently included catchments are available as source codes e g for MicroLowFlows datasets and can be studied contact ECETOC for further information GREAT ER User Manual 39 3 MENU STRUCTURE The following sections provide a brief description of all the menu items within GREAT ER 1 0 Sections 3 1 3 2 3 3 etc correspond to the main menu groups GREAT ER Substance Catchment Model Analysis and Display The various sub sections then describe each of the options within these
83. information and the following sections are especially useful m Introduction to ArcView This provides a useful introduction to the basics of ArcView the different types of data and so called Documents m Creating and using maps This gives a useful description of views which display maps and are therefore the central item of the GREAT ER user interface m The sections on Displaying a view and Choosing colours and symbols are also useful Both contain information on how to work with views and how to modify the presentation of maps and data These basics are sufficient to understand the terminology used in this user manual and to run simulations with GREAT ER If you intend to print or export maps to include simulation results in other documents or papers you should read the chapter on Laying out and printing maps The chapter in the ArcView handbook with the same name is also helpful A basic understanding of the user interface facilities of ArcView Menu Bar Button Bar Tool Bar and Windows in general will be useful 6 ECETOC Special Report No 16 2 TUTORIAL The essential steps to run a first simulation of GREAT ER are printed within a grey shaded box like this one They represent the minimum contents of the tutorial A typical GREAT ER session will generally involve a series of steps as outlined in Figure 2 1 The complete tutorial chapter is seen as a guided tour through all the main features of GREAT ER
84. isk assessment are the functions to calculate PEC Predicted Environmental Concentration values Please note that the GREAT ER analysis tools are designed to analyse distributions of values Although it is possible to run a simulation with only one Monte Carlo shot the analysis functions may fail if this is attempted 2 5 1 PEC Calculations Figure 2 19 shows clearly that GREAT ER is able to predict the spatial distribution of concentration based on real catchment data and known properties of a substance This is a much more advanced tool than the generic regional or multi media approaches GREAT ER also proposes some novel PEC concepts for characterising exposure in river catchments Boeije et al 1999 Several values are provided which are split into two categories PEC aa and PEC catchment Detailed discussion of the underlying concepts is beyond the scope of this user manual although a brief description is given below For further information refer to the technical manual PEC initia This is the spatial aggregation of concentrations in the river directly after emission This is similar to the D eat as defined in the EU Technical Guidance Documents although its calculation is different GREAT ER User Manual 29 Based on the Cin stan Mean values see Appendix A the mean is calculated for all stretches receiving treated or untreated discharges Csim start i PCa eet n Csim start i Is the concentration at the begi
85. ither the default Cgim interna Mean values or a derived percentile 3 5 2 Csim Classes River After a model run has been completed the analysis menu provides various facilities for analysing the results Since the results are stored as frequency distributions it is possible to calculate percentiles of concentrations using Calculate River Csim X for the different river stretches Alternatively the menu provides you with features to modify the presentation of results either by classification or a colour coded combination of concentrations with flows The analysis tools most relevant to risk assessment are the functions to calculate PEC values Predicted Environmental Concentration 3 5 3 Combine Csim Flow The Combine Cem Flow feature generates a new theme considering both Csim interna Mean and mean flow The resulting theme will display the Csim interna Mean classification by colour coding the legend and the mean flow by stretch width The user has the option to specify the number of classes per value The classes will be formed on the definition one class for zero values and equal distances for all other classes 50 ECETOC Special Report No 16 The automatically generated legend can be edited using the ArcView legend You should save this manually created legend file to the scenario directory to reload on demand because the additionally generated analysis themes will not be saved with the scenario 3 5 4 PECinitial Thi
86. knowledge about chemical properties and process specifics Finally the discrete results from each shot are statistically analyzed to obtain distributed results as simulation output For reasons of model and data set simplicity and computation performance only steady state model formulations are applied Hence a number of fundamental assumptions are made 1 constant chemical emissions diurnal patterns in product and water consumption are disregarded as well as variations between different days of the week 2 constant flows within each steady state model calculation run 3 constant environmental properties To allow a straightforward mass balancing approach all determinands chemical levels water flows are expressed as fluxes Chemical mass fluxes mass time are applied to describe chemical loads Water flows are expressed as volumetric fluxes Q volume time In the models chemical concentrations C mass volume are not used because they are not independent of water flows and they do not describe chemical transport Chemical mass fluxes on the other hand are independent of dilution or flow unless this dependency is implicitly included in the models which are used to calculate chemical mass fluxes When concentrations are explicitly required they are derived from the chemical mass fluxes and the hydrological volumetric fluxes C amp Q Simulations can be performed for different scenarios i e evaluations of dif
