Home
E7 Drive Parameter Access Technical Manual
Contents
1. gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt E7 Drive Parameters 4 11 011Dh Function ser Param 24 Oh Sffh Limits Selections 011 ser 25 Oh 5ffh 011 ser 26 Oh 5ffh 0120h ser Param 27 Oh 5ffh 0121h ser Param 28 Oh 5ffh Addresses for parameters b1 01 03 01 0122h ser Param 29 Oh Sffh 0123h ser Param 30 Oh Sffh 0124h ser Param 31 Oh Sffh 0125h ser 32 Oh 5ffh Default gt gt gt gt gt 0180h Reference Source Operator Terminals Serial Com Option PCB gt Run Source Operator Terminals Serial Com Option PCB 0182h Stopping Method Ramp to Stop Coast to Stop DCInj to Stop Coast w Timer C1 09 0183h Reverse Oper Reverse Enabled Reverse Disabled Exchange Phase EzchgPhs RevDsbl 0186h LOC REM RUN Sel Cycle Extrn RUN Accept Extrn RUN 0187h RUN CMDat PRG Disabled Enabled 51 09 0188h L R Select Drive Disabled ol u N oluv tS S tS oO Enabled b1 11 O1DFh Wait to Run Time 0 600 Sec b1 12
2. Fault Contents 2 Fault Contents 3 CPF Contents 1 E7 Drive Parameters 4 6 Table 4 3 Monitor Registers Read only Function Minor Fault Contents 1 Bit Oh Description UV Undervoltage 1h OV Overvoltage 2h OH Inverter Overheat 3h OH2 Inverter Overheat Warning 4h OL3 Overtorque 1 5h OL4 Overtorgue 2 6h EF 2 wire Sequence Input Fault 7h BB Baseblock 8h EF3 External Fault 3 9h EF4 External Fault 4 Ah EFS External Fault 5 Bh EF6 External Fault 6 Ch EE7 External Fault 7 Dh Reserved Eh Reserved Fh OS Overspeed Minor Fault Contents 2 Oh DEV Excessive Speed Bias lh PGO 4 PG Line Interruption 2h OPR Operator Bypass Fault 3h CE Communications Fault 4h BUS Communications Option Fault 5h CALL Waiting for Communications 6h OL1 Motor Overload 7h OL2 Inverter Overload 8h E 15 SI F G Communication Fault 9h E 10 SI F G Fault Ah Motor Switch Bh FBL PID Feedback Error Ch CALL Waiting for Communications Dh UL3 Undertorque 1 Eh UL4
3. 4 5 Parameters Read Write 4 11 ENTER ACCEPT Command 4 21 Parameter Dependencies 4 22 E7 Drive Parameters 4 1 This page intentionally left blank E7 Drive Parameters 4 2 Command Registers Read Write Command registers are those registers used to control the operation of the E7 drive either through a network interface option card or via serial communications These registers are available during an active Run command It should noted that serially commanded multi function inputs logically OR d with their external input terminal counterpart The Addr column contains the register address in hexadecimal format E7 drive registers are always referred to in hexadecimal format The Function column contains the register name The and Description columns contain the list of available bits for that register and a short description of each If the column is empty the register contains word data and individual bits are meaningless Table 4 1 Command Registers Read Write Function Bit Description Reserved Reserved 0 Stop 1 Run 0 Forward 1 Reverse External Fault Fault reset ComNet 0 b1 01 pre selected source 1 b1 01 3 serial communications ComCtrl 0 b1 02 pre selected source 1 b1 02 3
4. 0 Assembly Figure 1 1 Connector Diagram Connections 1 5 Serial Network Connections The following describes how to connect the E7 drive to an RS232 RS422 and RS485 serial network For detailed information please refer to the appropriate sections of this manual or the E7 Drive User Manual gt RS232 Networks The RS232 network is a single ended network with limited data transmission rates and cable lengths The E7 drive RS232 data transmission is fixed at 9600bps parity 8 data bits and 1 stop bit The maximum cable length is 50 ft 16m It is recommended that Yaskawa cables UWR00468 1 or UWR00468 2 be used The 00468 1 cable can be used for both standard RS232 communications and for downloading control software 234 Ethernet RJAS 1 BRN Ethernet Cable Malo RJ45 3 GRN Connector 4 BLU WHT Front View 12345678 Cable UWROO468 1 contains a switch the DBS housing 7 ORG to enable downloading 8 ORGIWHT control software Figure 1 2 RS232 Network Connection gt RS422 RS485 4 Wire Networks RS422 RS485 4 wire networks allow for longer cable lengths maximum 4000 ft 1200m and are more immune to noise than RS232 networks While RS422 RS485 4 wire may be used as multi drop networks however single ended networking is recommended All RS422 RS485 4 wire communication is half duplex Since each device is separately connected set the Termination Resistor S1 to ON slide the s
5. Data Length Error Reserved Parity Error Overrun Error Framing Error Timeout Reserved Setting See Parameter 02 04 Reserved Reserved Frequency Reference Units 0 01Hz Output Frequency Units 0 01Hz Output Current Units Output Voltage Units 0 1 Vac DC Bus Voltage Units 1 0Vdc Output Power Units 0 1kW E7 Drive Parameters 4 8 Table 4 3 Monitor Registers Read only Function Bit Description Fwd Run Terminal 51 Rev Run Terminal S2 Terminal 53 Terminal S4 Terminal 55 Terminal 56 Input Terminal Status Terminal S7 Reserved Reserved Reserved Reserved Reserved Reserved Multi function Output 1 Multi function Output 2 Multi function Output 3 Reserved Output Terminal Status Reserved Reserved Reserved Fault Output Reserved FWD RUN 0 Zero Speed 0 REV RUN Reset E7 drive Operation Status 4 Speed Agree 7 drive Ready Fault Major Fault Reserved Elapsed Time Units 1 0hr Flash ID oftware Revision 1 15 004Eh Terminal A1 Input Voltage nits 0 1 eee 1 16 04Fh Terminal A2 Input Voltage nits 0 196 5 U U Motor Secondary Current 14 Units 0 1 U U Output Freguency After Soft Start nits 0 01 Hz PID Feedback Value nits 0 01 CPU Number CPU Revision
6. YASKAWA E7 Drive Parameter Access Technical Manual Thrs Manual a so available on gt m WWW Orives com Drive Models CIMR E7U Document Number TM E7 11 Warnings and Cautions This Section provides warnings cautions pertinent to this product that if not heeded may result in personal injury fatality or equipment damage Yaskawa is not responsible for consequences of ignoring these instructions A WARNING YASKAWA manufactures component parts that can be used in a wide variety of Industrial applications The selection and application of YASKAWA products remains the responsibility of the equipment designer or end user YASKAWA accepts no responsibility for the way its products are incorporated into the final system design Under no circumstances should any YASKAWA product be incorporated into any product or design as the exclusive or sole safety control Without exception all controls should be designed to detect faults dynamically and to fail safely under all circumstances All products designed to incorporate a component part manufactured by YASK AWA must be supplied to the end user with appropriate warnings and instructions as to that part s safe use and operation Any warnings provided by YASKAWA must be promptly provided to the end user YASKAWA offers an express warranty only as to the quality of its products in conforming to standards and specifications published in the YASKAWA manual NO OTHER WARRANTY EXPRESS OR I
7. 8D 90 User Notes 5 12 95 780 B 9 160 71 15 39 203 204 205 Do 208 D 2 D 216 D 29 E7 Drive Parameter Access 77 YASKAWA YASKAWA ELECTRIC AMERICA INC E7 drives Division 16555 W Ryerson Rd New Berlin WI 53151 U S A Phone 800 YASKAWA 800 927 5292 262 782 3418 Internet http www E7 drives com YASKAWA ELECTRIC AMERICA INC Chicago Corporate Headquarters 2121 Norman E7 drive South Waukegan IL 60085 U S A Phone 800 YASKAWA 800 927 5292 Fax 847 887 7310 Internet http www yaskawa com MOTOMAN INC 805 Liberty Lane West Carrollton OH 45449 U S A Phone 937 847 6200 Fax 937 847 6277 Internet http www motoman com YASKAWA ELECTRIC CORPORATION New Pier Takeshiba South Tower 1 16 1 Kaigan Minatoku Tokyo 105 0022 Japan Phone 81 3 5402 4511 Fax 81 3 5402 4580 Internet http www yaskawa co jp YASKAWA ELETRICO DO BRASIL COMERCIO LTDA Avenida Fagundes Filho 620 Bairro Saude Sao Paolo SP Brasil CEP 04304 000 Phone 55 11 5071 2552 Fax 55 11 5581 8795 Internet http www yaskawa com br YASKAWA ELECTRIC EUROPE GmbH Am Kronberger Hang 2 65824 Schwalbach Germany Phone 49 6196 569 300 Fax 49 6196 888 301 MOTOMAN ROBOTICS AB Box 504 S38525 Torsas Sweden Phone 46 486 48800 Fax 46 486 41410 MOTOMAN ROBOTEC GmbH Kammerfeldstrabe 1 853
8. Only During Run EFO Fault Action Ramp to Stop Coast to Stop Fast Stop WIN Alarm 0 1 7 Drive Parameters 4 14 Function Terminal S3 Sel Limits Selections 3 Wire Control Local Remote Sel Option Inv Sel Multi Step Ref 1 Multi Step Ref 2 Jog Freq Ref Multi Acc Dec 1 Ext BaseBlk N O Ext BaseBlk N C Acc Dec RampHold Term A2 Enable Term Not Used MOP Increase MOP Decrease Forward Jog Reverse Jog Fault Reset Fast Stop N O Fast Stop N C Timer Function PI Disable Program Lockout TrimCtl Increase TrimCtl Decrease Ref Sample Hold NO Always Det Ramp to Stop NC Always Det Ramp to Stop NO During RUN Ramp to Stop NC During RUN Ramp to Stop NO Always Det Coast to Stop NC Always Det Coast to Stop NO During RUN Coast to Stop NC During RUN Coast to Stop NO Always Det Fast Stop NC Always Det Fast Stop NO During RUN Fast Stop NC During RUN Fast Stop NO Always Det Alarm Only NC Always Det Alarm Only NO During RUN Alarm Only NC During RUN Alarm Only PI Intgrl Reset PI Intgrl Hold PI SFS Cancel Input Level Sel Option Inv Sel 2 Motor Preheat Speed Search 1 Speed Search 2 Speed Search 3 Comm Test Mode HighSl
9. Tuning Mode Sel Rated Power Rated Current Q BIN o oO N Ol Ol Limits Selections Disabled Enabled 0 65535 Power On Time Running Time Japanese spec American spec European spec PV A spec PV E spec 0 65535 Disabled Enabled Disabled Enabled No Change Clear All Disabled Enabled COPY SELECT INV OP READ OP INV WRITE OP INV VERIFY Disabled Enabled Motor Setup REV Tune w o Rotate Term Resistance 0 0 650 0 kW 0 0 1500 0 E7 Drive Parameters 4 20 Default ENTER ACCEPT Command Write Only AN Caution Data sent to the E7 drive serially is sent to the 7 drive s RAM and may be lost when the E7 drive looses power In order for this data to be retained upon power loss it must be first transferred to non volatile memory The ENTER command transfers the current RAM parameter data to non volatile memory Caution should be exercised when using the ENTER command the maximum number of non volatile memory writes cannot exceed 100 000 Excessive use of the ENTER command will cause the E7 drive to fail Entering data through the digital operator transfers the data to non volatile memory without the use of the ENTER command Data that cannot be changed while the E7 drive is in RUN mode is stored in a temporary location The ACCEPT command is used to move that data from temporary storage to active RAM There is not restriction on the use
10. Lower 39h Each 7 drive slave address is set via parameter 5 01 Valid slave addresses must be the range of 1 to 20 1 to 32 dec and entered hexadecimal number No two slaves may have the same address The master addresses the slave by placing the slave address in the Slave Address field of the message In the command message above the slave is addressed at O1h Broadcast address 0 is valid for register write commands By setting the slave address to zero 0 in the command message the master can send a message to all the slaves on the network simultaneously This is called simultaneous broadcasting In a simultaneous broadcast message there is no response message The function code of this message is 10h write multiple registers The starting register is the address of the first register to be written In the command message above the starting register address is 018 0001h The quantity indicates how many consecutive registers are to be written The quantity may range from 1 to 16 registers If an invalid quantity is entered error code of 03h is returned in a fault response message In this command message there are two consecutive registers to be written 01h Operation Command and 02h Frequency Reference The Number Of Data Bytes is the number of bytes of data to be written The Number Of Data Bytes is actually the quantity multiplied by 2 since there are two bytes of data in each register The dat
