Home

- Rorke Data

image

Contents

1. b f 11 Rorke is committed to being properly prepared and taking all the necessary steps that will result in our compliance with the new European directive ROHS 2002 95 EC on or before the specific dates set forth in those applicable laws and regulations Rorke is applying its own internal efforts and expertise and is working closely with customers and suppliers to achieve compliance while maintaining an uninterrupted supply of quality products Rorke is currently investigating evaluating and qualifying our materials and components to ensure that products sold on or after 1 July 2006 in such territory are in compliance with the above regulations Disposal of Old Electrical
2. 3 4 5 50 6 7 8 9 vi Galaxy Raid Installation and Hardware Reference Manual 10
3. 2 7 Installation Procedure 44000 00 2 7 2 5 UNPACKING THE SYSTEM 2 9 2 5 1 Preinstalled Components 3 2 10 viii Galaxy Raid Installation and Hardware Reference Manual 2 5 2 Components to be Installed enn 2 10 2 6 RACK CABINET INSTALLATION 209 2 11 REMOVING CHASSIS si enit Per 2 16 2 7 CONTROLLER 5 2 2099 2 17 2 7 1 Installing a Controller emen 2 17 2 8 HARD DRIVE INSTALLATION 0 1 nenne nenne nene nnn nnne nnne nennen nnns 2 19 2 8 1 Hard Drive Installation Prerequisites 2 19 2 8 2 p Ae 2 19 2 9 DRIVE TRAY INSTALLATION nn nennen nennen enne 2 21 2 10 INSTALLING CBM OPTIONAL FOR MODEL see 2 23 CHAPTER 3 SYSTEM CONNECTIONS 3 1 FC HOST CONNECTION PREREQUISITES cesses enne enne 3 1 3 1 1 Choosing the Fibre Cables eire oth 3 1 ES FC Speed Auto detection mailen Em FC Port Dust Plugs Gi SCC 3 1 2 Topology and Configuration Considerations 3 5 Fibre Channel TOPOIOGIGS e
4. Pin Pin Name Pin Description 1 VEET Transmitter ground Transmitter fault indication High 2 TFAULT MM is indicates a fault condition Transmitter Disable Module electrical 3 Tpis input disables on high or open Module definition 2 Two wire serial ID 4 MOD DEF 2 B 2 interface data line SDA Module definition 1 Two wire serial ID 5 MOD_DEF 1 1 interface clock line SCL 6 MOD_DEF 0 Module definition 0 Grounded in module module present indicator 7 No Connect Internal pullup 30KQ to Vcc 8 RX LOS Indicates loss of signal High indicates B loss of received optical signal 9 No Connect Internal pullup 30KO to Vcc 10 VEER Receiver Ground 11 VEER Receiver Ground 12 RD Inverse Received DATA Out 13 RD Received Data Out 14 VEER Receiver ground 15 VccR Receiver power 3 3V 16 Vccr Transmitter power 3 3V 17 VEET Transmitter ground 18 TD Transmitter DATA In 19 TD Inverse Transmitter Data In 20 VEET Transmitter Ground Table B 1 SFP Port Pinout Definitions Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual B 2 10 100BaseT Ethernet Port Pinouts B 3 Management Port Figure B 2 10 100BaseT Ethernet Port Pin Pin Name Color Match 1 LAN_TXP Orange 2 LAN_TXN Orange white 3 LAN_RXP Green 4 N2 Blue white 5 N2 Blue 6 LAN_RXN Green white 7 N1 Brown 8 N1 Brown white Table B 2 10 100BaseT Ethernet Port Pinouts
5. 3 5 Host side Topologles e cnstetesteasecocesisaaeasseececennssiseesacstceesseenpuad 3 5 Associated Host side 3 6 3 2 SAMPLE TOPOLOGIES 3 8 3 3 gere cop EE 3 14 3 4 EXPANSION LINKS idest 3 16 SAS Expansion Configuration 2 3 18 Single controller RAID to 3U single controller JBODS 3 21 3 5 CONNECTING OTHER 3 22 3 6 CONNECTING POWER 5 3 23 3 7 POWER AEREA 3 24 Check LISE ENE 3 24 Power On Procedure Ena aaa eaaa a kaaa 3 25 Power On Status ChecK sssini iir inedi 3 26 LGD 3 27 3 8 POWER OFF PROCEDURE 3 28 CHAPTER 4 SYSTEM MONITORING 4 1 duum 4 1 4 2 STATUS INDICATING 5 4 3 4 2 1 ECD Keypad Panel iiss is 4 3 4 2 2 DI NICA 4 4 4 2 3 Controller Module LEDS 4 5 How to Use the Restore Default 4 7 4 2 4 FC Host Port 1 4
6. Figure 2 22 Installing a Drive Tray Step 4 Close the front bezel Make sure the front bezel is closed properly to ensure that the back end connector is properly mated with the corresponding connector on the backplane If the front bezel can not closed properly the connection between the hard drive and the system may come loose and mysterious drive signals may result Step 5 Lock the bezel into place by turning the key lock until the groove on its face is pointing down vertical orientation Locked Unlocked Figure 2 23 Front Bezel Rotary Lock 2 22 Drive Tray Installation Chapter 2 Hardware Installation Step 6 Once the drive bays are populated and the system powered on the RAID controller will automatically spin up the hard drives and recognize their presence 2 10 Installing CBM Optional for Single controller models CBM Cache Backup Module is an optional equipment for the single controller GHDX3 G1840 You may need to install CBM on the arrival of your system A CBM module contains a battery cell module and a flash SSD module To install a CBM module Skip steps 1 4 if installing CBM at the initial installation Step 1 1 1 If a system is powered on stop host I Os 1 2 Use the Shutdown Controller command to flush cached data 1 3 Power down the system NOTE If installing a new system simply remove RAID controller from its package box You may then skip steps 2 and 3 Step 2
7. 2 5 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual 17 18 19 20 21 22 23 Never open the system top cover For safety reasons only qualified service personnel could access the interior of the chassis Always secure every enclosure module by its retaining screws or make sure it is held in place by its latches or hand screws Always make sure the system has a safe electrical earth connection via power cords to the power source sockets at the installation site Be sure that the rack cabinet in which the system chassis is to be installed provides sufficient ventilation channels airflow circulation around the chassis Provide a soft clean surface to place your enclosure on before working on it Servicing the enclosure on a rough surface may damage the finish of the chassis If it is necessary to transport the system repackage all disk drives separately If one of the following situations arises get the enclosure checked by service personnel a Any of the power cords or plugs is damaged b Liquid has penetrated into the system c The enclosure has been exposed to moisture d The system does not work well or you cannot get it work according to this manual e The system has dropped and been damaged f The system shows obvious signs of breakage 2 3 2 Static free Installation Static electricity can damage the system s electronic components To prevent
8. STP Ethernet Cable Optional Accessory This shielded twisted pair cable is an optional accessory item More details are shown below Description SFTP CAT5E Ethernet cable Color black Connector 8P8C plug covered by metal shield Cable type round cable 24AWG 4P braided wire OD 6 2mm B 3 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual g PIN ASSIGNMENT P1 P2 2 Orange Orange White EP 5 Green 3 Green white 5 Blue white 8 7 Brown white Nr metal shield braided wire metal shield Figure B 3 STP Ethernet Cable Pinouts B 4 DB 9 Serial Port Pin4 X Pin3 Pin 2 PinS DTR1 TXD1 RXD1 Pin 1 GND PIN1 3000430 Pin 9 Pin8 7 DSR1 CTS1 RTS1 Figure B 4 COM1 Serial Port Pin Pin Name Description 1 DCD1 Data Carrier Detect 2 RXD1 Receive Data 3 TXD1 Transmit Data 4 DTR1 Data Terminal Ready 5 GND Ground 6 DSR1 Data Set Ready 7 RTS1 Request to Send 8 CTS1 Clear to Send 9 RI1 Ringing indicator Table B 3 Serial Port Pinout Definitions P2 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual For a single controller system there is no included cable for this serial port The serial cable is user supplied B 5 Serial Port Y Cable The DB 9 to DB9 Y ca
9. s charger circuit reports a temperature reading exceeding the preset threshold The charger circuits will enter a low power and self protection state A BBU module has been charged for over twelve 12 hours A timer is embedded with the charger When this occurs the charger will enter a timer fault state This condition usually occurs with a brand new BBU or with a totally discharged BBU Charging will resume automatically if you remove and re install the BBU module 5 4 1 Warnings and Precautions Install or replace the BBU with BBUs supplied that are supported only Use of battery cells provided otherwise will void our warranty Always dispose of a replaced battery in an ecologically responsible manner Dispose of used BBUs at authorized battery disposal sites only 5 8 Replacing a Faulty CBM Chapter 5 Subsystem Maintenance and Upgrading Do not place a BBU near a heat source Heat can melt the insulation and damage other safety features of battery cells possibly will cause acid leak and result in flames or explosion Do not immerse the BBU in water nor allow it to get wet Its protective features can be damaged Abnormal chemical reactions may occur possibly cause functional defects acid leak and other hazardous results not disassemble or modify the BBU If disassembled the BBU could leak acid overheat emit smoke burst and or ignite not pierce the BBU with a sharp object strike it with
10. If a faulty drive is behind either the left or right side front handle unfold the handles to access to the drive trays CAUTION Failure to remove a healthy drive from the system after the front bezel has been opened can cause insecure connection and data errors e Slow and careful removal When removing a drive tray from the system pull the drive tray out only about one inch and then wait for at least 30 seconds for the hard drive motor to spin down before taking it out completely Any impact to the hard drive while the drive motor is spinning can damage the hard drive There are situations that healthy drives can be removed In operations such as Copying amp Replacing member drives with drives of larger capacity you may need the replaced disk drives in other installations 5 7 2 Replacing a Hard Drive To replace a hard drive please follow these steps Al WARNING Hard drives are fragile therefore always handle them with extreme care Do not drop the hard drive Always be slow gentle and careful when handling a hard drive Handle a hard drive only by the edges of its metal cover and avoid touching its circuits board and interface connectors Step 1 Identify the location of the drive tray that contains a hard drive indicated as faulty You may use firmware utility or RAIDWatch software to locate a faulty drive The drive tray LED should also light red Al WARNING Removing the wrong drive can destroy
11. Rorke Data reserves the right to revise this publication and to make changes from time to time in the content hereof without obligation to notify any person of such revisions or changes Product specifications are also subject to change without prior notice Trademarks Galaxy and the Galaxy logo are registered trademarks of Rorke Data Inc PowerPC is a trademark of International Business Machines Corporation and Motorola Inc Solaris and Java are trademarks of Sun Microsystems Inc All other names brands products or services are trademarks or registered trademarks of their respective owners Galaxy Raid Installation and Hardware Reference Manual Warnings and Certifications N x RESTRICTED ACCESS LOCATION This equipment is intended to be installed in a RESTRICTED ACCESS LOCATION only A Access can only be gained by SERVICE PERSONS or by USERS who have been instructed about the reasons for the restrictions applied to the location and about any precautions that shall be taken and Access is by an authorized person through the use of a TOOL or lock and key or other means of security and is controlled by the authority responsible for the location ELECTRIC SHOCK WARNING To Prevent Electric Shock 1 Access to this equipment is granted only to trained operators and service personnel who have been instructed of and fully understand the possible hazardous conditions and the consequences of accessing
12. SAS IN SAS OUT Because of the different port connectors on RAID and JBODs an SFF 8088 to SFF 8470 cable will be necessary when connecting to 3U single controller JBODs Expansion Links 3 23 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual 3 5 Connecting Other Interfaces RS 232 Management console 24 7 l5 DB9 males to 1 female serial Y cable 5 LAN cable SANWatch Embedded RAIDWatch telnet console Figure 3 12 Connecting Serial Port and Ethernet Ports Single controller GHDX3 G1840 Serial cable and LAN cable are user supplied Dual controller GHDX3 R1840 A serial port Y cable is provided in package LAN cable is user supplied The serial port s defaults are Baud rate 38400 Data bit 8 Parity none Stop bit 1 Flow control Hardware Table 3 2 Serial Port Defaults For TCP IP connection and firewall configuration with a management station running RAIDWatch please refer to RAIDWatch s User s Manual 3 24 Connecting Other Interfaces Chapter 3 System Connection 3 6 Connecting Power Cords Use the included cable clamps to secure power cord connections Step 1 Remove power cords and cable clamps from the accessory boxes Step 2 Combine cable straps with cable clamps Push barb anchor Cable strap Cable clamp Figure 3 13 Combining Cable Strap and Cable Clamp Step 3 Attach cable clamps to the power cords