87. ment Characteristics Within the Micro LOW FLOWS software a digital river network for hydrometric regions within the UK is archived based on the 1 50 000 scale Ordnance Survey maps Using the river network catchment characteristics are automatically calculated through the generation of a synthetic boundary for the catchment above every stretch Sekulin et al 1992 The synthetic catchment area is determined by the number of grid cells with a resolution of 0 5 km x 0 5 km above each stretch The grid cells are assigned to each stretch based on a shortest distance algorithm and constrained by digitised coastlines hydrometric and catchment boundaries Digital databases of SAAR and PE are archived within the software as well as a grid of standardised GREAT ER User Manual 77 Q95 derived derived from the regression model relating this statistic to UK soils LFHGs All catchment characteristic grids are held at a resolution of 1 km x 1 km Every cell assigned to each river stretch has an associated value of SAAR PE and Q95 Catchment average values of these climate and low flow characteristics can be determined by accumulating the number of squares above a given stretch and taking the average of the individual grid square values These catchment average values form the input into the models described in the preceding sections The river networks for Yorkshire and the reach scale natural estimates of Q95 derived using Micro LOW FLOWS are presented i
88. n Figure B 5 ESTIMATED Q95 m43 s 0 001 Ki ES O E u 0 100 E 10 00 E Figure B 5 Natural Q95 estimates for the Yorkshire rivers Incorporating Artificial Influences The software incorporates databases of gauging stations licensed abstractions consented discharges impounding reservoirs and spot gauging information Sites associated with these features are geographically located by grid reference and are automatically assigned to the closest river stretch Within the existing framework of the commercial version of Micro LOW FLOWS the information relating to gauging stations and spot current meter readings are held for information only The impacts of abstractions discharges and reservoirs on the downstream flow regimes are automatically incorporated into the natural flow estimation procedures Artificial influence sites are quantified in terms of a typical monthly volume for each calendar month within the year Reservoirs are 78 ECETOC Special Report No 16 single site features whilst abstraction licences and to a lesser extent discharge consents may be multi site features In the case of abstraction licence and discharge consents the monthly volumes relate to water that is either abstracted or discharged however the situation is more complex for reservoirs The monthly profiles for reservoirs represent a combination of estimates of spill volumes and compensation releases for each month minus the natural monthly
89. n dialog as under Open Scenario will appear giving you the option to specify the scenario you wish to delete A simple confirmation dialog will follow if there is no open scenario with the same title 3 1 8 Export Import The Export item is only active if there is at least one open scenario The related function acts on the active scenario The mport item is always active The Export Import feature helps the exchange of simulation data and results between different users The export function applies to the whole active scenario including any additional documents derived from the model results and stored in the scenario subdirectory Please note that the export import feature does not include the geographic data such as river network due to possible licence restrictions Therefore users have to ensure that they are working on identical geographic data sets if they want to exchange and work with scenario data When Export is selected a dialog appears in which you specify where a scenario is to be exported to you have to enter a file name and can also select a directory The complete scenario directory will be written to the export file When the inverse process of import is selected a dialog appears asking you to select the export file After OK the scenario data set will be included in the existing scenario database 3 1 9 Report This menu item is active if there is at least one open scenario The complete scenario data setti
90. ngs and results will be written to a formatted ASCII file which the user specifies in a file selection dialog 42 ECETOC Special Report No 16 This will also include any comments entered for the various parameters 3 1 10 Expert Mode Easy to use Mode The user can toggle between these different modes Under the Easy to use Mode the item Expert Mode option will be visible and will launch the expert mode of GREAT ER The complete range of menus and tools will then be available In the Expert Mode the Easy to use Mode command sends users back from the expert mode to the easy to use mode All additional menus and some tools etc are removed Many changes such as new themes added to a view are not reversible and these will still be active If it is required to remove a theme the user must delete them manually either using the expert mode or the menu item Display Remove Themes 3 1 11 Exit This command will quit ArcView after confirmation For each still open modified scenario a save request will appear If any major problem occurs during this procedure the Exit routine will abort A possible error screen after closing GREAT ER is related to the implementation of ArcView itself and is not a bug of GREAT ER Note that it is not possible to exit GREAT ER by clicking on the cross in the top right hand corner as in other Windows applications If this is attempted a message is given requesting the user to use t
91. nning of river stretch i directly receiving treated or untreated waste water emissions By definition the PEC as is calculated from the Csim star mean values This calculation is started by selecting the item PECinitial Please note that PEC calculations are not available if a Sub catchment is selected After the calculation a dialog displays the result alongside additional information PECinitial The PECinitial is defined as the mean of all Csim start mean values of stretches directly receiving a treated or untreated waste water emission For the results theme Csim mean ug L Field CsimstartM the PE Cinitial value is 92 7307 ug L Figure 2 25 PEC inj calculation results PEC catchment This is the average of representative concentrations over the entire catchment This is a new concept for geo referenced exposure assessment although there is some analogy with the PECregiona in the EU Technical Guidance Documents The most representative value for the concentration in the stretch is taken as Csim interna the average concentration for the stretch However different values could be used and in order to demonstrate the effect of using different possible definitions GREAT ER computes four different PEC catchment values These values differ in the set of stretches selected for the calculation and in the weighting of concentrations 30 ECETOC Special Report No 16 All PECcatcnment Values are defined as