11. RS422 485 network 5 1 Remove the E7 drive s terminal cover C 5 2 Connect the controller to the S S and R R terminals on the E7 drive s terminal block as shown in Figure 1 3 RS422 485 Connections 5 3 If this device is either the first last device on the network set the network termination S1 to the ON position 54 power to the E7 drive 5 5 Set the E7 drive communication parameters to match those of the controller Refer to Table 1 2 Baud Rate Table 1 3 Parity and Table 1 4 RTS 5 6 Set the node address of the E7 drive 6 Verify that the E7 drive and controller are communicating and that the exchanged data is valid Connections 1 3 This page intentionally left blank Connections 1 4 Verify Operation Connect power to the E7 drive and verify that the E7 drive functions properly This includes running the E7 drive from the operator keypad Refer to 7 Drive User Manual for information connecting and operating the E7 drive Remove power from the 7 drive and wait for the charge lamp to be completely extinguished Wait at least five additional minutes for the E7 drive to be completely discharged Measure the DC bus voltage and verify that it 1s at a safe level Remove the operator keypad and terminal cover Digital Operator amp RS232 Connector 2CN Option Connector Option Card Hold Down ae TA 28 Removable
12. E1 07 lt E1 06 S E1 11 lt E1 04 Voltage 185 Bid Vonage D Et Bana Voltage Ef f BidVoPap A HRaVoMage E1 10 Table 4 12 E1 03 V f Pattern Selection 200VAC E1 07 1 08 1 09 400 1 08 E7 Drive Parameters 4 27 This page intentionally left blank E7 Drive Parameters 4 28 Chapter 5 User Notes This chapter allows the user to enter information specific to their application Parameter RECOM 5 3 Ni UE AAA 5 11 Hex Dec Conversion 5 12 User Notes 5 2 This page intentionally left blank User Notes 5 3 Parameter Record Table 5 1 Registers Notes 1 00 1 01 1 03 1 04 2 01 2 02 2 03 2 04 2 05 2 06 2 07 2 08 2 09 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 2 26 2 27 2 28 2 29 2 30 2 31 2 32 Select Language Access Level Init Parameters Enter Password User Param 1 ser 2 ci ser Param 3 ser 4 ser Param 5 ser 6 ser 7 User Param 8 User 9 User 10 User 11 User 12 User 13 User 14 User 15 Use
13. Speed Agree Inverter Status Inverter Ready Minor Fault Major Fault Reserved 4 ComRef ComCtrl OPE ERR PRG Mode 0 Operator 1 PC Reserved Operator Status Reserved 4 7 drive Setting Error 2 Parameter Setting Out of Range OPE3 Multi Function Input Selection Reserved 5 Run Command Selection Error Option board missing Control Method Selection Error PG Missing OPE7 Multi Function Analog Input Select Error OPE8 Function Selection Error for current control mode OPE9 4 PID Control Setup Error 10 4 V F Parameter Pattern Setting Error OPEII 4 Carrier Frequency Parameter Setting Error Reserved Reserved Reserved Reserved 0000h G5 1000 V7 2010 E7 2020 E7C YEC 2030 E7A YEG Inverter Product Code 2040 E7U YEA 2050 G7C YEC 2060 G7A YEG 2070 G7U YEA 2080 2130 P7 E7 Drive Parameters 4 5 Table 4 3 Monitor Registers Read only Function Bit Description Oh PUF Fuse lh UV1 Main Circuit Undervoltage 2h UV2 Control Circuit Undervoltage 3h UV3 MC Error 4h Reserved Sh GF Ground Fault 6h OC Over Current 7h OV Overvoltage 8h OH Inverter Overheat 9h OHI Inverter Overheat Warning Ah OLI Motor Overload Bh OL2 Inverter Overload Ch OL3 Overtorque 1 Dh OL4 Overtorque 2 Eh RR Braking Resist
14. Undertorque 2 Fh Communication Test Fault Minor Fault Contents 3 Oh lh 2h 3h OH3 Motor Overheat Alarm DNE 0 7 drive Not Enabled Reserved Reserved 4h Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Inverter Status RUN Reverse Inverter Ready Fault Data Setting Error Multi Function Output 1 Multi Function Output 2 Multi Function Output 3 Reserved Reserved Reserved Fault Contents Data Link Status OC or GF Overcurrent Ground Fault OV Overvoltage OL2 Inverter Overload OH1 or OH2 Overheat Fault RR or RH Braking Resistor Fault PUF Fuse Fault FBL PID Feedback Fault EF External Fault CPF Hardware Fault or OL3 Overload Overtorque PGO or OS or DEV Excessive Speed Deviation UV Undervoltage UVI or UV2 or UV3 or Power Off SPI SPO 4 Input Output Phase Fault CE 4 Communications Error OPR Operator Error Data Writing Reserved Reserved Data Limit Fault Data Compatibility fault Reserved Frequency Reference See 01 01 E7 Drive Parameters 4 7 Table 4 3 Monitor Registers Read only Function Output Freguency Bit Descri
15. 0 100 0 0 10 0 00 041Bh Filter Avg Time 0 0 2 0 Sec 0 01 Sec 0 3 Sec 041Ch 041Dh 1 2 Select Terminal FM Sel Fref TAI Main Fref TA2 Frequency Ref Output Freq Output Current Output Voltage DC Bus Voltage Output kWatts Term Al Level Term A2 Level 18h Mot SEC Current SFS Output PI Feedback Not Used PI Input PI Output PI Setpoint 41h Actual Fin Temp 51 n Auto Mode Fref 52h Hand Mode Fref 53 PI Feedback 2 1 0 02h 041Eh Terminal FM Gain 0 0 1000 0 0 10 100 00 Run 041Fh Terminal FM Bias 110 0 110 0 0 10 0 00 Run 0420h Terminal AM Sel See H4 01 08h 0421h Terminal AM Gain 0 0 1000 0 Yo 0 10 50 00 Run 0422h Terminal AM Bias 110 0 110 0 0 10 0 00 Run gt gt gt gt gt 0423h AO Level Select 0 10 VDC 10 10 VDC 4 20 mA gt 0424h AO Level Select2 0 10 VDC 10 10 VDC N O N gt 4 20 mA E7 Drive Parameters 4 16 Function Serial Comm Adr Oh 20h Limits Selections Default Serial Baud Rate 1200 Baud 2400 Baud 4800 Baud 9600 Baud 19200 Baud Serial Com Sel No Parity Even Parity Odd Parity Serial
16. 01 0 HAND Fref Source Operator Terminals 1 0189h DCInj Start Freq 0 0 10 0 Hz 0 1 Hz 018 DCInj Current 0 100 1 018Bh 018Ch DCInj Time Start DCInj Time Stop 0 0 10 0 Sec 0 0 10 0 Sec 0 01 Sec 0 0 Sec 018Dh DCInj P Gain 0 0 1 0 0 05 018Eh DCInj Intgl Time 0 1000 ms 100 ms 018Fh DCInj Limit 0 0 30 0 Yo 15 00 OIEIh Preheat Current 0 100 96 096 gt d A a DS gt gt gt gt m 0191h SpdSrch at Start SpdsrchF Disable SpdsrchF Enable Spdsrchl Disable Spdsrchl Enable 0192h SpdSrch Current 0 200 Yo gt gt b3 0193h SpdSrch Dec Time 0 1 10 0 Sec 0 1 Sec 2 0 Sec kVA 0194h 0195h SpdSrch V F Search Delay 10 100 96 0 0 20 0 Sec 1 100 Fri kVA 0196h Srch Im 0 0 1 0 0197h Srch Im Lvl2 0 0 3 0 0198h Srch ACR P Gain 0 0 6 0 0199h Srch ACR I Time 0 0 1000 0 ms 019Ah Srch Detect Comp 10 1 5 019Bh Srch Mthd Sw Lvl 0 5 100 0 019Ch Srch I Deadband 2 0 5 0 019Eh Bidir Search Sel Disabled Enabled O1A3h Delay ON Timer 0 0 3000 0 Sec 01 41 Delay OFF Timer 0 0 3000 0 Sec gt gt gt msi i nm o O1ASh PI Mode Disabled Enabled Enabled Fref PI Fref PI 01A
17. 02 3 02 3 03 3 08 3 09 3 10 3 11 H3 12 Term Resistance Comm Bus Flt Sel EFO Detection EFO Fault Action Terminal S3 Sel Terminal S4 Sel Terminal S5 Sel Terminal S6 Sel Terminal S7 Sel Term 1 2 Sel Term M3 MA Sel Terminal 1 Gain Terminal A1 Bias Term A2 Signal Terminal A2 Sel Terminal A2 Gain Terminal A2 Bias 100 00 0 00 1 24h 14h 03h 04h 06h Oh 2 2h 100 00 0 00 0 3 Sec Filter Avg Time User Notes 5 7 Table 5 1 Registers Notes H3 13 1 2 Select H4 01 Terminal FM Sel H4 02 Terminal FM Gain H4 03 Terminal FM Bias H4 04 Terminal AM Sel H4 05 Terminal AM Gain H4 06 Terminal AM Bias H4 07 AO Level Select1 H4 08 AO Level Select2 5 01 Serial Comm Adr H5 02 Serial Baud Rate H5 03 Serial Com Sel H5 04 Serial Fault Sel H5 05 Serial Flt Dtct H5 06 Transmit WaitTIM H5 07 RTS Control Sel H5 08 H5 09 L1 01 11 02 11 03 11 04 11 05 12 01 12 02 12 03 12 04 12 05 13 01 13 02 13 04 13 05 13 06 14 01 14 02 14 05 14 06 15 01 02 100 00 0 00 08 50 00 0 00 3 3 5 ms Protocol Select CE Detect Time MOL Fault Select MOL Time Const Mtr Alarm Sel Mtr OH Fault Sel Mtr Temp Filter 2 0 Sec h h 1 1 1 1 3 1 0 2 Sec 2 0 1 Sec 0 5 Sec 0 3 5 190 VDC 1 12096 PwrL Selection PwrL Ridethru t PwrL Baseblock t PwrL V F Ramp t PUV Det Level StallP Accel Sel StallP Accel Lvl StallP Decel Sel StallP Run
18. 11 JI JI JI 11 JI JI 11 JI 11 JI JI 11 1 JI JI JI JI JI 11 JI JI 11 JI 11 11 LI C O L ET L Verify that the contents of the message adheres to the MODBUS format as described previously 4 3 1 4 3 2 4 3 3 4 3 4 4 3 5 4 3 6 Verify that the node address is valid Verify that the function code is valid Verify that the register address is valid Verify that the number of data bytes is correct is valid Verify that the CRC is correctly calculated Verify that the message requires a response Troubleshooting 3 7 5 Verify contents of the response message C 5 1 L L Connect an oscilloscope between the controller R and R terminals for RS422 and RS485 4 Wire networks or between terminals R S and R S for RS485 2 wire networks 5 1 1 5 1 2 Verify that the message pulse train exists and contains the correct number of pulses Refer to the chapter Message Formats for information on the message contents Verify that he signal levels adhere to the RS422 RS485 standard Capture the response message in hexadecimal format and record it below Verify that the contents of the message adheres to the MODBUS format as described previously 5 3 1 5 3 2 5 3 3 5 3 4 5 3 5 Verify that the node address is valid Verify that the function code is valid Verify that the register address is v
19. 32 dec and entered hexadecimal number No two slaves may have the same address The master addresses the slave by placing the slave address in the Slave Address field of the message In the command message above the slave is addressed at O1h Broadcast address 0 is valid for register write commands By setting the slave address to zero 0 in the command message the master can send a message to all the slaves on the network simultaneously This is called simultaneous broadcasting In a simultaneous broadcast message there is no response message The function code of this message is 06h write single register In the command message above the register address is 01h 0001h The data section contains the data to be that written A CRC 16 value is generated from a calculation including the message slave address function code starting register quantity number of data bytes and all register data The procedure for calculating a CRC 16 is described at the end of this chapter When the slave receives the command message it calculates a CRC 16 value and compares it to the CRC 16 of the command message If the two CRC 16 values are identical and the slave address is correct the slave processes command message If the two CRC 16 values are not identical the slave will discard the command message and not respond If the command message has a valid slave address function code register address and data the slave will respond with a normal respon
20. 8 bit bytes The CRC 16 value 18 calculated by the transmitting device which appends the CRC 16 to the message The receiving device recalculates a CRC 16 during receipt of the message and compares this calculated value to the value received in the transmitted CRC 16 field If the two values are not egual the entire message is invalid Detailed ezamples of a CRC 16 generation using Ouick Basic and C are shown below gt 16 Calculation in Basic crcsum amp HFFFF amp crcshift amp H0 amp crcconst amp HA001 amp CLS PRINT oe o K K K KK K K K K 2K K 3K 2 PRINT PRINT CRC 16 calculator PRINT PRINT ek sk se se ke obe oe se ke obe obe obe oe obe obe see obe obe se ok obe obe se fe e obe oe fe e obe cese se oe se seo PRINT If entering data in hex preceed the data with amp H PRINT Example 32decimal 20hex amp H20 PRINT PRINT INPUT Enter the number of bytes in the message mazbyte FOR bytenum 1 mazbyte STEP 1 PRINT Enter byte bytenum INPUT bytek byte amp byte amp AND amp amp crcsum crcsum byte amp AND amp HFFFF amp FOR shift 1 TO 8 STEP 1 creshift INT crcsum 2 AND amp H7FFF amp IF crcsum AND amp H1 amp THEN crcsum creshift XOR crcconst ELSE crcsum creshift END IF NEXT shift NEXT bytenum lower amp crcsum AN
