Home
Microlab 500 B & C series user manual
Contents
1. Display Screen po Function Keys SE a SS A JAA ease ae gt a H Run S un Stop Numeric TJ EA 9 J Run D9 Key Keypad nS p D Stop o HAMILT N Chapter 1 Getting Started 1 17 Pipettors Probes Each MICROLAB 500B system comes with a remote push button hand held pipettor probe The standard accessory probes include e the Concorde Push button Hand Pipettor Probe ships with MICROLAB 510B and 530B must be ordered separately for 500C models e the Dual Push button Hand Pipettor Probe ships with MICROLAB 540B must order separately for the 541C model Additionally three other optional probes may be ordered separately for use with any MICROLAB 500 system These probes include e the Disposable Tip Push button Hand Pipettor Probe e the Luer Lock Tip Push button Pipette Hand Pipettor Probe e the Viscous Sample Push button Hand Pipettor Probe Concorde Push button Hand Pipettor Probe The Concorde Push button Hand Pipettor Probe is a single dispense pipette probe that features a slim comfortable design Use this probe with MICROLAB 501 and 503 systems The Concorde probe attaches directly to a sampling syringe or to the valve assembly output port This probe accommodates both 12 or 18 gauge tubing and features adjustable extension lengths beyond the probe tip See Figure 1 10 Dual Push button Hand Pipettor Probe The Dual Push button Hand Pipette Probe is a
2. 3 If you press SELECT you access the following screen Create a new method Deh IS i Sey OSE oe QW IIR Wow WW IE 12 AS DIP lel gw IK i a Ok CW BENEM SPACE Name ECT next letter ACCEPT if complete Chapter 3 Using the MICROLAB 500 System 3 13 Use the arrow keys to spell out the new method s name using up to 10 characters To accept a character press SELECT To erase a character press DELETE Press ESCAPE to return to the main menu without creating a new method Press ACCEPT when you are finished naming the new method 4 Next the instrument prompts you for the configuration you are using Use the arrow keys to highlight either a one or a two syringe instrument configuration Instrument configuration One syringe instrument Two syringe instrument ELECT menu item Press SELECT to accept the highlighted instrument configuration Press ESCAPE to return to the previous screen without selecting an instrument configuration 5 Once you select an instrument configuration you are prompted to enter syringe size s For example in the following screen the user has selected a two syringe instrument The system supplies default syringe sizes 3 14 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Instrument configuration One syringe instrument
3. Dual Drive Unit Part 35891 or 35892 Microlab 530B 531C or 540B 541C Single Drive Unit Part 35890 Microlab 510B 511C Controller Unit and Cord Part 35893 not with 500C models Power Cord Part 6541000 or 355010 Shipping Kit Part 35792 Microlab 510B Part 35793 Microlab 530B Part 35794 Microlab 540B Manual Part 69176 Chapter 1 Getting Started Table 1 2 lists the components that make up the MICROLAB 500B Shipping Kit shown as a box in Figure 1 1 Figure 1 2 shows these components Table 1 2 MICROLAB 500B Shipping Kit Shipping Kit Valve Part Hand Probe Part Small Parts Kit Tubing Kit Part Part Part MICROLAB HV Valve Concorde 35888 35887 510B 35825 Probe 35792 35529 MICROLAB Diluter Concorde 35888 35887 530B Valve Probe 35793 35844 35529 MICROLAB Dispenser Dual Hand 35888 35887 540B Valve Probe 2 items 35794 35842 35767 The MICROLAB 500C is standard with only the valve All other parts must be ordered separately 1 4 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Figure 1 2 MICROLAB 500B Shipping Kit Components items shown are not to scale A Bs A Small Parts Kit Part 35888 Concorde Probe Part 35529 Microlab 510B 511C or 530B 531C Tubing Kit Part 35887 Dispenser Valve Dual Hand Probe Part 35842 Pa
4. 35783 Accessory Holder also known as a Mounting Bracket needed with reagent bottle holder 16500 Screw SCH Hx 4 40x 875 two required to attach bracket 88990 Tubing Clips 5 pack 18310 Hamilton Syringe Cleaning Solution 70 cc 18311 Hamilton Syringe Cleaning Solution 500 cc 1524 01 Fuse Slow Blow 1 amp 6541000 Power Cord 115 V Three prong Grounded 355010 Power Cord 220 V Schuko continued Appendix C C 3 Table C 6 Parts and Accessories continued Part Description Number 69176 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual English 69182 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual French 69180 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual German 69186 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Portuguese 69188 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Spanish For more information about ordering parts and accessories or upgrading your MICROLAB 500 system contact your authorized Hamilton dealer or the Hamilton Company In the United States Hamilton Company P O Box 10030 Reno Nevada 89520 0012 Telephone Numbers in the USA and Canada Technical Customer Service 1 800 648 5950 8 a m to 5 p m PST Instrument Service 1 800 527 5269 Outside the USA and Canada 1 775 858 3000 Fax Number 1 775 856 7259 In Switzerland Hamilton Bonaduz AG
5. Protocol 1 RNO DIN Protocol BDZ Description Request Answer Request Answer lt D XXX Ad Adxxx TTL Dat Input xxx TTL data decimal lt T XXXX At Atxxxx Timer Delay Value Xxxx current delay time in milliseconds 0 9999 There is a maximum of one Digital I O device on a system however it may be accessed with all valid channel selections Appendix F F 21 Firmware Version Request Table F 16 Firmware Version Request Protocol 1 RNO DIN Protocol BDZ Description Request Answer Request Answer U xxii jj k F FXXii jj k Firmware Version Request XX Product Identifier ii Major version 01 99 jj Minor version 01 99 k Revision A Z Product Identifiers Version AV07 ML900 original AV08 ML900 PSD 2 valve AV09 ML900 ML900 valve BV01 ML500A original BV02 ML500A current CV01 ML500B and ML500C DV01 ML500C OEM OMO01 PSD 2 MV MVP This command is not effected by channel selection commands ASCII Chart The following chart shows the relationship between binary numbers decimal numbers hexadecimal numbers and their ASCII equivalents for the numbers between 0 and 127 F 22 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Table F 17 ASCII Chart Binary Decimal Hex ASCII Binary Decimal Hex ASCII 00000000 0 00 lt
6. Select another function Finished using the instrument Yes t When finished flush the fluid line and turn the instrument off Figure 3 2 provides an overview of the functions available using the MICROLAB 500B These functions are described in detail later in this chapter Figure 3 2 Overview of MICROLAB 500B Functions Power up startup screen Y Main menu y l Run Create Edit existing new existing ae Prices Prime Utilities method method method p Yy y v y v Instrument Instrument See Select Name oe configuration configuration Utilities menu single dual single dual flowchart y y y v y Instrument Run configuration Edit Run Run single dual a y Yy Select Save and method type return to to create Main menu v l Pipette Dilute Dispense Titrate Custom Set Write e Gap method e Speed e of Syringes v y v Wash Aliquot Serial l y y v y Save and return to Main menu 3 2 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Using the Controller Unit Use the controller unit to create and run methods to enter and change data and to perform utility functions Figure 3 3 shows the controller unit Figure 3 3 The C
7. Example 2 Using the Dual Dispenser for Single Dispensing MICROLAB 540B Example 2 follows the same procedures as those shown in the MICROLAB 540B Example 1 except that liquid is dispensed out of the right side only On the left side a liquid is cycled from the reservoir through the fluid path and back again simply to lubricate the fluid path Figure 3 9 shows the Concorde Hand Probe being used for single dispensing Chapter 3 Using the MICROLAB 500 System 3 49 Figure 3 10 Using the Dual Dispenser for Single Dispensing Ss O gt i Diluent Cycle back to Dispense from reservoir single reservoir Note After the syringe size is set the right or left syringe can remain idle if the fill and the dispense volume for that syringe is set to 0 zero Do not operate either syringe dry as this may cause excessive wear on the syringes and valves 3 50 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Chapter 4 Caring for the MICROLAB 500 This chapter contains instructions on routine maintenance procedures for the MICROLAB 500 including the following topics deciding when to clean the MICROLAB 500 cleaning the fluid path cleaning syringes and tubing cleaning the exterior of the system storing the system chemical compatibil
8. Enter the volumes to be dispensed from the syringes Notice that default values to be dispensed are 100 with the amount available 0 As soon as you enter an amount to be dispensed the system recalculates the volume available 3 18 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Note Notice that default value for the Used field is 100 of the syringe size and the default value for the Available field is 0 of the syringe size As enter amounts to be dispensed the system recalculates the volumes Used Sum of all dispense amounts entered on all lines Available Syringe size Used Enter up to 20 command lines the screen will scroll as you add lines If you enter more than 20 lines you return to line one Press DELETE to delete an entry Use the arrow keys to move about from line to line When you are finished entering amounts to be dispensed press ACCEPT The system displays the Serial dispense method parameters screen Serial dispense method parameters Dispenses 1 Left Right Fill volume uL 2500 0 250M0 Syringe fill speed Syringe dispense speed Syringe fill mode AUTO ECT item to edit ACCEPT if complete Enter syringe fill speeds Enter syringe dispense speeds Select a syringe fill mode Valid modes are AUTO or MANUAL Auto mode means that the instrument will perform the fill function automatically when you run the
9. Enter syringe speed s Enter a fill volume for the left syringe Enter an aspiration volume for the left and right syringes You cannot enter a value for Dispense volume Dispense volume Fill volume Aspirate volumes Press CONFIRM Press the Run Stop key to start the manual dilution method The dot in the left margin moves to indicate the active mode Press MODE for manual dilution editing options Press ESCAPE to exit the method and return to the main menu Chapter 3 Using the MICROLAB 500 System 3 33 Performing Manual Dispenses Use the Manual Dispense function to perform manual dispensations without creating and saving a new dispense method or without running an existing dispense method Manual dispenses cannot be stored in memory 1 From the Main menu select the Manual dispense function The Instrument configuration screen appears Instrument configuration One syringe instrument Two syringe instrument ECT menu item 2 Use the arrow keys to highlight either a one or a two syringe instrument configuration then press SELECT 3 The default value s for the selected configuration appear Instrument configuration One syringe instrument Two syringe instrument Left Syringe size uL 2500 0 Right Syringe size uL Zo Or ECT item to edit ACCEPT if complete 3 34 MICROLAB 510B 511C 530B
10. Table F 11 Instrument Information Requests continued Protocol 1 RNO DIN Protocol BDZ Request Answer Request Answer Description G x Valve error request x Valve status Y Valve overload or initialization error N No valve error Instrument is busy Instrument configuration x Instrument configuration Y 1 valve 1 syringe N Not 1 valve 1 syringe Instrument is busy Instrument configuration x Instrument configuration Y 1 valve 2 syringe N Not 1 valve 2 syringe Instrument is busy Hand Foot switch status x Switch status Y Switch pressed N Switch not pressed Instrument is busy F 12 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Instrument Status Requests F 12 Instrument Status Requests Protocol 1 RNO DIN Protocol BDZ Description Request Answer Request Answer El x Q Qx Instrument Status Request x Instrument status byte Bit definition for byte x 0 Instrument idle command buffer is not empty 1 Syringe drive s busy 2 Valve drive s busy 3 Syntax Error 4 Instrument Error valve or syringe error 5 Always 0 6 Always 1 7 Always 0 Bit 1 condition is TRUE Bit 0 condition is FALSE Instrument Error bit is reset after an Instrument Error Request Syntax Error bit is reset after the response is sent E2 abcd Xi Xiabcd Instrument Error Request abcd Instrum
11. Figure 2 2 Installing Electrical Connections Accessory Hand Probe _ 4 Holder Connector Receptacle Baud Rate RS 232 OUT i Receptacle Switch Controller Unit Protocol Connector Switch Receptacle RS 232 IN Fuse Box Loopback Switch Power Cord TTL Port Connector Receptacle Chapter 2 Installing the MICROLAB 500 System 2 7 Installing Valve Assemblies There are three types of valve assemblies for the MICROLAB 500 series Instructions for installing valve assemblies follow Installing the Valve Assembly on the MICROLAB 510B 511C The MICROLAB 510B 511C uses a single active valve assembly To install the valve assembly follow these steps 1 Pick up the valve assembly Make sure the TEFLON luer fitting that attaches to the syringe is on the bottom of the assembly 2 Holding the valve assembly align the valve stem opening with the valve motor drive port on the drive unit Press the valve assembly into place 3 Push down on the valve lever to lock the valve assembly to the drive unit Figure 2 3 Installing a Valve Assembly on the MICROLAB 510B 511C Valve Stem Valve TEFLON Luer Fitting Valve Motor Drive Port Valve Lever Lock 2 8 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Installing Valve Assemblies on the MICROLAB 530B 531C and 540B 541C Although th
12. cccceeeeeeeeeeeeeeeaeeeeeeeeeeeeeseaaeaeeeeeeees 3 5 Powering on the MICROLAB 500 ceeeeeeeeeeeeeeeeeeeeeeeeees 3 6 The Main Menu scatereeteseseifieordectlcuverghpcotenertaavensd OEE ESSE 3 7 Priming the MICROLAB 500 seeeeeeeeeeeeeeeeeeeeteeeseeeeeees 3 8 Preparing to Prime eons a O R OEE A 3 8 Using the Prime Function from the Main Menu l n 3 11 Creating a New Method cceceeeeeeeeeeeeeeeeeeeeeeeeeeeaaeaneeeeeees 3 13 Creating an Aliquot Dispense Method csseeeeeeneeeeees 3 17 Creating a Serial Dispense Method 3 18 Creating a Dilution Method ccceceeeeeeeeeeaeeeeeeeeeeeeeaeeees 3 20 Creating a Pipette Method ccccceceeeeeeeeeeeeeteeeeeeeeeeeaeees 3 23 Creating a Titrate Method cccceceeeeeeeeee eee eeeeeeeeeeeesaaeeees 3 25 Creating a Custom Method cccceeeeeeeeeeeaeeeeeeeeeeeeeeaeeees 3 28 Running an Existing Method ccceeeeceeeeeeeneeeeeeeaeeeeeeaaeeeees 3 30 Editing an Existing Method ccceeeeeseeeeeeeneeeeeaaeeeeeeaeeeeees 3 32 Performing Manual Dilutions 0 ce ceeeeeeeeeeeeeeeeeaeeeeeeeaaeeeees 3 33 Performing Manual Dispenses 0 ccceeeeeeneeeeeeeeeeeeeeaneeeees 3 35 The Utilities Menu 2 2 0 0 cece cece ee eeeeeeeeeeeeeeee eee eeseaaeeeeeeaaeeeeenees 3 37 Renaming an Existing Method ccceeeeeeeeeeeeeeaaeeeeeaaeeeees 3 38 Deleting an Existing Method 0cee
13. D Figure 2 7 The DX type Sample Syringe Co C Chapter 2 Installing the MICROLAB 500 System 2 11 Preparing Syringes for Installation When you unpack a new syringe notice that the syringe plunger is packed separately from the syringe barrel You must condition the plunger tip before inserting the plunger into the barrel A Important Before using a new syringe for the first time you must condition the syringe s TEFLON plunger tip and glass barrel To condition the tip and barrel wet the plunger tip with distilled water or a solvent Medical type silicone lubricants may be used to extend the lives of TEFLON plunger tips However silicone may contaminate the process fluid Do NOT use viscous oils to lubricate plunger tips After wetting the plunger tip insert the plunger into the glass barrel Move the plunger in and out of the glass barrel approximately 10 times Apply steady and even pressure avoid twisting movements A Installing Syringes Follow these steps to install syringes on any MICROLAB 500 system 1 Condition all syringes before installation by following the procedure described in Preparing Syringes for Installation 2 Power on the MICROLAB system using the Power On Off switch 3 Press and hold the Step Prime switch in the Step position and move the syringe drive arm down from the Home position Release the s
14. Ch 7402 P O Box 26 Bonaduz Switzerland Telephone Number 41 81 660 60 60 Fax Number 41 81 660 60 70 C 4 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Appendix D Chemical Compatibility of the MICROLAB 500 The following table contains information about chemical reactivity with the MICROLAB 500 system at room temperature Legend No data available 0 No effect excellent 1 Minor effect good 2 Moderate effect fair 3 Severe effect not recommended Table D 1 Chemical Compatibility Solvent TEFLON Kel F Acetaldehyde 0 Acetates Acetic Acid Acetic Anhydride Te E S Acetone Acetyl Bromide Ammonia Ammonium Hydroxide Ammonium Phosphate Ammonium Sulfate oO jo o o o oy jo o o o o o o o o Amy Acetate continued Table D 1 Chemical Compatibility continued Solvent TEFLON Kel F Aniline 0 Benzene Benzyl Alcohol Boric Acid Bromine Butyl Alcohol Butyl Acetate Carbon Sulfide Carbon Tetrachloride Chloracetic Acid OSOINIOINIO O O O N oOo Chlorine liquid Chlorobenzene Chloroform Chromic Acid Cresol Cyclohexane Ethers Ethyl Acetate Ethyl Alcohol Ethyl Chromide Ethyl Ether Formaldehyde Formic Acid o ro o roy o o o or ro oroy o o oy os oy oro j o o o o D
15. For all MICROLAB 500 models install the fill tubing on the left or input side of the valve Thread the tubing fitting into the left valve port and screw it in so it is finger tight For the MICROLAB 540B 541C only install a second fill tubing line on the right side of the valve Thread the tubing fitting into the right valve port and screw it in so it is finger tight just as you did on the right side 4 Once the fill tubing is installed attach a tubing clip to it Slip the tubing clip over the end of the tubing then attach the clip to the side of the reservoir Chapter 2 Installing the MICROLAB 500 System 2 17 5 Install the dispense tubing You can recognize dispense tubing by its tapered end Ifyou are using a MICROLAB 510B 511C install the dispense tubing on the right side of the valve Thread the tubing fitting into the right valve port and screw it in so it is finger tight See Figure 2 10 for an illustration of the valve and tubing connectors Figure 2 10 MICROLAB 510B 511C Valve and Tubing Connections Bo ai Input Side Output Side Port Port If you are using a MICROLAB 530B 531C with a D syringe install the dispense tubing on the side port of the D syringe See Figure 2 11 When using a TLL syringe as a sampling syringe install dispense tubing directly
16. ML500B Default Environmental Parameters The ML500B default environmental parameters are listed as follows Syringe mode 0 Syringe speed 4 Syringe return steps 3 Syringe backoff steps 15 Left valve type 7 Right valve type 1 Valve speed 3 This instrument supports syringe speeds in the range from 1 to 250 seconds per full stroke For speeds greater than 6 a microstepping scheme is used to provide smoother drive operation The number of microsteps per full step for a given speed is the integral portion of the speed divided by 2 The default values for this instrument are designed to optimize performance Please contact Hamilton Company if a valve speed greater than 60Hz is required ML500B Command Buffer The ML500B can buffer the following commands for execution on both the left and right side e 2valve commands e 1syringe command e 1 timer delay command e 1 digital output command F 26 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual ML500B Methods The ML500B can store a single method of 67 functions into non volatile memory The ML500B will automatically select the stored method after the method has been downloaded and after powerup ML500B Specific Protocol Information Perform Instrument Diagnostic RNO ET BDZ Ut The ML500B does not have a diagnostic mode The ML500B will ignore this command Set Stored Method mode RNO SP BDZ Se ML500B supports the following Stored Method m
17. See Appendix C for information on ordering Hamilton Syringe Cleaner To clean the fluid path follow these steps 1 Prepare a reservoir of cleaning fluid and place the fill tubing in the cleaning fluid reservoir Use a tubing clip to secure the tubing to the side of the reservoir 2 Place the hand probe into the cleaning fluid reservoir or a waste container 4 2 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual 10 11 Press the Step Prime switch on the drive unit to start the priming cycle Continue the priming cycle until the fluid path is clean The number of cycles needed to clean the fluid path will depend on the sizes of the syringes and the dirtiness of the system When the fluid path is clean press the Step Prime switch back to the middle position to stop the priming cycle Move the inlet tubing from the cleaning fluid reservoir and place it into a reservoir of deionized water Press the Step Prime switch to continue the priming cycle Continue the priming cycle until the fluid path is free of all cleaning fluid Dispense the rinse fluid into a waste reservoir Press the Step Prime switch to the inactive position to stop the priming cycle Press the Step Prime switch to the Step position and advance the syringe drive arm to the Home position The system is now clean and ready for use Note When priming reagent after a deionized water rinse dispense the first shot into a waste container since it
18. Two syringe instrument Left Syringe size uL 1000 0 Right Syringe size uL 1000 0 ECT item to edit ACCEPT if complete 6 Youcan use the default values that are displayed or you can enter new sizes To enter a new size use the arrow keys to highlight the appropriate syringe then press SELECT Notice that the highlighting changes to an underline as shown in the following screen Instrument configuration One syringe instrument Two syringe instrument Left Syringe size uL 2500 0 Right Syringe size uL 1000 0 Use arrow keys to change syringe size Now use the arrow keys to increase or decrease the syringe size When you have selected the correct size press ENTER Note You must use the arrow keys to change syringe sizes Chapter 3 Using the MICROLAB 500 System 3 15 7 Press ACCEPT to accept all syringe size values shown on the screen The Method type to create menu appears Method type to create Aliquot dispense method Serial dispense method Dilute method Pipette method Titrate method Custom method ECT menu item 8 SELECT a method type Each individual method consists of a series of screens and prompts that are described in detail Refer to the following sections for information about creating specific methods 9 When you are finished creating a method the Save method
19. Valve Parameter Change Protocol 1 RNO DIN Protocol BDZ Command Parameters Command Parameters Description LSTx S VX Set Valve Configuration x Valve type 1 7 1 4 ports at 90 2 8 ports at 45 3 6 ports at 60 4 3 ports at 90 5 2 ports at 180 6 2 ports at 90 7 4 ports at 90 LSFx ZX Set Valve Speed x Valve speed 0 9 0 30 Hz 1 40 Hz 2 50 Hz 3 60 Hz 4 70 Hz 5 80 Hz 6 90 Hz 7 100 Hz 8 110 Hz 9 120 Hz F 10 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Stored Method Parameter Change Table F 10 Stored Method Parameter Change Protocol 1 RNO DIN Protocol BDZ Description Command Parameters Command Parameters SPx S Set Stored Method mode ex x Mode 0 9 This command is not effected by channel selection commands Instrument Information Requests Table F 11 Instrument Information Requests Protocol 1 RNO DIN Protocol BDZ Request Answer Request Answer Description F Instrument done request x Instrument status Y Instrument is idle and command buffer is empty N Instrument is idle and command buffer is not empty Instrument is busy Syringe error request x Syringe status Y Syringe overload or initialization error N No syringe error Instrument is busy continued Appendix F F 11
