Home

OpenPowerNet User Manual

image

Contents

1. BB Connector ODBC 3 51 27 Configure Data Source Name Connector ODBC Login Connect Options Advanced Database Data Source Name pscresults The database to be current upon connect Description Server localhost Optional ves Default none User opndbusr Password Database pscresults Figure 45 DSN configuration 4 4 2 User defined Excel Files All simulation results are stored in a database For visualisation the data can be transferred into a custom Excel table sheet via external data exchange see and follow the instructions below from Figure 46 to Figure 54 IFB DD UM_OPN_51_01 04 02 doc Page 56 of 206 DMJ 2013 02 12 7 74 OPN 51 1 4 2 3penPowerNet Page 57 of 206 User Manual Issue 2013 02 12 H S paman gt Start Einfugen Seitenlayout Formeln Daten berpr fen Ansicht En ig io iA Ia amp Verbindungen A O Zi Sf Eigenschaften Aus Ausdem Aus Vorhandene Alle i 2 Access Web Text Verbindungen aktualisieren Verkn pfungen bearbeiten Externe Von SQL Server Erstellt eine Verbindung mit einer SQL Server Tabelle Importieren Sie Daten in Excel als Tabelle oder PivotTable Bericht Von Analysis Services Erstellt eine Verbindung mit einem SQL Server Analysis Services Cube Importieren Sie Daten in Excel als Tabelle oder PivotTable Bericht En Vom XML Datenimport 3 XML Datei in Excel
2. 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 194 of 206 User Manual Issue 2013 02 12 the station A shall be only 50m Outside the stations A and B the slice distance shall be 200m And track 2 in station B slice distance 100m lt ConnectorSlices gt lt ConnectorSlice name dropper track 1 station A firstPos_km 0 2 lastPos_km 1 maxDistance_km 0 05 gt lt Connector z_real_Ohm 0 000073 z_imag_Ohm 0 gt lt ConductorFrom condName MW trackID 1 gt lt ConductorTo condName CW trackID 1 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name dropper track 1 outside station A firstPos_km 1 2 lastPos_km 25 4 maxDistance_km 0 2 gt lt Connector z_real_Ohm 0 000073 z_ imag Ohm 0 gt lt ConductorFrom condName MW trackID 1 gt lt ConductorTo condName CW trackID 1 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name dropper track 2 station A firstPos_km 0 2 lastPos_km 0 650 maxDistance km 0 05 gt lt Connector z_real_ Ohm 0 000073 z_ imag Ohm 0 gt lt ConductorFrom condName MW trackID 2 gt lt ConductorTo condName CW trackID 2 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name dropper track 2 station B firstPos_km 9 800 lastPos_km 10 200 maxDistance km 0 1 gt lt Connector z_real_ Ohm 0 000073 z_ imag Ohm 0 gt lt ConductorFrom condName MW track
3. 7 7 4 OPN 51 1 4 2 pen PowerNet Institut fiir Bahntechnik GmbH Page 44 of 206 User Manual Issue 2013 02 12 ___ Station Energy Storage voltage stabilisation and energy saving loadimax_A 300 unloadimax_A 300 maxLoad_kWh 10 initialLoad_kWh 5 lossPower_kW 0 1 efficiencyLoad_percent 90 efficiencyUnload_percent 90 Table 16 Typical energy saving station energy storage configuration for DC 600V with 600V no load voltage at the rectifier 4 2 3 3 6 Voltage Limiting Device According to EN 50526 2 2012 a Voltage Limiting Device VLD operates in a way as to connect the track return circuit of DC railway systems to earth system or conductive parts within the overhead contact line zone or current collector zone in order to 1 Prevent impermissible touch voltage caused by train traffic or short circuit and or 2 Prevent impermissible touch voltages by reducing the fault circuit impedance and thus causing tripping of the circuit breaker by overcurrent The VLD model is not limited to DC only but can be used for AC railway power supply systems as well as for DC systems Note The DC model respects the current direction while the AC model uses the absolute values If the voltage shall be limited in any case for DC systems e g touch voltage between rail and earth two VLD models need to be added to the network model One VLD reference shall be the rail busbar and for the other VLD th
4. 7 7 4 OPN 51 1 4 2 pen PowerNet Page 204 of 206 User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH 7 8 Where are the XML Schemas The directory path to all XML Schemas is available via the GUI Select D or A to get the schema directory from menu OpenPowerNet Then a dialog displaying the directory path will open and the directory path is copied to the clipboard The schemas are also available at http www openpowernet de schemas 1 4 2 SchemaName xsd 7 9 Which XML Schema for which XML File AnalysisPresets File AnalysisPresets xsd 42 AnalysisSelection File AnalysisSelections xsd 42 Engine File rollingstock xsd amp Project File OpenPowerNet xsd gt Switch File ADE xsd 42 TypeDefs File TypeDefs xsd 42 7 10 How to change the working directory Working directories need to be defined for OpenPowerNet GUI and also for the analysis tool e GUI The OpenPowerNet working directory needs to be specified within the GUI preferences at Window gt Preferences gt OpenPowerNet IFB DD UM_OPN_51_01 04 02 doc Page 204 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 205 of 206 User Manual Issue 2013 02 12 Institut fiir Bahntechnik GmbH Preferences type filter text OpenPowerNet General Help Install Update Clear_console after how many simulation time steps 3600 OpenPowerNet Working directory C Dokumente und
5. Page 129 of 206 7 7 4 MLA Institut f r Bahntechnik GmbH Issue 2013 02 12 3penPowerNet User Manual 6 6 2 Tractive effort tutorial In this tutorial we want to use a table for the tractive effort characteristic of the engine In the AC tutorial we used maxim um power and maximum tractive effort to define the characteristic The engine model is more flexible when using the table see Figure 126 300 Tractive Effort F kN 50 100 150 250 v km h maxPower maxTractEffort F f v Figure 126 Possible characteristics of both available tractive effort models 6 6 2 1 Configuration 6 6 2 1 1 OpenTrack As the tractive effort characteristic curve in OpenTrack is always above the characteristic we defined in OpenPowerNet we don t need to change OpenTrack The used tractive effort will be limited to the value defined in OpenPowerNet Therefore we will use the same OpenTrack data as for the AC tutorial described in chapter 6 2 1 1 6 6 2 1 2 OpenPowerNet 6 6 2 1 2 1 Engine File As the basis we take the Engine File from the AC tutorial and add the tractive effort versus speed table The XML snippet below has the detailed values lt tractiveEffort gt lt valueTable xValueName Speed xValueUnit km h yValueName Tractive Effort yValueUnit kN gt lt valueLine xValue 0 gt lt valueLine xValue 10 gt lt valueLine xValue 20 gt lt valueLi
6. lt xml version 1 0 encoding UTF 8 gt lt ADE xmlns xsi http www w3 org 2001 XMLSchema instance xsi noNamespaceSchemaLocation http www openpowernet de schemas 1 4 2 ADE xsd gt lt TPD gt lt SwitchSetting gt lt Switch state open time 01 05 00 name TSS_ 80 T1_OCS gt lt Switch state open time 01 05 00 name TSS_80_T1_Rails gt lt Switch state close time 01 22 00 name TSS_80_T1_OCS gt lt Switch state close time 01 22 00 name TSS 80 T1_Rails gt lt SwitchSetting gt lt TPD gt lt ADE gt 6 2 2 Simulation For the simulation it is advised to backup the database in case you want to keep old simulation data and then to create a new empty database via the GUI just select create new database from the OpenPowerNet menu Next is to start the OpenPowerNet modules via the GUI Select the Project File and then Start OpenPowerNet from the context menu see Figure 84 er EE Project Explorer 1S Un D o1cutp Figure 84 Start OpenPowerNet by selecting the Project File and using the context menu When using the GUI for the first time you should arrange the views as described in the GUI Help System at OpenPowerNet User Interface User Guide gt Usage gt Start amp Stop OpenPowerNet or use the OPN perspective Then you will have 3 separate console views one for each module For the default configuration we run the simulation using the files as described above Start a
7. lt Network name A frequency Hz 0 voltage _kv 0 6 recordCurrent true Record currents for this network recordVoltage true gt Record voltages for this network lt Lines gt No recording attributes set therefore the default value true will be applied lt Line name A recordCurrent false sub Do not record currents for this line and all subordinate elements recordVoltage false tsub gt Do not record voltages for this line and all subordinate elements lt Line gt lt Lines gt lt Substations recordCurrent true Record currents for all substations if not contrary defined for a specific substation recordVoltage true gt Record voltages for all substations if not contrary defined for a specific substation lt Substation name TSS_A recordCurrent true Record currents for this substation recordVoltage true gt Record voltages for this substation lt Substation gt IFB DD UM_OPN_51_01 04 02 doc Page 52 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 53 of 206 User Manual Issue 2013 02 12 lt Substation name BC recordCurrent false sub Do not record currents for this substation recordVoltage false sub gt Do not record voltages for this substation lt Busbars gt lt Busbars gt lt StorageV name 1 storageReference Typ_600V recordStatus true gt Record status for this storage including storage cu
8. H H H H i z od 1 Hl i i 4 amp g D N 1 a A Eeee 26000 3 i i i 1 1 3 H a 0 33 25500 4 De ee ee er re re eg a eka caeaae i i N A EEE ots Soars Garena Md E a tech oe EE AE oS ee re Ee a FEAE 25000 AE o e 1 1 gt 1 1 n I s l 7 g H 24500 pocessss een nn en nn a m Hb oro hint 0 we pre i 24000 i 0 000 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000 90 000 s km Figure 103 The line voltage at pantograph position for the default configuration of the 2AC network versus chainage We can see that the line voltage at the pantograph is much lower than for the AC network but still sufficient as the minimum is just below the nominal voltage F f s 300 F kN 300 0 000 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000 90 000 s km F_requested_total kN Sim 1 Course ABCI_01 F_achieved_total kN Sim 1 Course ABCI_01 F_requested_total kN Sim 6 Course ABCI_01 F_achieved_total kN Sim 6 Course ABCI_01 Figure 104 The requested and achieved effort for course ABCI_01 in AC network sim 1 and 2AC network sim 6 All curves for our model are the same Therefore there will be no difference in the operational simulation in OpenTrack see Figure 104 IFB DD UM_OPN_51_01 04 02 doc Page 110 of 206 DMJ 2013 02 12 OPN 51 1 4
9. OPN 51 1 4 2 Page 35 of 206 3penPowerNet User Manual 7 7 4 ww Institut f r Bahntechnik GmbH Issue 2013 02 12 This example uses a very detailed calculation with all propulsion components as efficiency curves for the AC 25kV 50Hz propulsion system The propulsion system for AC 15kV 16 2 3Hz is configured with a minimum recovery braking speed of 5km h The example engine has also an energy storage configured see Figure 22 4 2 3 3 2 Engine Energy Storage Each engine can be configured with multiple energy storages The engine energy storage has two models for loading e saver regenerated energy utilisation energy storage saver model m resistor P kW E catenary max 4kW m energy storage max 2kW m auxiliary 1kW Precovery kW Figure 23 This figures shows the usilisation of the regenerated energy when using the saver model of the engine energy storage e recovery regenerated energy utilisation energy storage recovery model 10 m resistor P kW E energy storage max 2kW m catenary max 4kW m auxiliary LkW Precovery kW Figure 24 This figures shows the usilisation of the regenerated energy when using the recovery model of the engine energy storage IFB DD UM_OPN_51_01 04 02 doc Page 35 of 206 DMJ 2013 02 12 OPN 51 1 4 2 Page 36 of 206 7 7 4 ww Institut f r Bahntechnik GmbH Issue
10. Second we change the transformer in TSS_5 to a three winding transformer lt Substation name TSS_5 gt lt ThreeWindingTransformer This is the new three winding transformer name T1 nomPower MVA 10 nomPrimaryVoltage_ kv 115 nomSecondaryVoltage_kV 55 noLoadLosses_kW 6 5 loadLosses_kW 230 relativeShortCircuitVoltage percent 10 7 noLoadCurrent_A 0 06 gt lt OCSBB bbName 0CS_BB z_ real Ohm 0 001 z_ imag Ohm 0 gt lt Switch name TSS_5 T1_ OCS defaultState close gt lt OCSBB gt lt RailsBB bbName Rails BB z_real Ohm 0 001 z_ imag Ohm 0 gt lt Switch name TSS_5 Tl Rails defaultState close gt lt RailsBB gt lt NegativeFeederBB bbName NF_BB z_ real Ohm 0 001 z_imag Ohm 0 gt The new negative feeder busbar IFB DD UM_OPN_51_01 04 02 doc Page 107 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 108 of 206 User Manual Issue 2013 02 12 lt Switch name TSS_5_T1_NF defaultState close gt lt NegativeFeederBB gt lt ThreeWindingTransformer gt lt Busbars gt lt OCSBB bbName OCS_BB gt lt Connector name TSS_5 OCS Feeder z_real_ Ohm 0 001 z_ imag Ohm 0 gt lt Position condName CW lineID A trackID 1 km 5 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails BB gt lt Connector name TSS_5 Rails Feeder z_real Ohm 0 001 z_imag Ohm 0 gt lt Position condName RR lineID A
11. 25 000 Eee anes eae a eis l gt 22500 20 000 0 000 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000 Position km U_min_1_Panto U_min_1_cw U_mean_1_cw U_min_2_Panto U_min_2_Cw U_mean_2_CW Infeed Unom saias U_tol EN 50163 Figure 74 Example output for chart type U_Panto f s as defined in the XML snippet above Figure 75 The elements of the ImageType definition The following XML snippet defined the chart in Figure 63 at page 70 lt MagneticField gt lt ImageType name B f t title Magnetic Flux Density _designation titleFontSize 12 fontSize 10 subtitle Line lineID km position _time style normal absoluteValues false meanValues false label complexCurrent Label FontSize 6 gt lt xAxis valueName Width valueUnit m title Lateral Distance logarithmic false numberFormat 0 valueMin 15 valueMax 15 gt lt yAxis valueName Height valueUnit m title Height logarithmic false numberFormat 0 valueMin 2 valueMax 13 gt lt zAxis valueName MagneticFluxDensity valueUnit pT title numberFormat 0 valueMin 200 valueMax 200 valueStep 0 1 gt lt PageSetup paperSize A4 orientation landscape gt lt ImageType gt lt MagneticField gt The definition of attributes IFB DD UM_OPN_51_01 04 02 doc Page 77 of 206 DMJ 2013 02 12 7 7 4
12. DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 152 of 206 User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH 6 7 1 Substations tutorial In this tutorial we will create a substation two transformers Each transformer shall have a busbar and connectors between them The substation shall be same as in Figure 146 but with two winding transformers The infeeds shall be at km 5 000 and km 6 000 At 1 04 30 one transformer shall be disconnected and at 1 05 00 the other shall feed the left and the right section Figure 146 A substation with two transformers busbars and busbar connection Ti T2 Figure 147 The wrong configuration of the feeder from substation to the line The sum of the conductor current will not be zero because connectors are parallel to conductors and allow the current to bypass the conductor See the constraints listed in chapter 4 2 1 IFB DD UM_OPN_51_01 04 02 doc Page 152 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Institut f r Bahntechnik GmbH Page 153 of 206 User Manual Issue 2013 02 12 T1 T2 C a 1 E 2 E E 2 O O ANT DEE SE BEE AUE GB RFS Figure 148 The correct configuration of the substation with all infeeds at the same slice To see the effect of the wrong and the correct configuration we run
13. Database r nu Visualisation Figure 2 OpenPowerNet workflow and application structure IFB DD UM_OPN_51_01 04 02 doc Page 10 of 206 DMJ 2013 02 12 OPN 51 1 4 2 Page 11 of 206 3penPowerNet User Manual 7 7 4 Institut f r Bahntechnik GmbH Issue 2013 02 12 3 1 Overview of physical variables The constant time step simulation of driving dynamics and electrical networks components depends on a set of physical variables These variables and their time of validity during the calculation in OpenPowerNet are introduced in the table below t time step Ss according to time step width S position on considered line and track m beginning of time step vehicles constant infrastructure V vehicle speed m s beginning of time step a vehicle acceleration m s during time step m vehicle weigth kg constant F vehicle effort N during time step U electrical voltage V during time step electrical current A during time step Z electrical impedance Q during time step P mechanical and electrical power W during time step E mechanical and electrical energy kWh end of time step E Load energy storage load kWh beginning of time step Table 1 Overview of physical variables 3 2 APserver The APserver is the communication server of OpenPowerNet This server is the interface to railway simulation programs like OpenTrack ATM and PSC do not commun
14. Institut f r Bahntechnik GmbH Page 90 of 206 User Manual Issue 2013 02 12 Next is to define a line explanations added as black bold text into the XML snippet lt Lines gt lt Line name A maxSliceDistance_km 1 gt The line name has to correspond with our OpenTrack infrastructure and the maximum slice distance shall be 1000m While defining the electrical network consider the magnetic coupling is always calculated only between conductors of the same line lt Conductors gt Now conductors for track 1 follow lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 1 km 0 gt This conductor starts at km 0 000 lt ToProperty toPos_km 85 4 equivalentRadius_mm 3 45 r20 Ohm _ km 0 2311 temperature GradCelsius 20 temperatureCoefficient 0 004 x aero y m 6 9 gt The end of the conductor is at the end of the track at km 85 400 The equivalent radius resistance at 20 C and temperature coefficient shall be as defined The messenger wire is located in the middle of track 1 in a height of 6 9m lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 1 km 0 gt lt ToProperty toPos_km 85 4 equivalentRadius_mm 3 45 r20 Ohm_km 0 1852 temperature GradCelsius 20 temperatureCoefficient 0 00385 x m 0 y m 5 3 gt Same as above except the height of the contact wire is set to 5 3m so we have a system height of 1 6m lt Conductor g
15. lt ConnectorSlice gt line feeder top contact wire lt ConnectorSlice name line feeder to CW firstPos_km 0 lastPos_km 9 750 maxDistance_km 0 25 gt lt Connector z_real_ Ohm 0 000594 z imag Ohm 0 gt lt ConductorFrom condName LF trackID 1 gt lt ConductorTo condName CW trackID 1 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlices gt lt Leakages gt The leakages for both tracks lt Leakage firstPos_km 0 lastPos_km 9 750 yReal_ S_km 0 1 yImag S_km 0 gt lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt IFB DD UM_OPN_51_01 04 02 doc Page 169 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 170 of 206 User Manual Issue 2013 02 12 lt Leakage firstPos_km 0 lastPos_km 9 750 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RR trackID 1 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 9 750 lastPos_km 10 250 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RL trackID 2 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 9 750 lastPos_km 10 250 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RR trackID 2 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakages gt lt L
16. 0 gt lt ConductorFrom condName LF 1 lineID A trackID 1 km 5 gt lt ConductorTo condName CW lineID A trackID 1 km 5 gt lt Connector gt lt Connector name z_ real Ohm 0 0001 z_ imag Ohm 0 gt lt ConductorFrom condName RF 1 lineID A trackID 1 km 5 gt lt ConductorTo condName RR lineID A trackID 1 km 5 gt lt Connector gt lt Connector name z real Ohm 0 0001 z_ imag Ohm 0 gt lt ConductorFrom condName LF r lineID A trackID 1 km 6 gt lt ConductorTo condName CW lineID A trackID 1 km 6 gt lt Connector gt lt Connector name z real Ohm 0 0001 z_ imag Ohm 0 gt lt ConductorFrom condName RF r lineID A trackID 1 km 6 gt lt ConductorTo condName RR lineID A trackID 1 km 6 gt lt Connector gt Finally all infeeds from the substation need to be connected at km 5 100 to the Feeder and ReturnFeeder conductors lt Busbars gt IFB DD UM_OPN_51_01 04 02 doc Page 156 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 157 of 206 User Manual Issue 2013 02 12 lt OCSBB bbName 0CS_BB_1 gt lt Connector name TSS_5 OCS Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName LFLI lineID A trackID 1 km 5 1 gt lt Switch defaultState close name TSS_5 OCS Feeder 5 0 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rai
17. 1 km 0 gt lt ToProperty toPos_km 25 4 equivalentRadius_mm 38 52 r20 Ohm_km 0 0306 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 0 75 y m 0 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 1 km 0 gt lt ToProperty toPos_km 25 4 equivalentRadius_mm 38 52 r20 Ohm_km 0 0306 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 0 75 y m 0 gt lt Conductor gt for track2 in station A lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 2 km 0 gt lt ToProperty toPos_km 0 450 equivalentRadius_mm 3 45 r20 Ohm_km 0 2311 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 10 y m 6 9 gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 2 km 0 gt lt ToProperty toPos_km 0 450 equivalentRadius_mm 3 45 r20 Ohm_km 0 1852 temperature GradCelsius 20 temperatureCoefficient 0 00385 x m 10 y m 5 3 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 2 km 0 gt lt ToProperty toPos_km 0 450 equivalentRadius_mm 38 52 r20 Ohm_km 0 0306 temperature _GradCelsius 20 temperatureCoefficient 0 004 x m 9 25 y m 0 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 2 km 0 gt lt ToProperty toPos_km 0 450 equivalentRadius_mm 3
18. Course CBAI_01 Engine 0 Engine1 Sim 10 Course CBAI_01 Engine 0 Engine1 Figure 110 The failure scenario line voltage at pantograph for course CBAI_01 in AC sim 5 and 2AC sim 10 network IFB DD UM_OPN_51_01 04 02 doc Page 114 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 115 of 206 User Manual Issue 2013 02 12 Institut fiir Bahntechnik GmbH As expected we see a voltage drop between 01 05 00 and 01 22 00 because the TSS_80 respective the ATS_80 was powered off It is also not surprising to see a lower voltage for 2AC as we have compared the line voltage for 1000A constant current in Figure 109 and found that the lower curve belongs to the 2AC network 6 4 DC Network tutorial In this tutorial we will change the power supply to a 3kV DC system with two substations at the same positions as before km 5 000 and 80 000 The negative feeder of the 2AC network will be used as line feeder and connected with the contact wire of track 1 every 1000m We will use the same engine with 5 56MW maximum tractive power as before The maximum power for the long train with 30kW auxiliary power per trailer and 100kW auxiliary power of the engine is 6 08MW At nominal voltage the current will be approximately 2000A We can expect that such a high current will cause a high voltage drop Therefore we will use the tractive current limitation to stabilise the pantograph voltage The current li
19. During simulation these compressed matrices are used for the corresponding simulation time step IFB DD UM_OPN_51_01 04 02 doc Page 20 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 21 of 206 User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH 3 5 Graphical User Interface OpenPowerNet has a Graphical User Interface GUI to provide an easy to use interface to the user It provides a project explorer as a tree with folders and files The user can start and stop OpenPowerNet do database tasks upload dump files and start the analysis tools Furthermore the GUI provides the PSC Viewer The PSC Viewer creates a graphical representation of the electrical network configured in the Project File All descriptions related to the GUI are available in the Help System The Help System is available by menu Help gt Help Contents and contains GUI specific help topics Via the integrated update system available at menu Help gt Software Updates new OpenPowerNet versions and additional plugins can be installed into the GUI Please see the integrated Help System for detailed information f E gt OPN Test OPN_Projects Tutorial 01_AC_Network OPNData Project File xml ui_diagram OpenPowerNet Sto File Edit Diagram Navigate Search Project Run OpenPowerNet Window Help DIE Tahoma 9 larar sr gt Bl Bie rer N gt om ar 97 66 BD BL ERE EB I Er fy E PSC Vi
20. Make sure that you upload the dump files after the simulation 6 7 4 1 4 Analysis For analysis we will use Excel tool One Engine Line Course ABDI_1010 Engine 0 Engine1 37 Simulation 037 2012 04 20 19 41 42 Tutorial lines points crossings 5 long trains record all U amp I All All ABDI_1010 68 B B a ae ee ee ee ee ee t s W lineID v trackID x time s km li TA zlu mv in 5250 A 3 00 01 27 30 19 942 36 268 27392 951 5251 A 3 00 01 27 31 19 963 36 268 27392 935 5252 A 3 00 01 27 32 19 984 36 268 27392 935 5253 B 2 00 01 27 33 20 004 36 268 27393 068 5254 B 2 00 01 27 34 20 025 36 267 27393 657 5255 B 2 00 01 27 35 20 046 36 267 27394 245 5256 B 2 00 01 27 36 20 067 36 266 27394 832 5257 B 2 00 01 27 37 20 088 36 265 27395 419 Figure 164 The positions of course ABDI_1010 with track change from line A to line B In Figure 164 we can see the change of course ABDI_1010 from line A to line B at 1 27 33 For each location there is a voltage and current value That means the positions in OpenTrack and OpenPowerNet are the same In case the position does not match than the voltage is 0 V IFB DD UM_OPN_51_01 04 02 doc Page 183 of 206 DMJ 2013 02 12 OPN 51 1 4 2 Page 184 of 206 3penPowerNet User Manual OA ww Institut f r Bahntechnik GmbH Issue 2013 02 12 The coupling of the conductors is only calcula
21. Simulation 2012 04 17 14 32 24 0 Tutorial AC Network default Selection FileVO Loadfromfile Save to file Time Start 01 00 00 0 Zi Time End 01 48 55 0 Z Designation Tutorial AC Network default Lines nothing selected Select Connectors nothing selected Select Substations nothing selected Select Vehicles nothing selected Select Energy nothing selected Select Custom preset NOt used Output path C Users jacob OpenPowerNet Tutorial AC Network_120417_143224 Output Filetype V Excel V Hide data sheets 7 PDE V Hide data sheets Start Analysis Exit Options V Footer logo Watermark u A Figure 58 The automatic analysis window to select the simulation configure and start the analysis IFB DD UM_OPN_51_01 04 02 doc Page 63 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 64 of 206 User Manual Issue 2013 02 12 Institut fiir Bahntechnik GmbH Next is to select the diagrams to be generated These diagrams are divided into different groups according to the select options available in Figure 58 For Lines Connectors and Substations a new dialog opens See the following chapters for a detailed description For Vehicles and Energy no selection dialog opens These items can only be enabled or disabled for generation of output files Under Output path the folder for the files to generate is displayed It is based on the
22. TRLPC Time Rated Load Periods Curve see chapter 7 13 VLD Voltage Limiting Device XML Extensible Markup Language IFB DD UM_OPN_51_01 04 02 doc Page 5 of 206 DMJ 2013 02 12 OPN 51 1 4 2 7 7 4 penPowerNet gt Institut f r Bahntechnik GmbH Page 6 of 206 User Manual Issue 2013 02 12 1 4 How to read this Document This document uses snippets of XML The XML is highlighted by the following text format code XML XML XML XML XML The marked in marked in marked in marked in evaluated green has to correspond with data in OpenTrack red is required by OpenPowerNet light orange is optional dark green is an id reference between the TypeDefs and Project File by OpenPowerNet is marked in bold and may be mixed with the colours above blue attributes are not required by OpenPowerNet but by the corresponding schema and have no effect on the simulation Any other XML is just black IFB DD UM_OPN_51_01 04 02 doc Page 6 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 7 of 206 User Manual Issue 2013 02 12 Institut fiir Bahntechnik GmbH 2 Simulation Philosophy OPENSTR position effort speed OpenPowerNet Figure 1 Overview of co simulation The OpenTrack railway operation simulation is realised by a constant time step calculation OpenTrack and OpenPowerNet work together in a so called co simulation This means that both programs
23. The paper size to be used by Microsoft Excel to create the output files has to be configured for an available printer It is recommended to set the paper size of Microsoft XPS Document Writer to A4 under Control Panel gt Printers gt Printername context menu gt Printing preferences gt Advanced It is possible to use another printer or paper size by modifying the preset file see 4 5 5 4 5 2 1 Lines The Lines group provides diagrams along the line They include markers e g for voltage limits or infeed positions Additionally all stations defined in OpenTrack are displayed in the Line Diagrams see Figure 75 except stations beginning with The selection dialog provides the following columns e Name To override the default chart title If set the default chart title will be replaced with the given text The designation will be added to the title and the subtitle with name of line and tracks will still be used e Type The chart type see below e Line xyz The name of a line grouping different tracks IFB DD UM_OPN_51_01 04 02 doc Page 64 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 65 of 206 User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH e Track xyz The name of a track grouping different conductors e Panto The item column to select the chart series for pantograph voltage of all engines belonging to the track and line indicated in the row
24. according to its chart type The first suitable reference item of the track or line will be preselected The select lines dialog is closed when pressing the OK button 4 5 2 2 Connectors The Connectors group provides charts for connectors specified in the Project File under XML element OpenPowerNet PSC Network Connectors Selectable chart types are e U f t The voltage between both ends of the connector and the current through the connector versus time e U I I_sum f t Same as above plus the current sum of all selected connectors e P f t The power consumed by the connector versus time e P P_sum f t Same as above plus the sum of all selected connectors e TRLPC The current through the connector as Time Rated Load Periods Curve see chapter 7 13 e P TRLPC The power consumed by the connector as Time Rated Load Periods _ _ Hy Select Connectors namm u u an a 1 2012 04 17 14 32 24 0 Tutorial AC Network def Network A C S E Network A C Line A S E Line A Track1 a ET cw t t track1 track1 track 1 track track 1 2 track 1 2 track 1 2 track 1 2 CW track1 CW track 1 MW track 1 MW track 1 RLtrack1 2 RL track 1 2 RR track 1 2 RR track 1 2 12 Track 2 Name Type 19 750 10 250 9 750 10 250 9 750 10 250 9 750 110 250 UEO true U LI_sum f t true true i TRLPC tr
25. ffnen oder Excel zuordnen can Vom Datenverbindungs Assistenten 5 Importiert Daten fur ein nicht aufgefuhrtes Format mithilfe des 6 Datenverbindungs Assistenten und OLEDB FZ on Microsoft Query 8 n Figure 46 Create a new external data query Datenquelle ausw hlen DeluxeCD Excel Dateien FoxPro Dateien Word his Microsoft Access Datenbank Yisual FoxPro Datenbank Visual FoxPro Tabellen xtreme Musterdatenbank 2005 Figure 47 Select pscresults as external data source Institut f r Bahntechnik GmbH Make sure the DSN selected in Figure 47 uses the MySQL ODBC 3 5 1 Driver The steps below will not work with the MySQL ODBC 5 1 x Driver If no such DSN is available see document Installation Instruction to create a new DSN You can find the Installation Instruction in the Help System OpenPowerNet User Guide gt Documents IFB DD UM_OPN_51_01 04 02 doc Page 57 of 206 DMJ 2013 02 12 OLB os penPowerNet 722 Institut f r Bahntechnik GmbH Page 58 of 206 User Manual Issue 2013 02 12 Query Assistent Spalten ausw hlen x Welche Spalten sollen in die Abfrage eingeschlossen werden Verf gbare Tabellen und Spalten Spalten in Ihrer Abfrage substation substation_has_connector system trafo al OPNversion trafo_has_connector xl timeStep_s samli mmmn Datenvorschau der ausgew hlten Spalte Optionen S ZUG Abbrechen
26. km 80 gt lt Switch defaultState close name TSS_ 80 Rails gt lt Connector gt lt RailsBB gt lt Busbars gt lt Substation gt lt Substations gt 6 4 1 2 3 Switch File We need to adapt the Switch File of the AC tutorial for the failure scenario simulation First we change the switch names and second we add also the switches to the line feeder lt xml version 1 0 encoding UTF 8 gt lt ADE xmlns xsi http www w3 org 2001 XMLSchema instance xsi noNamespaceSchemaLocation http www openpowernet de schemas 1 4 2 ADE xsd gt lt TPD gt lt SwitchSetting gt lt Switch state open time 01 05 00 name TSS_ 80 OCS gt lt Switch state open time 01 05 00 name TSS 80 Rails gt lt Switch state open time 01 05 00 name TSS_80_LF gt lt Switch state close time 01 22 00 name TSS_ 80 OCS gt lt Switch state close time 01 22 00 name TSS 80 Rails gt lt Switch state close time 01 22 00 name TSS_ 80 LF gt lt SwitchSetting gt lt TPD gt lt ADE gt 6 4 2 Simulation For the description of the simulation see the AC network tutorial in chapter 6 2 2 6 4 3 Analysis 6 4 3 1 Default configuration Note When not using the FULL license set the time steps in OpenTrack to 4 seconds IFB DD UM_OPN_51_01 04 02 doc Page 117 of 206 DMJ 2013 02 12 O IPH osma penPowerNet 722 Page 118 of 206 User Manual Issue 2013 02 12 U f t 3500 2500 30
27. lt valueLine gt lt valueLine xValue 170 gt lt values yValue 88 gt lt valueLine gt lt valueLine xValue 180 gt lt values yValue 82 gt lt valueLine gt lt valueLine xValue 190 gt lt values yValue 76 gt lt valueLine gt lt valueLine xValue 200 gt lt values yValue 71 gt lt valueLine gt lt valueLine xValue 210 gt lt values yValue 61 gt lt valueLine gt lt valueLine xValue 220 gt lt values yValue 53 gt lt valueLine gt lt valueLine xValue 230 gt lt values yValue 47 gt lt valueLine gt lt valueLine xValue 240 gt lt values yValue 41 gt lt valueLine gt lt valueLine xValue 250 gt lt values yValue 36 gt lt valueLine gt lt valueTable gt lt tractiveEffort gt 6 6 2 1 2 2 Project File lt Vehicle eddyCurrentBrake false engineID Enginel gt lt Propulsion engine electric supply AC 25kV 50Hz brakeCurrentLimitation none tractiveCurrentLimitation none useAuxPower true fourQuadrantChopperPhi none regenerativeBrake none tractiveEffort F f v gt This value need to be set to use the table model lt MeanEfficiency gt lt Propulsion gt lt Vehicle gt Set the right Engine File and don t forget to set a meaningful project name and comment in the project file 6 6 2 2 Simulation We need only to simulate the long trains to see effect of the changed tractive effort model of the engine 6 6 2 3 An
28. o Switches e Conductors like rails contact wire messenger wire e Connectors connecting the conductors e g the left and right rail e Section isolators within a conductor and e Switches within conductors and connectors The conductors are described with resistance at 20 C temperature coefficient temperature cross section layout and equivalent radius The impedances of the conductors within a line resulting from electromagnetic coupling are calculated by the PSC using the cross section layout and the equivalent radius of the conductors Note that all conductors of a line are coupled but no coupling is calculated between different lines and networks LEERE Transformer Shell rec ar nee ree ae eee nana hn etna ncaa Three Winding Transformer 1 Three Winding Transformer 2 Ngourcel SWy ccs Mine Wim SM tr TS War negative bus bar connectors ith switches feeder rails s feeder rails i s s s s s si s ocs 1 J rails K K negativeFeeder 1 Figure 12 Components of the electrical network At simulation start the network structure will be analysed and mapped to a matrix Each configuration of switch states during the simulation requires a separate matrix Afterwards the matrices are compressed and saved to the system
29. trackID 1 km 5 gt lt Connector gt lt RailsBB gt lt NegativeFeederBB bbName NF_BB gt The new feeder for the negative feeder lt Connector name TSS_5 NF Feeder z_ real Ohm 0 001 z_ imag Ohm 0 gt lt Position condName NF lineID A trackID 1 km 5 gt lt Connector gt lt NegativeFeederBB gt lt Busbars gt lt Substation gt Third we change TSS_80 to ATS_80 with autotransformer and busbars for OCS rails and negative feeder lt Substation name ATS_80 gt lt Autotransformer This is the autotransformer name T1 nomPower MVA 5 nomPrimaryVoltage_kV 55 nomSecondaryVoltage_kV 27 5 noLoadLosses_kW 5 loadLosses_kW 10 relativeShortCircuitVoltage percent 1 8 noLoadCurrent_A 0 2 gt lt OCSBB bbName 0CS BB z real _Ohm 0 001 z imag Ohm 0 gt lt Switch name ATS 80 T1 OCS defaultState close gt lt OCSBB gt lt RailsBB bbName Rails BB z_ real Ohm 0 001 z_ imag Ohm 0 gt lt Switch name ATS_ 80 Tl Rails defaultState close gt lt RailsBB gt lt NegativeFeederBB bbName NF_BB z_ real Ohm 0 001 z_ imag Ohm 0 gt lt Switch name ATS_80_T1_ NF defaultState close gt lt NegativeFeederBB gt lt Autotransformer gt lt Busbars gt lt OCSBB bbName 0CS_ BB gt lt Connector name ATS_ 80 OCS Feeder z_ real Ohm 0 001 z_ imag Ohm 0 gt lt Position condName CW lineID A trackID 1 km 80 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rai
30. 0 lastPos_km 85 4 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RR trackID 1 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 9 750 lastPos_km 10 250 yReal_S km 0 1 yImag_S km 0 gt lt ConductorFrom condName RL trackID 2 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 9 750 lastPos_km 10 250 yReal_S km 0 1 yImag_S km 0 gt lt ConductorFrom condName RR trackID 2 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakages gt lt Line gt lt Lines gt To model the electrical connection between the two tracks we have two ways to do so First we could define a slice or second we could define connectors between lines or the same line In our example we will use the second way The electrical model will be the same These are just two different ways to define the same connectors The following XML snippet defines the electrical connection between track 1 and 2 lt Connectors gt The 4 connectors for messenger wire contact wire and both rails at the BEGINNING of track 1 follow lt Connector name MW track 1 2 km 9 750 z_ real Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 1 km 9 750 gt lt ConductorTo condName MW lineID A trackID 2 km 9 750 gt lt Connector gt lt Connector name CW track 1 2 km 9 750 z real Oh
31. 0 00001 z_ imag Ohm 0 gt lt ConductorFrom condName RL trackID 2 gt lt ConductorTo condName RR trackID 2 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlices gt The definition of the leakage lt Leakages gt Track 1 lt Leakage firstPos_km 0 lastPos_km 25 4 yReal S km 0 1 yImag S_km 0 gt lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 0 lastPos_km 25 4 yReal S km 0 1 yImag S_km 0 gt lt ConductorFrom condName RR trackID 1 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt Track 2 in station A lt Leakage firstPos_km 0 lastPos_km 0 450 yReal_ S km 0 1 yImag S_km 0 gt IFB DD UM_OPN_51_01 04 02 doc Page 189 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet Zu Institut f r Bahntechnik GmbH Page 190 of 206 User Manual Issue 2013 02 12 lt ConductorFrom condName RL trackID 2 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 0 lastPos_km 0 450 yReal_ S km 0 1 yImag S_km 0 gt lt ConductorFrom condName RR trackID 2 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt Track 2 in station B lt Leakage firstPos_km 9 750 lastPos_km 10 250 yReal_S km 0 1 yImag_S km 0 gt lt ConductorFrom condName RL trackID 2 gt lt ConductorTo condName E trackID
32. 000 lt Substation name ATS_0 gt lt Autotransformer name T1 nomPower MVA 5 nomPrimaryVoltage_kV 55 nomSecondaryVoltage_kV 27 5 noLoadLosses _kwW 5 loadLosses_kW 10 relativeShortCircuitVoltage percent 1 8 noLoadCurrent A 0 2 gt lt OCSBB bbName 0CS_BB z_real Ohm 0 001 z_imag_Ohm 0 gt lt Switch name ATS 0 T1_OCS defaultState close gt lt OCSBB gt Hz lt RailsBB bbName Rails BB z_real Ohm 0 001 z_imag Ohm 0 gt lt Switch name ATS_0 _Rails defaultState close gt lt RailsBB gt IFB DD UM_OPN_51_01 04 02 doc Page 163 of 206 DMJ 2013 02 12 7 7 4 m QpenPowerNet gt Institut f r Bahntechnik GmbH Page 164 of 206 User Manual Issue 2013 02 12 lt NegativeFeederBB bbName NF BB z_ real Ohm 0 001 z_ imag Ohm 0 gt lt Switch name ATS_0 T1_NF defaultState close gt lt NegativeFeederBB gt lt Autotransformer gt lt Busbars gt lt OCSBB bbName OCS_BB gt lt Connector name ATS 0_OCS_ Feeder z_ real Ohm 0 001 z imag Ohm 0 gt lt Position condName CW lineID a trackID 1 km 0 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails BB gt lt Connector name ATS 0 Rails Feeder z real Ohm 0 001 z imag Ohm 0 gt lt Position condName RR lineID A trackID 1 km 0 gt lt Connector gt lt RailsBB gt lt NegativeFeederBB bbName NF_BB gt lt Connector name ATS 0 NF Feeder z_ real Ohm 0 001 z
33. 001 z imag Ohm 0 gt lt Rectifier gt lt Busbars gt lt OCSBB bbName OCS_BB gt lt Connector name TSS 5 OCS Feeder z real Ohm 0 001 z imag Ohm 0 gt lt Position condName CWw lineID a trackID 1 kme 5 gt lt Connector gt lt Connector name TSS_5 LF Feeder z_real Ohm 0 001 z_imag Ohm 0 gt lt Position condName LF lineID A trackID 1 km 5 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails_BB gt lt Connector name TSS 5 _Rails_Feeder z real Ohm 0 001 z imag Ohm 0 gt lt Position condName RR lineID A trackID 1 km 5 gt lt Connector gt lt RailsBB gt lt Busbars gt lt Substation gt lt Substations gt lt Earth condName E lineID A trackID 1 km 0 gt lt Network gt The AC network lt Network name B C use true voltage kV 25 The nominal voltage and frequency Hz 50 frequency for the AC network recordVoltage true recordCurrent true gt lt Lines recordCurrent falsetsub recordVoltage false tsub gt lt Line name A maxSliceDistance_km 0 5 gt lt Conductors gt The conductors for track 1 from km 9 750 to km 85 400 lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 1 km 9 750 gt IFB DD UM_OPN_51_01 04 02 doc Page 170 of 206 DMJ 2013 02 12 7 7 4 pour QpenPowerNet gt Institut f r Bahntechnik GmbH Page 171 of 206 User Manual Issue 2013 02 12 lt ToPro
34. 001 z_ imag Ohm 0 gt The connection to the rail busbar including switch lt Switch name TSS 5 T1 Rails defaultState close gt lt RailsBB gt 7 i lt TwoWindingTransformer gt Below is the definition of the busbars and the feeder cables from the busbars to the line lt Busbars gt lt OCSBB bbName OCS_BB gt lt Connector name TSS_5 OCS Feeder z_real_ Ohm 0 001 z_ imag Ohm 0 gt lt Position condName CW lineID A trackID 1 km 5 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails BB gt lt Connector name TSS 5 Rails Feeder z_real_Ohm 0 001 z_ imag Ohm 0 gt lt Position condName RR lineID A trackID 1 km 5 gt lt Connector gt lt RailsBB gt lt Busbars gt lt Substation gt Below is the substation at km 80 000 same as the one at km 5 000 lt Substation name TSS_80 gt lt TwoWindingTransformer name T1 nomPower MVA 10 nomPrimaryVoltage_kV 115 nomSecondaryVoltage_kV 27 5 noLoadLosses_ kW 6 5 loadLosses_kW 230 relativeShortCircuitVoltage percent 10 7 noLoadCurrent_A 0 06 gt lt OCSBB bbName 0CS BB z real _Ohm 0 001 z imag Ohm 0 gt lt Switch name TSS_80_T1_OCS defaultState close gt lt OCSBB gt lt RailsBB bbName Rails BB z_real Ohm 0 001 z_ imag Ohm 0 gt IFB DD UM_OPN_51_01 04 02 doc Page 92 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 93 of 206 User Manual I
35. 1 gt lt Leakage gt lt Leakage firstPos_km 9 750 lastPos_km 10 250 yReal_S km 0 1 yImag_S km 0 gt lt ConductorFrom condName RR trackID 2 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakages gt lt Line gt lt Lines gt The connectors used to connect the conductors of the tracks lt Connectors gt lt Connector name MW track 1 km 0 000 to track 2 km 0 000 z_real_Ohm 0 000010 z_ imag Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 1 km 0 gt lt ConductorTo condName MW lineID A trackID 2 km 0 gt lt Connector gt lt Connector name CW track 1 km 0 000 to track 2 km 0 000 z_real_Ohm 0 000010 z_ imag Ohm 0 gt lt ConductorFrom condName CW lineID A trackID 1 km 0 gt lt ConductorTo condName CW lineID A trackID 2 km 0 gt lt Connector gt lt Connector name RL track 1 km 0 000 to track 2 km 0 000 z_real_Ohm 0 000010 z_imag_Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 1 km 0 gt lt ConductorTo condName RL lineID A trackID 2 km 0 gt lt Connector gt lt Connector name RR track 1 km 0 000 to track 2 km 0 000 z real Ohm 0 000010 z_imag_Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 1 km 0 gt lt ConductorTo condName RR lineID A trackID 2 km 0 gt lt Connector gt lt Connector name MW track 1 km 0 650 to track 2 km 0 450 z_real_Ohm 0 000010 z