21. Enabled 0 gt Mes Mes Mes Bes 5 0500h User Monitor Sel See H4 01 6 05011 Power On Monitor Frequency Ref Output Freq Output Current User Monitor Display Scaling 0 00 Hz 0 00 96 100 0096 Fmax 2 39 RPM Number of Motor Poles 40 39999 Custom LCD Contrast 0 5 Monitor Mode Sel 3 Mon Sequential 3 Mon Selectable 2nd Monitor Sel See H4 01 3rd Monitor Sel Local Remote Key See H4 01 Disabled Enabled Oper STOP Key Disabled Enabled User Defaults No Change Set Defaults Clear All Inverter Model 20P4 20P7 21P5 22P2 23P7 25P5 27 5 2011 2015 200VAC 2018 2022 2030 2037 2045 2055 2075 2090 2110 40P4 7 1 5 2 2 3 7 4 0 5 5 022 4 4 4 4 4 4 27 5 4 4 4 4 2 400 4 037 055 075 090 10 132 160 185 4200 4220 4300 0509h Operator M O P Disabled Enabled E7 Drive Parameters 4 19 Function Oper Detection Elapsed Time Set Elapsed Time Run Init Mode Sel Fan ON Time Set FLT Trace Init PUF Cont det Sel kWh MonitorClear Oper HAND Key Copy Funtion Sel Read Allowable
22. Intg Time 10 250 ms 0497h Decel Time Coef 1 0 5 0 0498h StallP Decel Lvl 80 95 Yo 0499h Spd Agree Level 0 0 200 0 Hz 049Ah Spd Agree Width 0 0 20 0 Hz 049Dh Ref Loss Sel Stop 8096 PrevRef 1 04C2h Fref at Floss 0 0 100 0 Yo 80 0096 049Eh Num of Restarts 0 10 0 049 Restart Sel No Flt Relay Flt Relay Active 0 04A0h Max Restart Time 0 5 180 0 Sec 180 0 Sec 04C3h Restart Mode Sel Wait Time Mode Max Time Mode E7 Drive Parameters 4 17 0 gt gt gt P e gt Function Limits Selections Default 0 Disabled 1 OL SpdAgree Alm 2 OL At RUN Alm 3 OL SpdAgree Flt 1 6 01104 1 Torq Det Sel 4 OL At RUN Flt 1 0 02 09 5 UL SpdAgree Alm 6 UL At RUN Alm 7 UL SpdAgree Flt 8 UL At RUN Fit L6 02 04A2h Torq Det 1 Lvl 0 300 196 1596 A L6 03 04A3h Torq Det 1 Time 0 0 10 0 Sec 0 1 Sec 10 0 Sec A L8 01 04ADh DB Resistor Prot 1 0 F 1 Provided 18 02 04 OH Pre Alarm Lvl 50 130 Deg 1 Deg 95 Deg A kVA 0 Ramp to Stop 1 Coast to Stop 18 03 04 OH Pre Alarm Sel 2 Fast Stop 1 4 3 Alarm Only 4 Alarm amp Reduce 18 04 04B0h Fault Level 50 130 Deg 1 Deg 105 Deg F kVA 18 05 04 Ph Loss In Sel 1 1 2
23. MOTOMAN ROBOT CO LTD 7 Yongchang North Street Beijing Economic amp Technological Development Area Beijing 100076 China Phone 86 10 6788 0551 Fax 86 10 6788 2878 YEA TAICHUNG OFFICE IN TAIWAIN B1 6F No 51 Section 2 Kung Yi Road Taichung City Taiwan R O C Phone 886 4 2320 2227 Fax 886 4 2320 2239 Rev 3016
24. address function code starting register and quantity the slave will respond with a normal response message If the command message has an invalid function code starting register and or quantity the slave will respond with a fault response message If the command message has an invalid slave address or CRC 16 no response will be returned Message Formats 2 4 gt Read Multiple Registers Normal Response Message Table 2 3 Read Normal Response Message Description Data Slave Address 02h Function Code 03h Number of Data Bytes 08h 17h Start R t dco Lower 70h U 17h Next Register Lower 70h U 018 Next Register Lower 09h U 00h Last Register Lower 00h U 38h CRC 16 Lower ACh The normal response message contains the same slave address and function code as the command message indicating to the master which slave is responding and to what type of function it is responding The Number Of Data Bytes is the number of data bytes returned in the response message The number of data bytes is actually the number of registers read times 2 since there two bytes of data each register The starting register is the address of the first register read The data section of the response message contains the data for the registers requested read In this case registers 20h 21h 22h and 23h Their data is 20h 1770h 21h 1770h 22h 0109h
25. and 23h Oh Read Multiple Registers Fault Response Message Table 2 4 Read Fault Response Message Description Data Slave Address 02h Function Code 83h Error Code 02h CRC 16 Upper 30h Lower Flh The fault response message contains the same slave address as the command message indicating to the master which slave is responding The function code of a fault response message is the logical OR of 80h and the original function code of 03h This indicates to the master that the message is a fault response message instead of a normal response message The error code indicates where the error occurred in the command message The value of 02h in the error code field of this fault response message indicates that the command message requested data be read from an invalid register Refer to section Error Codes Table 2 14 for more information on returned error codes Message Formats 2 5 Write Single Register Function Code 06 The Write Single Register function allows the writing of data to one register only gt Write Single Register Command Message Table 2 5 Write Command Message Description Data Slave Address 01h Function Code 06h U 00h Register Address I Lower 01h U 00h Data Lower 03h 98h CRC 16 Uppa Lower Each 7 drive slave address is set via parameter H5 01 Valid slave addresses must be in the range of 1 to 20 hex 1 to
26. code indicates where the error occurred in the command message The value of 21h in the error code field of this fault response message indicates that the command message data to be written was invalid for that register Refer to the section Error Codes Table 2 14 for more information on returned error codes Message Formats 2 7 Loop Back Test Function Code 08 The Loop Back Test is used to verify that the communications parameters for the E7 drive have been set correctly and that the connection is correct The message should be constructed exactly as shown below If everything is set and connected correctly the received response will match the response shown below gt Loop Back Test 08h The Loop Back test function 08h is used for checking signal transmission between master and slaves The command message format is shown below Table 2 8 Loop Back Command Message Description Data Slave Address Olh Function Code 08h U 00h Test Code pper Lower 00h U 5 Data Lower 37h U DAh CRC 16 Lower 8Dh Each 7 drive slave address 18 set via parameter 5 01 Valid slave addresses must the range of 1 to 20 1 to 32 dec and enteredasa hexadecimal number No two slaves may have the same address The master addresses the slave by placing the slave address the slave address field of the message In the command message above the slave is addressed at 01h Br
27. it is completed For detailed information please refer to the detailed sections that follow 1 Unpack the E7 drive and verify that all components are present and undamaged 2 Connect power to the E7 drive and verify that the E7 drive functions correctly This includes running the 7 drive from the operator keypad Refer to the E7 Drive User Manual for information on connecting and operating the 7 drive 3 Remove power from the 7 drive and wait for the charge lamp to be completely extinguished Wait at least five additional minutes for the E7 drive to be completely discharged Measure the DC bus voltage and verify that it is at a safe level C 4 Connect the E7 drive to RS232 network 4 1 Remove the E7 drive s operator keypad 4 2 Connect the RJ45 port on the front of the E7 drive to the controller serial port Use a DB9 to RJ45 adapter with a standard Ethernet CAT 5 patch cable or use Yaskawa cables part numbers UWR00468 1 or UWR00468 2 Do NOT connect this cable to an Ethernet port on the controller as damage to the controller and or E7 drive may result Refer to Figure 1 2 8232 Connections 4 3 Verify that the controller communications parameters match E7 drive s communications parameters Refer to Table 1 1 RS232 RJ45 port Communications Parameters for a list of default E7 drive communications parameters 4 4 Reapply power to the E7 drive 5 Connect the E7 drive to
28. matches the node address required by the controller Controller Node Address E7 Drive Node Address Connections 1 11 3 Send a command message to the E7 drive from the controller and verify the data of the command and response messages 31 Verify the contents of the command message 11 11 11 11 11 11 11 11 11 I JI 11 11 11 11 11 11 11 11 11 32 Verify the contents of the response message 11 Notes Connections 1 12 This page intentionally left blank Connections 1 13 Chapter 2 Message Formats This chapter provides information on the message telegram contents and configuration Protocol PEERAA 2 3 Read Multiple Registers Function Code 2 4 Write Single Registers Function Code 6 2 6 Loop Back Test Function Code 08H 2 8 Write Multiple Registers Function Code 10H 2 10 Response neenon 2 12 Error C des n 2 12 CRC CalculatlO Fis cc cc eee ecce ce eere e cerea eec 2 13 Message Formats 2 1 This page intentionally left blank Message Formats 2 2 Protocol The parameter access method
29. serial communications Multi Function Input 1 S3 Function set by setting of H1 01 Multi Function Input 2 S4 Function set by setting of H1 02 Multi Function Input 3 S5 Function set by setting of H1 03 Multi Function Input 4 S6 Function set by setting of H1 04 Multi Function Input 5 4 S7 Function set by setting of H1 05 Reserved Command m 5 gt Reserved Reserved Reserved m m g 0 uu a UW Reserved Frequency Reference Dependent on setting of o3 02 Reserved Reserved Reserved Reserved Reserved Reserved PID Setpoint Analog Output 1 Setting 11 11 726 Vdc Analog Output 2 Setting 11 11 726 Vdc Multi Function Output 1 Multi Function Output 2 Multi Function Output 3 Reserved Outputs Reserved Reserved Fault Relay Output Fault Relay N C Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved PID Value 0006h is used Reserved Command Selection Simultaneous Broadcast Data Terminal S5 Enable Simultaneous Broadcast Data Terminal S6 Enable Simultaneous Broadcast Data Terminal S7 Enable Reserved These bits must be set in order to use the Simultaneous Broadcast Register multi function inputs 3 4 5 and 6 bits 0Ch 0Dh 0Eh and 0Fh respectively Refer to Table 4 2 Simultaneous Broadcast Registers Write only E7 Drive Parameters 4 3 Simultaneous Broadcast Registers Write only Simu
30. supported by the Yaskawa E7 drive is a subset of the MODBUS communication protocol The E7 drive supports functions 3 6 8 and 10h The message format varies depending upon the function code of the message For each function code there is a command message from the master and a response message from the slave The following sections review the format of the command and response messages for each function gt Message Functions Supported The following table lists the function codes available and their minimum and maximum lengths Table 2 1 Supported Function Codes Command Message Response Message Normal Function Code Function z min bytes max bytes min bytes max bytes _ s L LS Wite Single Reginer s s s s _ at AA s s s Ton 16 dec WieMupleRsiues 1 L T s L Message Formats 2 3 Read Multiple Registers Function Code 03H The Read Multiple Register message is used to read the contents of from one to eight consecutive registers The formats of the read command and response messages are shown below Read Multiple Registers Command Message Table 2 2 Read Command Message Description Data Slave Address 02h Function Code 03h U 00h Starting Register Lower 20h Upper 00h tit Quantity Lower 04h U 45h CRC 16 ppe Lower FOh Each 7 drive slave address is set via parameter 5 01 V