92. of mechanistic models cf Trapp and Matthies 1996 and degradation is further split up into three sub processes biodegradation hydrolysis photolysis The chemical s water solubility is also taken into account 70 ECETOC Special Report No 16 APPENDIX B HYDROLOGICAL MODELLING WITHIN GREAT ER B 1 INTRODUCTION Estimates of the magnitude and variability of river flow and flow velocities at ungauged river reaches are an essential component of GREAT ER There is a considerable variation in river flow behaviour across Europe over both space and time The seasonal flow regime of a Mediterranean catchment with its winter high flows dry periods in summer and frequent flash floods is very different from that of an English lowland chalk stream where flows show little variation over the year Both have a very different seasonal regime from a catchment in the Alps where maximum flows follow the spring snowmelt At the broadest European scale river flow regimes are dependent on rainfall temperature and evaporation At a finer scale the detailed effects of a particular climate on river flows are controlled by the physical properties of the catchment River flow regimes are also affected directly and indirectly by human activities such as reservoir impoundment abstraction of water and effluent discharges Taking the UK as an example of a member state with a mature river gauging network less than one percent of reaches mapped at a scale of 1 50
93. ow 2 1 2 Substance Database The substance database contains all the substance specific information for any substances that have been included The data may include physico chemical properties partitioning degradation sewage treatment removal in stream removal and market data depending on what information are available It also includes various identification parameters such as the substance name CAS No Chemical Abstract Service Number etc The substance unique ID key which is displayed on the screen is actually made up from the substance name and its CAS No It is easy to add new substances or edit substance data as required However note that the default data delivered with GREAT ER for Boron and LAS have been quality assured and it is not recommended that these data are modified unless new quality assured data become available 2 1 3 Expert Mode vs Easy To Use Mode GREAT ER offers two modes for the user interface The expert mode and the easy to use mode GREAT ER User Manual 9 Expert in this context requires familiarisation with ArcView The expert mode gives access to ArcView operations and commands This includes the possibilities of undocumented changes or deletion of basic GREAT ER data sets Obviously this feature provides additional capabilities but also contains a hidden danger The user should therefore decide carefully whether to perform operations in the expert mode or not Easy to use basically makes
94. ow duration type curves Monthly Flow Statistics The estimation of monthly flow duration curves is an essential step in incorporating the impacts of artificial influences into the estimates of annual MF and Q95 The overall estimation procedure for monthly statistics is summarised in Figure B 4 and the individual steps in the estimation procedures are briefly discussed in the following sections In common with the long term flow statistics and the key monthly statistics that need to be determined are the mean flow the annual Q95 and the FDC GREAT ER User Manual 75 Estimation of Estimation of catchment rainfall catchment evaporation Calculation of long term mean flow Estimation of monthly runoff volume Calculation of monthly mean flow Estimation of fractional extent of soils Calculation of Calculation of long term Q95 MAM 7 Calculation of monthly flow duration curve Construction of annual flow duration curve Calculation of mean monthly minima Figure B 4 Procedure for estimating natural monthly flow statistics 76 ECETOC Special Report No 16 Monthly Mean Flows The derived monthly FDCs are dimensionless curves expressed as a percentage of the monthly mean flow In order to express this curve in units of flow it is necessary to re scale the FDC by an estimate of the monthly mean flow The variability of Monthly Runoff Volume MRV can be linked to the magnitude of the standardised Q95 statistic i
95. p program it is now missing maybe deleted manually A following dialog enables you to specify the home directory for the current GREAT ER session but it is recommended to set the variable permanently with the system settings No unit information available Unit is set to mg L Please check your system scenario parameters For some reason the automatic unit conversion has failed The simulator output is mg L so it is assumed that the loaded data is in this unit Please check this assumption This message also appears when no release of the substance has been specified e g a catchment with only industrial discharges and no site specific release GREAT ER User Manual 57 4 GREAT ER menu not found The GREAT ER menu structure seems to be corrupt This can happen by modifying the structure in the Expert Mode A rough solution is to leave GREAT ER without saving anything If you want to save your scenario data you have to restore the menu structure See the ArcView manual for customising a project Check the menus for the View Doc Rename the one which contains the usual GREAT ER commands back to amp GREAT ER Exit item not found The GREAT ER menu structure seems to be corrupted This could happen by modifying the structure in the Expert Mode A rough solution is to leave GREAT ER You may save your scenarios before leaving An alternative is to restore the menu structure See the ArcView m
96. parate sub directories under this specific GREAT ER scenario directory Each sub directory contains several tables with data such as discharge data editable by the user and all additional settings mentioned above Simulation results are also stored in this directory It is suggested to store further analysis results under this sub directory too This will increase the transparency of simulation results if all coherent data are stored in one directory structure But please note that in this case deleting a scenario will also delete any results derived from this scenario Given the described scenario database structure it should be noted that the exchange of scenarios with other GREAT ER users will not work via scenario database files but with the export import feature described later see Sections 2 7 and 3 1 8 2 1 1 2 Active and Open Scenarios In GREAT ER you can have many open scenarios only one of which can be active at one time The name of the active scenario is shown in the ArcView title bar Scenario related operations always are performed on the active scenario e g Close Scenario Edit Data Start Simulation etc The view window that corresponds to the active scenario is usually visible at the front If a catchment has not yet been specified the overview of Europe is visible The active scenario can be set by creating a new scenario selecting a scenario from the scenario database or by activating the corresponding View wind