36. 1 0 787 36 252 0 000 27402 786 381 112 20 455 20 455 75 000 520 000 00 01 15 42 A 1 0 766 36 263 0 000 27393 778 415 782 20 455 20 455 75 000 520 000 00 01 15 43 A 1 0 745 36 274 0 000 27384 878 449 771 20 455 20 455 75 000 520 000 00 01 15 44 A 1 0 724 36 286 0 000 27375 471 484 556 20 455 20 455 75 000 520 000 00 01 15 45 A 1 0 704 36 291 0 000 27370 849 501 594 20 455 20 455 75 000 520 000 00 01 15 46 A 1 0 683 36 243 0 000 27410 135 350 944 20 455 20 455 75 000 520 000 00 01 15 47 A 1 0 662 36 243 0 000 27409 831 351 690 20 455 20 455 75 000 520 000 00 01 15 48 A 2 0 641 0 000 0 000 0 000 0 000 20 455 0 000 75 000 0 000 00 01 15 49 A 2 0 200 231 172 0 000 26761 868 2217 235 247 000 247 000 74 609 520 000 00 01 15 51 A 2 0 179 36 244 0 000 27408 768 354 846 20 455 20 455 75 000 520 000 00 01 15 52 A 2 0 158 36 244 0 000 27408 629 355 269 20 455 20 455 75 000 520 000 00 01 15 53 A 2 0 137 36 244 0 000 27408 629 355 269 20 455 20 455 75 000 520 000 00 01 15 54 A 2 0 116 36 245 0 000 27408 515 355 622 20 455 20 455 75 000 520 000 00 01 15 55 A 2 0 095 36 245 0 000 27408 515 355 622 20 455 20 455 75 000 520 000 00 01 15 56 A 2 0 075 36 245 0 000 27408 427 355 906 20 455 20 455 75 000 520 000 00 01 15 57 A 2 0 054 36 245 0 000 27408 426 355 906 20 455 20 455 75 000 520 000 00 01 15 58 A 2 0 033 36 245 0 000 27408 426 355 906 20 455 20 455 75 000 520 000 00 01 15 59 A 2 0 012 36 245 0 000 27408 363 356 121 20 455 20 455 75 000 520 000 00 01 16
37. 1 100 trackID up condName CW gt lt ToProperty x_m 5 y m 5 3 r20 Ohm km 0 2138 equivalentRadius_mm 4 4 toPos_km 2 100 temperatureCoefficient 0 00381 temperature GradCelsius 40 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition km 1 100 trackID up condName R gt lt ToProperty x _m 5 y m 0 r20 Ohm km 0 0164 equivalentRadius_mm 38 52 toPos km 2 100 temperatureCoefficient 0 0047 temperature GradCelsius 40 gt lt Conductor gt lt Conductors gt lt Line gt lt Line name A maxSliceDistance_km 0 1 recordCurrent true recordVoltage true gt lt Conductors gt lt Conductor type ContactWire gt lt StartPosition km 1 900 trackID up condName CW gt lt ToProperty x_m 0 y m 5 3 r20 Ohm km 0 2138 equivalentRadius_mm 4 4 toPos_km 3 000 temperatureCoefficient 0 00381 temperature GradCelsius 40 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition km 1 900 trackID up condName R gt lt ToProperty x_m 0 y m 0 r20 Ohm_km 0 0164 equivalentRadius_mm 38 52 toPos_km 3 000 temperatureCoefficient 0 0047 temperature GradCelsius 40 gt lt Conductor gt lt Conductors gt lt Line gt lt Connectors gt lt Connector z_real Ohm 0 0001 z_ imag Ohm 0 0 gt IFB DD UM_OPN_51_01 04 02 doc Page 201 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 202 of 206 User Manual Issue 2013 02 12 Inst
38. 1 4 2 3penPowerNet User Manual Institut f r Bahntechnik GmbH Issue 2013 02 12 Page 174 of 206 O Tutortal 06 Network Model 0 Lines Pomts Crossings VO TDocummenks ta Tutortal_LPC_Network opentrack Info Deomert Edt Format Tools Furctions Wincoess Print Hide Qut rar etm rem Lie LJ A tet ei aie sh ET epee 1 9r 4 N oe mu mE x cy ve mu gt ee ee r zF H Be E SE ib je n f SS ES ES ES EE E an ES ES ES SS eS pa ES eS SS SSeS EA E Figure 161 The OpenTrack infrastructure with chaininage line and track names u Signal km 29 600 track 2 set sight distance to 10000m ABCI_0100 Start Stop 300s Terminate 01 00 00 track 2 CBAI_0100 Terminate Stop 600s Start track 1 01 00 00 DBAI_1000 Terminate Stop 60s Start Timetable track 3 01 00 00 track 1 ABDI_0110 Start Stop 60s Terminate 01 10 00 track 2 track 2 DBAI_1015 Terminate Stop 60s Start track 2 01 15 00 track 1 Table 20 OpenTrack infrastructure properties and timetable Substation km 5 000 amp km 25 000 km 25 000 Power system 25 kV 50 Hz Table 21 OpenPowerNet network properties IFB DD UM_OPN_51_01 04 02 doc Page 174 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 lt spenPowe rNet IIL Institut f r Bahntechnik GmbH Page 175 of 206 User Manual Issue 2013 02 12 6 7 4 1 Configuration 6 7 4 1 1 OpenTrac
39. 10 250 equivalentRadius_mm 450000 r20_ Ohm_km 0 0393 temperature GradCelsius 20 temperatureCoefficient 0 x m 0 y 1 m 450 0 gt lt Conductor gt lt Conductors gt lt ConnectorSlices gt The connectors between contact and messenger wire and lt ConnectorSlice name dropper track 1 firstPos_km 0 lastPos_km 9 750 maxDistance_km 0 25 gt lt Connector z_real_Ohm 0 000073 z_ imag Ohm 0 gt lt ConductorFrom condName MW trackID 1 gt lt ConductorTo condName CW trackID 1 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name dropper track 2 firstPos_km 9 750 lastPos_km 10 250 maxDistance_km 0 25 gt lt Connector z_real_Ohm 0 000073 z_ imag Ohm 0 gt lt ConductorFrom condName MW trackID 2 gt lt ConductorTo condName CW trackID 2 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name rail connector track 1 firstPos km 0 lastPos km 9 750 maxDistance_km 0 25 gt lt Connector z_real_ Ohm 0 00001 z_ imag Ohm 0 gt lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName RR trackID 1 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name rail connector track 2 firstPos_km 9 750 lastPos_km 10 250 maxDistance_km 0 25 gt lt Connector z_real_Ohm 0 00001 z_ imag Ohm 0 gt lt ConductorFrom condName RL trackID 2 gt lt ConductorTo condName RR trackID 2 gt lt Connector gt
40. 170 km h the difference is the maximum power of the eddy current brake of 300 kW 6 6 8 Mean efficiency model tutorial The mean efficiency model is used for all previous tutorials Read the AC tutorial in chapter 6 2 for details 6 6 9 Efficiency table model tutorial In this tutorial we use the efficiency table model of the engine to describe the efficiency versus speed The engine shall an engine with recovery braking and the efficiencies for driving and braking shall be the same 6 6 9 1 Configuration 6 6 9 1 1 OpenTrack We will use the OpenTrack model from the AC tutorial without changes Select only the course ABCI_01 and CBAI_01 with short trains 6 6 9 1 2 OpenPowerNet We will use the Engine and Project File from the AC tutorial as the basis 6 6 9 1 2 1 Engine File We need to add to the Engine File the values for recovery braking and the efficiency values for traction and braking lt vehicle length 25 bruttoWeight 75 vehicleID Enginel speed 250 gt lt engine gt lt propu lsion supply AC 25kV 50Hz transmission electric engine electric power 5560 maxTractEffort 250 totalTractEfficiency 90 This values will be ignored if we choose totalBrakeEfficiency 90 efficiency table model in the Project File maxBrakePower 5560 maxBrakeEffort 250 maxRecoveryVoltage 29000 gt lt auxSupply typeStr all constPower 100 gt lt tractiveVehicleEfficiency gt The efficienc
41. 2 Page 111 of 206 3penPowerNet User Manual 7 7 4 Institut f r Bahntechnik GmbH Issue 2013 02 12 As there is no difference in the effort therefore we may expect to have the same power demand for TSS_5 in both configurations 14 00 12 00 10 00 8 00 H 6 00 P Q S 4 00 Sum P Q S f t 2 00 00 01 00 00 00 01 10 00 00 01 20 00 00 01 30 00 00 01 40 00 P total MW Q_total MVA S_total MVA Figure 105 The power demand of substation TSS_5 for the 2AC network 00 01 50 00 00 02 00 00 Now we will compare the power demand for the AC network in Figure 93 with Figure 105 for the 2AC network using Excel File PowerSupply2AC xlsx We see the power demand for the 2AC network is much higher than for the AC network This is the case because for the AC network we have two substations and for the 2AC network only one substation and one auto transformer station Therefore TSS_5 has to supply the total power and losses in the 2AC network Another comparison can be done for the energy consumption Figure 106 shows the energy consumption of the AC network provided from both substations and Figure 107 for the 2AC network provided only from TSS_5 IFB DD UM_OPN_51_01 04 02 doc Page 111 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 lt spenPowe rNet IIL Institut f r Bahntechnik GmbH Page 112 of 206 User Manual Issue
42. 2 gt lt Switch defaultState open name TSS_5 OCS BB gt lt OCSBBConnector gt lt RailsBBConnector z_imag Ohm 0 0 z_ real Ohm 0 001 gt lt BusbarFrom bbName Rails BB 1 gt lt BusbarTo bbName Rails BB 2 gt lt Switch defaultState open name TSS 5 Rails BB gt lt RailsBBConnector gt zig lt Substation gt To minimise the recorded data we will record voltages and currents only from km 0 000 to km 9 000 lt Lines recordCurrent true recordVoltage true gt Set both attributes to true lt Line name A maxSliceDistance_km 0 5 gt lt Conductors gt Split the ToProperty at km 9 000 and set the recording to false until the end of the line lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 1 km 0 gt lt ToProperty toPos_km 9 equivalentRadius_mm 3 45 r20 Ohm _ km 0 2311 temperature GradCelsius 20 temperatureCoefficient 0 004 x ro y_m 6 9 gt lt ToProperty toPos_km 85 4 recordCurrent false recordVoltage false gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 1 km 0 gt lt ToProperty toPos_km 9 equivalentRadius_mm 3 45 r20 Ohm_km 0 1852 temperature GradCelsius 20 temperatureCoefficient 0 00385 x meng y_m 5 3 gt lt ToProperty toPos_km 85 4 recordCurrent false recordVoltage false gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL track
43. 20 temperatureCoefficient 0 00385 x 2 0 y_m 5 3 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 3 km 9 650 gt lt ToProperty toPos_km 20 000 equivalentRadius_mm 38 52 r20 Ohm_km 0 0306 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 19 25 y_m 0 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 3 km 9 650 gt lt ToProperty toPos_km 20 000 equivalentRadius_mm 38 52 r20 Ohm _km 0 0306 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 20 75 y_m 0 gt lt Conductor gt The earth conductor lt Conductor type Earth gt lt StartPosition condName E trackID 1 km 0 gt lt ToProperty toPos_km 30 4 equivalentRadius_mm 450000 r20 Ohm_km 0 0393 temperature GradCelsius 20 temperatureCoefficient 0 x _m 0 y m 450 0 gt lt Conductor gt lt Conductors gt lt ConnectorSlices gt The dropper configuration for track 1 lt ConnectorSlice name dropper track 1 firstPos_km 0 lastPos_km 30 4 maxDistance_km 0 25 gt lt Connector z _real_Ohm 0 000073 z imag Ohm 0 gt lt ConductorFrom condName MW trackID 1 gt lt ConductorTo condName CW trackID 1 gt lt Connector gt lt ConnectorSlice gt The dropper configuration for track 2 lt ConnectorSlice name dropper track 2 firstPos_km 9 750 lastPos_km 20 000 maxDistance_km 0 25 gt lt Connec
44. 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 182 of 206 User Manual Issue 2013 02 12 lt TwoWindingTransformer name T1 nomPower_MVA 10 nomPrimaryVoltage_kV 115 nomSecondaryVoltage_kV 27 5 noLoadLosses _kW 6 5 loadLosses_kW 230 relativeShortCircuitVoltage_percent 10 7 noLoadCurrent A 0 06 gt lt OCSBB bbName 0CS_BB z_ real Ohm 0 001 z_ imag Ohm 0 gt lt Switch name TSS B 25 T1 _ocs defaultState close gt lt OCSBB gt lt RailsBB bbName Rails_ BB z_real Ohm 0 001 z_ imag Ohm 0 gt lt Switch name TSS B 25 T1 _Rails defaultState close gt lt RailsBB gt lt TwoWindingTransformer gt lt Busbars gt lt OCSBB bbName OCS_BB gt lt Connector name TSS_B 25_OCS_Feeder z_real Ohm 0 001 z_imag Ohm 0 gt lt Position condName CW lineID B trackID 1 km 25 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails_BB gt lt Connector name TSS_B 25 Rails Feeder z_real Ohm 0 001 z_imag Ohm 0 gt lt Position condName RR lineID B trackID 1 km 25 gt lt Connector gt lt RailsBB gt lt Busbars gt lt Substation gt lt Substations gt 6 7 4 1 3 Simulation To check the timetable and correct configuration of OpenTrack the first simulation run shall be without OpenPowerNet Go in OpenTrack to Info gt OpenPowerNet Settings and deselect Use OpenPowerNet The train
45. 2013 02 12 3penPowerNet User Manual The engine energy storage can be configured with one of five unloading models e panto_ _max 120 100 80 60 40 20 0 I A energy storage utilisation panto_l_max model m _storage A E _panto A max 70 A I_link A Figure 25 While using unload model panto_ _max the energy storage is unloaded only when the maximum allowed pantograph current is exeeded e storage_P_max P kw energy storage utilisation storage_P_max model m P_panto kW m P_storage kW max 60 kW O 10 20 30 40 50 60 70 80 90 100 P_engine kW Figure 26 While using unload model storage_P_max the energy storage is unloaded as soon as the recovered energy is lower as the auxilliary power If the power demand of the engine whether for auxilliary of traction is higher than the maximum unload power of the energy storage the remaining power will be provided from the catenary e storage_P_aux gine kW P_en energy storage utilisation storage _P_aux model m P_aux_panto kW m P_storage kW max 60 kW m P_traction kW SOkW O 10 20 30 40 50 60 70 80 90 100 P_aux kW Figure 27 While using unload model storage_P_aux the energy storage is unloaded as soon as the recovered energy is lower as the auxilliary power The provided power corresponds always with the auxilliary power demand unless the auxilliary power i
46. 2013 02 12 Institut f r Bahntechnik GmbH 4 5 Analysis The OpenPowerNet Analysis tool is available from the GUI OpenPowerNet menu HE and starts up as a separate application see Figure 56 Messages from the tool are displayed in the GUI console with name OPN These messages give information about the progress of the output generation warnings and failures a a BB OpenPowerNet Analysis ev mS File Tools Help Automatic Analysis ssn P owerNet Figure 56 The Analysis Tool main window ke 4 5 1 File gt Setup The following definitions can be made in the setup dialog Figure 57 e project root the default directory for the file selection dialog e g for saved selections e output directory the root directory of the generated output files e optional customised preset file the AnalysisPresets File see chapter 4 5 5 e default ODBC connection see chapter 3 9 e footer logo file for the generated files GIF file 150x60 pixels and e optional dongle ID to select a specific license see below yy Setup Project root C Users jacob OpenPowerNet Browse Output root C Users jacob OpenPowerNet Browse Preset file optional Browse Default ODBC DSN psc_analysis v Footer logo file C Users jacob Desktop excel_footer_logo gif Browse Dongle ID optional Figure 57 The Analysis Tool setup dialog To set the dongle ID the following three opti
47. 2013 02 12 E f t 3 000 7 2 500 ee S S 4 2 000 a _ 1 500 ieena a a eE pee ae nig E MWh 100057 257557 F ae 0 500 4 0 000 4 i 4 4 00 01 00 00 00 01 10 00 00 01 20 00 00 01 30 00 00 01 40 00 00 01 50 00 00 02 00 00 Sim 1 Network A C Substation TSS_5 Power Supply T1 Reference U Rails_BB Compared U OCS_BB Sim 1 Network A C Substation TSS_80 Power Supply T1 Reference U Rails_BB Compared U OCS_BB Figure 106 Energy supply from both TSS of the AC network in default configuration E f t 6 000 5 000 4 000 44 44 4444 nnn nnn ng Hmmm ann 3 000 E MWh 2 000 1 000 poms cn csi nema ana nenn ge 0 000 1 000 00 01 00 00 00 01 10 00 00 01 20 00 00 01 30 00 00 01 40 00 00 01 50 00 00 02 00 00 Sim 6 Network A C Substation TSS_5 Power Supply T1 Reference U Rails_BB Compared U OCS_BB Sim 6 Network A C Substation TSS_5 Power Supply T1 Reference U Rails_BB Compared U NF_BB E total MWh Figure 107 Energy supply from TSS_5 of the 2AC network in default configuration The total energy consumption of the AC network is 4 73MVA TSS_5 supplied 2 33MVA and TSS_80 2 40MVA compared to 4 80MVA of the 2AC network The difference of about 1 5 is caused by the auto transformer losses and the higher losses caused by the higher currents due to
48. 25 gt lt Connector z_real_ Ohm 0 000073 z_ imag Ohm 0 gt lt ConductorFrom condName MW trackID 1 gt lt ConductorTo condName CW trackID 1 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name rail connector track 1 firstPos_km 9 750 lastPos_km 85 4 maxDistance_km 0 25 gt lt Connector z_real_Ohm 0 00001 z_ imag Ohm 0 gt lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName RR trackID 1 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlices gt lt Leakages gt The leakages for the track lt Leakage firstPos_km 9 750 lastPos_km 85 4 yReal S km 0 1 yImag_S km 0 gt lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 9 750 lastPos_km 85 4 yReal S km 0 1 yImag_S km 0 gt lt ConductorFrom condName RR trackID 1 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakages gt lt Line gt lt Lines gt lt Substations gt The substation at km 45 000 with two winding transformer lt Substation name TSS_45 gt lt TwoWindingTransformer name T1 nomPower MVA 10 nomPrimaryVoltage_kv 115 nomSecondaryVoltage_kV 27 5 noLoadLosses _kW 6 5 loadLosses_kW 230 relativeShortCircuitVoltage_percent 10 7 noLoadCurrent_A 0 06 gt lt OCSBB bbName 0CS BB z real _Ohm 0 001 z imag Ohm 0 gt lt Switch name TSS_45 T1_OC
49. 2500 20000 2000 15000 1500 uM 1A 10000 J Eee aac nn Sa aaaea SEES EEE een een ee 1000 5000 t i i 500 0 0 0 000 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000 90 000 s km UI I A Figure 98 The voltage and current along the line for the constant current of 2000A The green arrows point to the substation positions The red circle is the Station B with siding Therefore the voltage drop in this station is less compared to the open line between the stations with only one track The diagram above is from the Excel tool One Engine The current is of course constant and has the value specified in the Project File The voltage is calculated according to the electrical network IFB DD UM_OPN_51_01 04 02 doc Page 104 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 lt spenPowe rNet IIL Institut f r Bahntechnik GmbH Page 105 of 206 User Manual Issue 2013 02 12 6 2 3 4 Failure scenario As described in chapter 4 2 3 4 we want to disconnect the transformer in TSS_80 from 01 05 00 to 01 22 00 and have a power supply during that time only from TSS_5 In OpenTrack we will use courses ABCI_01 and CBAI_01 from the default configuration For OpenPowerNet we need to adapt the project file slightly We only need to specify the Switch File and to give the simulation a proper comment see XML snippet below lt OpenPowerNet xmln
50. 810 Table 23 Factors to calculate equivalent radius from circular cross section radius Source H Koettnitz H Pundt Berechnung Elektrischer Energieversorgungsnetze Band I VEB Deutscher Verlag f r Grundstoffindustrie 1968 Page 230 IFB DD UM_OPN_51_01 04 02 doc Page 202 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 203 of 206 User Manual Issue 2013 02 12 7 5 How to draw a constant current You need to define a course in OpenTrack and use it with an itinerary for the tracks you want to check In the OpenPowerNet Project File you need to set the attribute constantCurrent_A to the constant current value you want see the XML snippet below lt Propulsion constantCurrent_A 2000 This attribute defines the constant current for the engine to 2000A You can change the value to whatever reasonable value you need The following attributes will be ignored once you set this attribute brakeCurrentLimitation I f U engine electric fourQuadrantChopperPhi none regenerativeBrake maxPower maxEffort supply DC 600V tractiveCurrentLimitation I f U tractiveEffort maxPower maxTractEffort useAuxPower true gt lt EfficiencyTable gt lt Propulsion gt 7 6 How to simulate short circuits You need to define a course in OpenTrack and use it with an itinerary for the tracks you want to check In the OpenPowerNet Project Fil
51. 85 of 206 DMJ 2013 02 12 OPN 51 1 4 2 Page 86 of 206 User Manual 3penPowerNet O IPH LLA Institut f r Bahntechnik GmbH Issue 2013 02 12 Engi Engine 1 aj 1 1 ngine xj Engine Name Engine 1 Load ft 75 Resistance Factor 3 2999 Adh Load fi 75 Rot mass Factor 1 053 Length m 25 Balise Telegram Vv Speed max km h 250 een 4 Tractive Effort max KN 250 Rack Traction C zn diagrams To NETTE 1 AC 10 KV 50 Hz ml w AC 25 kV 50 Hz AC SOKY 50 Hz a DCGAN Y E Export Import Dupi oe act Diagram Color I Adhesion bad so normal 125 good 150 Loss Function Edit Selected Point vikm h eo ZIKN 250 PIMWI 5 56 linear a Visual Rectangle Scale Speed max km h 270 Tractive Effort max KN 270 Min KN O Autoscale Del Engine New Engine SaveDepot NewDepot Open Depot Save Depot New Depot Open Darst Set Data Figure 80 The properties of engine Engine in OpenTrack Now we can define trains We will use two types of trains a short and a long train The short train only has one trailer and the long train has 14 trailers with 20t load 25 m length and 30kW auxiliary power see Figure 81 Trains Edit Train Name EI Default Type IC Fast Train Category Category 1 Engines Name Lot fty_ Len my Fr Engine 1 75 25 z Ada Load t
52. E trackID 1 gt lt Leakage gt lt Leakages gt lt Line gt lt Lines gt The connectors used to connect the conductors of the tracks lt Connectors gt lt Connector name MW track 1 2 km 0 200 z_real_Ohm 0 000010 z_imag_Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 1 km 0 200 gt lt ConductorTo condName MW lineID A trackID 2 km 0 200 gt lt Connector gt lt Connector name CW track 1 2 km 0 200 z_real_Ohm 0 000010 z_imag_Ohm 0 gt lt ConductorFrom condName CW lineID A trackID 1 km 0 200 gt lt ConductorTo condName CW lineID A trackID 2 km 0 200 gt lt Connector gt lt Connector name RL track 1 2 km 0 200 z_ real Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 1 km 0 200 gt lt ConductorTo condName RL lineID A trackID 2 km 0 200 gt lt Connector gt lt Connector name RR track 1 2 km 0 200 z_ real Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 1 km 0 200 gt lt ConductorTo condName RR lineID A trackID 2 km 0 200 gt lt Connector gt lt Connector name MW track 1 2 km 0 650 z_real Ohm 0 000010 z_imag Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 1 km 0 650 gt lt ConductorTo condName MW lineID A trackID 2 km 0 650 gt lt Connector gt lt Connector name CW track 1 2 km 0 650 z_real Ohm 0 000010 z_ima
53. Efficiency yValueUnit 1 gt the efficiency unit lt valueLine xValue 0 gt lt values yValue 0 4 gt lt valueLine gt lt valueLine xValue 30 gt lt values yValue 0 9 gt lt valueLine gt lt valueLine xValue 60 gt lt values yValue 0 93 gt lt valueLine gt lt valueLine xValue 105 gt lt values yValue 0 98 gt lt valueLine gt lt valueLine xValue 250 gt lt values yValue 0 93 gt lt valueLine gt lt valueTable gt lt efficiency gt lt transformer gt lt fourQuadrantChopper typeStr gt lt efficiency gt lt valueTable xValueName Speed xValueUnit km h The speed and yValueName Efficiency yValueUnit 1 gt the efficiency unit lt valueLine xValue 0 gt lt values yValue 0 95 gt lt valueLine gt lt valueLine xValue 30 gt lt values yValue 0 97 gt lt valueLine gt lt valueTable gt lt efficiency gt lt fourQuadrantChopper gt lt tractionInverter typeStr gt lt efficiency gt lt valueTable xValueName Speed xValueUnit km h The speed and yValueName E fficiency yValueUnit 1 gt the efficiency unit yValue 0 88 gt lt valueLine gt yValue 0 95 gt lt valueLine gt yValue 0 99 gt lt valueLine gt yValue 0 98 gt lt valueLine gt lt valueLine xValue 0 gt lt values lt valueLine xValue 30 gt lt values lt valueLine xValue 60 gt lt values lt valueLine xValue 250 gt lt val
54. Einstellungen jacob OpenPowerNet General OpenPowerNet properties Analysis APserver Dongle ID leave blank if any separate multiple with ATM Database Debug OpenTrack PSC PSC Viewer PSC Viewer Diagram Appearance Connections Default Layout Pathmaps Printing Rulers And Grid Restore Defaults Apply Figure 178 The GUI preferences to specify the working directory e Analysis Tool Within the Analysis Tool the working directory need to be specified via File gt Setup 7 11 How to specify a specific license In case OpenPowerNet is used with different licenses it might be necessary to specify a specififc dongle To find the dongle IDs insert all dongles to your PC and open the HASP SRM Control Center in your browser http localhost 1947 int devices html The configuration needs to be done in the GUI see Figure 178 and Analysis Tool see Figure 57 on page 62 The following three options are available e Any dongle gt do not insert anything e One dongle gt enter one dongle ID and e Multiple dongles gt enter multiple IDs separated by 7 12 What is the reciprocal condition The reciprocal condition number describes the quality of the matrix used for network calculation in module PSC This number is calculated for each matrix created and displayed in the OPN PSC message console An error respective a warning is displayed in case the condition number is too bad In general on
55. Figure 48 For this example select table sim add the columns shown on the right to the query and click next Query Assistent Daten filtern x Urn nur bestimmte Zeilen in Ihre Abfrage einzuschlie en k nnen Sie die Daten filtern Klicken Sie auf Weiter wenn die Daten nicht sortiert werden sollen Zu filternde Spalte Nur Zeilen einschlieBen in denen OPNversion z a timeStep_s C Und C oder Und C Ode 2 lt Zur ck Abbrechen Figure 49 Click next do not filter any data IFB DD UM_OPN_51_01 04 02 doc Page 58 of 206 DMJ 2013 02 12 EA OPN 51 1 4 2 pen PowerNet FJL Institut f r Bahntechnik GmbH Page 59 of 206 User Manual Issue 2013 02 12 Query Assistent Sortierreihenfolge x Geben Sie an wie die Daten sortiert werden sollen Klicken Sie auf Weiter wenn die Daten nicht sortiert werden sollen Sortieren nach 2 fe C Absteigend dann nach TC C Aufsteigend r lt Zur ck Abbrechen Figure 50 Select id in the upper combo box to sort by the column id of table sim Query Assistent Fertig stellen x Wie soll fortgefahren werden C Daten an Microsoft Excel zur ckgeben Abfrage speichern C Einen OLAP Cube aus dieser Abfrage erstellen lt Zur ck Fertig stellen Abbrechen Figure 51 Select the centre radio button and click finish IFB DD UM_OPN_51_01 04 02 doc Page 59 of 206 DMJ 2013 02 12 7 7 4 OPN 5
56. I 75 Len m 25 Trailers mame Load ft Jien tm P Loss fi oof nems vmar emm Rota Trailer 1 E Load It Resistance Equation Len m BE A Air Strahl Sauthoff Formula A Result Unit Curve Roeckl Formula Trains Acceleration Train related Settings Max Acceleration m s 2 A CE N i 3 00 T Max Drawbar Force KN Deceleration Acc Delay s 0 0 Deceleration Function Default Erom on Ton pee marar 0 v max 0 60 Delete Au Braked Weight Percentage BWP 100 Formula a C1 C2 BWP ci co i Resulting Deceleration m s 2 I I Correct Deceleration on Gradients m s 2 o Min Dec m s 2j Max msi Default Figure 81 The configuration data of train Train short in OpenTrack with one engine and one trailer As we now have trains we are able to define courses and their timetable We will use four courses two from Station A to Station C and two from Station C to Station A IFB DD UM_OPN_51_01 04 02 doc Page 86 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 87 of 206 User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH Course and timetable details e course ABCI_01 from Station A to Station C via track 2 in Station B with 60s wait time departure is 01 00 00 in A and 01 09 00 in B Train long e course ABCs_02 from Statio
57. IFB DD UM_OPN_51_01 04 02 doc Page 41 of 206 DMJ 2013 02 12 OPN 51 1 4 2 pen PowerNet Page 42 of 206 User Manual OA Institut f r Bahntechnik GmbH Issue 2013 02 12 nomPower_MVA 85 nomPrimaryVoltage_kV 150 nomSecondaryVoltage_kV 53 8 noLoadLosses_kW 38 loadLosses_kW 136 relativeShortCircuitVoltage_percent 8 6 noLoadCurrent_A 1 43 Table 10 Typical three winding transformer configuration nomPower_MVA 20 nomPrimaryVoltage_kV 55 nomSecondaryVoltage_kV 27 5 noLoadLosses_kW 8 loadLosses_kW 17 relativeShortCircuitVoltage_percent 1 76 noLoadCurrent_A 0 33 Table 11 Typical auto transformer configuration nomPower_MVA 0 158 nomPrimaryVoltage_kV 0 316 nomSecondaryVoltage_kV 0 316 noLoadLosses_kW 0 6 loadLosses_kW 2 relativeShortCircuitVoltage_percent 11 noLoadCurrent_A 7 Table 12 Example configuration of an booster transformer internalResistance_Ohm 0 015 nomVoltage_kV 0 750 energyRecovery false Table 13 Typical rectifier configuration 4 2 3 3 5 Station Energy Storage Characteristics type simple maxLoad_MWs 15 initialload_MWs 15 lossPower_kW 0 1 IFB DD UM_OPN_51_01 04 02 doc Page 42 of 206 DMJ 2013 02 12 OPN 51 1 4 2 lt SpenPowerNet 7 7 4 Institut f r Bahntechnik GmbH Page 43 of 206 User M
58. Leakage of track 1 in station A lt Leakage firstPos_km 0 2 lastPos_km 25 4 yReal S km 0 1 yImag S_km 0 gt lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 0 2 lastPos_km 25 4 yReal S km 0 1 yImag_S km 0 gt lt ConductorFrom condName RR trackID 1 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt IFB DD UM_OPN_51_01 04 02 doc Page 194 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 lt spenPowe rNet IIL Institut f r Bahntechnik GmbH Page 195 of 206 User Manual Issue 2013 02 12 Leakage of track 2 in station A lt Leakage firstPos_km 0 2 lastPos_km 0 650 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RL trackID 2 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 0 2 lastPos_km 0 650 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RR trackID 2 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt Leakage of track 2 in station B lt Leakage firstPos_km 9 750 lastPos_km 10 250 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RL trackID 2 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 9 750 lastPos_km 10 250 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RR trackID 2 gt lt ConductorTo condName
59. Note the colour code is explained in chapter 1 4 lt xml version 1 0 encoding UTF 8 gt lt railml xmlns xsi http www w3 org 2001 XMLSchema instance xsi noNamespaceSchemaLocation http www openpowernet de schemas 1 4 2 rollingstock xsd gt lt rollingstock rollingstockID version 110 gt lt vehicles gt lt vehicle length 25 bruttoWeight 75 vehicleID Enginel speed 250 gt lt engine gt lt propulsion supply AC 25kV 50Hz transmission electric engine electric power 5560 maxTractEffort 250 totalTractEfficiency 90 totalBrakeEfficiency 90 gt lt auxSupply typeStr all constPower 100 gt lt propulsion gt lt engine gt lt vehicle gt lt vehicles gt lt rollingstock gt lt railml gt engine ID required vehiclelD engine type _ required engine propulsion engine transmission required engine propulsion transmission supply required engine propulsion supply power angle none mean engine propulsion fourQuadrantChopper meanPhi curve engine propulsion fourQuadrantChopper phi valueT able tractive none gt current f f EET limitation curve engine propulsion tractiveCurrentLimitation valueT able optional engine propulsion zeroSpeedCurrentLimitation brake current none limitation curve engine propulsion brakeCurrentLimitation valueT able use auxiliary no power yes engine propu
60. OPN 51 1 4 2 pen PowerNet Page 78 of 206 User Manual Issue 2013 02 12 Institut fiir Bahntechnik GmbH e title and e subtitle may use the following place holders where applicable to customise the dynamic item titles e _designation e function e _itemID _linelD _position _refltemID _refLinelD _refTrackID _separator _time e _timeEnd e _timeStart and e _trackID Depending on the context the place holders will be replaced with applicable values Note If a place holder is defined but not suitable for the context the place holder will not be replaced but appear in the generated chart All suitable place holders are used in the default preset file at the corresponding attributes The user may take this as an example The preset file allows translation of some key words e g Substation Line to a local language or customer specific expression through an element string see Figure 76 below Note The translation needs to use ANSI characters tt ttt Figure 76 The AnalysisPresets File with highlighted String element to define key word translation The definition of decimal and thousands separator for the charts is done at the element Excel see Figure 77 below The setting will be compared to the Excel setting at runtime In case of contradiction between the two settings a message popup will aks the user to modify the corresponding settings in Microsoft Excel options The
61. Propulsion engine electric supply AC 25kV 50Hz brakeCurrentLimitation none tractiveCurrentLimitation none useAuxPower false Set this to false in the first simulation and to true for the other fourQuadrantChopperPhi none regenerativeBrake maxPower maxEffort Set this to use the regenerative brake tractiveEffort maxPower maxTractEffort gt lt MeanEfficiency gt lt Propulsion gt lt Vehicle gt Set the right Engine File and don t forget to set a meaningful project name and comment in the project file 6 6 6 2 Simulation Run all simulation e Do everything as described above and run the simulation IFB DD UM_OPN_51_01 04 02 doc Page 138 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 139 of 206 User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH e Set useAuxPower in the Project File to true give a meaningful comment and run the simulation e Comment the auxiliary with constant power in the Engine File and uncomment the constant resistance auxiliary give a meaningful comment in the Project File and run the simulation e Comment the auxiliary with constant resistance in the Engine File and uncomment the constant power while braking auxiliary give a meaningful comment in the Project File and run the simulation e Comment the auxiliary with constant power while braking in the Engine File and uncomment the constant resistance while braking auxiliary give a me
62. Substation name TSS_5 gt lt TwoWindingTransformer name T1 nomPower_MVA 10 nomPrimaryVoltage_kv 115 nomSecondaryVoltage_kV 27 5 noLoadLosses_kW 6 5 loadLosses kW 230 relativeShortCircuitVoltage percent 10 7 noLoadCurrent_A 0 06 gt lt OCSBB bbName 0CS_BB 1 z_ real Ohm 0 001 z_ imag Ohm 0 gt lt Switch name TSS_5 T1_ OCS defaultState close gt lt OCSBB gt lt RailsBB bbName Rails BB 1 z_real_ Ohm 0 001 z_ imag Ohm 0 gt lt Switch name TSS_5 Tl Rails defaultState close gt lt RailsBB gt lt TwoWindingTransformer gt lt Busbars gt lt OCSBB bbName 0CS_BB_1 gt lt Connector name TSS 5 OCS Feeder z real Ohm 0 001 z imag Ohm 0 gt lt Position condName CW lineID TAT trackID IY kmetgt gt lt Switch defaultState close name TSS_5 OCS Feeder 5 0 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails BB 1 gt lt Connector name TSS_5 Rails Feeder z_ real Ohm 0 001 z_ imag Ohm 0 gt lt Position condName RL lineID A trackID 1 km 5 gt lt Switch defaultState close name TSS_5 Rails Feeder 5 0 gt lt Connector gt lt RailsBB gt lt Busbars gt lt Substation gt lt Substations gt lt Earth condName E lineID A trackID 1 km 0 2 gt Note the beginning of the earth conductor at km 0 200 lt Network gt lt Options tolerance grad 0 001 tolerance V 0 1 tolerance A 0 1 maxIncreaseCount 500 discreteTrains true maxCu
63. a trackID 1 km 5 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails BB gt lt Connector name TSS T _Rails_Feeder z real Ohm 0 001 z imag Ohm 0 gt lt Position condName RR lineID A trackID je mes 7 gt lt Connector gt lt RailsBB gt lt Busbars gt lt Substation gt lt Substation name TSS A _25 gt lt TwoWindingTransformer name T1 nomPower MVA 10 nomPrimaryVoltage_kV 115 nomSecondaryVoltage_kV 27 5 noLoadLosses_kW 6 5 loadLosses_kW 230 relativeShortCircuitVoltage percent 10 7 noLoadCurrent_A 0 06 gt lt OCSBB bbName 0CS BB z real Ohm 0 001 z imag Ohm 0 gt lt Switch name TSS A 25 T1_ OCS defaultState close gt lt OCSBB gt lt RailsBB bbName Rails BB z_real Ohm 0 001 z_ imag Ohm 0 gt lt Switch name TSS A 25 Tl Rails defaultState close gt lt RailsBB gt lt TwoWindingTransformer gt lt Busbars gt lt OCSBB bbName OCS_BB gt lt Connector name TSS_A 25 OCS Feeder z_ real Ohm 0 001 z_imag Ohm 0 gt lt Position condName CW lineID A trackID 1 km 25 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails BB gt lt Connector name TSS_A 25 Rails Feeder z_real Ohm 0 001 z_imag Ohm 0 gt lt Position condName RR lineID A trackID 1 km 25 gt lt Connector gt lt RailsBB gt lt Busbars gt lt Substation gt lt Substation name TSS_B 25 gt IFB DD UM_OPN_51_01 04 02 doc Page 181 of 206 DMJ
64. a 25kV 50Hz AC power supply system with two substations We will have two kinds of trains and a very simple timetable with four courses Never the less we will have an interesting simulation with OpenPowerNet and we will compare the normal operation with a failure scenario 6 2 1 Configuration 6 2 1 1 OpenTrack The first step in OpenTrack is to create a new set of preferences To do so save first the set with a new name and then set the path and file names see Figure 78 for details IFB DD UM_OPN_51_01 04 02 doc Page 83 of 206 DMJ 2013 02 12 OPN 51 1 4 2 Page 84 of 206 3penPowerNet User Manual 7 7 4 II Institut f r Bahntechnik GmbH Issue 2013 02 12 Preferences x Selected Set OPN Tutorial AC Network OpenTrack Home Dir CAOT_H Change Preferences Path CAOT_Home Library Opentrack ttinerary Information O Tutorial o 1_AC_Network OTData 4C_Network dest Engine Depot ONTutorial o 1_AC_Network OTData 4C_Network depot Trains OsTutorial o 1_AC_Network OTData 4C_Network trains Courses ONTutorial o 1_AC_Network OTData AC_Network courses Stations O Tutorial o 1_AC_Network OTData 4C_Network stations Timetable ONTutorial o 1_AC_Network OTData AC_Network timetable Output Path O xTutorial 0 1_AC_Network OTOutput eksce MA OY pe re 1 Reihe R a 2 ReiheA Add Saving I Create Backup Files I Autosave every 10 Minutes Drawing Sound Highlight sel Edges M S
65. both simulations and record all currents and voltages between km 0 000 and km 9 000 6 7 1 1 Configuration 6 7 1 1 1 OpenTrack We will use the OpenTrack model from the AC tutorial without changes Select only the course ABCI_01 and CBAI_01 with long trains 6 7 1 1 2 OpenPowerNet We will use the Engine and Project File from the AC tutorial as the basis 6 7 1 1 2 1 Engine File For this tutorial we don t need to change the Engine File IFB DD UM_OPN_51_01 04 02 doc Page 153 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 154 of 206 User Manual Issue 2013 02 12 6 7 1 1 2 2 Project File As there are two different configurations we will have two Project Files One Project File with the wrong configuration same as in Figure 147 and one Project File with the correct configuration same as in Figure 148 First we do the Project File with the wrong configuration The substation TSS_5 shall be adapted and the network shall be split at km 5 100 by adding isolators in the messenger and contact wire First we add the isolators to the line The XML snippet below if nested in the element Line lt Isolators gt lt ConductorIsolator gt lt Position km 5 1 trackID 1 condName CW gt lt ConductorIsolator gt lt ConductorIsolator gt lt Position km 5 1 trackID 1 condName MW gt lt ConductorIsolator gt lt Isolators gt Next is to a
66. definition of the horizontal lines of the nominal voltage lt Color name dark_green gt lt hLine gt lt hLine title U_tol EN 50163 yValue 17500 style lineDash weight 1 legend true marker false gt The definition of one of the tolerances defined in EN 50163 lt Color name red gt lt hLine gt IFB DD UM_OPN_51_01 04 02 doc Page 75 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 lt spenPowe rNet IIL Institut f r Bahntechnik GmbH Page 76 of 206 User Manual Issue 2013 02 12 lt hLine title U_tol EN 50163 yValue 19000 style lineDash weight 1 legend false marker false gt The definition of another tolerance defined in EN 50163 note the attribute legend is false as the legend should contain only on entry for U_tol EN 50163 lt Color name red gt lt hLine gt lt hLine title U_tol EN 50163 yValue 27500 style lineDash weight 1 legend false marker false gt lt Color name red gt lt hLine gt lt hLine title U_tol EN 50163 yValue 29000 style lineDash weight 1 legend false marker false gt lt Color name red gt lt hLine gt lt System gt lt Item name U_Panto_abs title U function _lineID trackID Panto style line weight 1 legend true marker false gt The curve representing the pantograph voltage e g minimum maximum or average lt Color name blue gt lt Color name dark_ blue gt lt Item gt lt Item na
67. eddyCurrentBrake false engineID Enginel gt lt Propulsion engine electric supply AC 25kV 50Hz constantVoltage V 0 The new attribute to simulate short circuits Other attributes will be ignored by OpenPowerNet brakeCurrentLimitation none tractiveCurrentLimitation none useAuxPower true fourQuadrantChopperPhi none regenerativeBrake none tractiveEffort maxPower maxTractEffort gt lt MeanEfficiency gt lt Propulsion gt lt Vehicle gt For the short circuit simulation we want the short circuit current at the substation for the protection settings In this tutorial we use only TSS_5 and power off TSS_80 by opening the switches at transformer T1 in TSS_80 We only need to change the default state for the switches TSS 80 T1 OCS andTSS 80 Tl Rails from close to open After we have done all the amendments in the Project File for the short circuit simulation we run again the simulation only with course short circuit IFB DD UM_OPN_51_01 04 02 doc Page 101 of 206 DMJ 2013 02 12 OPN 51 1 4 2 Page 102 of 206 3penPowerNet User Manual 7 7 4 Institut f r Bahntechnik GmbH Issue 2013 02 12 Note When not using the FULL license set the time steps in OpenTrack to 4 seconds 4 000 7 3 500 4 3 000 2 500 2 000 1 kA 1 500 1 000 0 500 1 f s 0 000 0 000 10 000 20 000 30 000 40 000 50 000 60 000 s km _co
68. gt lt VLD gt lt Busbars gt lt RailsBB bbName E gt lt Connector z_real_ Ohm 0 001 z_imag Ohm 0 000 gt The connector to earth conductor lt Position km 16 000 trackID h condName E lineID Linie 01 gt lt Connector gt lt RailsBB gt lt RailsBB bbName R gt lt Connector z_real_ Ohm 0 001 z_imag Ohm 0 000 gt The connector to a rail conductor lt Position km 16 000 trackID h condName RL lineID Linie 01 gt lt Connector gt lt RailsBB gt lt Busbars gt lt Substation gt IFB DD UM_OPN_51_01 04 02 doc Page 47 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 48 of 206 User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH r_close_ Ohm 0 001 r_open_Ohm 10000 Close Model Voltage voltage_V 120 Open Model Current current_A 0 Table 17 Typical values for a voltage limiting device used to limit the touch voltage to maximum 120V by a tyristor closed when current is below OA 4 2 3 3 7 Simulation Time window 4 Network name TestNetwork 1 voltage_kV 15 frequency_Hz 16 7 recordCurrent true recordVoltage true vj Lines vxi Substations Times SimulationTime start_s end_s 10 600 2 1200 1800 gt Earth condName R linelD Line1 tracklD Track1 km 10 Figure 38 Example configuration of two simulation time windows for the network from 00 00 00 to 00 10 00 and from 00 20 00 to 00 30 00 The simulat
69. in the Engine File ImaxLoad_A 1000 ImaxUnload_A 1000 PmaxLoad_kW 500 PmaxUnload_kW 500 efficiencyLoad_percent 95 efficiencyUnload_percent 95 maxLoad_kWh 6 meanEfficiency_percent 99 Table 7 Typical engine energy storage configuration 4 2 3 2 TypeDefs File The TypeDefs File is an XML file and defines model types see Figure 19 The Project File will reference these types by an identifier The TypeDefs File observes the schema schemas TypeDefs xsd in plugin de bahntechnik dd opn bin x x x _JJJJMMDDhhmm The HTML schema documentation is available in the GUI Help System at OpenPowerNet User Guide gt TypeDefs File IFB DD UM_OPN_51_01 04 02 doc Page 32 of 206 DMJ 2013 02 12 oma ss penPowerNet Z gt Institut f r Bahntechnik GmbH Page 33 of 206 User Manual Issue 2013 02 12 Hi StorageTypes 5 StorageType H 1 0 Figure 19 The main elements of the TypeDefs File schema 4 2 3 3 Project File The project specific file is an XML file It has to correspond with the OpenTrack infrastructure data The corresponding schema file can be found in plugin de bahntechnik dd opn bin x x x _ JJJJMMDDhhmm under schemas OpenPowerNet xsd The HTML schema documentation with detailed information to each element and attribute is available in the GUI Help System at OpenPowerNet User Guide gt Project File Sample XML files are available in the Tutorial see chapter 6 at page 82 to r