31. 0 Hz VTI 50 Hz VT2 60 Hz VTI 60 Hz VT2 50 Hz HSTI 50 Hz HST2 60 Hz HSTI 60 Hz HST2 90 Hz 120 Hz 180 Hz Custom Custom w o limit Freguency 0 0 200 0 Hz 60 0 Hz Maz Voltage 0 0 255 0 VAC 200 240V AC drives 0 0 555 0VAC 400 480VAC drives 240 0 VAC Base Frequency 0 0 200 0 Hz 60 0 Hz Mid Frequency A 0 0 200 0 Hz 3 0 Hz Mid Voltage A 0 0 255 0 VAC 200 240VAC drives 0 0 555 0VAC 400 480V AC drives 13 0 VAC Min Frequency 0 0 200 0 Hz 1 5 Hz Min Voltage 0 0 255 0 VAC 200 240V AC drives 0 0 555 0VAC 400 480VAC drives 9 0 VAC Mid Frequency B 0 0 200 0 Hz 0 0 Hz Mid Voltage B Base Voltage 0 0 255 0 VAC 200 240VAC drives 0 0 555 0VAC 400 480V AC drives 0 0 255 0 VAC 200 240V AC drives 0 0 555 0V AC 400 480V AC drives 0 1 VAC 0 0 VAC 240 0 VAC Motor Rated FLA 0 1 1500 0 01 140 Motor Rated Slip 0 0 20 0 Hz 0 01 Hz 3 3 2 No Load Current 0 0 1500 0 01 45A Term Resistance 0 0 65 0 Ohm 0 001 Ohm 0 771 Ohm Tcomp Iron Loss 0 65535 W 1W OW Mtr Rated Power 0 0 650 0 KW 0 01 KW 0 4 kW mum gt Comm Bus Flt Sel Ramp to Stop Coast to Stop Fast Stop Alarm Only EFO Detection Always Detected
32. 09 1 Enabled 18 06 04B2h Ph Loss In Lvl 0 0 25 0 Yo 0 10 7 50 kVA L8 07 04B3h Ph Loss Out Sel Qr 1 1 02 09 1 Enabled 18 08 04B4h Ph Loss Out Lvl 0 0 20 0 Yo 0 10 5 00 18 09 04858 Ground Fault Sel Disabled 1 1 1 Enabled L8 10 04B6h Fan On Off Sel Fan On Kun Mode 1 0 1 Fan Always On L8 11 04B7h Fan Delay Time 9 Disabled 1 Sec 300 A 1 Enabled L8 12 04B8h Ambient Temp 45 60 Deg 1 Deg 45 Deg A 18 13 04 9 UV3 Detect u i s 1 1 1 Enabled 18 14 04 Inverter OL Sel 1 0 1 Enabled 0 Disabled 18 15 04 OL2 Sel L Spd 1 Enabled L8 16 must be set to enable this parameter 1 1 18 16 0 Disabled 18 16 04BCh Low Spd OL2 Freq 1 Enabled 0 1 Hz 0 1 Hz F 18 17 04808 OL2 0Hz Gain 1 60 F 1 Enabled L8 18 04BEh Soft CLA Sel 0 Disabled 1 1 1 Enabled L8 19 04BFh Fref During 0 0 100 0 Yo 0 10 20 00 A 1 01 05808 Hunt Prev Select 9 1 1 1 Enabled nl 02 0581h Hunt Prev Gain 0 0 2 5 0 01 1 1 03 0582h Hunt Prev Time 0 500 ms 1 ms 10 ms kVA 1 04 0583h Hunt Prev Limit 0 100 95 90 5 n3 01 0588h HSB Decel Width 1 2090 Yo 5 13 02 0589h HSB Current Ref 100 200 Yo 90 150 n3 03 058Ah HSB DwelTim Stp 0 0 10 0 Sec 0 1 Sec 1 0 Sec A n3 04 058Bh HSB OL Time 30 1200 Sec 1 Sec 40 Sec A n3 05 058Ch HSB V F Gain 1 50 Yo 96 596 13 06 058Dh Spd Agr Curren
33. 5 155 155 155 155 155 155 155 155 155 15545581 55 15S 155 Max VAC 255 255 255 255 255 255 255 255 255 255 255 2558 255 255 255 255 255 Param Units 0 1 2 3 4 5 6 7 8 9 0 0B 0C 0D 10 b3 03 b3 04 b3 06 b3 08 b8 04 6 02 6 02 2 6 03 U lim 2 01 2 02 2 03 2 05 12 02 12 03 12 04 18 02 18 04 18 06 1 03 9 01 n9 01 VT2 n9 02 n9 11 n9 11 L lim n9 12 9 14 9 26 9 27 E7 Drive Parameters 4 23 Table 4 8 kVA Dependencies Model 43 7 44 45 5 47 5 kW 3 7 4 SE 7 5 Min VAC 355 355 355 355 Maz VAC 555 555 555 555 Param Units 24 25 26 27 53 03 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 b3 04 100 100 100 100 100 100 100 100 100 100 b3 06 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 53 08 z 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 b8 04 447 40 338 80 313 60 245 80 236 44 189 50 145 38 140 88 126 26 115 74 6 02 6 6 6 6 6 6 6 6 6 6 6 02 VT2 6 6 6 6 6 6 6 3 4 4 6 03 U lim 15 0 2 01 1 6 3 1 4 2 7 0 7 0 9 8 E2 02 2 60 E2 03 0 8 14 1 5 23 23 2 6 2 05 22 459 12 02 0 1 0 2 0 3 0 5 0 5 0 8 12 03 0 2 0 3 0 4 0 5 0 6 0 6 L2 04 0 3 0 3 0 3 0 3 0 3 0 3 18 02 95 95 90 95 95 95 18 04 105 105 18 06 0 75 n1 03 10 10 n9 01 2 1 8 7 01 VT2 2 1 8 7 9 02 n9 11 2 0 2 0 n9 11 L lim 1 5 1 5 n9 12 23 22 19 14 20 20 1
34. 6h P Gain 0 0 25 0 2 OlA7h PII Time 0 0 360 0 Sec 5 0 Sec OlA8h PI Limit 0 0 100 0 100 00 01 PI Limit 0 0 100 0 Yo 100 00 1 OIACh 01ADh PI Offset PI Delay Time Output Level Sel 100 0 100 0 0 0 10 0 Sec Normal Output Reverse Output 0 01 Sec 0 00 gt gt gt gt gt gt 01 Output Gain 0 0 25 0 E7 Drive Parameters 4 12 gt gt 01 Function Output Rev Sel Limits Selections 0 limit Reverse Default gt 01BOh Fb los Det Sel Disabled Alarm Fault 01Bih Fb los Det Lvl 0 100 01B2h Fb los Det Time 0 0 25 5 Sec 01B3h Sleep Level 0 0 200 0 Hz 01B4h Sleep Time 0 0 25 5 Sec 01B5h Acc Dec Time 0 0 25 5 01DCh PI Setpoint Sel Disabled Enabled 01DDh PI Setpoint 0 0 100 0 Yo 01 2 Setpoint Scaling 0 39999 gt gt gt gt gt gt gt gt O1E3h PI Sleep Source SFS Input PI Setpoint Snooze gt 01 4 Snooze Level 0 100 O1ESh Snooze DelayTime 0 3600 Sec 01 6 Wake Up Level 0 100 96 O1E7h Setpoint Boost 0 100 Yo O1E8h Max Boost Time 0 3600 Sec O1E9h Snooze Feedback 0 100 01 PI Feedback SgR
35. 8 Operation Method and Frequency Reference 1 10 Verify 1 11 Chapter 2 Message Formats J 2 1 Protocol uu u AME 2 3 Read Multiple Registers Function Code 2 4 Write Single Register Function Code 2 6 Loop Back Test Function Code 08H 2 8 Write Multiple Registers Function Code 1 2 10 No Response eric Rake epa t reet 2 12 ENO COGS xe Et 2 12 16 2 13 Chapter 3 Troubleshooting 3 1 General Information 3 3 RS232 3 4 RS422 RS485 3 6 R9422 RS485 Self TGSt 3 9 Chapter 4 Drive Parameters 4 1 Command Registers Read 4 3 Simultaneous Broadcast Registers Write on
36. 9 26 n9 27 E7 Drive Parameters 4 24 Table 4 9 kVA Dependencies Model 4075 4090 4110 4132 4160 4185 4220 4300 4200 kW 75 90 110 132 160 185 220 300 200 Min VAC 355 355 355 355 355 355 355 355 355 555 555 555 555 555 555 555 555 555 Param Units 30 31 32 33 34 35 36 37 3E b3 03 b3 04 b3 06 b3 08 b8 04 6 02 6 02 2 6 03 U lim 2 01 2 02 2 03 2 05 12 02 12 03 12 04 18 02 18 04 18 06 1 03 9 01 n9 01 VT2 n9 02 9 11 n9 11 L lim n9 12 n9 14 n9 26 n9 27 E7 Drive Parameters 4 25 gt 02 09 Specification After the kVA parameters these are the most important and are the nezt highest of the seguence numbers The table below lists those parameters that are affected by setting parameter 02 09 The Other column that parameter is not available under that specification Shaded parameter is factory accessible shown for information purposes only Table 4 10 specification Dependencies Parameter F7A E7U E7C Sol _ s s o E7 Drive Parameters 4 26 gt E1 03 Pattern Selection The relationship of the parameters in the V f patterns is shown below For custom settings make sure that 1 09 lt
37. 91 Allershausen Germany Phone 49 8166 900 Fax 49 8166 9039 YASKAWA ELECTRIC UK LTD 1 Hunt Hill Orchardton Woods Cumbernauld G68 9LF Scotland United Kingdom Phone 44 12 3673 5000 Fax 44 12 3645 8182 YEA Document Number TM E7 11 Data subject to change without notice Yaskawa Electric America Inc 5 31 2004 YASKAWA ELECTRIC KOREA CORPORATION Paik Nam Bldg 901 188 3 1 Ga Euljiro Joong Gu Seoul Korea Phone 82 2 776 7844 Fax 82 2 753 2639 YASKAWA ELECTRIC SINGAPORE PTE LTD Head Office 151 Lorong Chuan 04 01 New Tech Park Singapore 556741 Singapore Phone 65 282 3003 Fax 65 289 3003 TAIPEI OFFICE AND YATEC ENGINEERING CORPORATION 10F 146 Sung Chiang Road Taipei Taiwan Phone 886 2 2563 0010 Fax 886 2 2567 4677 YASKAWA JASON HK COMPANY LIMITED Rm 2909 10 Hong Kong Plaza 186 191 Connaught Road West Hong Kong Phone 852 2803 2385 Fax 852 2547 5773 BEIJING OFFICE Room No 301 Office Building of Beijing International Club 21 Jianguomanwai Avenue Beijing 100020 China Phone 86 10 6532 1850 Fax 86 10 6532 1851 SHANGHAI OFFICE 27 Hui He Road Shanghai 200437 China Phone 86 21 6553 6600 Fax 86 21 6531 4242 SHANGHAI YASKAWA TONII M amp E CO LTD 27 Hui He Road Shanghai 200437 China Phone 86 21 6533 2828 Fax 86 21 6553 6677 BEIJING YASKAWA BEIKE AUTOMATION ENGINEERING CO LTD 30 Xue Yuan Road Haidian Beijing 100083 China Phone 86 10 6232 9943 Fax 86 10 6234 5002 SHOUGANG
38. D amp HFF amp upper amp INT cresum 256 AND PRINT Lower byte 17 HEX lower amp PRINT Upper byte 274 HEXS upper amp Figure 2 1 CRC 16 Calculation in Quick Basic Message Formats 2 13 gt CRC 16 Calculation getMBCRC char int char getMBCRC char buf int bufLen char crc 4 void void unsigned long crc 0 Oxffff unsigned long crc 1 0x0000 int i j for 150 i lt bufLen i crc 0 unsigned long buf i amp 0x00fFf for 0 0 lt 8 crc 1 crc_0 gt gt 1 amp 0 7 if crc 0 amp 0 0001 crc 0 erc 1 0xa001 else 0 1 j crc 0 unsigned char crc 0 256 amp 0x00ff crc 1 unsigned 0 amp 0 0044 return j function prototype Function name and parameter list returning a void buf pointer to character array used to calculate CRC bufLen number of characters to calculate CRC for crc pointer to the array that contains the calculated CRC Declare and initialize variables Declare and initialize variables Declare and initialize variables Loop through characters of input array XOR current character with Ox00ff Loop through characters bits shift result right one place and store if pre shifted value bit 0 is set XOR the shifted value with 0xa001 if pre shifted value bit 0 is not set set the pre shifted value equa
39. Fault Sel Ramp to Stop Coast to Stop Fast Stop Alarm Only Run at D1 04 0429h Serial Flt Dtct Disabled S N Of A WY Enabled 042Ah Transmit WaitTIM 5 65 ms 042Bh RTS Control Sel Disabled Enabled 0434h Protocol Select Memobus Modbus N2 Metasys FLN APOGEE 0435h CE Detect Time 0 0 10 0 Sec 0480h MOL Fault Select Disabled Std Fan Cooled 1 04811 MOL Time Const 0 1 20 0 min 8 0 min 0482h Mtr OH Alarm Sel Ramp to Stop Coast to Stop Fast Stop Alarm Only Mtr OH Fault Sel Ramp to Stop Coast to Stop Fast Stop Mtr Temp Filter PwrL Selection 0 0 10 0 Sec Disabled PwrL RideThru t CPU Power Active PwrL Ridethru t 0 0 25 5 Sec 0 1 Sec PwrL Baseblock t 0 1 5 0 Sec 0 5 Sec PwrL V F Ramp t 0 0 5 0 Sec 0 3 Sec PUV Det Level 150 210 VDC 190 VDC StallP Accel Sel Disabled General Purpose Intelligent StallP Accel Lvl 0 200 Yo StallP CHP Lvl StallP Decel Sel 0 100 Disabled General Purpose Intelligent Stall prev w R 0493h StallP Run Sel Disabled Decel Time 1 Decel Time 2 0494h StallP Run Level 30 200 Yo 0495h StallP Gain 0 1 2 0 0496h StallP
40. MPLIED IS OFFERED YASKAWA assumes no liability for any personal injury property damage losses or claims arising from misapplication of its products WARNING m Read and understand this manual before installing operating or servicing this drive All warnings cautions and instructions must be followed All activity must be performed by qualified personnel The drive must be installed according to this manual and local codes m Do not connect or disconnect wiring while the power is on Do not remove covers or touch circuit boards while the power is on Do not remove or insert the digital operator while power is on m Before servicing disconnect all power to the equipment The internal capacitor remains charged even after the power supply is turned off Status indicator LEDs and Digital Operator display will be extinguished when the DC bus voltage is below 50 VDC To prevent electric shock wait at least 5 minutes after all indicators are OFF and measure DC bus voltage and verify that it is at a safe level m Do not perform a withstand voltage test on any part of the unit This equipment uses sensitive devices and may be damaged by high voltage m The drive is not suitable for circuits capable of delivering more than the specified RMS symmetrical amperes Install adequate branch short circuit protection per applicable codes Refer to the specification Failure to do so may result in equipment damage and or personal injury m Donotconnect u
41. Rev Sel Fb los Det Sel Fb los Det Lvl Fb los Det Time Sleep Level Sleep Time Acc Dec Time PI Setpoint Sel PI Setpoint User Notes 5 5 Table 5 1 Registers Notes b5 20 b5 21 b5 22 b5 23 b5 24 b5 25 b5 26 b5 27 b5 28 b5 29 b5 30 b8 01 b8 04 b8 05 b8 06 C1 01 C1 02 C1 03 C1 04 C1 09 C1 11 C2 01 C2 02 C4 01 C4 02 C6 02 C6 03 C6 04 C6 05 d1 01 d1 02 d1 03 d1 04 41 17 42 01 42 02 42 03 43 01 Snooze DelayTime Wake Up Level Setpoint Boost Max Boost Time Snooze Feedback PI Feedback SqRt PI Fb SqRt Gain PI Out Moni SqRt Energy Save Sel Energy Save COEF kW Filter Time Search V Limit Accel Time 1 Decel Time 1 Accel Time 2 Decel Time 2 2882 1 200 ms 6h 2 0 kHz 2 0 kHz Fast Stop Time Acc Dec SW Freq SCrv Acc Start SCrv Acc End _ 0 0 Hz Reference 3 Reference 4 Jog Reference Ref Upper Limit Ref Lower Limit Refl Lower Limit Jump Freq 1 User Notes 5 6 d4 02 E1 01 OFh E1 03 E1 04 60 0 Hz 240 0 VAC Jump Freg 2 Jump Freg 3 Jump Bandwidth MOP Ref Memory Trim Control Lvl Input Voltage V F Selection Max Frequency Max Voltage E1 06 Base Frequency E1 07 3 0 Hz E1 08 13 0 VAC E1 09 1 5 Hz 9 0 VAC E1 10 Mid Frequency A Mid Voltage A Min Frequency Min Voltage Mid Frequency B Mid Voltage B Base Voltage Motor Rated FLA No Load Current E2 05 F6 01 F6 02 F6 03 F6 05 1 01 1 02 1 03 1 04 1 05 2 01 2