13. amp Electronic Equipment Applicable in the European Union and other European countries with separate collection systems This symbol on the product or on its packaging indicates that this product shall not be treated as household waste Instead it shall be handed over to the applicable collection point for the recycling of electrical and electronic equipment By proper waste handling of this product you ensure that it has no negative consequences for the environment and human health which could otherwise be caused if this product is thrown into the garbage bin The recycling of materials will help to conserve natural resources For more details about recycling of this product please contact your local city office your household waste disposal service or the shop where you purchased the product vii Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual Table of Contents CONTACT INFORMATION eren ERROR BOOKMARK NOT DEFINED COPYRIGA R2009 MT Deven teeta thet won bet MEO ENE II This Edition First Published 2009 ii PISA EAE EEE TEENE touched ii ooo cic ccesvesccecscctscousvesconcepisedsoosecdenesccsasosievacnscobespsdscnosuabinanscctuceusseteshcepiscdseosaticnescace ii SAFETY PRECAUTIONS sive dort Tore deret XI Precautions and Instr ctions neris Qna Yea ena au e o v A xi ESD Precauti h
14. more logical groups of drives Avail these logical drives using more host channel IDs or LUN numbers Sample 2 DAS Direct Attached Connections GHDX3 R1840 NOTE If a logical drive can be accessed by different servers file locking or multi pathing access control will be necessary HBA 1 B113 8113 115 CH1A115 i ce CHO A112 CHO B114 gt 4 8 1 112 CH1 B114 SF 5 tandby lt lt 0 2 LDO LD1 Figure 3 3 DAS Connections GHDX3 R1840 Channels Controller A Controller B Host CHO amp CH1 CHO amp CH1 Sample Topologies 3 9 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual Configuration Information RAID controllers 2 Host servers 1 Data path connection Fault tolerant data paths Host channel bandwidth 3200MB s With more disk drives over the SAS expansion links you can create more logical groups of drives Avail these logical drives using more host channel IDs or LUN numbers Each logical drive is redundantly mapped to multiple host channel IDs in an AAPP Active Active Passive Passive configuration The Passive IDs will only become functional when a single controller fails in the system A MPIO driver is a must on the application server The driver communicates with system firmware and performs load balance and automated distribution of I Os acros
15. will be triggered Airflow Concern Once you are notified that a cooling module has failed it should be replaced as soon as possible A failed module should only be removed from the system when you have a replacement module immediately available 5 6 2 Replacing a Cooling Module The cooling module is secured in the chassis by a retention latch To replace the cooling module follow the steps below Al WARNING The fan replacement process should be completed within five 5 minutes If the process takes too long the accumulated heat can damage the system Step 1 Use one hand to push the retention latch to the side while using another hand to hold and pull on the fan module handle Cooling Module Maintenance 5 15 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual Figure 5 9 Removing a Cooling Module Step 2 Once released from the module bay remove the faulty module Step 3 Install the replacement module by pushing it gently into the module bay You may need to flip the retention latch while installing the replacement module When fully inserted the retention latch will hold the module in place 5 16 Cooling Module Maintenance Chapter 5 Subsystem Maintenance and Upgrading 5 7 Replacing a Hard Drive 5 7 1 Hard Drive Maintenance Overview Hot swappable drive trays The drive trays are all hot swappable disk drive failure can be corrected online Handles
16. 13 2 14 Galaxy Raid GHDX3 1840R S 24F8D Installation and Hardware Reference Manual See S rrrreee Front rack post M5 x9 0mm screws 5 6 7 Slide Runner M5 x9 0mm SCTEWS Figure 2 11 Fitting the Rail into Rack Secure the rail to the front and rear rack posts each using two M5 screws 05 See figure above Do not insert the screws into the cage nuts as cage nuts will be used to secure the enclosure later Attach the filler plates 04 behind the enclosure ears using the four 6 32 x 10mm flat head screws 06 on each side Chassis ear Filler plate 6 32 x10mm flathead screws Figure 2 12 Securing a Filler Plate behind Chassis Ears Place the enclosures onto the rails and slide the enclosure into rack until its chassis ears flush with the front rack posts Two people are required Rack Cabinet Installation Chapter 2 Hardware Installation 61 6 Ib Figure 2 13 Mounting the Enclosure While pushing the chassis into rack make sure the tips of inner glides fit into the metal brackets on the slide runners A click sound will be heard when the inner glides catch the spring latches on the slide runners Step 8 Fasten four screws provided in your accessory box M5 M6 or 10 32 through the holes on the forearm handles M5 x 35mm Figure 2 14 Securing Enclosure to Rack Rack Cabinet Installati
17. 2 nd Edition GOST R GOST60950 EMC CE EN 55022 2006 A1 2007 EN 61000 3 2 2006 EN 61000 3 3 1995 A1 2001 A2 2005 EN 55024 1998 A1 2001 A2 2003 FCC FCC Part 15 subpart B BSMI CNS 13438 FCC FCC Part 15 subpart B Certificates e IEC 60068 2 MIL STD 810E 883E ISTA ASTM D3332 IPC TM 650 IEC 61000 4 IEC 61000 3 2 IEC61000 3 3 ISO7779 3744 e RoHS Microsfot WHQL WindowsServer 2003 Shock Half sine Operating 5G peak 11ms duration Non operating 15G 11ms duration Vibration Operating 0 50ct min 5 to 500Hz sinewave 0 2G Non operating 0 5 to 500Hz sinewave 1 0G A 2 Technical Specifications Appendix A Specifications e Various tests have been conducted according to industry standards Please contact your sales representatives or visit our VIProom website for individual test reports Warning Alarms e Audible alarms e System LEDs e Telnet console e LCD event prompts e Event notification via the RAIDWatch Manager LAN broadcast email fax MSN SMS and SNMP traps e RS 232C terminal console A 2 Controller Specifications A 2 1 Configuration Specification 0 1 0 1 3 5 6 10 30 50 60 and non RAID disk RAID Levels spanning Host O S Compatibility Host O S independent Host Interface 8Gb s Fibre Channel Host Channels 4 pre configured host channels each controller Dr
18. 5 Connections via Switched Fabric Channels Controller A Controller B Host CHO amp CH1 CHO amp CH1 Configuration Information RAID controller 2 Host server 2 or more via FC switches Sample Topologies 3 13 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual 3 14 FC switch 2 or 1 into 2 zones Data path connection Fault tolerant paths Host channel bandwidth 3200MB s You can refer to the ID tags on the host links to see the related logical drive mapping and cable links routing paths Through the cable links diagrammed above the configuration can withstand a failure of a single component e g RAID controller HBA cable or FC switch Each logical drive is redundantly mapped to multiple host channel IDs in an AAPP Active Active Passive Passive configuration LDO and LD2 are assigned to controller A and LD1 and LD3 are assigned to controller B The Passive IDs will only become functional when a single controller fails in the system The Multipath driver is necessary on the application servers to recognize a LUN through fault tolerance data paths The driver also communicates with system firmware to perform load balance and automated distribution of I Os across preferred paths Active IDs on data paths TPGS Target Port Group Service is supported In a SAN environment where multiple servers can see a LUN file locking switch zonin
19. BBU or a flash is missing in a redundant controller system Blinking means a BBU is being charged OFF means BBU is not installed in a single controller model Hst Bsy Green Rapidly Blinking to indicate traffic on the host bus Drv Bsy Green Rapidly Blinking to indicate traffic on the drive channels Restore Default Green Lit Green to indicate the RAID configuration default has been successfully restored The LED state will be invalidated after a few seconds See below for how to use the push button Table 4 3 Controller LED Definitions 4 6 Status indicating LEDs Chapter 3 Subsystem Monitoring How to Use the Restore Default Button CAUTION The Restore NVRAM Default push button should be considered as a last resort function Although restoring firmware defaults will not destroy the existing logical drives however detailed configurations such as various parameters and host LUN mappings will be erased There is a non latch type push button accessed through an opening on the controller faceplate Why restoring defaults 1 Some of the latest firmware updates may be incompatible with the firmware currently running on your system These updates may require restoring firmware defaults before firmware upgrade can actually take place Before using the button it is highly advised to practice the following Stop host I Os Save NVRAM you can save NV
20. Fibre Channel Arbitrated Loop FC AL and fabric switch topologies Point to Point Point to point topology is the simplest topology is a direct connection between two 2 Fibre Channel devices FC AL This is the most common topology currently in use Fibre Channel devices are all connected to a loop Each device is assigned an arbitrated loop physical address AL PA The FC AL supports 124 devices in a single loop Fabric The fabric topology supports up to 2 Fibre Channel devices This topology allows many devices to communicate at the same time A Fibre switch is required to implement this topology FC Host Connection Prerequisites Chapter 3 System Connection Host side Topologies The primary concern for configuring host side topologies is to avoid points of failure It is therefore recommended that the host ports be connected to at least two 2 HBAs It is also preferable to apply Fibre Channel switches In order to manage the fault tolerant data paths and to optimize data throughput on multiple data paths it is necessary to apply multi pathing software or other utilities such as Linux Device Mapper etc FC Host Connection Prerequisites 3 5 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual 3 6 Associated Host side Parameters It will be necessary to fine tune your host side parameters if you are attaching the system in a complex multi host SAN environmen
21. JBOD Enclosure IDs 3 19 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual SAS Expansion Configuration Physical Connections from a Redundant controller RAID to 3U Dual controller JBODs GHDX3 R1840 to GHDX3 JB2 EJ e Figure 3 9 Redundant controller RAID to 3U Dual controller JBODs 3 20 Expansion Links Expansion Links Chapter 3 System Connection Configuration Rules Following are the rules for connecting SAS interfaces across RAID and JBOD enclosures 1 If SATA drives are deployed in a configuration consisting of dual controller enclosures make sure MUX boards are available for all disk drives Fault tolerant links dual controller combinations Corresponding to SAS drives dual ported interface two 2 physical links are available from each disk drive routed across the backplane board each through a SAS expander and then interfaced through a 4x wide external SAS port With data paths through separate SAS domains access to disk drives can be continued in the event of a cable link or SAS JBOD controller failure RAID RAID controller A controller B Dual ported SAS drives JBOD s JBOD controller A MACE controller B To another JBOD To another JBOD Figure 3 10 Fault tolerant Links to SAS disk Drives SAS expansion cables SFF 8470 to SFF8470 will be available with JBODs Note that if many JBODs are connected a longer SAS external cable e g a 12
22. Remove RAID controller from chassis by loosening screws under the ejection levers Figure 2 24 Removing a RAID Controller Step 3 Press down on the ejection levers The controller will be eased out from chassis Step 4 Place controller on a clean static free surface Hold the controller by its metal canister Never touch the circuit board or connector pins Installing CBM Optional for Single controller models 2 23 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual Step 5 5 1 Install BBU by orienting its protruding edge on one end into the insertion slot and lowering it into the canister The orientation is shown below 5 2 Carefully orient the BBU so that the golden finger connector on the BBU is properly aligned with that on the charger board 5 3 Once the connectors are mated fasten the captive screw on BBU to secure the installation e BBU Module Connector to Charge board Flash Backup wil e Insertion Slot Figure 2 25 Installing BBU Module Step 6 6 1 Install the flash SSD by orienting and inserting it at an approximately 15 degree angle into the SSD socket The SSD socket is located on the charger board 6 2 Make sure the SSD s golden fingers are fully inserted Press the SSD down The retention latches on the SSD socket will hold the SSD in place Step 7 Install the RAID controller back into chassis Insert the con