20. and 540B 541C are described in this manual e The MICROLAB 510B 511C is a single syringe dispenser designed for single precision dispensing applications e The MICROLAB 530B 531C is a dual syringe diluter designed for repetitive dilution applications e The MICROLAB 540B 541C is a dual syringe dispenser designed for precision dispensing applications that require more than one liquid to be dispensed at a time Upgrading Your MICROLAB 500 System Both the MICROLAB 510B 511C and 530B 531C systems can be upgraded to MICROLAB 540B 541C systems For upgrade information or for information about purchasing any of the MICROLAB 500 models contact your authorized Hamilton sales representative or contact Hamilton Company In the United States Hamilton Company P O Box 10030 Reno Nevada 89520 0012 Telephone Numbers in the USA and Canada Technical Customer Service 1 800 648 5950 8 a m to 5 p m PST Instrument Service 1 800 527 5269 Preface PR 3 Outside the USA and Canada 1 775 858 3000 Fax Number 1 775 856 7259 In Switzerland Hamilton Bonaduz AG Ch 7402 P O Box 26 Bonaduz Switzerland Telephone Number 41 81 660 60 60 Fax Number 41 81 660 60 70 About This Manual This manual provides technical information about the MICROLAB 510B 511C 530B 531C and 540B 541C and is divided into chapters that cover the following topics e Chapter 1 Getting Started provides an overview of the MICROLAB 500 system including
21. are assigned their addresses by auto addressing Hardware addressing is not supported with this protocol The auto address command should be the first sequence of characters transmitted to the instrument s Until the auto address command is sent and addresses are assigned to the instrument s the instrument s will only respond to broadcast command strings Protocol 1 RNO instruments are auto addressed using the following sequence 1la lt CR gt E 2 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual The first instrument in the daisy chain will be assigned the address a and will transmit the sequence 1b lt CR gt to the next instrument The process of assigning the address received and transmitting the next address continues for all instruments in the daisy chain The last instrument in the daisy chain responds to the controlling device with 1 lt last address 1 gt lt CR gt EXAMPLE Four instruments are on a daisy chain and the controlling device transmits la lt CR gt The controlling device will receive 1e lt CR gt indicating that the instruments have been assigned addresses a b c and d Appendix E E 3 Data Transfer Format Information exchange between the controlling device and the instrument is performed using the following format lt adr gt lt data string gt lt CR gt Carriage return Commands and or status request Instrument address Each character transmitted to the instrume
22. cut on the end opposite the fitting dispense tubing has a tapered end opposite the fitting When selecting tubing consider the volume and the viscosity of the liquid you plan to pipette Refer to Table 2 3 Tubing Selection Guide for help in selecting tubing Table 2 4 Tubing Selection Guide Syringe Tubing Gauge for Tubing Gauge for Size Standard Aqueous Viscous and Solutions Foaming Liquids 25 uL 18 18 50 uL 18 18 100 uL 18 18 250 uL 18 18 500 uL 18 18 ITmL 18 18 2 5 mL 18 12 5mL 12 12 10 mL 12 12 25 mL 12 12 2 16 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Note If you have a MICROLAB 530B 531C diluter and plan to use syringes of two different sizes choose tubing to accommodate the syringe with the larger volume See Appendix C for information about ordering extra tubing Installing Tubing 1 Before installing tubing lines wet the tubing fittings 2 Make sure the tubing lines do not contain crimps or blockages Crimps or blockages can cause leaks or can cause the system to overload If tubing is crimped replace it with new tubing A Important Fasten tubing so it is finger tight and snug enough to prevent leaks Avoid using tools to tighten tubing Excessive tightening may damage tubing valve fittings or flanges A 3 Install the fill tubing You can differentiate fill tubing and dispense tubing since dispense tubing has a tapered end
23. existing existing to custom method to and method method method base unit configuration y y y Select Select Select Select method method method method i i i Rename Confirm and Name Confirm and method return to new return to Utilities menu method Utilities menu Confirm and Save and return to return to Utilities menu Utilities menu y Y y y y y Yy Change Set Turn Perform Perform _ Set default baud caps lock display keyboard diagnostic language rate on off test test mode y v AA v y y Select Select Toggle Run Run Select language rate caps lock test test mode v y y y y y Save and return to Utilities menu 3 36 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual The following screen shows the contents of the Utilities menu Utilities menu Rename an existing method Delete an existing method Copy a method to a custom method Download a method to the drive unit Diagnostic and configuration menu ECT menu item Use the arrow key to highlight the desired utility function then press SELECT to accept the choice or press ESCAPE to return to the Main menu Renaming an Existing Method Use this function to rename an existing method At least one method must exist in the method storage area for you to use this function If no method exists receive Method
24. of valve assemblies 2 8 to 2 9 preparing syringes for 2 12 selecting a location 2 3 instruments chemical compatibility of 4 5 D 1 to D 4 cleaning exterior of 4 4 cleaning fluid path of 4 2 performance test reports B 1 2 quality control testing B 1 returning for repair 5 16 servicing 5 15 to 5 16 storing 4 5 when to clean 4 2 L language changing default 3 43 to 3 44 loopback switch 2 5 Luer Lock Tip Push button Pipette Hand Probe 1 19 20 M Main menu screen 3 7 messages audible 5 10 error message code guide 5 2 to system 5 2 MICROLAB 500 parts lists 1 2 to 1 7 MICROLAB 500 systems descriptions of PR 3 MICROLAB 504A using as a single dispenser 2 50 MICROLAB 540B using as a single dispenser 2 21 N numeric keypad keys 3 4 0 ordering information A 1 4 overview of the MICROLAB 500 series of instruments PR 3 IN 2 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual P Q power cord connector receptacle 1 13 Power On Off switch 1 14 prime mode 1 14 priming the system 3 8 to 3 12 probe button functions 1 20 protocol switch 2 5 R removing syringes 2 14 renaming a method 3 37 to 3 38 returned goods authorization number 5 16 RS 232 IN 2 4 2 6 RS 232 OUT 2 4 2 6 Run Stop key 3 4 running a method 3 29 to 3 30 S selecting tubing 2 16 to 2 17 single syringe instruments references to PR 5 step mode 1 15 Step Prime switch 1 14
25. usually the syringe on the left dilute To reduce the concentration of solutes in a sample by adding another fluid The fluid that is added is called a diluent and may be deionized water for example diluter An instrument used to reduce the concentration of a liquid The MICROLAB 530B is a dual syringe diluter dispense To distribute fluid from a syringe in a single portion or in several increments out through the valve output port and attached tubing A diluent is dispensed during dilution Reagents and buffers can be mixed and dispensed together with a sample before analysis dispense tubing Tapered tubing that allows delivery of precise amounts of liquid dispenser An instrument used to distribute liquid The MICROLAB 510B is a single syringe dispenser The MICROLAB 540B is a dual syringe dispenser disposable tip A throw away probe tip used to avoid cross contamination between samples display screen The area on the controller unit where system messages and information appears Down Describes the movement of the syringe drive arm as it moves away from the Home position and toward the bottom of the stroke download To transfer information from one instrument to another For example you can download a method from a controller unit to an attached drive unit Glossary GL 3 dribbling Describes the formation of drops at the tip of tubing as liquids are dispensed Generally occurs when small volumes are dispensed at
26. volume However you must use the Run Stop key or the probe switch to complete the wash cycle 3 22 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Ifyou are using a ML510B or a ML530B you can wash the probe directly from the left syringe If you are using a ML540B you cannot wash the right syringe or probe 13 When you are satisfied with your entries press ACCEPT The system displays the Save method in method memory screen Press CONFIRM to save the method then press any key to continue Creating a Pipette Method Use this function to create a pipette method A pipette method aspirates the same volume as it dispenses The total actual volume dispensed however may include an air gap volume A pipette method performs the following tasks e With or without a time delay of up to 60 seconds aspirate an air gap volume and then aspirate an amount of sample fluid into the left syringe if using a single syringe instrument or into the right syringe if using a dual syringe instrument e Dispense both the sample fluid and the air gap volumes from the syringe e Wash the syringe 1 Follow steps 1 8 under Creating a New Method Select the Pipette method function from the Method type to create menu The Pipette parameters screen appears Pipette parameters Right Air gap volume Right Dispense volume Right Syringe aspirate speed Right Syringe dispense speed Air gap mode
27. 00 lt ENQ gt t lt ENQ gt Establish data transfer 00 Broadcast address Controlling device transmits lt STX gt Y lt ETX gt t BCC for this data block lt ETX gt End of data block Y Prepare to auto address lt STX gt Beginning of data block Controlling device transmits lt EOT gt t lt EOT gt Terminate data transfer Controlling device transmits 01 lt EOT gt 01 Starting address l t lt EOT gt Terminate data transfer Auto address sequence Appendix E E 13 Command Example 2 Initializing the Instrument NOTE The following example assumes the instrument is hardware addressed at address 1 or has already been auto addressed as per the previous example Controlling device transmits 01 lt ENQ gt t lt ENQ gt Establish data transfer 01 Instrument address Controlling device receives 01 lt ACK gt t lt ACK gt Acknowledge 01 Instrument address Controlling device transmits lt STX gt IG lt ETX gt r r BCC for this data block lt ETX gt End of data block G Execute I Initialize instrument lt STX gt Beginning of data block Controlling device receives lt ACK gt t lt ACK gt Data block acknowledged Controlling device transmits lt EOT gt i lt EOT gt Terminate data transfer E 14 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Command Exam
28. 2 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual continued Table D 1 Chemical Compatibility continued Solvent TEFLON Kel F Freon 11 12 22 0 2 3 Gasoline Glycerin Hydrochloric Acid Hydrochloric Acid conc Hydrofluoric Acid Hydrogen Peroxide Hydrogen Peroxide conc Hydrogen Sulfide Kerosene Methyl Ethyl Ketone MEK Pl o yrPilioyjo oro o o o Methyl Alcohol Methylene Chloride Naphtha Nitric Acid Nitric Acid conc Nitrobenzene je oloje so Phenol Pyridine Silver Nitrate Soap Solutions O lie Iolo Stearic Acid ST S S S S SG S S GG O l G D E TS Appendix D continued D 3 Table D 1 Chemical Compatibility continued Solvent TEFLON Kel F Sulfuric Acid 0 0 Sulfuric Acid conc 0 0 Sulfurous Acid 0 1 Tannic Acid 0 1 Tanning Extracts Tartaric Acid ra Toluene Trichlorethane Triclorethylene Turpentine Water oO o o o o o o NO OTIT ae Xylene D 4 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Appendix E Communication Protocols Hamilton Company provides two different protocols for communication with this instrument Protocol 1 RNO Reno USA and DIN Protocol BDZ Bonaduz Switzerland These protocols use the industry standard RS 232C interface using
29. 25 000 The instruments can also dispense up to 50 mL per cycle Figure PR 1 provides an overview of the MICROLAB 500 Series of Instruments Figure PR 1 The MICROLAB 500 Series of Instruments The Microlab 500 Series of Instruments Single Syringe Instruments Dual Syringe Instruments Controller without memory a ee Microlab 501A dispenser e Microlab 504A dispenser Controller with memory e Microlab 530B diluter dispenser e Microlab 540B dispenser Controller with memory e Microlab 510B diluter dispenser Computer controlled e Microlab 531C diluter dispenser e Microlab 541C dispenser Computer controlled e Microlab 511C diluter dispenser PR 2 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual The MICROLAB 500 Series of instruments consists of three different lines of diluter dispensers e Controller without memory Use the controller unit to manually enter methods This controller unit does not have memory so methods cannot be stored e Controller with memory This controller unit has memory allowing you to program and store your own custom methods Or use the controller unit to run manual methods Any instrument that uses this controller can also be computer controlled e Computer controlled No controller unit is included use a computer to operate the instrument The MICROLAB 510B 511C 530B 531C
30. 531C and 540B 541C User s Manual 10 Press ACCEPT to retain the default sizes To change a syringe s size use the arrow keys to highlight the size then press SELECT The highlighting changes to underlining Use the arrow keys to increase or decrease syringe size Press ENTER to accept the new size the previous screen appears When you are satisfied with the syringe sizes press ACCEPT The Manual dispense screen appears Manual dispense Left Syringe speed 4 g Fill volume uL 2500 0 25000 Dispense volume ul 2500 0 250 00 ELECT item to edit RUN to start Enter syringe speed s Enter a fill volume for the left and right syringes Enter a dispense volume for the left and right syringes Press CONFIRM Press the Run Stop key to start the manual dispense method The dot in the left margin moves to indicate the active mode Press MODE for manual dispense editing options Press ESCAPE to exit the method and return to the Main menu Chapter 3 Using the MICROLAB 500 System 3 35 The Utilities Menu The Utilities menu provides you with tools to manipulate methods and to diagnose and configure the instrument Figure 3 5 shows the functions available from the Utilities menu Figure 3 5 The Utilities Menu Utilities Menu v y y Rename Delete Copy method Download Diagnostics
31. ACCEPT if complete 7 Enter a fill speed for the left syringe 8 Enter an aspirate speed for the right syringe 9 Enter the dispense speeds for both syringes Chapter 3 Using the MICROLAB 500 System 3 21 10 Select a syringe fill mode Valid modes are AUTO or MANUAL Auto mode means that the instrument will perform the fill function automatically when you run the method Manual mode means you must press the Run Stop key or press the probe button to activate the fill function when you run the method 11 You may but are not required to enter an air gap volume If you enter an air gap volume greater than 0 specify a mode type Valid mode types are either MANUAL or AUTO If you select MANUAL mode you must pick up the air gap manually by using the Run Stop key or the probe button If you select AUTO mode the instrument will pick up the air gap automatically You may select a time delay period from 0 to 60 seconds The default is 0 3 seconds If you do not select an air gap volume N A appears in the air gap mode and delay fields on the screen 12 The Probe wash parameters screen appears Probe wash parameters Wash volume uL Left Syringe fill speed Left Syringe dispense speed ELECT item to edit ACCEPT if complete Enter fill and dispense speeds The syringe automatically fills with the wash
32. Fill Tubing 18 ga Dispense Tubing Part 240010 Part 240130 For complete lists of syringes accessories and replacement parts for the MICROLAB 500 see Appendix C Ordering Parts and Accessories for the MICROLAB 500 Chapter 1 Getting Started 1 7 A Brief Introduction to the MICROLAB 500B The MICROLAB 510B 530B and 540B systems each consist of three basic units These units include e a drive unit e a controller unit e ahand probe This section briefly describes these units and the individual components that comprise each unit See Chapter 2 Installing the MICROLAB 500 for complete installation instructions see Chapter 3 Using the MICROLAB 500 for complete usage instructions Drive Unit The drive unit is the heart of each MICROLAB 500 system The drive unit contains a precision drive motor the syringe drive arms the valve assembly the power switches and the connector receptacles These features allow you to control other sub assemblies and together they create a very versatile and functional instrument Figure 1 5 shows the front view of the MICROLAB 510B single syringe diluter dispenser In this figure the controller unit rests on top of the drive unit and a syringe is attached to the syringe drive arm A Warning This warning label appears on the front panel of the ML500 It indicates that a pinch hazard exists when the syringe drive is moving A 1 8 MICROLAB 510B 511C 530B 531C and 540
33. N A N A N A Syringe 100 uL 81026 1710DX 10438 N A 1117 02 N A N A N A Syringe 250 uL 81126 1725DX 10439 N A 1117 03 N A N A N A Syringe 500 uL 81226 1750DX 10440 N A 1120 01 N A N A N A Syringe 1 0 mL 81326 1001DX 10441 N A 1578 01 N A N A N A Syringe Table C 3 Valve Assemblies Part Number Description 35825 HV Valve Model 510B 511C 35844 Diluter Valve Model 530B 531C 35842 Dispenser Valve Model 540B 541C Table C 4 Tubing Part Number Description 240000 Fill tubing 12 gauge 650 mm with Fittings 240010 Fill tubing 18 gauge 650 mm with Fittings 240360 Dispense tubing 12 gauge 900 mm with Fittings 240130 Dispense tubing 18 gauge 900 mm with Fittings C 2 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Table C 5 Pipettors Probes Part Number Description 35529 Concorde Push button Hand Pipettor Probe Single Channel 35767 Dual Dispense Push button Hand Pipettor Probe 77006 Disposable Tip Push button Hand Pipettor Probe 22 gauge x 900 mm tubing 1 35 uL 77007 Disposable Tip Push button Hand Pipettor Probe 22 gauge x 900 mm tubing 1 125 uL 35899 Luer Lock Tip Push button Hand Pipettor Probe 35898 Viscous Sample Push Button Hand Pipettor Probe 35770 Tubing Reducer 18 gauge for Dual Dispense Push button Hand Pipettor Probe 1 each 77004 Footswitch Table C 6 Parts and Accessories Part Number Description 39111 Reagent Bottle Holder
34. NUL gt 00010111 23 17 lt ETB gt 00000001 1 01 lt SOH gt 00011000 24 18 lt CAN gt 00000010 2 02 lt STX gt 00011001 25 19 lt EM gt 00000011 3 03 lt ETX gt 00011010 26 1A lt SUB gt 00000100 4 04 lt EOT gt 00011011 27 1B lt ESC gt 00000101 5 05 lt ENQ gt 00011100 28 1C lt FS gt 00000110 6 06 lt ACK gt 00011101 29 1D lt GS gt 00000111 7 07 lt BEL gt 00011110 30 1E lt RS gt 00001000 8 08 lt BS gt 00011111 31 1F lt US gt 00001001 9 09 lt HT gt 00100000 32 20 00001010 10 0A lt LF gt 00100001 33 21 00001011 11 0B lt VT gt 00100010 34 22 00001100 12 0C lt FF gt 00100011 35 23 00001101 13 0D lt CR gt 00100100 36 24 00001110 14 0E lt SO gt 00100101 37 25 00001111 15 OF lt SI gt 00100110 38 26 amp 00010000 16 10 lt DLE gt 00100111 39 27 00010001 17 11 lt DC1 gt 00101000 40 28 00010010 18 12 lt DC2 gt 00101001 Al 29 00010011 19 13 lt DC3 gt 00101010 42 2A 2 00010100 20 14 lt DC4 gt 00101011 43 2B 00010101 21 15 lt NAK gt 00101100 44 2C j 00010110 22 16 lt SYN gt 00101101 45 2D Appendix F F 23 Binary Decimal Hex ASCII Binary Decimal Hex ASCII 00101110 46 2E 01000110 70 46 F 00101111 47 2F 01000111 71 47 G 00110000 48 30 0 01001000 72 48 H 00110001 49 31 1 01001001 73 49 I 00110010 50 32 2 01001010 74 4A J 00110011 51 33 3 01001011 75 4B K 00110100 52 3
35. Power On Off Switch and Power Indicator Light The Power On Off switch and the Power Indicator light are located on the front of the drive unit in the lower right hand corner See Figures 1 5 through 1 7 for the locations of the switch and the indicator light The Power On Off switch is a two position rocker switch e To power on the MICROLAB 500 press the upper half of the switch The system beeps twice when it is powered on e To power off the MICROLAB 500 press the lower half of the switch The Power Indicator light is a small green LED located directly above the Power On Off switch It is lit when the unit is powered on Step Prime Switch t The Step Prime switch is located on the front of the drive unit in J the lower right hand corner directly above the power indicator light See Figures 1 5 through 1 7 The Step Prime switch is a three position rocker switch e When the Step Prime switch is in the middle position the switch is inactive 1 14 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual e When you press the lower part of the Step Prime switch the ML500 goes into prime mode When in prime mode the syringe drive arms automatically move up and down opening the valve ports and moving fluid through the system The ML500 stays in prime mode until you press the upper or the middle part of the Step Prime switch The syringe will return to home position e When you press the upper part of the Ste
36. a complete parts list and a brief description of the system components e Chapter 2 Installing the MICROLAB 500 describes how to set up the system e Chapter 3 Using the MICROLAB 500 provides step by step instructions for using the system It also provides sample applications e Chapter 4 Caring for the MICROLAB 500 describes everyday maintenance techniques e Chapter 5 Troubleshooting contains tables that list system messages and their meanings and common problems and their solutions e The Appendixes provide detailed information such as technical specifications ordering information etc e The Glossary defines terms used in this manual e The Index provides a quick reference to the topics described in this manual PR 4 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Conventions Used in This Manual Throughout this manual symbols are used to call your attention to various kinds of information A Warning Information that is essential for avoiding personal injury is flagged with the International Warning Symbol and appears like this in the text A A Important Information that is essential for avoiding damage to equipment appears like this in the text A Note Interesting information or information that can help improve system performance appears like this in the text System messages and prompts that appear on the controller unit s display screen are shown in courier font Items that are se
37. dilution Figure 3 6 shows the Disposable Tip Probe being used for dilutions Figure 3 7 Dilutions Dispense Aspirate Diluted Sample Sample Chapter 3 Using the MICROLAB 500 System 3 47 Example 2 Dilutions MICROLAB 530B Example 2 follows the same procedures as those shown in the MICROLAB 530B Example 1 except that two TLL syringes are used and the dispense tubing is connected directly to the side of the valve assembly To attach tubing directly to the valve assembly remove the plug on the side of the valve Replace the plug with tubing Figure 3 7 shows the Concorde Hand Probe being used for serial dilutions Figure 3 8 Serial Dilutions A Diluent Serial Dilutions 3 48 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Sample MICROLAB 540B Application Configurations Example 1 Dual Dispensing When the probe button is pressed once the syringe drive arms move down pulling in two different liquids from two different reservoirs The valves then reverse and connect the fluid path from the syringes to the hand probe When the probe button is pressed a second time the syringe drive arms move up dispensing the two liquids out of separate tubing lines Figure 3 8 shows the Dual Hand Probe being used for dual dispenses Figure 3 9 Dual Dispensing Diluent Diluent
38. down e resume use at a lower duty cycle e see Appendix A Technical Specifications for information about appropriate environmental conditions 5 14 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Getting Technical Support If a problem persists even after you have attempted to correct it contact the Hamilton Company Instrument Service Department To expedite service please have your instrument s model and serial number ready and available Also please provide application specific information such as syringe sizes drive speeds and liquids In the United States Hamilton Company P O Box 10030 Reno Nevada 89520 0012 Telephone Numbers in the USA and Canada Technical Customer Service 1 800 648 5950 8 a m to 5 p m PST Instrument Service 1 800 527 5269 Outside the USA and Canada 1 775 858 3000 Fax Number 1 775 856 7259 In Switzerland Hamilton Bonaduz AG Ch 7402 P O Box 26 Bonaduz Switzerland Telephone Number 41 81 660 60 60 Fax Number 41 81 660 60 70 Chapter 5 Troubleshooting 5 15 Returning Instruments for Repair Before returning an instrument to Hamilton Reno for repair notify Hamilton Company s Instrument Service Department at 800 527 5269 in the United States and Canada and request a Returned Goods Authorization Number RGA number 5 16 Note Do not return instruments to Hamilton Company without an RGA number This number assures