70. lineID A trackID 3 km 10 450 gt lt Connector gt lt Connections of rails and ocs at change over from track 1 to 2 line B gt lt Connector name MW track 1 2 km 29 750 z real Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName MW lineID B trackID 1 km 29 750 gt lt ConductorTo condName MW lineID B trackID 2 km 29 750 gt lt Connector gt lt Connector name CW track 1 2 km 29 750 z_real_Ohm 0 000010 z_imag_Ohm 0 gt lt ConductorFrom condName CW lineID B trackID 1 29 750 gt lt ConductorTo condName CW lineID B trackID 2 km 29 750 gt lt Connector gt lt Connector name RL track 1 2 km 29 750 z_real Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName RL lineID B trackID 1 km 29 750 gt lt ConductorTo condName RL lineID B trackID 2 km 29 750 gt lt Connector gt lt Connector name RR track 1 2 km 29 750 z real Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName RR lineID B trackID 1 km 29 750 gt lt ConductorTo condName RR lineID B trackID 2 km 29 750 gt lt Connector gt lt Connection between the lines gt lt Connector name MW track A 2 B 1 z_real Ohm 0 000010 z_imag Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 2 km 20 gt lt ConductorTo condName MW lineID B trackID 1 km 20 gt lt Connector gt lt Connector name CW track A 2 B 1
71. lt Conductor type Feeder gt The left feeder with the properties same as a rail lt StartPosition condName LF 1 trackID 1 km 5 gt lt ToProperty toPos_km 5 1 equivalentRadius mm 3 45 r20_Ohm_km 0 2311 temperature GradCelsius 20 temperatureCoefficient 0 004 x_m 4 Make sure to set the cross section for each conductor to a unique location y_m 0 gt lt Conductor gt lt Conductor type Feeder gt The right feeder lt StartPosition condName LF_r trackID 1 km 5 1 gt lt ToProperty toPos_km 6 equivalentRadius_mm 3 45 r20 Ohm_km 0 2311 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 4 2 y m 0 gt lt Conductor gt lt Conductor type ReturnFeeder gt left return feeder and lt StartPosition condName RF_1 trackID 1 km 5 gt lt ToProperty toPos_km 5 1 equivalentRadius_mm 38 52 r20_ Ohm_km 0 0306 temperature _GradCelsius 20 temperatureCoefficient 0 004 x m 4 1 y m 0 gt lt Conductor gt lt Conductor type ReturnFeeder gt right return feeder lt StartPosition condName RF_r trackID 1 km 5 1 gt lt ToProperty toPos_km 6 equivalentRadius_mm 38 52 r20 Ohm_km 0 0306 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 4 1 y m 0 gt lt Conductor gt Then we need to connect the new conductors with the contact wire and rail at km 5 000 respective km 6 000 lt Connector name z_ real Ohm 0 0001 z_ imag Ohm
72. lt Position condName CW lineID A trackID 1 km 5 gt lt Switch defaultState close name TSS_5 OCS Feeder 5 0 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails BB 1 gt Change the name to make a unique busbar name lt Connector name TSS_ 5 Rails Feeder z real Ohm 0 001 z imag Ohm 0 gt lt Position condName RR lineID A trackID min ea gt lt Switch defaultState close name TSS_5_Rails_Feeder_5 0 gt lt Connector gt lt RailsBB gt lt OCSBB bbName 0CS_BB 2 gt lt Connector name TSS_5 OCS Feeder z_ real Ohm 0 001 z_ imag Ohm 0 gt lt Position condName CW lineID A trackID 1 km 6 gt lt Switch defaultState close name TSS_5 OCS Feeder 6 0 gt lt Switch gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails BB 2 gt IFB DD UM_OPN_51_01 04 02 doc Page 154 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 155 of 206 User Manual Issue 2013 02 12 lt Connector name TSS_5_Rails_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName RR lineID A trackID 1 km 6 gt lt Switch defaultState close name TSS_5 Rails Feeder 6 0 gt lt Connector gt lt RailsBB gt lt Busbars gt Here the busbar connectors including switches lt OCSBBConnector z_imag Ohm 0 0 z real Ohm 0 001 gt lt BusbarFrom bbName 0CS_ BB 1 gt lt BusbarTo bbName 0CS BB
73. name RR track 1 2 km 10 250 z_real Ohm 0 000010 z_ imag Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 1 km 10 250 gt lt ConductorTo condName RR lineID A trackID 2 km 10 250 gt lt Connector gt lt Connectors gt The substation at km 5 000 lt Substations gt lt Substation name TSS_5 gt lt TwoWindingTransformer name T1 nomPower_MVA 10 nomPrimaryVoltage_kV 115 nomSecondaryVoltage_kV 27 5 noLoadLosses_kW 6 5 loadLosses _kw 230 relativeShortCircuitVoltage_percent 10 7 noLoadCurrent A 0 06 gt lt OCSBB bbName 0CS_BB 1 z real Ohm 0 001 z imag Ohm 0 gt lt Switch name TSS_5 T1_ OCS defaultState close gt lt OCSBB gt lt RailsBB bbName Rails BB 1 z_real Ohm 0 001 z_imag Ohm 0 gt lt Switch name TSS 5 T1 _Rails defaultState close gt lt RailsBB gt lt TwoWindingTransformer gt lt Busbars gt lt OCSBB bbName 0CS_BB_1 gt lt Connector name TSS_5 OCS Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName CW lineID A trackID 1 km 5 gt lt Switch defaultState close name TSS_5 OCS Feeder 5 0 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails BB 1 gt lt Connector name TSS 5 _Rails _Feeder z real Ohm 0 001 z imag Ohm 0 gt lt Position condName RL lineID A trackID 1 km 5 gt lt Switch defaultState close name TSS_5_Rails_Feeder_5 0 gt lt Connector gt lt RailsBB gt lt Busbar
74. ne a _ ee benennen nenne 27600 ed annehmen ebene 27400 27200 4 UMN 27000 26800 4 26600 7 26400 7 4 4 4 i 00 01 00 00 00 01 05 00 00 01 10 00 00 01 15 00 00 01 20 00 00 01 25 00 00 01 30 00 00 01 35 00 00 01 40 00 26200 Sim 20 Course CBAI_01 Engine 0 Engine1 Sim 21 Course CBAI_01 Engine 0 Engine1 Figure 133 The pantograph voltage of course CBAI_01 witout sim 20 and with sim 21 brake current limitation IFB DD UM_OPN_51_01 04 02 doc Page 136 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 137 of 206 User Manual Issue 2013 02 12 Institut fiir Bahntechnik GmbH The pantograph voltage of course CBAI_01 is lower during the time of regenerative braking because of the current limitation to 50A 6 6 6 Auxiliary power tutorial This tutorial describes the model of auxiliary power The values of the auxiliary power are on one hand specified in OpenTrack and on the other in OpenPowerNet see also the legend of Figure 5 In OpenTrack the auxiliary power for each trailer of a train can be specified as a constant power This is possible in the Train Edit dialog of OpenTrack In this tutorial we focus only on the possibilities in OpenPowerNet In OpenPowerNet we have 4 different auxiliary power models of an engine It is possible to combine all 4 models within one engine The auxiliary models are e Constant power
75. proper Network Line and position and pressing the Lock button The following sub chapters describe the available analysis in detail 4 5 3 1 Magnetic Flux Density The Magnetic Flux Density tool calculates the density at e a specific location for a specific time step as a single image or e as a movie over a time period or e the average values arithmetic mean over a time period as a single image The layout of the images can be configured through multiple settings as e a designation e B Limit the maximum value of the scale in uT e Factor to scale the calculated values e x y min max the image size in meters e Grid the grid size in meters smaller grid size generates a smoother and more detailed image but increases calculation time e Legend Ticks the number of steps in the legend e Unit the legend unit in yT or mT e Absolute indicate the current direction causing the flux density unchecked or not checked e Style o normal a gradient image o iso use ISO lines to mark particular values can be changed in preset see chapter 4 5 5 e Mean Values whether to calculate the absolute values per time step unchecked or mean values over the whole time period checked The Preview button generates a preview image for the selected time step The Create Images and Create Video buttons start the output creation IFB DD UM_OPN_51_01 04 02 doc Page 68 of 206 DMJ 2013 02 12 OPN 51 1 4 2 P
76. shows the power off effect of substation TSS_80 for the current used by course CBAI_01 As the course uses the same power in both simulations the current rises with dropping line voltage 6 3 2AC Network tutorial In this tutorial we will use the same OpenTrack infrastructure as for the AC Network tutorial and change only the existing Project File for a 2AC electrical network To keep the file of the previous tutorial we create a copy of the Project File 6 3 1 Configuration 6 3 1 1 OpenTrack We will use the same OpenTrack data as for the AC tutorial described in chapter 6 2 1 1 6 3 1 2 OpenPowerNet 6 3 1 2 1 Engine File We will use the same engine as for AC and therefore we do not need to change the Engine File 6 3 1 2 2 Project File For the 2AC system we change the transformer in TSS_5 to a three winding transformer and change substation TSS_80 to autotransformer station ATS_80 For the negative phase we add a negative feeder from km 5 000 to km 80 000 First we add the negative feeder lt Conductor type NegativeFeeder gt lt StartPosition condName NF trackID 1 km 5 gt The beginning of the negative feeder at km 5 000 and the name NF lt ToProperty toPos_km 80 The end of the negative feeder at km 80 000 equivalentRadius_mm 8 4 Following the characteristic r20 Ohm km 0 1188 temperature GradCelsius 20 temperatureCoefficient 0 004 x_m 4 and the cross section position y_m 9 gt lt Conductor gt
77. simulation of failure scenarios e g Transformer1 in TSS1 of Network TestNetwork 1 need to supply also the neighbour section in Network TestNetwork 2 due to switched off Transformer2 in TSS1 The example configuration in Figure 40 adds to network TestNetwork 1 the following 1 the connection between Line1 and Line2 2 the Line2 3 the OCS busbar connection in TSS1 4 the substation TSS2 5 conctatenate the merger name to the original network name gt network name used for simulation and analysis is TestNetwork 1 merge_nw2 and 6 the network configuration of network TestNetwork 2 Figure 41 visualises the merged networks IFB DD UM_OPN_51_01 04 02 doc Page 50 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 51 of 206 User Manual Issue 2013 02 12 TSS1 Transformer Transfromer2 m i je m a a wi a E E E E E W E TestNetwork 1 Figure 41 The merged TestNetwork 1 and TestNetwork 2 4 2 3 3 9 Train Operating Companies aj TOCS aj TOC 3 name Course 1 TOC A 4 Course 2 courselD 4 Course1000 az Course1010 2 TOCB Course 1 courselD 4 Course1020 3 TOCC 4 Course 1 courselD 4 Course2100 Figure 42 Example configuration of Train Operating Companies 3 Merger Substations Substation 2 OCSBBConnect
78. steps in OpenTrack to 2 seconds IFB DD UM_OPN_51_01 04 02 doc Page 113 of 206 DMJ 2013 02 12 OPN 51 1 4 2 Page 114 of 206 3penPowerNet User Manual O 7 4 ww Institut f r Bahntechnik GmbH Issue 2013 02 12 30000 U f s 25000 20000 215000 4 a 10000 S000 e E bessere sariini E ge cueedl 0 0 000 10 000 40 000 50 000 60 000 s km 20 000 30 000 70 000 80 000 90 000 Sim 8 Course constant current Engine 0 Engine1 Sim 9 Course constant current Engine 0 Engine1 Figure 109 The constant current with 1000A causes a voltage drop down to less than 10kV at the end of the line in the 2AC network sim 8 The AC network with a constant current of 1000A is from simulation 9 As we can see in the diagram above the line voltage drops much more for this 2AC configuration as it does for AC 6 3 3 4 Failure scenario For the failure scenario the same configuration tasks as for the AC network have to be done but we need to specify the Switch File from chapter 6 3 1 2 3 Note When not using the FULL license set the time steps in OpenTrack to 4 seconds 28000 27000 26000 25000 24000 23000 10010 le ee a ne ea ln Ce ee ec in ee ae a 21000 20000 U f t 00 01 00 00 00 01 05 00 00 01 10 00 00 01 15 00 00 01 20 00 00 01 25 00 00 01 30 00 00 01 35 00 00 01 40 00 Sim 5
79. z_real Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName CW lineID A trackID 2 km 20 gt lt ConductorTo condName CW lineID B trackID 1 km 20 gt lt Connector gt lt Connector name RL track A 2 B 1 z_real Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 2 km 20 gt lt ConductorTo condName RL lineID B trackID 1 km 20 gt lt Connector gt lt Connector name RR track A 2 B 1 z_real Ohm 0 000010 z_imag Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 2 km 20 gt lt ConductorTo condName RR lineID B trackID 1 km 20 gt lt Connector gt lt Connector name E track 1 Line A B z_ real Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName E lineID A trackID 1 km 20 gt lt ConductorTo condName E lineID B trackID 1 km 20 gt lt Connector gt lt Connector name MW track A 3 B 2 z real Ohm 0 000010 z_imag Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 3 km 20 gt lt ConductorTo condName MW lineID B trackID 2 km 20 gt lt Connector gt IFB DD UM_OPN_51_01 04 02 doc Page 180 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 181 of 206 User Manual Issue 2013 02 12 lt Connector name CW track A 3 B 2 z_real_Ohm 0 000010 z_imag_Ohm 0 gt lt ConductorFrom condName C
80. 0 name ATS 80 T1_NF gt The open time lt Switch lt Switch definition of state close state close the added negative feeder switch time 01 22 00 name ATS 80 T1_OCS gt time 01 22 00 name ATS 80 T1 Rails gt lt Switch state close time 01 22 00 name ATS 80 T1_NF gt The close time definition of the added negative feeder switch lt SwitchSetting gt lt TPD gt lt ADE gt 6 3 2 Simulation For the description of the simulation see the AC network tutorial in chapter 6 2 2 6 3 3 Analysis In the following chapter we will analyse the same network configuration as we did for the AC network and compare the simulation results 6 3 3 1 Default configuration For the default configuration we want to compare some diagrams to see the difference between the two systems First we want to compare the line voltage at the pantograph Please see Figure 87 from AC network and Figure 103 from 2AC network Note When not using the FULL license set the time steps in OpenTrack to 3 seconds IFB DD UM_OPN_51_01 04 02 doc Page 109 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen Powe rNet IIL Institut f r Bahntechnik GmbH Page 110 of 206 User Manual Issue 2013 02 12 U f s 28000 7 27500 3 ba 27000 Henn A A ann anna a ss ans nass A A genen g i 3 3 o g l l i l i 26500 SE e e C Er nn nn Ba setae a E En tanec ngs 1 1 1 1 1 1 1
81. 0 000010 z_ imag Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 1 km 9 750 gt IFB DD UM_OPN_51_01 04 02 doc Page 195 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet IIL Institut f r Bahntechnik GmbH Page 196 of 206 User Manual Issue 2013 02 12 lt ConductorTo condName RR lineID A trackID 2 km 9 750 gt lt Connector gt lt Connector name MW track 1 2 km 10 250 z_real_Ohm 0 000010 z_imag_Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 1 km 10 250 gt lt ConductorTo condName MW lineID A trackID 2 km 10 250 gt lt Connector gt lt Connector name CW track 1 2 km 10 250 z_real_Ohm 0 000010 z_imag_Ohm 0 gt lt ConductorFrom condName CW lineID A trackID 1 10 250 gt lt ConductorTo condName CW lineID A trackID 2 km 10 250 gt lt Connector gt lt Connector name RL track 1 2 km 10 250 z_real_Ohm 0 000010 z_imag_Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 1 km 10 250 gt lt ConductorTo condName RL lineID A trackID 2 km 10 250 gt lt Connector gt lt Connector name RR track 1 2 km 10 250 z_real_Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 1 km 10 250 gt lt ConductorTo condName RR lineID A trackID 2 km 10 250 gt lt Connector gt lt Connectors gt lt Substations gt The substation at km 5 000 lt
82. 00 0 000 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000 9 000 10 000 s km _total_real A _total_imag A Figure 149 The sum of the conductor current for each section and all time steps with the wrong configuration IFB DD UM_OPN_51_01 04 02 doc Page 157 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen Powe rNet IIL Institut f r Bahntechnik GmbH Page 158 of 206 User Manual Issue 2013 02 12 2 500 7 l_total f s 2 000 1 500 0 500 7 0 000 4 i i 4 0 000 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000 9 000 10 000 s km total real A _total_imag A Figure 150 The sum of the conductor current for each section and all time steps with the correct configuration When we compare both diagrams above we can see the wrong configuration results in a current sum much higher than 0A In Figure 150 the resulting current is almost 0 A The current is not exact 0 A due to numeric rounding during the calculation and analysis U f s 60 H T H H H H j H 250 000 ne eee ee pee ee lee u 200 000 wto en oo a on m 150 000 230 Eanaanaennanabennennnennanbannennaennabannnennnnnaban nenne feet nnn b oe emmanabanen nenn 100 000 50 000 nn ee ee i ae fen oe En Ze 0 i 4 i 4 0 000 0 000 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000 9 000 s km U_abs V Track 1 Conductor E U_
83. 00 Figure 174 The simulation values to course CBAI_01 for the wrong simulation with missing data at 1 15 50 In Figure 174 the values of course CBAI_01 are incomplete because the configuration of OpenTrack infrastructure is not correct respective does not match with the OpenPowerNet positions The course CBAI_01 is approaching station A and change from track 1 to track 2 at km 0 650 OpenTrack determine the chainage always counting the distance from the last vertex Counting or depends on the direction of the edge and the direction of the course In our case the course pass vertex at km 0 650 and move to track 2 So the actual position is the vertex at km 0 650 minus 9 m this is km 0 641 at track 2 The solution may be to add an additional vertex at the end of track 2 km 0 450 with an edge length of 0 m to vertex IFB DD UM_OPN_51_01 04 02 doc Page 198 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 199 of 206 User Manual Issue 2013 02 12 Institut fiir Bahntechnik GmbH km 0 650 at track 1 This is a workaround for this problem but the electrical configuration is still wrong This tutorial shows the very important constraint to have always a current sum of 0 A for all conductors in the same section This means it is not allowed to add connectors parallel to conductors 7 FAQ 7 1 What needs to be considered in OpenTrack to use OpenPowerNet During creation of the OpenTrack project the followin
84. 00 2000 l i 1 ia i 1 E 1500 2000 Sig o n 2 i f nu lt i 1 oe 1500 A 4404 ra nn nn nn i a 1000 H 1 1 i i ia i ies 1000 f a_a i i Bg i i Om i N im 1 a 500 1 1 1 aa 500 wa Weare pn Ne ee ee i i i em 04 0 00 01 00 00 00 01 10 00 00 01 20 00 00 01 30 00 00 01 40 00 00 01 50 00 00 02 00 00 00 02 10 00 U V a Figure 111 The pantograph line voltage and current versus time for the DC network default configuration In the diagram above we can see the current limitation as the current drops as well as the voltage U f s 3500 500 aa alee et ea eee al eee aaa alee 0 4 N 1 0 000 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000 90 000 s km Figure 112 The line voltage at pantograph versus chainage As we would expect the minimum of the pantograph line voltage is in the middle between the two substations IFB DD UM_OPN_51_01 04 02 doc Page 118 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen Powe rNet IIL Institut f r Bahntechnik GmbH Page 119 of 206 User Manual Issue 2013 02 12 F f s 300 0 000 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000 90 000 s km F_requested kN F_achieved kN Figure 113 The requested and achieved effort of course ABCI_01 for the default configuration The diagram a
85. 1 04 02 doc Page 99 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen Powe rNet IIL Institut f r Bahntechnik GmbH Page 100 of 206 User Manual Issue 2013 02 12 S f t 12 00 7 0 450 0 400 0 350 0 300 0 250 0 200 P S 0 150 0 100 0 050 F 0 000 0 00 4 4 4 0 050 00 01 00 00 00 01 10 00 00 01 20 00 00 01 30 00 00 01 40 00 00 01 50 00 00 02 00 00 P MW S MVA Q MvAq Figure 93 Power demand of the transformer in substation TSS_5 This diagram shows the power demand of transformer T1 in substation TSS_5 at km 5 000 E f t 2 500 2 000 Luna Ilmenau u ee I se sz i J a 1 500 7 E MWh 1 000 EE ae E 0 500 4 0 000 4 i N j 00 01 00 00 00 01 10 00 00 01 20 00 00 01 30 00 00 01 40 00 00 01 50 00 00 02 00 00 Figure 94 Provided energy by the transformer in substation TSS_5 The diagram above shows the energy versus time IFB DD UM_OPN_51_01 04 02 doc Page 100 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 101 of 206 User Manual Issue 2013 02 12 6 2 3 2 Short circuit To analyse an electrical network it is interesting to calculate the short circuit currents This is done in OpenPowerNet with a special engine model To evaluate the results we will use the Excel Files PowerSupply2 xlsx Op
86. 1 1 4 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 60 of 206 User Manual Issue 2013 02 12 2001 2001 36 2006 06 15 15 69 05 37 2006 06 15 16 05 06 1 2 39 2006 06 15 17 172 6 06 15 17 2 IZA start 3Ikm h 0 04 40 2006 06 15 17 285t tat 33km h 0 04 41 2006 06 15 17 33 46 2006 06 15 173657 HSL Current imit 250A start 33krn h 0 04 1 0 42 2006 06 15 18 2625 2006 06 15 18 29 40 HSL Current kmit 250A start 33km h 0 04 10 47 200606 1617 1440 2006 06 16 17 19 12 HSL Current kmit 250A start 33km h 0 04 10 Figure 52 The results of the query are listed in the table Select Return Data to Microsoft Excel from file menu to insert the data into an Excel table Please see the Excel documentation for further questions Daten importieren w hlen Sie das Format aus in dem Sie diese Daten in der Arbeitsmappe anzeigen m chten Tabelle is PivotTable Bericht i PivotChart und PivotTable Bericht Ei Nur Verbindung erstellen Wo sollen die Daten eingef gt werden Bestehendes Arbeitsblatt easy Neues Arbeitsblatt Eigenschaften Abbrechen Figure 53 Click OK and the data will be inserted to the table at position SA 1 IFB DD UM_OPN_51_01 04 02 doc Page 60 of 206 DMJ 2013 02 12 OPN 51 1 4 2 Page 61 of 206 lt spenPowerNet User Manual Of P7 Institut f r Bahntechnik GmbH Issue 2013 02 12 Eigenschaften SF Eig
87. 1 o Yy nm DISIN 2 j oO oj 99 wW w O ol ol ol Oli N gt gt Eer Kori Due e im N N N Figure 168 The correct OpenTrack infrastructrue configuration of the loop tracks Next after configuration of the infrastructure create new paths routs itineraries and courses according to Table 22 6 7 5 1 2 OpenPowerNet 6 7 5 1 2 1 Engine File The engine file is the same as in the AC tutorial 6 7 5 1 2 2 Project File According to the infrastructure defined in OpenTrack we need to configure the electrical network in OpenPowerNet IFB DD UM_OPN_51_01 04 02 doc Page 186 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 187 of 206 User Manual Issue 2013 02 12 Figure 169 The wrong OpenPowerNet network configuration Lets first configure the wrong electrical network lt xml version 1 0 encoding UTF 8 gt lt OpenPowerNet xmlns xsi http www w3 org 2001 XMLSchema instance xsi noNamespaceSchemaLocation http www openpowernet de schemas 1 4 2 OpenPowerNet xsd name Network Tutorial Loop comment wrong maxIterations 1000 maxFailedIterations 100 odbcDsn pscresults record2DB true record2DB Dump true rstFile Engine File xml simulationStart_s 3600 gt lt ATM gt lt Vehicles gt lt Vehicle eddyCurrentBrake false engineID Enginel gt lt Propulsion engine electric supply AC 25kV 50Hz brak
88. 13 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 163 of 206 User Manual Issue 2013 02 12 The changed and added conductors need to be connected to the line Therfore we need to change and add new connectors lt Connector name z real Ohm 0 001 z_imag_Ohm 0 gt lt ConductorFrom condName TSS_5 F 1 lineID A trackID 1 km 4 7 gt lt ConductorTo condName CW lineID A trackID 1 km 4 7 gt lt Connector gt lt Connector name z_ real Ohm 0 001 z_ imag Ohm 0 gt lt ConductorFrom condName TSS _5_F r lineID A trackID 1 km 5 3 gt lt ConductorTo condName CW lineID A trackID 1 km 5 3 gt lt Connector gt lt Connector name z real Ohm 0 001 z_ imag Ohm 0 gt lt ConductorFrom condName TSS 5 RF 1 lineID A trackID 1 km 4 7 gt lt ConductorTo condName RR lineID A trackID 1 km 4 7 gt lt Connector gt lt Connector name z_ real Ohm 0 001 z_ imag Ohm 0 gt lt ConductorFrom condName TSS_5_RF_r lineID A trackID 1 km 5 3 gt lt ConductorTo condName RR lineID A trackID 1 km 5 3 gt lt Connector gt These are the connectors to the new negative feeder lt Connector name z real Ohm 0 001 z_ imag Ohm 0 gt lt ConductorFrom condName TSS_5 NF_1 lineID A trackID 1 km 4 7 gt lt ConductorTo condName NF lineID A trackID 1 km 4 7 gt lt Connector gt lt Co
89. 16 The OpenPowerNet included XML editor with editing support XML Test OPN_Projects Tutorial 01_ OPNData Project o x File Edit Source Navigate Search Project Run OpenPowerNet Window Help wing S erOrQa 9 MEHR BH EEE ORGS BBD Y Freero r fy X XML E PSC Viewer OP R Project amp X Project BE Outline 8 B B lt ToProperty toPos_km 85 4 equivalentRadius_mm 3 45 r2 e OpenPowerNet name Tutorial E Test lt Conductor gt e ATM lt Conductor type Rail gt E Vehicles lt StartPosition condName RL trackID 1 km 0 gt E Vehicle eddyCurrentt lt ToProperty toPos_km 85 4 equivalentRadius_mm 38 52 r E Propulsion engin lt Conductor gt E MeanEfficienc s 1 CCONONCEOE EIER E Options tolerance_A 0 1 lt StartPosition condName RR trackID 1 km 0 gt E PSC lt ToProperty toPos_km 85 4 equivalentRadius_mm 38 52 r E Network name A C lt Conductor gt m paota a E Lines recordCurrent lt Conductor type MessengerWire gt Li A lt StartPosition condName M trackID 2 km 9 750 gt el Kine name lt ToProperty toPos_km 10 250 equivalentRadius_ mm 3 45 e Conductors lt Conductor gt el age gt lt Eonduetor type kontactHirei gt E StartPc lt StartPosition Attribute type E ToProy lt ToProperty toh The type of the conductor e
90. 175 V for course CBAI_01 Now we will configure a capacitive behaviour of the engine in case of low voltage Figure 122 describes the detailed behaviour and Figure 123 the values of the power factor for the engine model IFB DD UM_OPN_51_01 04 02 doc Page 125 of 206 DMJ 2013 02 12 OPN 51 1 4 2 Page 126 of 206 lt SpenPowerNet 7 7 4 Institut f r Bahntechnik GmbH User Manual Issue 2013 02 12 Figure 122 The engine power factor association between engine behaviour and model parameter Kiss C Legend The behaviour of the engine wether capacitive C or inductor L The value of the power factor in the engine model The resulting current of the engine at the pantograph while driving For braking the currents are turned by 180 Phi o 24000 25000 30000 u v Figure 123 Power factor versus line voltage 6 6 1 1 Configuration 6 6 1 1 1 OpenTrack We will use the same OpenTrack data as for the AC tutorial described in chapter 6 2 1 1 6 6 1 1 2 OpenPowerNet 6 6 1 1 2 1 Engine File As the basis for the Engine File we use the one from the AC tutorial As we want to have a power factor depending on the line voltage we need to specify the detailed curve see the XML snippet below lt fourQuadrantChopper typeStr FOC 1 gt lt phi gt IFB DD UM_OPN_51_01 04 02 doc Page 126 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3
91. 2 Rectifier Substation Rectifier name Slice none ConnectorSlice name Storage voltage Substation StorageV name stabilisation Storage voltage Substation Storage name stabilisation and energy saving Substation Network Substation name Switch Project Switch name VLD Substation Project File VLD name VLD Type VLDTypes TypeDefs File VLDType name none Merger name Table 2 The naming conventions of the model elements versus scope 4 2 3 Project specific configuration The project specific configuration files describe the engines the used engine model the definition of power supply the electrical network and optionally the switch states of the electrical network All files are XML files While it is possible to do basic editing with any text editor it is recommended to use any XML editor like the commercial one Altova XMLSpy for convenient configuration The schemas for validation and assisted creation of the XML files can be found in the sub folder schemas of the de bahntechnik dd opn bin x x x JJJJMMDDhhmm and de bahntechnik dd opn ana_x x x JJJJMMDDhhmm plugins If the XML files are loaded into the XML editor together with schema files they help creating and understanding the structure of the configuration files and lots of values can be suggested automatically Please refer to the user manual of your editor for further details on editing XML files The project specific files that are used for simulation are con
92. 20 temperatureCoefficient 0 x_m 0 y m 450 0 gt lt Conductor gt lt Conductors gt The definition of connector slices To have more detailed recoding data the slice distance in the station A shall be only 50m Outside the stations A and B the slice distance shall be 200m And track 2 in station B slice distance 100m IFB DD UM_OPN_51_01 04 02 doc Page 188 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 189 of 206 User Manual Issue 2013 02 12 lt ConnectorSlices gt lt ConnectorSlice name dropper track 1 station A firstPos_km 0 lastPos_km 1 maxDistance_km 0 05 gt lt Connector z_real_Ohm 0 000073 z_imag_Ohm 0 gt lt ConductorFrom condName MW trackID 1 gt lt ConductorTo condName CW trackID 1 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name dropper track 1 outside station A firstPos_km 1 2 lastPos_km 25 4 maxDistance_km 0 2 gt lt Connector z_real_Ohm 0 000073 z_imag_Ohm 0 gt lt ConductorFrom condName MW trackID 1 gt lt ConductorTo condName CW trackID 1 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name dropper track 2 station A firstPos_km 0 lastPos_km 0 450 maxDistance km 0 05 gt lt Connector z_real_ Ohm 0 000073 z_ imag Ohm 0 gt lt ConductorFrom condName MW trackID 2 gt lt ConductorTo condName CW trackID 2 gt
93. 250 These maxBrakePower 5560 these and maxRecoveryVoltage 29000 gt these values need to be set lt auxSupply typeStr all constPower 100 gt lt propulsion gt lt engine gt lt vehicle gt 6 6 4 1 2 2 Project File As the basis we use the Project File from the AC tutorial The regenerative effort model has to be specified We want to use the maxPower maxEffort model A table same as for the tractive effort described in chapter 6 6 2 is also available lt Vehicle eddyCurrentBrake false engineID Enginel gt lt Propulsion engine electric supply AC 25kV 50Hz brakeCurrentLimitation none tractiveCurrentLimitation none useAuxPower true fourQuadrantChopperPhi none regenerativeBrake maxPower maxEffort These property need to be set IFB DD UM_OPN_51_01 04 02 doc Page 132 of 206 DMJ 2013 02 12 OPN 51 1 4 2 Page 133 of 206 7 7 4 3penPowerNet User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH tractiveEffort maxPower maxTractEffort gt lt MeanEfficiency gt lt Propulsion gt lt Vehicle gt Set the right Engine File and don t forget to set a meaningful project name and comment in the project file 6 6 4 2 Simulation We need only to simulate the long trains to see effect of the regenerative brake 6 6 4 3 Analysis The regenerative brake will only affect the simulation results during braking In Figure 129 we can see
94. 4 You can see the line voltage and pantograph current versus the time in Figure 86 We see the no load voltage is 27 5kV and the minimum line voltage at pantograph position is about 26 4kV at 01 26 00 Furthermore we see the pantograph current does not exceed 250A IFB DD UM_OPN_51_01 04 02 doc Page 95 of 206 DMJ 2013 02 12 OPN 51 1 4 2 FJL u Cpe n P owe rN et hm GmbH Page 96 of 206 User Manual Issue 2013 02 12 U f t 27600 7 r 300 27400 a ee ee 27200 27000 26800 gt 26600 i 26400 26200 Hell My ga 26000 A 4444 rs aso 200 Soeeee she 450 r 100 T 50 Biss E EBI EE ET T OOE 4 o 00 01 00 00 00 01 10 00 00 01 20 00 00 01 30 00 00 01 40 00 00 01 50 00 00 02 00 00 U V I A Figure 86 The line voltage and pantograph current versus time for all courses To see the location of the minimum line voltage at pantograph position we use the diagram in sheet U f s see Figure 87 This diagram shows the minimum voltages at km 12 500 and also very well the location of substation TSS_80 by the local voltage maxima at km 80 000 27600 7 27400 27200 a 27000 48 2 EANAIR PARIE SEE EEE EEE NER EIER EEE ERBEN BEER saceedaccnsnenedeceenmadeseemanceeee seca U f s U 6 r 3a nea v U Th 2 mn o0000 000000000 i oad SSS SSS SE pe
95. 4 2 OpenPowerNet xsd name Tutorial AC Network comment failure scenario maxIterations 1000 maxFailedIterations 100 dbUser opndbusr The database user name dbPasswd xxxx The database user password if required odbcDsn pscresults The DSN name this is the name specified as ODBC data source name record2DB true Whether to record data to database or not default is false record2DB Dump false Whether to use dump files to speed up the simulation default is false rstFile Engine File xml The path to the referenced file may be absolute or relative switchStateFile Switch File xml gt To record engine data set the attribute OpenPowerNet ATM Options record2DB to true The recording of currents and voltages for electrical networks is configured according to the element hierarchy of the Project File beginning at element OpenPowerNet PSC Network using the attributes recordCurrent and recordVoltage These two attributes have three allowed values true Record data of this element if higher hierarchy is not set to false sub true sub Record data of this and all lower elements false sub Do not record data of this and all lower elements To record the data of a storage set the attribute recordStatus in element OpenPowerNet PSC Network Substations Substation StorageV to true This attribute is directly inherited from the top level attribute of the hierarchy Example XML snippet with recording attributes
96. 6 9 3 Analysis We use Excel tool Compare Two Engines to compare the simulation IFB DD UM_OPN_51_01 04 02 doc Page 146 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 lt spenPowe rNet IIL Institut f r Bahntechnik GmbH Page 147 of 206 User Manual Issue 2013 02 12 etha f v etha v km h etha_tract Sim 29 Course ABCI_01 Engine 0 Engine1 Wetha_total Sim 29 Course ABCI_01 Engine 0 Engine1 Aetha_tract Sim 30 Course ABCI_01 Engine 0 Engine1 X etha_total Sim 30 Course ABCI_01 Engine 0 Engine1 Figure 141 The efficiencies of course ABCI_01 with mean efficiency sim 29 and efficiency table model sim30 6 6 10 Single component model This tutorial describes the handling of the single component model of the engine see also Figure 3 The components of the model are e Transformer Four quadrant chopper Traction inverter Motor and e Gear The efficiencies shall be as in Figure 142 Note that the transformer efficiency is versus current and the others constant or versus speed To see the effect of the transformer efficiency we will run one simulation with an mean transformer efficiency of 98 and one simulation with the efficiency as in Figure 142 We will use the courses with longs trains IFB DD UM_OPN_51_01 04 02 doc Page 147 of 206 DMJ 2013 02 12 OPN 51 1 4 2 pen PowerNet Page 148 of 206 User Manua
97. 8 52 r20 Ohm_km 0 0306 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 10 75 y m 0 gt lt Conductor gt and for station B lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 3 45 r20 Ohm_km 0 2311 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 10 y m 6 9 gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 3 45 r20 Ohm_km 0 1852 temperature GradCelsius 20 temperatureCoefficient 0 00385 x m 10 y m 5 3 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 38 52 r20 Ohm_km 0 0306 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 9 25 y m 0 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 38 52 r20 Ohm_km 0 0306 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 10 75 y m 0 gt lt Conductor gt lt Conductor type Earth gt lt StartPosition condName E trackID 1 km 0 gt lt ToProperty toPos_km 25 4 equivalentRadius_mm 450000 r20 Ohm _km 0 0393 temperature GradCelsius
98. B DD UM_OPN_51_01 04 02 doc Page 124 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 125 of 206 User Manual Issue 2013 02 12 500 400 300 200 100 77 Sa i S 7 S E ESS LEE eee 1A 0 100 200 300 7 400 500 00 02 00 00 00 02 10 00 00 02 20 00 00 02 30 00 00 02 40 00 00 02 50 00 _load_max A Sim 17 Network A C Substation SS_45 Storage S1 _load_max A Sim 16 Network A C Substation SS_45 Storage S1 _unload_max A Sim 17 Network A C Substation SS_45 Storage S1 _unload_max A Sim 16 Network A C Substation SS_45 Storage S1 L real A Sim 17 Network A C Substation SS_45 Storage S1 real A Sim 16 Network A C Substation SS_45 Storage S1 Figure 121 The load and unload current of both simulations simulation 17 with 400A and simulation 16 with 200A load and unload current limitation The diagrams above clearly show the different current limitations as well as the load and unload currents respecting their limitations 6 6 Engine model In the following tutorials we will configure different engine models and analyse the calculated simulation data Each of following chapters describes one aspect of the engine model 6 6 1 Power Factor tutorial In the AC tutorial with failure scenario we experienced a significant voltage drop down to 24
99. Conducto lt Conductor gt E StartPc lt Conductor type Data Type string ToProy lt StartPosition MessengerWire ne e Conducto aan ate i R ContactWire lt ToProperty NegativeFeeder MessengerWire E StartPc E m Rail Rail E ToProy Design Source 4 ReturnFeeder NegativeFeeder Conducto e Feeder _ E Problems EI Properties 22 inkaen en E StartP e ToPro Property i unknown e Conducto Attributes E StartPc recordCurrent E ToProy f recordVoltage Press Ctrl Space to show e Conducto type e StartPc E ToProy e Conducto e StartPc E ToProy e Conducto e StartPc e ToPro fel Conducto 4 m 4 m 0 OpenPowerNet P Conductor type Writable Smart Insert 38 30 2702 IFB DD UM_OPN_51_01 04 02 doc Page 23 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 24 of 206 User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH 3 7 Analysis Tool OpenPowerNet has a comprehensive analysis tool to create Excel diagrams in an easy Standardised and efficient way This tool provides the automatic analysis and the magnetic field calculation as main functionality A detailed description is available in chapter 4 5 3 8 Database A database is used to store the simulation results for later visualisation and analysis The detailed database documentation can be found in the Hel
100. ConductorFrom condName CW lineID A trackID 1 km 9 750 gt lt ConductorTo condName CW lineID A trackID 2 km 9 750 gt lt Connector gt lt Connector name RL track 1 2 km 9 750 z_ real Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 1 km 9 750 gt lt ConductorTo condName RL lineID A trackID 2 km 9 750 gt lt Connector gt lt Connector name RR track 1 2 km 9 750 z real Ohm 0 000010 z_ imag Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 1 km 9 750 gt lt ConductorTo condName RR lineID A trackID 2 km 9 750 gt lt Connector gt lt Connections of rails and ocs at change over from track 1 to 2 line A gt lt Connector name MW track 1 2 km 10 250 z real Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 1 km 10 250 gt lt ConductorTo condName MW lineID A trackID 2 km 10 250 gt lt Connector gt IFB DD UM_OPN_51_01 04 02 doc Page 179 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 180 of 206 User Manual Issue 2013 02 12 lt Connector name CW track 1 2 km 10 250 z_real_Ohm 0 000010 z_imag_Ohm 0 gt lt ConductorFrom condName CW lineID A trackID 1 km 10 250 gt lt ConductorTo condName CW lineID A trackID 2 km 10 250 gt lt Connector gt lt Connector name RL trac
101. E oo0s00000000 00000000000 n 0000009744 300 0 0 50 100 150 200 250 v km h F_requested kN F_achieved kN Figure 159 The achieved effort of the engines in the DC and AC network In the diagram above we can see very well the two different efforts versus speed characteristics The higher curve belongs to the AC and the lower to the DC propulsion system IFB DD UM_OPN_51_01 04 02 doc Page 172 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 173 of 206 User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH U f s 30000 7 2000 1800 25000 1600 20000 15000 gt 10000 5000 4 4 4 4 4 4 4 0 000 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000 90 000 s km 0 aU V A Figure 160 The line voltage and current at pantograph of course ABCI_01 In Figure 160 are the curves for voltage and current in both electrical networks The line voltage of the two systems is significant different and the location of the system change over visible 6 7 4 Network with multiple lines points and crossings tutorial In This tutorial we will create an OpenTrack infrastructure with two lines and multiple points and one crossing For the simulation of the electrical power supply we create a network also with two lines and 3 substations IFB DD UM_OPN_51_01 04 02 doc Page 173 of 206 DMJ 2013 02 12 7 7 4 OPN 51
102. ID 1 km 0 gt lt ToProperty toPos_km 9 equivalentRadius_mm 38 52 r20 Ohm_km 0 0306 temperature GradCelsius 20 temperatureCoefficient 0 004 x _m 0 75 y_m 0 gt lt ToProperty toPos_km 85 4 recordCurrent false recordVoltage false gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 1 km 0 gt lt ToProperty toPos_km 9 equivalentRadius_mm 38 52 r20 Ohm_km 0 0306 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 0 75 y m 0 gt lt ToProperty toPos_km 85 4 recordCurrent false recordVoltage false gt lt Conductor gt lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 3 45 r20 Ohm_km 0 2311 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 10 y 1 m 6 9 recordCurrent false recordVoltage false gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 3 45 r20 Ohm km 0 1852 temperature GradCelsius 20 temperatureCoefficient 0 00385 x_m 10 y m 5 3 recordCurrent false recordVoltage false gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 38 52 r20 Ohm_km 0 0306 temper
103. ID 2 gt lt ConductorTo condName CW trackID 2 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name rail connector track 1 station A firstPos_km 0 2 lastPos_km 1 maxDistance_km 0 05 gt lt Connector z_real_ Ohm 0 00001 z_ imag Ohm 0 gt lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName RR trackID 1 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name rail connector track 1 outside station A firstPos_km 1 2 lastPos_km 25 4 maxDistance_km 0 2 gt lt Connector z_real_Ohm 0 00001 z imag Ohm 0 gt lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName RR trackID 1 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name rail connector track 2 station A firstPos_km 0 2 lastPos_km 0 650 maxDistance_km 0 05 gt lt Connector z_real_ Ohm 0 00001 z_ imag Ohm 0 gt lt ConductorFrom condName RL trackID 2 gt lt ConductorTo condName RR trackID 2 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name rail connector track 2 station B firstPos_km 9 800 lastPos_km 10 200 maxDistance km 0 1 gt lt Connector z_real_ Ohm 0 00001 z imag Ohm 0 gt lt ConductorFrom condName RL trackID 2 gt lt ConductorTo condName RR trackID 2 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlices gt The configuration of the leakages lt Leakages gt
104. In the XML snippet below we see the constant auxiliary power and as comments the other three auxiliary power models An XML comment is always between lt and gt lt vehicle length 25 bruttoWeight 75 vehicleID Enginel speed 250 gt lt engine gt lt propulsion supply AC 25kV 50Hz transmission electric engine electric power 5560 maxTractEffort 250 totalTractEfficiency 90 totalBrakeEfficiency 90 maxBrakePower 5560 We need to set the braking maximum power maxBrakeEffort 250 maximum brake effort and maxRecoveryVoltage 29000 gt maximum recovery voltage lt auxSupply typeStr constant power constPower 100 gt lt auxSupply typeStr constant resistance constResistance 7507 6 gt lt auxSupply typeStr constant power while braking constPowerBraking 100 gt lt auxSupply typeStr constant resistance while braking constResistanceBraking 7507 6 gt ye lt propulsion gt lt engine gt lt vehicle gt For simulation 2 to 5 we use only one auxiliary power model and comment the others by using XML comment syntax 6 6 6 1 2 2 Project File As we use short trains only and they start at 2 00 we have to set the simulation start time to 7200s simulationStart_s 7200 Then we need to set the regenerative brake option and set the use of the engine auxiliary to false for the first simulation lt Vehicle eddyCurrentBrake false engineID Enginel gt lt
105. M_OPN_51_01 04 02 doc Page 178 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 179 of 206 User Manual Issue 2013 02 12 lt Connector z_real_Ohm 0 00001 z_imag_Ohm 0 gt lt ConductorFrom condName RL trackID 2 gt lt ConductorTo condName RR trackID 2 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlices gt lt Leakages gt The leakage configuration for track 1 lt Leakage firstPos_km 20 lastPos_km 30 4 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 20 lastPos_km 30 4 yReal_ S km 0 1 yImag S_km 0 gt lt ConductorFrom condName RR trackID 1 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt The leakage configuration for track 2 lt Leakage firstPos_km 20 lastPos_km 30 4 yReal S km 0 1 yImag_S km 0 gt lt ConductorFrom condName RL trackID 2 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 20 lastPos_km 30 4 yReal S km 0 1 yImag S_km 0 gt lt ConductorFrom condName RR trackID 2 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakages gt lt Line gt After the configuration of the conductors for both lines and all tracks the electrical connection between the lines and tracks s