23. See Figure 5 7 Replacing a Faulty PSU 5 13 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual Extraction lever Figure 5 7 Removing the PSU Module Al WARNING It is recommended that the replacement procedure is completed in less than five 5 minutes to prevent a prolonged disruption to system airflow Step 5 Install the replacement module Make sure the extraction handle is held at its lowest position so that the saddle notches on the sides of the handle can snap onto the metal anchor pins on the interior walls of the PSU slot Push the PSU into chassis and when you feel the contact resistance pull the handle upwards to secure the module Handle PSU Locked position Figure 5 8 Securing PSU Using the Extraction Handle 5 14 Replacing a Faulty PSU Chapter 5 Subsystem Maintenance and Upgrading Step 6 Step 7 Step 8 Step 9 Secure the PSU to the system by fastening the retention screw through the PSU extraction handle Replace the power cord that connects the PSU module to the mains Secure the power cord connection using the included cable clamp Power on the PSU module 5 6 Cooling Module Maintenance 5 6 1 Notes on Cooling Module Maintenance Detecting a failed cooling module If a cooling module fails system firmware and RAIDWatch manager will deliver warning events The LEDs located on the cooling module will light red and an audible alarm
24. Tolerance Management Specification Drive S M A R T support CBM Cache Backup Module Sensors and Module Presence detection through an 2 serial bus Automatic Drive Failure Yes with user configurable detect only clone and replace and perpetual clone options The S M A R T feature depends on HDD implementation Yes Yes reported to firmware RAID6 Logical Drive Detection 198 Automatic Rebuild on Spare Yes Drives Regenerate Logical Drive Yes Parity Bad Block Reassignment Yes Automatic Rebuild upon Failed y es Drive Replacement Manual Clone of Suspected Yes Failed Drive Concurrent Rebuild on Multiple Drives in a RAID 0 1 or Yes Event triggered operation Firmware applies conservative write through operation in the event of module failures and raises fan rotation speed Fault Tolerance Management A 5 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual This page is intentionally left blank A 6 Fault Tolerance Management Appendix Pinouts B 1 8Gb s FC Port Pinouts VeeT A TxFault Tx Disable MOD DEF 2 MOD DEF 1 MOD DEF 0 2 ro Bottom of Board Top of Board as viewed through the top of board Figure B 1 8G FC Host Port B 1 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual
25. a hammer step on it or throw it These actions could damage or deform it and internal short circuiting can occur possibly cause functional defects acid leak and other hazardous results faBBU leaks gives off bad odor generates heat becomes discolored or deformed or in any way appears abnormal during use recharging or storage immediately remove it from the system and stop using it If this is discovered when you first use the BBU contact your system vendor for a replacement 5 4 2 Replacing a Faulty BBU To replace a BBU please follow these steps Step 1 Remove controller as previously described Step 2 Remove the faulty BBU from the chassis Loosen the captive screw at the end of BBU module Step 3 3 1 Install the replacement module orienting its protruding edge on one side into the insertion slot and lowering it towards the charger board Replacing a Faulty CBM 5 9 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual Connector to Charge board e uu BBU Module Insertion Slot Figure 5 3 Installing BBU into a Controller 3 2 Carefully align the BBU connector with that on the charger board Press the BBU down to mate the connectors 3 3 Secure the BBU by fastening its captive screw Step 4 Re install the controller Step 5 Reset the system Find appropriate time to reset the system 1 for the system firmware to recognize the replacement module Aft
26. by opening and enwrapping the plastic ring around the base of power cords Cable clamp fits here Figure 3 14 Attaching Cable Clamps to Power Cords Step 4 Adjust the position of cable straps using the release tab Adjust the position so that when a power plug is connected to system power the barb anchor can be inserted into the anchor hole above the power socket Connecting Power Cords 3 25 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual Release tab Figure 3 15 Adjust Cable Strap Position Step 5 Connect power cords to system power supplies and insert the barb anchor into the anchor holes below the power sockets Barb anchor Anchor hole Figure 3 16 Attaching Power Cords 3 7 Power On Once all of the components have been installed in the system and the cabling links have been adequately connected the system can be powered on Check List BEFORE powering on the subsystem please check the following Q CBM Make sure CBM has been installed correctly CBM selected as an add on module for single controller GHDX3 3 26 Power On Chapter 3 System Connection Hard drives Hard drives have been installed in the drive trays Drive trays All the drive trays whether or not they contain a hard drive have been installed into the system Cable connections The subsystem has been correctly connected to host computer s FC switches or HBAs and SBODs Power cords The power
27. cords have been connected to the PSUs on the subsystem and plugged into the main power source Ambient temperature All the subsystem components have been acclimated to the surrounding temperature Power On Procedure When powering on the subsystem please follow these steps Step 1 Step 2 Step 3 Step 4 Power On Power on the Fibre Channel networking devices These devices include FC switches and any other such devices connected between application servers and storage Please refer to the documentation that came with your networking devices to see the power on procedure Power on the expansion enclosures JBOD attached to the RAID system If you have connected JBODs to the system power on these JBODs and wait for their Drive Busy LEDs to blink Power on the system The system should be powered on before the application servers Power on using the power switch that is covered by a plastic cap Power on the application servers host computers The application servers should be the last devices that are turned on Please refer to related documentation for their power on procedures 3 27 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual Power On Status Check Once the system is powered on all aspects of its operating statuses should be carefully observed to ensure that there are no complications or malfunctions 1 Controller module LEDs The Controller Ready Host B
28. features such as synchronized cache and the transparent failover failback capability GHDX3 1840S 24F8D This HDX3 comes with a single RAID controller This model cannot be upgraded into a dual redundant configuration by adding a partner RAID controller Except for controller redundancy the single controller configuration supports all advanced RAID technologies and fault tolerance by redundant configuration of other modules 1 2 Product Overview Chapter 1 Introduction 1 1 2 Enclosure Chassis 1 1 2 1 Chassis Overview The HDX3 RAID storage is housed in a 4U robust chassis that is divided into the front and the rear sections Key components are either accessed through the front or rear panels The enclosure chassis can be mounted into a standard EIA 19 inch rack or enclosure cabinet using support brackets that are included in kit 1 1 2 2 Physical Dimensions The HDX3 comes in a 4U chassis with the following dimensions With forearm handles 482W x 174 4H x 5140 mm 19 x 6 87 x 20 2 inches Without forearm handles 445W x 174 4H x 498D mm 17 5 x 6 87 x 19 6 inches 1 1 2 3 Front Panel Overview The front section of the system features a 4x6 layout for 24 3 5 inch disk drives The forearm handles enable you to easily extract the chassis from a rack or cabinet The front view is shown below A description of each front panel component is given below LCD keypad panel ore Trays Bees Forearm Hand
29. from your vendor Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Remove the failed controller See Section 5 2 3 Install a DIMM module on the replacement controller if it does not come with a DIMM See Section 5 3 Insert the controller module Align the controller module with the module bay making sure that the levers are down Gently slide the controller module in Secure the connection When the controller is reaching the end and you feel the contact resistance use slightly more force to mate the controller with backplane connectors When the controller is almost fully inserted pull the levels up to secure the controller The levers help ensure that the back end connectors are properly mated Fasten the retention screws Once fully inserted secure the controller module to the chassis by fastening the retention screws through the holes underneath the ejection levers Re attach all the cables that you previously disconnected 7 1 Power up the system if using a single controller system 7 2 With a redundant controller system RAID controllers should spend a short while negotiating with each other and then deliver a Redundant Controller Restored message You can check for this message on the LCD screen GUI manager or firmware text based utility When the replacement controller is successfully brought online its Controller Status LED should light green on its faceplate 5 3 Replacing
30. fully inserted 7 4 When the controller is inserted with the levers at its lowest position notches on the levers should properly clinch to the round anchor pins on the interior walls of module bay You may then pull the lever upward to mate the back end connectors Replacing or Upgrading Memory Modules 5 7 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual 7 5 Secure the controller module to the chassis by fastening the screws through holes underneath each ejection lever 5 4 Replacing a Faulty CBM The CBM module can sustain and transfer cached data to a flash module in the event of a power outage or in the unlikely event of failing both PSUs A BBU consists of a metal bracket battery cell pack and a PCB board that connects to the charger board BBU supplies power during data transition from cache memory to flash Please read the BBU handling precautions below before handling BBUs Fault Conditions A BBU failure can result from the following 1 2 A BBU has lost its ability to hold electrical charge This may be the case after the battery cells have been recharged for many times regardless of how long the module has been used Therefore a stable power source is important for system operation The charger circuitry implemented with the controller has failed There are other conditions that might trigger the BBU fault events and the BBU fault LED The temperature sensor on the system
31. hard drives Profile The drive trays are designed for 3 5 inch wide x 1 inch high hard drives Drive type This model accommodates SAS or SATA II 3Gbps hard drives MUX Board MUX boards are required if using SATA drives in a redundant controller configuration both in RAID and the expansion enclosures The GHDX3 R1840 comes with MUX boards in its drive trays WARNING 1 Handle hard drives with extreme care Hard drives are very delicate Dropping a drive against a hard surface even from a short distance and hitting or touching the circuit board on the drives with your tools may cause damage to the drives 2 Observe all ESD prevention methods when installing drives 3 Only use screws supplied with the drive canisters Longer screws can damage the hard drives 2 8 2 Drive Installation Step 1 Place the hard drive into the drive tray as shown below making sure that the interface connector is facing the open side of the drive tray and the label side facing up Hard Drive Installation 2 19 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual Hard Drive Drive Tray Step 2 Step 3 Step 4 Drive Tray Figure 2 18 Installing a Hard Drive Adjust the drive s location until the mounting holes in the drive canister are aligned with those on the hard drive Screws holes used for the installation with or without a MUX board are different Figure 2 19 Drive Locations
32. non field serviceable units e g system backplane or power supplies 2 Unplug the system before you move it or when it has become damaged RELIABLE EARTHING Particular attention should be given to prepare reliable earthing with the power supply connections other than direct connections to the branch circuit e g use of power strips The AC power cords provide the main earth connection Check proper grounding before powering on the enclosure OVERLOADING PROTECTION 1 The enclosure should be installed according to specifications on a chassis label Provide a suitable power source with electrical overload protection 2 Do not overload the AC supply branch circuit that provides power to the rack The total rack load should not exceed 80 percent of the branch circuit rating BATTERY USE WARNING Risk of explosion if battery is replaced by an incorrect type Dispose of used batteries according to local ordinance Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual EN THERMAL PRECAUTIONS 1 If installed in a closed or multi unit rack assembly the operating ambient temperature of the rack environment may be greater than room ambient Appropriate measures such as increasing airflow should be available to maintain the temperature below 35 2 The openings on the enclosure are for air convection DO NOT COVER THE OPENINGS 3 To comply with safety emission and thermal requirem