42. Sel StallP Run Level 1 1 120 0 0 Hz 2 0 Hz 1 80 00 Spd Agree Level Spd Agree Width Ref Loss Sel Fref at Floss WA Num of Restarts User Notes 5 8 Table 5 1 Registers Notes 15 03 16 01 16 02 16 03 18 02 18 03 18 06 18 09 18 10 18 11 18 12 18 15 18 18 18 19 1 01 1 02 n3 01 n3 02 n3 03 n3 04 01 01 01 02 01 03 01 05 01 06 01 07 01 08 02 01 02 02 02 03 02 04 02 05 02 06 02 07 02 08 02 09 02 10 Restart Time 180 0 Sec Torg Det 1 Sel Torq Det 1 Lvl Torq Det 1 Time OH Pre Alarm Lvl OH Pre Alarm Sel Ph Loss In Lvl Ground Fault Sel Fan On Off Sel 4 7 50 1 300 Sec 45 Deg SS a Fan Delay Time Ambient Temp 012 Sel 0 L Spd Soft CLA Sel Fref During OH Hunt Prev Select 20 00 1 Hunt Prev Gain 1 HSB Decel Width HSB Current Ref HSB DwelTim Stp HSB OL Time User Monitor Sel 5 150 1 0 Sec Power On Monitor Display Scaling LCD Contrast Monitor Mode Sel 2nd Monitor Sel 3rd Monitor Sel 3 Local Remote Key Oper STOP Key User Defaults Inverter Model Operator M O P Oh Oper Detection Elapsed Time Set 0H 1 1 1 Elapsed Time Run 1 Init Mode Sel Fan ON Time Set 1 0H Function Default 21 07 1503 MaxRestartTime 180059 16011 0 1603 TorqDet 1 Time 10059 T802 9518 1803 OHPreAlmSd 4 1806 Phlosini
43. The slave disregards the command message and does not return a response message in the following cases 1 2 3 4 5 6 In simultaneous broadcasting of data slave address field is 0 all slaves When a communication error overrun framing parity or CRC 16 is detected in the command message When the slave address in the command message does not coincide with the address set in the slave When it takes longer than 2 seconds to send a message When the time interval between characters exceeds 3 5ms When the command message data length is not proper Error Codes Table 2 14 Fault Codes Code Fault Description 1 Function error Invalid or unsupported function code in command message 2 Invalid Register Invalid register address 3 Invalid Number of Registers Invalid command message quantity 21 Data Limits Exceeded The write command message data is out range for the requested register 22 Write Failure The register to be written is write protected Message Formats 2 12 CRC 16 Calculations The last two bytes of a message contain the CRC 16 Cyclical Redundancy Check The CRC 16 is one method for verifying the validity of the message contents and is part of the protocol The 16 field checks the contents of the entire message regardless of any parity check method used for the individual characters of the message The 16 field 15 16 bit binary value consisting of two
44. a section contains the data for each register to be that written in the order in which they are to be written A CRC 16 value is generated from a calculation including the message slave address function code starting register quantity number of data bytes and all register data The procedure for calculating a CRC 16 is described at the end of this chapter When the slave receives the command message it calculates a CRC 16 value and compares it to the CRC 16 of the command message If the two CRC 16 values are identical and the slave address is correct the slave processes command message If the two CRC 16 values are not identical the slave will discard the command message and not respond If the command message has a valid slave address function code starting register quantity number of data bytes and data the slave will respond with a normal response message If the command message has an invalid function code starting register quantity number of data bytes and or data the slave will respond with a fault response message If the command message has an invalid slave address or CRC 16 no response will be returned Message Formats 2 10 gt Write Multiple Registers Normal Response Message Table 2 12 Write Registers Normal Response Message Description Data Slave Address 01h Function Code 10h Upper 00h tart R t Starting Register Tawar Oth Upper 00h tit Lower 02h Upper 10h RC 16 SRC Lower 08
45. ages and check off each item as it is completed For detailed information the RS232 standard please refer to RS 232 C or later revision For information on the E7 drive RS232 interface refer to previous sections of this manual C 1 For RS232 communications m E L 1 1 Verify that the correct cable is used to connect the controller to the E7 drive 1 2 Verify that the controller is set for RS232 communications and that the communication s cable is connected to the correct communications port 13 Record the controller communications parameters Baud Rate Parity Data Bits Stop Bits Protocol 1 4 Record the E7 drive communications parameters H5 02 H5 03 H5 07 H5 08 Baud Rate Parity Data Bits Stop Bits Protocol 1 5 Verify that the communications parameters match 2 Check the controller RS232 wiring requirements 2 4 CTS Clear to Send RTS Ready to Send jumper required on the controller end 22 DTR Data Terminal ready DSR Data Set Ready RLSD Receive Line Signal Detector jumper required on the controller end 2 3 TxD Transmit Data RxD Receive Data connections are made correctly 3 Senda message from the controller to the E7 drive 3 1 Connect an oscilloscope between the E7 drive RxD and GND s 3 1 1 Verify that the message pulse train exists and contains the correct number of pulses Refer to the chapter Message Formats for information on the message conten
46. alid Verify that the number of data bytes is correct is valid Verify that the CRC is correctly calculated Troubleshooting 3 8 5422 5485 Self Test The E7 drive can perform a self test of the communications interface To perform the self test m Apply power to the E7 drive m Set parameter H1 01 to 67h self test m Remove power from the E7 drive and wait for the charge lamp to be completely extinguished Wait at least five additional minutes for the E7 drive to be completely discharged Measure the DC bus voltage and verify that it is at a safe level m Connect jumper wires to the E7 drive terminals as shown below m Reapply power to the E7 drive The frequency reference is displayed on the digital operator if the communications interface is functioning normally If the communications interface is not functioning a CE fault is displayed on the digital operator the E7 drive fault signal will be ON and the E7 drive ready signal will be OFF Termination Resistor 51 Figure 3 2 RS422 RS485 Self Test Troubleshooting 3 9 This page intentionally left blank Troubleshooting 3 10 Chapter 4 E7 Drive Parameters This chapter describes the E7 drive parameters their addressing limits and dependencies Command Registers Read Write 4 3 Simultaneous Broadcast Registers Write Only 4 4 Monitor Registers Read
47. alid slave addresses must be the range of 1 to 20 1 to 32 dec entered as a hezadecimal number No two slaves may have the same address The master addresses the slave by placing the slave address in the Slave Address field of the message In the command message above the slave is addressed at 02h Broadcast address 0 is not valid for register read commands The function code of this message is 03h read multiple registers The starting register is the address of the first register to be read In the command message above the starting register address is 20h 0020h The quantity indicates how many consecutive registers are to be read The quantity may range from 1 to 8 registers If an invalid quantity is entered error code 03h is returned in a fault response message In this example four consecutive registers are to be read 20h 21h 22h and 23h CRC 16 value is generated from a calculation including the message slave address function code starting register and quantity The procedure for calculating a CRC 16 is described at the end of this chapter When the slave receives the command message it calculates a CRC 16 value and compares it to the CRC 16 of the command message If the two CRC 16 values are identical and the Slave Address is correct the slave processes command message If the two CRC 16 values are not identical the slave will discard the command message and not respond If the command message has a valid slave
48. communication protocol is used This manual deals with the Memobus MODBUS RTU protocol The default values is Memobus 0 Table 1 5 RTS Parameter H5 08 Sa Memobus Modbus N Metas FIN APOGEE Connections 1 9 Operation Method and Freguency Reference The Run Stop Frequency Reference commands can originate from serial communication the operator keypad external terminals or option card Parameter b1 01 Operation Method Selection allows the selection of the origin of the Run Stop command Parameter b1 02 Reference Selection allows the selection of the origin of the Frequency Reference command The Run Stop and Frequency Reference commands may have different origins For example the Run Stop command may be set to External Terminals b1 01 1 while the Frequency Reference command may be set Serial Communications b1 02 2 gt Operation Method Table 1 5 Operation Method Selection b1 01 Operation Method Selection Run Stop 9 i Opermorkeypad External Terminals Default setting is 1 Option Card gt Freguency Reference Source Table 1 6 Freguency Reference Source Selection b1 02 Freguency Reference Selection 0 External Terminals Default setting is 1 Serial Communications Parameter Access Option Card Connections 1 10 Verify Communications The following is quick reference guide for serial communications to the 7 drive Make of thi
49. ction code is valid Verify that the number of data bytes is correct is valid Verify that the register address is valid Verify that the CRC is correctly calculated Troubleshooting 3 5 RS422 RS485 Communications The following is quick reference guide for troubleshooting RS422 RS485 serial communications to the E7 drive Make a copy of the following pages and check off each item as it is completed For detailed information on the RS422 RS485 standard please refer to EIA RS 4222 A or later revision For information on the E7 drive RS422 RS485 interface refer to previous sections of this manual C 1 For RS422 RS485 communications 11 Verify that the correct cable is used to connect the controller to the E7 drive 12 Verify that the controller is set for RS422 or RS485 communications and that the communication s cable is connected to the correct communications port 13 Record the controller communications parameters 1 4 Verify that the polarity of the signal wires is correct to and to Baud Rate Parity DataBits Stop 5 Protocol 15 Record the E7 drive communications parameters 5 01 5 02 5 03 5 07 5 08 Baud Rate Parity Data Bits Stop Bits 0 Protocol 1 6 Verify that the communications parameters match 17 Verify that E7 drive parameter H5 07 RTS is set to Enable 1 8 Verify that E7 drive parameter H5 01 Node Address is set to the correct uniq