39. e Ratio and Sample volume e Ratio and Final volume e Diluent volume and Sample volume e Diluent volume and Final volume e Sample volume and Final volume 3 20 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual e You may but are not required to enter an air gap volume If using a one syringe instrument Final volume plus Air gap volume cannot exceed 105 of the syringe size selected If using a two syringe instrument Diluent volume cannot exceed 105 of the left syringe size selected Sample volume plus Air gap volume cannot exceed 105 of the right syringe size selected Press ACCEPT and the controller calculates the other values Note Ratio 1 Diluent volume Sample volume Dilution 1 Diluent volume Sample volume Sample Volume that is Dilution Ratio Ratio 1 Final volume Diluent volume Sample volume The resolution of the installed syringes may limit the system s ability to accommodate your exact dilutions or ratios The system will try to calculate the closest possible combinations If such combinations cannot be achieved using the installed syringes or the total volumes the system will display an error message stating the problem The Dilute method parameters screen appears Dilute method parameters Left Syringe fill speed 4 Syringe aspirate speed Syringe dispense speed Syringe fill mode AUTO Air gap mode N A Air gap delay N A SELECT item to edit
40. in method memory screen appears This screen shows the name of the new method Save method in method memory Method NEW1 will be stored in method memory CONFIRM to save E to cancel CONF IRM Press CONFIRM to save the method then press any key to continue Press ESCAPE to return to the previous screen 3 16 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Creating an Aliquot Dispense Method Use this function to create an aliquot dispense method An aliquot dispense method consecutively dispenses equal amounts of liquids 1 Follow steps 1 8 under Creating a New Method Select the Aliquot dispense method function from the Method type to create menu The Aliquot dispense parameters screen appears Aliquot dispense parameters Left Aliquot volume uL 2500 0 Maximum aliquots il Aliquots to dispense Syringe fill speed Syringe dispense speed Syringe fill mode AUT SELECT item to edit ACCEPT if complete 2 Enter the volume s to be aliquoted To enter a volume use the arrow keys to highlight the Aliquot volume field then press SELECT The highlighting changes to underlining Use the number keys to enter a new volume When satisfied with your entry press ENTER The underline disappears and the highlighting reappears Note You cannot enter a value in the Maximum Aliquots f
41. low flow rates or when there is an air leak in the tubing lines Drop formation can adversely affect accuracy and precision drive speed Speed of the drive unit speed is specified in seconds per full stroke 6 cm Drive arm speeds are measured in units from 1 to 250 seconds with 1 being the fastest speed and 250 being the slowest speed drive unit The basic body of the MICROLAB 500 dual dispenser A two syringe instrument that can dispense two different liquids at the same time The volumes of the liquids being dispensed do not have to be equal The MICROLAB 540B is a dual syringe dispenser duty cycle The amount of time that an instrument syringe drive is active and functioning versus the total amount of time between repetitive operations fill To fill a syringe with a volume of liquid that is pulled in from a reservoir via fill tubing through the valve input port Drive arms move the syringes down pulling liquid through the tubing and into the syringe fill tubing A tubing line that connects the liquid reservoir to the valve inlet port fluid path The inside surfaces of the valve syringes and tubing that contact liquid footswitch A foot activated device used to operate the MICROLAB 500 GL 4 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual function keys The keys on the controller unit that allow you to perform actions based on the label on the screen that is directly over the key hand probe See pr
42. method Manual mode means you must press the Run Stop key or press the probe button to activate the fill function when you run the method When you are satisfied with your entries press ACCEPT The system displays the Save method in method memory screen Press CONFIRM to save the method then press any key to continue Chapter 3 Using the MICROLAB 500 System 3 19 Creating a Dilution Method Use this function to create a dilution method to perform the following tasks Fill the diluent syringe if using a two syringe instrument the left syringe with a specified volume With or without a time delay of up to 60 seconds aspirate an air gap volume and then a sample volume into the left syringe if using a single syringe instrument or into the right syringe if using a two syringe instrument Dispense the diluent and the sample volumes Wash the probe tip up to one full cycle 1 Follow steps 1 8 under Creating a New Method Select Dilute method from the Method type to create screen The Dilute method screen appears Dilute method Ratio ig 10 0 DaLikwreser _1L 11 0 Left Diluent volume ul 2300 0 Right Air gap volume uL 0 0 Right Sample volume uL 25000 Final volume uni ZA 0 SELECT item to edit ACCEPT if complete 2 Enter two values in this screen Choose from among the following pairs of numbers to enter e Ratio and Diluent volume
43. onto the valve assembly To do this remove the valve plug and replace the plug with dispense tubing See Figure 2 12 2 18 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Figure 2 11 MICROLAB 530B 531C Valve with a D Configuration Syringe Insert Valve Plug First it Input Side Port Output Side Port Figure 2 12 MICROLAB 530B 531C Valve with Two TLLX or TLL Syringes Remove Valve Plug First Input Side i C gt Port Output Side Port Chapter 2 Installing the MICROLAB 500 System 2 19 Ifyou are using a MICROLAB 540B 541C install a tapered dispense tubing line into each of the valve s front ports The front ports are located on the bottom of the valve between the two syringes Thread the tubing fittings into the front ports and screw the fittings in so they are finger tight See Figure 2 13 Figure 2 13 MICROLAB 540B 541C Valve and Tubing Connectors ply Input Side Port Input Side Port Output Ports X Note It is possible to use the 540B 541C dual dispenser as a single dispenser When programming designate the instrument as a single dispenser 6 Install the dispense tubing to the hand probe If you are using the MICROLAB 510B or the MICROLAB 530B the Concorde Probe comes as standard equipment This probe uses a single dispense tube To attach the dispense tubing into the probe loosen the knurled screw at the upper end of the pro
44. path for leaks and clean the fluid path if necessary To prime the MICROLAB 500 and check the fluid path for leaks follow these steps 1 Fill a reservoir with deionized water Place the end of the inlet tubing in the reservoir Use the tubing clip to attach the tubing to the side of the reservoir 2 Place the hand probe over the same reservoir or over a waste container 3 Push the Prime switch on the drive unit OR select the Prime function from the main menu See the next section Using the Prime function from the Main menu for more information 4 Run the instrument in Prime mode until water flows through the entire system 5 If the system is airtight the fluid path will contain a solid column of water If you see air bubbles in the fluid path the system is not airtight Adjust the tubing fittings or syringes Check that all parts are snug and finger tight If you do not see air bubbles in the fluid path the system is airtight 3 8 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual If you do not see air bubbles in the fluid path but small bubbles appear on the TEFLON surface of the syringe clean the internal fluid path with a mild syringe cleaner Rinse with deionized water to rid the system of cleaning fluid To clean the fluid path follow the steps in Chapter 4 Caring for the MICROLAB 500 After cleaning reprime with deionized water to rinse the fluid path Continue priming until you do not see any
45. that an instrument on a daisy chain is engaged in executing a command received from the master controller GL 1 byte A sequence of adjacent bits representing one character of information usually consisting of 8 bits cavitation An occurrence caused by applying a high vacuum to a liquid gas dissolved in liquid can be pulled out of solution It generally occurs when large syringes 5 and 10 mL are driven at high speeds command An instruction that is transmitted from the computer to an instrument command string A sequence of commands that represent an instruction when transmitted from a computer to an instrument Concorde hand probe The Concorde hand probe is Hamilton Company s standard single tube hand activated probe The tip of this probe is adjustable and allows the user to set the dispense tubing to an angle that is comfortable for use controller unit The device that allows the user to send operating instructions to the drive unit cycle A series of two strokes that comprise both the up and down movements of the syringe drive arm daisy chain A string of instruments connected in a serial configuration default A predetermined value diluent A liquid that is added to a sample to lessen the sample s concentration i e to dilute the sample GL 2 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual diluent syringe A syringe that delivers a diluent On a dual syringe unit the diluent syringe is
46. 2 PipettorS Probes Seoni A C 3 Parts and Accessories ccccceecneceeeeeeeeeeeneeeees C 3 Chemical Compatibility 0 cc ceceeeeeeeeeeeeeeeeeeees D 1 Protocol 1 RNO Control Characters 08 E 2 DIN Protocol BDZ Control Characters E 8 Channel Selection Commands ccccceeeeeeees F 2 Initialization Commands ccccece ees eeee ee eeeeeeeees F 3 Syringe Positioning Commands ceceeeeee F 4 Figures and Tables xiii Xiv Table F 4 Table F 5 Table F 6 Table F 7 Table F 8 Table F 9 Table F 10 Table F 11 Table F 12 Table F 13 Table F 14 Table F 15 Table F 16 Table F 17 Valve Positioning Commands cceeeeeeeeees F 5 Timer and Digital I O Commands 0 ceeee F 6 Execution COMMANAS seceeeeeeeeeteeeeeeeeeeeaea F 7 Instrument Control Commands cccceceeeeeees F 8 Syringe Parameter Chang ccccecceeeeeeeeeeeeees F 9 Valve Parameter Change ccceeeecseeeeeeeeeeees F 10 Stored Method Parameter Change 0 06 F 11 Instrument Information Requests ceee F 11 Instrument Status Request F 13 Syringe Parameter Request eee eee F 19 Valve Parameter Request F 20 Timer and Digital I O Requests c eee F 21 Firmware Version Request F 22 ASCIl Chatt cccccccccccccccececececeeeceeeeeeeeeeeeeaeaees F 23 MICROLAB 510B 511C 530
47. 4 4 01001100 76 4C L 00110101 53 35 5 01001101 77 4D M 00110110 54 36 6 01001110 78 4E N 00110111 55 37 7 01001111 79 4F O 00111000 56 38 8 01010000 80 50 P 00111001 57 39 9 01010001 81 51 Q 00111010 58 3A 01010010 82 52 R 00111011 59 3B 01010011 83 53 S 00111100 60 3C lt 01010100 84 54 T 00111101 61 3D 01010101 85 55 U 00111110 62 3E gt 01010110 86 56 V 00111111 63 3F 01010111 87 57 W 01000000 64 40 01011000 88 58 X 01000001 65 41 A 01011001 89 59 Y 01000010 66 42 B 01011010 90 5A Z 01000011 67 43 C 01011011 91 5B 01000100 68 44 D 01011100 92 5C 01000101 69 45 E 01011101 93 5D F 24 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Binary Decimal Hex ASCII Binary Decimal Hex ASCII 01011110 94 5E ts 01101111 111 6F o 01011111 95 5F 01110000 112 70 p 01100000 96 60 01110001 113 71 q 01100001 97 61 a 01110010 114 72 f 01100010 98 62 b 01110011 115 73 S 01100011 99 63 c 01110100 116 74 t 01100100 100 64 d 01110101 117 75 u 01100101 101 65 e 01110110 118 76 v 01100110 102 66 f 01110111 119 77 w 01100111 103 67 g 01111000 120 78 x 01101000 104 68 h 01111001 121 79 y 01101001 105 69 i 01111010 122 7A Zz 01101010 106 6A j 01111011 123 7B 01101011 107 6B k 01111100 124 7C l 01101100 108 6C l 01111101 125 7D 01101101 109 6D m 01111110 126 7E 01101110 110 6E n 01111111 127 7F Appendix F F 25
48. 5 5 return steps S3 Speed 3 P100 Move syringe down 100 steps I Move valve to input a Instrument address Controlling device receives lt ACK gt lt CR gt l t lt CR gt End of response string E 6 lt ACK gt Data string acknowledged MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Command Example 4 A status or parameter request NOTE The following example assumes the instrument has already been auto addressed as per the previous example The response shown will vary depending upon the instrument model used Controlling device transmits aU lt CR gt l t lt CR gt End of data string U Firmware version request a Instrument address Controlling device receives lt ACK gt CV01 00 A lt CR gt t lt CR gt End of response string CV Firmware version lt ACK gt Data string acknowledged DIN Protocol BDZ Syntax Overview The DIN Protocol BDZ syntax is based on the DIN 66019 standard e Instruments are hardware or auto addressed e Instrument addresses from 01 to 16 broadcast address 00 Data Format Baud Rate Variable Parity Even Data bits 7 Stop bits 2 The DIN Protocol BDZ syntax uses six basic control characters Table E 2 Appendix E E 7 Table E 2 DIN Protocol BDZ Control Characters Notation Name ASCII Description code decimal lt STX gt Start of Text 02 A control character that indicates the beginning of a
49. 50 seconds per full syringe stroke adjustable Drive High precision lead screws driven by a highly efficient stepper motor Power Requirements 115 220 V 50 60 Hz power supply automatically converts Power Rating 150 VA Weight 10 lbs 6 oz 4 7 kg Dimensions Height 13 1 8 in 33 34 cm Width 6 1 8 in 15 56 cm Depth 7 in 17 78 cm continued Table A 1 Technical Specs for the MICROLAB 500 continued Shipping Dimensions Height 14 1 4 in Width 21 in Depth 141 2 in Shipping Weight 20 Ibs Storage Temperature Range 20 to 50 C 4 to 122 F Operating Temperature 5 to 40 C 41 to 104 F Range Recommended Operating 18 to 25 C 64 to 77 F Temperature Range Humidity Range 10 90 non condensing Fluid Path TEFLON based materials and Borosilicate glass Best reproducibility and accuracy are achieved at syringe stroke lengths equal to or greater than 10 of syringe volume using Hamilton syringes Liquid handling performance may vary according to viscosity temperature and technique Use slower drive speeds and 12 gauge tubing with larger syringes larger volumes greater than or equal to 10 mL and with viscous or volatile fluids Hamilton Company reserves the right to alter technical specifications without notice Table A 2 contains specifications for syringe accuracy and precision This information is on file at Hamilto
50. 531C and 540B 541C User s Manual Figure 1 7 shows the front view of the MICROLAB 540B dual syringe dispenser In this figure the controller unit rests on top of the drive unit and syringes are attached to the syringe drive arms Figure 1 7 Front View of the MICROLAB 540B Dual Syringe Dispenser MICROLAB 500 sens Hand Probe Connector 3 Receptacle Input Input Output Output qme Hewa san Power Indicator Light H H Power A On Off G J Switch Chapter 1 Getting Started 1 11 Figure 1 8 shows the rear view of all units Figure 1 8 Rear View of the MICROLAB 500 __ Lo PANC TIOE Connector Receptacle eN m E m m m p RS 232 OUT h ae Receptacle mae ngaa pe ae l A wAA Controller Unit Protocol Connector Switch Receptacle RS 232 IN Fuse Box Loopback Switch Power Cord TTL Port Connector Receptacle 1 12 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Power Cord Connector Receptacle The power cord connector receptacle is located on the back of the drive unit the power cord fits into this receptacle only one way The receptacle accepts cord
51. AB 500 s own performance test report for specific details Note When preparing to test a MICROLAB 500 system do not include the first shot dispensed after system initialization as part of the performance test Discard the first dispensed shot then start the performance test Figure B 1 shows a sample performance test report Figure B 1 Sample Performance Test Report PERFORMANCE TEST REPORT Test PASSES GRAVIMETRIC RESULTS FOR 50 Microliters Balance Sartorius Model R 160 P Product Model ML 510B Part No Xxxxx Serial NO XX XXXXXXXX DRIVE SINGLE Syringe Type 1001 Syringe Maximum Volume 1000 Microliters Syringe Dispense Volume 50 Microliters Test Method Dispenserv Diluter Liquid Type H20 Liquid Temperature in Centigrade 22 Rel liquid density at Exper Temp 997801 mg microliters Actual Measurements in milligrams 49 93 mg k 50 00 49 95 mg 49 89 49 91 mg z 49 83 49 91 mg 49 81 49 88 mg 10 49 83 RESULTS Mean Mass 49 894 mg Standard Deviation 5 929153E 02 mg Experimental Vol 50 00396 microliters Parameter Calculated Specification Pass Fail Accuracy in 0 008 1 200 PASS Co of Var in 0 119 0 500 PASS Checked by MARIA Date 12 13 93 Signed __Maria Doe The product specified above has been calibrated at ambient pressure The calibration is performed pursuant to ML STD 45662 with an unbroken chain of calibrations traceable to N LS T HAMILTON THE MEASURE OF EXCELLENCE P O B
52. AB 510B 511C 530B 531C and 540B 541C User s Manual Using the Prime Function from the Main Menu 1 From the Main menu SELECT the Prime the fluid path function The following screen appears Drive unit initialization Any fluid in the syringes on the drive unit will now be purged Pleas nsure the probe is directed towards a waste area CONFIRM to continue E E to exit CONFIRM A Important When you select the Prime method the instrument alerts you that the fluid in the syringes is about to be purged Be sure to place the probe over a fluid waste area or a reservoir before pressing CONFIRM to continue the priming function A 2 Press CONFIRM to continue the priming process 3 The following screen appears Prime the fluid path Full Cycles 10 Syringe prime speed 4 ECT item to edit RUN to start Enter the desired number of priming cycles 10 is the default Enter the prime speed Speed must be in whole seconds from 1 to 250 Press the Run Stop key to start the priming cycle Chapter 3 Using the MICROLAB 500 System 3 11 4 The instrument displays the status of the priming cycle Prime the fluid path Priming 3 of 10 strokes completed TOP to pause Press the Run Stop key to pause the priming cycle If you pause the priming cycle you see the following screen Prime the fluid path Prim
53. Air gap delay ELECT item to edit ACCEPT if complete Chapter 3 Using the MICROLAB 500 System 3 23 2 You may but are not required to enter a Right Air gap volume If you enter an air gap volume greater than 0 specify a mode type Valid mode types are either MANUAL or AUTO Ifyou select MANUAL mode you must pick up the air gap manually by using the Run Stop key or the probe button If you select AUTO mode the instrument will pick up the air gap automatically You may select a time delay period from 0 to 60 seconds The default is 0 3 seconds If you do not select an air gap volume N A appears in the air gap mode and delay fields on the screen Enter the Right Dispense volume Enter a Right Syringe aspirate speed Enter Right Syringe dispense speed a r The Probe wash parameters screen appears Probe wash parameters Wash volume uL Left Syringe fill speed Left Syringe dispense speed ELECT item to edit ACCEPT if complete 7 Enter fill and dispense speeds The syringe automatically fills with the wash volume However you must use the Run Stop key or the probe switch to complete the wash cycle Ifyou are using a ML510B or a ML530B you can wash the probe directly from the left syringe If you are using a ML540B you cannot wash the right syringe or probe 3 24 MICROLAB 510B 511C 530
54. B 531C and 540B 541C User s Manual Preface Welcome to the World of Hamilton Precision Instruments Congratulations on your purchase of a Hamilton MICROLAB 500 system The Hamilton MICROLAB 500 is a versatile semi automatic precision liquid processor Various models of the MICROLAB 500 function as either single or dual syringe diluter dispensers The MICROLAB 500 functions on the principal of liquid liquid displacement At the heart of each MICROLAB 500 system is a highly efficient precision stepper motor drive that is combined with world famous Hamilton GASTIGHT syringes The result is a precise and accurate instrument that is very easy to set up and use With proper care and maintenance your new MICROLAB 500 system will serve you faithfully To learn about the proper care and maintenance of your investment please take the time to read this manual Also please read the warranty information that appears on the copyright page in this manual and on the separate warranty sheet that is included in your MICROLAB 500 shipping kit The Hamilton Company thanks you for purchasing this Hamilton product Welcome to the world of Hamilton precision instruments About the MICROLAB 500 Series of Instruments All of the MICROLAB 500 systems feature four common pipette modes fill dispense auto refill and prime The systems are capable of performing accurate and precise transfer pipetting and of performing automated dilutions up to 1
55. B 531C and 540B 541C User s Manual 8 When you are satisfied with your entries press ACCEPT The system displays the Save method in method memory screen Press CONFIRM to save the method then press any key to continue Creating a Titrate Method Use this function to create a titrate method A titrate method performs the following functions Fill the left and or right syringes Dispense an initial volume s from the syringe s Dispense step volume s from the syringe s Note A titrate method is an interactive method that requires user input each time it is run For example you determine whether or not to perform the next step of the method based on your observations of the previous dispensation Since all titration methods are interactive you cannot copy a titration method to a custom method or download a titration method to the drive unit Follow steps 1 8 under Creating a New Method Select the Titrate method function from the Method type to create menu The Titrate screen appears Titrate Fill volume ul Initial volume Step volume ul ECT item to edit ACCEPT if complete Chapter 3 Using the MICROLAB 500 System 3 25 E e 10 Enter a fill volume The default volume is that of the installed syringe The fill volume must at least equal the initial volume plus one step The fill volume for at least one syringe must be great
56. B 541C User s Manual Figure 1 5 Front View of the MICROLAB 510B Single Syringe Diluter Dispenser E cA eA Aa ee CoO D ya s En aad Sme C7 Cc CI Fun Coe CI Gon_ amp HANMMIer J J MICROLAB 500 I I t Hand Probe Connector Receptacle Input Output uow aT HI tle Step Prime a Switch B Power Indicator Light Power A On Off O 7J Switch al Chapter 1 Getting Started 1 9 Figure 1 6 shows the front view of the MICROLAB 530B dual syringe diluter In this figure the controller unit rests on top of the drive unit and syringes are attached to the syringe drive arms Figure 1 6 Front View of the MICROLAB 530B Dual Syringe Diluter MICROLAB 500 snes Hand Probe Connector it Receptacle zan Input Output apuun fon IU I Hit te Step Prime 2b Switch Power Indicator Light lt b Power A On Off Ke 7 Switch 1 10 MICROLAB 510B 511C 530B
57. Data Block lt ETX gt End of Text 03 A control character that indicates the end of a Data Block lt EOT gt End of 04 A control character used to Transmission terminate a Data Transfer Session lt ENQ gt Enquiry 05 A control character used to establish a Data Transfer Session lt ACK gt Acknowledge 06 A control character transmitted by a receiving device indicating an affirmative response to the transmitting device lt NAK gt Negative 21 A control character transmitted by a Acknowledge receiving device indicating a non affirmative response to the transmitting device Hardware Addressing A unique address 01 through 16 must be set for each instrument on a daisy chain Hamilton Company recommends the use of hardware addressing when using DIN Protocol BDZ E 8 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Auto Addressing When auto addressing is used with the DIN Protocol BDZ a unique address is not required for each instrument on a daisy chain If the addresses are not unique however then the auto address sequence must be the first sequence of characters transmitted to the instruments Failure to do so may cause communication errors DIN Protocol BDZ instruments are auto addressed using the following sequence 00 lt ENQ gt Broadcast address all instruments lt STX gt Y lt ETX gt Prepare RS 232 for auto addressing lt EOT gt Terminate Data Transfer Session 01