33. number of queued operations is 4096 The appropriate Maximum Queued I O Count setting depends on how many I O operations attached servers are performing This can vary according to the amount of host memory present as well as the number of drives and their size If you increase the amount of host memory add more drives or replace drives with higher performance you might want to increase the maximum count But usually optimum performance results from using the Auto or 256 settings For more information please refer the firmware Operation Manual that came with your system FC Host Connection Prerequisites 3 7 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual 3 2 Sample Topologies Sample 1 DAS Direct Attached Connections GHDX3 1840S e 2 NOTE If a logical drive can be accessed by different servers file locking or multi pathing access control will be necessary HBAO q LB 1 CHO 10112 CH1 10112 D CHO 10112 CH1 ID112 a zo z2 S2 5 6 360 eg 5 LDO LD1 Figure 3 2 DAS Connections GHDX3 G1840 Channels Controller A Host CHO and CH1 Configuration Information RAID controllers 1 Host servers 1 Data path connection Simple end to end connections Host channel bandwidth 1600MB s 3 8 Sample Topologies Chapter 3 System Connection With more disk drives over the SAS expansion links you can create
34. sse A 5 APPENDIX B PINOUTS 8GB SFC PORT PINOUTS de ode ie Greve cere qut Re B 1 2 10 100 5 ETHERNET PORT PINOUTS MANAGEMENT PORT B 3 STP ETHERNET CABLE OPTIONAL B 3 BA DB 9 SERIAL PORT eee o ee B 4 SERIAL PORT Y CABLE 5 B 6 SASEXPANSIDNPORTPINOUTS 5 7 estesa 6 Galaxy Raid Installation and Hardware Reference Manual Safety Precautions Precautions and Instructions e Prior to powering on the subsystem ensure that the correct power range is being used e f it is necessary to transport the subsystem repackage all disk drives separately in the drive trays and in the original package foam blocks If using the original package material other replaceable modules can stay within the enclosure e The Galaxy subsystems come with 12 16 or 24 drive bays Leaving any of these drive bays empty will greatly affect the efficiency of the airflow within the enclosure and will consequently lead to the system overheating which can cause irreparable damage module fails leave it in place until you have a replacement unit and you are ready to replace it e Airflow Consideration The subsystem requires an ai
35. the system is attempting access If the replaced drive belonged to a logical drive with fault tolerance e g RAID levels 1 3 5 or 6 a logical drive rebuild will automatically begin You should then verify the beginning of the rebuild process using management software or terminal console A firmware message Rebuilding LDX should also pop up on the LCD screen 5 20 Replacing a Hard Drive Chapter 5 Subsystem Maintenance and Upgrading This page is intentionally left blank Replacing a Hard Drive 5 21 Appendix Specifications A 1 Technical Specifications Environmental Specifications Humidity 5 to 95 non condensing operating and non operating Temperature Operating 0 to 40 C 35 C if CBM is applied Non operating 40 to 60 C Altitude Operating Sea level to 12 000ft Packaged Sea level to 40 000ft Power Requirements Consumption Input Voltage JOOWAG BA 240VAC 4A with PFC auto switching Frequency 50 to 60Hz Power 434W busy 408 9W idle Dimensions With Forearm Handles Without Forearm Handles Height 174 4mm 6 86 inches 174 4mm 6 86 inches Width 482mm 19 inches 445mm 17 5 inches Length 514mm 20 2 inches 498mm 19 6 inches A 1 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual Certifications Safety UL 60950 1 2 nd BSMI CNS 14336 1993 IEC 60950 1
36. to 3 years and data is safely kept in flash regardless of the traditional 72 hours limitation from battery capacity Along with the 80 efficiency PSUs the embedded firmware features intelligent algorithms such as power saving modes and exiled drive handling making this model a greener choice This HDX3 system is housed a 4U profile chassis featuring a high density architecture that supports up to twenty four 24 hot swappable 3Gb s SAS or SATA II hard drives The system is managed by active active or a single RAID controller The default 2GB DDR II memory can be upgraded to a 4GB capacity module to support complicated applications that hold numerous ID LUN combinations In addition to the ease of implementation the HDX3 also supports capacity expansion via its SAS links by attaching up to 5 SAS based JBODs If using 1TB size SATA drives in a combination of single controller RAID and JBOD a configuration can reach a maximum capacity of 104TB Model Variations Controller Host Model Controllers 4 Configuration Ports GHDX3 1840R 24F8D Fibre Channel gt SAS SATA x 2 Redundant 8 GHDX3 1840S 24F8D Fibre Channel gt SAS SATA x 1 Single 4 GHDX3 1840R 24F8D This model comes with redundant RAID controllers The dual controller configuration corresponds with SAS drives dual ported design and each manages a separate SAS domain for higher fault tolerance The dual controller model supports all necessary
37. view and edit Configuration parameters view and edit m devices to disk drives using firmware s Shutdown Controller function This function is accessed from Main Menu System Functions lt Menu gt Mute beeper change Password Reset controller hutdown controller Controller maintenance S Move Cursor Enter Select Esc Exit Ctri L Refresh Screen Power off the system For single controller system only Power off the system in the way described in Chapter 4 Be sure to stop host access and flush all cached data before powering off the system If it is not possible to do this turn off both PSU modules and disconnect the power cords Disconnect all cables that are connected to the controller module you wish to replace Loosen the retention screws from controller Use a medium size Phillips screwdriver to remove the screws underneath each of the ejection levers Keep the screws for future use Figure 5 1 Loosening Controller Retention Screws Remove the controller module by pressing down the two ejection levers The controller will be eased out of the module 5 4 Replacing a Controller Module Chapter 5 Subsystem Maintenance and Upgrading bay Gently pull the controller module out of the system with one hand underneath to support the weight of the module 5 2 4 Replacing a Controller Module If a controller module fails replace a failed controller with a replacement
38. 0cm or 160cm cable may be necessary for connecting a JBOD from the opposite direction offering high redundancy One expansion link connects JBODs from the nearest JBOD and then to the farthest JBOD Another expansion link connects to the farthest JBOD from the opposite direction and then to the nearest JBOD Connected this way even an entire JBOD failed in the configuration the connections to other JBODs will still be available Each expander controller on the SAS JBOD controls a SAS Domain that connects one of the alternative interfaces on all of 3 21 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual 3 22 the disk drives in the enclosure For example one expander unit controls Domain A and the other controls Domain B In a fault tolerant topology the SAS external links always connect to the SAS ports on the same SAS Domain The SAS Domains can be identified by the expanders locations i e upper controller slot Controller A Slot A or the lower controller slot Controller B Slot On a RAID system each RAID controller can be considered as managing a separate SAS Domain With the help of the port selector mechanism on the MUX boards the idea of SAS Domain applies even when SATA drives are used in a dual controller JBOD Expansion Links Chapter 3 System Connection Single controller RAID to 3U single controller JBODs GHDX3 G1840 to GHDX3 JB1 RAID System um um
39. 1t Ctri L Refresh Screen 0 Cooling Fan Temperature Sensor Voltage Sensor Drive Failure Output Definition Device Set Descriptor Overview 4 1 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual Sat Nov 24 14 30 56 2007 Cache Status Clea lt Main Menu gt Quick installation view and edit Logical drives view and edit logical Volumes view and edit Host luns view and edit Drives view and edit channels view and edit Configuration parameters view and edit Peripheral devices sy View Peripheral Device say Set Peripheral Device Entry Adjust LCD Contrast Controller Peripheral Device Configuration STATUS 3 3V Value 5 Operation Normal 5V Value Operation Normal 12V Value Operation Normal CPU Temp Sensor 51 5 C Within Safe Range 41 Temp Sensor 37 0 C Within Safe Range Board2 Temp Sensor 40 5 C within Safe Range RAlDWatch RAIDWatch is a fully integrated Java based Graphical User Interface GUI that came with the system and can be used to monitor and maintain the subsystem locally or remotely over TCP IP network The management session is made using the 10 100BaseT management port Please refer to the RAIDWatch User s Manual for further details 2 http 192 168 1 129 cgi bin NasConf cgi Windows Internet Explorer Ge le http 192 168 1 129 cgi bin NasConf cgi 215231034 Pi Fie Edit View Favor
40. 4 4 Controller Module LEDs 4 channel Version Name Color Status Green indicates that a RAID controller is operating Green healthily Amber Ctlr Status Amber indicates that a component failure has occurred or inappropriate RAID configurations have caused Status indicating LEDs 4 5 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual system faults It is also lit during the initialization process C Dirty Temp Amber Amber ON indicates the following Certain amounts of cached data held in memory Errors occurred with cache memory ECC errors Cached data is sustained by battery backup Battery voltage is lower than 2 5V Battery temperature reading is abnormal out of the 0 to 45 C range Battery is not present OFF indicates that the cache is clean and that the battery backup unit is capable of sustaining memory in case of power loss This signal is local to each controller ON indicates that the detected CPU board chassis temperature has exceeded the higher temperature threshold OFF indicates that the detected temperature reading is within the safe range CBM Status Green Amber Green steady on indicates the CMB module is ready Both a BBU and flash modules are present Fast blinking indicates BBU is charging Amber steady on indicates CBM failure meaning either BBU or flash has failed When lit it also indicates either
41. 5 5 REPLACING A FAULTY PSU dis addet dea ra 5 11 5 5 1 Notes on PSU Module Maintenance 2 5 11 Power Supply Fault Conditions amp Firmware 5 12 5 5 2 Replacing the PSU 0 5 12 5 6 COOLING MODULE 2 2 00 8 nennen enne 5 14 5 6 1 Notes on Cooling Module m 5 14 5 6 2 Replacing a Cooling 5 15 5 7 REPLACING A HARD DRIVE csse eene eene eese nennen nennen nnne 5 16 5 7 1 Hard Drive Maintenance 5 16 5 7 2 Replacing Hard Drive 5 cineri eterne tenenti ce duces 5 16 APPENDIX A SPECIFICATIONS A 1 TECHNICAL SPECIFICATIONS 1 153 sel 2 MERERETUR 2 A 2 CONTROLLER A 3 A 2 1 12 EEEE A 3 A 2 2 Atchitectire itte 3 POWER SUPPLY SPECIFICATIONS 4 4 RAID 2 0 112 0 4 5 FAULT TOLERANCE MANAGEMENT 1 nhe entrer
42. 9 4 2 5 Ethernet Port LEDS ca roe ee ea Prec edo EE Cardano Eod 4 9 4 2 6 PSULEDS THE 4 10 4 2 7 Cooling Module LEDS roce ree nte 4 10 4 3 Pal 6E 4 11 4 3 1 Alarm 99 OO 4 11 4 4 Em 4 12 CHAPTER 5 SYSTEM MAINTENANCE 5 1 Hm 5 1 5 1 1 uEIcncued 5 1 5 1 2 General Notes on Component 5 1 5 2 REPLACING A CONTROLLER MODULE isses enne enne 5 3 5 2 1 5 3 5 2 2 Notes on Controller 5 3 5 2 3 Removing the Controller Module seen 5 3 5 24 Replacing a Controller 5 5 5 3 REPLACING OR UPGRADING MEMORY MODULES 5 5 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual 5 3 1 Memory Module Installation Overview een 5 5 5 3 2 Selecting the Memory Modules sss 5 6 5 3 3 DIMM Module 5 6 5 4 REPLACING FAULTY CBM 2 tent 5 8 5 4 1 BBU Warnings and 5 8 5 4 2 Replacing a Faulty BBU ertet 5 9 5 4 3 Replacing a Faulty 5 11
43. ESD damage to any of the components follow these precautions before touching or handling them Discharge the static electricity accumulated in your body by wearing an anti static wristband Use antistatic strap during handling Connect the equipment end of the strap to an unfinished chassis surface Avoid carpets plastic vinyl and styrofoam in your work area 2 6 Safety Precautions Chapter 2 Hardware Installation If the need should arise for carrying system modules from one place to another carry them in a static shielding container Avoid the contact between circuit boards and clothing Handle all components by holding their edges or metal frames Avoid touching the exposed circuitry on PCB boards and connector pins 2 4 General Procedure Step 1 Step 3 Step 4 Step 5 Step 6 Unpack Unpack the system and confirm that all the components on the Unpacking Checklist have been included Rack Cabinet installation Installing the system into a rack or cabinet requires at least two 2 people See Section 2 6 Install hard drives install drive and drive trays into the enclosure See Section 2 9 Cable connection Connect power cords FC host links serial port and Ethernet cables Power up Once the components have been properly installed and all cables are properly connected you can power up the system and configure the RAID array Installation Procedure Flowchart Figure 2 4 sho