50. e Example 4096 1000h The scaling is fixed at 30000 100 and is not affected by parameter 01 03 It is affected by the maximum frequency of the drive receiving the command Simply it is decimal freq ref 30000 drive s maximum frequency Example Send 1000h to drive 1000h 4096 decimal 4096 100 30000 13 65 If drive s maximum frequency is 60Hz then the frequency reference command to the drive is 60 13 65 8 19Hz E7 Drive Parameters 4 4 Monitor Registers Read only The following table lists monitor parameters for the E7 drive These parameters are used to monitor E7 drive information and cannot be written m U column contains the reference if it exists to the U monitor parameter displayed via the operator keypad m The Addr column contains the register addresses for that parameter in hexadecimal format E7 drive registers are always referred to in hexadecimal format m The Function column contains the register name m The Bit column contains the list of available bits for that register If the column is empty the register contains word data and the individual bits are meaningless m The Description column contains a short description of each register or register bit m Reserved registers and data are meaningless and should be ignored Table 4 3 Monitor Registers Read only Function Bit Description RUN Reserved Reserved Reset Signal 4
51. h The normal response message contains the same slave address function code starting register and guantity as the command message indicating to the master which slave is responding and to what type of function it is responding The starting register is the address of the first register written In the response message above the starting register address is 01h 0001h The quantity indicates how many consecutive registers were written In this case the quantity is 2 Write Multiple Registers Fault Response Message Table 2 13 Write Registers Fault Response Message Description Data Slave Address 01h Function Code 90h Error Code 02h CRC 16 Upper CDh Lower fault response message contains the same slave address command message indicating to the master which slave is responding The function code of fault response message is the logical OR of 80h the original function code of 10h This indicates to the master that the message is a fault response message instead of a normal response message The error code indicates where the error occurred in the command message The value of 02h the error code field of this fault response message indicates that the command message requested data to be written to an invalid register Refer to the section Error Codes Table 2 14 for more information on returned error codes Message Formats 2 11 No Response
52. hese cases it is necessary that the parameter with the lowest sequence number be changed first The sequence table is shown below Sequence numbers range from 1 through 9 with lower sequence parameters being changed before parameters with higher sequence numbers In all cases the parameter access level A 1 02 should be changed to 2 first Shaded parameters are factory set and are provided for information purposes only Table 4 6 Master Parameter Sequence Numbers Action ater parameter change Send ENTER command power cycle E7 drive change dependent parameters send ENTER o2 04 1 kVA or E7 drive Model If 02 09 is also going to be changed set 02 09 before setting dependent or slave parameter values 02 09 2 Initialization 4 6 01 Duty C6 02 5 Carrier Frequency Send ENTER Change dependent parameters d2 01 Freq Upper Limit Send ENTER d2 02 Freq Lower Limit 1 01 Input Voltage E7 Drive Parameters 4 22 02 04 Parameter Dependencies E7 drive kVA or model is set at the factory and should NOT be changed These values are included for information purposes only Shaded parameters are factory set and are provided for information purposes only Table 4 7 kVA Dependencies Model 20P4 20 7 21 5 22 2 23 7 25 5 27 5 2011 2015 2018 2022 2030 2037 2045 2055 2075 2090 kW 0 4 0 75 155 252 ou S 75 11 15 18 5 22 30 37 45 55 75 90 155 155 15
53. ipBraking JOG2 Drive Enable Com Inv Sel Com Inv Sel 2 AUTO Mode Sel HAND Mode Sel Bypass Drv Enbl Default Terminal S4 Sel See H4 01 Terminal S5 Sel See H4 01 Terminal S6 Sel See H4 01 Terminal S7 Sel See H4 01 E7 Drive Parameters 4 15 040Bh Function Term 1 2 Sel Limits Selections During RUN 1 Zero Speed Fref Fout Agreel Fref Set Agree 1 Freg Detect 1 Freg Detect 2 Ready DC Bus Undervolt 1 Option Reference Remote Auto Oper Trg Det 1 N O Loss of Ref DB Overheat Fault Not Used Minor Fault Reset Cmd Active Timer Output Trg Det 1 N C Restart Enabled Overload OL1 OH Prealarm Drive Enable Waiting to Run OH Freg Reduce Run Src Com Opt Default 040Ch Term M3 M4 Sel See H2 01 0Ah 0411h Terminal A1 Gain 0 0 1000 0 Yo 100 0096 0412h Terminal A1 Bias 100 0 100 0 Yo 0 00 0417h Term A2 Signal Terminal A2 Sel 0 10 VDC 10 10 VDC 4 20 mA 0 20 mA Frequency Bias Aux Reference PI Feedback Frequency Bias 2 MotorTemperature PI Differential Reserved 0419h Terminal A2 Gain 0 0 1000 0 0 10 100 00 041Ah Terminal A2 Bias 100
54. kWh Units 1 0kWh MWh Units 1 0MWh First Parameter Causing an OPE Fault PID Input nits 0 1 PID Output nits 0 190 PID Setpoint nits 0 1 Length Error Reserved Parity Error Over run Error Framing Error Timeout Error Reserved FAN Elapsed Time nits 1H Actual Fin Temp nits Deg C AUTO Mode Fref nits 0 1 HAND Mode Fref nits 0 1 PI Feedback 2 nits 0 1 Current Fault Previous Fault Freguency Reference 0 Previous Fault Output Freguency 0 Previous Fault Output Current 0 Previous Fault Output Voltage t Previous Fault DC Bus Voltage 0 Previous Fault Output Power Previous Fault Torque Reference Previous Fault Input Terminal Status 0 Previous Fault ee U1 10 Description Output Terminal Status 0 Previous Fault See 01 11 Description 2 13 008Ch E7 drive Operation Status 0 Previous Fault See 01 12 Description 2 14 008Dh Elapsed Time 0 Previous Fault nits 1 0hr Communication Error Code nits 0 01Hz nits 0 01Hz nits nits 0 1V nits 1 0 4 nits 0 1 nits 0 1 Essl Kasi es Ese Kam gt ct c E7 Drive Parameters 4 9 Function Most Recent Fault 2nd Most Recent Fault 3rd Most Recent Fault 4th Most Recent Fault Elapsed Time 0 Most Rece
55. l to the shifted value End for loop Loop through characters bits End for loop Loop through characters of input array Hi byte Lo byte Return to calling function End of CRC calculation function Figure 2 2 CRC 16 Calculation Message Formats 2 14 Chapter 3 Troubleshooting This chapter describes some basic troubleshooting methods for serial communications General Information J 3 3 RS232 Communications 3 4 RS422 RS485 Communications 3 6 RS422 RS485 Self Test u J J 3 9 Troubleshooting 3 1 This page intentionally left blank Troubleshooting 3 2 General Information Please fill in the information on this and the following pages prior to contacting customer support If customer support is necessary please have the information below available 1 1 E7 Drive Model el 5 Flash ID 01 14 2 Input VAC Hz 6 Initialization 2 3 wire control Serial Number C 7 Specification Type 02 09 4 Control Board Please provide a sketch of the network connections the space below Figure 3 1 Connection Sketch Troubleshooting 3 3 RS232 Communications The following is a guick reference guide for troubleshooting RS232 serial communications to the E7 drive Make a copy of the following p
56. ltaneous Broadcast Registers are those registers used to control the simultaneous operation of multiple devices either through a network interface option card or via serial communications These registers are available during drive RUN The Addr column contains the register address in hexadecimal format Drive registers are always referenced in hexadecimal format The Function column contains the register name The Bit and Description columns contain the list of available bits for that register and a short description of each If the Bit column is empty the register contains word data and individual bits are meaningless Table 4 2 Simultaneous Broadcast Registers Write only Function i Description Reserved Reserved 0 Stop 1 Run 0 Forward Reverse Multi Function Input 1 53 default External Fault Function set by setting of H1 01 Multi Function Input 2 4 54 default Fault Reset Function set by setting of H1 02 Command ros Multi Function Input 3 55 Function set by setting of H1 03 Multi Function Input 4 S6 Function set by setting of H1 04 Multi Function Input 5 57 Function set by setting of H1 05 Reserved Frequency Reference 30000 100 m iO gt oigo uw A rt Use of these bits is dependent on the setting of register 0Fh bits 0Ch 0Dh and 0Eh Refer to Table 4 1 Command Registers Read Write This value must be sent to the drive as a hexadecimal valu
57. ly 4 4 Monitor Registers Read only 4 5 Parameters Read Write l 4 11 ENTER ACCEPT Command Write Only 4 21 Parameter 4 22 Chapter 5 User Notes 5 2 Parameter 5 4 6 EE 5 11 Hex Dec Conversion 5 12 This page intentionally left blank Chapter 1 Connections This chapter describes how to connect the E7 drive to an RS232 RS422 or RS485 network Connection Check 1 3 Verify Operation d na n 1 5 Serial Network Connections 1 6 Communications Parameters 1 8 Operation Method and Frequency Reference 1 10 Verify Communications 1 11 Connections 1 1 This page intentionally left blank Connections 1 2 Connection Check Sheet The following is quick reference guide to connect configure the E7 drive for serial communications Make copy of this page check off each item as
58. napproved LC or RC interference suppression filters capacitors or over voltage protection devices to the output of the drive Capacitors may generate peak currents that exceed drive specifications m To avoid unnecessary fault displays caused by contactors or output switches placed between drive and motor auxiliary contacts must be properly integrated into the control logic circuit m YASKAWA is not responsible for any modification of the product made by the user doing so will void the warranty This product must not be modified m Verify that the rated voltage ofthe drive matches the voltage of the incoming power supply before applying power m To meet CE directives proper line filters and proper installation are required m Some drawings in this manual may be shown with protective covers or shields removed to describe details These must be replaced before operation m Observe Electrostatic Discharge Procedures when handling the drive and drive components to prevent ESD damage m The attached equipment may start unexpectedly upon application of power to the drive Clear all personnel from the drive motor and machine area prior to applying power Secure covers couplings shaft keys machine beds and all safety equipment before energizing the drive m Do not attempt to disassemble this unit There are no user serviceable parts Disassembling this unit will void any and all warranties Introduction This manual is intended as a parame
59. nction Code 08h U 00h Test Code ppe Lower 00h U A5h Data Lower 37h U DAh CRC 16 Lower 8Dh gt Loop Back Fault Response Table 2 10 Loop Back Fault Response Message Description Data Slave Address 01h Function Code 88h Error Code 01h CRC 16 Upper 87h Lower fault response message contains the same slave address command message indicating to master which slave is responding function code ofa fault response message is the logical OR of 80h and the original function code of 08h This indicates to the master that the message is a fault response message instead of a normal response message The error code indicates where the error occurred in the command message Refer to the section Error Codes Table 2 14 for more information on returned error codes Message Formats 2 9 Write Multiple Registers Function Code 10 The Write Multiple Register function allows the writing of data to from one to sixteen consecutive registers gt Write Multiple Registers Command Message Table 2 11 Write Command Message Description Data Slave Address 01h Function Code 10h 00h tart R t Starting Register Upper 00h tit Quantity Lower 02h Number of Data Bytes 04h Upper 00h First Register Data Lower 01h Upper 02h Nezt Register Data Lower 58h U 63h CRC 16