58. LT N MICROLAB 500 Series version 3 6 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Next the Change default language screen appears Change default language English Francais Deutsch Portugu s Espanol Clear default language ECT menu item Select a default language The language that you select will become the system default and all future screens will appear in that language You will not be prompted again for a default language at startup See Changing the Default Language later in this chapter for more information The Main Menu After you select a default language the Main menu appears MICROLAB 500 main menu Run an existing method Create a new method Edit an existing method anual dilution anual dispense Prime the fluid path Utilities menu ECT menu item Use the arrow keys to highlight the desired function Then press SELECT Information about each of the Main menu functions follows in this chapter Chapter 3 Using the MICROLAB 500 System 3 7 Priming the MICROLAB 500 This section describes how to set up and prime the MICROLAB 500 Preparing to Prime Prime the MICROLAB 500 system before using it for the first time at the start of a work day and between fluid changes Run fluid through the tubing lines to ensure that there are no bubbles or air gaps in the tubing Check the fluid
59. MICROLAB 500B Functions 3 2 The Controller Unit cccccceccecesseeeeeeeeeeeeeaaeees 3 3 Priming the MICROLAB 500 ecceeseeeees 3 10 The Utilities Menu 0cceeeeeeeeeeeeeeeeeeeeeeeeeees 3 37 Single Syringe Dispensing seseeeeeeeeeee 3 47 DIUTIONS gsar aienea e aia gen 3 48 Serial DilUtionS sesiis niuni esea 3 49 Dual Dispensing esiisa ieaiaia ratk oae AKEE 3 50 Using the Dual Dispenser for Single Dispensing 3 51 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Chapter 5 Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F Table 3 1 Table 5 1 Table 5 2 Table 5 3 Table A 1 Table A 2 Figure B 1 Table C 1 Table C 2 Table C 3 Table C 4 Table C 5 Table C 6 Table D 1 Table E 1 Table E 2 Table F 1 Table F 2 Table F 3 Function Key Actions cceceseeeeeeeneeeeeaneeeees 3 4 Error Message Code Guide ccseeeeeeeeees 5 2 Audible System Messages eeeeeeeeeeeees 5 10 Troubleshooting Guide ccsecceesseeeeeeaeeeees 5 11 Technical Specifications for the MICROLAB 500 A 1 Accuracy and Precision aeee A 2 Sample Performance Test Report ceee B 2 Reagent Diluent Syringe Replacement Parts C 1 Sample Syringe Replacement Parts 008 C 2 Valve Assembles ninini nnay idea C 2 TURNO aeree eles bet ie ee a it C
60. NUSED gt ECT an existing method ESCAPE 2 SELECT the method you wish to copy 3 The Custom method to be created screen appears Custom method to be created EW2 lt UNUSED gt lt UNUSED gt lt UNUSED gt lt UNUSED gt lt UNUSED gt lt UNUSED gt ECT an UNUSED method ESCAPE 3 40 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual 4 SELECT any lt unused gt method 5 The following screen appears Custom method to be created 1 SA BG YB Ss OW eR Ee oY Lt amp i SID Ww EF Lal I My Yk GW 13 Nh IM SPACE Name ELECT next letter ACCEPT if complete 6 Use the arrow keys to spell out the name of the new custom method To accept a character press SELECT To erase a character press DELETE Press ESCAPE to return to the main menu without copying an existing method Press ACCEPT when you are finished naming the new method 7 When you are satisfied with your entries press ACCEPT The Save method in method memory screen Press CONFIRM to save the new method then press any key to continue Downloading a Method to the Drive unit Use this function to download a method from the controller unit to the drive unit The drive unit can execute a downloaded method only when the contro
61. RXD TXD and GND and allow up to 16 instruments to be linked in a daisy chain configuration Instruments may be individually accessed via their own address while a broadcast addressing scheme allows all instruments to be accessed simultaneously Note that all information transferred between the controlling device and the instrument is case sensitive and must be sent exactly as shown Hamilton Protocol 1 RNO Syntax Overview The Hamilton Protocol 1 RNO syntax is used to communicate with instruments diluters syringe modules and valve positioners designed and manufactured by Hamilton Company e Instruments are auto addressed an Woo mont e Instrument addresses from a to p broadcast address Data Format Baud Rate Variable Parity Odd Data bits 7 Stop bits 1 The Protocol 1 RNO syntax uses three basic control characters Table E 1 Table E 1 Protocol 1 RNO Control Characters Notation Name ASCII Description code decimal lt CR gt Carriage A control character that terminates Return 13 a data string lt ACK gt Acknowledge A control character transmitted by 06 the instrument indicating an affirmative response to the controlling device lt NAK gt Negative A control character transmitted by Acknowledge 21 the instrument indicating a non affirmative response to the controlling device Auto Addressing X NOTE Instruments configured to use the Protocol 1 RNO syntax
62. Syringe default speed xxx Syringe drive speed in seconds per full stroke YQN x Syringe default return steps x return steps 0 9 YQP XXXX Ay Ayxxxx Syringe position Xxxx steps 0 1050 half resolution 0 2100 full resolution YQE XXXX An Anxxxx Syringe encoder position Xxxx steps 0 1050 half resolution 0 2100 full resolution YQM x Am Amx Syringe mode x mode 0 2 0 Half resolution 1000 steps per stroke 1 Full resolution 2000 steps per stroke 2 Full resolution with overload detection disabled YQB XX Ab Abxx Syringe default backoff steps xx backoff steps 0 99 Appendix F F 19 Valve Parameter Request Table F 14 Valve Parameter Request Protocol 1 RNO DIN Protocol BDZ Description Request Answer Request Answer LOP Xx Ap Apxx Valve position xx valve position 1 8 LQA XXX Aa Aaxxx Valve angle xxx valve angle 0 345 LOT x Av Avx Valve Configuration x Valve type 1 7 1 4 ports at 90 2 8 ports at 45 3 6 ports at 60 4 3 ports at 90 5 2 ports at 180 6 2 ports at 90 7 4 ports at 90 LQF x Az AZx Valve Speed x Valve speed 0 9 0 30 Hz 1 40 Hz 2 50 Hz 3 60 Hz 4 70 Hz 5 80 Hz 6 90 Hz 7 100 Hz 8 110 Hz 9 120 Hz F 20 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Timer and Digital I O Requests Table F 15 Timer and Digital I O Requests
63. Table 2 1 describes the purposes of these switches and ports To change a switch s position power the instrument off Then use a screwdriver to change the switch position The small bump on the switch indicates the selected position After you change a switch s position power the instrument back on again Table 2 1 Communications Switches and Ports Icon Item Purpose Possible Settings and Uses C gt RS 232 IN controller or RS232 three possible uses receptacle 1 controller via coiled cord 2 connects to the communications port on a PC 3 if ona daisy chain connects to the RS232 OUT port of the previous unit on the chain gt gt RS 232 handles outgoing two possible uses OUT communications 1 if not on a daisy chain is left receptacle open 2 if ona daisy chain connects to the RS232 IN port of the next chained device is left open if it is the last unit on the chain TTL TTL port allows peripheral attach digitally controlled I devices to attach to devices such as pumps monitors the drive unit etc is left open if no peripherals are attached 2 4 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Table 2 1 Communications Switches and Ports continued Icon Item Purpose Possible Settings and Uses Loopback allows the drive two possibilities switch unit to daisy chain 1 UP indicates the unit is a to other units standalone unit OR the last item o
64. The MICROLAB 500 Series MICROLAB 510B 530B and 540B and MICROLAB 511C 531C and 541C HAMILTON THE MEASURE OF EXCELLENCE Part Number 69176 Rev D Hamilton Company Instrument Warranty Hamilton Company warrants this equipment except valves to be free of defects in material and workmanship for 12 months from the date of receipt This warranty is extended to the buyer of record on the original purchase order to Hamilton Company Hamilton Company or an authorized Hamilton representative agrees to repair or replace at its option and free of charge to the buyer at a normal place of business or at a Hamilton repair facility any part or parts that under proper and normal use prove to be defective during the warranty period Abuse unauthorized replacement of parts modifications or adjustments made by other than Company or its assigned representatives voids this warranty This warranty gives you specific rights No other warranties expressed or implied including implications of warranties of merchantability and fitness for a particular product are made Hamilton Company s liability on the sale of all products shall be limited to repair replacement or refund of price of any defective product Hamilton Company endeavors to provide prompt and satisfactory service All Hamilton Company valves are warranted to be free of defects in material and workmanship at the time of delivery Hamilton Company reserves the right t
65. The delay time entered exceeds the delay time resolution allowed by this unit The valid delay time resolution appears on the bottom of the screen while the delay time is being entered Dilution Errors dilute method The dilution or ratio and a volume or any 2 volume values must be entered for a dilution method dilution parameters The dilution specified cannot be achieved using the syringe size s configured Try one of the following 1 Use different dilution values 2 Use different sized syringes 3 Consult the user s manual to determine appropriate values continued 5 4 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Table 5 1 Error Message Code Guide continued Error Type Error Message Dilution Errors dilution ratio A dilution of one or a ratio of zero cannot be accomplished A dilution greater than one or a ratio greater than zero must be used dilution volume A dilution cannot be performed when any of the dilution volumes is zero Dilution volumes of greater than zero must be used Dispense Errors aliquots to dispense The number of aliquots entered is greater than the maximum number of aliquots allowed for the syringe size s and volume s configured no aliquot dispense volume An aliquot dispense method requires at least one non zero aliquot volume to be specified no pipette dispense volume A pipette method requires that
66. a dispense volume to be specified is greater than zero no serial dispense volume A serial dispense method requires at least one dispense from at least one syringe to be performed Drive Unit Errors drive unit busy The operation requested cannot be performed because the drive unit is currently busy Either wait until the drive unit is no longer busy or cycle its power Then try the operation again drive unit delay configuration This drive unit currently attached is not capable of performing one or more of the delays specified in the method Refer to the user s manual to determine the speeds supported by this drive unit continued Chapter 5 Troubleshooting 5 5 Table 5 1 Error Message Code Guide continued Error Type Error Message Drive Unit Errors drive unit download configuration This drive unit either does not have the appropriate number of valves and or syringes to operate this method or is not capable or running this method Refer to the user s manual for more information drive unit download This drive unit is either unable to store any methods or is not compatible with this controller Refer to the user s manual for more information drive unit download titrate method A titration method is an interactive method and as such cannot be downloaded to the drive unit All other types of methods are not interactive and may be downloaded to the drive uni
67. aeeeeeees 4 3 Cleaning the Exterior of the MICROLAB 500 cceeseeeees 4 4 Chemical Compatibility 0 cccceeeeeeeeeeeeeeeeeeeeeeeaaeneeeeeeeeeeeeaea 4 5 Storing the MICROLAB 500 c cceeseeeeeeaeeeeeeeeeeeeeeaaateeeeeees 4 6 Replacing Batteries ieira 4 6 Troubleshooting the MICROLAB 500 5 1 Error Message Code Guide ccceceeeceeeeeeeeeeeeaeaaeeeeeeeeeeeaas 5 2 Audible Messages ri desrei kaleei e aen Rek eiu ai eeina 5 10 Troubleshooting Guide ccccceeeeeeeeeeee ae eeeeeeeeeesaaneeeeeeees 5 11 Getting Technical SUPPOFt c cece ceeeeeeeeeeeeeneeeeeeeeeaeaeeeeeeees 5 15 Returning Instruments for REp ir ee cceeeeeeaeeeeeeeaaeeeeeaaeeeees 5 16 viii MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Appendixes Appendix A Technical Specifications for the MICROLAB 500 00068 A 1 Pin Outs for RS 232 and TTL Ports c ceceeeeeeeeeeeeeeeeeeeeeaeee A 3 Appendix B Instrument Performance Test Reports ceeseeeeeeeeeeeees B 1 Appendix C Ordering Parts and Accessories for the MICROLAB 500 C 1 Appendix D Chemical Compatibility of the MICROLAB 500 0eecee D 1 Appendix E Communication Protocols ccccccceceeeeeeeaeeeeeeeeeeeeeeaenteeeeeees E 1 Hamilton Protocol 1 RNO Syntax Overview cceeee E 1 Auto addreSSing cccececcccceeeeceeeneeeeeeeeee
68. and follow these steps to install electrical connections 1 Plug the power cord into the power connector receptacle on the back of the drive unit The power cord fits into the receptacle only one way The power connector receptacle accepts cords for either 115V or 220V Plug the hand probe or foot pedal jack into the probe connector receptacle The probe connector receptacle is located on the upper right side of the drive unit The controller connector receptacle is located on the back of the drive unit below the serial number plate If you will be using the controller unit to communicate to the base unit plug the controller cord into the receptacle just as you plug a telephone cord into a telephone outlet Pinch the plastic locking device on the cord and insert it into the connector receptacle Then release the plastic locking device firmly attaching the cord If you will be using the drive unit to communicate to other devices attach the appropriate cords To use the drive unit on a daisy chain do not install the controller unit Instead install the interconnect cord Part 35833 and connect it to the RS 232 IN receptacle of the next device on the daisy chain Leave the RS 232 OUT receptacle open if the drive unit is the last unit on the daisy chain MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual For more information about possible communications options refer to Table 2 1 Communications Switches and Ports
69. are e check main fuses on blown instrument s rear panel replace fuses if necessary instrument e controller unit not check to see that the controller functions normally plugged in drive unit is plugged into the drive but display screen unit unit fails to illuminate faulty LCD call the Hamilton Service Department continued Chapter 5 Troubleshooting 5 11 Table 5 3 Troubleshooting Guide continued Problem Possible Causes Corrective Action instrument does not e faulty or blocked check tubing valve and fill or dispense tubing blocked or syringes for blockages crimps leaky fluid path or loose fittings replace tubing either replace or reseal valve and syringes tighten valve and syringes e incorrect tubing or check that appropriate tubing syringe fittings and syringes are used connections and that they are finger tight e faulty keys call the Hamilton Service Department e non functional call the Hamilton Service syringe drive s Department e valves do not e remove and reseat valve rotate valve tighten thumbscrew or replace drives are not valve engaged or valve is faulty continued 5 12 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Table 5 3 Troubleshooting Guide continued Problem Possible Causes Corrective Action instrument gives inaccurate or imprecise results e air exists in the fluid path e inco
70. ause an operation on the MICROLAB 500 sample syringe A syringe used to pick up a liquid sample GASTIGHT D configuration syringes with side ports are sample syringes On a dual syringe unit the sample syringe is usually placed on the instrument s right side serial dispense To distribute fluid in increments serial interface A connection that transmits data bit by bit with start and stop bits to separate bytes Glossary GL 7 stall A pause in syringe plunger movement that may be caused by excessive mechanical friction excessive syringe speed or a blockage in the valves tubing or syringes step Movement of the drive arms that occurs when the Step Prime switch is held down The Step mode is often used to position the drive arm before changing syringes stroke Movement of the syringe drive arm in one direction only half of the drive arm s cycle See also cycle syringe drive arm s The arms to which syringe plungers connect The movement of the syringe drive arms displaces fluid drawing it through the system system fluid Refers to the fluid originating from a reservoir pumped through the entire system titrate To determine the smallest quantity of a substance needed for a certain reaction On the ML500 all titration methods are interactive tubing clip A device that attaches to the side of the reservoir and holds tubing lines in place valve The device that directs the flow of liquid through the sy
71. be Slide the tapered end of the dispense tube through the probe so that the tubing passes out the end of the probe When enough tubing for you to work with extends from the probe tighten the knurled screw to secure the tubing line 2 20 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Ifyou are using the MICROLAB 540B the Dual Hand Probe comes as standard equipment This probe is designed for both 18 and 12 gauge tubing Use the tubing reducer Part 35770 that is provided with the dual hand probe if you wish to use 18 gauge tubing See Figure 2 14 Figure 2 14 Using the Tubing Reducer with the Dual Hand Probe 7 Fill out the warranty card and return it to Hamilton Company 8 You are now ready to use your MICROLAB 500 system Chapter 2 Installing the MICROLAB 500 System 2 21 Chapter 3 Programming and Using the MICROLAB 500B System This chapter contains information about the following topics an overview of the MICROLAB 500 functions using the controller unit keys accessing the Main menu priming and checking the system creating methods running methods using the Utility menu functions For information on controlling 500C systems refer to Appendixes Eand F Figure 3 1 Using the MICROLAB 500B Power up the instrument AA Prime the instrument y Select a function from the Main menu y Follow the on screen instructions 47
72. bubbles Remove the inlet tubing from the reservoir and prime air through the system Priming air through the system clears the fluid path of the deionized water that you used as a rinse When the fluid path is free of deionized water place the inlet tubing into a reservoir of the liquid you wish to dispense or use as a diluent Prime this fluid through the system Note When priming reagent after a deionized water rinse dispense the first shot into a waste container since it will contain a certain amount of the water droplets that remained in the tubing line 10 Your MICROLAB 500 system is clean and ready for use Important Do not operate either side dry as this may cause excessive wear on the syringes and valves A Chapter 3 Using the MICROLAB 500 System 3 9 Figure 3 4 shows the required steps for priming the instrument Figure 3 4 Priming the MICROLAB 500 Press the Prime Switch OR select the Prime function from the Main menu and start priming the instrument Clean the fluid path Check the fluid path for leaks Adjust Any leaks in tubing the fluid path fittings and syringes Any bubbles on the plunger tip Clean the fluid path Halt the priming cycle Select another function Finished using the instrument When finished flush the fluid line and turn the instrument off 3 10 MICROL
73. controller to communicate with the drive unit the baud rates of both must be the same See Setting Communications Options in Chapter 2 for information about changing the baud rate on the drive unit From the Diagnostics and Configuration menu SELECT the Set baud rate to drive unit function The Set baud rate to drive unit screen appears Set baud rate to drive unit 1200 2400 9600 4800 19 200 38 400 ELECT menu item 3 44 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual 2 SELECT a baud rate then press ESCAPE to return to the Diagnostics and Configuration menu Turning Caps Lock On and Off This function toggles the display text between mixed upper and lower case characters to ALL CAP characters From the Diagnostics and Configuration menu SELECT Turn caps lock on off This function does not display a screen but automatically changes text displayed on the screen from ALL CAP characters to mixed upper and lower case characters or vice versa Performing the Display Test Use this function to test the display screen This function is for use by qualified service personnel From the Diagnostics and Configuration menu SELECT Perform display test The test screen Press any key except 1 2 3 or Run Stop to exit the test mode Keys 1 2 3 and Run Stop perform various display tests Performing the Keyboard Test Use this functio
74. crew 6 You may now power the instrument off if desired Chapter 4 Caring for the MICROLAB 500 4 7 Chapter 5 Troubleshooting the MICROLAB 500 This chapter contains information about the following topics e message codes e troubleshooting e technical support e returning instruments for repair Please read this chapter some problems may be easily resolved by using the information found in the message code and troubleshooting guides Error Message Code Guide The MICROLAB s display windows provide you with system status and with error message information If an error occurs an error message appears the system beeps three times and all operation and function keys are disabled To recover from the error reinitialize the system by pressing the Run Stop key You cannot use the probe button on a hand probe to reinitialize the system Table 5 1 lists the error messages that may appear on the screen Table 5 1 Error Message Code Guide Error Type Error Message Battery Errors battery failure The battery used to preserve stored methods has either run too low to preserve the stored methods or there is no battery installed Any methods that have been stored on this unit have been lost battery low The battery used to preserve stored methods is running low Replace the battery soon to prevent loss of stored methods Communication Errors communication The communication link to t
75. ctrical CONNECTIONS ceceeeeeeeeeeeeeeeeeeteeeeeeeeaee 2 6 Installing Valve Assemblies 0 eee ee cece eee eeeeeeeeeeeeeeeeeeeeeeeeeeanaes 2 8 Installing the Valve Assembly on the ML 510B 511C 2 8 Installing Valve Assemblies on the ML530B 531C and 540B 541C cc ceeeeeeeeeeeeeeeeeeeeeeeeeeaeaaee 2 9 Selecting Installing and Removing Syringes 2 10 Preparing Syringes for Installation ceeeeeeeeeeeeeeeeeeeees 2 12 Installing Syringes 0 ccccceeeeeeeeeeeeeeeeeeeeeeeaaeaeeeeeeeeeeeeaeaaeeees 2 12 REMOVING SYFiNGeS ccceeeeeceeeeeeeeeeeeeeeeeaaeaeeeeeeeeeeeeaeaaeaees 2 14 Selecting and Installing Tubing ceeeceeeeeeeeeeeeeeeteeeeeeees 2 16 Selecting TUBING siscisenscetecredastidebenttceocbasebtent ent peoedastagebenntiec 2 16 Installing TUDING ce eeeeee a a 2 17 Programming and Using the MICROLAB 500B System ceeeeeeeeeeeeeeeeeeeees 3 1 Using the Controller Unit 0 cceecccccecteeeeeeeeeeeeeeaaeneeeeeeeeeeeeaaa 3 3 Using the Arrow KeyYS ccceeceeenneeeeeeaaeeeeeeaaeeeeeeaaeeeeeaaeeees 3 3 vi MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Using the Numeric Keypad cceeeceeeeeeeeeeeeeeeeeeeeeeeeeeeeenees 3 4 Using the Run Stop Key c ccceeeeeeeeeeeeeeeeeaaeeeeeeeeeeeaeaaeeees 3 4 Using the Function KeYS 000 2 cece cece eee eeeeceeeeeeeeeeeeeeeaeeeeeanaes 3 4 Editing Conventions