44. ISO 9001 2000 amp ISO 13485 2003 Certified MODELS GHDXS3 1834S4 24F8 24 BAY FC 4G to SATA RAID Subsystem Single Controller GHDXS3 1840R4 24F8 24 BAY FC 4G to SATA RAID Subsystem Dual Controller www rorke com ut Galaxy Raid 6th Generation Fibre Channel RAID With over 10 000 Galaxy units in the field Rorke Data s award winning RAID products provide the performance protection and expansion capabilities for diverse customer environments PLEASE READ BEFORE INSTALLATION 11 04 09 Contact Information Americas Rorke Data Inc 7626 Golden Triangle Drive Eden Prairie MN 55344 USA Tel 1 800 328 8147 Fax 1 952 829 0988 sales rorke com techsupport rorke com http www rorke com Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual Copyright 2009 This Edition First Published 2009 All rights reserved This publication may not be reproduced trans mitted transcribed stored in a retrieval system or translated into any language or computer language in any form or by any means elec tronic mechanical magnetic optical chemical manual or otherwise without the prior written consent of Rorke Data Inc Disclaimer Rorke Technology makes no representations or warranties with res pect to the contents hereof and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose Furthermore
45. Manual 3 4 3 1 2 When cabling follow all the Fibre channel specifications Pay attention to signal quality and avoid electronic noise from adjacent interfaces e g do not lay power cords on optical cables disk drives in the same logical array should have the same capacity but it is preferred that all the drives within a chassis have the same capacity Disk drives in the same logical drive should have the same capacity but it is preferred that all the disk drives within a chassis have the same capacity Tiered storage configuration is supported 150GB drives in your enclosure and 750GB SATA drives in JBODs However you should not include both SAS and SATA drives in a logical drive spare drive should have a minimum capacity that is equivalent to the largest drive that it is expected to replace If the capacity of the spare is less than the capacity of the drive it is expected to replace the controller will not proceed with the failed drive rebuild When rack mounted leave enough slack in the cables so that they do not bend to a diameter of less than 76mm 3 inches Route the cables away from places where it can be damaged by other devices e g foot traffic or fan exhaust not overtighten or bend the cables Topology and Configuration Considerations Fibre Channel Topologies The Fibre Channel standard supports three 3 separate topologies They are point to point
46. Mounting bracket assembly L shape right side 03 Inner glide 04 Flange filler plate fixed behind chassis ears 05 Cross recess truss head screws M5 x 9 0mm 06 6 32 x10mm flathead screws 07 6 32 L6 flathead screws 08 M5 cage nuts 2 NOTE Screws for securing chassis to the front rack posts are provided in the system s accessory box There are 4 M5 x35mm 4 M6 x35mm and 4 10 32 31 75mm screws D Left slide bracket 2 Right slide bracket MM Inner glides Filler plates 05 uad Screws C gt gt rev 6 32 x10mm 6 32 L6 Q9 flathead screws flathead screws v Cage Nuts 00040054 P P vw 5 Figure 2 6 Rackmount Rail Components Rack Cabinet Installation 2 11 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual Installation Pre requisites 1medium size and 1 small size cross head screwdrivers 1 medium size flat head screwdriver e Because the RAID system can weigh over 28 kilograms 2 people are required to rack mount the enclosure CAUTION The hard drives and drive trays should only be installed into the system after the system has been mounted into a rack cabinet If the hard drives are installed first the system will be too heavy to handle and the possible impact during installation may damage your drives Rack mounting Steps Step 1 Determine where in the rack the system is going to be installe
47. RAM contents either on a terminal console Embedded RAIDWatch or using the RAIDWatch software a list of host ID LUN mapping information for future references You may also jot down the configuration parameters such as the performance preferences specific stripe sizes etc 2 Firmware has an embedded 1GB threshold for internal settings such as the supported no of logical drives When you upgrade controller DIMM module say from 2GB to 4GB you need to restore firmware defaults after you upgrade your DIMM module size to 2GB 3 Another condition that requires restoring defaults is when a system administrator forgets the password controlling the access to a RAID system Before pushing this button also practice the steps listed above You can access configuration screen and manually record array information even without a password Listed below are the necessary procedures that should be completed before using this button 1 Before pressing this button to restore firmware defaults it is highly advised to save you current configuration using the Save function in firmware utility or the RAIDWatch GUI Status indicating LEDs 4 7 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual 2 You may also make a list of the existing ID LUN mapping information You will need the list for restoring ID LUN mapping after restoring defaults Default restoration will erase the ID LUN mapping as
48. a logical drive A RAID5 logical drive tolerates the failure of 1 member If you replace the wrong drive while a Replacing a Hard Drive 5 17 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual logical drive already has a faulty member you risk the chance of data loss Step 2 Step 3 Step 4 Step 5 Use a 1 8 flatblade screwdriver to turn the rotary bezel lock to the unlocked position i e the groove on its face is in a horizontal orientation Locked Unlocked Figure 5 10 Opening the Front Flap Open the tray bezel by pushing the release button The front bezel will automatically swing open Figure 5 11 Opening Front Bezel Remove the drive tray by pulling it one inch away from the drive bay Wait for at least 30 seconds for the disk drive to spin down if the disk drive is removed for a different purpose e g Drive Roaming or cloning members of a logical drive and then gently and carefully withdraw the drive tray from the chassis Remove the four 4 retention screws that secure the hard drive from the sides of the drive tray two on each side 5 18 Replacing a Hard Drive Chapter 5 Subsystem Maintenance and Upgrading Hard Drive Drive Tray Figure 5 12 Loosening Hard Drive Screws Step 6 Place the replacement drive into the drive tray as shown below making sure that the interface connector is facing the open side of the drive tray an
49. annel IDs in an AAPP Active Active Passive Passive configuration Two logical drives are assigned separately to each of the redundant controllers The Passive IDs will only become functional when a single controller fails in the system The Multipath driver is a must on the application servers The driver communicates with system firmware and performs load balance and automated distribution of I Os across preferred paths Active IDs on data paths TPGS Target Port Group Service is supported If multiple servers can see a mapped volume you will need to avoid access contention using the Extended LUN Mapping feature which limits the access from host by binding an LUN with a specific HBA ports WWPN When LUN is bound with one or two port WWPNs other servers in SAN cannot access the LUN If you have two servers in a clustered configuration access control will be performed by the clustering software NOTE The default for host port protocol is Point to Point which allows 1 AID or 1 BID to appear on each host port AID is one managed by RAID controller A and a BID that by controller B Try using LUN numbers under host IDs if you have more servers in SAN Note that the max number of LUN numbers under a host ID is sometimes limited by HBA and host OSes FC Cabling Following are steps that should be completed with cabling 1 Maintain a configuration plan In addition to cabling topologies and list of networking components
50. atus indicating LEDs Chapter 3 Subsystem Monitoring 4 2 4 FC Host Port LEDs Figure 4 5 FC Port Link and Speed LEDs Name Color Status ON indicates an established link Off Link Green means a link is broken Green indicates 8G connection Green Amber indicates 4G connection 8 4 2G Amber OFF indicates 2G speed or no connection Table 4 4 8G FC Port LED Definitions The same definitions apply to the 4 channel version 4 2 5 Ethernet Port LEDs One 1 10 100BaseT Ethernet port is located on each controller s faceplate Shielded Cat5e straight through Ethernet cables can be used to connect the RJ 45 ports to the network Two 2 LEDs located on each Ethernet port indicate the Ethernet connection speed and link status See the diagram below for the locations of the two 2 LED indicators 10 100 Link Activity Figure 4 5 10 100BaseT Management Port Indicators Name Color Status ON indicates a valid link of the 100Mbit 10 100 Green Speed OFF indicates a link with 10Mbit speed ON indicates a valid link Link Activity Green BLINKING indicates active transmission Table 4 6 10 100BaseT Management Port LED Definitions Status indicating LEDs 4 9 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual 4 2 6 PSU LEDs Each PSU comes with a single LED This LED indicates the operational status of the PSU module Figu
51. ble connects the COM1 serial ports on redundant RAID controllers for maintenance free terminal connection during controller failover failback 1500 30mm A Q A 6 9373A YCab 50mm 8mm UU o SHELL Figure B 5 Serial Port Y Cable B 6 SAS Expansion Port Pinouts The Mini SAS expansion port complies with SFF 8088 specifications Figure B 6 Mini SAS SFF 8088 Connector B 5 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual Pin Description Pin Description A1 GND B1 GND A2 0 2 TXO A3 RXO B3 TXO 4 GND B4 GND A5 RX1 B5 TX1 RX1 B6 TX1 A7 GND B7 GND A8 RX2 B8 TX2 A9 RX2 B9 TX2 A10 GND B10 GND A11 RX3 B11 TX3 A12 RX3 B12 TX3 A13 GND B13 GND Table B 4 SAS Expansion Port Pinout Definitions B 7 Power IEC type receptacles Unless specified otherwise cable type will be determined by the shipped to area Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual This page is intentionally left blank 7
52. d by referring to the rack post drawing below CAUTION The mounting positions must be carefully measured so that rails can be mounted parallel to each other Step 2 Use the figures below to measure the relative locations of the cage nuts on the rack posts if they do not have threaded holes Attach two M5 cage nuts 08 on each of the front rack posts On Front Rack Posts Front rack posts Rear rack posts Unit boundary 1 1 4U 2 4U 2 3 gt 3 4 4 30 5 3U 5 A 08 5 cage nuts 8 x 7 20 8 20 3 x 9 9 10 1 10 1u m 10 05 5 x 9 0mm n2 H 12 05 5 x 9 0mm Figure 2 7 Rack mount Position amp Cage Nut Positions on Rack Posts 2 12 Rack Cabinet Installation Chapter 2 Hardware Installation Step 3 Attach inner glides to the sides of chassis using the included screws When attaching the inner glides orient them so that the slimmer part of the glides has a bend towards the center of chassis If installed in a wrong orientation you will not be able to install the chassis into rack Bends inwards gt Inner glide Figure 2 9 Attaching an Inner Glide Step 4 Adjust the length of the rail assembly and make sure the bend of the L shape rail 01 faces inward Loosen the four screws near the end of the L shape bracket to adjust rail length Fasten them when length adjustment is done 14 4 Figure 2 10 Adjust the Rail Length Rack Cabinet Installation 2
53. d the label side facing up Hard Drive Drive Tray Drive Tray Figure 5 13 Installing a Hard Drive Step 7 Adjust the drive s location until the mounting holes in the drive canister are aligned with those on the hard drive Screw holes used are different if using a MUX board for SATA drives MUX boards are only necessary using SATA drives in a redundant controller configuration Figure 5 14 Drive Locations with and without the MUX Board Step 8 Secure the disk drive with four 4 of the supplied 6 32 flat head screws Replacing a Hard Drive 5 19 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual Step 9 Step 10 Step 11 Step 12 Align the drive tray with a drive bay Gently slide it in until the drive tray reach the end of drive bay This should be done smoothly and gently 7 Jo fro bro o D 7 97 B S Figure 5 15 Installing a Drive Tray Close the front bezel Make sure the front bezel is closed properly to ensure that the back end connector is properly mated with the corresponding connector on the backplane If the front bezel can not closed properly the connection between the hard drive and the system may come loose and mysterious drive signals may result Lock the bezel into place by turning the rotary bezel lock until the groove on its face is pointing down vertical orientation The drive Busy LED should light up after a few seconds meaning