60. nt Fault Elapsed Time 204 Most Recent Fault Elapsed Time 0 3rd Most Recent Fault Elapsed Time 0 4th Most Recent Fault Sth Most Recent Fault 6th Most Recent Fault 7th Most Recent Fault 8th Most Recent Fault 9th Most Recent Fault 10th Most Recent Fault Elapsed Time 0 Sth Most Recent Fault Elapsed Time 0 6th Most Recent Fault Elapsed Time 0 7th Most Recent Fault Elapsed Time 0 8th Most Recent Fault Elapsed Time 0 9th Most Recent Fault Elapsed Time 4 10th Most Recent Fault Table 4 3 Monitor Registers Read only Bit Units 1 0hr Units 1 0hr Units 1 0hr Units 1 0hr Units 1 0hr Units 1 0hr Units 1 0hr Units 1 0hr Units 1 0hr Units 1 0 Also 009011 Also 0091H Also 0092H Also 0093H Also 0094H Also 0095H Also 0096H Also 0097 E7 Drive Parameters 4 10 Description See 02 09 See 02 09 See 02 09 See 02 09 See 02 09 See 02 09 See 02 09 See 02 09 See 02 09 See 02 09 See 02 09 See 02 09 See 02 09 See 02 09 See 02 09 See 02 09 See 02 09 See 02 09 See 02 09 See 02 09 Parameters Read Write The following table lists user accessible parameters for the F7 drive Notes The Prm column contains the parameter name column contains the register address in hexadecimal format F7 drive registers are always referred hexadecimal format The Data column contains the available selections for those parameters who
61. oadcast address 0 is not valid for Loop Back test commands The function code of this message is 08h Loop Back test The test code must be set to 0000h This function specifies that the data passed in the command message is to be returned looped back in the response message The Data section contains arbitrary values A CRC 16 value is generated from a calculation including the message slave address function code test code and data The procedure for calculating a CRC 16 is described at the end of this chapter When the slave receives the command message it calculates a CRC 16 value and compares it to the CRC 16 of the command message If the two CRC 16 values are identical and the Slave Address is correct the slave processes command message If the two CRC 16 values are not identical the slave will discard the command message and not respond If the command message has a valid slave address function code test code data and CRC 16 the slave will respond with the normal response message If the command message has an invalid function code test code and or data the slave will respond with a fault response message If the command message has an invalid slave address or CRC 16 no response will be returned Message Formats 2 8 gt Loop Back Normal Response The normal Loop Back Test response is identical the command message Table 2 9 Loop Back Normal Response Message Description Data Slave Address 01h Fu
62. of the ACCEPT command Table 4 5 ENTER Command Addr Function Data Description ACCEPT Transfer data to active RAM 900 ENTER Transfers the current parameter data to non volatile storage E7 Drive Parameters 4 21 Parameter Dependencies Certain E7 drive parameters Master parameters can affect the default values range of values and accessibility of other dependent parameters When Master parameter s value is changed via serial communications RS232 RS485 DeviceNet Ethernet etc the associated dependent parameters are not automatically updated and must be updated serially For parameter 42 02 freguency lower limit affects the range of values for all frequency reference parameters 41 01 through 41 17 If d2 02 is changed to 5 0Hz serially all frequency reference parameters with values below 5 0Hz must be updated serially to have current values of 5 0Hz or greater An E7 drive fault may occur if a dependent parameter s values are not updated The standard sequence for changing E7 drive parameters is Set A1 01 to 2 Set the access value to Advanced Set Master parameter to desired value Send ENTER command Set dependent parameter values Send ENTER command gt Master Parameter Sequence Numbers Some E7 drive parameters may be dependent on more than one Master parameter For example o2 04 kVA and o2 09 specification affect a number of parameters together In t
63. or Fault Fh RH Braking resistor Overheat Oh EF3 External Fault 3 lh EF4 External Fault 4 2h EF5 External Fault 5 3h EF6 External Fault 6 4h EE7 External Fault 7 5h Reserved 6h Reserved 7h OS 4 Overspeed 8h DEV Excessive Speed Bias 9h PGO PG Line Interruption Ah PF Input Phase Fault Bh LF Phase Fault Ch OH3 Overheat Dh OPR Operator Bypass Fault Eh ERR 0 EEPROM Write Fault Fh 4 Motor Overheat Fault Oh CE Communications Fault lh BUS Communications Option Fault 2h E 15 SI F G Communication Fault 3h E 10 SI F G Fault 4h CF Control Fault 5h SVE 4 Zero Servo Fault 6h Communications Option 1 Fault 7h FBL PID Feedback Error 8h UL3 4 Undertorgue 1 9h UL4 4 Undertorgue 2 Ah 1 7 High Slip braking Overload Bh Reserved Ch Reserved Dh Reserved Eh Reserved Fh Reserved Oh Reserved lh Reserved 2h 2 Base Block Circuit Error 3h Error 4h 4 Internal Converter Error Sh 5 1 Converter Error 6h CPF06 Option Card Connection Error Reserved Oh CPF20 Option Card A D Converter Error lh CPF21 Option Card Self Diagnostic error CPF Contents 2 2h CPF22 4 Option Card Option Code Error 3h CPF23 Option Card DP RAM Error Reserved Fault Contents 1
64. ow Noise Fc 2 0kHz Fc 5 0kHz Fc 8 0kHz Fc 10 0kHz Fc 12 5kHz Fc 15 0kHz Reserved Program CarrierFreq Max 0 4 15 0 kHz CarrierFreq Min Heavy Duty Normal Duty CarrierFreq Gain 0 99 PWM Method 2 3 Pha Auto Mod 2 Phase Modulate 3 Phase Modulate Motor Audible 1 Motor Audible 2 Motor Audible 3 Motor Audible 4 Phase SW level 0 5 3 0 PWM on Time 1 0 5 0 E7 Drive Parameters 4 13 Function Reference 1 Limits Selections 0 0 400 0 Hz Default 0 0 Hz Reference 2 0 0 400 0 Hz 0 0 Hz Reference 3 0 0 400 0 Hz 0 0 Hz Reference 4 0 0 400 0 Hz 0 0 Hz Jog Reference 0 0 400 0 Hz 6 0 Hz Ref Upper Limit 0 0 110 0 Yo 100 0096 Ref Lower Limit 0 0 110 0 Yo 0 00 Refl Lower Limit 0 0 110 0 0 00 Jump Freq 1 0 0 200 0 Hz 0 0 Hz Jump Freq 2 0 0 200 0 Hz 0 0 Hz Jump Freq 3 0 0 200 0 Hz 0 0 Hz Jump Bandwidth 0 0 20 0 Hz 1 0 Hz MOP Ref Memory Disabled Enabled 0 Trim Control Lvl 0 100 10 Input Voltage 155 255 VAC 240 VAC gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt E1 03 0302h V F Selection 50 Hz 60 Hz Saturation 50 Hz Saturation 72 Hz 5
65. ow they are represented in the Limits Selection column or their increment For example parameter 54 01 Delay ON Timer has limits of 0 0 3000 0 seconds with an increment of 0 1 seconds If parameter b4 01 is read and a value of 600 returned the actual value is 60 0 seconds If parameter b4 01 is to be set to 30 seconds a value of 300 30 0 seconds must be sent Function Limits Selections Default English Japanese Deutsch Frangais Italiano Espafiol Portugu s Operation Only Advanced Level Factory Level No Initialize Select Language Access Level WN gt Init Parameters 2 Wire Initial 3 Wire Initial Enter Password 0 9999 User Param 1 Oh 5ffh User Param 2 Oh 5ffh User Param 3 Oh 5ffh User Param 4 Oh 5ffh User Param 5 Oh 5ffh User Param 6 Oh Sffh User Param 7 Oh 5ffh User Param 8 Oh 588 User Param 9 Oh Sffh User Param 10 ser Param 11 5 ser 12 5 13 5 14 5 ser 15 0h 5 ser Param 16 5 17 Oh 5 ser 18 5 19 Oh 5 20 Oh 5 User 21 User 22 Oh 5ffh User Param 23 Oh 5ffh e l E Addresses for parameters b1 01 03 01 U U U U U U U U U U E l E
66. ption See U1 02 Reserved Reserved Reserved Reserved Output Power See U1 08 Torgue Command See U1 09 Reserved Reserved Reserved Reserved Seguence Input Status Terminal 1 Closed Terminal 2 Closed Terminal 3 Closed Terminal 4 Closed Terminal 5 Closed Terminal 6 Closed Terminal 7 Closed Reserved Reserved Reserved Reserved Reserved Reserved Inverter Status Multi Function Output Status RUN Zero Speed Speed Agree Random Speed Agree Frequency Detect 1 Freguency Detect 2 Inverter Ready Undervoltage Baseblock Frequency Reference Not From Communications Command Reference Not From Communications Overtorque Loss of Frequency reference Fault Retry Fault Communications Timeout Multi Function Output 1 Multi Function Output 2 Multi Function Output 3 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Main Circuit DC Voltage 0033h Torque Output Power Reserved See U1 08 Reserved Reserved Reserved Reserved Reserved Reserved Reserved PID Feedback Level PID Input Level PID Output Level CPU CPU Revision Flash ID Software Revision Communications Error CRC Error
67. r 16 User Param 17 User 18 User 19 User Param 20 User 21 User Param 22 User 23 User Param 24 User Param 25 User 26 User 27 User Param 28 User 29 User 30 User 31 ser 32 Fu S NNNM aC 12222 T 2 12 20 NNNM a x aC aC EC aC T User Notes 5 4 Table 5 1 Registers Notes 61 01 61 02 61 03 61 04 51 07 01 08 61 11 61 12 62 01 52 02 52 03 52 04 52 09 53 01 53 02 53 03 53 05 53 14 54 01 54 02 55 01 55 02 55 03 55 04 55 06 55 07 55 08 55 09 55 10 55 11 55 12 55 13 55 14 55 15 55 16 55 17 55 18 55 19 Reference Source 1 Run Source 1 Stopping Method Reverse Oper 1 RUN Sel RUN CMD at PRG Wait to Run Time HAND Fref Source DCInj Start Freq DCInj Current DCInj Time Start DCInj Time Stop 0 Sec 0 5 Hz 50 0 0 Sec 0 0 Sec Preheat Current 0 SpdSrch at Start SpdSrch Current SpdSrch Dec Time 120 2 0 Sec 0 2 Sec 1 0 0 Sec oosee Search Delay Bidir Search Sel Delay ON Timer Delay OFF Timer PI Mode P Gain PI I Time PI I Limit PI Limit PI Offset PI Delay Time Output Level Sel 2 5 0 Sec 100 00 100 00 0 00 0 0 Sec Output Gain 1 Output
68. s RS422 RS485 Communications m Node Address H5 01 The node address is set through E7 drive parameter H5 01 When communicating via RS422 or RS485 a unique node address between 0 and 20h 32 dec inclusive must be entered The default E7 drive address is 1Fh 31 dec The address is always entered as a hexadecimal number refer to the conversion chart in Chapter 4 Address 0 is typically reserved for global messages m Baud rate H5 02 Select the baud rate that matches the controller s serial configuration The default baud rate is 9600 3 m Parity H5 03 Select the parity that matches the controller s serial configuration The default parity is None 0 Table 1 3 Parity Parameter H5 03 m Serial Communications Send Delay H5 06 A delay can be inserted before the E7 drive responds to a command message This allows for slower communications devices to switch transceiver state in order to get ready to receive a message value of 5 65 ms can be inserted 5 18 being the default Connections 1 8 m RTS Control H5 07 This parameter determines whether RTS is continually asserted disabled or asserted only during send enabled RTS must be enabled for use with RS422 485 communications The default is disabled 0 Table 1 4 RTS Parameter H5 07 O Disable always Enable ON only during send m Communication Method 5 08 This parameter determines which
69. s page and check off each item as it is completed For detailed information please refer to the detailed sections that follow 1 5232 communication L E 1 1 Verify that the correct cable is used to connect the controller to the E7 drive 12 Verify that the controller is set for RS232 communications and that the communication s cable is connected to the correct communications port 13 Record the controller communications parameters Baud Rate Parity Data Bits Stop Bits Protocol 14 Record the E7 drive communications parameters H5 02 H5 03 5 07 H5 08 Baud Rate Parity Data Bits Stop Bits Protocol 1 5 Verify that the communications parameters match 2 RS422 RS485 communications A 2 1 Verify that the 7 drive is connected correctly 2 2 Verify that the controller is set for RS422 RS485 communications and that the communication s cable is connected to the correct communications port 2 3 Record the controller communications parameters Baud Rate Parity Data Bits Stop Bits Protocol 24 Record the E7 drive communications parameters 5 01 5 02 5 03 5 07 H5 08 Baud Rate Parity Data Bits Stop Bits Protocol 2 5 Verify that the communications parameters match 2 6 Verify that parameter H5 07 RTS is set to enable 2 7 Verify that parameter H5 01 Node Address is set to the correct unique hexadecimal value and that it