106. Manual Issue 2013 02 12 U f s 3500 3000 2500 2000 BE a nn renee nas Denes een eee neers gt agbo LURERSREEEN nl ae ee u ae ua neue nn co a ee en mag ee a E en nn 0 0 000 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000 90 000 s km Sim 16 Course ABCs_02 Engine 0 Engine1 Sim 17 Course ABCs_02 Engine 0 Engine1 Figure 119 The effect to the line voltage of course ABCs_01 with energy storage current limitation of 200A sim16 and 400A sim17 Using the prepared Excel tool Compare Two Station Energy Storages advanced we will compare the effect of the different maximum load and unload current of the energy storages U f t 3400 0 3300 0 3400 0 m nn ced 2500 0 N 00 02 00 00 00 02 10 00 00 02 20 00 00 02 30 00 00 02 40 00 00 02 50 00 U_real V Sim 17 Network A C Substation SS_45 Storage S1 U_real V Sim 16 Network A C Substation SS_45 Storage S1 U _0 V Sim 17 Network A C Substation SS_45 Storage S1 _ U_0 V Sim 16 Network A C Substation SS_45 Storage S1 Figure 120 The line voltage at the substation with the storage for both storage current limitations in simulation 16 and simulation 17 For the 200A current limitation we see that the voltage cannot be stabilised at 2800V The maximum load current limitation is visible at about 02 23 and 02 45 IF
107. ODBCDSN psc analysis gt Simulation 1 2012 04 17 14 32 24 0 Tutorial AC Network default Z Simulation 2012 04 17 14 32 24 0 Simulation End 2012 04 17 14 42 00 0 Time Start 00 59 59 0 Time End 01 48 55 0 Timestep 1s OPN Version 1 4 0 r Edit Properties Comment correct comment Apply Reject L J Figure 71 The Simulation Property Editor tool 4 5 5 AnalysisPresets File The XML based AnalysisPresets File contains the definitions of the chart types A customisable example file is available for download via GUI at Help gt Help Contents gt OpenPowerNet Analysis User Guide gt defaultPresets xml The corresponding XML schema documentation can be found at Help gt Help Contents gt OpenPowerNet Analysis User Guide gt AnalysisPresets Schema The built in default preset file will be used if no alternative is defined The path of the default preset file is accessible via the menu The preset file may be modified by the user to adapt the layout as desired In case the user wants to use his own file he needs to set the property Preset file at the analysis setup see chapter 4 5 1 The file enables the user to modify properties of the following items e The chart types generated by Automatic Analysis tool see chapter 4 5 2 e Magnetic flux density image e Translation strings like substation transformer etc e General settings for Excel etc Figure 72 sh
108. OPN_51_01 04 02 doc Page 4 of 206 DMJ 2013 02 12 7 4 OPN 51 1 4 2 pen PowerNet Page 5 of 206 User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH 1 Introduction 1 1 Overview The purpose of this document is to describe the usage of the OpenPowerNet software including the modules ATM and PSC It explains how to configure run and analyse simulations This document corresponds to OpenPowerNet release 1 4 2 Some of the used package names are brand names registered by companies other than IFB Please refer to the license descriptions coming with that software packages 1 2 Versions OpenPowerNet requires the following versions of associated applications Additionally the OpenPowerNet software and documentation have their own version Analysis Tool 1 4 2 Installation Instruction 1 4 2 MariaDB 5 2 10 MySQL ODBC driver 5 1 5 amp 3 51 27 OpenPowerNet 1 4 2 OpenTrack 1 7 0 2013 01 14 OPN Database 16 RailML Rolling Stock Schema 1 03 0PN 2 1 3 Acronyms and abbreviations The following abbreviations are used within this document ATM Advanced Train Model CD Compact Disk DSN Data Source Name GUI Graphical User Interface HTML Hyper Text Markup Language OCS Overhead Catenary System ODBC Open Database Connection OPN OpenPowerNet PSC Power Supply Calculation RailML Railway Markup Language RMS Root Mean Square
109. Oma Institut fur Bahntechnik GmbH OpenPowerNet User Manual Institut fur Bahntechnik GmbH Branch Office Dresden Document No OPN 51 1 4 2 I opn 10_documents 20_program_documentation 20_user_manual um_opn_51_01 04 02 doc Author Review Release Martin Jacob Harald Scheiner Dr J rg von Lingen Revision Record Change Reason 2013 02 12 Update versions and OpenTrack model constraints 2012 05 07 Add simulation network wise time window merge networks booster transformer remove attribute recordComputation2DB remove example files and refer to Tutorial update Project File description add VLD model 2011 06 29 Update chapters 4 2 3 3 4 3 6 2 3 2 7 6 7 12 because of new min recovery braking speed new message recording new constant voltage engine instead of shortCircuit Engine and matrix conditional number 2010 05 17 Add Dongle ID configuration 2010 03 31 Adding engine energy storage and overview of physical variables update Analysis 2010 01 07 Adding chapters 4 2 2 7 10 2009 09 22 Adding tutorials and update to version 1 2 0 2009 06 26 Update to OpenPowerNet version 1 1 0 2008 11 24 Reworked 2006 04 10 Created IFB DD UM_OPN_51_01 04 02 doc Page 1 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pe n P owe rN et HIAL Page 2 of 206 User Manual Issue 2013 02 12 Table of Contents 1 SALERS LU Te 1 O g PA EE SA AASE E FREUE A
110. PowerNet A gt Institut f r Bahntechnik GmbH Issue 2013 02 12 4 2 3 3 3 Network Model al PSC 4 Network name voltage_kV frequency_Hz recordCurrent recordVoltage 4 Lines Substations Times Earth Network name voltage_kV frequency_Hz recordCurrent recordVoltage Lines vj Substations Times vj Earth condName R linelD _ vi Mergers Options discreteTrains tolerance_grad tolerance_V tolerance_A maxincreaseCount TestNetwork 1 15 16 7 true true 4 Line name Line1 maxSliceDistance_km 0 1 recordCurrent recordVoltage Conductors condName R linelD Line1 trackiD Track1 km 10 TestNetwork 2 15 16 7 true true ne1 trackID Track1 km 10 false 0 001 0 1 1 500 maxCurrentAnglelteration 1000 false sub false sub 4 Conductor 2 type 1 ContactWire 2 Rail StartPosition StartPosition condName CW trackID Track1 km 10 StartPosition condName R trackID Track1 km 10 ToProperty al ToProperty xm 0 ym 5 3 r20_0hm_km 0 232 equivalentRadius_mm 44 toPos_km 20 temperatureCoefficient 0 0039 temperature_GradCelsius 20 4 ToProperty x_m 0 ym 0 r20_Ohm_km 0 0306 equivalentRadius_mm 38 52 toPos_km 20 temperatureCoefficient 0 0039 temperature_GradCelsius 20 Figure 30 Example project configuration of TestNetwork 1 including Lines Substations
111. PowerNet model contraint IFB DD UM_OPN_51_01 04 02 doc Page 199 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 200 of 206 User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH Note Check Use Curve Resistance in OpenTrack preferences to respect each curve in your track layout If this option is not set OpenTrack uses a mean radius to calculate driving resistance 7 2 How to deal with broken chainage In general it is advised to avoid broken chainage There are two different kinds of broken chainage a positive and a negative see Figure 176 distance 0 000 1 000 2 000 3 000 tt gt chainage 0 000 1 000 1 100 2 100 1 900 2 900 positive negative broken chainage broken chainage add 100m go back 200m Figure 176 The two kinds of broken chainage as example Each kind has to be handled different in OpenTrack and OpenPowerNet See Figure 177 for the PSC Viewer Diagram of the solution in OpenPowerNet The detailed description follows in the next chapters 0 000 1 000 1 100 2 100 1 900 ee 30 Line A Figure 177 The positive and negative broken chainage modelled in OpenPowerNet 7 2 1 Positive broken chainage Positive is easier to model than the other one According to the example in Figure 176 we just need in OpenTrack to set km 1 000 at one side of the double vertex and km 1 100 at the other side In OpenPowerNet we define conductors ending at km 1 000 and start new conduc
112. R gt lt ToProperty x_m 5 y m 0 r20 Ohm_km 0 0164 equivalentRadius_mm 38 52 toPos_km 2 100 temperatureCoefficient 0 0047 temperature GradCelsius 40 gt lt Conductor gt lt Conductors gt lt Line gt lt Connectors gt lt Connector z_real Ohm 0 0001 z_imag Ohm 0 0 gt lt ConductorFrom km 1 000 trackID up condName CW lineID A gt lt ConductorTo km 1 100 trackID up condName CW lineID A gt lt Connector gt lt Connector z_real Ohm 0 0001 z_imag Ohm 0 0 gt lt ConductorFrom km 1 000 trackID up condName R lineID A gt lt ConductorTo km 1 100 trackID up condName R lineID A gt lt Connector gt lt Connectors gt 7 2 2 Negative broken chainage The model in OpenTrack is the same as for positive broken chainage Set km 2 100 at one side of the double vertex and km 1 900 at the other and define a new line name for the following edges Always take care of the edge direction In OpenPowerNet we need to have two lines In this example the line A from km 0 000 to 2 100 and line A from km1 900 to 3 000 Then we have to connect the conductors with each other using low resistance connectors see Figure 177 The Project File XML snippet shows the conductor and connector configuration of the example lt Line name A maxSliceDistance_km 0 1 recordCurrent true recordVoltage true gt lt Conductors gt lt Conductor type ContactWire gt lt StartPosition km
113. R RR RR Rn 121 6 5 1 Configuration ee ee ee a E 121 6 5 2 Simulatoren eteo EBERLE RAR EORRU IRRE ERNERREIRRNERR 122 6 5 3 Analysis eaea e e Ce ene E EE E EEE EEE EE 123 6 6 Erginemiedel ers see ea 125 6 6 1 Power Factor tutorial cccceeeeeeceeeeeeeeeeeeeeeeeeeeaaeeeeeeeeeeeeeseaeeeeeees 125 6 6 2 Tractive effort tutorial ana 129 6 6 3 Tractive current limitation tutorial ccccseeeeeeeeeeeceeeeeeeeeeeeeeeeeeeeeeaes 132 6 6 4 Regenerative braking tutorial 44H HH 132 6 6 5 Brake current limitation tutorial ececeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneeees 135 6 6 6 AUuXil ry power tutorial siessen iriennerien iaraa iae ietie iate 137 6 6 7 Eddy current brake l letlal u n en ea 142 6 6 8 Mean efficiency model tutorial 145 6 6 9 Efficiency table model tutorial 2 aan 145 6 6 10 Single component model HH nennen 147 6 7 Network WIGUEl faicsetesascsseccacdaasssangsciiiaeasalasaeesaidsaesiabeaaasasesanisahdsdeasiasaeiads 151 6 7 1 Substations Ulolals seine 152 6 7 2 Neutral zone WIONA an 159 6 7 3 AC DC networks tutorial sea nee 166 6 7 4 Network with multiple lines points and crossings tutorial 173 IFB DD UM_OPN_51_01 04 02 doc Page 3 of 206 DMJ 2013 02 12 OPN 51 1 4 2 pen PowerNet 7 7 4 Institut f r Bahntechnik GmbH Page 4 of 206 User Manual Issue 2013 02 12 6 7 5 Turing loops TIN A ses a oe le
114. S defaultState close gt lt OCSBB gt lt RailsBB bbName Rails BB z_ real Ohm 0 001 z_ imag Ohm 0 gt lt Switch name TSS 45 T1 _Rails defaultState close gt lt RailsBB gt lt TwoWindingTransformer gt lt Busbars gt lt OCSBB bbName OCS_BB gt lt Connector name TSS 45 OCS Feeder z real Ohm 0 001 z imag Ohm 0 gt lt Position condName CW lineID A trackID 1 km 45 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails BB gt IFB DD UM_OPN_51_01 04 02 doc Page 171 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 172 of 206 User Manual Issue 2013 02 12 lt Connector name TSS_45_Rails_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName RR lineID A trackID 1 km 45 gt lt Connector gt lt RailsBB gt lt Busbars gt lt Substation gt lt Substations gt lt Earth condName E lineID A trackID 1 km 9 750 gt lt Network gt 6 7 3 1 3 Simulation Run the simulation with long trains only 6 7 3 1 4 Analysis For analysis we use the Excel tool All Engines and One Engine F f v 300 0 HEnnnnnnn So Ann nn 200 0 m En ne EERREEREEEREREREERRERRER EELREREREEREEEREEREEERER 100 0 44mm a a le ie eae al al eher Zz z uw 100 0 Ammann e Bananen 200 0 eu nee MoA pr EESERERNEREL NEE E EE E E
115. TM To start the modules Start OpenPowerNet has to be selected from the context menu of the particular Project File The OpenPowerNet settings in OpenTrack have to be configured to run co simulations see Figure 18 The simulation can be started as usual with OpenTrack simulation panel Further details on how to start and stop OpenPowerNet and how to run the simulation are available in the GUI Help System see OpenPowerNet User Interface User Guide gt Usage IFB DD UM_OPN_51_01 04 02 doc Page 53 of 206 DMJ 2013 02 12 OPN 51 1 4 2 Page 54 of 206 lt SpenPowerNet User Manual 7 7 4 Institut f r Bahntechnik GmbH Issue 2013 02 12 During the simulation a number of messages will be displayed These messages are categorised in INFO WARNING and ERROR At the end of the simulation the number of WARNING and ERROR messages is displayed if any occurred All messages are saved to the database and can be read after the simulation by using the Excel File Message OpenPowerNet gt Excel Tools gt Messages IFB DD UM_OPN_51_01 04 02 doc Page 54 of 206 DMJ 2013 02 12 OPN 51 1 4 2 Page 55 of 206 7 7 4 3penPowerNet User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH 4 4 Visualisation 4 4 1 Prepared Excel Files A number of prepared Excel Files for a quick analysis of the simulation data are available via the GUI OpenPowerNet gt Excel tool gt These f
116. Times Earth node as well as configuration of TestNetwork 2 which includes also the Mergers element and general PSC options contact Ri150 150mm 0 1185 0 0054 0 00393 wire Ri120 120mm 0 1481 0 0048 0 00393 messenger Cu150 150mm 0 1185 0 00531 0 004 wire Cu120 120mm 0 1481 0 00468 0 004 IFB DD UM_OPN_51_01 04 02 doc Page 38 of 206 DMJ 2013 02 12 OPN 51 1 4 2 Page 39 of 206 User Manual 7 7 4 penPowerNet gt Institut f r Bahntechnik GmbH Issue 2013 02 12 feeder Al 625 625mm 0 0459 0 01092 0 004 Al St260 23 260mm Al amp 0 1068 0 00733 0 004 23mm steel rail UIC60 0 0306 0 03852 0 004 UIC54 0 0339 0 03659 0 004 third rail Al 5100 Al 5100mm 0 0064 0 0314 0 00382 Fe 7600 7600mm steel 0 0159 0 0383 0 005 Table 8 Typical conductor configuration values 4 2 3 3 4 Power Supply models Following power supply models are available e Two winding transformer AC e Three winding transformer 2AC e Autotransformer 2AC e Booster transformer AC 2AC e Rectifier DC e Voltage stabilisation energy storage and e Energy saving energy storage All power supply models are configured in a child element of Substation XPath OpenPowerNet PSC Network Substations Substation The power supply models need to be connected to a busbar Two winding transformer rectifier and storages are connected to t
117. ToProperty toPos_km 10 250 equivalentRadius_mm 3 45 r20 Ohm _ km 0 2311 temperature _GradCelsius 20 temperatureCoefficient 0 004 x m 10 y m 6 9 gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 3 45 r20 Ohm_km 0 1852 temperature GradCelsius 20 temperatureCoefficient 0 00385 x m 10 y m 5 3 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 38 52 r20 Ohm _km 0 0306 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 9 25 y m 0 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 38 52 r20 Ohm_km 0 0306 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 10 75 y m 0 gt lt Conductor gt lt Conductor type Earth gt lt StartPosition condName E trackID 1 km 0 2 gt lt ToProperty toPos_km 25 4 equivalentRadius_mm 450000 r20 Ohm _km 0 0393 temperature _GradCelsius 20 temperatureCoefficient 0 x m 0 y m 450 0 gt lt Conductor gt lt Conductors gt The definition of connector slices To have more detailed recoding data the slice distance in IFB DD UM_OPN_51_01 04 02 doc Page 193 of 206 DMJ 2013 02 12
118. UHEREARARNNG 5 1 1 OVENVICW sadean aa aaea Aaa aae Ea EAEE aa iA E E AAE AEA a EERE 5 1 2 VEIS INS ene a 5 1 3 Acronyms and abbreviations aaa 5 1 4 How to read this Document a ee Be ea 6 2 Simulation Philosophy sszccsctcczestccscctatccacacetecacttatcectacatecactbatccasaceteasstbatcesatenace 7 2 1 MIETE ee ee ee ee ee ee oe 8 3 ADDlicallan siueufe aan 9 3 1 Overview of physical variables rer 11 3 2 PP SEI VSM PRRPIEDRNEOUSENE NEN PERORENNRIEEE URERERUR SEES IERUENEURCEAEEBUEUNUESRERUEDEURUEBRURSEIEERPEERERUEUER 11 3 3 Advanced Iran Mod l aussen 11 3 4 Power Supply Calculation una ann 18 3 5 Graphical serInlerface ass 21 3 6 XME QMO ABRRDDEBEIESPECROHERELERBESDERESURFESERFERBEPRPESEFEUPFESERREEEEURFEDEFTEESEUFEEBEBEUEREUEEEENE 23 3 7 Analysis ON eas eee 24 3 8 Databa S eee eg een eer eet ee ie ne ei pete eee cei eee ne 24 3 9 ODBC oee eee EE EERE EERE EEE 24 3 10 WWOIKINg Bs 1a 9 ee ee 25 4 OpenPowerNet handling 26 4 1 Configuration of OBENTrack a 26 4 2 Configuration of OpenPowerNet u 4444444444HRRRRnnnnnnnnnnnnnnnnnnnnnnnnnn 27 4 2 1 MOUS constraints gt PPBERPRRBEBERFEEREUENPERBEBEBEPEEEPEFFEREEUEEERESEBENEERFFEERFEEBEBEEBERELUENERHERBRR 27 4 2 2 Naming Convenl nszesssss ee 28 4 2 3 Project specific configuration u 29 4 3 SHIT AOI ee er E E e EL 53 4 4 Visualisati N esisiini aiea RAe E iria iaeia ENERE aeie 55 4 4 1 Prepared Excel File S isse 55 4 4 2 User defined Excel Files
119. UM_OPN_51_01 04 02 doc Page 84 of 206 DMJ 2013 02 12 CP LA OPN 51 1 4 2 pen PowerNet Page 85 of 206 User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH e End of line and exit signal at km 85 400 e Line speed is 75km h from km 0 000 to 10 350 and 200km h until km 84 400 e Power supply area of AC 25kV 50 Hz The line name is A and the track name is 1 Only the siding in Station B has the track name 2 but the same line name Group the station areas and create all routes paths and itineraries The courses shall run from Station A via track 2 in Station B to Station C and from Station C via track 1 in Station B to Station A gt Tutorial_AC_Network opentrack 0 Tutorial 01_AC_Network OTDocuments Info Document Edit Format Tools Functions Windows Print Hide Quit Station A Station B Station C A A A hra T T 1 10 Ho KIT 23 4 on i et a A HJ for sj Figure 79 The OpenTrack infrastructure including tracks signals stations and power supply area After the infrastructure is built we need to define an engine and trains before we can configure the courses and a timetable Engine data e Name is Engine1 e Max effort is 250kKN e Max power is 5 56MW gt constant power is in the speed range from 80km h with 250kN to 250km h with 80kN e Propulsion system is AC 25kV 50Hz e For further details see Figure 80 IFB DD UM_OPN_51_01 04 02 doc Page
120. W lineID A trackID 3 km 20 gt lt ConductorTo condName CW lineID B trackID 2 km 20 gt lt Connector gt lt Connector name RL track A 3 B 2 z_real_Ohm 0 000010 z_imag_Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 3 km 20 gt lt ConductorTo condName RL lineID B trackID 2 km 20 gt lt Connector gt lt Connector name RR track A 3 B 2 z real Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 3 km 20 gt lt ConductorTo condName RR lineID B trackID 2 km 20 gt lt Connector gt lt Connectors gt Last but not least the configuration of the substations TSS_5 TSS_A_25 and TSS_B_ 25 lt Substations gt lt Substation name TSS_5 gt lt TwoWindingTransformer name T1 nomPower_MVA 10 nomPrimaryVoltage_kV 115 nomSecondaryVoltage_kV 27 5 noLoadLosses _kW 6 5 loadLosses_kW 230 relativeShortCircuitVoltage_percent 10 7 noLoadCurrent_A 0 06 gt lt OCSBB bbName 0CS BB z real _Ohm 0 001 z imag Ohm 0 gt lt Switch name TSS_5 T1_ OCS defaultState close gt lt OCSBB gt lt RailsBB bbName Rails_ BB z_real Ohm 0 001 z_ imag Ohm 0 gt lt Switch name TSS_5 Tl Rails defaultState close gt lt RailsBB gt lt TwoWindingTransformer gt lt Busbars gt lt OCSBB bbName OCS_BB gt lt Connector name TSS 5 OCS Feeder z real Ohm 0 001 z imag Ohm 0 gt lt Position condName CW lineID
121. _ imag Ohm 0 gt lt Position condName NF lineID A trackID 1 km 0 gt lt Connector gt lt NegativeFeederBB gt lt Busbars gt lt Substation gt The TSS_80 shall be replaced by the ATS_80 with same parameter as ATS_0 but connected to the line at km 80 000 The TSS_5 get now two transformers 6 busbars and 3 busbar connectors see the XML snippet below lt Substation name TSS 5 gt lt ThreeWindingTransformer name T1 nomPower_MVA 10 nomPrimaryVoltage_kV 115 nomSecondaryVoltage_kV 55 noLoadLosses_kW 6 5 loadLosses_kW 230 relativeShortCircuitVoltage_percent 10 7 noLoadCurrent_A 0 06 gt lt OCSBB bbName 0CS BB 1 z_real_Ohm 0 001 z_ imag Ohm 0 gt lt Switch name TSS 5 T1 OCS defaultState close gt lt OCSBB gt en a lt RailsBB bbName Rails BB 1 z_real Ohm 0 001 z_ imag Ohm 0 gt lt Switch name TSS_5 Tl Rails defaultState close gt lt RailsBB gt lt NegativeFeederBB bbName NF_BB 1 z_ real Ohm 0 001 z_ imag Ohm 0 gt lt Switch name TSS 5 T1_NF defaultState close gt lt NegativeFeederBB gt lt ThreeWindingTransformer gt lt ThreeWindingTransformer name T2 nomPower_MVA 10 nomPrimaryVoltage_kV 115 nomSecondaryVoltage_kV 55 noLoadLosses_kW 6 5 loadLosses_kW 230 relativeShortCircuitVoltage_percent 10 7 noLoadCurrent_A 0 06 gt lt OCSBB bbName 0CS_ BB 2 z_real Ohm 0 001 z_imag Ohm 0 gt lt Switch name TSS_5 T2_ OCS defaultSta
122. _imag_ Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 1 km 0 650 gt lt ConductorTo condName MW lineID A trackID 2 km 0 450 gt lt Connector gt lt Connector name CW track 1 km 0 650 to track 2 km 0 450 z real _ Ohm 0 000010 z_imag_ Ohm 0 gt lt ConductorFrom condName CW lineID A trackID 1 km 0 650 gt lt ConductorTo condName CW lineID A trackID 2 km 0 450 gt lt Connector gt lt Connector name RL track 1 km 0 650 to track 2 km 0 450 z real _ Ohm 0 000010 z_imag_ Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 1 km 0 650 gt lt ConductorTo condName RL lineID A trackID 2 km 0 450 gt lt Connector gt lt Connector name RR track 1 km 0 650 to track 2 km 0 450 z real Ohm 0 000010 z_imag_ Ohm 0 gt 5 lt ConductorFrom condName RR lineID A trackID 1 km 0 650 gt lt ConductorTo condName RR lineID A trackID 2 km 0 450 gt lt Connector gt lt Connector name MW track 1 2 km 9 750 z real Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 1 km 9 750 gt lt ConductorTo condName MW lineID A trackID 2 km 9 750 gt lt Connector gt lt Connector name CW track 1 2 km 9 750 z real Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName CW lineID A trackID 1 km 9 750 gt lt ConductorTo condName CW lineID A trackID 2 km 9 750 gt lt Connector g
123. abs V Track 1 Conductor RR Delta U_abs V A l Courses A Figure 151 The potential of the earth conductor and rail to the earth node and the touch voltage between the rail RR and earth as result of the wrong configured network at 1 28 37 The right y axis shows the current of the course IFB DD UM_OPN_51_01 04 02 doc Page 158 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 159 of 206 User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH U f s 60 r r r 250 000 200 000 150 000 1 A 100 000 50 000 0 000 o i j i n i 8 000 9 000 0 000 1 000 2 000 3 000 4 000 5 000 s km 6 000 7 000 U_abs V Track 1 Conductor E U_abs V Track 1 Conductor RR Delta U_abs V A Courses A Figure 152 The potential of the earth conductor and rail to the earth node and the touch voltage between the rail RR and earth as result of the correct configured network at 1 28 37 The right y axis shows the current of the course The two figures above show the resulting voltages of the earth conductor and rail RR at 1 28 37 At this time the course CBAI_01 is close to TSS_5 The rail RL has the same voltage as RR because both are connected by very low resistances and therefore not shown The difference between both configurations is significant not only for the conductor voltages but also for the touch voltage between them 6 7 2 N
124. adCelsius 20 temperatureCoefficient 0 004 x m 9 25 y m 0 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 38 52 r20_ Ohm_km 0 0306 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 10 75 y m 0 gt lt Conductor gt lt Conductor type Earth gt The earth is modelled as a virtual conductor far away from the tracks along the whole line lt StartPosition condName E trackID 1 km 0 gt lt ToProperty toPos_km 85 4 equivalentRadius_mm 450000 r20 Ohm_km 0 0393 temperature GradCelsius 20 temperatureCoefficient 0 x m 0 y m 450 0 gt lt Conductor gt lt Conductors gt Now we define all the connectors of the slices lt ConnectorSlices gt lt ConnectorSlice name dropper track 1 firstPos_km 0 lastPos_km 85 4 maxDistance_km 1 gt This slice defines the connectors modelling the electrical connection between the messenger and contact wire for track 1 every 1000m along the whole track lt Connector z_real_Ohm 0 000073 z_ imag Ohm 0 gt lt ConductorFrom condName MW trackID 1 gt IFB DD UM_OPN_51_01 04 02 doc Page 90 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 91 of 206 User Manual Issue 2013 02 12 lt ConductorTo condName CW trackID 1 gt lt Connector gt lt Connect
125. age 116 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 117 of 206 User Manual Issue 2013 02 12 lt Position condName LF lineID A trackID 1 km 5 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails_BB gt lt Connector name TSS_5 Rails Feeder z_real_Ohm 0 001 z_imag Ohm 0 gt lt Position condName RR lineID A trackID 1 km 5 gt lt Connector gt lt RailsBB gt lt Busbars gt lt Substation gt lt Substation name TSS_80 gt lt Rectifier name R1 internalResistance Ohm 0 01 nomVoltage_kV 3 3 energyRecovery false gt lt OCSBB bbName OCS_ BB z real Ohm 0 001 z imag Ohm 0 gt lt RailsBB bbName Rails BB z real Ohm 0 001 z imag Ohm 0 gt lt Rectifier gt lt Busbars gt lt OCSBB bbName OCS_BB gt lt Connector name TSS_ 80 OCS Feeder z_real_Ohm 0 001 z_ imag Ohm 0 gt lt Switch defaultState close name TSS_80_OCS gt lt Position condName CW lineID A trackID 1 km 80 gt lt Connector gt lt Connector name TSS_80 LF Feeder z_real_Ohm 0 001 z_ imag Ohm 0 gt lt Switch defaultState close name TSS_80_LF gt lt Position condName LF lineID A trackID 1 km 80 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails BB gt lt Connector name TSS 80 Rails Feeder z_real_Ohm 0 001 z_imag Ohm 0 gt lt Position condName RR lineID A trackID 1
126. age 69 of 206 lt gt penPowerNet User Manual 27 7 4 Mh Institut f r Bahntechnik GmbH Issue 2013 02 12 j Tem Morrone nevn GEE Te m Select Position Line Position km ODBC DSN psc_analysis Simulation 1 2012 04 17 14 32 24 0 Tutorial AC Network default bd Network pc Configure View Magnetic Flux Density __Conductor Current Conductor Voltac B Limit uT x min m y min m Grid m Unit Style Designation Tutorial AC Network default Factor x max m y max m Legend Ticks Absolute Mean Values f Timestep 01 15 00 0 Output Time Start Time End Create Video Figure 62 The Magnetic Flux Density tool IFB DD UM_OPN_51_01 04 02 doc Page 69 of 206 DMJ 2013 02 12 27 4 OPN 42 penPowerNet oe Page 70 of 206 User Manual Issue 2013 02 12 Same ee File HS ees AAcda TE Magnetic Flux Density Tutorial AC Network default Line A km 5 500 01 26 00 0 200 pT 12 160 pT 10 120 pT 0 pT 40 uT 0 pT 40 pT 80 pT 120 pT 160 pT 15 10 5 o 5 10 15 200 pT aD D x Lateral Distance m Figure 63 Example preview image of the flux density using normal gradient style E I Magnetic Field rue File HS as8 arcecoe e Magnetic Flux Density Tutorial AC Network default Line A km 5 500 01 26 00 0 200
127. ains to see the effect of the power factor versus line voltage 6 6 1 3 Analysis We will use Excel tool Compare Two Engines and check to power factor of course CBAI_01 and compare the pantograph voltage with the failure simulation of the AC tutorial IFB DD UM_OPN_51_01 04 02 doc Page 127 of 206 DMJ 2013 02 12 OPN 51 1 4 2 7 7 4 penPowerNet gt Institut f r Bahntechnik GmbH Page 128 of 206 User Manual Issue 2013 02 12 phi f s 0 000 O 500 4 4 9 2 san cm eer E pas an ans E sense I a 40004 1 000 Bi a 1 500 22 000 a a ee eee eee cece 2 500 0 000 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000 90 000 s km Sim 5 Course CBAI_01 Engine 0 Engine1 Sim 18 Course CBAI_01 Engine 0 Engine1 Figure 124 The pantograph current angle of course CBAI_01 versus location U f s 24000 0 000 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000 90 000 s km Sim 5 Course CBAI_01 Engine 0 Engine1 Sim 18 Course CBAI_01 Engine 0 Engine1 Figure 125 The pantograph position of course CBAI_01 with constant power factor of 0 sim 5 and with power factor depending on line voltage sim 17 We can see very clear the line voltage supporting behaviour of the capacitive engine model used in this simulation IFB DD UM_OPN_51_01 04 02 doc Page 128 of 206 DMJ 2013 02 12 OPN 51 1 4 2
128. alysis We use the Excel tool Compare Two Engines to compare course CBAI_01 of the AC network default simulation with this simulation IFB DD UM_OPN_51_01 04 02 doc Page 130 of 206 DMJ 2013 02 12 L A OPN 51 1 4 2 pen Powe rNet IIL Institut f r Bahntechnik GmbH Page 131 of 206 User Manual Issue 2013 02 12 F f v 300 0 200 0 100 0 PessecaosessssHsiessess ses a nn De Ay i F kN EE a 100 0 300 0 v km h F_requested kN Sim 1 Course CBAI_01 Engine 0 Engine1 MF_achieved kN Sim 1 Course CBAI_01 Engine 0 Engine1 AF_requested kN Sim 19 Course CBAI_01 Engine 0 Engine1 X F_achieved kN Sim 19 Course CBAI_01 Engine 0 Engine1 Figure 127 The tractive effort of course CBAI_01 from default AC network simulation sim 1 and tractive effort table model simulation sim 18 When we compare the diagrams in Figure 127 and Figure 126 there seems to be a contradiction The tractive effort between 65km h and 80km h is lower than expected This is because of the limited adhesion of the engine We use the good adhesion used for the simulation in OpenTrack see Figure 128 The adhesion type can be set using the Simulation panel of OpenTrack see Figure 85 S gt AC_Network depot O Tutorial 01_AC_ Network G1Date Info Document Edit Format Tools Functions Windows Print Hide Quit IN Figure 128 Tractive effort ver
129. aningful comment in the Project File and run the simulation 6 6 6 3 Analysis We use Excel tool Compare Two Engines to compare the simulations P_aux f t P kW 0 00 02 00 00 00 02 10 00 00 02 20 00 00 02 30 00 00 02 40 00 00 02 50 00 Sim 22 Course ABCs_02 Engine 0 Engine1 Sim 23 Course ABCs_02 Engine 0 Engine1 Figure 134 The auxiliary power of course ABCs_02 without engine auxiliary sim 22 and with constant auxiliary power sim 23 In the diagram above we can see the auxiliary power of the trailers is 30kW and on top of this are the 100 kW of the engine This is in total 130 kW for course ABCs_02 IFB DD UM_OPN_51_01 04 02 doc Page 139 of 206 DMJ 2013 02 12 OPN 51 1 4 2 3penPowerNet User Manual Page 140 of 206 7 7 4 ww Institut f r Bahntechnik GmbH Issue 2013 02 12 P_aux f t 132 131 130 Z 129 128 126 4 00 02 00 00 00 02 05 00 00 02 10 00 00 02 15 00 00 02 20 00 00 02 25 00 0002 30 00 00 02 35 00 00 02 40 00 00 02 45 00 00 02 50 00 Sim 23 Course ABCs_02 Engine 0 Engine1 Sim 24 Course ABCs_02 Engine 0 Engine1 Figure 135 The auxiliary power of course ABCs_02 with constant engine auxiliary po auxiliary resistance 24 wer sim 23 and constant In Figure 135 we see the constant power and constant resistance auxiliary have about the same values But of course the c
130. anual Issue 2013 02 12 Station Energy Storage voltage stabilisation loadRi_Ohm 0 005 unloadRi_Ohm 0 005 auxPower1_kW 10 Function minLoadAllowUnload_MWs 0 loadMaxCurrent1_A 200 unloadMaxCurrent1_A 1400 voltage 1LoadStart_kV 0 725 voltage1LoadStop_kV 0 720 voltage 1UnloadStart_kV 0 715 voltage 1UnloadStop_kV 0 720 Table 14 Typical voltage stabilisation station energy storage configuration model for limited current busbar busbar Zbp conn model for constant voltage busbar Zob conn U nom busbar Zob conn Figure 35 The model for the station energy storage voltage stabilisation and energy saving has two models which are used depending on the conditions during the simulation If the current is maximum the left model is used and otherwise the right model R is the parameter internalResistance_Ohm Unom is nomVoltage_kV Imax is unloadImax_A respective loadlmax_A and Zpp conn the connectors to the busbars nomVoltage_kV 0 580 internalResistance_Ohm 0 015 loadimax_A 100 unloadimax_A 300 maxLoad_kWh 10 initialLoad_kWh 5 lossPower_kW 0 1 efficiencyLoad_percent 90 efficiencyUnload_percent 90 Table 15 Typical voltage stabilisation station energy storage configuration for DC 600V with 600V no load voltage at the rectifier nomVoltage_kV 0 600 internalResistance_Ohm 0 015 IFB DD UM_OPN_51_01 04 02 doc Page 43 of 206 DMJ 2013 02 12
131. are communicating and interacting with each other during the simulation Each program respective module has a clearly delimited task OpenTrack simulates the course operation control and the driving dynamics The OpenPowerNet PSC module simulates voltages of the electrical network in respect of the course current consumption and position The OpenPowerNet engine simulation module ATM simulates the requested current and achieved effort in respect ofthe available line voltage at course position The sequence of simulation starts in OpenTrack First a start request is sent to the other modules and some initial tasks are organised A matrix representing the electrical network is set up and the voltages of the electrical network without load are calculated After initialisation the first requested tractive or braking effort of a course is sent from OpenTrack to the PSC at time step 0 The line voltage of the course corresponding to course position calculated in the initial phase is sent to ATM where the achieved effort is calculated and returned to OpenTrack If there is more than one course the calculation of the other course efforts follows the same principle Then the sequence for the time step 1 follows The first effort request at time step 1 starts the network calculation with all known courses from time step 0 Next the line voltage at course position is forwarded to ATM and the achieved effort is calculated and sent to OpenTrack All other courses fol
132. ature GradCelsius 20 temperatureCoefficient 0 004 x m 9 25 yi m 0 recordCurrent false recordVoltage false gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 2 km 9 750 gt IFB DD UM_OPN_51_01 04 02 doc Page 155 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 156 of 206 User Manual Issue 2013 02 12 lt ToProperty toPos_km 10 250 equivalentRadius_mm 38 52 r20 Ohm_km 0 0306 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 10 75 y m 0 recordCurrent false recordVoltage false gt lt Conductor gt lt Conductor type Earth gt lt StartPosition condName E trackID 1 km 0 gt lt ToProperty toPos_km 9 equivalentRadius_mm 450000 r20 Ohm_km 0 0393 temperature GradCelsius 20 temperatureCoefficient 0 x m 0 y m 450 0 gt lt ToProperty toPos_km 85 4 recordCurrent false recordVoltage false gt lt Conductor gt lt Conductors gt Set the recording option for the connector slices and leakage to false lt ConnectorSlices recordCurrent false recordVoltage false gt lt Leakages recordCurrent false recordVoltage false gt After we finished the wrong configuration we will do the right configuration Copy the just created Project File and add the following Add both Feeder and ReturnFeeder conductors left and right of the substation
133. aximum load current is limited to 400A resp 200A Maximum unload current is limited to 400A resp 200A and Nominal Voltage of 2800V See the XML snippet with the substation configuration lt Substation name SS_45 gt lt Storage name S1 internalResistance Ohm 0 005 maxLoad_kWh 85 nomVoltage_kV 2 8 lossPower_kW 0 1 initialLoad_kWh 85 loadImax_A 200 unloadImax A 200 gt lt OCSBB z_real Ohm 0 001 z_imag Ohm 0 bbName 0CS_BB gt lt RailsBB z_real Ohm 0 001 z_imag Ohm 0 bbName Rails BB gt lt Storage gt lt Busbars gt The definitions of busbars and the connections to the line follow lt OCSBB bbName OCS_BB gt lt Connector name SS_45 OCS Feeder z_real Ohm 0 001 z_ imag Ohm 0 gt lt Position condName CW lineID A trackID 1 km 45 gt lt Switch defaultState close name SS_ 45 OCS gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails BB gt lt Connector name SS_45 Rails Feeder z_real Ohm 0 001 z_ imag Ohm 0 gt lt Position condName RR lineID A trackID 1 km 45 gt lt Switch defaultState close name SS_45 Rails gt lt Connector gt lt RailsBB gt lt Busbars gt lt Substation gt As we want to run the short trains only we should set the simulation start time to 2 00 in the Project File s root element OpenPowerNet simulationStart_s 7200 6 5 2 Simulation We will run tree simulations only with the short train courses ABCs_01 a
134. bove shows the effect of the traction current limitation very clearly If we compare the travel time of course ABCI_01 in Figure 114 we will see the effect of the lower achieved effort in a 14 minutes longer travel time of this course in the DC network 0 4 0 000 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000 90 000 s km Sim 1 Course ABCI_01 Engine 0 Engine1 Sim 11 Course ABCI_01 Engine 0 Engine1 Figure 114 The speed versus location for course ABCI_01 in the AC network sim 1 and DC network sim 11 IFB DD UM_OPN_51_01 04 02 doc Page 119 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 lt spenPowe rNet IIL Institut f r Bahntechnik GmbH Page 120 of 206 User Manual Issue 2013 02 12 6 4 3 2 Short circuit Note When not using the FULL license set the time steps in OpenTrack to 4 seconds 1 f s 4 000 3 500 2 500 1 kA N gt s Ce ee a ee ee 1 000 0 500 0 000 0 000 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000 90 000 s km _connector_1 kA connector_2 kA 1_total kAl I_engine kA Figure 115 The short circuit simulation of the DC network The simulation is done as for the AC network The y axis is limited to 4000A as the current at the substation is very high and we are interested in the minimum short circuit current 6 4 3 3 Constant current Note When not us
135. c Page 161 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 162 of 206 User Manual Issue 2013 02 12 Select only the course ABCI_01 and CBAI_01 with long trains 6 7 2 1 2 OpenPowerNet We will use the Engine and correct Project File from the Substation tutorial in chapter 6 7 1 as the basis 6 7 2 1 2 1 Engine File For this tutorial we don t need to change the Engine File 6 7 2 1 2 2 Project File First of all we need to add the negative feeder from km 0 000 to km 84 500 lt Conductor type NegativeFeeder gt lt StartPosition condName NF trackID 1 km 0 gt lt ToProperty toPos_km 9 equivalentRadius mm 8 4 r20_Ohm_km 0 1188 temperature GradCelsius 20 temperatureCoefficient 0 004 x_m 4 y_m 9 gt lt ToProperty toPos_km 80 recordCurrent false recordVoltage false gt lt Conductor gt Next we change the Feeder and ReturnFeeder and add the NegativeFeeder conductors parallel to the neutral zone Note The parallel conductors are from km 4 700 to km 5 000 and from km 5 000 to km 5 300 lt Conductor type Feeder gt lt StartPosition condName TSS 5 F 1 trackID 1 km 4 7 gt lt ToProperty toPos_km 5 equivalentRadius_mm 8 4 r20 Ohm_km 0 1188 temperature _GradCelsius 20 temperatureCoefficient 0 004 x m 4 y m 0 gt lt Conductor gt lt Conductor type Feeder gt lt StartPosition con
136. cccccccccceseeeseeeeeeeeeeeeeceeeeeeeeeeeeeeeeeeeeeess 56 4 5 PITA Se cece S 62 4 5 1 a ees lt 1 0 2 SRUBERENERFEEREBEBEURFEIENUUEFEUFEEBRBEUEREDEFEUEREUPEEURFEBEFEUEFEBERFEEBEURFESEREVESEUFEBER 62 4 5 2 Aulamalic Analys Sass een 63 4 5 3 Inline Measurement ne rttr trnnnnn rnrn enet 67 4 5 4 Additonal WOOMS xzcsccncrssacsessvecesncessecnsdusvecgecrspevssceseeanacusernscessevasscueeeincenseonse 74 4 5 5 Analys sPpreses File te 525 een 74 IFB DD UM_OPN_51_01 04 02 doc Page 2 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pe n P owe rN et HAL Page 3 of 206 User Manual Issue 2013 02 12 4 6 Database FAS KS crete eee 79 5 Required technical data for the simulation 222244444 80 6 TMM All eee EERE EEEE EE 82 6 1 2111 1 7 aerea AA E E EE ae E EEE E EE E EEA EAE 82 6 2 AG Network lets keinen 83 6 2 1 CUM INN Uae EEE aren eetateecest 83 6 2 2 SHU OLA UDI een ine 94 6 2 3 PAIVAIY SIS BRIPRBRERERERERERERERERERETERFRERERERFEERERERFRERERERFEEEEEERERREERERERERETEREREERFERERERELERRERERRNE 95 6 3 2AC Network tutorial serene an aieuseniannteaeileniiaxteenteendaenl 107 6 3 1 ContguratON sesse Eee 107 6 3 2 SIMAO rn er e e e e e e e aee 109 6 3 3 Analyse innerer 109 6 4 DC Network late 115 6 4 1 COnNWgUrANON eiee AE EAA rer errr nice errr eter rrr reer ere 115 6 4 2 SMUAIN esee 117 6 4 3 PRIVY SIS escena aada aeaa iai iiaiai iii 117 6 5 DC Network with Energy Storage tutorial 2242424444444R
137. ck 1 from km 0 000 to km 9 750 lt Conductor type Feeder gt lt StartPosition condName LF trackID 1 km 0 gt lt ToProperty toPos_km 9 750 equivalentRadius_mm 8 4 r20 Ohm_km 0 1188 temperature _GradCelsius 20 temperatureCoefficient 0 004 x m 4 y m 9 gt lt Conductor gt lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 1 km 0 gt lt ToProperty toPos_km 9 750 equivalentRadius_mm 3 45 r20 Ohm km 0 2311 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 0 y m 6 9 gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 1 km 0 gt lt ToProperty toPos_km 9 750 equivalentRadius_mm 3 45 r20 Ohm_km 0 1852 temperature GradCelsius 20 temperatureCoefficient 0 00385 x_m 0 y m 5 3 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 1 km 0 gt lt ToProperty toPos_km 9 750 equivalentRadius_mm 38 52 r20 Ohm _km 0 0306 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 0 75 y m 0 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 1 km 0 gt IFB DD UM_OPN_51_01 04 02 doc Page 168 of 206 DMJ 2013 02 12 7 7 4 pour QpenPowerNet gt Institut f r Bahntechnik GmbH Page 169 of 206 User Manual Issue 2013 02 12 lt ToProperty toPos_km 9 750 equivalentRadiu
138. ckID 1 gt lt Leakage gt lt Leakage firstPos_km 9 650 lastPos_km 20 000 yReal_S km 0 1 yImag_S km 0 gt lt ConductorFrom condName RR trackID 3 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakages gt lt Line gt Configuration of line B lt Line name B maxSliceDistance_km 0 5 gt lt Conductors gt The conductor configuration for track 1 lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 1 km 20 gt lt ToProperty toPos_km 30 4 equivalentRadius_mm 3 45 r20 Ohm km 0 2311 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 0 y m 6 9 gt lt Conductor gt IFB DD UM_OPN_51_01 04 02 doc Page 177 of 206 DMJ 2013 02 12 7 7 4 pour QpenPowerNet Z Institut f r Bahntechnik GmbH Page 178 of 206 User Manual Issue 2013 02 12 lt Conductor type ContactWire gt lt StartPosition condName CW trackID 1 km 20 gt lt ToProperty toPos_km 30 4 equivalentRadius_mm 3 45 r20_Ohm km 0 1852 temperature_GradCelsius 20 temperatureCoefficient 0 00385 x m 0 y m 5 3 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 1 km 20 gt lt ToProperty toPos_km 30 4 equivalentRadius_mm 38 52 r20 Ohm_km 0 0306 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 0 75 y m 0 gt lt Conductor gt lt Conductor type Rail gt lt S
139. ctor gt lt Connector name RL track 1 2 km 10 250 z real Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 1 km 10 250 gt lt ConductorTo condName RL lineID A trackID 2 km 10 250 gt lt Connector gt lt Connector name RR track 1 2 km 10 250 z_ real Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 1 10 250 gt lt ConductorTo condName RR lineID A trackID 2 km 10 250 gt lt Connector gt lt Connectors gt Now we have already defined the electrical network along the line In the next step we have to define the substations one at km 5 000 and one far away at km 80 000 lt Substations gt This is the substation at km 5 000 lt Substation name TSS_5 gt lt TwoWindingTransformer The characteristic of the two winding transformer shall be as defined by the attributes name T1 nomPower_MVA 10 nomPrimaryVoltage_kv 115 nomSecondaryVoltage_kV 27 5 noLoadLosses_kW 6 5 loadLosses_kW 230 relativeShortCircuitVoltage percent 10 7 noLoadCurrent_A 0 06 gt lt OCSBB bbName 0CS_BB z_ real Ohm 0 001 z_ imag Ohm 0 gt The connection from the transformer to the OSC busbar is defined with this element lt Switch name TSS_5 T1_ OCS defaultState close gt This connection shall have a switch to enable us to disconnect the transformer during the failure scenario lt OCSBB gt lt RailsBB bbName Rails_ BB z_ real Ohm 0