97. ption and unit Other items possibly added in the expert mode will not be displayed After selecting OK the information about the next theme is shown Cancel will stop the subsequent presentation In the expert mode this special Identify dialog is switched off and replaced by the standard ArcView Identify dialog 3 6 9 Show Site Pictures If the corresponding catchment offers site pictures the mouse pointer will change its shape and the site pictures theme will become active Locations at which pictures have been taken are marked with large dots Clicking on a dot will launch a window showing the picture of the site in question this dialog is a ArcView built in dialog Note that the images are always scaled see check box at the bottom This means that the displayed ratio between width and height may not be the real one 54 ECETOC Special Report No 16 One problem is that scaling may be switched on by default on some small desktop size PCs A picture exceeding the desktop size leads to the problem that the close window button is inaccessible to the mouse 3 6 10 Remove Themes For all selected themes a message will appear requesting whether or not to remove the theme from the view Exceptions are the standard themes River Net Gite Pictures Discharge Sites Discharge Connection and Catchment Area It is not possible to delete these themes via this menu item 3 7 GREAT HELP 3 7 1 Contents The GR
98. r output 3 6 1 Add Background Data This command will offer a selection of available background information A set of transport and population data is provided for all GREAT ER catchments derived from the Digital Charts of the World DCW Selecting the DCW Roads Rail Roads City Areas and City Names will be displayed for the whole country to which the catchments belong The resolution of the DCW data is 1 1 000 000 Furthermore for most catchments monitoring and similar data e g water quality classes are available as background data You can select several background themes at the same time 3 6 2 Remove Background Data All DCW themes can be removed by selecting this menu item Other themes can be removed via the menu item Remove Themes see below 3 6 3 Full Catchment Extent The view of the active scenario will zoom to show the full size of the catchment boundary 3 6 4 Zoom In This item activates the Zoom In tool for all views The change of the tool is also indicated by the change of the mouse pointer when moved across a view You may now draw a rectangle which will define the extent of the new area to be displayed If the shape of the rectangle and the view is different the zoom factor is automatically changed to cover the whole selected area You can also click once anywhere in the view to zoom in with a fixed factor 3 6 5 Zoom Out As the opposite command of Zoom In the Zoom Out tool works in the same way
99. rameters which may ease identification are optional physico chemical properties In the simplest model modes these data are not required They are only relevant for the higher modes as follows partitioning The partition coefficients if entered here will override any estimated values calculated from physico chemical properties In the simplest model modes these data are not required They are only relevant for the higher modes degradation In the simplest model modes these data are not required The parameters are only relevant for the higher modes sewage treatment removal These data determine how much removal can occur during sewage treatment In the simplest mode GREAT ER requires a fixed removal efficiency expressed as the fraction removed during primary activated sludge or trickling filter treatment All other parameters are related to higher model modes Please note that the plant types currently related to the treatment plant in the various catchments delivered with GREAT ER always consider a primary settler as the first step in sewage treatment If you only have an overall removal fraction e g a combined removal fraction for primary and secondary treatment you can set one of them to zero and enter the combined rate in the other The sewage treatment card also gives information on another fundamental GREAT ER concept if you have selected the sample LAS substance data set As described briefly under the bas
100. re an in depth assessment of the intrinsic physico chemical properties biodegradability bioaccumulation potential and hazard or potential effects of the chemical In addition a thorough assessment of the release pathway environmental fate and distribution of the chemical is required based on exposure measurements and or mathematical models In environmental exposure assessment the concentration of a substance in the different environmental compartments is estimated based on physico chemical properties the production and emission processes the use and disposal patterns and the properties of the environmental compartments Since the introduction of risk assessment legislation in the EU separate guidance documents have been prepared for the evaluation of risk for both New and Existing Chemicals 1993 and 1994 respectively Because the Risk Assessment Directive of New Substances and Risk Assessment Regulation of Existing Substances were supported by a number of different technical guidance packages which resulted in different risk assessment conclusions and possibly could lead to different risk management strategies the Commission agreed to develop a uniform guidance package This package EEC 1996 was released together with the supporting risk assessment computer model EUSES European Uniform System for Evaluating Substances 1996 The EUSES modelling approach estimates PECs for fictive environments via a generic multimedia unit world approac
101. rify what action if any is required 1 No substance database found creating new For some reason the default substance database could not be found Therefore a new file entitled substance odb was created to generate a new default database You may try to install manually or to copying another substance database to the default name substance odb 2 Sorry it is not allowed to close this window You have tried to close the view of Europe the GREAT ER basic view by the clicking on the close button X on the window title bar The resulting process would be similar to the menu item Exit but is not stable and may cause loss of data For this reason the action is prevented Please use the Exit item to close GREAT ER 3 Sorry there is already an open scenario with this title It is not allowed to have two open scenarios with the same name The scenario name is the key to identifying a scenario and must be unique Please close the currently open scenario with the name in question if you want to open the new one 56 ECETOC Special Report No 16 It is necessary to first save the scenario For reasons of stability and data safety it is only allowed to change catchment data for an unmodified scenario i e a scenario directly saved before changing the catchment data No substance specified for active scenario No substance found for active scenario As market data and discharge site data dialogs offer users the opportunity to overw