70. se message If the command message has an invalid function code register address and or data the slave will respond with a fault response message If the command message has an invalid slave address or CRC 16 no response will be returned Message Formats 2 6 gt Write Single Register Normal Response Message Table 2 6 Write Registers Normal Response Message Description Data Slave Address 01h Function Code 06h U 00h Register Address Lower 01h U 00h Data Lower 03h Upper 98h RC 16 CRE Lower OBh The normal response message contains the same slave address function code register address and data as the command message indicating to the master which slave is responding and to what type of function it is responding In the response message above the register address is 01h 0001h gt Write Single Register Fault Response Message Table 2 7 Write Registers Fault Response Message Description Data Slave Address 01h Function Code 86h Error Code 21h CRC 16 Upper 82h Lower 78h The fault response message contains the same slave address as the command message indicating to the master which slave is responding The function code of a fault response message is the logical OR of 80h and the original function code of 06h This indicates to the master that the message is a fault response message instead of a normal response message The error
71. se value is selected from a list If the Data column is empty that parameter s value is entered as a number within the limits shown in the Limits Selection The Limits Selection column contains The name of the selection if the Data column is not empty The upper and lower limits of the data that can be entered for that parameter The Inc column describes the smallest increment with which the parameter value may be changed Since all parameter values are sent and received as whole numbers the Inc value also describes how that value should be scaled The RUN column describes whether the parameter is able to be written while the RUN command is active Y the parameter is writable during RUN The columns describe the accessibility A the parameter requires Advanced access A1 01 2 O the parameter has Operation access A1 01 0 F the parameter requires factory access the parameter is not accessible The column shows whether the value definition or function of the selected parameter is dependent on the setting of another parameter If there is an in the Dep column refer to the appropriate table at the end of this section Factory parameters are shown shaded and are included here for information purposes only Parameter defaults are listed for the F7U drive All parameters are sent and received as whole numbers regardless of h
72. t Disabled Enabled 1 Fb SqRt Gain 0 0 2 0 O1ECh PI Out Moni SqRt Disabled Enabled gt gt gt gt gt gt gt gt gt 01CCh Energy Save Sel Disabled Enabled 01CFh Energy Save COEF 0 0 655 0 01D0h kW Filter Time 0 2000 ms 01011 Search V Limit 0 100 96 01D2h 01D3h E Sav V Low Liml E Sav V Low Lim2 0 100 0 25 12 01D4h E Sav Liml 0 120 Yo 12096 011558 Lim2 0 25 Yo 1696 01D6h Srch V Step 100 0 1 10 0 Yo 0 50 01D7h Srch V Step 5 0 1 10 0 0 20 01D8h Srch V Avg Time 1 5000 ms 25 ms 01D9h Srch kW Hold Wth 0 100 10 0200h Accel Time 1 0 0 6000 0 Sec 30 0 Sec 0201h Decel Time 1 0 0 6000 0 Sec 30 0 Sec 0202h Accel Time 2 0 0 6000 0 Sec 30 0 Sec 0203h Decel Time 2 0 0 6000 0 Sec 30 0 Sec 0208h 020Ah 020Bh 020Ch Fast Stop Time Acc Dec SW Freq SCrv Acc Start SCrv Acc End 0 0 6000 0 Sec 0 0 200 0 Hz 0 0 2 5 Sec 0 0 2 5 Sec 0 1 Hz 0 01 Sec 30 0 Sec gt gt gt 0215h Torg Comp Gain 0 0 2 5 0216h Torq Comp Time 0 10000 ms gt gt gt 0223h Normal Duty Sel Heavy Duty Normal Duty 1 Normal Duty 2 CarrierFreq Sel L
73. t 0 100 Yo 96 5096 13 07 058Eh Spd Agree Time 100 2000 ms 1 ms 800 ms F 13 08 058 HSB Lvll 80 90 87 13 09 0590h HSB Lvl2 90 95 92 13 10 0591h HSB RI Comp Coef 20 100 50 13 11 05921 HSB RI Tim 10 1000 ms 1 ms 200 ms F 13 12 0593 Prohib 5 Decel 0 20 Hz 1 Hz 6 Hz F n9 01 05D0h Inv Rate Current 0 0 1500 0 A 01 0 0 A kVA n9 02 05DIh DCCT Gain 0 0 2 0 0 001 0 0 Disabled 19 09 05D8h AVR Selection il Enabled 1 1 F 2 Stabilize n9 10 05D9h AVR Time 0 0 100 0 ms 0 1 ms 1 0 ms n9 11 05DAh ON Delay Time 2 5 18 0 us 0 1 us 3 0 us kVA 9 12 05DBh ON Delay Comp 0 0 20 0 us 0 1 us 3 0 us F kVA 19 13 05DCh IGBT Volt Drop 0 0 10 0 VDC 0 1 VDC 0 0 VDC F 9 14 05DDh Pwr Angle 1 0 1000 ms 1 ms 5 ms F kVA 9 15 05 Pwr Angle Filt 2 0 1000 ms 1 ms 5 ms F n9 19 OSE2h DCCT Filter Time 1000 1000 us lus 0 us E7 Drive Parameters 4 18 Function Soft CLA Gain Limits Selections 0 0 4 0 Default 2 Soft CLA Filter 0 0 100 0 ms 0 5 ms Soft CLA Levell 0 0 300 0 Yo 120 0096 Soft CLA Level2 0 0 300 0 Yo 120 0096 Soft CLA SW Freq 0 0 100 0 Hz 6 0 Hz Soft CLA Level3 0 0 300 0 Yo 300 0096 OnDelay Comp Lvl 0 0 10 0 Yo 2 00 OSEAh IGBT Gain 0 0 2 0 0 OSEBh Aging Test Mode Disabled
74. ter access guick reference guide for the Yaskawa model E7 drive It describes how to connect the E7 drive to an RS232 RS422 or RS485 network and access parameters and their values It lists the available parameters their addresses limits available selections and default values Refer to the E7 Drive Programming Manual for detailed parameter information This document pertains to the E7 drive In this document the word inverter ac drive and drive may be used interchangeably For details on installation and operation of the E7 drive refer to the E7 Drive User Manual All manuals and support files are available on the CD that came with the E7 drive and are also available for download at www drives com E7 Drive User Manual document reference 7 01 E7 Drive Programming Manual document reference TM E7 02 E7 Drive Parameter Access Technical Manual document reference TM E7 11 GPD is a trademark of Yaskawa Inc MODBUS is a registered trademark of Schneider Automation Inc All trademarks are the property of their respective owners Table of Contents Chapter 1 Connecltions J 1 1 Connection Check Sheet uwiii 1 3 Venfy ODE ALON E 1 5 Serial Network Connections 8 9 1 6 Communications Parameters 000000000000 1
75. ts 3 1 2 Verify that he signal levels adhere to the RS232 standard 32 Insert data analyzer in the RS232 circuit and capture the message sent by the controller hexadecimal format Record the command message below Troubleshooting 3 4 C O O LI ET L Verify that the contents of the message adheres to the protocol format as described previously 3 3 1 3 3 2 3 3 3 3 3 4 3 3 5 3 3 6 Verify that the node address is valid Verify that the function code is valid Verify that the register address is valid Verify that the number of data bytes is correct is valid Verify that the CRC is correctly calculated Verify that the message requires a response 4 Verify the contents of the response message 4x Connect an oscilloscope between the controller RxD and GND 4 1 1 4 1 2 Verify that the message pulse train exists and contains the correct number of pulses Refer to the chapter Message Formats for information on the message contents Verify that he signal levels adhere to the RS232 standard Capture the response message sent by the controller in a hexadecimal format and record it below Verify that the contents of the message adheres to the protocol format as described previously 4 3 1 4 3 2 4 3 4 4 3 3 4 3 4 Verify that the node address is valid Verify that the fun
76. ue hexadecimal value and that it matches the node address required by the controller C 2 Check the controller RS422 RS485 wiring requirements 2 1 22 23 24 25 The controller transmit terminals are connected to the E7 drive receive terminals and the receive terminals connected to the E7 drive transmit terminals The transmit and receive connection polarities are correct The controller either asserts RTS when transmitting or utilizes send detect circuitry The network is terminated only at the beginning and end of each network segment There are no more than 31 devices on any network segment including the controller and repeater 3 Verify that the E7 drive passes the self test as described in the following section Troubleshooting 3 6 4 Senda message from the controller to the 7 drive 4 1 Connect an oscilloscope between the E7 drive s and R terminals for RS422 RS485 4 wire networks or between terminals R S and R S for RS485 2 wire networks 4 1 1 4 1 2 Verify that the message pulse train exists and contains the correct number of pulses Refer to the chapter Message Formats for information on the message contents Verify that the signal levels adhere to the RS422 RS485 standard Insert a data analyzer in the RS422 RS485 circuit and capture the message sent by the controller in a hexadecimal format Record the command message below 11 11 JI JI
77. v 750 1809 GrwdFmitSel 1 1810 Fmonofrs 9 18 11 FanDelay Time 3005 1812 Ambient Temp 45Deg 1845 en 1 we 1849 FrefDwrngOH 20005 41 Hunt Prev Select 1 C E 1500 HSB Decel Width 5 2402 HSB Covent Ref 1504 1343 HSBDwelTim sip 1056 2404 HSBOLTime 4056 0101 6 0103 DisplaySealing 0 0105 9 01 06 Monitor Mode Set 0 e107 2 048 pid Morions 3 92 01 LonRemoteKey 1 02 03 0 0204 Inverter Model 0205 OpsworMOR 1 9246 Oper Detection 1 92 07 Elapsed Time Set 9208 Elapsed Time Run 1 E EP 22 10 User Notes 5 9 User Notes 5 10 Notes Enter the current application parameter data and any relevant notes User Notes 5 11 Hex Dec Conversion Table Table 5 2 Hexadecimal Decimal Conversion Dec Cn 22 DIDI N gt 4 M l 4 ON Q CA 001 4 DAI 0 1 4 DAI N N 6 1 6B 107 amp b io D E F SO 12 2 3 1 5 S 13 7 8 B F I 2 3 y s 4 96 1 A 97 Co 12 _ L gt 89
78. witch to the right on each device 51 Termination Resistor Controller RS422 RS485 4 Wire Connections Figure 1 3 RS422 RS485 4 Wire Network Connection Connections 1 6 gt RS485 2 Wire Networks RS485 2 wire networks can be either single or multi drop networks with each slave device on the network assigned a unigue node address A maximum of 31 devices reside on any network segment before repeater is required Terminating resistors must be installed the first and last devices on each network segment The maximum segment length is 4000ft 1200m All RS485 communications are half duplex si Termination Resistor Controller RS422 R5485 2 Wire Connections RS C LL Figure 1 4 5485 2 Wire Network Connection Connections 1 7 Communications Parameters These communications parameters affect serial communications through RS232 RS422 and RS485 The RS232 communications parameters cannot be changed Also the node address is ignored when communicating via RS232 All serial communications parameters can only be changed via the operator keypad gt RS232 Communications The RS232 communications parameters are fixed at the values shown below Although the node address is ignored node address of 1 is typically used by the master when communicating to the E7 drive in this method Table 1 1 RS232 RJ45 port Communications Parameters Node Adi
Download Pdf Manuals
Related Search
Related Contents
Child Health and Household Resources in South Africa Iomega REV 70GB USB 2.0 Backup Kit HP 81536A User's Manual 色彩輝度計 BM-7A型 Read this first 建築物等の利用に関する説明書作成の手引き Keysight 16197A Bottom Electrode SMD Test Fixture Fujitsu LIFEBOOK AH532 Little Wonder 8271 User's Manual Copyright © All rights reserved.
Failed to retrieve file