140. d also conductors of type ContactWire with reference to conductors of type Rail Infeed positions are marked e U_Rail Earth f s The voltage between conductors of type Rail and the conductor of type Earth Return feeder positions are marked e U_ Conductors f s The voltage between any conductors and a reference As reference any conductor is allowed but should be one per line or one for each track e _Leakage f s The current between any conductors and a reference in amps per meter As reference any conductor is allowed but should be one per line or one for each track The table provides the following item cell selection EEE Only the maximum values of all time steps EEE Only the minimum values of all time steps e v The minimum and maximum values of all time steps as separate chart series IFB DD UM_OPN_51_01 04 02 doc Page 65 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 66 of 206 User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH Only the average values arithmetic mean of all time steps e v The minimum and average values of all time steps as separate chart series e The maximum and average values of all time steps as separate chart series IE The reference conductor The buttons Append Rowand Delete Row add anew respective delete the selected row The button Autofill Row suggests a selection for the visible items of the actual row
141. dName TSS_5 F r trackID 1 km 5 gt lt ToProperty toPos_km 5 3 equivalentRadius_mm 8 4 r20 Ohm_km 0 1188 temperature _GradCelsius 20 temperatureCoefficient 0 004 x m 4 y m 0 gt lt Conductor gt lt Conductor type ReturnFeeder gt lt StartPosition condName TSS_5_RF 1 trackID 1 km 4 7 j gt lt ToProperty toPos_km 5 equivalentRadius_mm 8 4 r20_Ohm km 0 1188 temperature GradCelsius 20 temperatureCoefficient 0 004 x_m 4 1 y_m 0 gt lt Conductor gt lt Conductor type ReturnFeeder gt lt StartPosition condName TSS_5_RF_r trackID 1 km 5 gt lt ToProperty toPos_km 5 3 equivalentRadius_mm 8 4 r20_Ohm km 0 1188 temperature _GradCelsius 20 temperatureCoefficient 0 004 x_m 4 1 y_m 0 gt lt Conductor gt Following the two new negative feeder conductors lt Conductor type NegativeFeeder gt lt StartPosition condName TSS_5 NF_1 trackID 1 km 4 7 gt lt ToProperty toPos_km 5 equivalentRadius_mm 8 4 r20 Ohm_km 0 1188 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 4 2 y m 0 gt lt Conductor gt lt Conductor type NegativeFeeder gt lt StartPosition condName TSS_5 NF_r trackID 1 km 5 gt lt ToProperty toPos_km 5 3 equivalentRadius_mm 8 4 r20 Ohm_km 0 1188 temperature _GradCelsius 20 temperatureCoefficient 0 004 x m 4 2 y m 0 gt lt Conductor gt IFB DD UM_OPN_51_01 04 02 doc Page 162 of 206 DMJ 20
142. dd the second transformer to TSS_5 and to add the infeeds lt Substation name TSS_5 gt lt TwoWindingTransformer name T1 nomPower_MVA 10 nomPrimaryVoltage_kV 115 nomSecondaryVoltage_kV 27 5 noLoadLosses_kW 6 5 loadLosses_kW 230 relativeShortCircuitVoltage_percent 10 7 noLoadCurrent_A 0 06 gt lt OCSBB bbName 0CS_BB_1 The new busbar name z_real Ohm 0 001 z_imag_ Ohm 0 gt lt Switch name TSS_5 T1_ OCS defaultState close gt lt OCSBB gt lt RailsBB bbName Rails BB 1 The new busbar name z_real_ Ohm 0 001 z_imag_ Ohm 0 gt lt Switch name TSS_5 Tl Rails defaultState close gt lt RailsBB gt lt TwoWindingTransformer gt This is the second transformer with the same properties as Tl lt TwoWindingTransformer name T2 nomPower MVA 10 nomPrimaryVoltage_kV 115 nomSecondaryVoltage_kV 27 5 noLoadLosses _kW 6 5 loadLosses_kW 230 relativeShortCircuitVoltage percent 10 7 noLoadCurrent A 0 06 gt lt OCSBB bbName 0CS_BB 2 z_ real Ohm 0 001 z_imag_Ohm 0 gt lt Switch name TSS_5 T2_ OCS defaultState close gt lt OCSBB gt lt RailsBB bbName Rails BB 2 z_ real Ohm 0 001 z_ imag Ohm 0 gt lt Switch name TSS 5 T2 _ Rails defaultState close gt lt RailsBB gt lt TwoWindingTransformer gt lt Busbars gt lt OCSBB bbName 0CS BB _1 gt Change the name to make a unique busbar name lt Connector name TSS _5_OCS_Feeder z real Ohm 0 001 z imag Ohm 0 gt
143. desired printer name and paper size are also configured at this element In case of contradiction a warning will be displayed at runtime IFB DD UM_OPN_51_01 04 02 doc Page 78 of 206 DMJ 2013 02 12 OPN 51 1 4 2 Page 79 of 206 3penPowerNet User Manual 7 7 4 Institut f r Bahntechnik GmbH Issue 2013 02 12 u J ChartTypes Hi TableTypes OpenPowertlet B C Analysis CF Figure 77 The AnalysisPresets File with highlighted Excel element 4 6 Database tasks All simulation results are stored in a database This database needs to be maintained by the user The following tasks are available via the GUI e Create new database schema e Export data from database e Import data into database and e Upload dump files into database The detailed description of all tasks is available in the Help System under OpenPowerNet User Interface User Guide gt Usage IFB DD UM_OPN_51_01 04 02 doc Page 79 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 80 of 206 User Manual Issue 2013 02 12 Institut fiir Bahntechnik GmbH 5 Required technical data for the simulation Track alignment and signalling e Track layout e Chainage e Longitudinal declination begin end gradient sign Begin and end of single or multiple track sections Position of switches crossings and junctions e Begin end and radius of bending curves Begin and end of tunn
144. e time steps fail Time steps fail in case a network is overburden As we want to write the simulation data directly into the database we need to set a ODBC DSN that we want to record data but not into a dump file and that we do not want to record computation data The recording of the simulation results shall start with the first course at 01 00 therefore we set the simulation start time to 3600 seconds Furthermore we need to set the Engine File just configured in the previous chapter The next step is to configure the engine model lt ATM gt lt Vehicles gt lt Vehicle eddyCurrentBrake false engineID Enginel gt lt Propulsion supply AC 25kV 50Hz engine electric tractiveCurrentLimitation none brakeCurrentLimitation none useAuxPower true fourQuadrantChopperPhi none regenerativeBrake none tractiveEffort maxPower maxTractEffort gt lt MeanEfficiency gt lt Propulsion gt lt Vehicle gt lt Vehicles gt lt Options tolerance A 0 1 maxIterations 1000 record2DB true gt lt ATM gt Note the green data has to correspond to OpenTrack and Engine File Our engine will not use eddy current brake has no tractive or brake current limitation uses auxiliary power has no model for power factor as attribute fourQuadrantChopperPhi is set to none The engine also has no regenerative bake and the tractive effort model is defined by maximum power and maximum tractive effort The efficiency of the engine shall be mode
145. e 9 of 206 User Manual Issue 2013 02 12 Institut fiir Bahntechnik GmbH 3 Application structure OpenPowerNet is divided into three modules for simulation Each is executable software see Figure 2 The module Power Supply Calculation psc exe realises the electrical network calculation the Advanced Train Model atm exe is responsible for the engine calculation and the APserver apserver exe is the communication interface among the OpenPowerNet modules themselves and to OpenTrack The configuration of the three modules is done within the Graphical User Interface GUI The simulation specific configuration data is stored in XML files and read at the beginning of a simulation The GUI is used to control the simulation to provide access to the analysis tools and to do tasks related to the database It also provides the PSC Viewer a tool to create a graphical representation of the electrical network The resulting data of a simulation is stored in a database The visualisation and analysis of simulation results use the data from the database in post processing IFB DD UM_OPN_51_01 04 02 doc Page 9 of 206 DMJ 2013 02 12 fopwsinaz penPowerNet Z gt Institut f r Bahntechnik GmbH Page 10 of 206 User Manual Issue 2013 02 12 er Peets ri e Switch File Analysis Preset Fie Configuration ee an a Simulation C E Dnnmumnnunun en
146. e Constant resistance e Constant power during braking and e Constant resistance during braking As the auxiliary power while braking is only active for regenerative engines we define the maximum regenerative brake power and maximum regenerative brake effort with the same values as for traction The value of the auxiliary power shall be 100 kW The resistance shall produce a power of 100 kW at a pantograph voltage of 27 4 kV and is therefore 7507 4 Q see the formulas below 2 pe P 2772 See 10000017 To be able to compare the different auxiliary models we do 5 simulations The first without auxiliary power and then one by one the different models As the short trains have less auxiliary power of the trailers we will use only the short trains to show clearly the effect of the engine auxiliary 6 6 6 1 Configuration 6 6 6 1 1 OpenTrack We will use the OpenTrack model from the AC tutorial without changes Select only the course ABCs_02 and CBAs_02 with short trains 6 6 6 1 2 OpenPowerNet We will use the Engine and Project File from the AC tutorial as the basis IFB DD UM_OPN_51_01 04 02 doc Page 137 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 lt spenPowe rNet IIL Institut f r Bahntechnik GmbH Page 138 of 206 User Manual Issue 2013 02 12 6 6 6 1 2 1 Engine File In the Engine File we need to specify the maximum braking power and effort as well as the 4 different available auxiliary models
147. e XML snuipped below lt Vehicle eddyCurrentBrake false engineID Enginel gt lt Propulsion engine electric supply AC 25kV 50Hz brakeCurrentLimitation I f U These value need to be set tractiveCurrentLimitation none useAuxPower true fourQuadrantChopperPhi none regenerativeBrake maxPower maxEffort tractiveEffort maxPower maxTractEffort gt lt MeanEfficiency gt lt Propulsion gt lt Vehicle gt Set the right Engine File and don t forget to set a meaningful project name and comment in the project file 6 6 5 2 Simulation We need only to simulate the long trains to see effect of the brake current limitation IFB DD UM_OPN_51_01 04 02 doc Page 135 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen Powe rNet IIL Institut f r Bahntechnik GmbH Page 136 of 206 User Manual Issue 2013 02 12 6 6 5 3 Analysis We use Excel tool Compare Two Engines to compare the simulation results from tutorial regenerative braking and this tutorial Figure 132 shows the limited brake current to 50A l f t 300 1A 200 00 01 00 00 00 01 05 00 00 01 10 00 00 01 15 00 00 01 20 00 00 01 25 00 00 01 30 00 00 01 35 00 00 01 40 00 Sim 20 Course CBAI_01 Engine 0 Engine1 Sim 21 Course CBAI_01 Engine 0 Engine1 Figure 132 The current of course CBAI_01 without sim 20 and with sim 21 brake current limitation to 50A 28000 7 27800 4
148. e affected All courses that turn up inside the electrical network during the target simulation time have to be modelled even if they may only stand on a station track powered on IFB DD UM_OPN_51_01 04 02 doc Page 27 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 28 of 206 User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH If parts of other lines are connected to the main line e g powered by the same substations and the entire electrical situation shall be analysed these parts and its course operations also have to be modelled This can be only omitted when no load is on the connected parts If there are engines with same OpenTrack input data but different electrical parameters for the same catenary system these engines have to be handled separately A multi system traction unit can be handled as a single engine though To keep the number of nodes in the electrical network down special track arrangements should be kept simple Example Double track line junction in track Up is located 2 m before junction in track Down In such a case both junctions should get the same position to save one slice All configuration data has to use ASCII characters It is recommended to use 1s simulation time steps Using e g 2s simulation time step may challenge time glitches OpenTrack uses equidistant time steps per course but OpenPowerNet need global equidistant time steps The glitch
149. e can say the condition number gets better the less the resistances in an electrical network deviate IFB DD UM_OPN_51_01 04 02 doc Page 205 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 206 of 206 User Manual Issue 2013 02 12 Institut fiir Bahntechnik GmbH 7 13 What is the Time Rated Load Periods Curve TRLPC The Time Rated Load Periods Curve shows the maximum or minimum of a set of varying window size averages where the window time duration is defined by the x axis value 7 14 Any other questions For any other question please contact the OpenPowerNet support team via support openpowernet de END OF DOCUMENT IFB DD UM_OPN_51_01 04 02 doc Page 206 of 206 DMJ 2013 02 12
150. e feeder to the contact wire of track 1 The resistance per meter shall be the same as for the line feeder and the length shall be approximately 5m Therefore the connector resistance is 0 594mQ 0 11880 km 1000 5m 0 000594 lt ConnectorSlice name line feeder to CW firstPos_km 5 lastPos_km 80 maxDistance_km 1 000 gt lt Connector z_real_Ohm 0 000594 z imag Ohm 0 gt lt ConductorFrom condName LF trackID 1 gt lt ConductorTo condName CW trackID 1 gt lt Connector gt lt ConnectorSlice gt Now we configure the substation models with DC rectifier and we use switches in the connectors from the busbars to the line The switches will be used during the failure scenario lt Substations gt lt Substation name TSS_5 gt lt Rectifier name R1 internalResistance Ohm 0 01 The internal resistance of the rectifier nomVoltage_kV 3 3 The no load voltage of the rectifier shall be 10 higher than the system voltage of 3kV energyRecovery false gt lt OCSBB bbName 0CS BB z real Ohm 0 001 z imag Ohm 0 gt lt RailsBB bbName Rails BB z real Ohm 0 001 z imag Ohm 0 gt lt Rectifier gt lt Busbars gt lt OCSBB bbName 0CS_BB gt lt Connector name TSS_5 OCS Feeder z_real_Ohm 0 001 z_imag Ohm 0 gt lt Position condName CW lineID A trackID 1 km 5 gt lt Connector gt lt Connector name TSS_5 LF Feeder z_real_Ohm 0 001 z_imag Ohm 0 gt IFB DD UM_OPN_51_01 04 02 doc P
151. e gt yValue 0 93 gt lt valueLine gt DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 150 of 206 User Manual Issue 2013 02 12 lt Vehicle eddyCurrentBrake false engineID Enginel gt lt Propulsion engine electric supply AC 25kV 50Hz brakeCurrentLimitation none tractiveCurrentLimitation none useAuxPower true fourQuadrantChopperPhi none regenerativeBrake none tractiveEffort maxPower maxTractEffort gt lt SingleComponent This element specifies the efficiency model transformer meanEfficiency The efficiencies are mean fourQuadrantChopperEfficiency efficiency f v versus speed tractionInverter efficiency f v versus speed gear meanEfficiency mean and tractionMotor efficiency f v F gt versus speed and force lt Propulsion gt lt Vehicle gt Set the right Engine File and don t forget to set a meaningful project name and comment in the project file 6 6 10 2 Simulation We will do two simulations to be able to compare two transformer efficiency models Run both simulations e Do everything as described above and run the simulation e Change the attribute transformer in the Project File to efficiency f I givea meaningful comment in the Project File and run the simulation 6 6 10 3 Analysis We use Excel tool One Engine and Compare Two Engines to compare the simulation We have to set the transfo
152. e reference shall be the earth busbar The model is a recoverable VLD that recovers after triggering depending of the defined Open Model The VLD model is defined in the TypeDefs File see Figure 36 and the Project File see Figure 37 references to the VLD model definition only by its type name IFB DD UM_OPN_51_01 04 02 doc Page 44 of 206 DMJ 2013 02 12 O IPH OPN 51 1 4 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 45 of 206 User Manual Issue 2013 02 12 Figure 36 Elements and attributes of the VLD model definition in the TypeDefs File IFB DD UM_OPN_51_01 04 02 doc Page 45 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Institut f r Bahntechnik GmbH Page 46 of 206 User Manual Issue 2013 02 12 E attributes type The name of the VLD type defined in TypeDefs File hname sd comment K pecifies we LD ccc rere nN mers B 0 0 The ge Device The unique name of the bus ba BusbarType E attributes The unique name of the bus ba tage Figure 37 Elements and attributes of the VLD model definition in the Project File Defining the Model The VLD model is defined by a Close Model which describes the conditions for closing the VLD and an Open Model which describes the conditions for opening The VLD is closed using a low resistance and open by using a high resistance bet
153. e to be prepared in correspondence with the operational project files of OpenTrack This is probably the most extensive job The second task is running the simulation in co simulation with OpenTrack The third task is the visualisation and analysis of the resulting simulation data 4 1 Configuration of OpenTrack OpenTrack is the railway operation simulation program It handles the driving dynamics respecting the track alignment the train characteristics the signalling system and the operation program For the handling of OpenTrack please check the documentation delivered with the program For inter process communication it is necessary to set some special configurations in OpenTrack see Figure 18 OpenPowerNet Settings x OpenTrack Server Port Default 3002 9002 Server Status E Running Start OPN Server Port Default 9004 9004 OPN Server localhost Timeout s 1000 000 IV Use OpenPowerNet OPN IV Keep Connection OK Figure 18 OpenPowerNet configuration dialog in OpenTrack Menu Info gt OpenPowerNet Settings The dialog OpenPowerNet Settings is available at menu item Info if OpenTrack is started with parameter OpenTrack exe opn The following properties have to be set e OpenTrack Server Port 9002 default e OPN Server Port 9004 default e OPN Host network IP of the computer running OpenPowerNet e g 127 0 0 1 for localhost default for the same computer e Timeout in seconds recom
154. e tree and click in a row of the table where the substation shall be dropped The chart types to generate for each substation may be selected using the checkboxes on the right By default all chart types are preselected The following chart types are available e _Feeder f t The feeder cable current versus time one chart per busbar e Feeder TRLPC The feeder cable current as Time Rated Load Periods Curve see chapter 7 13 one chart per busbar e U I_ Device f s TRLPC The voltage and current versus time and as Time Rated Load Periods Curve for each device within the substation Additionally device specific output like energy storage load or VLD statistics is generated P_Device f s TRLPC The power versus time and as Time Rated Load Periods Curve for each device within the substation e Overview Overview tables for RMS currents and losses of feeders and devices and device specific overview tables To finish the selection click OK to return to the Automatic Analysis window 4 5 3 Inline Measurement The Inline Measurement tool may be used for the evaluation of various aspects at a specific location IFB DD UM_OPN_51_01 04 02 doc Page 67 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 68 of 206 User Manual Issue 2013 02 12 Institut fiir Bahntechnik GmbH After choosing the ODBC DSN and simulation from the pulldown menus this location is locked by selecting the
155. e you need to set the attribute constantVoltage_V to 0 see the XML snippet below lt Propulsion constantVoltage V 0 This attribute defines the engine as a short circuit between the contact wire and the rail The following attributes will be ignored once you set this attribute brakeCurrentLimitation I f U engine electric fourQuadrantChopperPhi none regenerativeBrake maxPower maxEffort supply DC 600V tractiveCurrentLimitation I f U tractiveEffort maxPower maxTractEffort useAuxPower true gt lt EfficiencyTable gt lt Propulsion gt By using the Excel File Engine xlsx the short circuit current versus time and position is available 7 7 How to prevent the consideration of the achieved effort in OpenTrack while using OpenPowerNet You need to set the attribute returnRequestedEffort to true The requested effort will be returned to OpenTrack but the courses using these engine will be calculated in the network simulation as usually see the XML snippet below lt Propulsion returnRequestedEffort true This attribute defines to return the requested effort brakeCurrentLimitation I f U engine electric fourQuadrantChopperPhi none regenerativeBrake maxPower maxEffort supply DC 600V tractiveCurrentLimitation I f U tractiveEffort maxPower maxTractEffort useAuxPower true gt lt EfficiencyTable gt lt Propulsion gt IFB DD UM_OPN_51_01 04 02 doc Page 203 of 206 DMJ 2013 02 12
156. eCurrentLimitation none tractiveCurrentLimitation none useAuxPower true fourQuadrantChopperPhi none regenerativeBrake maxPower maxEffort tractiveEffort maxPower maxTractEffort gt lt MeanEfficiency gt lt Propulsion gt lt Vehicle gt lt Vehicles gt lt Options tolerance A 0 1 maxIterations 1000 record2DB true gt lt ATM gt lt PSC gt lt Network name A C use true voltage _kV 25 frequency Hz 50 recordVoltage true recordCurrent true gt lt Lines gt lt Line name A maxSliceDistance_km 0 5 gt The configuration of the conductors lt Conductors gt The conductors for track 1 IFB DD UM_OPN_51_01 04 02 doc Page 187 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 188 of 206 User Manual Issue 2013 02 12 lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 1 km 0 gt lt ToProperty toPos_km 25 4 equivalentRadius_mm 3 45 r20_Ohm km 0 2311 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 0 y m 6 9 gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 1 km 0 gt lt ToProperty toPos_km 25 4 equivalentRadius_mm 3 45 r20_Ohm km 0 1852 temperature GradCelsius 20 temperatureCoefficient 0 00385 x m 0 y m 5 3 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID
157. ead how to get these files The Project File has three main parts e ATM configuration e PSC configuration and e Relations of courses to a Train Operating Company see Figure 20 poe e eee ence cca sens ecn wen nescescesnensssssessesassesa Parent element for all configuration data of Advanced Train Model ATM OpenPowerNet The root element of the OpenPowerNet Project file a The parent element of all Power Supply Calculation PSC configuration data J Tocs The container of all Train Operating companies Figure 20 The main branches of the Project File in schema view Figure 21 to Figure 42 show an example Project File IFB DD UM_OPN_51_01 04 02 doc Page 33 of 206 DMJ 2013 02 12 OPN 51 1 4 2 Page 34 of 206 O IPT lt spenPowerNet gt User Manual Institut f r Bahntechnik GmbH Issue 2013 02 12 4 OpenPowerNet Figure 21 General configuration in OpenPowerNet Project File 4 2 3 3 1 Engine Model al ATM 4 Vehicles Vehicle enginelD 4 Propulsion 4 Propulsion Storage 4 Options tolerance_A 0 1 maxiterations 100 record2DB true ExampleEngine eddyCurrentBrake false engine supply regenerativeBrake vMinRecovery_km_h tractiveEffort useAuxPower xmins xsi http www w3 org 2001 XMLSchema instance xsi noNamespace SchemaLocation D src atm psc schemas OpenPowerNet xsd name Example Project comme
158. ean f load f U P i ia PrnaxUnioad ImnaxLoads I maxuntoad Efficiency Table Model Faava EU HF mao Pmax Fraai none f v FF maxs Pmax use true false P Pi un P iiair P f P ns and or R n and or Prang and or Ry ating aux_engine Traction Power aux_trailer const Legend configuration options of Project File configuration data of Engine File configuration data from OpenTrack Figure 5 Efficiency table engine model with power flow and configuration options Each component of the single component engine model is modelled with an accurate efficiency value with dependencies If one or more components do not exist in a specific propulsion structure the efficiency of these components can be set to 100 respectively the model type in the Project File can be set to none In this case the component does not have any effect while calculating the total efficiency In this way engines can be modelled deviating from the model structure of the ATM IFB DD UM_OPN_51_01 04 02 doc Page 15 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 16 of 206 User Manual Issue 2013 02 12 Institut fiir Bahntechnik GmbH Braking energy is recovered if the demand of the auxiliary and eddy current brake power consumption is exceeded While braking OpenPowerNet only calculates the braking effort achieved through energy recovery braking of the propulsion system and eddy current brake see Figu
159. easing voltage tolerance between ATM and PSC iteration steps discreteTrains true gt The courses should be inserted at the slices and the current shall not be distributed to both neighbouring slices Now we have done the configuration of the Project File To check for failures and to visualise what we have done we will use the PSC Viewer see 3 5 The PSC Viewer creates a graphical representation of the electrical network using nodes conductors connectors and substations For questions regarding the PSC Viewer consult the GUI Help System A diagram snippet is shown in Figure 83 Figure 83 A snippet of the electrical network at Station B with siding in the PSC Viewer diagram IFB DD UM_OPN_51_01 04 02 doc Page 93 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 94 of 206 User Manual Issue 2013 02 12 6 2 1 2 3 Switch File As we later also want to simulate a failure scenario besides the default configuration we have to prepare a Switch File This file enables us to disconnect a transformer at a specific time by opening the switches between the transformer and the busbar As for the two XML Files before we need to set the schema The latest schema can be found in plugin de bahntechnik dd opn bin x x x_JJJJMMDDhhmm schemas ADE xsd For this example we define to disconnect the transformer in substation at km 80 000 from 01 05 00 until 01 22 00
160. ek a ic ee eee eee 184 7 FAQ eed eee ene E er ene een AIRBAG 199 7 1 What needs to be considered in OpenTrack to use OpenPowerNet 199 7 2 How to deal with broken chainage cceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 200 7 2 1 Positive broken CHAINA QE maus Sei ene 200 122 Negative broken chainage 2 2 22222244444424442400000000000n0n0nnnnnnnnnnnnnnnnn 201 7 3 How to organise the files and folders 222224424244nnnnnnnnn nn 202 7 4 How to calculate the equivalent radius unnsnee nennen 202 7 5 How to draw a constant current ae 203 7 6 How to simulate short circuits cccceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeees 203 7 7 How to prevent the consideration of the achieved effort in OpenTrack while using OPSMP OWING Si cccncetennnseteceexsateccincaniecanndenndatncatiecenndetiecannsenadonndenndennseneds 203 7 8 Where are the XML Schema sinn 204 7 9 Which XML Schema for which XML File ccccceceeeeeeeeeeeeeeeeeeeees 204 7 10 How to change the working directory ceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 204 7 11 How to specify a specific license 2224444440000nn0nnnn nennen nenn 205 7 12 What is the reciprocal condition ae 205 7 13 What is the Time Rated Load Periods Curve TRLPC 206 7 14 ANY Other QUESHONS o cecceecccerceecizecseccsuecsuceiuecseesi estuectuectuceisestucesuessucessees 206 IFB DD UM_
161. el tools gt One Power Supply First we will analyse the substation TSS_5 at km 5 000 In the Excel File we have to select the substation transformer feeder and busbar voltages see Figure 90 for details 1 Simulation Duration 1 1 1 366 lin Feeder to busbar OCS_BB Reference U Rails_BB Compared U OCS_BB N 4 4 Figure 90 The selection of power supply for substation TSS_5 IFB DD UM_OPN_51_01 04 02 doc Page 98 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pe nPowerNet Page 99 of 206 User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH l f t 0 00 01 00 00 00 01 10 00 00 01 20 00 00 01 30 00 00 01 40 00 00 01 50 00 00 02 00 00 Figure 91 The current from transformer T1 to the OCS busbar in substation TSS_5 In the diagram above we see that the current does not exceed 350A and we have no current between 01 50 00 and 02 00 00 as we have no courses at this time U f t 27600 7 27400 27200 227000 4 28800 a a a ae 26600 7 26400 t 1 00 01 00 00 00 01 10 00 00 01 20 00 00 01 30 00 00 01 40 00 00 01 50 00 00 02 00 00 Figure 92 The voltage between OCS and Rails busbar at TSS_5 In this diagram we see the voltage between the OCS and Rails busbar We see very well the no load voltage of 27 5kV and voltage drops to about 26 65kV This is still above the nominal voltage of 25kV IFB DD UM_OPN_51_0
162. els Begin and end of different track types and rail profiles Position and kind of signals and signalling sections Operational data e Position of passenger stations and signal related stopping points e Permissible speed profiles e Stopping times at stations turning times at termini e Time table of all line sections including internal rides e Train types train configuration and loading grade per section e Operation concept incl special operational scenarios Vehicle data e Vehicle or train mass empty laden e Adhesion mass e Maximum speed e Driving resistance formula e Factor for rotating mass e Engine energy storage characteristic e Propulsion characteristics as follows e Traction force and braking force characteristics related to running speed e Pantograph current characteristics driving and braking related to running speed or efficiency characteristic e Information about voltage related current or power limitation of the propulsion control IFB DD UM_OPN_51_01 04 02 doc Page 80 of 206 DMJ 2013 02 12 OPN 51 1 4 2 pen PowerNet 7 7 4 Institut f r Bahntechnik GmbH Page 81 of 206 User Manual Issue 2013 02 12 e Maximum average power consumption of the auxiliary systems lighting air condition heating e Maximum recuperation voltage Power supply system and conductor data Type of substation Nominal voltage Position of substations connection points to the powe
163. em and the database backup from the Help System as zip files Please read chapter 4 6 for the description of the database import Another option is to use the default workspace This workspace contains the complete tutorial To be able to use the Tutorials AC 2AC and DC with the ACADEMIC license the slice distance is 1km This results in curves with steps instead of smooth curves when using 200m slice distance But in principle the results are the same with 200m and 1km slice distance To run the other tutorials beginning at chapter 6 6 a FULL license is necessary 6 1 General It is advised to always use the same folder structure for all simulations as it helps to keep order In principle each simulation has two kinds of data One kind is the input amp analysis data and the other kind the output data Input and analysis data structure Project Name OPNAnalysis output directory for the Analysis Tool OPNData OpenPowerNet configuration data Engine File xml TypeDefs File xml Project File xml OTData OpenTrack configuration data Project Name depot Project Name courses Project Name dest Project Name stations Project Name timetable Project Name trains OTDocuments OpenTrack infrastructure Project Name opentrack OTOutput OpenTrack output directory The folder and file structure above has to be prepared manually For the output data structure refe
164. emperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 10 y m 6 9 gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 2 km 9 750 gt lt ToProperty toPos_km 20 000 equivalentRadius_mm 3 45 r20_Ohm km 0 1852 temperature _GradCelsius 20 temperatureCoefficient 0 00385 x m 10 y m 5 3 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 2 km 9 750 gt lt ToProperty toPos_km 20 000 equivalentRadius_mm 38 52 r20 Ohm_km 0 0306 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 9 25 y m 0 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 2 km 9 750 gt lt ToProperty toPos_km 20 000 equivalentRadius_mm 38 52 r20 Ohm_km 0 0306 temperature _GradCelsius 20 temperatureCoefficient 0 004 x m 10 75 y_m 0 gt lt Conductor gt The conductor configuration for track 3 lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 3 km 9 650 gt lt ToProperty toPos_km 20 000 equivalentRadius_mm 3 45 r20 Ohm km 0 2311 temperature GradCelsius 20 temperatureCoefficient 0 004 x wer 20 y m 6 9 gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 3 km 9 650 gt lt ToProperty toPos_km 20 000 equivalentRadius_mm 3 45 r20_Ohm km 0 1852 temperature GradCelsius
165. enPowerNet gt Excel Tools gt Compare Two Power Supplies and Engine xlsx OpenPowerNet gt Excel Tools gt One Engine The first file provides diagrams for two substations versus time To match the time easily with a location we want to run the course with constant speed of 180km h respective 50m s In this way it is easy to match the time with the location In OpenTrack we need to set the speed limit of all edges to 180km h for speed type A Then we create a new course with name short circuit and the itinerary from Station A to Station C via track 1 set the speed type to A and the entry speed to 180km h see Figure 95 Now we have a course with constant speed along the whole line from Station A to Station C Courses Services Edit Course 2 shorteireuit a Description Comment Kind i cy w s CY k1_1EOS ACE_EOS s 1_2E0O5 ACE_EOS Ej v 1A B1 C ii kA B2 C LACE_BOS 1_1BOS Search Train Train long Speedtype Reihe A Route Reservation Release Discrete Route Additional Reservation Time s 0 0 Route Additional Release Time s 0 0 Performance on Time 100 o gt Performance delayed 100 Entry Speed km h 180 Output Offset m 0 Resetitin Cancel Figure 95 Short circuit course configuration in OpenTrack In the OpenPowerNet Project File we need to add a new attribute to the engine lt Vehicle
166. enschaften votTable zusammenfassen a My Im Browser ffnen Duplikate entfernen Exportieren Akt In Bereich konvertieren r Tools Aktualisieren Alle aktualisieren example Storage simple erung abbrec hen Verbindungseigenschaften Tabellentools Su jols Add Ins Entwurf W berschrift Ergebniszeile Pl Er F le Figure 54 Now the data in the table retrieved from database is ready for further evaluation and visualisation For easy handling of the external data source query it is recommended to use the Table Tools menu OpenPowerNet comes with Excel files already prepared for data analysis These files are accessible from the GUI See the GUI Help System at OpenPowerNet Analysis User Guide gt Usage for details The Excel File Consumption xlsx visualises the energy consumption of all courses in all networks of the simulation summarised by the Train Operating Company see Figure 42 and expressed as percentage of total energy consumption of all courses see Figure 55 22 270 26 127 Wp sum 51 603 E0 1m s 2 E 0 3m s 2 o 3 0m s 2 Figure 55 Proportional portioned energy consumption of Train Operating Companies expressed in percent of the total energy consumptions of all Train Operating Companies IFB DD UM_OPN_51_01 04 02 doc Page 61 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 62 of 206 User Manual Issue
167. esides the constraints derived from the OpenTrack model mentioned in chapter 7 1 the model has to fulfil further constraints Otherwise the simulation is not possible or the results will be wrong The following constraints have to be fulfilled Auto Two Winding Three Winding and BoosterTransformer 0 lt relativeShortCircuit Voltage nomPower noLoadLosses 0 lt nomPrimaryVoltage noLoadCurrent noLoadLosses For AC networks the sums of all conductor currents of each section between two slices within a line have to be 0 This means e It is not allowed to add connectors parallel to conductors e Feeder and return feeder from a substation to the line have to be connected at the same slice and e Lines shall not be connected in a triangular manner e It is not possible to add a switch between the busbar and a rectifier but you can still use a switch in the feeder cable to the line e It is not allowed to have more than one contact wire per track e It is not allowed to have more than two rails per track In case of two rails these two rails have the same voltage at engine position during the simulation The occurrence of engines inside the electrical network has to be realistic as each course inside the network consumes at least its auxiliary power If a course is created at the wrong time step or behaves unrealistic this has an effect inside the electrical network although the operational simulation may not b
168. eutral zone tutorial In this tutorial a 2AC system with neutral zone will be created The 2AC tutorial was simpler without a neutral zone The neutral zone shall be at TSS_5 from km 4 800 until km 5 200 and it shall be possible to feed from one feeding section via the neutral zone to the other feeding section Furthermore we add an autotransformer station at km 0 000 see Figure 153 IFB DD UM_OPN_51_01 04 02 doc Page 159 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 lt spenPowe rNet IIL Institut f r Bahntechnik GmbH Page 160 of 206 User Manual Issue 2013 02 12 ATS_0 TSS_5 ATS_80 rails negative feeder 0 000 4 700 4 800 5 200 5 300 80 000 Figure 153 The electrical network model To fulfil the constraint that the current sum in each section is always 0A the neutral zone configuration shall look like in Figure 154 IFB DD UM_OPN_51_01 04 02 doc Page 160 of 206 DMJ 2013 02 12 Oa OPN 51 1 4 2 pe nPowerNet Institut f r Bahntechnik GmbH Page 161 of 206 User Manual Issue 2013 02 12 TSS_S T1 T2 E a LJ E i bi a a a a fC E E n E E m NF N TSS_5_NF_ a TSS_5_NF_ TSS_5F Du SF ME E E pd E TSS_5_RF_ TSS_S_RF_r Figure 154 The configuration of a neutral zone of a 2AC system 6 7 2 1 Configuration 6 7 2 1 1 OpenTrack We will use the OpenTrack model from the AC tutorial without changes IFB DD UM_OPN_51_01 04 02 do
169. ewer Project Ex 33 X Project Filexml d Project Filexml ui_diagram 3 ASS 100 200 300 400 500 600 700 800 900 1000 1100 1200 iS Test 8 A E T 300 Z C ma 4 t E Console 3 N E Properties Sg Progress Ex GE E B Oo OPN S p i E Console 3 E Console E Console 53 OPN ApServer EA rg OPN ATM Be EA r3 OPN Psc Ee o AG ri Figure 13 The OpenPowerNet perspective of the GUI IFB DD UM_OPN_51_01 04 02 doc Page 21 of 206 DMJ 2013 02 12 OPN 51 1 4 2 Page 22 of 206 3penPowerNet User Manual L 7 4 ww Institut f r Bahntechnik GmbH Issue 2013 02 12 File Edit Diagram Navigate Search Project Run OpenPowerNet Window Help Di Tahoma 9 B Z Ar Sr sy gt gt Bl By By Bel S ow NM Ee 50 Q v eBtas ER EB T ba e eoro s Eae on T Projectex 2 _ Of os B Test E Properties El Console x OPN FTIEEN R Figure 14 The PSC Viewer perspective of the GUI The GUI includes a simple XML editor to edit the configuration files tom DE BO amp r E EM E PSC Viewer Eh OPN awe File Edit Navigate Search Project Run OpenPowerNet Design Window Help ee 22668 BL E EF bOr amp Project Explorer 2 Sim N
170. figured in the root element of the Project File The Project File and these referenced files are read every time a simulation has started Hence it is not necessary to restart OpenPowerNet after changing the name or content of a project specific file 4 2 3 1 Engine File This file acts as a library of engines and contains all information for a simulation It has to correspond with the OpenTrack engine data The engine ID is used for mapping the engine data between both programs The XML file observes the RailML Rolling Stock Schema 1 03 0PN 2 provided as file de bahntechnik dd opn bin_x x x JJJJMMDDhhmm schemas rollingstock xsd The schema specification documentation is available in the GUI Help System under OpenPowerNet User Guide gt Engine File Table 3 to Table 6 list the data processed by ATM considering the engine models from Figure 3 to Figure 5 The position where the data shall be inserted into the Engine File is described by X Path which is similar to a path of the file system XML elements can be understood as folders and XML attributes as files containing the data A path to an attribute contains an as prefix of the attribute name IFB DD UM_OPN_51_01 04 02 doc Page 29 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 30 of 206 User Manual Issue 2013 02 12 Below is an example Engine File with one engine equipped with one propulsion system
171. g Ohm 0 gt lt ConductorFrom condName CW lineID A trackID 1 km 0 650 gt lt ConductorTo condName CW lineID A trackID 2 km 0 650 gt lt Connector gt lt Connector name RL track 1 2 km 0 650 z_real Ohm 0 000010 z_ imag Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 1 km 0 650 gt lt ConductorTo condName RL lineID A trackID 2 km 0 650 gt lt Connector gt lt Connector name RR track 1 2 km 0 650 z_real Ohm 0 000010 z_imag Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 1 km 0 650 gt lt ConductorTo condName RR lineID A trackID 2 km 0 650 gt lt Connector gt lt Connector name MW track 1 2 km 9 750 z real Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 1 km 9 750 gt lt ConductorTo condName MW lineID A trackID 2 km 9 750 gt lt Connector gt lt Connector name CW track 1 2 km 9 750 z real Ohm 0 000010 z_ imag Ohm 0 gt lt ConductorFrom condName CW lineID A trackID 1 km 9 750 gt lt ConductorTo condName CW lineID A trackID 2 km 9 750 gt lt Connector gt lt Connector name RL track 1 2 km 9 750 z_real Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 1 km 9 750 gt lt ConductorTo condName RL lineID A trackID 2 km 9 750 gt lt Connector gt lt Connector name RR track 1 2 km 9 750 z_real Ohm
172. g constraints need to be considered e Direction of edges has to be continuous e Chainage has to be positive e Set km point of each double vertex e Set length of all edges e Set line ID of all edges e Set track ID of all edges e Specify power supply areas It is helpful to prevent unnecessary changes in chainage or line and track IDs during creation of the OpenTrack project to simplify the electrical network model If there are engines with same OpenTrack input data but different electrical parameters for the same catenary system these engines have to be handled separately A multi system traction unit can be handled as a single engine though Phase insulation gaps or voltage free areas should get power off and power on signals in OpenTrack The turnouts in OpenTrack have to use a 1m edge for each direction This is to get a correct match of the locations in the OpenTrack infrastructure model and the OpenPowerNet electrical network model The standard track occupation reserves the main and branch edge together As the constraint is to use a 1m edge the standard occupation is as in the upper part of Figure 175 The occupation can be extended by merging elements For this select the edges to be merged and select Merge Elements from OpenTrack Menu Functions im im TU 2 G ja E f without merged elements H Hk with merged elements ol ll Figure 175 The modelling of turnouts in OpenTrack respecting a Open
173. ge 72 of 206 DMJ 2013 02 12 Oa MP OPN 51 1 4 2 pen Powe rN et IIL Page 73 of 206 User Manual Institut f r Bahntechnik GmbH Issue 2013 02 12 Conductor Voltage Tutorial AC Network default Line A km 5 000 80 70 60 a e Voltage V w o 20 4 Sij 0 T T T T T T T 01 00 00 01 05 00 01 10 00 01 15 00 01 20 00 01 25 00 01 30 00 01 35 00 Time U_1_RL 1_E U_1_RR 1E Figure 69 Example output of the touch voltage versus time Conductor Voltage RMS Tutorial AC Network default Line A km 5 000 80 01 40 00 01 45 00 70 60 a e RMS Voltage V gt w e 20 Time s U_1_RL 1_E_max_rms U_1_RR 1_E_max_rms Figure 70 Example output of the touch voltage as Time Rated Load Periods Curve IFB DD UM_OPN_51_01 04 02 doc Page 73 of 206 1000 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 74 of 206 User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH 4 5 4 Additional Tools The Simulation Property Editor may be used to change the comment of a simulation in the database This comment is used e g as part of the default designation for diagram titles and helps to identify a specific simulation inside the database f 7 E OpenPowerNet Simulation Property Editor Sa x Select Simulation
174. graphs shall look like in Figure 162 and Figure 163 A C otsimcor 0 Tutorial 06_Network_Model 04_Lines_Points_Crossings 0TDocuments Info Document Edit Format Tools Functions Windows Print Hide Quit Station A Station C Station A Station B 01 0 L ee ine ABO 10 20h pena Legend Category 1 9 Braking for Route Braking for Signal Braking for Approach Aspect Stop at Signal 9 Late Arrival Late Departure 9 Late Passing Figure 162 The train graph from station A to C IFB DD UM_OPN_51_01 04 02 doc Page 182 of 206 DMJ 2013 02 12 OPN 51 1 4 2 Page 183 of 206 lt SpenPowerNet User Manual 7 7 4 MLA Institut f r Bahntechnik GmbH Issue 2013 02 12 Sy A D otsimcor 0 Tutorial 06_Network_Model 04_Lines_Points_Crossings 0TDocuments Info Document Edit Format Tools Functions Windows Print Hide Quit Station A Station D Station A Station B 01 00 pan1000 ABO 1010 con nd at Legend Category 1 9 Braking for Route Braking for Signal Braking for Approach Aspect 9 Stopat Signal 9 Late Arrival Late Departure 9 Late Passing Figure 163 The train graph from station A to D After the correct timetable is confirmed we run the simulation