76. dual dispense pipette that features a pistol grip design with push button actuator Use this probe with MICROLAB 504 systems This probe accommodates both 12 and 18 gauge tapered tubing lines with independent extensions You can extend the tubing out the end of the probe to the length that is convenient for your application either the right side or the left side tubing can be extended to pick up sample Figure 1 10 shows the Dual Push button Hand Pipette Probe 1 18 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Disposable Tip Push button Hand Pipettor Probes The Disposable Tip Push button Hand Pipette Probe is a single dispense tube pipette that features disposable tips and push button tip ejection The Disposable Tip Push button Hand Pipette Pipettor Probe is an optional accessory Use this probe when sample to sample carryover is a concern See Figure 1 10 Figure 1 10 shows the Concorde the Disposable Tip and the Dual Hand Pipettor Probe Figure 1 10 The Concorde the Disposable Tip and the Dual Hand Pipettor Probes i lj O Concorde Disposable Tip Dual Hand Pipettor Pipettor Pipettor Probe Probe Probe Luer Lock Tip Push button Pipette Hand Pipettor Probe The Luer Lock Tip Push button Pipette Hand Pipettor Probe is an optional accessory that dispenses liquids through needles of different lengths and gauges This probe is useful for controlling very small dispense volumes with a high degree o
77. e unit Figure 1 9 shows the controller unit The display screen and controls and are located on the unit display screen The display screen is located at the top of the unit It shows the status of the instrument and provides information about current methods function keys The function keys are located directly beneath the display screen Use these keys to perform the various operations shown on the display screen numeric keypad The numeric keypad is located in the lower left corner of the controller unit Use the numeric keypad characters to enter numeric data into the methods that you create or run arrow keys The arrow keys are located on the right side of the controller unit Use these keys to move from field to field on the display screen Run Stop key The Run Stop key is located in the bottom right corner of the controller unit This key generates a command signal that activates the next step of an operation See Chapter 3 Programming and Using the MICROLAB 500 System for complete instructions about using the controller unit s various keys Note 500C models may be operated with the controller unit However the controller is not included in the standard 500C package 1 16 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Figure 1 9 The Controller Unit
78. e valve assemblies for the 530B 531C and 540B 541C units are different from one another their installation procedures are the same To install a valve assembly on either the MICROLAB 530B or 540B follow these steps 1 Pick up the valve assembly Make sure the TEFLON luer fittings that attach to the syringes are on the bottom of the assembly 2 Insert the valve assembly into the valve motor drive ports and press the valve assembly into place 3 Tighten the thumbscrew until it is finger tight to secure the valve assembly to the drive unit Figure 2 4 Installing a Valve Assembly on the MICROLAB 530B 531C and 540B 541C Valve Motor Drive Ports _ q Valve Stem Valve Thumbscrew Ss Chapter 2 Installing the MICROLAB 500 System 2 9 Selecting Installing and Removing Syringes Before you install syringes on any MICROLAB instrument you must first decide what syringes to use Use Tables 2 2 and 2 3 to select the best syringe for your application See Figures 2 5 through 2 7 for examples of different syringe types e The MICROLAB 510B 511C uses one dispenser diluent type syringe in the left position TLL type or TLLX type syringes e The MICROLAB 540B 541C uses two dispenser diluent type syringes one each in the left and right positions TLL or TLLX e The MICROLAB 530B 531C uses one reagent diluent syringe in the left position and one sample syringe in the right position DX TLL or TLLX e Asa g
79. ediately Wash the surface using a damp cloth with water and soap or use a SANI CLOTH Then dry the area Take care that liquids do not enter the interior of the MICROLAB 500 To disinfect the exterior surface wipe it down with a 10 chlorine bleach and deionized water solution Then dry the area 4 4 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Note The cleaning guidelines presented here are meant as guidelines only If your particular applications require different cleaning solutions contact Hamilton Company for more information Chemical Compatibility The MICROLAB 500 s fluid path consists of TEFLON based materials and borosilicate glass These materials are resistant to a wide variety of acids and bases at room to moderate temperatures Most chemicals do not affect TEFLON at normal operating temperatures A Important Do not use the MICROLAB 500 for prolonged periods at high temperatures with aromatic or highly halogenated compounds These compounds may cause the MICROLAB s fittings to swell adversely affecting performance and reducing the life of system components Appendix D Chemical Compatibility of the MICROLAB 500 provides a list of chemicals and their compatibility with the MICROLAB 500 system A If you have any questions about chemical resistance to specific compounds please contact the Hamilton Company check out any unusual or reactive compounds before using them with your MICROLAB 500 syst
80. eeaeeneees F 3 Syringe Positioning Commands ccceeeeseeeeeeeeeeeeeeaeeees F 4 Valve Positioning Commands cceeeeeeeeeeeeeeeeeeaeeaeeees F 5 Timer and Digital O Commands 02 ccccceeeeeeeeeeeeeaeeeeeees F 6 Execution COMMANAS ccceeeeeeeeeeeeeeeeeeeeeeeeeeeaeaeeeeeteeeees F 7 Instrument Control COMMANAG cecceeeeeeeeeeeeeeeaeeteeeeeees F 8 Syringe Parameter Change ccceseeeeeeeeaeeeeeeeeeeeeaeaaenees F 9 Valve Parameter Change cccccccceceeeeeeeeeeeeeeaeaaeeeeeeeeeees F 10 Stored Method Parameter Chang c cecceseeeeeeeeeeeees F 11 Instrument Information Requests ccceeeeeeseeeeeeeaeeeees F 11 Instrument Status Requests 0 cccceeeeeeeeeeeeeeeeeeeeeeeaaes F 13 Syringe Parameter ReqQuest cccceeeeeeeeeeeeaeeeeeeeeeeeeees F 19 Valve Parameter REQUEST ceceeeeeeeeeeeeeeeeeeeeeeeeeeeenaees F 20 Timer and Digital I O Requests cceceeceeeeeeeeeeeeeeeeeees F 21 Firmware Version REQueSt ecccseeeeeeteeeeeeaaeeeeeeaaeeees F 22 ASCIl Chait cine oe es oa ee eat ee F 22 ML500B Default Environmental Parameters F 26 ML500B Command Buffer cccccceeeeeeeeeeeeeeeaeaaeeeeeeeeeees F 26 ML500B Methods 0 cccccceeeeeeeeeeeeeeaeeeeeeeeeeeeeeeaaaaeeeeeeeeeees F 27 ML500B Specific Protocol Information F 27 Glossary nia A a a rn eae ae eee te GL 1 INGOX 0 Ausaecesuricctecnoe
81. eeccseeeeeaneeeeeaeeeeeeeaaeees 3 40 Copying a Method to a Custom Method eee 3 41 Downloading a Method to the Drive uniit eeeeeeeees 3 42 Diagnostic and Configuration Menu ceeeeeceeeeeeeeeeees 3 44 Changing the Default Language ceecseeeeeeeeeeeeeeeee 3 44 Contents vii Chapter 4 Chapter 5 Setting the Baud Rate to the Drive Unit eee 3 45 Turning Caps Lock On and Off eeren 3 46 Performing the Display Test 3 46 Performing the Keyboard TeSt cecceeeeeeneeeeeeeaeeeeeeea 3 46 Sample MICROLAB 510B Application Configurations 3 47 Single Syringe Dispensing eceeeeeeeeeeeeeeeeeeeeeeeee 3 47 Sample MICROLAB 530B Application Configurations 3 48 Example 1 DilUtions ccc ceeee eect eeee AERA 3 48 Example 2 DilUtionS ccceeeeeceeeeeeeaeeeeeeaaeeeeeaaeeeeees 3 49 Sample MICROLAB 540B Application Configurations 3 50 Example 1 Dual Dispensing 0 eeceeeeeeenteeeeeaaeeeees 3 50 Example 2 Using the Dual Dispenser for Single Dispensing ccceeeeeaeeeeeeeeeeeeeeaeaaeeeeeeeeeeeaea 3 50 Caring for the MICROLAB 500 cceeeeeeeeeeees 4 1 Deciding When to Clean the MICROLAB 500 cccecseeeeeees 4 2 Cleaning the Fluid Path of the MICROLAB 500 eeeee 4 2 Cleaning Syringes and TUbING 0 cceceeeeeeeeeeeeeeeeeeeaee
82. eeeeeeeeeeees 1 13 Hand Probe or Footswitch Connector Receptacle 1 13 PIRE BO Xi iiss a A A AREA 1 13 Communications SettingS ccceeeeeeeeeeeeeeeeeeeeeeeeaaeees 1 13 Power On Off Switch and Power Indicator Light 1 14 Step Prime Switch 0 ccececec eee ceeeeeeeeeeeeeeeaaeaeeeeeeeeeeeeaea 1 14 Valve ASSE Mly eerren e EA EE 1 15 Syringe Drive AIMS 0ccccceeeeeeeeeeeeeeeeeeeeeeeaaaaeeeeeeeeeeeeaea 1 15 ControllenUnits 4 4 wee eG ein in aie 1 16 Pipettors PLOD6S narri seeks nous ueeith A E 1 18 Concorde Push button Hand Pipettor Probe 006 1 18 Dual Push button Hand Pipettor Probe eeeeeeeeeneee 1 18 Chapter 2 Chapter 3 Disposable Tip Push button Hand Pipettor Probes 1 Luer Lock Tip Push button Pipette Hand Pipettor Probe 1 Viscous Sample Push button Hand Pipette PipettOr Probe sic i i E EANNAN arIa 1 20 FOOI WIG hne e e a eas 1 20 Probe Button Functions cceccceeeeeenneeeeeeaeeeeeeaaeeeeeaaeeees 1 20 Installing the MICROLAB 500 System 55 2 1 Overview of Installation Procedures ccccsceeeeeeeeeeeeaeeneeeees 2 3 Selecting a LOCAtION cc ceceeeee cece ceeeeeeeeeeeeeeeaeaaeaeeeeeeeeeeeeaaa 2 3 Installing the Accessory Holder ccceeeeeeeeeeeeeeeeeeeeeeeeeeeeeaes 2 3 Selecting Communications Options cceeceeeeeeeeeeeeeeeeeeees 2 4 Installing Ele
83. eeeeeeeneeeeeeeeeerenee E 2 Data Transfer Format cccccceeceeeeeseeeeeaeeeeeeeeeaeeeeeeeeeaaes E 4 Data String Component ccececceeeeeeeeeeeeaeeeeeeeeeeeeaeaaea E 5 DIN Protocol BDZ Syntax 0ccceceeeeeceeeeeeeeeeeeeaeaaeeeeeeeeeeeaea E 7 Hardwire addressing cceeeeeeeeeeeeeeeeeeeaaeeeeeeaaeeeeeaaeeeeees E 8 Auto addreSSing cccccceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseaeeeeeeneas E 8 Extablishing a Data Transfer SESSION 0scceeeseeeeeeeaeees E 9 Terminating a Data Transfer SeSSION 0 ceeceeeeeeeeee teens E 10 Data Transfer Session 0 eceeeeeeeeeeeeeeeeeeeaeaaeeteeeeeeeeaea E 10 Data Block Format Aaiun ae i ia ia E 10 Data String Component ccceccceeeeeeeeeeee sae eeeeeeeeeaeaaes E 11 Broadcast ACCreSSiNg cececceseeeeeaeeeeeeeaeeeeeeaaeeeeeaaeeeees E 16 Stored Methods cccccceecececeeeeeeeeeeeeeeeeeeeeeeaaeeeeeeaaeeeees E 16 Stored Method Definition cc ccceceeeeeeeeeeeeeeeeeeeeeaeaaeeees E 16 Creating Stored Methods ccceceeeeeeeeeeeeeeeeeeeeeaeaaeeees E 16 Stored Method Execution ccceceeeeeeeeceeeeeeeeeeeeaeaaeeees E 17 Appendix F Protocol Command SUMMAar eceeeeeeeeceeeeeeeeeeeeaeaaeeeeeees F 1 Channel Selection Commands c cccceceeeeeeeeeeeeeaeeaeeees F 2 Contents ix Initialization COMMANAS cc cece ees cece es cece eee eceeaeeeea
84. eenetes net eericesenos cutee sccoegerieceacooeeesscess IN 1 x MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Figures and Tables Preface Chapter 1 Chapter 2 Figure PR 1 Figure 1 1 Figure 1 2 Figure 1 3 Figure 1 4 Figure 1 5 Figure 1 6 Figure 1 7 Figure 1 8 Figure 1 9 Figure 1 10 Table 1 1 Table 1 2 Table 1 3 Table 1 4 Figure 2 1 Figure 2 2 Figure 2 3 The MICROLAB 500 Series of Instruments PR 2 MICROLAB 500B System Components 1 3 MICROLAB 500B Shipping Kit Components 1 5 Small Parts Kit 0 cccccceseeeeeeeeeee eee eeeeeeeeeeeeeaaeeees 1 6 TUOMO Attias a eae Lahecnece aed ch ane ceiaa eee abe 1 7 Front View of theML510B Single Syringe Dispenser cccceeeeeeeeeeeeeeeeeeeeeeaneaes 1 9 Front View of the ML530B Dual Syringe Diluter 1 10 Front View of the ML540B Dual Syringe Dispenser eenen 1 11 Rear View of the ML510B 530B and 540B 1 12 The Controller Unit cccceeceeseeeeeeeeeeeeeeeeees 1 17 The Concorde the Disposable Tip and the Dual Hand Pipettor Probes cccccceceeeeeeeeeeeeeeeaeeeeeeeeaaes 1 19 MICROLAB 500 System Descriptions 1 2 MICROLAB 500B Shipping Kit ccceceeeeees 1 4 Small Parts Kit 35888 For All Models 1 6 Tubing Kit 35887 For All Models 00 1 7 Overview of Installation Procedures 0 2 2 Installing Elec
85. em Chapter 4 Caring for the MICROLAB 500 4 5 Storing the MICROLAB 500 For long term storage prime and purge the system with methanol to facilitate drying Remove the tubes and syringes Cover the instrument to protect it from damage Store syringes in their original containers Replacing Batteries You can replace the batteries in the MICROLAB 500 and yet save all methods stored in memory To change batteries while saving stored methods follow these instructions A Important Read all the following instructions before replacing batteries You MUST follow these steps to save stored methods A 1 Make sure the controller is plugged into the base unit The controller must remain plugged into the base unit to save stored methods 2 Make sure the base unit is powered on The base unit must remain powered on to save stored methods 3 Turn over the controller Remove the single screw from the battery cover and set the cover and screw aside 4 Pull out the two old batteries and replace them with two new AA batteries Be sure to match the positive negative symbols on the batteries and on the controller A Important Make sure you install the batteries correctly according to the positive and negative symbols If you reverse the batteries positions and power off the base unit all stored methods will be lost A 4 6 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual 5 Replace the battery cover and secure it with the s
86. eneral rule to ensure high accuracy and precision try to use 10 or more of a syringe s total volume Consider using a different size syringe if your application calls for driving a syringe less than 10 of its total volume and high accuracy and precision are required Table 2 2 Reagent Diluent Syringes TLL and TLLX types Syringe Sizes Model Number Part Number Optimal Ranges uL 25 uL 1702 TLLX 80222 2 5 25 50 uL 1705 TLLX 80922 5 50 100 uL 1710 TLLX 81022 10 100 250 uL 1725 TLLX 81122 25 250 500 uL 1750 TLLX 81222 50 500 1mL 1001 TLLX 81323 100 1000 2 5 mL 1002 TLL 81420 250 2500 5mL 1005 TLL 81520 500 5000 10 mL 1010 TLL 81620 1000 10 000 25 mL 1025 TLL 82521 2500 25 000 2 10 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Table 2 3 Sample Syringes DX type Syringe Sizes Model Number Part Number Optimal Ranges uL 25 uL 1702 DX 80226 2 5 25 50 uL 1705 DX 80926 5 50 100 uL 1710 DX 81026 10 100 250 uL 1725 DX 81126 25 250 500 uL 1750 DX 81226 50 500 1mL 1001 DX 81326 100 1000 See Appendix C for information regarding replacement parts for TLL TLLX and DX syringes Figure 2 5 The TLL type Dispenser Diluent Syringe A A l Figure 2 6 The TLLX type Dispenser Diluent Syringe Cc p
87. ent error bytes Bit definition for byte a left syringe error s 0 Not initialized 1 Overload error 2 Stroke too large Appendix F F 13 3 4 Initialization error Non existent 5 Always 0 6 7 Always 1 Always 0 Bit definition for byte b left valve error s 0 Not initialized DoF WN Initialization error Overload error Always 0 Non existent Always 0 Always 1 7 Always 0 Bit definition for byte c right syringe error s 0 Not initialized DoF UONG Overload error Stroke too large Initialization error Non existent Always 0 Always 1 7 Always 0 Bit definition for byte d right valve error s 0 Not initialized DOF WN FH Initialization error Overload error Always 0 Non existent Always 0 Always 1 F 14 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual 7 Always 0 Bit 1 condition is TRUE Bit 0 condition is FALSE For instruments with a single valve and or syringe the valve and or syringe is considered to be on the left side The right side valve and or syringe is considered to not exist Eab Instrument Error Request ab Instrument error bytes Bit definition for byte a syringe s error s 0 Not initialized Overload error Stroke too large Initialization error Non existent Always 0 Always 1 7 Always 0 Bit definition f
88. er than zero 0 Enter an initial volume The initial volume may be zero less than the step volume or greater than the step volume Generally however initial volume is greater than the step volume Enter a step volume This volume must be larger than zero 0 for at least one syringe The Titrate method parameters screen appears Titrate method parameters Left Right Syringe fill speed 4 Initial dispense speed 4 Step dispense speed 8 Step auto repeat delay ELECT item to edit ACCEPT if complete Enter syringe fill speed s Enter initial dispense speed s Enter step dispense speed s Enter a step auto repeat delay this is the time delay between two dispensations when you press the probe button or the Run Stop key Valid values are from 0 60 seconds When you are satisfied with your entries press ACCEPT The Save method in method memory screen Press CONFIRM to save the method then press any key to continue 3 26 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Creating a Custom Method Use this function to create a custom method of your own design You may enter up to 50 command lines any command line may be executed either manually or automatically If you execute commands automatically you may delay the execution of each line by 0 60 seconds in increments of 0 1 seconds Valid syringe operation modes are listed in the follow
89. er the instrument OFF then ON to active the method Stored Method Execution The instrument s environmental parameters are overwritten by those for a given method when the method is selected These parameters will stay in effect until a new method is selected Upon receipt of the first trigger command the instrument will begin execution of the first function in the method If the instrument was not previously initialized the instrument will automatically initialize all devices before executing the first function The instrument will continue to execute the functions in the method until the last function has completed The instrument will then automatically restart the method beginning with the first function The status of the instrument may be monitored via the RS 232 line while a stored method is running All status and execution control commands are recognized while a stored method is running E 18 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Appendix F Protocol Command Summary This section provides detailed information on the two protocols supported by Hamilton Company Protocol 1 RNO and DIN Protocol BDZ e Channel Selection commands e Initialization Commands e Syringe Positioning Commands e Valve Positioning Commands e Timer and Digital I O Commands e Execution commands e Instrument Control Commands e Syringe Parameter Change e Valve Parameter Change e Stored Method Parameter Change e Instrument I
90. es tubing or syringes pipette To measure a fixed amount of liquid with a probe power down To turn off an electrical device Power Indicator light A LED on the drive unit that shows whether or not the MICROLAB system is powered on Power On Off switch A switch used to turn the MICROLAB system on power on To turn on an electrical device prime To make an instrument ready for operation by running fluid through the fluid path tubing valves and syringes of an instrument to remove all bubbles and air gaps You must prime the system prior to use and between fluid changes GL 6 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual prime mode The process of priming an instrument probe A hand held device that contains dispense tubing Each probe also has a button that can be used to control the drive unit reagent diluent syringes Syringes that pick up and dispense reagent and diluent The GASTIGHT TLL type and TLLX type syringes are reagent diluent syringes reservoir A container that holds system fluid diluent return To dispense fluid out through the valve input port and attached tubing Returned Goods Authorization Number RGA A number assigned by the Hamilton Company that is used to trace an instrument in the event it is returned for repair RS 232 The standard for electronically linking Hamilton instruments together RS 232 is a serial interface Run Stop key A control used to start stop or p
91. est is sent to the instrument the instrument will respond with a Data Block to the controlling device with the requested information The controlling device may transmit as many or as few Data Blocks to the instrument as necessary however all Data Blocks from both the controlling device and the instrument must be completed before terminating the Data Transfer Session Data Block Format Data is transmitted between the controlling device and the instrument in Data Blocks Data Blocks may only be exchanged during Data Transfer Sessions The format of a Data Block is as follows lt STX gt lt data string gt lt ETX gt lt BCC gt to Block control character End of data block Information Beginning of data block The receiver of a Data Block will reply with lt ACK gt if the Data Block was received with no communication errors and has a valid BCC It will reply with a lt NAK gt otherwise E 10 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual The BCC Block Control Character is a 7 bit value used to detect errors in a Data Block The BCC is the inverse of the result of Exclusive OR ing XOR of all of the bytes in the data string and the lt ETX gt BCC 0 BCC BCC XOR lt data string byte 1 gt BCC BCC XOR lt data string byte 2 gt BCC BCC XOR lt data string byte n gt BCC BCC XOR lt ETX gt BCC bit wise inverse BCC BCC BCC truncated to 7 bits For example the BCC for the auto address da
92. ethod Use this function to edit an existing method At least one method must exist in the method storage area for you to use this function 1 From the Main menu SELECT the Edit an existing method function If at least one method exists the following screen appears Edit an existing method EW2 lt UNUSED gt lt UNUSED gt lt UNUSED gt lt UNUSED gt lt UNUSED gt lt UNUSED gt ELECT an existing method ESCAPE 2 Use the arrow keys to highlight an existing method then press SELECT You cannot highlight an unused method 3 The contents of the selected method appears on screen Use the arrow keys to highlight the field you wish edit then press SELECT The highlighting changes to underlining Use the arrow keys or the numeric keypad to change the underlined value When you are satisfied with your edit press ENTER to accept the new value 4 SELECT another field to edit or press ACCEPT to save all changes made to the method and return to the Edit an existing method screen SELECT another method to edit or press ESCAPE to return to the Main menu X Note Syringe size or configuration cannot be edited from this screen Chapter 3 Using the MICROLAB 500 System 3 31 Performing Manual Dilutions Use the Manual Dilution function to perform manual dilutions without creating and saving a new dilution method or without running an existing di
93. evice receives 01 lt ACK gt t lt ACK gt Acknowledge 01 Instrument address Controlling device transmits lt STX gt F lt ETX gt t BCC for this data block lt ETX gt End of data block F Firmware version request lt STX gt Beginning of data block Controlling device receives lt ACK gt lt STX gt FCV01 00 A lt ETX gt o BCC for this data block End of data block Firmware version F Firmware version request lt STX gt Beginning of data block lt ACK gt Data block acknowledged lt ETX gt CV Controlling device transmits lt ACK gt lt EOT gt t lt EOT gt Terminate data transfer lt ACK gt Data block acknowledged E 16 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Broadcast Addressing In addition to addressing a single unit on a daisy chain both Protocol 1 RNO and DIN Protocol BDZ allow all units on a daisy chain to be addressed at once using the broadcast address Note however that the instrument s will NOT transmit protocol or status information when addressed with the broadcast address to ensure no corruption of of data on the serial line when multiple instruments attempt to transmit data at the same time Stored Methods This instrument is capable of storing only one method in non volatile memory Storing a method on an instrument allows the instrument to perform a specific sequence of operations without the inte
94. f accuracy It is also ideal for administering injections to small animals and for piercing septa Chapter 1 Getting Started 1 19 Viscous Sample Push button Hand Pipette Pipettor Probe The Viscous Sample Push button Hand Pipettor Probe is an optional accessory This single dispense tube pipette is designed to accommodate highly viscous samples such as motor oil This accessory features a disposable 5 mL tip that eliminates sample carryover Air displacement ensures accurate dilutions Footswitch In addition to the hand activated probes a footswitch is also available The footswitch allows you to operate the MICROLAB 500 via a foot activated control pedal This is useful when you need to keep both hands free as when doing hand sampling Refer to Appendix C for information about ordering the footswitch or any other optional accessories Probe Button Functions The probe button on any model of hand probe serves basically the same function as the Run Stop key on the controller unit However you cannot use the probe button to pause an operation or to reinitialize the system after an error occurs 1 20 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Chapter 2 Installing the MICROLAB 500 System This chapter contains information about installing the MICROLAB 500 system including the following topics e an overview of installation procedures e selecting an installation location e installing the accessor