54. dth and the mechanical performance of individual disk drives should be considered It is a good practice to calculate performance against the host port bandwidth when designing an application topology As diagrammed below if eight 8 members are included in a logical drive and this logical drive is associated with a host ID LUN mapping the combined performance of this logical drive will approximate the channel bandwidth If for example two 8 drive logical arrays are associated with two IDs residing on a single host channel there may be a trade off with performance If your system comes with dual controllers for a total of 4 host ports it will be a good practice you obtain more disk drives by attaching a JBOD so that you can create 4 8 or 12 member logical drives These 4 logical drives leverage the bandwidth of all 4 host ports Single 15k HDD 9 100MB s Mechanical speed 8 member Logical Drive 100 x 8 800MB s parity calculation efforts 720 740MB s 720MB s i onz 8Gbps FC Single host bus bandwidth 800MB s Figure 3 1 Drive Mechanical Speed and Logical Drive Speed There are other considerations For example a spare drive carries no data stripes and will not contribute to disk level performance Refer to the documentation for your hard drives for performance data FC Host Connection Prerequisites 3 3 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference
55. e is still cached data in memory Use the Shutdown Controller firmware function to flush all cached data This prepares the RAID subsystem to be safely powered down Turn off the power Once the subsystem has been powered down other enclosures attached to the subsystem may be sequentially powered down Power Off Procedure Chapter 3 System Connection This page is intentionally left blank Power Off Procedure 3 31 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual 3 32 Power Off Procedure 4 1 Chapter 4 System Monitoring Overview The HDX3 system is equipped with a variety of self monitoring features that help keep system managers aware of system operation statuses The monitoring features include Firmware The RAID controller in the system is managed by pre installed firmware which is accessed using a PC hyper terminal via the COM1 serial port Device statuses can be obtained from the menu driven configuration utility Firmware features are fully described in the Operation Manual that came with your system Cache Status Clean lt Main Menu gt Quick installation view and edit Logical drives view and edit logical Volumes view and edit Host luns edit Drives edit channels edit Configuration p edit Peripheral devices w Peripheral Device Status Set Peripheral Devic r Adjust LCD Contrast Controller Periphera ET Operationa x
56. e protection against harmful interference when the equipment is operated in a commercial environment This equipment generates uses and can radiate radio frequency energy and if not installed and used in accordance with the instruction manual may cause harmful interference to radio communications Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense Any changes or modifications not expressly approved by the party responsible for compliance could void the user s authority to operate the equipment WARNING A shielded power cord is required in order to meet FCC emission limits and also to prevent interference to nearby radio and television reception Use only shielded cables to connect I O devices to this equipment You are cautioned that changes or modifications not expressly approved by the party responsible for compliance could void your authority to operate the equipment This device is in conformity with the EMC Certified Worldwide This device meets the requirements of the CB standard for electrical equipment with regard to establishing a satisfactory level of safety for persons using the device and for the area surrounding the apparatus This standard covers only safety aspects of the above apparatus it does not cover other matters such as style or performance Galaxy Raid GHDX3 1840R S 24F 8D In
57. ead in any order Each statement is preceded by a round black dot e xiii Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual Numbered Lists Numbered lists are used to describe sequential steps you should follow in order Software and Firmware Updates Please contact your system vendor or contact Rorke s technical support techsupport rorke com for the latest software or firmware updates NOTE that the firmware version installed on your system should provide the complete functionality listed in the specification sheet users manual We provide special revisions for various application purposes Therefore DO NOT upgrade your firmware unless you fully understand what a firmware revision will do Problems that occur during the updating process may cause irrecoverable errors and system down time Always consult technical personnel before proceeding with any firmware upgrade Xiv Galaxy Raid Installation and Hardware Reference Manual This page is intentionally left blank XV Chapter 1 Introduction 1 1 Product Overview 1 1 1 Introduction This chapter introduces the Galaxy GHDX3 1840R S 24F8D Fibre to SAS SATA RAID storage array system The system comes with four 4 8Gb Fibre Channel host ports on each of dual active RAID controllers and delivers fast performance for applications in a Storage Area Network SAN The Galaxy 8Gb FC host interfaces support backward compatibility w
58. em is temporarily held in an idle state The firmware forces the subsystem to stop servicing host I O requests After the failed PSUs are replaced array administrators should manually turn the power switch off and then on If the system is powered on with only one PSU the firmware will start the initialization process but stays idle until at least one other PSU is added Table 5 1 Power Supply Fault Conditions amp Firmware Reactions 5 5 2 Replacing the PSU Module To replace a PSU please follow these steps Step 1 Power off the PSU The power switch is located on each PSU s rear facing panel See Figure 5 5 Step 2 Disconnect the power cord that connects the PSU to the power source Step 3 Loosen the retention screw that secures the extraction handle to the chassis using a Phillips screwdriver See below drawing for its location Replacing a Faulty PSU Chapter 5 Subsystem Maintenance and Upgrading Extraction handle Retention screw Power socket PSU LED Figure 5 5 PSU Parts Identification Retention screw Figure 5 6 Removing the PSU Module Step 4 Remove the PSU module by pushing the extraction handle downwards The extraction handle should gracefully disconnect the PSU from the backplane connectors Once dislodged gently pull the PSU module out of the system If the system is mounted in a rackmount rack use another hand to support its weight while removing the module
59. ents all module bays should be populated with plug in modules The system should not be operated with the absence of any covers HANDLING PRECAUTIONS 1 The system can either be installed into a standard EIA 310 19 rack cabinet or placed on a desktop Mechanical loading of the enclosure should be carefully handled to avoid hazardous condition A drop or fall could cause injury 2 Lay this system on a reliable surface with desktop installation A drop or fall can cause injury 3 Mounting this enclosure requires two people 4 The enclosure can weigh up to 34 4lb 15 64kg without disk drives With disk drives loaded the enclosure can weigh up to 52 416 24kg reliable surface should be available to support this weight 5 Disk drives should be installed after the enclosure is securely installed Galaxy Raid Installation and Hardware Reference Manual FCC applies in the U S and Canada FCC Class A Radio Frequency Interference Statement This device complies with Part 15 of the FCC rules Operation is subject to the following two conditions 1 this device may not cause harmful interference and 2 this device may accept any interference received including interference that may cause undesired operation NOTE This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of the FCC Rules These limits are designed to provide reasonabl
60. er a reset the BBU LED will start flashing to indicate that the BBU is being charged When the BBU is fully charged the LED will be off A replacement BBU takes approximately twelve 12 hours to charge to its full capacity Reset the system whenever a BBU is replaced or added in order for the replacement module to take effect The life expectancy of a BBU is 3 years Follow the procedures above to replace a used BBU in order to maintain the fault tolerance feature The chance of BBU charger failure is comparatively low If the cause of a failure cannot be determined even after a BBU module is replaced contact your system vendor for a replacement controller and return the controller through a standard RMA procedure 5 10 Replacing a Faulty CBM Chapter 5 Subsystem Maintenance and Upgrading 5 4 3 Replacing a Faulty Flash To replace a flash module please follow these steps Step 1 Remove controller as previously described Step 2 Remove the faulty flash from the charger board using the index fingers from both hands to pull the retention clips away from the flash card If the flash card does not easily disengage use your finger nails to pick it up Once released the flash card will pop up You can then remove it from the socket Step 3 Insert a replacement flash into the socket by a 15 degree angle When fully inserted press the flash card down until it is snapped by the retention clips Flash backup module Cli
61. euet eee ee 1 5 1 2 SYSTEM GOMPONENT Snimana blot Pd nine 1 6 1 2 1 Drive Tray See 1 6 1 2 2 PPAR 1 7 1 2 3 The RAID Controller Module essere 1 8 1 2 4 Controller Module Interfaces 1 9 1 2 5 Cache Module dea 1 10 1 2 6 CBM Cache Backup 1 10 1 2 7 Power Supply Units oc cee tere ete reete eee ehe sede eere 1 11 1 2 8 Cooling Modules netten ere Eee Pec ed 1 11 1 3 SYSTEM MONITORING 1 12 eer oc 1 12 1 3 2 1 12 1 3 3 AUG BIG Alani aS A ee IL 1 13 1 4 HOT SWAPPABLE 1 13 1 4 1 Hot swap 1 13 1 4 2 Components Mae ee et 1 13 1 4 3 Normalized tere roe Rte tote e dede 1 14 CHAPTER 2 HARDWARE INSTALLATION 2 1 INTRODUCTION cl edad ame 2 1 2 2 INSTALLATION PREREQUISITES 1 11 2 1 2 3 SAFETY PRECAUTIONS aenea naed e 2 3 2 3 1 Precautions and Instructions 4488800 2 3 2 3 2 Static free 888 2 6 2 4 GENERAL PROGEDURE
62. for more information Ejection Levers Two 2 ejection levers on the sides of the controller ensure that the back end connectors are properly seated in the module slot and properly mated with the backplane SAS Expansion Port The multi lane expansion connects to expansion enclosures JBOD Management LAN Port An 10 100BaseT Ethernet port connects the system to a network and then to a management computer Available management interfaces include telnet or the web based Embedded RAIDWatch manager invoked by an http console Restore Default LED and button The push button and LED are used to restore firmware defaults in cases when upgrading firmware upgrading DIMM size or if an administrator forgets system password For more details please refer to Chapter 4 System Components Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual 1 2 5 Cache Module The controller default for the cache module is a 2GB DDR II module with a maximum size up to 4GB The memory socket is located on the side of the controller board 1 2 6 CBM Cache Backup Module A Li lon battery backup unit BBU module see the diagram below can support the transfer of cached data from cache memory to an onboard flash during a power outage The battery module comes with an EEPROM that marks the installation date and system administrators will be notified when the 3 year life expectancy is reached The BBU is contained wi
63. for a replacement 3 Hard drives Hard drives are separately purchased Please consult with technical support for the latest list of compatible hard drives See Section 2 7 If SATA drives are preferred currently only 3Gbps SATA II disk drives are supported Make sure you properly configure HDD configuration such as jumper setting before you install hard drives into the system Some hard drives come with a default speed set to 1 5Gbps If using hard disks defaulted to 1 5Gbps compatibility issue may occur Introduction 2 1 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual 4 Cabling The system comes with the following cables 1 Three 3 power cords for connections to the power sources Cable type is determined by the shipped to area Other cables are user supplied 1 Host link cables Use 8G or 4G FC transceivers and LC type short wavelength optical fiber cables to connect the host ports With 8G speed you need better quality cables to maintain the same cabling distance See Chapter 3 for cabling topologies 2 A DB 9 Y cable for connecting the serial port to a terminal station dual controller GHDX3 R1840 only 3 One 1 or two 2 Ethernet cables to the 10 100BasetT management port Mixing SAS and SATA drives in the same enclosure is allowed However please DO NOT mix SAS and SATA II drives in the same drive column Vibration from high rotation speed drives will affect adjace