175. hall be configured The electrical connection of track 1 and 3 at km 9 650 lt Connectors gt lt Connector name MW track 1 3 km 9 650 z_real Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 1 km 9 650 gt lt ConductorTo condName MW lineID A trackID 3 km 9 650 gt lt Connector gt lt Connector name CW track 1 3 km 9 650 z real Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName CW lineID A trackID 1 km 9 650 gt lt ConductorTo condName CW lineID A trackID 3 km 9 650 gt lt Connector gt lt Connector name RL track 1 3 km 9 650 z_ real Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 1 km 9 650 gt lt ConductorTo condName RL lineID A trackID 3 km 9 650 gt lt Connector gt lt Connector name RR track 1 3 km 9 650 z real Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 1 km 9 650 gt lt ConductorTo condName RR lineID A trackID 3 km 9 650 gt lt Connector gt The electrical connection of track 1 and 2 at km 9 750 lt Connector name MW track 1 2 km 9 750 z_ real Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 1 km 9 750 gt lt ConductorTo condName MW lineID A trackID 2 km 9 750 gt lt Connector gt lt Connector name CW track 1 2 km 9 750 z_ real Ohm 0 000010 z imag Ohm 0 gt lt
176. he 2700V 2000A point lt values yValue 2000 gt lt valueLine gt lt valueTable gt lt tractiveCurrentLimitation gt lt propulsion gt IFB DD UM_OPN_51_01 04 02 doc Page 115 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 116 of 206 User Manual Issue 2013 02 12 6 4 1 2 2 Project File As the base of this Project File we will use the Project File of the AC network and adapt it First we adapt the engine model by changing the supply and using the tractive current limitation lt Propulsion engine electric supply DC 3000V Change the supply system to DC 3000V brakeCurrentLimitation none tractiveCurrentLimitation I f U Change this value from none to I f U useAuxPower true fourQuadrantChopperPhi none regenerativeBrake none tractiveEffort maxPower maxTractEffort gt lt MeanEfficiency gt lt Propulsion gt Next we add the line feeder as a conductor with the same characteristics as the negative feeder of the 2AC tutorial lt Conductor type Feeder gt Change the type of the conductor lt StartPosition condName LF trackID 1 km 5 gt and change the name to LF lt ToProperty toPos_km 80 equivalentRadius mm 8 4 r20_Ohm_km 0 1188 temperature GradCelsius 20 temperatureCoefficient 0 004 x_m 4 y_m 9 gt lt Conductor gt Then we need to add the connectors every 1000m from the lin
177. he busbars via child elements OCSBB and RailsBB see Figure 31 Figure 31 Rectifier with busbar child elements attributes RailsBB he nner Three winding and auto transformer are connected to the busbars via child elements OCSBB RailsBB and NegativeFeederBB see Figure 32 IFB DD UM_OPN_51_01 04 02 doc Page 39 of 206 DMJ 2013 02 12 oma penPowerNet Z gt Institut f r Bahntechnik GmbH Page 40 of 206 User Manual Issue 2013 02 12 H attributes A trar aha mer to 7 overhead contact line A three winding transformer of a bus bar substation This kind of transformer proves distribution The connection from transformer to rails bus bar pregador codem Used for power supply systems Figure 32 Three winding transformer with child elements The booster transformer is connected to 4 busbars The primary busbars are typically connected to the catenary in parallel to an isolated section and the secondary busbars to the return wire H attributes I a substation Figure 33 Booster transformer with child elements IFB DD UM_OPN_51_01 04 02 doc Page 40 of 206 DMJ 2013 02 12 OPN 51 1 4 2 3penPowerNet User Manual Page 41 of 206 7 7 4 ww Institut f r Bahntechnik GmbH Issue 2013 02 12 4 Substations Substation name TSS_10 4 TwoWindingTransformer
178. how Switch Pos M Toggle Windows M Use Sound Legend legend S Train Categories Name hs a v Category 2 sZ Category 3 aud panies pe a al 71 Braking for Route Braking for Route v Braking for Signal Braking for Signal 2 _Rrakinn far Annrnach Acnact Rrakina far Annrnach Asnart BE Z Train Diagram M Category Color planned Dashed Line planned Pattern Occupation Calculation I Use Curve Resistance M Use Switch Time and Route Res Time ETCS Level 2 Comm Period s 5 Optimiz Period s 30 Optimize Train Sequence M ETCS Level 3 Safety Margin m 10 0 Load Set from Dir Delete Set Save Setas Cancel OK Figure 78 OpenTrack preferences The next step is to create the track layout signals stations and power supply area The detailed track data is e Start at km 0 with home signal Station A at km 0 200 Exit signal at km 0 400 Gradient of 10 o from km 1 400 to 2 400 Gradient of 0 from km 2 400 to 6 750 Gradient of 5 from km 6 750 to km 8 750 Gradient of 0 o from km 8 750 to the end of the line Home signal at km 9 650 Turnout at km 9 750 Exit signals on both tracks at km 9 800 Station B at km 10 000 with two tracks e Exit signals on both tracks at km 10 200 e Turnout at km 10 250 e Home signal at km 10 350 set sight distance to 10000m to prevent braking of courses while approaching the signal e Exit signal at km 85 000 e Station C at km 85 200 IFB DD
179. icate directly with other programs The APserver manages the iteration of electrical network and engine simulation as well as the actual course status It is also responsible for writing the course data into the database and for calculating their energy consumption 3 3 Advanced Train Model The Advanced Train Model simulates the propulsion system of the engines The configuration data is stored in the Engine File which may act as a library for all simulations similar to the rolling stock depot of OpenTrack described in chapter 4 2 3 1 The model type and other choices used by the simulation will be set in the Project File described in chapter 4 2 3 3 The electrical propulsion system of an engine consists of the following main components e Transformer e Four quadrant chopper e Inverter e Motor and e Gear Power consumers are IFB DD UM_OPN_51_01 04 02 doc Page 11 of 206 DMJ 2013 02 12 OPN 51 1 4 2 Page 12 of 206 3penPowerNet User Manual 7 7 4 Institut f r Bahntechnik GmbH Issue 2013 02 12 e Auxiliaries of engine and trailers e Eddy current brake e Engine energy storage and e Traction power An engine can be modelled in different ways in particular as the efficiency depends on the chosen model type see Figure 3 to Figure 5 IFB DD UM_OPN_51_01 04 02 doc Page 12 of 206 DMJ 2013 02 12 OPN 51 1 4 2 Page 13 of 206 3penPowerNet Use
180. iles are opened in a write protected mode to avoid unmeant overwrite but may be saved with a different name The prepared Excel files utilise the ODBC DSN pscresults to connect to a database The ODBC DSN is like an arrow pointing to a database schema Via the configuration of the pscresults DSN any desired database schema may be selected and analysed in Excel see chapter 3 9 as well as Figure 44 and Figure 45 ODBC Data Source Administrator User DSN System DSN File DSN Drivers Tracing Connection Pooling About User Data Sources Add dBASE Dateien Microsoft dBase Treiber dbf Excel Dateien Microsoft Excel Treiber xIs Remove Microsoft Access Datenbank Microsoft Access Treiber mdb MySQL ODBC 3 51 Driver Configure 4n ODBC User data source stores information about how to connect to the indicated data provider A User data source is only visible to you and can only be used on the current machine Cancel Help Figure 44 The ODBC datasource administrator To retrieve the data from the database select update all from the Excel Data ribbon or press Ctrl Alt F5 Update multiple times to get the data for selection and data to be displayed in the prepared diagrams IFB DD UM_OPN_51_01 04 02 doc Page 55 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 lt SpenPowerNet Page 56 of 206 User Manual Issue 2013 02 12 Institut fiir Bahntechnik GmbH
181. ine gt lt Lines gt These are the connectors from track 1 to track 2 conductors lt Connectors recordCurrent false tsub recordVoltage false sub gt lt Connector name MW track 1 2 km 9 750 z_real Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 1 km 9 750 gt lt ConductorTo condName MW lineID A trackID 2 km 9 750 gt lt Connector gt lt Connector name CW track 1 2 km 9 750 z_real Ohm 0 000010 z_imag Ohm 0 gt lt ConductorFrom condName CW lineID A trackID 1 km 9 750 i gt lt ConductorTo condName CW lineID A trackID 2 km 9 750 gt lt Connector gt lt Connector name RL track 1 2 km 9 750 z_ real Ohm 0 000010 z_ imag Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 1 km 9 750 gt lt ConductorTo condName RL lineID A trackID 2 km 9 750 gt lt Connector gt lt Connector name RR track 1 2 km 9 750 z_real Ohm 0 000010 z_ imag Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 1 km 9 750 gt lt ConductorTo condName RR lineID A trackID 2 km 9 750 gt lt Connector gt lt Connectors gt lt Substations gt lt Substation name TSS 5 gt The substation at km 5 000 with rectifier lt Rectifier name R1 internalResistance_Ohm 0 01 nomVoltage_kV 3 3 energyRecovery false gt lt OCSBB bbName 0CS_BB z_ real Ohm 0 001 z_ imag Ohm 0 gt lt RailsBB bbName Rails BB z _ real _Ohm 0
182. ing the FULL license set the time steps in OpenTrack to 4 seconds As we can see in Figure 115 the minimum current is above 2500A Therefore we will do the constant current simulation with 1000A as in the previous tutorials U f s BT 1200 3000 L 1000 2500 4 800 2000 2 eo 5 ee LEADERS SEHEN RER ee a ka ne ee H 400 wod en SEEN ee ee ee l i i i i i i 200 500 4m Bartrentssns en Bassn drestr ass ern a 0 i i 0 0 000 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000 90 000 s km UN IA Figure 116 The voltage versus chainage of constant current simulation IFB DD UM_OPN_51_01 04 02 doc Page 120 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 121 of 206 User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH 6 4 3 4 Failure scenario Note When not using the FULL license set the time steps in OpenTrack to 4 seconds See chapter 6 2 3 4 to configure the Project File and to run the simulation U f s 3500 um 0 i 0 000 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000 90 000 s km Sim 11 Course CBAI_01 Engine 0 Engine1 Sim 14 Course CBAI_01 Engine 0 Engine1 Figure 117 The line voltage for course CBAI_01 in default configuration sim 11 and failure scenario sim 14 6 5 DC Network with Energy Storage tutorial In this tutorial we will add an energy st
183. ion time window enables the user to specify the times the network shall be used during the simulation For instance the Project File has multiple networks along a very long route The simulation runs five trains following each other To minimize the calculation time and amount of data each network should only be enabled if at least one train is in the network see the example in Figure 39 Note In case the network contains energy storages it is advised to use the network for the whole simulation due to changing energy storage state of charge IFB DD UM_OPN_51_01 04 02 doc Page 48 of 206 DMJ 2013 02 12 O IPH OPN 51 1 4 2 pen Powe rNet IIL Institut f r Bahntechnik GmbH Page 49 of 206 User Manual Issue 2013 02 12 Network o0 02 ve 08 10 12 14 18 18 EJ Figure 39 Example of reasonable simulation time windows per network The red rectangles indicate the feeding section per network and the simulation time window IFB DD UM_OPN_51_01 04 02 doc Page 49 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 50 of 206 User Manual Issue 2013 02 12 4 2 3 3 8 Network Merge xi Network name TestNet 4 Network name TestNetwork 2 voltage_kV 15 frequency_Hz 16 7 recordCurrent true recordVoltage tr
184. itut f r Bahntechnik GmbH lt ConductorFrom km 2 100 trackID up condName CW lineID A gt lt ConductorTo km 1 900 trackID up condName CW lineID A gt lt Connector gt lt Connector z_real_ Ohm 0 0001 z_imag Ohm 0 0 gt lt ConductorFrom km 2 100 trackID up condName R lineID A gt lt ConductorTo km 1 900 trackID up condName R lineID A gt lt Connector gt lt Connectors gt 7 3 How to organise the files and folders See chapter 6 1 7 4 How to calculate the equivalent radius First determine the cross section A of the given conductor and convert this value to radius r of a circular cross section with same area A see the formula below circle A A r circle r mT Second the radius r of the circular cross section needs to be multiplied with factor a to get the equivalent radius r Yy 54r conductortye a Oe solid cylindrical 0 779 Al and Cu cables 7 cores 10 50mm 0 726 Al and Cu cables 19 cores 70 120mm 0 758 Al and Cu cables 37 cores 150 185mm 0 768 Al and Cu cables 61 cores 240 500mm 0 772 Al and Cu cables 91 cores 625 1000mm 0 774 1 layer Al Fe cables 16 2 5 300 50mm 0 55 1 layer Al Fe cables 44 32 120 70mm 0 7 2 layers Al Fe cables 26 cores 120 20 300 50mm 0 809 2 layers Al Fe cables 30 cores 125 30 210 50mm 0 826 3 layers Al Fe cables 54 cores 380 50 680 85mm 0
185. k As the basis we take the data from the AC tutorial The tracks to be added have no gradient or radius Create the tracks and use the information from Figure 161 Note The track names of the crossing and the cross over are the same as for the main line tracks The electrical network model shall be simplified and the catenary for the crossing tracks and the cross over tracks shall not be modelled Only the main tracks shall have a catenary model Therefore the positions within the crossing and cross over have to be mapped to the main tracks A position is always the triplet of line name track name and chainage Create all paths routes and itineraries to run the trains as listed in Table 20 Note The courses drive by default at the right track 6 7 4 1 2 OpenPowerNet We will use the Engine and Project File from the AC tutorial as the basis 6 7 4 1 2 1 Engine File For this tutorial we don t need to change the Engine File 6 7 4 1 2 2 Project File From the AC tutorial we will used the substation configuration the properties of the conductors connectors and connector slices We need to change the beginning and the end of the conductors and slices The configuration of the engine model does not need to be changed First the configuration of line A lt Line name A maxSliceDistance_km 0 5 gt lt Conductors gt The conductor configuration for track 1 lt Conductor type MessengerWire gt lt StartPosition condNa
186. k 1 2 km 10 250 z_real_Ohm 0 000010 z_imag_Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 1 km 10 250 gt lt ConductorTo condName RL lineID A trackID 2 km 10 250 gt lt Connector gt lt Connector name RR track 1 2 km 10 250 z_real_Ohm 0 000010 z_imag_Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 1 km 10 250 gt lt ConductorTo condName RR lineID A trackID 2 km 10 250 gt lt Connector gt lt Connections of rails and ocs at the crossing gt lt Connector name MW track 2 3 km 10 450 z real Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 2 km 10 450 gt lt ConductorTo condName MW lineID A trackID 3 km 10 450 gt lt Connector gt lt Connector name CW track 2 3 km 10 450 z real Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName CW lineID A trackID 2 km 10 450 gt lt ConductorTo condName CW lineID A trackID 3 km 10 450 gt lt Connector gt lt Connector name RL track 2 3 km 10 450 z_real Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 2 km 10 450 gt lt ConductorTo condName RL lineID A trackID 3 km 10 450 gt lt Connector gt lt Connector name RR track 2 3 km 10 450 z real Ohm 0 000010 z_imag Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 2 km 10 450 gt lt ConductorTo condName RR
187. k size low is to separate the network into several parts if possible for the particular network structure The structure of these smaller networks can be calculated faster During simulation all network parts can be used at the same time Note that the simulation does not have any retroactive effect between the networks PSC is designed but not limited to calculate 1AC see Figure 9 as well as the 2AC see Figure 10 and DC power supply systems see Figure 11 IFB DD UM_OPN_51_01 04 02 doc Page 18 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 lt spenPowe rNet IIL Institut f r Bahntechnik GmbH Page 19 of 206 User Manual Issue 2013 02 12 substation ocs rails Figure 9 The 1AC power supply system substation autotransformer autotransformer autotransformer AT1 AT2 AT3 sw s ew sh de lake w lsh ocs rails negative feeder I I I train NOT in section gt amp rain in section gt 1 1 1 Figure 10 The 2AC power supply system rectifier substation rectifier substation Figure 11 The DC power supply system IFB DD UM_OPN_51_01 04 02 doc Page 19 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 20 of 206 User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH The configuration data of an electrical network see Figure 12 contains information about e Substations including o Transformers or rectifiers o Busbars and
188. l 7 7 4 ww Institut f r Bahntechnik GmbH Issue 2013 02 12 Engine Model Single Component Efficiencies 100 90 70 60 50 40 v km h A Figure 142 The efficiencies of the engine components 6 6 10 1 Configuration 6 6 10 1 1 OpenTrack We will use the OpenTrack model from the AC tutorial without changes Select only the course ABCI_01 and CBAI_01 with long trains 6 6 10 1 2_OpenPowerNet We will use the Engine and Project File from the AC tutorial as the basis 6 6 10 1 2 1 Engine File In the Engine File we need to define all the efficiencies of the engine model lt vehicle length 25 bruttoWeight 75 vehicleID Enginel speed 250 gt lt engine gt lt propulsion supply AC 25kV 50Hz transmission electric engine electric power 5560 maxTractEffort 250 totalTractEfficiency 90 totalBrakeEfficiency 90 gt lt transformer typeStr meanEfficiency 98 count 1 gt lt efficiency gt IFB DD UM_OPN_51_01 04 02 doc Page 148 of 206 Eta_40C flv Eta_inverter flv Eta_motor f v Eta_gear flv Eta_total flv Eta_trafo il DMJ 2013 02 12 OPN 51 1 4 2 Page 149 of 206 3penPowerNet User Manual 7 7 4 MLA Institut f r Bahntechnik GmbH Issue 2013 02 12 lt valueTable xValueName Current xValueUnit A The current and yValueName
189. ll modules via the GUI make sure the option to use OpenPowerNet in OpenTrack is set and start the simulation with courses ABCI_01 and CBAI_01 IFB DD UM_OPN_51_01 04 02 doc Page 94 of 206 DMJ 2013 02 12 OPN 51 1 4 2 7 7 4 3penPowerNet Institut f r Bahntechnik GmbH Page 95 of 206 User Manual Issue 2013 02 12 Simulation gt Start Time Stop Time Break Time Step s Best RR 1 HH MM SS Current Time T _ Scenario Adhesion Outside good Adhesion Tunnel good Delay Scenario None Simulation Run 17 1 Mean Delay s oo Performance 100 _ Misc M Multithreaded Keep Occupations Optimize Dispatching _ Animation M Show Train MID Descr M Delay RAL gt S Sec M Show Current Time M Show Messages M Show Instruments Stat Step Pause Stop Di m E Figure 85 OpenTrack simulation panel settings Note When not using the FULL license set the time steps in OpenTrack to 3 seconds 6 2 3 Analysis 6 2 3 1 Default configuration For a quick overview we will use the delivered Excel Files To get a feeling of the minimum voltage we will use the file EngineAll xlsx This file is available via menu OpenPowerNet gt Excel tools gt All Engines As the file is quite big be patient until the file is open and then select the simulation and update the data from the database into the Excel File see also Figure 5
190. lled as mean efficiency As we want to record data to the database set the simulation option for module ATM For the internal ATM iteration we need to define the maximum allowed current tolerance between the iteration steps and a maximum number of allowed iterations After the definition of engines we will define the electrical network The electrical network shall have two substations One is at km 5 00 and the other at km 80 000 Each substation has one transformer one feeder from busbar to the contact wire and one to the rails for the return current We will define a messenger wire a contact wire and two rails for each track The model shall also contain the connectors between the messenger wire and contact wire as well as between the rails Furthermore we will define a conductor modelling the earth The origin of the cross section ordinates is defined in the middle of track 1 at a height of the rails Let s start to define the network model step by step First the network parameter lt Network name A C use true voltage_kv 25 frequency Hz 50 recordVoltage true recordCurrent true gt We have to set a network name and to tell OpenPowerNet that we want to use this network in the simulation As we want to record voltages and currents we have to set the last two attributes of the above XML snippet to true IFB DD UM_OPN_51_01 04 02 doc Page 89 of 206 DMJ 2013 02 12 7 7 4 pour penPowerNet_ gt
191. low the same procedure as course 1 but no network calculation will take place In general at the beginning of each time step the voltages of the electrical network with the known course positions and requested efforts of the previous time step are calculated Iteration between ATM and PSC takes place and is terminated in case each node voltage changes less as a configured threshold e g 1V ATM calculates the current according to the line voltage simulated by PSC and PSC calculates the line voltage considering the currents used by courses Each course is handled as a current source in the electrical network IFB DD UM_OPN_51_01 04 02 doc Page 7 of 206 DMJ 2013 02 12 OPN 51 1 4 2 Page 8 of 206 lt SpenPowerNet User Manual 7 7 4 Institut f r Bahntechnik GmbH Issue 2013 02 12 2 1 Model Specifics The following model specifics shall be considered during model configuration and analysis e The electromagnetic coupling for AC systems is calculated by the software e Distributed engines within trains are modelled according to the train configuration in OpenTrack minimum OpenTrack version is 1 6 5 2011 05 24 e In case of two modelled rails for one track both rails will have the same voltage at each engine This shall consider the electrical connection of both rails via the engine axes IFB DD UM_OPN_51_01 04 02 doc Page 8 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Pag
192. lower line voltage IFB DD UM_OPN_51_01 04 02 doc Page 112 of 206 DMJ 2013 02 12 OPN 51 1 4 2 Page 113 of 206 lt SpenPowerNet User Manual 7 7 4 Institut f r Bahntechnik GmbH Issue 2013 02 12 6 3 3 2 Short circuit For the short circuit simulation we modify the engine as described in the AC tutorial use the course short circuit and run the simulation Note When not using the FULL license set the time steps in OpenTrack to 4 seconds 2 500 7 2 000 1 500 I kA 1 000 7 0 500 4 f s 0 000 0 000 10 000 40 000 50 000 60 000 s km 20 000 30 000 70 000 80 000 90 000 _connector_1 kA I_connector_2 kA Ltotal kA l_engine kA Figure 108 The short circuit current of the 2AC network The short circuit current is the total of TSS_5 and ATS_80 current use Excel tool Short Circuit Current by two Station Feeders I f s 6 3 3 3 Constant current From Figure 108 we can see that the minimum short circuit current is about 1200A Therefore we will use a constant current of 1000A for the constant current simulation We need to do the same configuration as for the AC tutorial except we have to set the current to 1000A To be able to compare AC and 2AC configurations we will also run an additional constant current simulation with 1000A for the AC network Note When not using the FULL license set the time
193. ls BB 1 gt lt Connector name TSS_5 Rails Feeder z_real Ohm 0 001 z imag Ohm 0 gt lt Position condName RELI lineID A trackID 1 km 5 1 gt lt Switch defaultState close name TSS_5 Rails Feeder 5 0 gt lt Connector gt lt RailsBB gt lt OCSBB bbName 0CS_BB 2 gt lt Connector name TSS_5 OCS Feeder z_ real Ohm 0 001 z_ imag Ohm 0 gt lt Position condName LFF lineID A trackID 1 km 5 1 gt lt Switch defaultState close name TSS_5 OCS Feeder 6 0 gt lt Switch gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails BB 2 gt lt Connector name TSS_5 Rails Feeder z_real Ohm 0 001 z imag Ohm 0 gt lt Position condName RF_ lineID A trackID 1 km 5 1 gt lt Switch defaultState close name TSS_5 Rails Feeder 6 0 gt lt Connector gt lt RailsBB gt lt Busbars gt 6 7 1 1 3 Simulation First we run the wrong and then the correct simulation Note the message in OPN PSC console at the beginning of the simulation You can see which number of currents and voltages are recorded to the database 6 7 1 1 4 Analysis For analysis we will use the Excel tool Current _ total f s and Voltage U f s _ total f s 250000 000 200000 000 Banned 150000 000 s EREEEREEE SEBEREEEEEB ee RE ee te eea SEEN 1 A 100000 000 ee ERRERREREET EERERRERBER SENDE eee Sere pees ee eee ears eee NEE 50000 000 7 0 0
194. ls_BB gt lt Connector name ATS_ 80 Rails Feeder z_real_ Ohm 0 001 z_ imag Ohm 0 gt lt Position condName RR lineID A trackID 1 km 80 gt lt Connector gt lt RailsBB gt lt NegativeFeederBB bbName NF_BB gt lt Connector name ATS 80 NF Feeder z_ real Ohm 0 001 z_ imag Ohm 0 gt lt Position condName NF lineID A trackID 1 km 80 gt lt Connector gt lt NegativeFeederBB gt lt Busbars gt lt Substation gt After all this changes we check the new configuration using PSC Viewer and we will see the added negative feeder as in Figure 102 IFB DD UM_OPN_51_01 04 02 doc Page 108 of 206 DMJ 2013 02 12 7 7 4 penPowerNet gt Institut f r Bahntechnik GmbH OPN 51 1 4 2 User Manual Issue 2013 02 12 Page 109 of 206 Figure 102 A snippet of the 2AC network with TSS_5 and negative feeder 6 3 1 2 3 Switch File We need to adapt the Switch File of the failure scenario simulation First we change the switch names and second we add also the switches of the negative feeder lt xml version 1 0 encoding UTF 8 gt lt ADE xmlns xsi http www w3 org 2001 XMLSchema instance xsi noNamespaceSchemaLocation http www openpowernet de schemas 1 4 2 ADE xsd gt lt TPD gt lt SwitchSetting gt lt Switch state open time 01 05 00 name ATS 80 T1_OCS gt lt Switch state open time 01 05 00 name ATS 80 T1_Rails gt lt Switch state open time 01 05 0
195. lsion auxSupply constPower engine propulsion auxSupply constResistance engine propulsion auxSupply constPowerBraking engine propulsion auxSupply constResistanceBraking Note Auxiliary while braking is only active for engines with recovery braking recovery none braking max engine propulsion maxBrakePower engine propulsion maxBrakeEffort engine propulsion maxRecoveryVoltage IFB DD UM_OPN_51_01 04 02 doc Page 30 of 206 DMJ 2013 02 12 OPN 51 1 4 2 Page 31 of 206 OA lt SpenPowerNet User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH curve engine propulsion brakeEffort valueT able engine propulsion maxRecoveryVoltage tractive effort max engine propulsion power engine propulsion maxTractEffort curve engine propulsion tractiveEffort valueT able eddy current none brake max brakes eddyCurrentBrake maxPower brakes eddyCurrentBrake maxEffort brakes eddyCurrentBrake minSpeed Note Eddy current braking is only active for engines with recovery braking energy no ar yes engine storage name engine storage ImaxLoad_A engine storage ImaxUnload_A engine storage PmaxLoad_kW engine storage PmaxUnload_kW engine storage maxLoad_kWh engine storage efficiencyLoad_percent engine storage efficiencyUnload_percent energy none ae mean engine
196. lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name dropper track 2 station B firstPos_km 9 800 lastPos_km 10 200 maxDistance_km 0 1 gt lt Connector z_real_ Ohm 0 000073 z_imag Ohm 0 gt lt ConductorFrom condName MW trackID 2 gt lt ConductorTo condName CW trackID 2 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name rail connector track 1 station A firstPos_km 0 lastPos_km 1 maxDistance_km 0 05 gt lt Connector z_real_ Ohm 0 00001 z_ imag Ohm 0 gt lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName RR trackID 1 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name rail connector track 1 outside station A firstPos km 1 2 lastPos_km 25 4 maxDistance_km 0 2 gt lt Connector z_real_Ohm 0 00001 z_ imag Ohm 0 gt lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName RR trackID 1 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name rail connector track 2 station A firstPos_km 0 lastPos_km 0 450 maxDistance_km 0 05 gt lt Connector z_real_Ohm 0 00001 z_ imag Ohm 0 gt lt ConductorFrom condName RL trackID 2 gt lt ConductorTo condName RR trackID 2 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name rail connector track 2 station B firstPos_km 9 800 lastPos_km 10 200 maxDistance_km 0 1 gt lt Connector z_real Ohm
197. lt RailsBB gt lt NegativeFeederBB bbName NF_BB_ 1 gt lt Connector name TSS_4 7_ NF Feeder z_ real Ohm 0 001 z_ imag Ohm 0 gt lt Position condName TSS 5 NF_1 lineID A trackID 1 km 5 gt lt Connector gt lt NegativeFeederBB gt lt NegativeFeederBB bbName NF_BB_2 gt lt Connector name TSS_5 3 NF Feeder z_real Ohm 0 001 z imag Ohm 0 gt lt Position condName TSS 5 NF_r lineID A trackID 1 km 5 gt lt Connector gt lt NegativeFeederBB gt lt Busbars gt lt OCSBBConnector z_imag Ohm 0 0 z real Ohm 0 001 gt lt BusbarFrom bbName 0CS_ BB 1 gt lt BusbarTo bbName 0CS_ BB 2 gt lt Switch defaultState open name TSS_5 OCS BB gt lt OCSBBConnector gt lt RailsBBConnector z_imag Ohm 0 0 z_ real Ohm 0 001 gt lt BusbarFrom bbName Rails BB 1 gt lt BusbarTo bbName Rails BB 2 gt lt Switch defaultState open name TSS_5 Rails BB gt lt RailsBBConnector gt lt NegativeFeederBBConnector z_imag Ohm 0 0 z real Ohm 0 001 gt lt BusbarFrom bbName NF_BB 1 gt lt BusbarTo bbName NF_BB 2 gt lt Switch defaultState open name TSS_5 NF BB gt lt NegativeFeederBBConnector gt lt Substation gt 6 7 2 1 3 Simulation Run the simulation using the long trains 6 7 2 1 4 Analysis After the simulation we will check the total current sum at each section and for all time steps For this we use the Excel tool Current _ total f s Furthermore we
198. m 0 000010 z imag Ohm 0 gt lt ConductorFrom condName CW lineID A trackID 1 km 9 750 gt lt ConductorTo condName CW lineID A trackID 2 km 9 750 gt lt Connector gt lt Connector name RL track 1 2 km 9 750 z real Ohm 0 000010 z_ imag Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 1 km 9 750 gt lt ConductorTo condName RL lineID A trackID 2 km 9 750 gt lt Connector gt lt Connector name RR track 1 2 km 9 750 z_real Ohm 0 000010 z imag Ohm 0 gt IFB DD UM_OPN_51_01 04 02 doc Page 91 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 92 of 206 User Manual Issue 2013 02 12 lt ConductorFrom condName RR lineID A trackID 1 km 9 750 gt lt ConductorTo condName RR lineID A trackID 2 km 9 750 gt lt Connector gt The 4 connectors for messenger wire contact wire and both rails at the END of track 1 follow lt Connector name MW track 1 2 km 10 250 z_real_Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 1 km 10 250 gt lt ConductorTo condName MW lineID A trackID 2 km 10 250 gt lt Connector gt lt Connector name CW track 1 2 km 10 250 z_real Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName CW lineID A trackID 1 km 10 250 gt lt ConductorTo condName CW lineID A trackID 2 10 250 gt lt Conne
199. maxIterations 1000 record2DB true gt lt ATM gt lt PSC gt lt Network name A C use true voltage _kV 25 frequency Hz 50 recordVoltage true recordCurrent true gt lt Lines gt lt Line name A maxSliceDistance_km 0 5 gt The configuration of the conductors IFB DD UM_OPN_51_01 04 02 doc Page 192 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 193 of 206 User Manual Issue 2013 02 12 lt Conductors gt The conductors for track 1 lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 1 km 0 2 gt lt ToProperty toPos_km 25 4 equivalentRadius_mm 3 45 r20_Ohm km 0 2311 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 0 y m 6 9 gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 1 km 0 2 gt lt ToProperty toPos_km 25 4 equivalentRadius_mm 3 45 r20 Ohm_km 0 1852 temperature GradCelsius 20 temperatureCoefficient 0 00385 x _m 0 y m 5 3 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 1 km 0 2 gt lt ToProperty toPos_km 25 4 equivalentRadius_mm 38 52 r20_ Ohm_km 0 0306 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 0 75 y m 0 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 1 km 0 2 gt lt ToP
200. mbH Issue 2013 02 12 0 0 F kN 50 100 150 200 v km h 250 F_requested kN Sim 27 Course ABCs_02 Engine 0 Engine1 F_achieved kN Sim 27 Course ABCs_02 Engine 0 Engine1 4F_requested kN Sim 28 Course ABCs_02 Engine 0 Engine1 XF_achieved kN Sim 28 Course ABCs_02 Engine 0 Engine1 Figure 139 The achived effort by the engine of course ABCs_02 without sim 27 and with sim 28 eddy current brake Between 60 km h and 170 km h the achived brake effort of the simulation with eddy current brake sim 28 is 30 kN more than without Note that for a speed less than 10 km h both curves are the same For the other speeds the achived effort in simulation 28 is just as much as requested compare also the values in sheet SELECTION 2 P kw P_el f v 300 50 100 150 200 v km h 250 Sim 27 Course ABCs_02 Engine 0 Engine1 E Sim 28 Course ABCs_02 Engine 0 Engine1 Figure 140 The electrical power by course ABCs_02 without sim 27 and with sim 28 eddy current brake IFB DD UM_OPN_51_01 04 02 doc Page 144 of 206 DMJ 2013 02 12 OPN 51 1 4 2 Page 145 of 206 lt SpenPowerNet User Manual 7 7 4 MP Institut fiir Bahntechnik GmbH Issue 2013 02 12 Because of the eddy current brake we see the behaviour of the course ABCs_02 changed from regenerative to consuming Between 60 km h and
201. me MW trackID 1 km 0 gt lt ToProperty toPos_km 30 4 equivalentRadius_mm 3 45 r20 Ohm _ km 0 2311 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 0 y m 6 9 gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 1 km 0 gt lt ToProperty toPos_km 30 4 equivalentRadius_mm 3 45 r20 Ohm _km 0 1852 temperature GradCelsius 20 temperatureCoefficient 0 00385 x_m 0 y m 5 3 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 1 km 0 gt lt ToProperty toPos_km 30 4 equivalentRadius_mm 38 52 r20 Ohm_km 0 0306 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 0 75 y m 0 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 1 km 0 gt lt ToProperty toPos_km 30 4 equivalentRadius_mm 38 52 r20_ Ohm_km 0 0306 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 0 75 y m 0 gt IFB DD UM_OPN_51_01 04 02 doc Page 175 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 lt spenPowe rNet IIL Institut f r Bahntechnik GmbH Page 176 of 206 User Manual Issue 2013 02 12 lt Conductor gt The conductor configuration for track 2 lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 2 km 9 750 gt lt ToProperty toPos_km 20 000 equivalentRadius_mm 3 45 r20_Ohm km 0 2311 t
202. me U_Conductor abs title U function lineID trackID itemID style line weight 1 legend true marker false gt The curve representing the conductor voltage e g minimum maximum or average lt Color name red gt lt Color name dark_red gt lt Item gt lt Item name Infeed title Infeed style lineLongDash weight 2 legend true marker true gt The infeed at substation position lt Color name dark_gray gt lt Item gt lt Item name Isolator title Isolator style lineLongDash weight 1 legend true marker false gt An isolator marker lt Color name red gt lt Item gt lt Item name ConductorSwitch title Switch style lineLongDash weight 1 legend true marker false gt An marker of a switch of a conductor lt Color name red gt lt Item gt lt Item name Station title Station style markerStyleSquare weight 2 5 legend false marker true gt The marker for stations lt Color name black gt lt Item gt lt ChartType gt IFB DD UM_OPN_51_01 04 02 doc Page 76 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 77 of 206 User Manual Issue 2013 02 12 Pantograph Voltage Tutorial AC Network default Line A km 0 000 to 85 400 01 00 00 0 01 48 55 0 ooo If p EEN E SUERRFERERTEHRENSERERERBERSFEEENBERENSREREBEREN VRR 27 500 lt lt en gt
203. mended 1000 e Use OpenPowerNet OPN checked e Keep Connection checked Increase the timeout if connection problems with OpenPowerNet appear during simulations with a large amount of iteration steps primarily for large networks if engines are allowed to recover energy to the network but the substations must not recover energy to the national power grid IFB DD UM_OPN_51_01 04 02 doc Page 26 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 27 of 206 User Manual Issue 2013 02 12 Institut fiir Bahntechnik GmbH To be able to run OpenTrack and OpenPowerNet together it is necessary to respect the constraints from chapter 7 1 besides the OpenPowerNet model constraints in chapter 4 2 1 4 2 Configuration of OpenPowerNet The configuration of OpenPowerNet is done via the GUI For details please see the GUI Help System at OpenPowerNet User Interface User Guide gt Preferences XML Files are used for configuration Each such file belongs to a schema A schema describes the structure of an XML File The schema is specified in each XML File at the root element using the attribute xsi noNamespaceSchemaLocation See the example XML snippet below lt XML Root Elemen xsi noNamespaceSchemaLocation the xml schema xsd gt lt XML Root Elemen gt See also the FAQs in chapter 7 8 and 7 9 for an answer of how to get the directory path and which schema to use for which file 4 2 1 Model constraints B
204. mitation shall be OA at OV then linear to 2000A at 2 7kV 90 of nominal voltage and then constant 2000A 6 4 1 Configuration 6 4 1 1 OpenTrack We will use the same OpenTrack data as for the AC tutorial described in chapter 6 2 1 1 6 4 1 2 OpenPowerNet 6 4 1 2 1 Engine File We need to change the power supply system and add the current limitation As the power supply system specified for the infrastructure in OpenTrack is used to choose the correct tractive effort curve of the engine and we do not want to change this curve we do not need to change anything in OpenTrack but the supply system of the engine propulsion system in OpenPowerNet lt propulsion supply DC 3000V transmission electric engine electric power 5560 maxTractEffort 250 totalTractEfficiency 90 totalBrakeEfficiency 90 gt lt auxSupply typeStr all constPower 100 gt lt tractiveCurrentLimitation gt Below is the table of the tractive current limitation The table defines points and the y value will be calculated by a linear interpolation between the points For x values exceeding the highest specified x value the y value for the maximum x value is used during simulation The same behaviour applies to x values lower than specified lt valueTable xValueName line voltage xValueUnit V yValueName current yValueUnit A gt lt valueLine xValue 0 gt The OV OA point lt values yValue 0 gt lt valueLine gt lt valueLine xValue 2700 gt T
205. n A to Station C via track 2 in Station B with 60s wait time departure is 02 00 00 in A and 02 09 00 in B Train short e course CBAI_01 from Station C to Station A via track 1 in Station B with 60s wait time departure is 01 00 00 in C and 01 25 00 in B Train long e course CBAs_02 from Station C to Station A via track 1 in Station B with 60s wait time departure is 02 00 00 in C and 02 25 00 in B Train short To get the departure and arrival times run the simulation and adjust the planned to the actual data After you have done so the train diagram should look like Figure 82 Ss traindiagram_A C otsimcor O Tutorial 01_AC_Network OTDocuments Info Document Edit Format Tools Functions Windows Print Hide Quit Station A Station C SetonA Station B Station G Figure 82 The train diagram for all four trains from Station A to Station C 6 2 1 2 OpenPowerNet As described before we need to set the properties in the GUI to configure the OpenPowerNet modules for details see the GUI Help System In our Tutorial we use the default properties and do not need to change anything if your network address is 127 0 0 1 localhost IFB DD UM_OPN_51_01 04 02 doc Page 87 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 lt spenPowe rNet IIL Institut f r Bahntechnik GmbH Page 88 of 206 User Manual Issue 2013 02 12 otherwise you need to adapt the property for the APserver Window gt Preferences g
206. nStart_s 7200 Then we need to set the regenerative brake option and set the use of the eddy current brake to true for the second simulation lt Vehicle eddyCurrentBrake false This need to be set to false for the first and to true for the second simulation engineID Enginel gt lt Propulsion engine electric supply AC 25kV 50Hz brakeCurrentLimitation none tractiveCurrentLimitation none useAuxPower true fourQuadrantChopperPhi none regenerativeBrake maxPower maxEffort Set this to use the regenerative brake tractiveEffort maxPower maxTractEffort gt lt MeanEfficiency gt lt Propulsion gt lt Vehicle gt Set the right Engine File and don t forget to set a meaningful project name and comment in the project file 6 6 7 2 Simulation Run both simulations e Do everything as described above and run the simulation e Change the attribute eddyCurrentBrake in the Project File to true give a meaningful comment in the Project File and run the simulation 6 6 7 3 Analysis We use Excel tool Compare Two Engines to compare the simulation As we are only interested in the values while braking we filter the column with requested effort and select only the values lt 0 This has to be done for both SELECTION sheets IFB DD UM_OPN_51_01 04 02 doc Page 143 of 206 DMJ 2013 02 12 OPN 51 1 4 2 Page 144 of 206 3penPowerNet User Manual 7 7 4 II Institut f r Bahntechnik G
207. name TT 01 nomPower_MVA 85 nomPrimaryVoltage_kV 150 nomSecondaryVoltage_kV 27 noLoadLosses_kW 28 1 loadLosses_kW 100 8 relativeShortCircuitVoltage_percent 10 5 noLoadCurrent_A 1 06 4 OCSBB bbName OCSBB 01 z real Ohm 0 001 z_imag_Ohm 0 001 al Switch name TSS_10_TT 01 0CSBB 01 2i I defaultState close 4 RailsBB bbName RBB 01 z_ real Ohm 0 001 z_imag_Ohm 0 001 al Switch name TSS_10_TT 01 RBB 01 defaultState close 4 Busbars 4 OCSBB 1 bbName Connector 1 OCSBB 01 Connector z_ real Ohm_km 0 0957 z_imag_Ohm_km 0 08437 length_km 0 1 temperatureCoefficient 4 temperature_GradCelsius 20 number 1 4 Position condName Cy linelD Line1 trackID up Li E 3 km 10 RailsBB 1 bbName Connector 1 RBB 01 4 Connector z_real_Ohm_km 0 0957 z_imag_Ohm_km 0 08437 length_km 0 1 temperatureCoefficient 4 temperature_GradCelsius 20 number 1 Position condName R linelD Line1 trackID up a SE a O km 10 Figure 34 Substation element of example network configuration with transformer busbars and feeder with switch The tables below list some typical configuration data for power supplies nomPower_MVA 10 nomPrimaryVoltage_kV 115 nomSecondaryVoltage_kV 16 25 noLoadLosses_kW 6 5 loadLosses_kW 230 relativeShortCircuitVoltage_percent 10 7 noLoadCurrent_A 0 06 Table 9 Typical two winding transformer configuration
208. nd CBAs_01 e First the DC network from DC Tutorial in chapter 6 4 e One simulation shall be with the Type_200A energy storage and e one with the Type 400A energy storage IFB DD UM_OPN_51_01 04 02 doc Page 122 of 206 DMJ 2013 02 12 OPN 51 1 4 2 Page 123 of 206 3penPowerNet User Manual 7 7 4 ww Institut f r Bahntechnik GmbH Issue 2013 02 12 Give each simulation a meaningful comment 6 5 3 Analysis First we will compare the DC network with and without energy storage with 200A current from menu OpenPowerNet gt Excel Tools gt Compare Two limit We use Engine2 xlsx Engines 3500 U f s 3000 2500 2000 um ee DEE a ren ee ae ae ene SERIE Gig Sess ces ala ed east eee ee ee eee eee re mE ee u an _ n 0 0 000 10 000 20 000 30 000 40 000 50 000 60 000 s km 70 000 80 000 90 000 Sim 15 Course ABCs_02 Engine 0 Engine1 Sim 16 Course ABCs_02 Engine 0 Engine1 Figure 118 The line voltage at pantograph for course ABCs_02 in the DC network without Sim 15 and with Sim 16 energy storage 200A Comparing the two different storage current limitations we can see the effect to the pantograph voltage IFB DD UM_OPN_51_01 04 02 doc Page 123 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 124 of 206 User