95. f operating at one or more of the speeds specified in the method Refer to the user s manual to determine the speeds supported by this drive unit drive unit syringe configuration This drive unit does not have the appropriate number of syringes to perform this method Either change the configuration of the method or try a different method drive unit valve configuration This drive unit does not have the appropriate number of valves to perform this method Either change the configuration of the method or try a different method invalid unknown drive unit This drive unit cannot be operated by the controller Please refer to the user s manual to determine the types of drive units that can be operated by the controller continued Chapter 5 Troubleshooting 5 7 Table 5 1 Error Message Code Guide continued Error Type Error Message Method Errors duplicate method name The method name selected cannot be used because a method with the same name already exists Use the THE DELETE AN EXISTING METHOD selection to remove that method method memory cleared The battery used to preserve methods stored on this unit is good but any stored methods have been lost This can be caused by battery replacement or by the first power up of the unit method memory empty The operation cannot be performed because the method memory is empty Use the CREATE A NEW METHOD selection to crea
96. he drive unit could not be established Check that the connection to the drive unit is good and that the protocol and baud rate settings are correct Also try cycling power on the drive unit Then try the operation again communication invalid echo The echo received from the drive unit was not correct Consult the user s manual to ensure the cable loopback switch protocol switch and baud rate switches are set correctly continued 5 2 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Table 5 1 Error Message Code Guide continued Error Type Error Message Communication Errors communication invalid length The drive unit responded to the last command with either too little or too much data Consult the user s manual to ensure the cable loopback switch protocol switch and baud rate switches are set correctly communication NAK response The drive unit did not accept the last command sent to it Ensure that the Step Prime switch is off and the cable loopback switch protocol switch and baud rate switches are set correctly communication receive time out A serial I O character was not received within the expected amount of time Consult the user s manual to ensure the cable loopback switch protocol switch and baud rate switches are set up properly communication transmit A physical serial I O error occurred while attempting to send a command to the d
97. he function keys are located directly below the display screen Use these keys to perform specific actions based on the requirements of the current screen To perform an action press the function key located beneath the action Not all actions are available from all screens Table 3 1 Function Key Actions SELECT selects the highlighted element on the screen so it can be edited or acted upon in some manner ESCAPE returns you to the previous screen without saving any changes also abandons the current edit mode process ACCEPT accepts the displayed screen with any changes CONFIRM verifies that you want to save your changes or that you want to perform an action DELETE deletes the highlighted element on the screen ENTER accepts the underlined value entered while in edit mode MODE allows you to choose the next operation to be performed in a manual method 3 4 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Editing Conventions To use the edit mode press the appropriate arrow key to move to the desired screen location Then press the SELECT function key you must always press SELECT before you can change the value of any highlighted item For example to enter a size for a syringe use an arrow key to move to and highlight the syringe size field Instrument configuration One syringe instrument Two syringe instrument Left Syringe size
98. his section includes complete parts lists for the MICROLAB 500 systems After you unpack your MICROLAB 500 check to see that you have received all parts before attempting to set up the system The parts lists are presented in four separate tables with four corresponding figures Table 1 1 lists the programmable models in the MICROLAB 500 series their components and each component s part number Figure 1 1 shows these components Table 1 1 MICROLAB 500 System Descriptions Model Part Drive Controller Manual Part Power Shipping Unit Unit amp Cord Kit Part Cord Part Part MICROLAB ML510115 35890 35893 69176 English 6541000 35792 510B 115V 69182 French 69180 German 69186 Portuguese 69188 Spanish MICROLAB ML510220 35890 35893 same as above 355010 35792 510B 220V MICROLAB ML530115 35891 35893 same as above 6541000 35793 530B 115V MICROLAB ML530220 35891 35893 same as above 355010 35793 530B 220V MICROLAB ML540115 35892 35893 same as above 6541000 35794 540B 115V MICROLAB ML540220 35892 35893 same as above 355010 35794 540B 220V All MICROLAB 500C models come with the drive unit the manual a power cord and a valve The MICROLAB 500 C does not come with a controller or a shipping kit 1 2 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Figure 1 1 not to scale MICROLAB 500 System Components items shown are
99. ield The system automatically calculates Maximum Aliquots Maximum Aliquots Total volume Aliquot volume 3 Enter the number of aliquots to be dispensed Note that this number cannot be larger than the calculated number in the Maximum Aliquots field 4 Enter the syringe fill speed 5 Enter the syringe dispense speed Chapter 3 Using the MICROLAB 500 System 3 17 Enter the syringe fill mode this mode can be either Auto or Manual Use the arrow keys to change the current mode Auto mode means that the instrument will perform the fill function automatically when you run the method Manual mode means you must press the Run Stop key or press the probe button to activate the fill function when you run the method When you are satisfied with your entries press ACCEPT The instrument displays the Save method in method memory screen Press CONFIRM to save the method then press any key to continue Creating a Serial Dispense Method Use this function to create a serial dispense method that serially dispenses various amounts of liquids 1 Follow steps 1 8 under Creating a New Method Select the Serial dispense method function from the Method type to create menu The Serial dispense volumes screen appears Serial dispense volumes uL Left Used 2500 0 Right Used Available ORO Available 2500 0 ECT item to edit ACCEPT if complete
100. ing 3 of 10 strokes completed RUN to continue E E to exit Press the Run Stop key once again to resume the cycle or press ESCAPE to exit the cycle 5 When the cycle is complete the instrument displays a message stating that the prime is complete Press any key to return to the main menu Prime the fluid path Priming 10 of 10 strokes completed Prime complete Press any key to continue 3 12 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Creating a New Method Use this function to create and save a new method in the method storage area You can create and save up to 21 methods To create a new method follow these steps 1 From the main menu use the arrow keys to highlight the Create a new method function then press SELECT 2 The instrument displays the method storage area with an unused method location already highlighted Unused method locations are denoted by the term lt UNUSED gt If desired use the arrow keys to move to another location Press SELECT to use a highlighted location or press ESCAPE to return to the main menu without creating a new method Create a new method lt UNUSED gt lt UNUSED gt lt UNUSED gt lt UNUSED gt lt UNUSED gt lt UNUSED gt lt UNUSED gt D gt D gt ED gt ED gt Hf fH ff Hef fw El w amp D gt ED method aa n
101. ing table Fill Fills or picks up liquid from the valve input port typically this is from the reservoir via the diluent syringe Return Dispenses or returns liquid to the valve input port Aspirate Aspirates or picks up liquid from the output port Dispense Dispenses liquid to the valve output port Note On MICROLAB 530 instruments D type syringes right side only Fill and Aspirate perform the same function Also Return and Dispense perform the same function You can create a custom method to run a valve without moving the attached syringe if you set the appropriate volume to zero or if you do not enter a volume for the syringe Follow steps 1 8 under Creating a New Method Select the Custom method function from the Method type to create menu The Custom method screen appears Use the arrow keys to move from field to field You may enter values in any order Chapter 3 Using the MICROLAB 500 System 3 27 Custom method AUEOMDiivs Vol rH SodmV oil RICE Soc ELECT item to edit ACCEPT if complete 2 Auto field Valid modes are Y or N indicating that AUTO delay is either on or off If the Auto field is blank AUTO delay is off 3 DLY Delay field Enter the number of seconds of delay between method steps If the Delay field is left blank there is no delay between method steps 4 Vol LEFT field Use
102. ion 0 2100 full resolution Snnn xnnn nnn Syringe drive speed in seconds per full stroke Nr cr r return steps 0 9 If a speed is specified with DIN Protocol BDZ that speed will become the default for the syringe s specified If return steps are specified with DIN Protocol BDZ that number of return steps will become the default for the syringe s specified F 4 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual The instrument will not execute any syringe positioning commands until an execute command or an external trigger is received Valve Positioning Commands Table F 4 Valve Positioning Commands Protocol 1 RNO DIN Protocol BDZ Description Command Parameters Command Parameters I Valve to Input Position position 1 O Valve to Output Position position 4 W Valve to Wash Position position 3 LPdpp V Valve Positioning LAdaaa vd d direction 0 CW 1 CCW npp pp valve position 1 8 waaa aaa valve angle in absolute angles from 0 in 15 increments The instrument will not execute any valve positioning commands until an execute command or an external trigger is received Appendix F F 5 Timer and Digital I O Commands Table F 5 Timer and Digital I O Commands Protocol 1 RNO DIN Protocol BDZ Description Command Parameters Command Parameters gt Dxxx S TTL Data Output dxxx xxx TTL data decimal gt TXx
103. isting method function The Delete an existing method screen appears Delete an existing method B S EW2 D gt lt UNUSED gt D gt lt UNUSED gt D gt lt UNUSED gt D gt lt UNUSED gt D gt lt UNUSED gt D gt lt UNUSED gt US USE US USE US US E E E E E E CONFIRM to delete ESCAPE NEW3 lt UNUSED gt lt UNUSED gt lt UNUSED gt lt UNUSED gt lt UNUSED gt lt UNUSED gt to cancel SELE ESCAPE 2 Use the arrow keys to select an existing method The valid functions change to ESCAPE and CONFIRM 3 Press CONFIRM to delete the method Returns to the Delete an existing method screen SELECT another method to delete or press ESCAPE to return to the Utilities menu Chapter 3 Using the MICROLAB 500 System 3 39 Copying a Method to a Custom Method Use this function to copy an existing method into a custom method e At least one method must exist in the method storage area for you to use this function If no method exists you receive an error message e You cannot copy a titration method to a custom method since titration methods are interactive 1 From the Utilities menu SELECT the Copy a method to a custom method function The Method to copy to custom screen appears Method to copy to custom NEW2 lt UNUSED gt lt UNUSED gt lt UNUSED gt lt UNUSED gt lt UNUSED gt lt U
104. ity of the system replacing batteries while saving stored methods Note Call Hamilton Company s Technical Customer Service Department at 800 648 5950 in the United States and Canada if you have questions about maintaining your MICROLAB 500 system Deciding When to Clean the MICROLAB 500 How often you clean the MICROLAB depends upon how you use the instrument and what you use in it We recommend that if you use the instrument daily the tubing and syringes should be purged and primed at the end of each experiment and each work shift Clean the system by flushing it with Hamilton Syringe Cleaner ethanol or a with a 10 chlorine bleach and deionized water solution Avoid using caustic or acidic cleaning solutions A Important Leave the syringes and tubing filled with deionized water overnight This is important if you are using buffers or other salt solutions which could accumulate or crystallize in the system If buffers or other salt solutions are left in the fluid path overnight crystals may form and damage the syringe plunger tip A See Cleaning the Fluid Path of MICROLAB 500 for complete details on cleaning the fluid path If you still have questions contact Hamilton Company s Technical Customer Service Department at 800 648 5950 Cleaning the Fluid Path of the MICROLAB 500 Clean the MICROLAB 500 s fluid path before using it for the first time Use Hamilton Syringe Cleaning Solution to clean the fluid path
105. lected and user input appear in boldface courier A Word About Single Syringe Instruments Throughout this manual you will see references to multiple syringes volumes speeds and to the right side controls All screen examples show the use of dual syringe instruments If you are using a MICROLAB 510B 511C single syringe dispenser please disregard these references The right side functions are not available on single syringe instruments Any operational differences between the single and the dual syringe instruments are called out in the text Preface PR 5 Chapter 1 Getting Started This chapter provides a brief overview of the MICROLAB 500 system Information in this chapter includes e MICROLAB 500 parts lists e MICROLAB 500 components the drive unit the controller unit hand pipettors probes All MICROLAB 500 instruments come with everything you need to start using the system with the exception of syringes You must separately purchase syringes for use with the MICROLAB 500 systems For complete lists of syringes accessories and replacement parts for the MICROLAB 500 see Appendix C Ordering Parts and Accessories for the MICROLAB 500 Note Contact your local delivery company if you notice any visual damage to the MICROLAB 500 shipping package or to its contents Also you may want to save the shipping container in case you ever need to return the instrument for service MICROLAB 500 Parts Lists T
106. ller unit is disconnected Also the power must be cycled off then on after the method is downloaded Use a hand probe button or a foot activator switch to execute downloaded methods Note Each time a method is downloaded the previously downloaded method is erased Chapter 3 Using the MICROLAB 500 System 3 41 e At least one method must exist in the controller method storage area for you to use this function If no method exists you receive an error message e You cannot download a titration method since titration methods are interactive 1 From the Utilities menu SELECT the Download a method to the drive unit function The Download a method screen appears Download a method NEW2 lt UNUSED gt lt UNUSED gt lt UNUSED gt lt UNUSED gt lt UNUSED gt lt UNUSED gt ELECT an existing method ESCAPE 2 Select the method you wish to download then press SELECT 3 The Download a method screen appears Download a method N EW2 The method selected will be down loaded to the drive unit CONFIRM to start CONFIRM 4 Press CONFIRM to download the method 5 A message appears confirming that the return to the Utilities menu download is complete Press any key to 3 42 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Diagnostic and Configuration Menu U
107. lt EOT gt Auto address starting from address 01 The first instrument in the daisy chain will be assigned the address 01 and will transmit the sequence 02 lt EOT gt to the next instrument The process of saving the address received and transmitting the next address continues for all instruments in the daisy chain The controlling device will NOT receive any indication as to the number of devices that have been auto addressed Establishing a Data Transfer Session Before a Data Transfer Session may take place between the controlling device and an instrument the controlling device must first address the instrument An instrument is addressed using the following sequence lt ADR gt lt ENQ gt t Establish data transfer session Instrument address where lt ADR gt is 01 16 If the instrument is properly connected to the daisy chain it will respond with lt ADR gt lt ACK gt t Acknowledge Instrument address Appendix E E 9 At this time a Data Transfer Session may take place between the controlling device and the instrument Terminating a Data Transfer Session The controlling device terminates a Data Transfer Session with the instrument s by transmitting an lt EOT gt The instrument s will not acknowledge the reception of the lt EOT gt Data Transfer Session A Data Transfer Session is initiated by the controlling device by transmitting a Data Block to the instrument If a status requ
108. lution method Manual dilutions cannot be stored in memory 1 From the Main menu select the Manual dilution function The Instrument configuration screen appears Instrument configuration One syringe instrument Two syringe instrument ECT menu item 2 Use the arrow keys to highlight either a one or a two syringe instrument configuration then press SELECT 3 The default value s for the selected configuration appear on screen Instrument configuration One syringe instrument Two syringe instrument Left Syringe size uL 2500 0 Right Syringe size ul Zo Or ECT item to edit ACCEPT if complete 3 32 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual 10 Press ACCEPT to retain the default sizes To change a syringe s size use the arrow keys to highlight the appropriate size then press SELECT The highlighting changes to underlining Use the arrow keys to increase or decrease syringe size Press ENTER to accept the new size When you are satisfied with the syringe sizes press ACCEPT The Manual dilution screen appears The following sample screen shows a two syringe instrument Manual dilution Left Right Syringe speed 4 2 a Fill volume ul 2500 0 Aspirate volume uL 0 0 Dispense volume ul ome a ELECT item to edit RUN to start
109. ly xxx Initialization speed in seconds per full stroke X2 Sxxx 13 jxxx Initialize Syringe s Only xxx Initialization speed in seconds per full stroke If a syringe overloads before the top of the stroke set the syringe move error bit LX I1 Initialize Valve s Only Initialization sequence 1 Rotate valve s at least 395 2 Stop valve s at the input position If a channel has not been explicitly specified via one of the channel selection commands the initialization commands will be performed on all sides available on the instrument Appendix F F 3 If a speed is specified with DIN Protocol BDZ that speed will become the default for the syringe s specified The instrument will not execute any initialization commands until an execute command or an external trigger is received Syringe Positioning Commands Table F 3 Syringe Positioning Commands Protocol 1 RNO DIN Protocol BDZ Description Command Parameters Command Parameters Pxxxx P Syringe Pickup PXXxXx Xxxx steps 0 1050 half resolution 0 2100 full resolution Snnn ennn nnn Syringe drive speed in seconds per full stroke Nr cr r return steps 0 9 Dxxxx D Syringe Dispense dxxxx xxxx steps 0 1050 half resolution 0 2100 full resolution Snnn fann nnn Syringe drive speed in seconds per full stroke Mxxxx M Syringe Absolute Move MXXXX Xxxx steps 0 1050 half resolut
110. memory empty error 1 From the Utilities menu SELECT the Rename an existing method function The Rename an existing method screen appears Rename an existing method EW2 lt UNUSED gt lt UNUSED gt lt UNUSED gt lt UNUSED gt lt UNUSED gt lt UNUSED gt ECT an existing method ESCAPE Chapter 3 Using the MICROLAB 500 System 3 37 2 SELECT an existing method 3 The following screen appears Rename an existing method TA2S345 67 8 Y OW EF Rol eal i oe BSD EF GH RL ZX OV BoM SPACE Name Newl ECT next letter ACCEPT if complete To accept a character press SELECT To erase a character press DELETE Press ESCAPE to return to the main menu without renaming the existing method Press ACCEPT when you are finished naming the new method 4 When you are satisfied with your entries press ACCEPT The Save method in method memory screen Press CONFIRM to save the renamed method in memory then press any key to continue 3 38 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Deleting an Existing Method Use this function to edit an existing method At least one method must exist in the method storage area for you to use this function If no method exists you receive an error message 1 From the Utilities menu SELECT the Delete an ex
111. method exists displays a Method Memory Empty error message 1 From the Main menu SELECT the Run an existing method function The following screen appears Run an existing method EW2 lt UNUSED gt lt UNUSED gt lt UNUSED gt lt UNUSED gt lt UNUSED gt lt UNUSED gt ELECT an existing method ESCAPE 2 Use the arrow keys to highlight a method name then press SELECT You cannot SELECT an unused method location Chapter 3 Using the MICROLAB 500 System 3 29 3 A screen verifying whether or not the correct syringes are installed appears Method type Methodname This method requires the following syringe size s to be installed on the drive unit Left Syringe size uL 2500 0 Right Syringe size uL 250 0 CONFIRM to continue ESCAPE to exit CONFIRM 4 The Drive unit initialization screen appears You must respond to this screen before running the method Drive unit initialization Any fluid in the syringes on the drive unit will now be purged Pleas nsure the probe is directed towards a waste sree CONFIRM to continue E to exit CONF IRM 5 The contents of the selected method appears on screen Follow the on screen instructions to run the method 3 30 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Editing an Existing M
112. n Company in Reno Nevada Table A 2 Accuracy and Precision 1 mL of Deionized Water at approximately 23 C Percent Stroke Accuracy within Precision within 1 5 3 1 5 5 30 1 2 0 5 30 100 1 0 0 2 A 2 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Pin Outs for RS 232 and TTL Ports The following pin outs are provided for cabling both the RS 232 IN and OUT ports and the TTL ports For the RS 232 COMM OUT J4 1 2 TXD 3 LPBKIN 4 GND 5 CHASGND 6 For the RS 232 COMM IN J3 1 2 RXD 3 LPBKOUT 4 GND 5 CHASGND 6 5V For the TTL INPUT OUTPUT 1 INO 2 IN1 3 IN2 4 IN3 5 OUTO 6 OUTI 7 OUT2 8 OUT3 9 GND 10 GND Appendix A A 3 Appendix B Instrument Performance Test Reports All instruments are subjected to quality control performance testing before they leave Hamilton Company Each MICROLAB 500 system is shipped with a copy of its own performance test report The report contains the actual results of a gravimetric test conducted on the instrument by Hamilton Company s Quality Control Department Keep your MICROLAB 500 s performance test report for use as a benchmark of its original precision and accuracy You may wish to periodically test your MICROLAB 500 and compare its current performance with its out of box performance Remember when you test an instrument you must test it under the same conditions it was originally subjected to See your MICROL
113. n a daisy chain 2 DOWN indicates the unit is a member of a daisy chain in any position except the last position BAUD Baud controls the speed six possibilities qx Rate at which the drive 0 1200 switch unit communicates 1 2400 with other devices 2 4800 baud rate on the 3 9600 system default value controller unit must 4 19200 match the baud rate 9 38400 on the drive unit at 6 Unused startup time the 7 Unused default is 9600 8 Unused 9 Unused UNIT Protocol determines the two possibilities switch hardware address 0 Protocol 1 RNO Syntax and protocol of the drive unit the default is Protocol 1 position 0 system default value maximum items on a chain is 16 1 F DIN Protocol if the drive unit is a member of a daisy chain then each member of the chain must have its own unique address hardware address may may not be out of sequence maximum items on a chain is 15 Chapter 2 Installing the MICROLAB 500 System 2 5 Refer to Appendix E RS 232 Communications with Manual ASCII Commands and Appendix F Protocols for more detailed information about MICROLAB 500 system communications Refer to Chapter 3 Programming and Using the MICROLAB 500 System for more information about baud rate settings Installing Electrical Connections A Warning Always make sure that the instrument is powered off before installing or removing any electrical connections A Refer to Figure 2 2