64. g or other access control measures should be implemented to avoid access contention If you have clustered servers the cluster software should be able to handle the access to a shared storage Sample Topologies Chapter 3 System Connection Sample Switched Fabric Connections GHDX3 R1840 passive 103 Active P 55 E2160 Lelle le 24 1554 Dd 33 LD2 LD3 Figure 3 6 Connections via Switched Fabric Channels Controller A Controller B Host CHO CH1 CH2 CH3 CHO CH1 CH2 CH3 Configuration Information RAID controller 2 Host server 4 or more via FC switches FC switch 2 or 1 into 2 zones Data path connection Fault tolerant paths Host channel bandwidth 6400MB s Channel link bypass is provided on external FC switches Each of the application servers shown in the diagram is equipped with two HBAs with FC links via two FC switches to the SFP ports on individual RAID controllers You can refer to the ID tags on the host links to see the related logical drive mapping and cable links routing paths Through the Sample Topologies 3 15 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual 3 16 3 3 cable links diagrammed above the configuration can withstand a failure of a single component e g RAID controller HBA cable or FC switch Each logical drive is redundantly mapped to multiple host ch
65. he memory If you replace a DIMM module with supplied voltage damage may occur 2 If necessary replace a DIMM 1 minute after the BBU is removed 5 2 2 Notes on Controller Maintenance Re using the DIMM module removed from a faulty controller is not recommended unless you have a similar RAID system to test its integrity When replacing the controller module you must remember that the controller board is one of the most sensitive components in the system All previously stipulated safety precautions see Chapter 2 must be strictly adhered to Failure to adhere to these precautions can result in permanent damage and timely delays 5 2 3 Removing the Controller Module To remove the controller module Step 1 Prepare a clean static free work pad or container to place the controller that will be removed from the chassis Step 2 and Step 3 are for the single controller system Skip them if you are replacing a controller in the dual controller HDX3 Step 2 Make sure there is no access from host computers to the system to avoid losing data Stop all accesses to the system and make sure all cached writes have been distributed Replacing a Controller Module 5 3 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual Step 4 Step 5 Step 6 Quick installation view and edit Logical drives view and edit logical Volumes view and edit Host luns view and edit Drives view and edit channelS
66. hen temperature exceeds a preset threshold the controller s charger circuits will stop charging You will then receive a message that reads Thermal Shutdown Enter Sleep Mode When the temperature falls back within normal range the battery will resume charging 9 44 12C The operating status of PSU and cooling fan modules are collected through an serial bus If either of these modules fails the failure will be detected and you will be notified through the various methods described above If sensors or 2 bus devices fail events will also be issued 4 12 12C Chapter 3 Subsystem Monitoring This page is intentionally left blank 2 4 13 5 1 Chapter 5 System Maintenance Overview 5 1 1 Maintenance A WARNING Do not remove a failed component from the subsystem until you have a replacement on hand If you remove a failed component without replacing it the internal airflow will be disrupted and the system will overheat CAUTION 1 Do not insert a controller module from other HDX enclosures e g a controller module from an 16bay RAID A controller from other enclosures may have acquired a system serial number from it and could have used the serial number to generate a unique controller ID The unique ID is consequentially applied to FC port node names As the result you may encounter SAN problems with identical port names on multiple systems 2 Do not use a PSU or cooling module fro
67. hould touch the controller itself is to install or replace the memory module and CBM The RAID controller is built of sensitive components and unnecessary tampering can damage the controller The HDX3 system is managed by the RAID controller s Each RAID controller comes with four 4 8Gb s FC host ports Via FC switches the system readily connect multiple application servers in a Fibre Channel Storage Area Network The docking connector at the rear of the controller board connects the controller to the backplane board Controller Module Interfaces All external interfaces that connect to external devices are located on the controller module s rear facing faceplate The interfaces are listed below 1 8 System Components FC host ports Chapter 1 Introduction Convection holes a Ejection lever SAS expansion a Serial port LEE UE g 000000 Ejection lever Controller LEDs Fast Ethernet mgmt port Figure 1 9 Controller Module Interfaces Host ports Four 4 8Gb s Fibre Channel host ports These ports receive SFP transceivers and then attach to short wavelength optical cables Serial port The controller module comes with one 1 COM ports The serial port is used for local access to the firmware embedded configuration utility using terminal emulation program LED indicators Six 6 LED indicators illustrate the system s key operating statuses Please see Chapter 4
68. i ESD methods while handling system modules The use of a grounded wrist strap and an anti static work pad are recommended Avoid dust and debris in your work area About This Manual This manual Introduces the Galaxy storage system series Describes all major components the system Provides recommendations and details about the hardware installation process Describes how to monitor system operating statuses Describes how to maintain the subsystem This manual does not Describe components that are not user serviceable Give a detailed description of the RAID processing units or the RAID controllers within the subsystem Revision History Rev 1 0 Initial release Who should read this manual This manual assumes that its readers are experienced with computer hardware installation and are familiar with storage enclosures Related Documentation e Generic Operation Manual firmware operation via LCD keypad and terminal emulation These documents are included in the product utility CD that came with your subsystem package Xii Galaxy Raid Installation and Hardware Reference Manual Conventions Naming From this point on and throughout the rest of this manual the Galaxy series is referred to as simply the subsystem or the system and Rorke is sometimes abbreviated as Gal Important Messages Important messages appear where mishandling of components is possible or
69. ites Tools Help Be DohttpiI192 168 1 129cg biniNasConf cai fh gt A o dc 2 5 3 Information Rorke HDx3 24R8 Quick Install x 2 2 system view Logical Drive oda omo EET Host LUN Drives Channel Task Schedule Config Agent Event Logout Logical Drive Information ID RAID Level Size MB Status Name 50358373 RAID 6 18118647 Good 41480175 RAID 1 953613 Good Logical Volume Information ID RAID Level Size MB Ed pe internet 100 gt E LEDs LEDs are located on all modules These LEDs indicate the integrity of a given component or a host management link You should become familiar with the various LEDs and their definitions Audible alarm An audible alarm is present on the system controller board and will be triggered if any of a number of threatening events occurred 4 2 Overview Chapter 3 Subsystem Monitoring 4 2 Status indicating LEDs 4 2 1 LCD Keypad Panel The LCD keypad as shown in Figure 4 1 consists of five 5 buttons three 3 LEDs and a 16x2 character LCD screen that provides access to firmware embedded utility Press the ENT button for two 2 seconds on the initial screen to enter the main menu Press the ESC button to skip the current event Function Keys Press the UP and DOWN arrow keys to select viewing items In the bottom row of the main menu View and Edit Event Logs the most recent event is displayed Browsing Events To see detailed description of each e
70. ith 4G or 2G Fibre Channel devices With the 8Gb s channel throughput the system is ideal for virtualized server and various applications requiring intensive operations Powered by a 6 generation ASIC667 RAID engine and a dual CPU core design the delivers twice the read performance one half more on write performance and significant enhancement on 1 05 per second than its ASIC400 predecessors Built around a pure PCI E architecture the HDX3 also excels in throughput intensive applications Figure 1 1 GHDX3 24 Bay System The system delivers extreme performance that results from the combined performance of multiple disk drives the level of data protection and adaptability unseen elsewhere in a 4U profile Featuring all Rorke s well acclaimed RAID reliability the HDX3 system provides a reliable platform for a wide variety of storage operations such as disk farm data mining postproduction editing broadcasting or strategically shared storage over SAN The Galaxy series models now use common components e g PSU and CBM to minimize logistic efforts The traditional battery backup is replaced by an innovative CBM Cache Backup Module methodology Cached data is transferred to flash module Product Overview 1 1 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual with the support of BBU in the event of power outage Because of a shorter discharge time BBU life expectancy is extended
71. ive tray Refer to Table 4 2 for the LED definitions When notified by a drive failure message you should check the drive tray indicators to find the correct location of the failed drive Replacing the wrong drive can fail two members of a logical array RAID 3 5 and thus destroy data in it Rotary Bezel Lock Drive Busy LED Release Button Power Status LED Figure 4 2 Drive Tray LEDs Name Color Status FLASHING indicates data is being written to or read from the drive The drive is busy Drive Busy Blue OFF indicates that there is no 4 4 Status indicating LEDs Chapter 3 Subsystem Monitoring activity on the disk drive GREEN indicates that the drive bay is populated and is working Green normally Red RED indicates that the disk drive has failed or a connection problem occurred Power Status Table 4 2 Drive Tray LED Definitions 4 2 3 Controller Module LEDs The LEDs on the rear facing faceplate of the RAID controller are shown in Figure 4 3 The controller LEDs are numbered from 1 to 6 The definitions are shown below Ethernet port FC port LEDs LEDs Restore Default button LED Controller LEDs Figure 4 3 Controller Module LEDs 2 channel Version FC port LEDs CHO CH2 CH3 BEEBE ae mmlm PT 000000 21 9 L Restore Default Controller LEDs Ethernet button amp LED port LEDs Figure
72. ive Interface Supports up to 16 channels of 3Gbps SAS or SATA II Drive Channels All drive channels are pre configured and cannot be changed Cache Mode Write through write back and adaptive write policy Cache Memory Number of LUN s Pre installed 2GB or above DDR II module with ECC registered in one DIMM socket Up to 32 per host ID for a total of 1024 on all host Memory channels Multiple Target IDs Host Channel Ys Firmware on Flash Yes A 2 2 Architecture Specification CPU 2x RISC based CPUs Host Channel Chip PMC chipsets Controllers DIMM Slot For one 240 pin DDR II SDRAM module Controller Specifications A 3 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual A 4 ASIC ASIC667 64 bit chipset Flash ROM 64Mbit 8MB NVRAM 32KB with RTC with the Embedded RAIDWatch utility Hardware XOR Yes Real time Clock For event messages with time record and task scheduling A 3 Power Supply Specifications Specification Nominal Power 405W DC Output 3 3V 3 20V to 3 465V max 20A 5V 4 80V to 5 25V max 36A 12V 11 52V to 12 60V max 24A 5V SB 4 85V to 5 25V max 0 5A 3 3V amp 5V combined power 205W Input Frequency 50 to 60Hz AC Input 100VAC 8A 240VAC 4A with PFC Power Factor Yes Correction Hold up Time At least 20
73. le Forearm Handle Figure 1 2 HDX3 Front View The front panel components include e Drive bays with drive tray canisters The drive bays accommodate either SAS or SATA II 3 5 disk drives e Forearm handles For retrieving chassis from a rack cabinet Product Overview 1 3 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual 1 1 2 4 Hard Drive Numbering The front section of the HDX3 enclosure houses 24 hard drives in a 4x4 configuration When viewed from the front the drive bays slots are numbered 1 to 24 from left to right and then from top to bottom Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8 Slot 9 Slot 10 Slot 11 Slot 12 Slot 13 Slot 14 Slot 15 Slot 16 Slot 17 Slot 18 Slot 19 Slot 20 Slot 21 Slot 22 Slot 23 Slot 24 Knowing the tray numbering sequence is extremely important should you need to replace a failed drive If a RAID5 array already has failed drive and you accidentally remove the wrong drive data will be lost 1 1 2 5 Rear Panel Overview A rear view of the system is shown below Descriptions of each rear panel component are given in the following sections Host interface modules Cooling module RAID controllers Cooling module PSU PSU PSU Figure 1 3 GHDX3 1840R 24F8D Rear View 1 4 Product Overview Chapter 1 Introduction Host interface mod