209. ne sh a anna Henna nee e pass eee sce Seep a seen see e ese Sessa eee sasen EIE NNE E TAAA ANE ANARE NAANA oun cackecas SOS ESAE AAA FAAA AN AANE ASE NANAS 26800 gt 3 3 pd 26600 3 4 E 3 3 it 26400 3 3 3 3 13 1 26200 4 26000 0 000 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000 90 000 s km Figure 87 The line voltage at pantograph versus chainage for all courses Next we will use the Excel File Engine xlsx This is available at menu OpenPowerNet gt Excel tools gt One Engine This file provides diagrams of the pantograph current and IFB DD UM_OPN_51_01 04 02 doc Page 96 of 206 DMJ 2013 02 12 OPN 51 1 4 2 Page 97 of 206 3penPowerNet User Manual 7 7 4 Institut f r Bahntechnik GmbH Issue 2013 02 12 voltage versus time and location Very interesting is also the tractive effort versus the location As an example we will use the course ABCI_01 and sheet F f s see Figure 88 F f s 300 F kN 300 0 000 10 000 Figure 88 The requested and achieved effort of course ABCI_01 for the default configuration 20 000 30 000 40 000 50 000 60 000 s km F _requested kN F_achieved kN 80 000 90 000 The achieved effort corresponds to the requested effort for positive effort requests The achieved effort while braking is 0 0kN because our engine has no
210. ne xValue 30 gt lt valueLine xValue 40 gt lt valueLine xValue 50 gt lt valueLine xValue 60 gt lt valueLine xValue 70 gt lt valueLine xValue 80 gt IFB DD UM_OPN_51_01 04 02 doc gt gt gt gt gt gt gt gt gt lt valueLine gt lt valueLine gt lt valueLine gt lt valueLine gt lt valueLine gt lt valueLine gt lt valueLine gt lt valueLine gt lt valueLine gt lt values lt values lt values lt values lt values lt values lt values lt values lt values yValue 250 yValue 247 yValue 244 yValue 241 yValue 238 yValue 237 yValue 236 yValue 235 yValue 235 Page 129 of 206 DMJ 2013 02 12 OPN 51 1 4 2 3penPowerNet OA MP Institut f r Bahntechnik GmbH Page 130 of 206 User Manual Issue 2013 02 12 lt valueLine xValue 90 gt lt values yValue 202 gt lt valueLine gt lt valueLine xValue 100 gt lt values yValue 176 gt lt valueLine gt lt valueLine xValue 110 gt lt values yValue 155 gt lt valueLine gt lt valueLine xValue 120 gt lt values yValue 139 gt lt valueLine gt lt valueLine xValue 130 gt lt values yValue 125 gt lt valueLine gt lt valueLine xValue 140 gt lt values yValue 114 gt lt valueLine gt lt valueLine xValue 150 gt lt values yValue 104 gt lt valueLine gt lt valueLine xValue 160 gt lt values yValue 95 gt
211. ne1 Sim 20 Course ABCI_01 En Figure 131 The current of both courses during the regenerative braking simulation DMJ 2013 02 12 Page 134 of 206 UM_OPN_51_01 04 02 doc IFB DD 7 7 4 OPN 51 1 4 2 pen PowerNet Page 135 of 206 User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH 6 6 5 Brake current limitation tutorial This tutorial describes the configuration of the brake current limitation and show the effect of the simulations results 6 6 5 1 Configuration 6 6 5 1 1 OpenTrack We will use the OpenTrack model from the AC tutorial without changes 6 6 5 1 2 OpenPowerNet 6 6 5 1 2 1 Engine File We will take the Engine File from the regenerative braking tutorial of chapter 6 6 4 as the basis We need only to add the brake current limit to the engine propulsion see the XML snippet below lt propulsion lt brakeCurrentLimitation gt lt valueTable xValueName Line Voltage xValueUnit V yValueName Current yValueUnit A gt lt valueLine xValue 0 0 gt lt values yValue 50 0 gt lt valueLine gt lt valueTable gt lt brakeCurrentLimitation gt lt propulsion gt As the limit should be 50A for any line voltage we need only to specify the 50A at OV 6 6 5 1 2 2 Project File We will take the Project File from the regenerative braking tutorial of chapter 6 6 4 as the basis Only the brakeCurrentLimitation attribute need to be changed from none to I f U see th
212. nector configuration for track 3 lt ConnectorSlice name rail connector track 3 firstPos_km 9 650 lastPos_km 20 000 maxDistance_km 0 25 gt lt Connector z_real_Ohm 0 00001 z_ imag Ohm 0 gt lt ConductorFrom condName RL trackID 3 gt lt ConductorTo condName RR trackID 3 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlices gt lt Leakages gt The leakage configuration for track 1 lt Leakage firstPos_km 0 lastPos_km 30 4 yReal S km 0 1 yImag S_km 0 gt lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 0 lastPos_km 30 4 yReal S km 0 1 yImag_S km 0 gt lt ConductorFrom condName RR trackID 1 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt The leakage configuration for track 2 lt Leakage firstPos_km 9 750 lastPos_km 20 00 yReal_S km 0 1 yImag S_km 0 gt lt ConductorFrom condName RL trackID 2 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 9 750 lastPos_km 20 000 yReal_S km 0 1 yImag_S km 0 gt lt ConductorFrom condName RR trackID 2 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt The leakage configuration for track 3 lt Leakage firstPos_km 9 650 lastPos_km 20 00 yReal_S km 0 1 yImag_S km 0 gt lt ConductorFrom condName RL trackID 3 gt lt ConductorTo condName E tra
213. nen f v f U f I f U 1 Limit_regenerative Eddy Current Brake Power use true false PSAP ast Fma Vmin Energy Storage Messe mean Power mean n regenerative use true false load models saver recovery unload models panto_I_max storage_P_max storage_P_aux storage_P_traction storage_P_traction_ratio n none mean f load f U Ps WP aias Prnaxtnioad Tasca I maxuntoad Fraco f v PF mao P mad Auxiliary ER none f v FF ma Pma Power use true false Pix Pr onen Poser Pu angine f Peonse and or Ron and or P zung and or Ry sting aux_trailer FAP onet configuration options of Project File configuration data of Engine File configuration data from OpenTrack Figure 4 Mean efficiency engine model with power flow and configuration options IFB DD UM_OPN_51_01 04 02 doc Page 14 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 15 of 206 User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH L imit tractive none f U f U v IL mit regenerative f U f U C u rrent o lenis mean fl f v f U 1 f U 1 Eddy Current Brake Power use true false P SNP Fmax Vin Energy Storage nem f v Power MN egensrative f v use true false load models saver recovery unload models panto_I_max storage_P_max storage_P_aux storage_P_traction storage_P_traction_ratio n none m
214. nnector kA I_engine kA 70 000 80 000 90 000 Figure 96 The short circuit current of substation TSS_5 at km 5 000 versus location The red circle marks the Station B with siding From the diagram above Excel tool Short Circuit Current by Station Feeder I f s we can see the minimum short circuit current between contact wire and rails of substation TSS_5 is about 670A compared to a maximum engine current of 250A from the default scenario see Figure 86 To check the minimum short circuit current we do the same simulation as before but with both substations using Excel tool Short Circuit Current by two Station Feeders I f s Therefore we need to set the default state for the switches TSS 80 Tl OCS and TSS 80 T1 Rails to close and run the simulation again The minimum current is about 2300A see Figure 97 IFB DD UM_OPN_51_01 04 02 doc Page 102 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 103 of 206 User Manual Issue 2013 02 12 l f s 4 500 7 A ee a ae ae Ber mica Gane ee 3 500 3 000 2 500 I kA 2 000 1 500 ae ee TS 0 500 7 i 4 0 000 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000 90 000 s km 0 000 connector 1 kAl connector_2 kA ltotal kA I_engine kA Figure 97 The short circuit current with both
215. nnector name z real Ohm 0 001 z_ imag Ohm 0 gt lt ConductorFrom condName TSS_5 NF_r lineID A trackID 1 km 5 3 gt lt ConductorTo condName NF lineID A trackID 1 km 5 3 gt lt Connector gt Instead of isolators we use now conductor switches Remove the Isolators and add the XML snippet below lt Switches gt lt ConductorSwitch gt lt Switch defaultState open name TSS_5 4 8 CW gt lt Position km 4 8 trackID 1 condName CW gt lt ConductorSwitch gt lt ConductorSwitch gt lt Switch defaultState open name TSS_5 4 8 MW gt lt Position km 4 8 trackID 1 condName MW gt lt ConductorSwitch gt lt ConductorSwitch gt lt Switch defaultState open name TSS_ 5 4 8 NF gt lt Position km 4 8 trackID 1 condName NF gt lt ConductorSwitch gt lt ConductorSwitch gt lt Switch defaultState open name TSS_5 5 2 CW gt lt Position km 5 2 trackID 1 condName CW gt lt ConductorSwitch gt lt ConductorSwitch gt lt Switch defaultState open name TSS_5 5 2 MW gt lt Position km 5 2 trackID 1 condName MW gt lt ConductorSwitch gt lt ConductorSwitch gt lt Switch defaultState open name TSS_5 5 2 NF gt lt Position km 5 2 trackID 1 condName NF gt lt ConductorSwitch gt lt Switches gt After we have done the line configuration we need to add and adapt the substations First we add the autotransformer station ATS_O at km 0
216. nt comment of example project odbcDsn pscresults record2DB false record2DB_Dump false maxiterations 1000 maxfailediterations 10 ignoreTrainsOutside true rstFile Sample_RST xml typedefsFile switchStateFile simulationStart_s 0 simulationEnd_s 86400 electric AC 15k 16 2 3Hz maxPower maxEffort 5 maxPowerimaxTractEffort true tractiveCurrentLimitation f U brakeCurrentLimitation f U fourQuadrantChopperPhi Phi f v retryRecovery recoveryMode EfficiencyTable engine supply regenerativeBrake false l_source electric AC 25k SOHZ maxPower maxEffort brakeCurrentLimitation l f U tractiveCurrentLimitation f U useAuxPower tractiveEffort true maxPower maxTractEffort fourQuadrantChopperPhi Phi f u i retryRecovery recoveryMode SingleComponent use name loadModel unloadModel efficiency shareUnload_percent shareLoad_percent initialLoad_kWh tracktionRatio true I_source tractionMotor efficiency f v F fourQuadrantChopperEfficiency efficiency f v tractioninverter efficiency f v gear efficiency f v transformer efficiency f 1 true ExampleStorage saver storage_P_traction_ratio efficiency f load 100 100 12 0 75 Figure 22 Example ATM configuration of one engine in the Project File in Altova XMLSpy grid view IFB DD UM_OPN_51_01 04 02 doc Page 34 of 206 DMJ 2013 02 12
217. occurs only for the Close Model VoltageDuration in case the Voltage level is exceeded but the defined duration is not exceeded During this state the resistance defined in attribute r open _ohm is used e WAIT_OPEN This occurs only for the Open Model CurrentDuration and VoltageDuration when the Current Voltage is lower than defined but the defined duration is not exceeded During this state the resistance defined in attribute r_close_ohm is used Here an example of a VLD as a XML snippet of the TypeDefs File lt VLDTypes gt lt VLDType name U I r_ close Ohm 0 001 r_ open Ohm 10000 gt lt CloseModels gt lt Voltage voltage _V 120 gt lt CloseModels gt lt OpenModels gt lt Current current_A 0 gt lt OpenModels gt lt VLDType gt lt VLDTypes gt Using the Model The VLD is used within the Project File at the substation and connected between two busbars There is no constraint to use a specific busbar type The VLD model is defined in the TypeDefs File and referenced in the Project File by the attribute type Following XML snippet of a Project File corresponds with the example above lt Substation name 16 000 gt lt VLD name type U I comment for positive exceeding voltage gt lt MeasuringBusbar bbName E gt lt ReferenceBusbar bbName R gt lt VLD gt lt VLD name type U I comment for negative exceeding voltage gt lt MeasuringBusbar bbName R gt lt ReferenceBusbar bbName E
218. occurs when a departure time is not in the 2s time step raster e g departure time is at 01 00 01 It is also not recommended to use time steps smaller than 1s 4 2 2 Naming Conventions Names used for model elements need to be unique within a specific scope The table below gives the overview of naming scopes 2 winding transformer Substation TwoWinding Transformer name 3 winding transformer Substation TreeWindingTransformer name Additional load in substation none AdditionalLoad name Autotransformer Substation Autotransformer name Boostertransformer Substation Boostertransformer name Busbar Substation OCSBB RailsBB bbName NegativeFeederBB Engine name Project Engine File vehicle vehiclelD Project File Vehicle enginelD Engine energy storage Engine Engine File storage name Project File Storage name Conductor Track StartPosition condName Connector none Connector name Connector between none NegativeFeederBBConnector name negative feeder busbars Connector between OCS none OCSBBConnector name busbars Connector between rails none RailsBBConnector name busbars Leakage none Leakage name Line Network Line name Network Project Network name IFB DD UM_OPN_51_01 04 02 doc Page 28 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Institut f r Bahntechnik GmbH Page 29 of 206 User Manual Issue 2013 02 1
219. ode 22 xml E OpenPowerNet xminsisi B Test 4 name comment maxterations maxFailedlterations odbcDsn xsiinoNamespaceSchemalo Content version 1 0 encoding UTF 8 Document ATM PSC TOCs http www w3 org 2001 XMLSchema instance http www openpowernet de schemas 1 4 0 OpenPow Tutorial AC Network default 1000 100 pscresults BE Outline 2 Enan E OpenPowerNet name Tutorial E ATM Vehicles Vehicle eddyCurrent E Propulsion engin E Meant fficienc E Options tolerance A 0 1 PSC E Network name A C Lines recordCurrent e Line name A m record2DB true E Conductors Conducto record2DB_Dump false ian rstFile Engine File xml E ToPioy simulationStart_s oe Conducto gt E ATM E StartPc E PSC ions i i E ToProy a E Network all Lines Connectors Substations Earth Times Mer Conducto Ove nad E StartPc m E ToPro E Conducto L Problems E Properties 3 _E Console 3 Snippets EB MY TO g ol Property Value ade Attributes E StartPc comment E ToProy frequency_Hz 50 Conducto name A C E StartPc recordCurrent true sub E ToProy recordVoltage true sub E Conducto use true E StartPc voltage _kV 25 E ToPro
220. on IFB DD UM_OPN_51_01 04 02 doc Page 197 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 198 of 206 User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH Figure 171 and Figure 172 show the maximum rail earth potential for both simulations For the wrong simulation the rail earth potential in station A is much higher than for the correct simulation Figure 173 shows the values of the current sum of all conductors per section for the total simulation time Between km 0 405 and km 0 650 the value is not close to 0 A this means there is a connector parallel to conductors And this is against the model constraints listed in chapter 4 2 1 otal reali tot mala rem efe or 5 fe coner eet 056 O0 000 025 C599 34 50 O1 0 075 576 0 VO Ol 0 125 578 050 O0 O0 0 175 0583 O6 020 020 SC 06 O6 020 osoo 0275 0601 O6 OS 080 0 325 0606 062 OS OA C I 1 sd sd sd o O J OJ OJOJO ol on or or 0725 Figure 173 The sum of sum currents per section over the total simulation time of the wrong simulation OJo Ojojoo linelD v trackID s km I_real A I_imag A U_real V U_imag V x F_requeste v F_achievec v v km h P_aux kW time iz A 1 0 829 36 230 0 000 27419 900 312 718 20 455 20 455 75 000 520 000 00 01 15 40 A 1 0 808 36 241 0 000 27411 291 347 247 20 455 20 455 75 000 520 000 00 01 15 41 A
221. onfiguration 6 6 7 1 1 OpenTrack We will use the OpenTrack model from the AC tutorial without changes Select only the course ABCs_02 and CBAs_02 with short trains 6 6 7 1 2 OpenPowerNet We will use the Engine and Project File from the AC tutorial as the basis 6 6 7 1 2 1 Engine File In the Engine File we need to specify the maximum braking power and effort as well as the eddy current brake parameter lt vehicle length 25 bruttoWeight 75 vehicleID Enginel speed 250 gt lt engine gt lt propulsion supply AC 25kV 50Hz transmission electric engine electric power 5560 maxTractEffort 250 totalTractEfficiency 90 totalBrakeEfficiency 90 maxBrakePower 400 We need to set the braking maximum power maxBrakeEffort 30 maximum brake effort and maxRecoveryVoltage 29000 gt and maximum recovery voltage lt auxSupply typeStr all constPower 100 gt lt propulsion gt lt engine gt lt brakes gt lt eddyCurrentBrake This is the eddy current brake and there parameter maxEffort 30 maxPower 300 IFB DD UM_OPN_51_01 04 02 doc Page 142 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 143 of 206 User Manual Issue 2013 02 12 minSpeed 10 gt lt brakes gt lt vehicle gt 6 6 7 1 2 2 Project File As we use short trains only and they start at 2 00 we have to set the simulation start time to 7200s simulatio
222. ong for OpenPowerNet The simulation will still run but produce incorrect simulation results We will use 25 kV 50 Hz power supply system with one substation at km 5 000 The line shall be about 25km long and have 3 Station Two courses shall run as follow ABCI_01 Start 01 00 00 Stop 60s track 2 Terminate track 1 CBAI_01 Terminate track 1 Stop 60s track 1 Start 01 00 00 loop via track 2 Table 22 Timetable of courses in the loops totorial 6 7 5 1 Configuration 6 7 5 1 1 OpenTrack As the basis for the infrastructure we take the data from the AC tutorial We need to add the loop and to change the chainage according to Figure 167 and Figure 168 0 210 0 Tuterial D5_Natwork_Model 05_Loops DTDocuments Tool Functions Windas Pr Station B Station C Figure 167 The wrong OpenTrack infrastructrue configuration of the loop tracks IFB DD UM_OPN_51_01 04 02 doc Page 185 of 206 DMJ 2013 02 12 OPN 51 1 4 2 Oa lt SpenPowerNet Institut f r Bahntechnik GmbH Page 186 of 206 User Manual Issue 2013 02 12 0 000 Legend Track 1 Track 2 0 210 0 400 0 600 0 650 O Tutorial 06 Network Model 65 Loops OTRecuments al xj joss Furetions Widows Pi Que 3 2 2 Station B Station C si ah ip E gt gt guy ec ABER TERRE GO ATOE ERAGE GEER gens CBAI 01 9 oO oj Oo Qa oO o 218 o O 99o i oj wi wb oO oO oO ol 1 Vj oj oj oO NT lm oO N y Ni
223. ons are available see chapter 7 11 for detail e Any dongle gt do not insert anything e One dongle gt enter one dongle ID and e Multiple dongles gt enter multiple IDs separated by IFB DD UM_OPN_51_01 04 02 doc Page 62 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 63 of 206 User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH 4 5 2 Automatic Analysis The Automatic Analysis tool provides the selection of the simulation to analyse To load the network model of a simulation into the tool the selection has to be locked using the button Lock Next is to choose the time window for the analysis The default values are taken from the Project File Then change the designation or use the one provided by default The designation is used in the titles of the generated files and should be an applicable description of the simulation e g to fit a report The default is taken from the project name and comment defined in the Project File Following output options are available Excel Generate Excel files PDF Generate PDF files Footer logo Add the footer logo specified in the setup Watermark Add the OpenPowerNet watermark to the files Hide data sheets Hide the data sheets underlying the generated charts in the output files Excel PDF r a EI OpenPowerNet Automatic Analysis cnma Input Source DDatabase ODBC DSN psc_analysis
224. onstant resistance auxiliary has the auxiliary power as a function of the pantograph voltage compare to the pantograph voltage in Figure 136 U f t 27700 27600 27500 27400 26900 26800 4 00 02 00 00 00 02 05 00 00 02 10 00 0002 15 00 00 02 20 00 00 02 25 00 00 02 30 00 00 02 35 00 00 02 40 00 00 02 45 00 00 02 50 00 Sim 23 Course ABCs_02 Engine 0 Engine1 Sim 24 Course ABCs_02 Engine 0 Engine1 Figure 136 The pantograph voltage of course ABCs_02 with constant engine auxiliary power sim 23 and constant auxiliary resistance 24 IFB DD UM_OPN_51_01 04 02 doc Page 140 of 206 DMJ 2013 02 12 O 7 4 OPN 51 1 4 2 pen Powe rNet IIL Institut f r Bahntechnik GmbH Page 141 of 206 User Manual Issue 2013 02 12 P_aux f t P kw 0 4 i 4 N 4 N 00 02 00 00 0002 05 00 0002 10 00 0002 15 00 00 02 20 00 00 02 25 00 0002 30 00 0002 35 00 0002 40 00 00 02 45 00 00 02 50 00 Sim 22 Course ABCs_02 Engine 0 Engine1 Sim 25 Course ABCs_02 Engine 0 Engine1 Figure 137 The auxiliary power of course ABCs_02 without engine auxiliary power sim 22 and with constant auxiliary power while braking sim 25 In simulation 25 is the model with constant auxiliary power while braking used We can identify the two time periods while braking and see the 100 kW additional to the 30 kW from the trailer auxiliary power P_aux f
225. or Line 1 lt lt 1 Merger Connectors Connector 2 Merger Lines Line E E E zZ Line 2 TestNetwork 2 For accumulation of energy consumption several courses can be grouped to so called Train Operating Companies This feature can be used to attribute a portion of energy to different operators type of trains or any arbitrary selection by using the courses specified in the Project File see Figure 42 The attribute coursel D corresponds with the course ID in OpenTrack The consumed energy of not specified courses is summarised for a Train Operating Company with the name unknown Therefore it is not advised to name a Train Operating Company unknown IFB DD UM_OPN_51_01 04 02 doc Page 51 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 52 of 206 User Manual Issue 2013 02 12 4 2 3 3 10 Data Recording Besides the configuration of the engine model network and operating company it is necessary to define recording of simulation results To record data to the database the connection properties need to be set The configuration of recording is structured hierarchical The attributes in element OpenPowerNet are at the highest level and define the general recording behaviour see XML snippet below lt OpenPowerNet xmlns xsi http www w3 org 2001 XMLSchema instance xsi noNamespaceSchemaLocation http www openpowernet de schemas 1
226. orSlice gt lt ConnectorSlice name dropper track 2 firstPos_km 9 750 lastPos_km 10 250 maxDistance km 0 5 gt This slice defines the same as above for track 2 lt Connector z_real_ Ohm 0 000073 z_ imag Ohm 0 gt lt ConductorFrom condName MW trackID 2 gt lt ConductorTo condName CW trackID 2 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name rail connector track 1 firstPos_km 0 lastPos_km 85 4 maxDistance km 1 gt As the rails are connected we define a slice with connectors between both rails of track 1 every 1000m along the whole track lt Connector z_real_ Ohm 0 00001 z_ imag Ohm 0 gt lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName RR trackID 1 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name rail connector track 2 firstPos_km 9 750 lastPos_km 10 250 maxDistance km 0 5 gt And the same as above for track 2 lt Connector z real Ohm 0 00001 z imag Ohm 0 gt lt ConductorFrom condName RL trackID 2 gt lt ConductorTo condName RR trackID 2 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlices gt Now we have to define the leakage of the rails to earth lt Leakages gt lt Leakage firstPos_km 0 lastPos_km 85 4 yReal S km 0 1 yImag S_km 0 gt lt ConductorFrom condName RL trackID nimis lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km
227. orage to the DC network of the tutorial in chapter 6 4 The DC tutorial analysis shows us a significant line voltage drop With the storage we will support the line voltage at the location with the lowest line voltage at km 45 000 see Figure 112 Furthermore we will analyse and compare two configurations of energy storage and use the courses with short trains 6 5 1 Configuration 6 5 1 1 OpenTrack We will use the same OpenTrack data as for the AC tutorial described in chapter 6 2 1 1 6 5 1 2 OpenPowerNet For OpenPowerNet we need add a substation with an energy storage at km45 000 to the Project File The Engine File does not need to be changed 6 5 1 2 1 Engine File We will use the same engine as for DC Network tutorial and therefore we do not need to change the Engine File IFB DD UM_OPN_51_01 04 02 doc Page 121 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 122 of 206 User Manual Issue 2013 02 12 6 5 1 2 2 Project File As the base of this Project File we will use the Project File of the DC network and add a substation with an energy storage at km 45 000 We will define two kinds of energy storage One with 400A and one with 200A load and unload current limitation The energy storage shall have the following characteristic e Maximum load of 85kWh Initial load of 85kWs Losses of the energy storage of 100W Internal resistance of 5mQ M
228. ormer in TSS_80 between the default configuration sim 1 and the failure scenario sim 5 In the diagram above we can see that the transformer in TSS_80 had been switched off from 01 05 00 to 01 22 00 as it was defined in the Switch File IFB DD UM_OPN_51_01 04 02 doc Page 105 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen Powe rNet IIL Institut f r Bahntechnik GmbH Page 106 of 206 User Manual Issue 2013 02 12 U f s 24000 l 4 4 4 i 0 000 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000 90 000 s km Sim 1 Course CBAI_01 Sim 5 Course CBAI_01 Figure 100 This diagram compares the line voltage for course CBAI_01 of the default configuration Sim 1 and the failure scenario Sim 5 versus the location We can see very well the difference of the line voltage at the pantograph for both simulations f s 300 0 000 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000 90 000 s km 0 Sim 1 Course CBAI_01 Sim 5 Course CBAI_01 Figure 101 This diagram compares the current for course CBAI_01 of the default configuration Sim 1 and the failure scenario Sim 5 versus the location IFB DD UM_OPN_51_01 04 02 doc Page 106 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 107 of 206 User Manual Issue 2013 02 12 The diagram above
229. output directory defined under Analysis gt Setup see 4 5 1 and the actual project name and simulation start time Once the configuration is done this selection can be saved to a file and later imported to be used for another analysis of the same electrical network structure After all configurations are made pressing the button Start Analysis will start generation of the output files In the GUI console window OPN all messages from the analysis process are displayed At the beginning of each analysis the message console will be cleared Note The generation of output files is done using Microsoft Excel Although this is done as a background process without user interaction it is possible that this process interferes with other Excel sessions Therefore it is advised not to open any new Excel instance during generation of output files Setup separators The decimal and thousands separator to be displayed in the output files and used for the inter process communication depend on a setting in Microsoft Excel As this setting affects the display of all Excel files for the user logged on it is not adjusted automatically by OpenPowerNet It is necessary to change the setting Excel Options gt Advanced gt Use system separators to disabled and define e g a dot as Decimal separator and a comma as Thousands separator It is possible to use alternative settings by modifying the preset file see 4 5 5 Setup paper size
230. ows the main elements of the file IFB DD UM_OPN_51_01 04 02 doc Page 74 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 75 of 206 User Manual Issue 2013 02 12 Note The element TableTypes is a place holder at the moment and will enable the user to modify properties of the overview tables in future releases Connectors amp gt EHChartype p Gharifipes BS 1 Subataions B C Chante 1 0 1 0 1 0 Figure 72 The AnalysisPresets File schema main elements The chart type is defined per system e g 25kV 50Hz including the title and scaling of x axis y axis secondary y axis and horizontal lines Furthermore it includes the definition the items e g chart series or infeed and station markers Figure 73 Elements of ChartType definition The XML snippet below shows an example defining the U_Panto f s chart type for the 25kV 50Hz power supply system as seen in Figure 74 lt ChartType name U_ Panto f s title Pantograph Voltage gt lt System supply AC 25kV 50Hz gt lt xAxis valueName Position valueUnit km title Position logarithmic false numberFormat 0 000 gt lt yAxis valueName Voltage valueUnit V title Voltage logarithmic false numberFormat valueMin 15000 valueMax 32000 valueStep 2500 gt lt hLine title U_nom yValue 25000 style lineDash weight 1 legend true marker false gt The
231. p System under OpenPowerNet User Guide gt Database To speed up the simulation it is possible to write the current of conductors and connectors as well as the voltage of nodes to dump files After the simulation is finished the user has to upload these dump files to the database using the functionality provided by the GUI Note that the user has to upload the dump files before a new simulation starts 3 9 ODBC OpenPowerNet uses Open Database Connection ODBC to connect to the database Within the ODBC manager the Data Source Names DSN are defined by the system administrator or user The ODBC manager maps the DSN to a specific database see Figure 17 IFB DD UM_OPN_51_01 04 02 doc Page 24 of 206 DMJ 2013 02 12 LE LA OPN 51 1 4 2 lt spenPowe rNet IIL Institut f r Bahntechnik GmbH Page 25 of 206 User Manual Issue 2013 02 12 B Create new database Y xs Prepared Excel Analysis Database pscresults odbcDsn pscresults 2 oon Project File 1 odbcDsn pscresults ODBC Manager Database simulation1 BE a OpenPowerNet Automatic Analysis Data Source Name DSN pscresults psc_anal ysis f Source Database ny OpnDsnNare TTS see Input 3 ODBC DSN psc_analysis p Database simulation2 Simulation 1 2012 04 16 09 Lock Database simulation3 4 m Project File 2 odbcDsn myOpnDsnName Use cases 1 The prepared Excel File
232. pT 160 uT 120 pT 80 pT 40 pT OyT 40 pT 80 pT 120 pT 160 pT 200 pT E a x Lateral Distance m Figure 64 Example preview image of the flux density using iso style IFB DD UM_OPN_51_01 04 02 doc Page 70 of 206 DMJ 2013 02 12 OPN 51 1 4 2 Page 71 of 206 O IPH lt spenPowerNet gt Institut f r Bahntechnik GmbH User Manual Issue 2013 02 12 4 5 3 2 Conductor Current The Conductor Current tool generates charts with current series for all conductors versus time and as Time Rated Load Periods Curve see chapter 7 13 a Sy i OpenPowerNet Inline Measurement SS Select Position ODBCDSN psc analysis Simulation 1 2012 04 17 14 32 24 0 Tutorial AC Network default Network ac Line Position km 5 500 tet Magnetic Flux Density Conductor Current Conductor Voltage Configure View Designation Tutorial AC Network default m Output Time Start 01 00 00 0 X aa gt Ea Create Charts L Figure 65 The Conductor Current tool 300 Conductor Current Tutorial AC Network default Line A km 5 500 250 Current A 0 SS 01 00 00 01 05 00 01 10 00 01 15 00 01 20 00 01 25 00 01 30 00 01 35 00 01 40 00 01 45 00 Time L1_cw L1_E La_mMw J L1_RL I_1_RR Figu
233. penPowe rNet IIL Institut f r Bahntechnik GmbH Page 127 of 206 User Manual Issue 2013 02 12 lt valueTable xValueName LineVoltage xValueUnit V yValueName Phi yValueUnit Deg gt lt valueLine xValue 0 0 gt lt values yValue 5 0 gt lt valueLine gt lt valueLine xValue 24000 0 gt lt values yValue 5 0 gt lt valueLine gt lt valueLine xValue 25000 0 gt lt values yValue 0 0 gt lt valueLine gt lt valueTable gt lt phi gt lt fourQuadrantChopper gt 6 6 1 1 2 2 Project File We will amend the Project File from AC tutorial in chapter 6 2 1 2 2 The four quadrant chopper model has to be defined in the Project File see XML snippet below lt Vehicle eddyCurrentBrake false engineID Enginel gt lt Propulsion engine electric supply AC 25kV 50Hz brakeCurrentLimitation none tractiveCurrentLimitation none useAuxPower true fourQuadrantChopperPhi Phi f u This value need to be set to use the power factor depending on line voltage regenerativeBrake none tractiveEffort maxPower maxTractEffort gt lt MeanEfficiency gt lt Propulsion gt lt Vehicle gt Furthermore we need to set the Switch File same as for the failure scenario in the AC tutorial switchStateFile Switch File xml Set the right Engine File and don t forget to set a meaningful project name and comment in the project file 6 6 1 2 Simulation We will run the simulation only with the long tr
234. perty toPos_km 85 4 equivalentRadius_mm 3 45 r20 Ohm_km 0 2311 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 0 y m 6 9 gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 1 km 9 750 gt lt ToProperty toPos_km 85 4 equivalentRadius_mm 3 45 r20 Ohm_km 0 1852 temperature GradCelsius 20 temperatureCoefficient 0 00385 x m 0 y m 5 3 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 1 km 9 750 gt lt ToProperty toPos_km 85 4 equivalentRadius_mm 38 52 r20 Ohm_km 0 0306 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 0 75 y m 0 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 1 km 9 750 gt lt ToProperty toPos_km 85 4 equivalentRadius_mm 38 52 r20_ Ohm_km 0 0306 temperature _GradCelsius 20 temperatureCoefficient 0 004 x m 0 75 y m 0 gt lt Conductor gt lt Conductor type Earth gt lt StartPosition condName E trackID 1 km 9 750 gt lt ToProperty toPos_km 85 4 equivalentRadius_mm 450000 r20 Ohm_km 0 0393 temperature GradCelsius 20 temperatureCoefficient 0 x m 0 y 1 m 450 0 gt lt Conductor gt lt Conductors gt lt ConnectorSlices gt The connectors between contact and messenger wire lt ConnectorSlice name dropper track 1 firstPos_km 9 750 lastPos_km 85 4 maxDistance_km 0
235. r Manual 7 7 4 Institut f r Bahntechnik GmbH Issue 2013 02 12 I mit tractive none f U f U v mes none f U f U v Qo none mean f Pyrecn f v F U I U 1 Transformer n none mean f t 2 8 5 Traction Power Legend Zn N 4QC Eddy Current Brake Power none mean f v use true false P fP nma Fax Vmin Energy Storage Power n none mean f v n none mean f V F ech use true false load models saver recovery unload models panto_l_max storage_P_max storage_P_aux storage _P_traction storage _P_traction_ratio n none mean f load f U n none mean f v Frractive f v F E mao P max regenerative none f v E a P max P T P iuias PrnaxUntoads Ina oadr I maxuntoad use true false Pax PER P iii ie Pemi AP const and or Ry onst andi or Pine andi or Ryraking P aux_trailer const configuration options of Project File configuration data of Engine File configuration data from OpenTrack Figure 3 Single component engine model with power flow and configuration options IFB DD UM_OPN_51_01 04 02 doc Page 13 of 206 DMJ 2013 02 12 OPN 51 1 4 2 7 7 4 penPowerNet gt Page 14 of 206 Institut f r Bahntechnik GmbH User Manual Issue 2013 02 12 3 gt g Traction Power Legend imit tractive none f U f U v l none f U f U v none mean f P
236. r grid Feeding scheme sectioning inclusive chainage Busbar voltage of the substations line side no load and nominal load e if available internal resistance of the substations respectively short circuit voltage of the converter transformers If available settings of the transformer and converter protection devices e g I gt t gt gt If available protection settings of the power rail overload protection devices I gt t I gt gt di dt etc Number length and cross section of feeding and return current cables from substation to track or connections from track to track Position of feeding points and return current cable connection points to the power rails Type of catenary number and cross section of single conductors Additional feeding conductors connection points and cross section Switch state of the power rail system Position and cross section of rail and track bonds IFB DD UM_OPN_51_01 04 02 doc Page 81 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 82 of 206 User Manual Issue 2013 02 12 Institut fiir Bahntechnik GmbH 6 Tutorial This tutorial is a step by step description how to use OpenPowerNet It starts with the folder structure continues with the configuration then simulation and analysis for four different types of networks If you do not want to create the configuration files you can go to OpenPowerNet User Guide gt PDF Documents download th
237. r to chapter 3 10 To achieve a correct simulation result it is necessary to have sufficient information about the railway electrical network and engines For a detailed list of required technical information IFB DD UM_OPN_51_01 04 02 doc Page 82 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 83 of 206 User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH please see chapter 5 The following list is a minimum of necessary information to create the configuration data OpenTrack e Track layout length curves gradients points crossings e Timetable e Engine effort speed diagram weight resistance formula values auxiliary power e Signalling system OpenPowerNet e Electrical network layout conductor and connector characteristic e Power supply transformer or rectifier data feeder cable characteristic e Switch position and default state e Engine effort speed diagram or maximum power amp maximum effort efficiency auxiliary power As editor for the XML Files the OpenPowerNet included XML editor is recommended see chapter 3 6 Any other text editor can be used as well but for convenience it should be an XML Editor that can use an XML Schema to evaluate the XML File and gives editing support 6 2 AC Network tutorial In this tutorial we will create a single line to learn how to set up a simple OpenTrack and OpenPowerNet co simulation The line shall have three stations and
238. rackID 1 km 20 gt lt ToProperty toPos_km 30 4 equivalentRadius_mm 450000 r20_ Ohm_km 0 0393 temperature _GradCelsius 20 temperatureCoefficient 0 x _m 0 y m 450 0 gt lt Conductor gt lt Conductors gt lt ConnectorSlices gt The dropper configuration for track 1 lt ConnectorSlice name dropper track 1 firstPos_km 20 lastPos_km 30 4 maxDistance_km 0 25 gt lt Connector z _real_Ohm 0 000073 z imag Ohm 0 gt lt ConductorFrom condName MW trackID 1 gt lt ConductorTo condName CW trackID 1 gt lt Connector gt lt ConnectorSlice gt The dropper configuration for track 2 lt ConnectorSlice name dropper track 2 firstPos_ km 20 lastPos_km 30 4 maxDistance_km 0 25 gt a lt Connector z_real_Ohm 0 000073 z_imag Ohm 0 gt lt ConductorFrom condName MW trackID 2 gt lt ConductorTo condName CW trackID 2 gt lt Connector gt lt ConnectorSlice gt The rail connector configuration for track 1 lt ConnectorSlice name rail connector track 1 firstPos km 20 lastPos km 30 4 maxDistance_km 0 25 gt u lt Connector z_real_Ohm 0 00001 z_ imag Ohm 0 gt lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName RR trackID 1 gt lt Connector gt lt ConnectorSlice gt The rail connector configuration for track 2 lt ConnectorSlice name rail connector track 2 firstPos km 20 lastPos km 30 4 maxDistance_km 0 25 gt z z IFB DD U
239. ral zone is no power supply available Usually the courses are powered off before and powered on after they have passed the neutral zone This power off and on is possible by the power signals in OpenTrack Please see the OpenTrack documentation for details 6 7 3 AC DC networks tutorial In this tutorial we will create a project file with an AC and a DC network The engines shall have to propulsion system One propulsion system shall be for 25 kV 50 Hz and the other for 3 kV DC F max 250 kN 200 kN Pinax 5 56 MW 3 89 MW Table 18 The engine properties of the AC DC tutorial Substation km 45 000 km 5 000 Chainage track 1 from km 9 750 to track 1 from km 0 000 to km 85 400 km 9 750 and track 2 from IFB DD UM_OPN_51_01 04 02 doc Page 166 of 206 DMJ 2013 02 12 O IPH OPN 51 1 4 2 pen Powe rNet IIL Institut f r Bahntechnik GmbH Page 167 of 206 User Manual Issue 2013 02 12 km 9 750 to km 10 250 Line feeder none yes from km 0 000 to km 9 750 Table 19 The network properties of the AC DC tutorial 6 7 3 1 Configuration 6 7 3 1 1 OpenTrack The bases are the configuration files from the AC tutorial in chapter 6 2 We need to e Change the propulsion system of the infrastructure Figure 157 and e Add the 3 kV DC propulsion system to Engine1 Figure 158 gt Tutorial_AC DC_Networks opentrack 0 Tutorial 06_Ne
240. re 6 If the calculated braking effort of the propulsion and eddy current brake is less than the requested effort of the driving simulation OpenTrack implies that the mechanical brake is able to achieve the remaining brake effort and calculates the driving dynamics using the total requested effort A current limitation can be configured for each propulsion system The tractive current limitation reduces the power consumption and the achievable effort which affects the driving dynamics The braking current limitation only limits the regenerated energy into the electrical network Additionally a maximum recovery voltage can be configured that limits the energy output while braking to respect this voltage 500 00 450 00 400 00 350 00 300 00 kN 250 00 200 00 150 00 100 00 50 00 0 20 40 60 80 100 120 140 160 180 200 km h Braking Effort kN Eddy Current Brake Effort kN 4 Total Braking Effort Figure 6 Brake effort calculated with maximum recovery effort maximum recovery power and eddy current brake IFB DD UM_OPN_51_01 04 02 doc Page 16 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 lt spenPowe rNet IIL Institut f r Bahntechnik GmbH Page 17 of 206 User Manual Issue 2013 02 12 In case that during braking the recovered energy exceeds the energy consumption of the course the excessive energy is regenerated into the electrical net
241. re 66 Example output of the conductor currents versus time IFB DD UM_OPN_51_01 04 02 doc Page 71 of 206 DMJ 2013 02 12 OPN 51 1 4 2 pe nPowerNet Page 72 of 206 User Manual O IPH ww Institut f r Bahntechnik GmbH Issue 2013 02 12 Conductor Load Tutorial AC Network default Line A km 5 500 300 250 iy N 8 8 RMS Current A 3 S Ss Time s I_1_CW_rms I_1_E_rms I_1_MW_rms I_1_Rl_rms I1_RR_rms Figure 67 Example output of the conductor currents as Time Rated Load Periods Curve 4 5 3 3 Conductor Voltage 1000 The Conductor Voltage tool generates charts of the touch voltage and the line voltage versus time and as Time Rated Load Periods Curve see chapter 7 13 E OpenPowerNet Inline Measurement m Select Position ODBCDSN psc analysis Simulation 1 2012 04 17 14 32 24 0 Tutorial AC Network default Network ac line A Position km 5 500 tet C Magnetic Flux Density Conductor Current Conductar Voltage Configure View Designation Tutorial AC Network default Creates charts for the following conductors at the previous slice Rail Earth ContactWire Rail Output Time Start 01 00 00 0 Zi Time End 01 48 54 0 z Ea Create Charts Figure 68 The Conductor Voltage tool IFB DD UM_OPN_51_01 04 02 doc Pa
242. recovery braking We also see the changes in effort requests caused be the varying gradients From km 1 400 to km 2 400 the gradient is 10 which causes a raising effort and from km 6 750 to km 8 750 we have the adverse effect for a gradient of 5 o Furthermore we may have a look at the mechanical and electrical power of the course ABCI_01 IFB DD UM_OPN_51_01 04 02 doc Page 97 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Institut f r Bahntechnik GmbH Page 98 of 206 User Manual Issue 2013 02 12 P f t 8 000 7 7 000 ee Annan Pet a ee en 6 000 5 000 F 34 000 HM nenn jets Sosa WM ee RER SUR EE ESSEN SER Jogouauscebeceeseiyee 3 000 Jp 4 ed jae een ca aaa r na sen nec sone 01 00 00 01 10 00 01 20 00 01 30 00 01 40 00 01 50 00 02 00 00 P el kW P_mech kW Figure 89 The mechanical and electrical power of the course ABCI_01 In this diagram the effect of the gradients can be seen again between 01 01 00 and 01 07 00 The course is waiting for about 15min in Station B We can see this in the diagram where the mechanical power is OKN At this time we have only the auxiliary power demand of 520kW Besides the courses the substations are very interesting to analyse For this we use Excel File PowerSupply xlsx with the prepared diagrams for I f t U f t P f t and E f t This file is available from the menu via OpenPowerNet gt Exc
243. rmer efficiency in the SELECTION sheet to display the correct curves etha Trafo Figure 143 The cell in the Excel sheet SELECTION to set the transformer efficiency IFB DD UM_OPN_51_01 04 02 doc Page 150 of 206 DMJ 2013 02 12 Z LA sail iad pe n P owe rN et oi A GmbH Page 151 of 206 User Manual Issue 2013 02 12 etha f v 100 7 90 F gt 2 Masan seen i socegectissssecerssssces i Jerain i a m 80 7 70 4 aa mE a TG re Te ee ee a ee a Te a i i i Cl a a a sat tun ten snst nsedepndnassgene m mepa a nn S Raa Ga nn To Dale ne rl EE a a a ee 0 4 t i 0 50 100 150 200 v km h etha_tract Metha_total Figure 144 The tractive and total efficiency of course ABCI_01 versus speed in file Engine xlsx etha f v 250 etha 50 100 150 200 v km h etha_tract Sim 31 Course ABCI_01 Engine 0 Engine1 etha_total Sim 31 Course ABCI_01 Engine 0 Engine1 Aetha_tract Sim 32 Course ABCI_01 Engine 0 Engine1 X etha_total Sim 32 Course ABCI_01 Engine 0 Engine1 250 Figure 145 The total efficiency of course ABCI_01 with mean sim 31 and versus current sim 32 transformer efficiency in file En gine2 xlsx 6 7 Network model In the following tutorials we will focus on advanced network configuration IFB DD UM_OPN_51_01 04 02 doc Page 151 of 206