114. n to test the keyboard area of the unit This function is for use by qualified service personnel From the Diagnostics and Configuration menu SELECT Perform keyboard test The keyboard test screen appears Press escape twice to exit the test mode Chapter 3 Using the MICROLAB 500 System 3 45 Sample MICROLAB 510B Application Configurations Single Syringe Dispensing When the probe button is pressed once fluid is pulled from the reservoir into the TLL syringe The valve then switches to connect the fluid path from the TLL syringe to the hand probe When the probe button is pressed a second time liquid is dispensed out of the probe tip Figure 3 5 shows the Concorde Probe being used for single syringe dispensing Figure 3 6 Single Syringe Dispensing SA SS F Tim O i l CS gt TITTT Diluent 3 46 Sample MICROLAB 530B Application Configurations Example 1 Dilutions When the probe button is pressed once the syringe drive arms move down pulling diluent in from the reservoir and aspirating sample into the probe tip Then the valve reverses and connects the fluid path from both syringes to the hand probe When the probe button is pressed a second time the syringe drive arms move up Sample and diluent are dispensed and mixed together creating a
115. nformation Requests e Instrument Status Requests e Syringe Parameter Request e Valve Parameter Request e Timer and Digital I O Requests e Firmware Version Request Channel Selection Commands Table F 1 Channel Selection Commands Protocol 1 RNO DIN Protocol BDZ Description Command Parameters Command Parameters B S cO Select left channel S cl Select right channel For instruments without dual valve or syringe capabilities all devices are considered to be on the left default side Commands attempted on the right side will result in an error If a channel selection command is not sent before a given command the left default side is assumed as the target for commands and parameter change requests and the instrument as a whole for status requests Exceptions to this rule are noted after the given commands F 2 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Initialization Commands Table F 2 Initialization Commands Protocol 1 RNO DIN Protocol BDZ Command Parameters Command Parameters Description X Sxxx I jxxx Initialize Instrument xxx Initialization speed in seconds per full stroke Initialization sequence 1 Valve s to output position 2 Syringe s drive up until overload bottomed out 3 Valve s to input position 4 Syringe s back off backoff steps X1 Sxxx I2 jxxx Initialize Syringe s On
116. nt is hardware echoed as it is sent Thus the controlling device will receive lt adr gt lt data string gt lt CR gt The instrument will respond with one of the following lt ACK gt lt CR gt Carriage return Acknowledge no parity syntax errors or lt ACK gt lt response string gt lt CR gt Carriage return Status data Acknowledge no parity syntax errors or lt NAK gt lt CR gt t Carriage return Negative acknowledge parity syntax errors A minimum 1 millisecond delay must occur between the controlling device receiving the lt CR gt of the response and the transmission of any data on a daisy chain E 4 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Data String Components A data string may contain one status request and or one or more commands Multiple status requests in a single data string should be avoided as they are not explicitly supported The instrument buffers the commands received until the execute command is received at which time the commands are executed in the order received If anew command to a given device on the instrument is sent to the instrument before the execute command is sent and if the instrument is unable to buffer any more commands for that device the last command to that device will be replaced with the new command The instrument will ignore any new commands received for a given side of the instrument with the exception of exec
117. o refuse to accept the return of any instrument or valve that has been used with radioactive or microbiological substances or any other material that may be deemed hazardous to employees of Hamilton Company July 1999 by Hamilton Company GASTIGHT is a registered trademark of Hamilton Company MICROLAB is a registered trademark licensed to Hamilton Company SANI CLOTH is a registered trademark of Professional Disposables Inc TEFLON is a registered trademark of E I Du Pont de Nemours Company Instruction to the User This equipment has been tested and found to comply with the limits for a class B digital device pursuant to part 15 of the FCC Rules These limits are designed to provide reasonable protection against harmful interference in an installation This equipment generates uses and can radiate radio frequency energy and if not installed and used in accordance with the instructions may cause harmful interference to radio communications However there is no guarantee that interference will not occur in a particular installation If this equipment does cause harmful interference to radio or television reception which can be determined by turning the equipment off and on the user is encouraged to try to correct the interference by one or more of the following measures e Reorient or relocate the receiving antenna e Increase the separation between the equipment and receiver e Connect the equipment into an outlet on a circui
118. obe hardware echoed Transmission of data from one instrument to another via an electrical connection Home position The position of the syringe drive arms when they are at the top of their range of movement inactive valve A valve with a fixed flow passage initialize To establish the basic conditions for starting an operation LED Light Emitting Diode used as an indicator light on the MICROLAB 500 luer fitting The standard twist and lock type of fitting master controller The device that controls all other instrument s on a daisy chain memory The information storage area of an instrument menu A list of options or commands displayed on a computer terminal or on an instrument s display panel method A complete series of repeatable functions that can be performed by MICROLAB instruments These functions may consist of filling dispensing diluting etc Glossary GL 5 MICROLAB 510B Hamilton Company s single syringe dispenser The controller unit can store methods MICROLAB 530B Hamilton Company s dual syringe diluter dispenser The controller unit can store methods MICROLAB 540B Hamilton Company s dual syringe dispenser The controller unit can store methods numeric keypad The group of keys on the controller unit that are used to enter numeric data overload A stall in syringe plunger movement that may be caused by excess mechanical friction excess syringe speed or a blockage in the valv
119. ocol BDZ Description Command Parameters Command Parameters R Total System Reset Y Prepare RS 232 for auto addressing if this command sent via a broadcast address ET U t Perform instrument diagnostic These commands are not effected by channel selection commands F 8 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Syringe Parameter Change Table F 8 Syringe Parameter Change Protocol 1 RNO DIN Protocol BDZ Description Command Parameters Command Parameters YSSxxx Set syringe default speed xxx Syringe drive speed in seconds per full stroke YSNx Set default return steps x return steps 0 9 YSMx S Set syringe mode mx x mode default 0 0 Half resolution 1000 steps per stroke 1 Full resolution 2000 steps per stroke 2 Full resolution with overload detection disabled YSBxx S Set default backoff steps bxx xx steps 0 99 Syringe return steps are used to compensate for the mechanical drive system backlash which improves accuracy and precision Return steps are added to all downward movements which are then subtracted by an upward movement immediately following the downward movement Syringe backoff steps are used to improve accuracy and precision by adjusting the zero position of the drive a small distance away from the initialization overload point Appendix F F 9 Valve Parameter Change Table F 9
120. odes 0 End method download 1 Start method download for method 1 2 Erase all methods 3 Temporarily disable method execution 4 Enable method execution Digital I O Command RNO gt D BDZ Sd The ML500B provides 4 bits 0 15 decimal of digital output Digital I O Request RNO lt D BDZ Ad The ML500B provides 4 bits 0 15 decimal of digital input Instrument Device Status RNO E3 BDZ Xs The ML500B does not support IIC so the IIC Error bit is always 0 Appendix F F 27 Glossary active valve A valve that can switch the flow of liquid between at least two valve positions including 1 the valve input port to syringe and 2 the valve output port to syringe air gap A segment of air that is aspirated through the probe used to separate different liquids in the tubing lines aliquot dispense method A method in which fluid is distributed in equal increments arrow keys Keys that are located on the controller unit used to move from field to field on the display screen aspirate To pick up a designated volume of sample or air from the valve output port into a probe or tubing baud A measurement of the speed at which information can be transmitted between instruments If the baud rate is 9600 9600 bits can be transmitted per second bit A binary digit or digit with a value of zero or one the smallest unit of electronic information busy bit A hardware control signal used to indicate
121. onfigured Either reduce the volume s or use a different syringe size total syringe volume range The total volume entered exceeds the volume of the syringe s that have been configured The valid total volumes appear on the bottom of the screen while the total syringe volume is being entered Titration Errors titrate fill volume The fill volume for the syringe s must be at least equal to the initial volume plus the step volume titrate step volume A step volume greater than zero must be entered for at least one syringe Chapter 5 Troubleshooting 5 9 Audible Messages When a MICROLAB 500 system is operated via the controller unit the system will provide audible messages beeps that indicate certain events These events are listed in Table 5 2 Table 5 2 Audible System Messages Number Event of Beeps 2 The system beeps twice upon power up at the end of power up diagnostics 1 The system beeps once at the start of an operation 3 The system beeps three times if an error occurs 5 10 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Troubleshooting Guide Table 5 3 provides quick answers to help you troubleshoot your MICROLAB 500 Table 5 3 Troubleshooting Guide Problem Possible Causes Corrective Action instrument does not disconnected e connect power cord and check power up power cord or power source faulty power outlet e main fuses
122. ontroller Unit Display Screen Function Keys Se ae a _ A DE Keys 4 6 amp Run Stop Numeric Ye 8 9 J Key Keypad 4 6 Using the Arrow Keys oo __ _ The arrow keys are located on right side of the controller unit K between the function keys and the Run Stop key Use the arrow v7 keys to move from one data entry field to another on the display screen each key moves you in the direction that it points The current field is highlighted in reverse video on the display screen In this manual items are highlighted with boldface text Chapter 3 Using the MICROLAB 500 System 3 3 Using the Numeric Keypad ebel eg Ea 2 8 OT 4 The numeric keypad is located in the lower left corner of the controller unit Use the numeric keypad to enter numeric data when using the edit mode see Editing Conventions for information about the edit mode Using the Run Stop Key NY The Run Stop key is located in the bottom right corner of the controller unit This key generates a command signal that activates the next step or pauses the unit during a method You can also generate a start signal by pressing the button on a hand probe or by using a footswitch Using the Function Keys T
123. or byte b valve s error s 0 Not initialized Initialization error Overload error Always 0 Non existent Always 0 Always 1 7 Always 0 Bit 1 condition is TRUE Bit 0 condition is FALSE Appendix F F 15 Cx Instrument Configuration x Configuration byte Bit definition for byte x 0 Always 0 Valve drive available Syringe drive available Self test active Always 0 Always 0 DoF WN Always 1 7 Always 0 Bit 1 condition is TRUE Bit 0 condition is FALSE E3 Xsx Instrument Device Status x Device status byte Bit definition for byte x 0 Timer s busy 1 Self test busy 2 Stored method busy 3 IIC Error 4 Over temperature error 5 Always 0 6 Always 1 7 Always 0 Bit 1 condition is TRUE Bit 0 condition is FALSE E4 ab Xeab Instrument Sensor Status x Sensor status bytes Bit definition for byte a 0 Left syringe encoder A 1 Left syringe encoder B 2 Left valve encoder 3 Always 0 F 16 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual 4 Always 0 5 Always 0 6 Always 1 7 Always 0 Bit definition for byte b 0 Right syringe encoder A Right syringe encoder B Right valve encoder Always 0 Always 0 Always 0 Always 1 7 Always 0 For instruments with a single valve and or syringe the valve and or syringe is considered to be on the left side The right side valve and or
124. ox 10030 RENO NEVADA 89520 775 858 3000 B 2 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Appendix C Ordering Parts and Accessories for the MICROLAB 500 Appendix C contains information about ordering parts and accessories for MICROLAB 500 systems Table C 1 Reagent Diluent Syringe Replacement Parts Syringe Part Description Barrel Plunger Plunger Plunger Plunger Size Tip Assy Stop Tip w o Stop O ring 25 uL 80222 1702TLLX 10280 N A 13269 N A N A Syringe 50 uL 80922 1705TLLX 10222 N A 1117 01 N A N A Syringe 100 uL 81022 1710TLLX 10223 N A 1117 02 N A N A Syringe 250 uL 81122 1725TLLX 10339 N A 1117 03 N A N A Syringe 500 uL 81222 1750TLLX 10340 N A 1120 01 N A N A Syringe 1 0 mL 81323 1001TLLX 10341 N A 1578 01 N A N A Syringe 2 5 mL 81420 1002TLL 10227 N A 1360 01 N A N A Syringe 5 0 mL 81520 1005TLL 10203 13430 13230 N A 16114 Syringe 10 0 mL 81620 1010TLL 10204 13431 13231 N A 16104 Syringe 25 0 mL 82521 1025TLL 10448 N A 13271 N A N A Syringe C 1 Table C 2 Sample Syringe Replacement Parts Syringe Part Desc Barrel Plunger Plunger Plunger Plunger Plunger Size Tip Assy Stop Assembly Tip w o O ring Stop 25 uL 80226 1702DX 10436 N A 13269 N A N A N A Syringe 50 uL 80926 1705DX 10437 N A 1117 01
125. p Prime switch the ML500 goes into Step mode When in Step mode the drive arms move only as long as you press the Step Prime switch gt 4 When you release the switch movement stops Use the Step mode to move the syringe drive arm down and away from the home position before installing or removing syringes Valve Assembly The valve assembly controls the flow of liquid through the fluid path The 510B 511C 530B 531C and 540B 541C models each use a different valve assembly you must attach the assembly to the drive unit See Figures 1 5 through 1 7 for the location of the valve assembly See Installing the Valve Assembly in Chapter 2 for installation instructions Syringe Drive Arms You attach syringes to the MICROLAB s syringe drive arms The syringe drive arms are engineered to drive Hamilton precision syringes with high resolution stepper motors the motors and drive arms are connected by a precision lead screw See Selecting Installing and Removing Syringes in Chapter 2 for syringe installation instructions Chapter 1 Getting Started 1 15 Controller Unit for MICROLAB 500B Models The controller unit is a portable device that connects to the syringe drive unit via the controller connector cord Use the controller unit to program and store methods and send information and instructions to the drive unit For ease of use and for everyday storage the controller unit fits on top of the driv
126. ple 3 A complex command NOTE The following example assumes the instrument is hardware addressed at address 1 or has already been auto addressed as per the previous example and has been initialized as per the previous examples Controlling device transmits 01 lt ENQ gt feo lt ENQ gt Establish data transfer 01 Instrument address Controlling device receives 01 lt ACK gt t lt ACK gt Acknowledge 01 Instrument address Controlling device transmits lt STX gt Vv0n1Pp100s2G lt ETX gt A AA BCC for this data block lt ETX gt End of data block G Execute s2 Syringe parameter speed 2 p100 Syringe parameter 100 steps P Syringe pickup command nl Valve to position 1 v0 Valve direction CW V Valve command lt STX gt Beginning of data block Controlling device receives lt ACK gt t lt ACK gt Data block acknowledged Controlling device transmits lt EOT gt t lt EOT gt Terminate data transfer Appendix E E 15 Command Example 4 A status request NOTE The following example assumes the instrument is hardware addressed at address 1 or has already been auto addressed as per the previous example as per the previous example The response shown will vary depending upon the instrument model used Controlling device transmits 01 lt ENQ gt fet lt ENQ gt Establish data transfer 01 Instrument address Controlling d
127. proper tracking of your instrument Instruments that are returned without an RGA number will be sent back to the customer without being repaired Important Important Important Decontaminate the instrument and remove health hazards such as radiation infectious diseases corrosive agents etc Provide a complete description of any hazardous materials that have been used with the instrument A Hamilton Company reserves the right to refuse a return shipment of any Hamilton product that has been used with radioactive or microbiological substances or any other material that could be hazardous to Hamilton employees A Do not return syringes tubing or valves with your instrument Hamilton Company will assume that they pose a health hazard and will destroy them A MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Appendixes Appendix A Technical Specifications for the MICROLAB 500 Appendix A contains the technical specifications for MICROLAB 500 Table A 1 Technical Specifications for the MICROLAB 500 Reagent Diluent Syringe 25 uL to 25 mL TLL or TLLX type Reagent Diluent Volume Range 1 pL 25 000 uL Sample Syringe 25 uL to 1 mL DX type Sample Volume Range 1 wL 1 000 uL Accuracy and Precision 2 99 within 1 at 10 of syringe stroke Resolution 1 of syringe drive Volume Increments 1 of total syringe volume adjustable Speed 1 to 2
128. rive unit This problem should be reported to your dealer communication invalid character An invalid response was received from the drive unit for the last command sent Consult the user s manual to ensure the cable loopback switch protocol switch and baud rate switches are set correctly Custom Method Errors copy method to custom method A titrate method cannot be copied to a custom method All other method types may be converted to a custom method custom method is empty At least one operation must be specified in a custom method before the method can be accepted continued Chapter 5 Troubleshooting 5 3 Table 5 1 Error Message Code Guide continued Error Type Error Message Custom Method Errors custom method over aspirate This method will not operate as expected because more volume has been aspirated or filled than will fit in the syringe custom method over dispense This method will not operate as expected because more volume has been dispensed than has been filled or aspirated custom method under dispense This method may not operate as expected because more volume has been aspirated or filled than has been dispensed Delay Time Errors delay time range The delay time entered is not allowed on this unit The valid delay times appear on the bottom of the screen while the delay time is being entered delay time resolution
129. rrect size of dispense tubing used with syringe e check to see that tubing ends are totally submerged in reagent bottles e check to see that tubing connections are tight replace if necessary e check to see that the syringe is installed correctly and that it is not leaking e replace worn or leaking valve or tubing e reduce the syringe drive speed to eliminate cavitation problems e check for correct tubing and fittings e use small tapered tubing 18 gauge for small dispense volumes small air gap appears at tip of probe tubing after final aspiration e dirty tubing e improper aspiration e change or clean the tubing e lower the aspiration speed continued Chapter 5 Troubleshooting 5 13 Table 5 3 Troubleshooting Guide continued Problem Possible Causes Corrective Action persistent air or leaks in the fluid path cavitation is occurring syringe drive speed is too high for the current liquid loose worn or incorrect tubing fittings damaged syringe plunger tip damaged valve e reduce syringe drive speed use lower drive speeds for viscous liquids hand tighten the fittings or replace old tubing with new or correct size tubing replace plunger tip or syringe replace valve unit is overheated inadequate ventilation room temperature too high or duty cycle too high e the unit is overheated power it off and allow it to cool
130. rt 35767 Microlab 540B 541C SBAA Diluter Valve Part 35844 Microlab 510B 511C Chapter 1 Getting Started 1 5 Table 1 3 lists the components that make up the MICROLAB 500B Small Parts Kit shown as a box in Figure 1 2 Figure 1 3 shows these components Table 1 3 Small Parts Kit 35888 For All 500B Models Tubing Clips 1 AMP Fuses Accessory Screws Tubing Part Part Holder Part Reducers Part Part 230010 1524 01 35783 16500 35770 2 items 2 items 1 item 2 items 2 items Figure 1 3 Small Parts Kit items shown are not to scale 2 Tubing Clips Part 230010 Accessory Holder Part 35783 Tubing Reducers Part 35770 2 Screws Part 16500 2 Fuses Part 1524 01 1 6 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Table 1 4 lists the components that make up the MICROLAB 500 Tubing Kit shown as a box in Figure 1 2 Figure 1 4 shows these components Table 1 4 Tubing Kit 35887 For All 500B Models 12 ga x 650 mm 18 ga x 650 mm 12 ga x 900 mm 18 ga x 900 mm Fill Tubing not Fill Tubing not Dispense Tubing Dispense Tubing tapered tapered tapered tapered Part Part Part Part 240000 240010 240360 240130 M6 threaded hubs are used on all tubing Figure 1 4 Tubing Kit items shown are not to scale 12 ga Fill Tubing Part 240000 12 ga Dispense Tubing Part 240360 18 ga
131. rvention of a controlling device The stored method must be entered into the instrument using RS 232 and the configured protocol Stored Method Definition A stored method consists of a method environment the instrument s environmental parameters for the method and one or more sequentially executed functions Each function is a copy of an instrument command buffer thus it may contain any or all of the commands the instrument can buffer at one time A function will be automatically executed if the execute command was included with the command string otherwise the function will be executed after an external trigger Creating Stored Methods Using the appropriate protocol commands for the instrument perform the following steps 1 Issue the Stored Method Parameter Change command with the parameter to erase all methods if this has not been done before 2 Load the required environmental parameters into the instrument Appendix E E 17 3 Issue the Stored Method Parameter Change command with the parameter to begin method download for the desired method number 4 Enter the command strings in order of execution All commands for a given function MUST be sent in the same data string as each function is stored after the receipt of each data string 5 Issue the Stored Method Parameter Change command with the parameter to end method download 6 If the instrument can store more than one method select the desired method 7 Pow