102. rio This item is only enabled if there is at least one open scenario The active scenario will be saved to the scenario database Confirmation is necessary to overwrite a scenario in the database with the same title 3 1 6 Save Scenario As This command is similar to Save Scenario except that you first have to specify a new title and it is not checked whether the scenario has been modified The dialog also provides the option to edit the scenario comments Leaving the dialog with OK you have to specify a new nonexisting directory for the new scenario After using Save Scenario As a message will appear reporting successful completion and reminding GREAT ER User Manual 41 the user of something very important The active scenario stays the original one This means that if you intend to continue working on the scenario just saved you have to load it again separately To avoid confusion it is recommended that the original scenario is also closed prior to loading in the new one Warning If you make changes to a scenario then use Save As then subsequently use Save the ORIGINAL scenario is overwritten This is different to the way other familiar programs work e g WORD or EXCEL which is why it is being highlighted here 3 1 7 Delete Scenario This item is only active if at least one scenario is in the scenario database It is only possible to delete a closed scenario The deleting of open scenarios is prevented A selectio
103. rite general substance settings by site specific values these are only applicable if a substance has already been selected A simulation for this scenario seems to be still in progress This is a typical hint currently not available the function can be executed some time later because it is not possible to run more than one simulation at a time for a scenario This selection tool has to be applied to the active scenario view You have clicked on the view with the European overview while the Sub catchment selection tool was active The message appears because it is not possible to select a stretch from the overview 4 3 WARNINGS Warnings are given if something has gone wrong These are different to errors in the sense that they do not cause a loss of data and may be resolved with the use of the technical documentation Environment variable lt GHOME gt not set This environment variable specifying the GREAT ER home directory is established by the set up program However if this error occurs it means it is now missing maybe deleted manually Following the warning a dialog will be given to enable you to specify the home directory for the current GREAT ER session However it is recommended to set the variable permanently with the system settings Environment variable lt GSCENARIOS gt not set Although this environment variable needed by GREAT ER specifying the GREAT ER scenario directory is set by the set u
104. rovides several dialogs to enter or modify the parameters To display the required parameters according to the selected model s complexity modes GREAT ER aids users with a colour coding within the dialogs Parameters colour coded green are definitely not used by the current model selection nevertheless it is possible to edit these parameters Black parameters might be used within the current model selection and if so these need to be specified Additionally GREAT ER contains a knowledge database of parameters to avoid wrong data entries Values are compared against two ranges a warning range and an error range The warning range specifies the usual range of a parameter If an entry exceeds the parameter warning range a dialog 10 ECETOC Special Report No 16 will point out this possible mistake Nevertheless it is possible to run a simulation with such settings In contrast the error range defines the logical range of a parameter Values outside this range are impossible and will lead to errors If an entry exceeds the error range it is not possible to leave the dialog until a value within the warning range has been entered A dialog will give an error message and hints on the logical range of the parameter Finally for better documentation and transparency of simulation results a separate comment can be entered for each parameter This comment may provide additional information for example about the source of the data such as qu
105. rt of the GREAT ER project The data obtained are stored as geo referenced data i e monitoring sites with monitoring data as attributes within the GREAT ER software To display these data select Add Background Data A dialog will then present a list of all background data available for the active scenario Monitoring data will also be available among these Background data list Select one or more background maps to show on screen Chemical water quality H Cancel Figure 2 29 Select Background Data Dialog The user may select one or more entries For the purpose of this tutorial select River Monitoring and STP FE Monitoring FE stands for Final Effluent and leave the dialog with OK Two new themes are displayed on the view GREAT ER User Manual 33 Active Scenario GREAT ER Tutorial GREAT ER Substance Catchment Model Analysis Display GREAT Help ERE e cam CH GREAT ER Tutorial m LAS 25496 87 0 m Aire _ Site Pictures Y Discharge sites D Y Airerivmon Y Airestomon A Y River net Y Csim H fu Ry 0 70 05 10 05 26 357 26 357 42 661 42 661 Y Discharge connection Catchment Area E Figure 2 30 Display of Monitoring Sites for Aire Catchment Once the data are visible on the display the monitoring data can be investigated using the identify tool In the same way any other available background data can be displayed and interrogated Identify Airerivmon R Aire Apperley Br
106. s are frequency distributions of chemical concentrations incorporating temporal variability For risk assessment purposes these can be expressed as lognormal distributions defined by their mean and 95 percentile values Predicted concentrations are geo referenced in the same way as the input data set river concentrations are associated with a river network structure and waste water drainage area concentrations are associated with discharge points Within one location a further differentiation is made between the maximal predicted concentrations i e upon discharge the minimal predicted concentrations i e after degradation processes and an internal average value For the calculation of the latter specific algorithms have to be provided in the deterministic models Simulation Output The output of a simulation consists of a geo referenced set of predicted concentrations in the aquatic environment For each river stretch the following results are obtained m RIVER CsimM start predicted concentration at the beginning of the stretch CsiM internal average predicted concentration in the entire stretch auer predicted concentration at the end of the stretch m WWTP only if a waste water emission occurs in the considered stretch Cem influent predicted WWTP influent concentration CsiM effluent predicted WWTP effluent concentration A 2 CHEMICAL FATE MODELS Three complexity modes are available At higher complexity modes