244. roperty toPos_km 25 4 equivalentRadius_mm 38 52 r20 Ohm_km 0 0306 temperature _GradCelsius 20 temperatureCoefficient 0 004 x m 0 75 y m 0 gt lt Conductor gt The conductors for track 2 in station A lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 2 km 0 2 gt lt ToProperty toPos_km 0 650 equivalentRadius_mm 3 45 r20 Ohm_km 0 2311 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 10 y m 6 9 gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 2 km 0 2 gt lt ToProperty toPos_km 0 650 equivalentRadius_mm 3 45 r20 Ohm_km 0 1852 temperature GradCelsius 20 temperatureCoefficient 0 00385 x m 10 y m 5 3 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 2 km 0 2 gt lt ToProperty toPos_km 0 650 equivalentRadius_mm 38 52 r20 Ohm_km 0 0306 temperature _GradCelsius 20 temperatureCoefficient 0 004 x m 9 25 y m 0 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 2 km 0 2 gt lt ToProperty toPos_km 0 650 equivalentRadius_mm 38 52 r20 Ohm_km 0 0306 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 10 75 y m 0 gt lt Conductor gt The conductors for track 2 in station B lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 2 km 9 750 gt lt
245. rrentAngleIteration 100 gt lt PSC gt lt OpenPowerNet gt 6 7 5 1 3 Simulation Run both simulations one after the other Make sure that you upload the dump files after the first simulation IFB DD UM_OPN_51_01 04 02 doc Page 196 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen Powe rNet IIL Institut f r Bahntechnik GmbH Page 197 of 206 User Manual Issue 2013 02 12 6 7 5 1 4 Analysis For analysis we will use the Excel tool One Engine and Current _total f s as well as the analysis tool Rail Earth Potential Network Tutorial Loop wrong Line A km 0 000 to 25 400 01 00 00 0 01 16 48 0 StatonB B statonc 8 8 15 000 20 000 25 Position km U_max_1_RL U_max_1_RR U_max_2_RL U_max_2_RR Return feeder W U_RE_max EN 50122 1 Figure 171 The maximum rail earth potential of the simulation with the wrong network configuration Rail Earth Potential Network Tutorial Loop correct Line A km 0 200 to 25 400 01 00 00 0 01 16 48 0 100 Voltage V Q Station ationc o N S 4 Satona O a 8 200 15 200 20 200 25 Position km 8 8 U_max_1_RL U_max_1_RR U_max_2_RL U_max_2_RR Returnfeeder U_RE_max EN 50122 1 Figure 172 The maximum rail earth potential of the simulation with the correct network configurati
246. rrents and voltages lt BusbarFrom bbName ocsbb gt lt BusbarTo bbName railsbb gt lt StorageV gt lt Substation gt lt Substations gt lt Earth lineID A trackID up km 0 condName E gt lt Network gt Please note that recording line voltages and currents increases the amount of written data significantly and slows down the simulation as well as the analysis Record these values only if necessary 4 2 3 4 Switch File The optional switch state file is an XML file It observes the schema schemas ADE xsd in plugin de bahntechnik dd opn bin x x x_JJJJMMDDhhmm The HTML schema documentation can be found in the GUI Help System at OpenPowerNet User Guide gt Switch File The Switch File configures the state changes for each switch in the power supply network during the simulation time The default state of the switch is configured in the Project File The Switch File is only needed if switch states shall be changed during the simulation ADE xmins xs http Awww w3 org 2001 XMLSchema instance xsinoNames ADE xsd TPD al SwitchSetting al Switch 4 state time name 1 open 10 00 00 TSS1_OCS 2 open 10 00 00 TSS1_R 3 close 10 10 00 TSS1_OCS 4 4 close 10 10 00 TSSI_R Figure 43 Switch configuration for network calculation The switches are open for 10 minutes beginning at 01 00 00 4 3 Simulation The OpenPowerNet GUI handles the start and stop of the three modules APserver PSC and A
247. s above e Conductor Name xyz The item column to select the chart series for the conductor with name xyz belonging to the track and line indicated in the rows above Partially defined conductors are shown only once yy Select Lines Q s L j mee 1 2012 04 17 14 32 24 0 Tutorial AC Network def Network A C S E Network A C pre A m raci raci Dmm __ Name Type Panto CW E my RL RR Pantocw Mw RL __ RR 1 U_Panto f s esl ea gj cw 2 URail Earth fe E ag Ea BE B U_Conductors f s o Bmw 4 Lleakage f Jo HA ERL 5 fot fT EIRR 6 z ee ee E Track 2 7 1 4 E cw 8 AMW 9 RL EIRR 0K Cearan Append Row Delete Row Autofil Row Figure 59 The dialog to configure the charts versus the line position The item columns visible on the right side depend on the selection in the tree on the left For a project consisting of multiple lines and tracks this function can be used to focus on the items needed for the chart to define In the example shown in Figure 59 all conductors for line A are displayed Each row of the table defines a single output chart of the selected type containing a chart series for each selected item Selectable chart types are e U_ Panto f s The pantograph voltage of all courses along the line If selecte
248. s gt lt Substation gt lt Substations gt lt Earth condName E lineID A trackID 1 km 0 gt lt Network gt lt Options tolerance_grad 0 001 tolerance_V 0 1 tolerance_A 0 1 maxIncreaseCount 500 discreteTrains true maxCurrentAngleIteration 100 gt lt PSC gt lt OpenPowerNet gt IFB DD UM_OPN_51_01 04 02 doc Page 191 of 206 DMJ 2013 02 12 Oa OPN 51 1 4 2 pen Powe rNet IIL Institut f r Bahntechnik GmbH Page 192 of 206 User Manual Issue 2013 02 12 RR Figure 170 The correct OpenPowerNet network configuration lt xml version 1 0 encoding UTF 8 gt lt OpenPowerNet xmlns xsi http www w3 org 2001 XMLSchema instance xsi noNamespaceSchemaLocation http www openpowernet de schemas 1 4 2 OpenPowerNet xsd name Network Tutorial Loop comment correct maxIterations 1000 maxFailedIterations 100 odbcDsn pscresults record2DB true record2DB Dump true rstFile Engine File xml simulationStart_s 3600 gt lt ATM gt lt Vehicles gt lt Vehicle eddyCurrentBrake false engineID Enginel gt lt Propulsion engine electric supply AC 25kV 50Hz brakeCurrentLimitation none tractiveCurrentLimitation none useAuxPower true fourQuadrantChopperPhi none regenerativeBrake maxPower maxEffort tractiveEffort maxPower maxTractEffort gt lt MeanEfficiency gt lt Propulsion gt lt Vehicle gt lt Vehicles gt lt Options tolerance A 0 1
249. s higher than the maximum energy storage unload power IFB DD UM_OPN_51_01 04 02 doc Page 36 of 206 DMJ 2013 02 12 Oa OPN 51 1 4 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 37 of 206 User Manual Issue 2013 02 12 e storage_P_traction energy storage utilisation storage_P_traction model 140 120 100 80 60 40 4 20 gine kW m P_traction_panto kW m P_storage kW max 60 kW m P_aux kW 20kW P_en O 10 20 30 40 50 60 70 80 90 100 P_traction kW Figure 28 While using unload model storage_P_traction the energy storage is unloaded as soon as the engine consumes traction power until the maximum unload power of the energy storage is exeeded e storage_P_traction_ratio energy storage utilisation storage_P_traction_ratio model 140 120 100 m P_traction_panto kW gine kW m P_storage kW 70 P_traction max 56kW m P_aux kW 20kW P_en NS Do oo o coc co O 10 20 30 40 50 60 70 80 90 100 P_traction kW Figure 29 While using unload model storage_P_traction_ratio the energy storage is unloaded with the specified fraction of the traction power as soon as the engine consumes traction power until the maximum unload power of the energy storage is exeeded IFB DD UM_OPN_51_01 04 02 doc Page 37 of 206 DMJ 2013 02 12 OPN 51 1 4 2 Page 38 of 206 User Manual 7 7 4 MLA lt Spen
250. s use always the ODBC DSN pscresults The Excel files display the results of database simulation2 2 The Project File 1 uses the same ODBC DSN as the prepared Excel files of use case 1 and record the simulation data into database simulation2 3 The Automatic Analysis uses the ODBC DSN psc_analysis and use the data from database simulation1 4 The Project File 2 uses the ODBC DSN myOpnDsnName and record the simulation data into database simulation3 Figure 17 The use of ODBC by OpenPowerNet 3 10 Working directory The folders and files in the working directory are created by OpenPowerNet during simulation Only the working directory itself needs to be created manually and specified in OpenPowerNet GUI Working directory structure OPN WorkingDir Project Name Network NetworkName Containing network matrices and model text files data Containing the dump files IFB DD UM_OPN_51_01 04 02 doc Page 25 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 26 of 206 User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH 4 OpenPowerNet handling The configuration of the runtime environment usually has to be done once using the GUI see the Help System for details The general usage of OpenPowerNet consists of three main tasks configuration simulation and visualisation see Figure 2 First the project files for the electrical network engines and switch states hav
251. s xsi http www w3 org 2001 XMLSchema instance xsi noNamespaceSchemaLocation http www openpowernet de schemas 1 4 2 OpenPowerNet xsd name Tutorial AC Network comment failure scenario This is a comment for the failure scenario maxIterations 1000 maxFailedIterations 100 odbcDsn pscresults record2DB true record2DB Dump false rstFile Engine File xml switchStateFile Switch File xml The added Switch File simulationStart_s 3600 gt Do not forget to change the constant current engine in the Project File back to the default configuration Note When not using the FULL license set the time steps in OpenTrack to 3 seconds After the simulation has finished we should check substation TSS_80 For this we will use PowerSupply2 xlsx Excel tool Compare Two Power Supplies and Engine2 xlsx Excel tool Compare Two Engines S f t 7 00 Tee nn 5 00 a eae a EEEEEEEEEEREEEEEEE SeeeEeEEEEEEIe 4 00 Sa a Te Bee las Has S MVA 3 00 ee un 2 00 i ool ee ee in te ES 1 00 ee an ee une eee oe en 0 00 00 01 00 00 00 01 10 00 00 01 20 00 00 01 30 00 00 01 40 00 00 01 50 00 00 02 00 00 Sim 1 Network A C Substation TSS_80 Power Supply T1 Reference U Rails_BB Compared U OCS_BB Sim 5 Network A C Substation TSS_80 Power Supply T1 Reference U Rails_BB Compared U OCS_BB Figure 99 The diagram compares the power supplies of the transf
252. s_mm 38 52 r20 Ohm_km 0 0306 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 0 75 y 1 m 0 gt lt Conductor gt Then the conductors for track 2 from km 9 750 to km 10 250 lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 3 45 r20 Ohm_km 0 2311 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 10 y m 6 9 gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 3 45 r20 Ohm_km 0 1852 temperature _GradCelsius 20 temperatureCoefficient 0 00385 x m 10 y m 5 3 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 38 52 r20_ Ohm_km 0 0306 temperature _GradCelsius 20 temperatureCoefficient 0 004 x m 9 25 y m 0 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 38 52 r20 Ohm_km 0 0306 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 10 75 y 1 m 0 gt lt Conductor gt Last but not least the earth wire lt Conductor type Earth gt lt StartPosition condName E trackID 1 km 0 gt lt ToProperty toPos_km
253. so both propulsion systems in order to run the same engine on both propulsion systems 6 7 3 1 2 1 Engine File The basis shall be the Engine File from the AC tutorial in chapter 6 2 To this engine file we add the DC propulsion system with the properties listed in Table 18 see XML snippet below lt propulsion supply DC 3000V transmission electric engine electric power 3890 maxTractEffort 200 totalTractEfficiency 90 totalBrakeEfficiency 90 gt lt auxSupply typeStr all constPower 100 gt lt propulsion gt 6 7 3 1 2 2 Project File As the basis we will use the Project File from the AC tutorial in chapter 6 2 First we add the configuration of the DC propulsion system to the engine lt Propulsion engine electric supply DC 3000V brakeCurrentLimitation none tractiveCurrentLimitation none useAuxPower true fourQuadrantChopperPhi none regenerativeBrake none tractiveEffort maxPower maxTractEffort gt lt MeanEfficiency gt lt Propulsion gt It is the same as for AC but the attribute supply has a different value Second is the configuration of the electrical networks The DC network lt Network name A B use true voltage _kV 3 Set the voltage and frequency Hz 0 frequency for DC recordVoltage true recordCurrent true gt lt Lines recordCurrent falsetsub recordVoltage false tsub gt lt Line name A maxSliceDistance_km 0 5 gt lt Conductors gt First the conductors for tra
254. ssue 2013 02 12 lt Switch name TSS_80_T1_Rails defaultState close gt lt RailsBB gt lt TwoWindingTransformer gt lt Busbars gt lt OCSBB bbName OCS_BB gt lt Connector name TSS_80_OCS Feeder z_ real Ohm 0 001 z_ imag Ohm 0 gt lt Position condName CW lineID A trackID 1 km 80 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails_BB gt lt Connector name TSS 80 Rails Feeder z_ real Ohm 0 001 z_imag Ohm 0 gt lt Position condName RR lineID A trackID 1 km 80 gt lt Connector gt lt RailsBB gt lt Busbars gt lt Substation gt lt Substations gt Now only two things are left before we have completed the Project File One is to define the earthing point and the other is to set some options for the PSC The definition of the earthing point is very simple lt Earth condName E lineID A trackID 1 km 0 gt And the options for module PSC are as well very simple lt Options tolerance grad 0 001 The maximum allowed tolerance of the engine current angle between the iteration inside the PSC maxCurrentAngleIteration 100 The maximum allowed iteration to achieve the value specified above tolerance V 0 1 The maximum allowed tolerance of the node voltage between the iteration of ATM and PSC tolerance A 0 1 The maximum allowed tolerance of the source currents between the iteration of ATM and PSC maxIncreaseCount 500 The maximum allowed number of incr
255. storage meanEfficiency_percent curve engine storage efficiency valueT able Table 3 Common data used by ATM transformer none mean transformer meanEfficiency curve transformer efficiency valueT able four none quadrant mean __ fourQuadrantChopper meanEfficiency chopper curve fourQuadrantChopper efficiency valueT able traction none inverter mean tractionInverter meanEfficiency curve tractionInverter efficiency valueT able motor none mean tractionMotor meanEfficiency curve tractionMotor efficiency valueT able IFB DD UM_OPN_51_01 04 02 doc Page 31 of 206 DMJ 2013 02 12 OA OPN 51 1 4 2 pen PowerNet Page 32 of 206 User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH gear none mean gear meanEfficiency curve gear efficiency valueTable Table 4 Single Component Model specific data used by ATM totalTractEfficiency totalBrakeEfficiency Table 5 Mean Efficiency Model specific data used by ATM tractiveVehicleEfficiency valueT able brakeVehicleEfficiency valueT able Table 6 Efficiency Table Model specific data used by ATM Each engine has the option to configure multiple energy storages The load and unload model is configured in the Project File Table 7 shows a typical engine energy storage configuration
256. substations 6 2 3 3 Constant current To check the pantograph voltage in a network we want to draw a constant current along the whole line This can be done easily by OpenPowerNet Just add one course in OpenTrack e g with name constant current use the itinerary from Station A via track 1 in Station B to Station C and add a timetable As we have seen in the previous simulation the maximum short circuit current is about 2300A so we will use a lower current of 2000A for this simulation Otherwise the network is overburden Then add one attribute to the Project File lt Vehicle eddyCurrentBrake false engineID Enginel gt lt Propulsion engine electric supply AC 25kV 50Hz constantCurrent_A 2000 This is the new attribute Other attributes will be ignored by OpenPowerNet brakeCurrentLimitation none tractiveCurrentLimitation none useAuxPower true fourQuadrantChopperPhi none regenerativeBrake none tractiveEffort maxPower maxTractEffort gt lt MeanEfficiency gt lt Propulsion gt lt Vehicle gt and set a proper comment in the Project File to identify this simulation while analysing the data Note When not using the FULL license set the time steps in OpenTrack to 2 seconds IFB DD UM_OPN_51_01 04 02 doc Page 103 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen Powe rNet TIL Institut f r Bahntechnik GmbH Page 104 of 206 User Manual Issue 2013 02 12 U f s 25000
257. sus speed characteristic in OpenTarck engine model IFB DD UM_OPN_51_01 04 02 doc Page 131 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 132 of 206 User Manual Issue 2013 02 12 For the speed below 65km h and above 80km h we can see clearly the effect of the used table model compared with the maximum power maximum effort model of the default AC network simulation 6 6 3 Tractive current limitation tutorial Please see the DC tutorial in chapter 6 4 for an example of tractive current limitation 6 6 4 Regenerative braking tutorial In this tutorial we will learn how to configure the OpenPowerNet engine model to use regenerative braking The engine model shall be defined by maximum brake power and maximum brake effort The values shall be the same as for traction 6 6 4 1 Configuration 6 6 4 1 1 OpenTrack We will use the OpenTrack model from the AC tutorial without changes 6 6 4 1 2 OpenPowerNet 6 6 4 1 2 1 Engine File As the basis we use the Engine File from the AC tutorial We need only to set the values for max brake effort and max brake power see the XML snippet below lt vehicle length 25 bruttoWeight 75 vehicleID Enginel speed 250 gt lt engine gt lt propulsion supply AC 25kV 50Hz transmission electric engine electric power 5560 maxTractEffort 250 totalTractEfficiency 90 totalBrakeEfficiency 90 maxBrakeEffort
258. t 140 P kW 0 j N l i j i N 00 02 00 00 0002 05 00 0002 10 00 00 02 15 00 0002 20 00 00 02 25 00 0002 30 00 00 02 35 00 00 02 40 00 00 02 45 00 00 02 50 00 Sim 24 Course ABCs_02 Engine 0 Engine1 Sim 26 Course ABCs_02 Engine 0 Engine1 Figure 138 The auxiliary power of course ABCs_02 with constant engine auxiliary resistance sim 24 and with constant auxiliary resistance while braking sim 26 IFB DD UM_OPN_51_01 04 02 doc Page 141 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 142 of 206 User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH In Figure 138 we see both resistance auxiliary models used for the simulations During braking both curves are exactly the same but during driving they are different 6 6 7 Eddy current brake tutorial In this tutorial we use the eddy current brake As the eddy current braking is only active for regenerative engines we define e the maximum regenerative brake power to 400 kW and e maximum regenerative brake effort to 30 KN The parameter for the brake shall be e 30 KN maximum effort e 300 kW maximum power and e 10 km h minimum speed As the short trains have less auxiliary power of the trailers we will use only the short trains to show clearly the effect of the eddy current brake To see the effect of the eddy current brake we do two simulations one without and one with eddy current brake 6 6 7 1 C
259. t IFB DD UM_OPN_51_01 04 02 doc Page 190 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 191 of 206 User Manual Issue 2013 02 12 lt Connector name RL track 1 2 km 9 750 z_real_Ohm 0 000010 z_imag_Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 1 km 9 750 gt lt ConductorTo condName RL lineID A trackID 2 km 9 750 gt lt Connector gt lt Connector name RR track 1 2 km 9 750 z real Ohm 0 000010 z_ imag Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 1 km 9 750 gt lt ConductorTo condName RR lineID A trackID 2 km 9 750 gt lt Connector gt lt Connector name MW track 1 2 km 10 250 z real Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 1 km 10 250 gt lt ConductorTo condName MW lineID A trackID 2 km 10 250 gt lt Connector gt lt Connector name CW track 1 2 km 10 250 z_real_Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName CW lineID A trackID 1 km 10 250 gt lt ConductorTo condName CW lineID A trackID 2 km 10 250 gt lt Connector gt lt Connector name RL track 1 2 km 10 250 z_ real Ohm 0 000010 z imag Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 1 km 10 250 gt lt ConductorTo condName RL lineID A trackID 2 km 10 250 gt lt Connector gt lt Connector
260. t lt propulsion gt lt engine gt lt vehicle gt lt vehicles gt lt rollingstock gt lt railml gt As we have a very simple model of the engine the Engine File is very short 6 2 1 2 2 Project File The Project File of our example is a bit more complex as the Engine File As for any Project File we will configure the Engine and Switch File used the Engine model and the electrical model First of all we need to create a new XML File and to specify the schema The latest schema can be found in plugin de bahntechnik dd opn bin x x x_JJJJMMDDhhmm schemas OpenPowerNet xsd At the beginning we will configure the general simulation data lt OpenPowerNet xmlns xsi http www w3 org 2001 XMLSchema instance xsi noNamespaceSchemaLocation http www openpowernet de schemas 1 4 2 OpenPowerNet xsd name Tutorial AC Network comment This is a comment for a specific simulation maxIterations 1000 maxFailedIterations 100 odbcDsn pscresults record2DB true record2DB Dump false simulationStart_s 3600 IFB DD UM_OPN_51_01 04 02 doc Page 88 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 89 of 206 User Manual Issue 2013 02 12 Institut fiir Bahntechnik GmbH rstFile Engine File xml gt Besides the name of the project and a comment set the allowed maximum iterations to 1000 the allowed failed iterations to 100 so the simulation will not abort in case iterations for som
261. t lt Conductor type Rail gt lt StartPosition condName RL trackID 1 km 0 gt The left rail lt ToProperty toPos_km 85 4 equivalentRadius_mm 38 52 r20 Ohm_km 0 0306 temperature GradCelsius 20 temperatureCoefficient 0 004 x _m 0 75 y_m 0 gt Note the horizontal x position and the equivalent radius of the rail lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 1 km 0 gt The right rail lt ToProperty toPos_km 85 4 equivalentRadius_mm 38 52 r20 Ohm_km 0 0306 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 0 75 y m 0 gt lt Conductor gt Now conductors for track 2 follow lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 3 45 r20 Ohm_km 0 2311 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 10 y m 6 9 gt Note the start and end of the wire lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 3 45 r20 Ohm_km 0 1852 temperature GradCelsius 20 temperatureCoefficient 0 00385 x m 10 y m 5 3 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 38 52 r20 Ohm_km 0 0306 temperature Gr
262. t OpenPowerNet gt APserver gt Host The following chapters describe in detail the configuration of the Engine File Project File and the Switch File As we do not use energy storage we do not need to configure a TypeDefs File 6 2 1 2 1 Engine File First of all we need to create a new XML File and to specify the schema Read chapter 7 8 for how to get the schema directory The default Engine File is lt xml version 1 0 encoding UTF 8 gt lt railml xmlns xsi http www w3 org 2001 XMLSchema instance xsi noNamespaceSchemaLocation http www openpowernet de schemas 1 4 2 rollingstock xsd gt lt rollingstock rollingstockID version gt lt railml gt Now we need to configure the engine according to our needs and corresponding to OpenTrack see chapter 6 2 1 1 In addition to OpenTrack we need to configure the tractive and braking efficiency as well as the engine auxiliary power lt railml xmlns xsi http www w3 org 2001 XMLSchema instance xsi noNamespaceSchemaLocation http www openpowernet de schemas 1 4 2 rollingstock xsd gt lt rollingstock rollingstockID version 110 gt lt vehicles gt lt vehicle length 25 bruttoWeight 75 vehicleID Enginel speed 250 gt lt engine gt lt propulsion supply AC 25kV 50Hz transmission electric engine electric power 5560 maxTractEffort 250 totalTractEfficiency 90 totalBrakeEfficiency 90 gt lt auxSupply typeStr all constPower 100 g
263. t values yValue 91 gt lt valueLine gt lt valueLine xValue 150 gt lt values yValue 91 gt lt valueLine gt lt valueLine xValue 250 gt lt values yValue 88 gt lt valueLine gt lt valueTable gt lt brakeVehicleEfficiency gt lt propulsion gt lt engine gt lt vehicle gt 6 6 9 1 2 2 Project File In the Project File we need to set only the regenerative brake and to specify the efficiency model lt Vehicle eddyCurrentBrake false engineID Enginel gt lt Propulsion engine electric supply AC 25kV 50Hz brakeCurrentLimitation none tractiveCurrentLimitation none useAuxPower true fourQuadrantChopperPhi none regenerativeBrake maxPower maxEffort Set this to use regenerative braking tractiveEffort maxPower maxTractEffort gt lt MeanEfficiency gt Use this element to specify the efficiency model in the second simulation by replacing this element with lt EfficiencyTable gt lt Propulsion gt lt Vehicle gt Set the right Engine File and don t forget to set a meaningful project name and comment in the project file 6 6 9 2 Simulation We will do two simulations to be able to compare the mean efficiency with the table efficiency model Run both simulations e Do everything as described above and run the simulation e Replace lt MeanEfficiency gt with lt EfficiencyTable gt give a meaningful comment in the Project File and run the simulation 6
264. tartPosition condName RR trackID 1 km 20 gt lt ToProperty toPos_km 30 4 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 0 75 y m 0 gt lt Conductor gt The conductor configuration for track 2 lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 2 km 20 gt lt ToProperty toPos_km 30 4 equivalentRadius_mm 3 45 r20 Ohm_km 0 2311 temperature GradCelsius 20 temperatureCoefficient 0 004 x _me 10 y_m 6 9 gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 2 km 20 gt lt ToProperty toPos_km 30 4 equivalentRadius_mm 3 45 r20_ Ohm_km 0 1852 temperature GradCelsius 20 temperatureCoefficient 0 00385 x m 10 y m 5 3 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 2 km 20 gt lt ToProperty toPos_km 30 4 equivalentRadius_mm 38 52 r20 Ohm_km 0 0306 temperature GradCelsius 20 temperatureCoefficient 0 004 x _m J9 25 y_m 0 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 2 km 20 gt lt ToProperty toPos_km 30 4 equivalentRadius_mm 38 52 r20 Ohm_km 0 0306 temperature GradCelsius 20 temperatureCoefficient 0 004 x m 10 75 y m 0 gt lt Conductor gt The earth conductor lt Conductor type Earth gt lt StartPosition condName E t
265. te close gt lt OCSBB gt lt RailsBB bbName Rails BB 2 z_real Ohm 0 001 z_imag Ohm 0 gt lt Switch name TSS_5_ T2 Rails defaultState close gt lt RailsBB gt lt NegativeFeederBB bbName NF_BB 2 z_ real Ohm 0 001 z_ imag Ohm 0 gt lt Switch name TSS_5 T2 NF defaultState close gt lt NegativeFeederBB gt lt ThreeWindingTransformer gt lt Busbars gt lt OCSBB bbName 0CS_BB_1 gt lt Connector name TSS_4 7 OCS Feeder z_ real Ohm 0 001 z_ imag Ohm 0 gt lt Position condName TSS 5 F 1 lineID A trackID 1 km 5 gt lt Connector gt lt OCSBB gt lt OCSBB bbName 0CS_BB 2 gt lt Connector name TSS_5 3 OCS Feeder z real Ohm 0 001 z_ imag Ohm 0 gt lt Position condName TSS 5 F r lineID A trackID 1 km 5 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails BB 1 gt lt Connector name TSS 4 7 _Rails_Feeder z real Ohm 0 001 z imag Ohm 0 gt lt Position condName TSS 5 RF 1 lineID A trackID 1 km 5 gt lt Connector gt IFB DD UM_OPN_51_01 04 02 doc Page 164 of 206 DMJ 2013 02 12 OPN 51 1 4 2 pen PowerNet 7 7 4 MLA Institut f r Bahntechnik GmbH Page 165 of 206 User Manual Issue 2013 02 12 lt RailsBB gt lt RailsBB bbName Rails_BB_2 gt lt Connector name TSS_5 3_Rails_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName TSS_5_RF_r lineID A trackID 1 km 5 gt lt Connector gt
266. ted for each line and no coupling between different lines The difference for track 1 can be seen on the conductors of the left track in Figure 165 and Figure 166 Magnetic Flux Density Tutorial lines points crossings 5 long trains record all U amp I Line A km 19 950 01 17 30 0 300 pT 12 240 pT 10 180 pT 120 pT gt H En 11 24 gT 71A Peg 60 pT Ee a 5 ze TEA gran oO pT a oy 4 60 pT 120 pT 5 H 180 pT 427 6 14 12 51 5 44 5 05 0 chen 5 40 Ses saaat 240 uT 3 300 pT 5 0 5 10 15 20 25 Lateral Distance m Figure 165 The magnetic field at line A km 19 950 at 01 17 30 Magnetic Flux Density Tutorial lines points crossings 5 long trains record all U amp I Line A km 20 125 01 17 30 0 00 pT 12 40 pT 10 180 pT 120 pT a H i Eg i 5 ur oa E 4 60 pT 120 pT 2 H 180 pT 0 240 ut 2 300 pT 5 0 5 10 15 Figure 166 The magnetic field at li 6 7 5 Turning loops tu Lateral Distance m ne A km 20 125 at 01 17 30 torial 20 25 In this tutorial we will compare the effect of a wrong and a correct configuration for turning loops Turning loops are typical for tram networks but also for other railway systems IFB DD UM_OPN_51_01 04 02 doc Page 184 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 185 of 206 User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH The wrong configuration will be wrong for OpenTrack and also wr
267. the times of braking In Figure 130 we can see very well the higher pantograph voltage from course ABCI_01 during the braking time of course ABCI_01 as well as course CBAI_01 0 00 01 00 00 v f t 00 01 10 00 00 01 20 00 00 01 30 00 00 01 40 00 00 01 50 00 00 02 00 00 Sim 20 Course ABCI_01 Engine 0 Engine1 Sim 20 Course CBAI_01 Engine 0 Engine1 Figure 129 The speed versus time diagram of the courses in the regenerative brake simulation IFB DD UM_OPN_51_01 04 02 doc Page 133 of 206 DMJ 2013 02 12 5 o NS ING NE N E 3 4 2 t _ gt c O 0 5 Q a 8 lt 2 lt i g zZ 3E U f t SEAE SER AEE ANIAN A NEETER ORAE E EE RTE eer Bannen pR 50 00 00 01 55 00 28000 7 27800 27600 27000 4 00 01 00 00 00 01 05 00 00 01 10 00 00 01 26000 gine O Engine1 Sim 20 Course ABCI_01 En gine 0 Engine1 Sim 1 Course ABCI_01 En Figure 130 The pantograph voltage of course ABCI_01 for the AC network sim 1 and the regenerative braking simulation sim 20 f t 300 200 f 200 00 01 00 00 00 01 05 00 00 01 10 00 00 01 15 00 00 01 20 00 00 01 25 00 00 01 30 00 00 01 35 00 00 01 40 00 00 01 45 00 00 01 50 00 00 01 55 00 gine 0 Engine1 Sim 20 Course CBAI_01 En gine 0 Engi
268. tor z_real_Ohm 0 000073 z_imag Ohm 0 gt lt ConductorFrom condName MW trackID 2 gt lt ConductorTo condName CW trackID 2 gt lt Connector gt lt ConnectorSlice gt The dropper configuration for track 3 lt ConnectorSlice name dropper track 3 firstPos_km 9 650 lastPos_km 20 000 maxDistance_km 0 25 gt lt Connector z_real_Ohm 0 000073 z_ imag Ohm 0 gt IFB DD UM_OPN_51_01 04 02 doc Page 176 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 177 of 206 User Manual Issue 2013 02 12 lt ConductorFrom condName MW trackID 3 gt lt ConductorTo condName CW trackID 3 gt lt Connector gt lt ConnectorSlice gt The rail connector configuration for track 1 lt ConnectorSlice name rail connector track 1 firstPos_km 0 lastPos_km 30 4 maxDistance_km 0 25 gt lt Connector z_real_ Ohm 0 00001 z_ imag Ohm 0 gt lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName RR trackID 1 gt lt Connector gt lt ConnectorSlice gt The rail connector configuration for track 2 lt ConnectorSlice name rail connector track 2 firstPos_km 9 750 lastPos_km 20 000 maxDistance_km 0 25 gt lt Connector z_real_Ohm 0 00001 z_ imag Ohm 0 gt lt ConductorFrom condName RL trackID 2 gt lt ConductorTo condName RR trackID 2 gt lt Connector gt lt ConnectorSlice gt The rail con
269. tors at km 1 100 Then we have to connect the conductors with each other using low resistance connectors see the upper conductors in Figure 177 The Project File XML snippet shows the conductor and connector configuration of the example lt Line name A maxSliceDistance_km 0 1 recordCurrent true recordVoltage true gt lt Conductors gt lt Conductor type ContactWire gt lt StartPosition km 0 trackID up condName CW gt lt ToProperty x_m 0 y m 5 3 r20 Ohm km 0 2138 equivalentRadius_mm 4 4 toPos_km 1 000 temperatureCoefficient 0 00381 temperature GradCelsius 40 gt lt Conductor gt IFB DD UM_OPN_51_01 04 02 doc Page 200 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 201 of 206 User Manual Issue 2013 02 12 lt Conductor type Rail gt lt StartPosition km 0 trackID up condName R gt lt ToProperty x_m 0 y m 0 r20_Ohm km 0 0164 equivalentRadius_mm 38 52 toPos_km 1 000 temperatureCoefficient 0 0047 temperature GradCelsius 40 gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition km 1 100 trackID up condName CW gt lt ToProperty x_m 5 y m 5 3 r20 Ohm_km 0 2138 equivalentRadius_mm 4 4 toPos_km 2 100 temperatureCoefficient 0 00381 temperature GradCelsius 40 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition km 1 100 trackID up condName
270. twork_Model 03_AC DC_Networks OTDocuments Info Document Edit Format Tools Functions Windows Print Hide Quit 2 Station A Station B Station C a 1 i a gt BT m 1 ae aae aaae un SaagTceesadGEeus dccaalTEUSGUEECEESESTTGEAGETTGEEEEGs 4 jene H a H v pjo f Engine Name Engine Load fi 75 Resistance Factor 3 2999 Adh Load ft 75 Rot mass Factor 1 0599 Length m 25 Balise Telegram M Info Document Edit Format Tools Functions Windows Print Hide Quit Speed max km h Ben cot ciearem 2 Radio Telegram M Tractive Effort max KN 250 Rack Traction RINS CAET EU pc sooo v Export Import Dupl Del Add Diagram Color M Adhesion bad so normal 125 good 150 Loss Function J Edit Selected Point v km h Z kN P MW hyperb Visual Rectangle Speed max km h 270 Scale Tractive Effort max KN 270 Min IKNI 0 Autoscale Del Engine New Engine Save Depot New Depot Open Depot Engine 1 Diagnm 1 Diagamz Set Data Figure 158 The engine configuration in OpenTrack with two propulsion systems IFB DD UM_OPN_51_01 04 02 doc Page 167 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 lt spenPowe rNet IIL Institut f r Bahntechnik GmbH Page 168 of 206 User Manual Issue 2013 02 12 6 7 3 1 2 OpenPowerNet In OpenPowerNet we need al
271. ue Lines xi Substations 6 xi Times xj Earth condName 4 Mergers 4 Merger use true name merge_nw2 comment This Merger will add this network configuration Line2 including TSS2 connectors to Line1 and one OCS busbar connector to network TestNetwork 1 network TestNetwork 1 concatenateName 5 Connectors Connector 2 z_real_Ohm z_imag_Ohm Conductorfrom ConductorTo 1 0 001 0 000 ConductorFrom ConductorTo condName cw condName CW linelD Line1 linelD Line2 trackiD Tracki trackiD Track1 1 J km 20 2 km 20 2 0 001 0 000 4 ConductorFrom ConductorTo condName R condName R linelD Line1 linelD Line2 trackiD Track1 trackiD Track1 a km 20 A km 20 4 Lines 4 Line name Line2 2 maxSliceDistance_km 0 1 recordCurrent true recordVoltage true I xi Conductors Substations Substation name TwoWindingTransformer Busbars OCSBBConnector 4 Tss2 4 xi TwoWindingTransformer vi Busbars 2 TSS1 OCSBBConnector z_real_Ohm 0 001 z_imag_Ohm 0 000 Switch name TSS1_OCS 3 defaultState open BusbarFrom bbName ocsBB1 BusbarTo Lo bak IL bbName ocsBB2 Figure 40 This example shows how to merge two networks into one network The merge parameters provide the functionality to merge two networks of the project file into one network This merged network will be used during the whole simulation This is for example useful for
272. ue PEro true P P_sum f t P TRLPC gt 0K clear ait Append Row Delete Row Figure 60 The dialog to select connectors and to define different charts IFB DD UM_OPN_51_01 04 02 doc Page 66 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 67 of 206 User Manual Issue 2013 02 12 Institut f r Bahntechnik GmbH The item columns displayed on the right side depend on the selection in the tree of the left side 4 5 2 3 Substations The Substations group provides charts related to substations A dialog opens when pressing Select See Figure 61 r n EJ Select Substations i crm S E r s 1 2012 04 17 14 32 24 0 Tutorial AC Network defi Disable Selection 5 Network i Network 0 A C Substation LFeeder f t LFeeder TRLPC U Device f t TRLPC P_Device f t TRLPC Overview S Substation 1 A c Tss5 7 7 7 7 7 E Substation 0 TSS_5 2 cTss 0 gt F 7 E Substation 1 TSS_80 vosoauew Ss 1i 0k clear ai Append Row Figure 61 The dialog to select the substations and the charts to be generated On the left side all substations are available from a tree view On the right side is the table with selected substations and the chart types To generate output for a substation click the red button Enable Selection then select a substation from th
273. ues lt valueTable gt lt efficiency gt lt tractionInverter gt lt tractionMotor typeStr gt lt efficiency gt lt valueTable xValueName S peed xValueUnit km h The speed yValueName E yValueUnit 1 zValueName E zValueUnit k fficiency gt the efficiency and Effort N gt the effort unit We want to use the same efficiency for any traction force therefore the values between 0 kN and 250 kN are the same the column lt columnHeader zVal for 0 kN ue 0 gt and for 250 kN lt columnHeader zValue 250 gt lt valueLine xValue 0 gt lt values yValue 0 6 gt lt values lt valueLine xValue 30 gt lt values yValue 0 92 gt lt values lt valueLine xValue 60 gt lt values yValue 0 95 gt lt values lt valueLine xValue 105 gt lt values yValue 0 93 gt lt values lt valueLine xValue 250 gt lt values yValue 0 93 gt lt values lt valueTable gt lt efficiency gt lt tractionMotor gt lt gear typeStr ratio 1 meanEfficiency 97 5 gt lt gear gt lt auxSupply typeStr all constPower 100 gt lt propulsion gt lt engine gt lt vehicle gt 6 6 10 1 2 2 Project File In the Project file we need to change the efficiency model to Single component IFB DD UM_OPN_51_01 04 02 doc Pag e 149 of 206 yValue 0 6 gt lt valueLine gt yValue 0 92 gt lt valueLine gt yValue 0 95 gt lt valueLine gt yValue 0 93 gt lt valueLin
274. want to check the effect of the neutral zone to the speed of the course I_total f s 2 500 2 000 possess 1 500 1 A 1 000 e eee ees y mann Bensssstteselnieest tests eine Laatssssise en Dean _ nn nn nn 0 000 i 0 000 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000 9 000 10 000 s km Ltotal_real A I_total_imag A Figure 155 The sum of the current per section of ther whole simulation period IFB DD UM_OPN_51_01 04 02 doc Page 165 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 166 of 206 User Manual Issue 2013 02 12 Institut fiir Bahntechnik GmbH As we can see from Figure 155 the maximum total current sum is about 2 4 A in the area of the neutral zone This may look like a lot but as the simulation runs from 1 00 00 until 1 48 55 in time steps of 1s the number of time steps is 2935 To get the average total current sum per time step we divide 2 4 A by 2935 The result is 0 8 mA and this is very close to 0 A in the context of railway power supplies Therefore the model of the neutral zone is correct v f s v km h 0 1 0 000 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000 90 000 s km Figure 156 The speed versus location of course ABCI_01 In the diagram above we can see the speed is reduced in the area of the neutral zone near km 5 000 This is because in the neut
275. ween the reference and measuring busbar The following Close Models are available e Voltage The VLD closes as soon as the defined voltage would be exceeded e VoltageDuration The VLD closes when the defined voltage level is exceeded for a defined time interval The following OpenModels are available e Timer To open the VLD after a specific time period If the close condition is still valid one time step with open VLD occur in the simulation results Thus there will be one time step with exceeding voltage e Voltage To open the VLD as soon as the voltage at the closed VLD is less than specified e VoltageDuration To open the VLD when the defined voltage level is below the defined value for a defined time interval e Current Opens the VLD as soon as the current level is lower than the defined value e CurrentDuration Opens the VLD when the current level was continuous lower than a defined value Exactly one Open and one Close Model need to be defined IFB DD UM_OPN_51_01 04 02 doc Page 46 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 47 of 206 User Manual Issue 2013 02 12 The VLD has for different states e OPEN This is the default state and uses the resistance defined in attribute r_open_ohm e CLOSE When the VLD is close This state is modelled with the resistance defined in attribute r close ohm e WAIT_CLOSE This
276. work see Figure 7 kW 8000 7000 6000 5000 4000 3000 2000 1000 km h Drive Recovery kW Eddy Power kW 9 Auxiliary Power kW amp Total Recovery kW Figure 7 Brake power calculation deducts power used by eddy current brake and auxiliary from recovered power IFB DD UM_OPN_51_01 04 02 doc Page 17 of 206 DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 pen PowerNet Page 18 of 206 User Manual Issue 2013 02 12 Institut fiir Bahntechnik GmbH 3 4 Power Supply Calculation The PSC calculates the load flows within the electrical network including voltages and currents The network calculation uses the current required by a course to model this course as a current source During simulation this current source is inserted at discrete positions while driving along the line These discrete positions are called slices see Figure 8 Slice 0 Slice 1 Slice 2 Conductor Section Connector Position X X X Figure 8 Abstract electrical network model of PSC A reasonable slice distance should be about 50m up to 400m depending on the size of the network the length and number of conductors and the typical speed of the courses If the applied slice distance is too large the network model gets inexact and if it is too small the memory demand is significantly larger and the simulation may fail One possibility of keeping the networ
277. y Conducto E StartPc E ToProy E Conducto m m OpenPowerNet PSC Network Writable Smart Insert 1157 14 901 Figure 15 The XML perspective of the GUI IFB DD UM_OPN_51_01 04 02 doc Page 22 of 206 DMJ 2013 02 12 OPN 51 1 4 2 Page 23 of 206 3penPowerNet User Manual O IPH LLA Institut f r Bahntechnik GmbH Issue 2013 02 12 3 6 XML Editor The OpenPowerNet included XML editor supports the editing To use the editing support the xmlns xsi and xsi noNamespaceSchemaLocation need to be specified at the root element see the XML snippet below lt OpenPowerNet xmlns xsi http www w3 org 2001 XMLSchema instance xsi noNamespaceSchemaLocation http www openpowernet de schemas 1 4 2 OpenPowerNet xsd name Tutorial AC Network comment default maxIterations 1000 maxFailedIterations 100 odbcDsn pscresults record2DB true record2DB Dump false rstFile Engine File xml simulationStart_s 3600 gt The XML editor shows a tooltip when placing the mouse over an element or attribute and shows a description and enumeration values if applicable When editing an attribute with enumeration the editor shows all available values in a context menu The context menu opens when pressing Ctrl Space see Figure 16 The editing support helps also to add attributes by pressing Ctrl Space Figure
278. y for traction lt valueTable xValueName Speed xValueUnit km h yValueName Efficiency yValueUnit gt lt valueLine lt valueLine lt valueLine lt valueLine lt valueLine lt valueLine lt valueLine xValue 0 gt xValue 10 gt xValue 30 gt xValue 50 gt xValue 80 gt xValue 150 gt xValue 250 gt lt valueTable gt lt tractiveVehicleEfficiency gt lt brakeVehicleEfficiency gt The IFB DD UM_OPN_51_01 04 02 doc lt values yValue 40 lt values yValue 75 lt values yValue 85 lt values yValue 88 lt values yValue 91 lt values yValue 91 lt values yValue 88 Page 145 of 206 gt gt gt gt gt gt gt efficiency for braking lt valueLine gt lt valueLine gt lt valueLine gt lt valueLine gt lt valueLine gt lt valueLine gt lt valueLine gt DMJ 2013 02 12 7 7 4 OPN 51 1 4 2 3penPowe rNet IIL Institut f r Bahntechnik GmbH Page 146 of 206 User Manual Issue 2013 02 12 lt valueTable xValueName Speed xValueUnit km h yValueName Efficiency yValueUnit gt lt valueLine xValue 0 gt lt values yValue 40 gt lt valueLine gt lt valueLine xValue 10 gt lt values yValue 75 gt lt valueLine gt lt valueLine xValue 30 gt lt values yValue 85 gt lt valueLine gt lt valueLine xValue 50 gt lt values yValue 88 gt lt valueLine gt lt valueLine xValue 80 gt l

Download Pdf Manuals

image

Related Search

Related Contents

libération  Halte aux cadences infernales Négociations  仕様書  User Guide - Colorbeam  Verbatim 98138 LED lamp  kit combo    VersaMax MicroMotion Modules IC200UMM002_102  mag18 - sblivres!    

Copyright © All rights reserved.
Failed to retrieve file