132. s for either 115V or 220V without any adaptation of the drive unit See Figure 1 8 for the location of the power cord connector receptacle Hand Probe or Footswitch Connector Receptacle The hand probe connector receptacle is located on the upper right side of the drive unit You can insert either a hand probe jack or a footswitch jack into this receptacle See Figures 1 5 through 1 8 for the location of the hand probe connector receptacle Fuse Box The fuse box is located at the top of the power cord connector receptacle To gain access to the fuse box you must first remove the power cord See Figure 1 8 for the location of the fuse box Communications Settings All communications switches and ports are located on the back of the drive unit beneath the serial number label These items are listed here refer to Selecting Communications Options in Chapter 2 for complete information about setting and using these receptacles and switches e The RS 232 IN receptacle handles incoming communications e The RS 232 OUT receptacle handles outgoing communications e The TTL port allows peripheral devices to attach to the drive unit e The Loopback switch allows the drive unit to daisy chain to other units e The Baud Rate switch controls the speed at which the drive unit communicates with other devices e The Protocol switch determines the hardware address and protocol of the drive unit Chapter 1 Getting Started 1 13
133. se the Step Prime switch to move the syringe drive arm down from the Home position Release the switch when the drive arm is about half way between Home and the Down position A Important Before you use the Prime function direct the probe toward a liquid waste container or reservoir since initialization may expel any fluid remaining in the syringes A 3 Release the glass barrel by turning it counterclockwise 4 Unfasten the thumbscrew on the drive arm at the bottom of the syringe plunger To unfasten the thumbscrew hold the plunger and unscrew the thumbscrew from the threaded fitting at the bottom of the syringe Refer to Figure 2 9 Removing a Syringe for an illustration of the removal procedure 2 14 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Figure 2 9 Removing a Syringe First remove the Luer Lock Then remove the Thumbscrew A Warning Avoid the risk of injury or infection Use extreme caution when removing cracked or splintered syringes Always wear thick gloves and protective eye wear when replacing syringes A Chapter 2 Installing the MICROLAB 500 System 2 15 Selecting and Installing Tubing This section provides information about selecting and installing tubing on all MICROLAB 500 systems Selecting Tubing Each MICROLAB system includes two gauges of fill and dispense tubing 12 and 18 gauge Fill tubing has a 90
134. se the functions under the Diagnostic and Configuration menu to diagnose system problems and to change the instrument s configuration Diagnostic and configuration menu Change default language Set baud rate to drive unit Turn caps lock on off Perform display test Perform keyboard test Set diagnostic mode SELECT menu item Changing the Default Language Use this function to change the language that system messages display in 1 From the Diagnostics and Configuration menu SELECT the Change default language function The following screen appears Change default language English Francais Deutsch Portugu s Espanol Clear default language ECT menu item Chapter 3 Using the MICROLAB 500 System 3 43 To change the default language SELECT one of five valid languages English French Francais German Deutsch Portuguese Portugu s Spanish Espa ol To be prompted for a new language upon instrument startup SELECT the Clear default language function Press ESCAPE to return to the Diagnostics and Configuration menu Note Some versions of the ML500B are shipped with English as the only language option No other language options are available on these instruments Setting the Baud Rate to the Drive Unit Use this function to change the baud rate setting of the drive unit For the
135. stem valve port Openings in the valve assembly through which liquid flows As the valve turns ports are opened or closed directing the flow of liquid through the system GL 8 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Index A arrow keys 3 3 B batteries replacing 4 6 baud rate 2 5 changing default 3 44 Cc checking the system for leaks 3 8 cleaning syringes and tubing 4 3 communications settings 1 13 2 4 to 2 6 Concorde Push button Hand Pipettor Probe 1 18 controller unit description of 1 16 copying a method 3 40 to 3 41 creating a method aliquot dispense 3 17 to 3 18 custom 3 27 to 3 29 dilution 3 20 to 3 23 new 3 13 16 pipette 3 23 25 serial dispense 3 18 to 3 19 3 22 titrate 3 25 to 3 26 D daisy chain 2 4 2 6 deleting a method 3 39 diagnostic tests 3 43 dilutions performing manual 3 32 to 3 33 dispenses performing manual 3 34 using MICROLAB 540B as a single dispenser 2 21 Disposable Tip Push Button Hand Pipette Probe 1 19 downloading a method 3 41 to 3 42 drive unit description of 1 8 13 Dual Push button Hand Pipette Probe 1 18 E editing a method 3 31 editing conventions 3 5 to 3 6 F G footswitch description of 1 20 function keys 3 4 fuse box 1 13 H hand probe connector receptacle 1 13 l J K installation of accessory holder 2 3 of electrical connections 2 6 to 2 7 of syringes 2 12 of tubing 2 17 21
136. syringe drive arms description of 1 15 syringes cleaning 4 3 installing 2 12 to 2 14 preparing for installation 2 12 removing precautions 2 15 removing 2 14 to 2 15 types of 2 10 to 2 11 system descriptions of PR 3 powering on 3 6 T technical specifications A 1 to A 2 technical support telephone numbers for 5 15 troubleshooting guide 5 11 to 5 14 TTL port 2 4 tubing cleaning 4 3 difference between fill and dispense 2 16 to 2 17 U upgrading the MICROLAB 500 system PR 3 usage overview of 3 2 Utilities menu 3 36 to 3 37 V valve assembly description of 1 15 W X Y Z writing conventions PR 5 Index IN 3
137. syringe sensor values are undefined T1 Xbx Instrument Busy Status x Busy status byte Bit definition for byte x 0 Left valve busy Left syringe busy Right valve busy Right syringe busy Prime Step active Hand Foot switch active Dy OT HR a Nee Always 1 7 Always 0 Protocol 1 RNO Bit 0 condition is TRUE Bit 1 condition is FALSE Appendix F F 17 DIN Protocol BDZ Bit 1 condition is TRUE Bit 0 condition is FALSE For instruments with a single valve and or syringe the valve and or syringe is considered to be on the left side The right side valve and or syringe busy status is always FALSE T2 Instrument Error Status x Frror status byte Bit definition for byte x 0 Left valve error Left syringe error Right valve error Right syringe error Always 0 Always 0 Dn OT e Ge OE Always 1 7 Always 0 Bit 0 condition is TRUE Bit 1 condition is FALSE For instruments with a single valve and or syringe the valve and or syringe is considered to be on the left side The right side valve and or syringe error status is always FALSE These commands are not effected by channel selection commands F 18 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Syringe Parameter Request Table F 13 Syringe Parameter Request Protocol 1 RNO DIN Protocol BDZ Description Request Answer Request Answer YQS XXX
138. t drive unit Step Prime busy This operation cannot be performed because the drive unit is currently in Step Prime mode Turn the Step Prime switch off and wait for the unit to stop then try the operation again drive unit initialization This operation requested cannot be performed because the drive unit was unable to successfully complete its initialization sequence Check that all valves and syringes are properly attached Then try the operation again drive unit over temperature This method cannot be completed because the drive unit is too warm The method may be restarted after the drive unit has cooled sufficiently drive unit over temperature This operation cannot be performed because the drive unit is too warm This operation can continue after the drive unit has cooled sufficiently continued 5 6 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Table 5 1 Error Message Code Guide continued Error Type Error Message Drive Unit Errors drive unit stalled This method cannot be completed because the drive unit has experienced a valve and or syringe stall The method will have to be restarted drive unit priming The method cannot be completed because the drive unit is currently in Step Prime mode Turn the Step Prime switch off and wait for the unit to stop Then try the operation again drive unit speed range This drive unit is not capable o
139. t different from that to which the receiver is connected e Consult the dealer or an experienced radio TV technician for help This equipment has been verified to comply with the limits for a class B computing device pursuant to FCC Rules In order to maintain compliance with the FCC regulations shielded cables must be used with this equipment Operation with non approved equipment or unshielded cables is likely to result in interference to radio and TV reception The user is cautioned that changes and modifications made to the equipment without the approval of the manufacturer could void the user s authority to operate this equipment Contents Figures and Tables 0 ccccceceeee eee eeeece eee eeeeeeeeneeeeneeeeeneoneneenens xi Prelato eae Seecee ee nik ee Sad eae eee et ne ees as PR 1 About the MICROLAB 500 Series of Instruments 06 PR 2 Upgrading Your MICROLAB 500 System cecceeeeeeeeees PR 3 About This Manuals orreina deiei Eaa PR 4 Conventions Used in This Manual ceeeeeeeeeeeeeeeeeeeeees PR 5 A Word About Single Syringe Instruments ceeeeee PR 5 Chapter 1 Getting Started oc cicsee conidia ede didee e aaa aA 1 1 MICROLAB 500 Parts Lists c ccceeeecececeeeeeeeeeeeeeeeeeeeeeeeeeees 1 2 A Brief Introduction to the MICROLAB 500B ceeeeeeeee 1 8 Drive Unit ancii e bene eevee 1 8 Power Cord Connector Receptacle cce
140. ta block lt STX gt Y lt ETX gt is computed as BCC 0 BCC BCC XOR Y 59 Hex result is 59 Hex BCC BCC XOR lt ETX gt 03 Hex result is 5A Hex BCC Inverse BCC result is A5 Hex BCC BCC truncated to 7 bits result is 25 Hex ASCII Data String Components A data string from the controlling device may contain one status request and or one or more commands Multiple status requests in a single data string should be avoided as they are not explicitly supported The instrument buffers the commands received until the execute command is received at which time the commands are executed in the order received Appendix E E 11 If anew command to a given device on the instrument is sent to the instrument before the execute command is sent and if the instrument has no more room to buffer that command the last command to that device will be replaced with the new command The instrument will ignore any new commands received to devices on a given side of the instrument with the exception of execution commands while it is executing commands for that side from its buffer A data string from the instrument contains the response to the status or parameter request sent from the controlling device E 12 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Command Example 1 Auto addressing the instrument NOTE The following example assumes a single instrument is on a daisy chain Controlling device transmits
141. te a new method method memory is full A new method cannot be created because the method memory is full Use the DELETE AN EXISTING METHOD selection to release method memory Priming Errors prime cycles range The number of prime cycles entered is not allowed on this unit The valid number of prime cycles appear on the bottom of the screen while the number of prime cycles is being entered Syringe Errors operation exceeds volume This operation cannot be performed because it exceeds the limits of the syringe syringe speed range The syringe speed entered cannot be achieved by this unit The valid syringe speeds appear on the screen while the speed is being entered continued 5 8 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Table 5 1 Error Message Code Guide continued Error Type Error Message Syringe Errors syringe volume range The syringe volume entered exceeds the volume of the syringe that has been configured The valid syringe volumes appear on the bottom of the screen while the syringe volume is being entered syringe volume resolution The syringe volume entered exceeds the resolution of the syringe that has been configured The valid syringe resolution appears on the bottom of the screen while the syringe volume is being entered total syringe volume The total volume s entered exceeds the volume of the syringe s that have been c
142. the arrow keys to set the mode of the left syringe Valid modes are Fil Fill Asp Aspirate Dis Dispense and Ret Return fluid to the reservoir Enter a volume for the left syringe If the Volume field is left blank syringe volume is assumed to be 0 5 Spd Speed field Enter a speed for the left syringe from 1 to 250 seconds Speed must be entered in whole seconds If the Speed field is left blank the default speed for the syringe is used 6 Vol Right field 3 28 Use the arrow keys to set the operation mode of the right syringe Valid modes are Fil Fill Asp Aspirate Dis Dispense and Ret Return fluid to the reservoir Enter a volume for the right syringe If the Volume field is left blank syringe volume is assumed to be 0 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual 7 Spd Speed field Enter a speed for the right syringe from 1 250 seconds The speed must be entered in whole seconds If the Speed field is left blank the default speed for the syringe is used 8 Continue adding entries creating up to 50 lines of commands 9 When you are satisfied with your entries press ACCEPT The controller displays the Save method in method memory screen Press CONFIRM to save the method then press any key to continue Running an Existing Method Use this function to run an existing method At least one method must exist in the method storage area for you to use this function If no
143. through the hand probe t Fill out and return warranty card Installation Ne 2 2 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Overview of Installation Procedures Figure 2 1 provides an overview of the MICROLAB 500B installation procedures These procedures are described in detail in this chapter Selecting a Location Install your MICROLAB 500 system in a clean dry level area away from hazardous fumes Leave space around the unit for ventilation three inches is sufficient Installing the Accessory Holder All MICROLAB systems come with an accessory holder You can mount the accessory holder on either the right or the left side of the instrument Generally the accessory holder is mounted on the right side and is used to hold a hand probe when the probe is not in use To install the accessory holder follow these steps 1 Locate the threaded holes on either the right or the left side of the instrument 2 Use a hex wrench and screws screws are provided to attach the holder Chapter 2 Installing the MICROLAB 500 System 2 3 Selecting Communications Options To select communications options you must first decide how you will use the instrument That is will it be a used as standalone device or will it be on a daisy chain Based on its use select the appropriate communications settings See Figure 2 2 for the location of the communication switches and ports
144. trical Connections 0 cccceeeeeees 2 7 Installing a Valve Assembly on the ML510B 2 8 Figures and Tables xi Figure 2 4 Figure 2 5 Figure 2 6 Figure 2 7 Figure 2 8 Figure 2 9 Figure 2 10 Figure 2 11 Figure 2 12 Figure 2 13 Figure 2 14 Table 2 1 Table 2 2 Table 2 3 Table 2 4 Chapter 3 xii Figure 3 1 Figure 3 2 Figure 3 3 Figure 3 4 Figure 3 5 Figure 3 6 Figure 3 7 Figure 3 8 Figure 3 9 Figure 3 10 Installing a Valve Assembly on the ML530B and 540B cceceeeeeeeeeeeeeeeeeeeeeeeeaneaes 2 9 The TLL type Dispenser Diluent Syringe 2 11 The TLLX type Dispenser Diluent Syringe 2 11 The DX type Sample Syringe ceeeeeee 2 11 Installing a Syringe ececeeeeeeeeeeeeeeeeeeeeeeeeeees 2 13 Removing a Syringe 2 15 ML510B Valve and Tubing Connections 2 18 ML530B Valve with a D Configuration Syringe 2 19 ML530B Valve with Two TLLX or TLL Syringes 2 19 ML540B Valve and Tubing Connectors 2 20 Using the Tubing Reducer with the Dual Hand Probe 2 0cccceeeceeeeeeeeeeeeeeeaeeeees 2 21 Communications Switches and Ports 0 08 2 4 Reagent Diluent Syringes TLL and TLLX types cc eeeeeeeeeeeeneeeeeeaeeeees 2 10 Sample Syringes DX type ceceeeeeeeeeeeees 2 11 Tubing Selection Guide 2 16 Using the MICROLAB 500B eeeeeeeeeeeees 3 1 Overview of
145. uL 1000 0 Right Syringe size uL 1000 0 ELECT item to edit ACCEPT if complete SELECT When you press SELECT notice that the highlighting changes to underlining Now you can edit the underlined value instructions for data entry appear near the bottom of the screen Use the arrow keys or in some cases the numeric keypad numbers to increase or decrease the underlined value When you are satisfied with your entry press ENTER Instrument configuration One syringe instrument Two syringe instrument Left Syringe size uL 2000 0 Right Syringe size uL 1000 0 Use arrow keys to change syringe size Chapter 3 Using the MICROLAB 500 System 3 5 Pressing ENTER returns you to the previous screen keeping the data entry change you just made When you are finished editing press ACCEPT to use the values displayed in all fields on the screen Instrument configuration One syringe instrument Two syringe instrument Left Syringe size uL 2000 0 Right Syringe size uL 1000 0 ECT item to edit ACCEPT if complete ACCEPT Powering on the MICROLAB 500 To power on the MICROLAB 500 press the Power On Off switch located on the front panel of the drive unit When the instrument powers up it performs an electronic self test and beeps twice The first time that you start up the instrument you see the following screen HAMI
146. ution commands while it is executing commands for that side A response string from the instrument contains the response to the status or parameter request sent from the controlling device Command Example 1 Auto addressing the instrument NOTE The following example assumes a single instrument is on a daisy chain Controlling device transmits la lt CR gt t lt CR gt End of data string a Starting address 1 Auto address sequence Controlling device receives 1b lt CR gt l t lt CR gt End of response string b Last address 1 1 Auto address sequence Appendix E E 5 Command Example 2 Initializing the Instrument NOTE The following example assumes the instrument has already been auto addressed as per the previous example Controlling device transmits aXR lt CR gt j t lt CR gt End of data string R Execute X Initialize instrument a Instrument address Controlling device receives lt ACK gt lt CR gt l t lt CR gt End of response string lt ACK gt Data string acknowledged Command Example 3 A complex command NOTE The following example assumes the instrument has already been auto addressed and initialized as per the previous examples Controlling device transmits aIP100S3N5O gt T100R lt CR gt AA lt CR gt End of data string R Execute gt T100 Time delay 100 ms O Move valve to output N
147. will contain a certain amount of the water droplets that remained in the tubing line Cleaning Syringes and Tubing A Warning Follow your laboratory s safety procedures if you use the MICROLAB 500 system to handle hazardous materials A Chapter 4 Caring for the MICROLAB 500 4 3 When tubing and syringes come in contact with contaminated or hazardous samples follow safe laboratory practices in selecting and using a cleaning fluid to flush out the tubing and syringes Purge clean and decontaminate the MICROLAB 500 by thoroughly flushing out all portions of the tubing and syringes Use a cleaner that is compatible with the fluids previously run through the system Depending on the sample that is being run you may want to use de ionized water urea ethanol or a 10 chlorine bleach and deionized water solution as a cleaning fluid Clean syringe plunger tips by soaking them in Hamilton Syringe Cleaning Solution If you still have questions contact Hamilton Company s Technical Customer Service Department at 800 648 5950 in the United States and Canada Cleaning the Exterior of the MICROLAB 500 A Warning Follow your laboratory s safety procedures if you use the MICROLAB 500 system to handle hazardous materials A The MICROLAB 500 housing is moderately inert to chemical exposure However some chemicals may discolor the surface of the unit If a spill occurs on the instrument s exterior wipe the surface imm
148. witch when the drive arm is about half way between Home and the Down position 2 12 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual 4 Fasten the thumbscrew on the drive arm to the bottom of the syringe plunger To fasten the thumbscrew hold the plunger and screw the thumbscrew into the threaded fitting at the bottom of the syringe 5 Pull the glass barrel up straight to the threaded female luer fitting that extends down from the bottom of the valve Insert the male luer fitting into the valve fitting and turn the glass barrel clockwise until it is finger tight See Figure 2 8 Installing a Syringe for an illustration of these steps Figure 2 8 Installing a Syringe Then mount the Luer Lock i 4 First mount the Thumbscrew Chapter 2 Installing the MICROLAB 500 System 2 13 A Important Always tighten syringes so they are finger tight Syringes that are over or under tightened can cause problems for your MICROLAB 500 system e Syringes that are over tightened may cause leaks or may damage the valve e Syringes that are under tightened may cause leaks Syringes that are not screwed on straight may leak and cause lateral strain on the syringe luer fitting as it connects to the bottom of the valve A Removing Syringes To remove syringes reverse the installation procedure 1 Power on the system using the Power On Off switch 2 U
149. xx S Timer Delay txxx xxxx delay time in milliseconds 0 9999 There is a maximum of one Digital I O device on a system however it may be accessed with all valid channel selections The instrument will not execute any timer or digital I O commands until an execute command or an external trigger is received F 6 MICROLAB 510B 511C 530B 531C and 540B 541C User s Manual Execution Commands Table F 6 Execution Commands Protocol 1 RNO DIN Protocol BDZ Description Command Parameters Command Parameters R G Execute Command lwxyz gwxyz Selective Execute Command wxyz 4 bytes of ASCII data Bit 7 6 5 4 3 2 1 0 w 0 1 0 0 16 15 14 13 1 0 0 12 11 10 9 1 0 0 8 7 6 5 1 0 0 4 3 2 1 Numbers 1 16 refer to the instrument number on the daisy N x lt x Il ooo chain 1 Execute command 0 No operation K U k Halt execution of commands U r Resume execution of commands V U c Clear all buffered commands If a channel has not been explicitly specified via one of the channel selection commands the execution commands will be performed on all sides available on the instrument The execute command informs the instrument to execute all buffered commands initialization syringe positioning valve positioning or timer and digital I O commands Appendix F F 7 Instrument Control Commands Table F 7 Instrument Control Commands Protocol 1 RNO DIN Prot
150. y holder e determining communications settings e installing electrical connections e installing the valve assembly e selecting installing and removing syringes e selecting and installing tubing A Important Be sure to read the instructions in this chapter before installing your MICROLAB system Never install or use syringes incorrectly Incorrect use may result in damage to the syringes See Selecting Installing and Removing Syringes later in this chapter for more information Never over tighten tubing Over tightening may result in damage to the valves or tubing See Selecting and Installing Tubing later in this chapter for more information e Call Hamilton Company s Technical Customer Service Department at 800 648 5950 in the United States and Canada if you have questions about installing your MICROLAB 500 system A Figure 2 1 Overview of Installation Procedures Unpack the instrument check all parts against packing list v Select an installation location Y Install the accessory holder i Determine the communications settings Plug in electrical connections power cord hand probe e controller unit cord OR e alternate communications cords v Install the valve assembly Install syringe s Install the fill tubing v Install the tubing clip t Install the dispense tubing 4 Run the dispense tubing
Download Pdf Manuals
Related Search
Related Contents
Nokia 6030 Cell Phone User Manual SERVICE MANUAL ResMed Schweiz AG, Viaduktstrasse 40, 4051 Bâle, Tél. 061 564 70 Istruzione d`uso I Stereo Headset バーベキューグリル VR 230 434 Copyright © All rights reserved.
Failed to retrieve file