107. s is the spatial aggregation of concentrations in the river directly after emission This is similar to the PEC poca as defined in the EU Technical Guidance Documents although its calculation is different Based on the Csim stan Mean values see Appendix A the mean is calculated for all stretches receiving treated or untreated discharges By definition the PEC as is calculated from the Csim stan Mean values This calculation is started by selecting the item PECinitial Please note that PEC calculations are not available if a sub catchment is selected After the calculation a dialog displays the result alongside additional information 3 5 5 PECcatchment This is the average of representative concentrations over the entire catchment This is a new concept for geo referenced exposure assessment although there is some analogy with the PECyegiona in the EU Technical Guidance Documents PEC catchment Is described in some detail in the tutorial see Section 2 5 1 The calculation of PEC catchment can be based on any of the previously derived percentiles of the model results When selecting PECcatchment the existence of previously calculated values is first checked because depending on the catchment extent and detail of the digitised river network the calculation may take several minutes A progress bar will index the progress of the calculation After completion the values mentioned above are listed in a small report window A progress b
108. s to enter additional parameters For example if you need in sewer removal to be considered you have to go back to the substance data dialog to enter a removal rate for sewers Please note that in sewer removal is the only higher model in which only one parameter has to be entered All other higher models require a somewhat larger data set Since GREAT ER uses the Monte Carlo method to provide a stochastic approach the number of Monte Carlo shots performed during a simulation also has to be entered within the Model Selection dialog As a rule of thumb the minimum number of shots recommended to obtain a stable simulation result are as shown in Table 1 Table 1 Monte Carlo Simulation small catchments simple large catchments complex Csim mean 500 2500 Csim 90 2500 5000 Edit model Parameters The Model Parameters dialog allows the user to edit various environmental data and specific properties of the sewer wastewater treatment plant and river models For higher complexity modes a useful feature is the Default button which can be used to assign pre selected values to different parameters However please note that each default value has to be set individually If you want a set of all default values to be used for some scenarios this is currently only possible by creating a generic scenario without a substance or catchment All further scenarios can then be created from this generic one and saved to new scenario
109. system GREAT ER is designed for is WINDOWS NT 4 0 GREAT ER will not work properly under WINDOWS 95 although ArcView 3 0 and 3 1 do Compatibility with WINDOWS 98 was not tested Creating Directories The feature of directory creation is limited within both the set up and the GREAT ER user interface e g new scenario The last directory in a path can be created but new multi stage directories are not possible 2 8 3 Model System The GREAT ER simulation system includes detailed sub models for rivers and activated sludge treatment plants but only a single percentage removal for sewer and trickling filter treatment plants 2 9 ADDING A NEW CATCHMENT The catchment data sets used in GREAT ER are large and relatively complex structures All catchments included in GREAT ER have to be developed using the GIS system ARC INFO However in addition to this several software tools for creating a catchment have also been developed within the GREAT ER project which might be useful for future development and inclusion of new catchments These software tools are not included with the installation software but are available separately please contact ECETOC for further information A general overview of the processing steps is given below The data required to build a GREAT ER catchment may exist in several different formats and or resolution This problem is solved by the definition of an intermediate file format For each data group a GREAT ER pre def
110. system variable Not able to write xxx Scenario may be corrupt now GREAT ER User Manual 65 41 This is caused by a missing write access It may have caused a loss of data No subcatchment selected in the active scenario Although the flags report a sub catchment for the active scenario the required information can not be found in the data structures This suggests the scenario data are damaged Try to recreate the scenario using a new name 66 ECETOC Special Report No 16 APPENDIX A CHEMICAL FATE SIMULATOR AND MODELS A 1 CHEMICAL FATE SIMULATOR Description A detailed description of the geo referenced chemical fate simulation methodology used in GREAT ER was published in Boeije et al 1997 To deal with statistically distributed inputs and outputs a hybrid simulation approach is used involving both stochastic and deterministic techniques The model core is deterministic By means of Monte Carlo simulation a stochastic layer is added on top of this core A large number of shots which are discrete samples from the distributed data set are generated For each distributed input parameter there exists a discrete counterpart in the shot which was sampled at random from the input distribution For each of these shots the deterministic model is called which contains a mechanistic description of the considered processes in the rivers and in the waste water drainage areas Process rates are derived from
111. t order in stream removal assuming a fixed rate coefficient Complexity Mode 2 Complexity Mode 2 allows GREAT ER simulations with a minimal geographically referenced input data set for rivers However for WWTPs a detailed data set is needed as well as a detailed chemical parameters set In sewer removal is assumed to be a fixed percentage and is taken directly from the chemical parameter set Chemical elimination in a WWTP is described by mechanistic mathematical models for primary settling and for activated sludge derived from SimpleTreat 3 0 Struijs 1996 For trickling filter treatment a simple percent removal model is used Like in mode 1 chemical elimination in rivers is described by first order in stream removal but here sorption equilibrium is taken into account The different sub processes degradation volatilization sorption sedimentation are dealt with by fixed removal rate coefficients Complexity Mode 3 Complexity Mode 3 requires detailed parameters for rivers for WWTPs and for the simulated chemical In sewer removal is assumed to be a fixed percentage and is taken directly from the chemical parameter set identical to mode 2 Chemical elimination in primary and activated sludge WWTPs is described by models derived from SimpleTreat 3 0 Struijs 1996 For trickling filters it is described by a fixed removal efficiency identical to mode 1 The separated individual river fate processes are described by means
112. tant rate discharge for lack of other information Interpolation of flow statistics The low flow statistics of Q95 and MF for the five gauging stations in the Lambro catchment were interpolated throughout the digital river network by application of procedures modified from those established within the Micro LOW FLOWS software IH 1996 The procedure involves estimating the Q95 or MF value at an ungauged river reach by taking a weighted average of the flow statistics calculated for the n nearest neighbour gauging stations Nearest neighbour in this context is defined as adjacent but on a common flow path The weight applied to a station was based upon the inverse distance in catchment area space between the target ungauged reach and gauging station The discharges from the treatment plants within the catchment were incorporated into this interpolation procedure The reach based estimates for mean flow in the Lambro catchment are presented in Figure B 8 86 ECETOC Special Report No 16 LEGENO D hleanfk gt JOcumecs hleanfk gt Sande JO mem el Menfkea gt Zand 3 umae A hleanfkr gt Jande 7 ames a Memnfka gt 03 ande J cumas Aa Menfka gt OF and z 03 umea a Hanfi 02 ame fa Gauge Sucio Caligo E Climacic Sain Bevera a Colora muscosul Naviglig Figure B 8 Reach based Mean Flow Estimates within the Lambro catchment GREAT ER User Manual 87 BIBLIOGRAPHY Boeije G M Vanrolleghem P A and Matthies
113. the access rights need to be changed 14 xxx can not be opened for writing This is due to access restrictions and can be solved by changing them This warning involves no loss of data 15 The table of simulation results is not editable Calculation of background concentration xxx aborted This is due to access restrictions and can be solved by changing them 16 Csim theme feature table has errors One of the fields QMean Reallength VMean or PECintMean is missing in the theme s feature table probably due to the fields having been renamed manually This edit need to be undone A second possibility may be that the field is hidden This can be fixed by unhiding the field within the Expert mode 17 The table of simulation results is not editable Calculation of xxx percentile aborted This is due to access restrictions and can be solved by changing them 18 The theme s legend is not as required for PEC s Profile plotting aborted The current legend classification is based on more than one field This is not possible for profile plotting Switch to the one field which should be used for plotting the profile 19 Background data table not found The table that contains information about additional background data can not be found This indicates that the catchment installation routine did not work correctly or the table has been deleted or renamed manually The file backgroundlst dbf needs to be in the director
114. the current catchment e g the Aire upstream the confluence with the Calder in the tutorial sample scenario to focus on the area of interest and to speed up the simulation As with the sub catchment selection the main items of the catchment menu Edit Market Data and Edit Discharge Site Data are also managed by tools After selection the mouse pointer style changes to identify the new mode Click on the catchment map to choose the object to be edited Edit Market Data The Edit Market Data dialog enables you to specify site specific consumption data To cover industrial sites users can enter an additional input into the treatment plant This input reflects discharges resulting from the production processes and can be calculated from the production volume Please note that the calculation of the fraction of the production volume which will be released is not part of GREAT ER but must be calculated beforehand The input considered here is the mass flow independently of substance into the treatment plant in kg a As with the loads from domestic inputs the industrial input is subsequently processed by the treatment plant model if present for the selected location Edit Market Data Rawdon STW x DefaultConsumption LAS 25496 87 0 1 2 kg cap a Please enter site specific consumption and or additional input Cancel Consumption kg cap aj C site specific none additional Input kg a non Figure 2 13
115. ticular the Lambrugo and Colombiao gauges ceased operation in the early 1970 s It was therefore necessary to develop techniques that would allow contemporary flow statistics to be produced Mean Flow estimation Firstly long term climatic trends were investigated to ascertain whether mean flow statistics obtained from data in the 1970 s were appropriate for use in a contemporary period 1980 to 1990 It was found that the contemporary climate represented a period of lower than average rainfall approximately 10 lower than the long term average and higher than average temperature Hence it was not possible to adopt mean flow statistics derived from an earlier period of record and a technique for producing mean flow estimates for the period 1980 to 1990 were developed A simple statistical model IHACRES developed collaboratively by the Institute of Hydrology and the Centre of Resources and Environmental Studies at the Australian National University Canberra was to predict mean flow for the Lambrugo and Colombiao sub catchments using contemporary rainfall and temperature data This model accounts for all of the non linearity observed between rainfall and runoff within a loss model and does not purport conceptualise the physical behaviour of soil moisture Littlewood and Jakeman 1994 A verification period was available for the Lambrugo sub catchment but not for the Colombiao Comparisons of runoff accretion profiles were also used to verify the
116. tion GREAT ER provides users with the Export Profile feature to write the complete stretch set to a file either plain ASCII or dBase for further analysis or more comfortable plotting with the user s favourite data plotting or spreadsheet application Error Calling Unlink GREAT ER combines the data needed for simulations from various tables which is usual for GIS and databases in general ArcView as the underlying database system provides a complex sequential approach for this task The Error Calling Unlink message might occur usually if a network is involved as a result of timing problems while resolving these links possibly while editing a scenario If this error occurs it is recommended to close the scenario and GREAT ER immediately Error in Application Closing GREAT ER and therefore ArcView might lead to a cryptic error message caused by ArcView This is not an error of GREAT ER but of ArcView itself It may also occur if ArcView is opened and is left again without any further action 2 8 2 User Interface Distributions Several substance related parameters may not be entered as distributed values but the user interface does not warn about this directly Classified according to the dialog s cards these are Identification Obviously none of the identifications can be entered as distributed 36 ECETOC Special Report No 16 Physico chemical properties molar mass acid versus basic dissociation parameter Degrad
117. value for the substance This is slightly different from the Edit Market Data dialog discussed later in this tutorial which enables you to specify consumption values for selected discharge sites The current version of GREAT ER 1 0 does not allow a distribution to be given for product consumption Upon leaving the substance dialog all substance settings for a first simulation run are made 2 3 4 Pick Substance and Change Database The Pick Substance and the Change Database function somewhat differently The Pick Substance enables you to copy the substance data from another open scenario This makes it easier to transfer specific parameter settings to several scenarios The Change Database item enables you to change the database from which substance data are loaded If you intend to work with a large amount of substances this feature gives users the opportunity to group substances by classes into different databases This increases the transparency of data storage and speeds up data retrieval GREAT ER User Manual 19 2 3 5 Editing Catchment Data eine Model Analysis Select Catchment Select Subcatchment Unselecteubcateiment Edit Market Data Edit Discharge site Data Figure 2 12 Catchment Menu The catchment data mainly consist of spatial data sets which are not editable within the easy to use mode The user can only select a new catchment for the currently active scenario However it is possible to select a subset of
118. ver occur It suggests that the simulation table has an incorrect structure If this happens just delete these simulation results save the scenario and restart GREAT ER to repeat your simulation Csim theme feature table not found This error should never occur It suggests that the simulation table has an incorrect structure If this happens just delete these simulation results save the scenario and restart GREAT ER to repeat your simulation Can not find table with STP Csims The scenario data structure seems to be corrupt This might have been caused by a loss of data or by renaming the result tables You can check this by looking to see whether the file CsimSTP dbf is in the scenario s directory The easiest way to fix this is to repeat the simulation Discharge record not found The database seems to be corrupt or has been changed manually You have to reinstall it by extracting it from the file greater zip stored on the CD to the appropriate location in your installation Background data table seems to be corrupt One of the essential fields Name MapName Type Legend has not been found This means the installation is either corrupt or was changed manually A reinstallation from the CD is necessary Necessary script for data set xxx not found The background data table indicates a special script to be used for displaying the selected data The script is not loadable i e the selected background data can not
119. visable to return to the beginning the GREAT ER menu to save the scenario select Save from the menu all scenario settings and the model results will be saved in the scenario s directory A dialog informs you of its successful completion The GREAT ER user interface provides users with two options to save scenario data save and save as Save Scenario This option writes all data from the active scenario to the file system under the directory specified for the scenario reports successful completion and lets you proceed with the active scenario Save Scenario As This option works slightly differently First you have to specify a new name for the scenario scenarios are identified by their names so unique names are recommended and enter any comments to help future identification of the new scenario You then click on OK and specify a new scenario directory which will then be created automatically GREAT ER User Manual 27 EE RS Cancel Eu GREAT ER Demonstration Comment This is a copy of the scenario GREAT ER Tutorial Substance LAS Catchment Aire Ouse Yorkshire UK Sample scenario for tutorial created with GREAT ER 1 0 l Figure 2 22 Save As Dialog Save Scenario As Scenario data are stored in separate subdirectories under C home fkoorman projects gtutorial scenario OK Please enter a new subdirectory name Bl demonstration Cancel Figure 2 23 Save As Directory Dialog
120. y GREAT ER User Manual 59 SGHOME catchments lt CATCHMENT gt 20 Background data list could not be created This is an internal AVENUE error which should not normally occur Nothing has to be done and no data will be lost Just try to reload the background data 21 DCW coverage can not be opened One or more of the coverages pppoly pppoint rdline rrline can not be opened Check whether the coverages are in the directory sGHOMES overview lt COUNTRY gt This may be the case if a scenario with a catchment from a new country has been included In this case the DCW data need to be included in the directory sGHOME S overview lt COUNTRY gt 22 Your scenario data is incomplete no model parameters You have to edit the model parameters to specify all necessary ones This warning is caused by cancelling the model parameter dialog during the creation of a new scenario 23 Picture of xxx yyy not found The image file of the picture can not be found It may be deleted or renamed Go into the expert mode and check the database by loading the attribute table of the Site Pictures theme via Themes Table and then looking whether the image file name corresponds to a file in the directory sGHOME graphics sitepics If there are some inconsistencies eliminate them 24 Not able to save scenario in xxx directory already exists As saving is not possible to a directory of another scenario go back to the Save As di
Download Pdf Manuals
Related Search
Related Contents
Graco 3A0534F User's Manual Guia do Usuário do Avigilon™ Control Center Player la nutrition parenterale adulte au chuv et aux hug Emerson Fisher 2500 Instruction Manual Copyright © All rights reserved.
Failed to retrieve file