74. m earlier HDX RAID series They look similar However they may come with cooling fans with different rotation speeds and may not be sufficient for your HDX3 models All of the following components can be replaced in case of failure 1 Controller module Section 5 2 Memory module Section 5 3 BBU module Section 5 4 PSU modules Section 5 5 Cooling fan modules Section 5 6 D a RF wD Hard drives Section 5 7 5 1 2 General Notes on Component Replacement Overview n a redundant controller configuration a RAID controller is hot replaceable In a single controller configuration a RAID controller is 5 1 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual replaced when powered down All other component modules including the PSU modules cooling modules and drive trays are hot swappable and can be replaced while the system is operating Qualified engineers who are familiar with the system should be the only ones who make component replacements If you are not familiar with the system and or with RAID system maintenance in general it is strongly advised that you refer system maintenance to a suitably qualified engineer When replacing hot swappable component caution should be taken to ensure that the components are handled in an appropriate manner Rough or improper handling of components can lead to irreparable damage If removing a RAID controller from a single controller s
75. mmended to connect two different power supplies to Safety Precautions 2 3 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual 10 11 separate power sources e g one to a power outlet and the other to a UPS system Thermal notice All drive trays even if they do not contain a hard drive must be installed into the enclosure Leaving a drive bay or module slot open will severely affect the airflow efficiency within the enclosure and will consequently lead to system overheating Keep a faulty module in place until you have a replacement unit and you are ready to replace it Rack mounting The system is intended to be rack mounted Following concerns should be heeded when mounting the enclosure into a rack cabinet a An enclosure without disk drives can weigh over 30 kilograms Two 2 people are required to install or relocate the system Drives should be removed from the enclosure before moving the system b The system is designed to operate in an environment where the ambient temperature around the chassis must not exceed 35 C c The openings on the enclosure are for air circulation and hence the ventilation openings should never be obstructed d Proper grounding over current protection and stability features should be provided with the rack cabinet into which the system is mounted Operate the system in an environment with least humidity Lay the system on a reliable surface when se
76. ms at 115 230VAC full load after a loss of AC input Links to presence detection circuitry and sensors through backplane to controller Over temperature Lost cooling or excessive ambient temperature Protection Cooling Fans Two fans inside each PSU A 4 RAID Management Specification Configuration e Text based firmware embedded utility over RS 232C through a DB 9 male to DB 9 female serial cable e LCD keypad panel e The RAIDWatch Manager program using the management port 10 100BaseT or in band connection e Embedded RAIDWatch via browser e Text based firmware embedded utility via telnet Performance Monitoring Remote Control and Monitoring Yes Yes Event Broadcast Alert Yes via RAIDWatch sub modules the Notification Manager utility or the firmware embedded browser based Embedded RAIDWatch Hardware Connection over Ethernet in band via host links or RS 232C Power Supply Specifications Appendix A Specifications Configuration data stored on disks for logical drives to exist after controller replacement basic settings e g Configuration on Disk channel mode settings are stored on NVRAM Applies to uses such as Drive Roaming with the support of Shutdown or Restart Logical Drive functions Failure Indicator Via audible alarm LCD keypad panel RAIDWatch Manager session event messages or terminal emulation A 5 Fault
77. n If ordered rackmount rails will be included Unpacking the System 2 9 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual 6 If additional power cords or host links cables have been included in a placed order they will be shipped in the auxiliary box 2 5 1 Preinstalled Components The following components have been installed at the factory and do not need to be installed 1 Backplane board 1 DDR II DIMM module in each controller module 3 PSU modules 2 CBM modules redundant controller model 1 LCD keypad panel 2 Cooling fan modules 2 5 2 Components to be Installed You must install the following components Rackmount rails standard for the dual controller GHDX3 R1840 RAID controllers module Hard drives Drive trays Cables 2 10 Unpacking the System Chapter 2 Hardware Installation 2 6 Rack Cabinet Installation for The system is designed to fit into a variety of 19 inch rack cabinets 24 to 36 deep Make sure you have an appropriate site location and cables prepared with adequate lengths to connect to power source and other devices When installing the system into a rack or cabinet it is advisable that two 2 people assist in the mounting process Package Contents The rackmount rail kit should include the following components Item Description Quantity 01 Mounting bracket assembly L shape left side 1 02
78. n damage the pins on the module connectors either on the module itself or on the backplane Gently push the module until it reaches the end of module slot Feel the contact resistance and use slightly more pressure to ensure the module connectors are correctly mated If the module comes with ejection levers or retention screws use them to secure the module System Components The HDX3 is designed with modular components for ease of maintenance Hot swap mechanisms help prevent power surges and signal glitches that might occur while removing or installing these modules Drive Trays Rotary Bezel Lock Release Button LED Indicators Figure 1 5 Drive Tray Front View The drive trays accommodate separately purchased standard 1 inch pitch 3 5 inch 3Gb s SAS or SATA II disk drives The drive bays are located in the front section of the chassis Two 2 LEDs on the front bezel indicate the operating statuses of individual disk drives A rotary bezel lock on the front bezel secures the hard drive in place while a release button is used to open the front bezel Al WARNING Be careful not to warp twist or contort the drive tray in any way e g by dropping it or resting heavy objects on it If the drive bay superstructure is deformed or altered the drive trays may not fit into 1 6 System Components Chapter 1 Introduction the drive bays 1 2 2 MUX Kit Unlike the dual ported SAS drives using the single po
79. n the extraction handle helps secure the PSU to the chassis The shipping package contains adjustable cable clamps that can be used to secure power cord connections Extraction handle Retention screw Power socket PSU LED Figure 1 11 PSU Module Please refer to Appendix A for the technical information of the PSUs Cooling Modules Two cooling modules at the rear center ventilate the system see Figure 1 12 The cooling fans operate at two 2 fan speeds When the system operates normally the cooling fans operate at the lower speed If a system module fails or when one of the temperature thresholds is violated the cooling fans automatically raise its rotation speed More technical information can be found in Appendix A System Components 421 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual Fan LED 1 3 1 3 1 1 3 2 Retrieval handle Figure 1 12 Cooling Module System Monitoring The system comes with a number of different monitoring methods that provide you with continual updates on the operating statuses of the system and individual components The following monitoring features are included 12 bus The following system elements are interfaced to the RAID controller over a non user serviceable 12 bus Power supplies and cooling modules Module presence detection circuits Temperature sensors for detecting the temperature on the backplane board and controlle
80. nt drives that are seeking data tracks DO NOT place a column of SATA II disk drives between two columns of SAS disk drives With a higher rotation speed the SAS disk drives on the flanks of SATA II disk drives will eventually cause a stability issue 2 2 Installation Prerequisites Chapter 2 Hardware Installation Supported Configuration ed EL es ee E ed Pee SAS disk drives SATA disk drives SAS and SATA in the same column SATA in between SAS columns Figure 2 1 Supported and Unsupported Drive Configurations 2 3 Safety Precautions 2 3 1 Precautions and Instructions 1 Static free installation environment The enclosure must be installed in a static free environment to minimize the possibility of electrostatic discharge ESD damage Component check Before installing the enclosure check to see that you have received all the required components If any items appear damaged contact your vendor for a replacement Rack installation The enclosure chassis can be installed into a rack cabinet using rackmount rails Rack mounting details will be discussed later Disconnect the power cords if the need should arise for cleaning the chassis Do not use liquid or sprayed detergent for cleaning Use a lightly moistened clothe for cleaning Be sure the correct power range 100 120 or 220 240VAC is supplied by the power source at your installation site It is highly reco
81. o not come with these safety features however they can still inflict damage FC Speed Auto detection Speed auto detection is specified by the Fibre Channel standard If a 4Gbps port is connected to an 8Gbps port it will negotiate down and run at 4Gbps If there are 8Gbps ports on both ends of the link the link will run at 8Gbps SFP Transceivers An SFP transceiver converts electrical data signals into light signals and transfers them transparently via optical fiber A transceiver provides bi directional data links a laser transmitter for fiber optic cables LC connector and a metal enclosure to lower the EMI Other beneficial features of a typical SFP transceiver include a single power supply low power dissipation and hot swap capability It is also important that any transceiver you use meets the FC performance and reliability specifications A CAUTION The SFP transceiver contains a laser diode featuring class 1 laser To ensure continued safety do not remove any covers or attempt to gain access to the inside of the product Refer all servicing to qualified personnel CLASS 1 LASER PRODUCT 3 2 FC Host Connection Prerequisites Chapter 3 System Connection FC Port Dust Plugs Each FC port comes with a dust plug Remove these dust plugs only when you are ready to insert an SFP transceiver Other Concerns When selecting the number of hard drives to be included in logical drive the host channel bandwi
82. on 2 15 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual Removing Chassis If you need to remove a chassis from rack Step 1 Remove disk drives from chassis Step 2 Remove the screws fastened through the chassis ears Step 3 Pull the chassis out until it is stopped by the retention latches Step 4 Use both hands to support the weight of the chassis and then use your index fingers to press and pull the release latches towards you Enclosure LILIL CICICICICI CIC C d ee 000 Release latch Figure 2 15 Removing Chassis from Rack Step 5 When the chassis is released slowly pull the chassis from rack Another person should be helping you to remove chassis from rack 2 16 Rack Cabinet Installation Chapter 2 Hardware Installation 2 7 Controller Installation 2 7 1 Installing a Controller Module If you have a separately purchased CBM install it before you install the controllers Step 1 Wear an anti static wrist strap When handling the controller avoid touching circuit boards and connector pins Step 2 Remove controllers from the controller boxes Step 3 Align the controller module with the controller module bay making sure that the levers are down Gently slide the controller module in RAID controller Ejection levers Figure 2 16 Inserting a Controller into Chassis Step 4 Secure the connection When
83. or Upgrading Memory Modules 5 3 1 Memory Module Installation Overview system comes with a pre installed 2GB or above DDR II DIMM module The controller supports a memory module up to 4GB in size If Replacing or Upgrading Memory Modules 5 5 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual you need a larger DDR II module or the original DIMM module malfunctions in some way often shown as the NVRAM failure event the pre installed module can be replaced Replacement and installation instructions are described below A DIMM socket is located on the controller main circuit board Al WARNING The controller board in the controller module is a sensitive item Please ensure that all anti static precautions stipulated above are strictly adhered to 5 3 2 Selecting the Memory Modules Compatibility To avoid the compatibility issues it is recommended to contact your system vendor for a compatible module We provide tested modules from reliable vendors with reliable chips 5 3 3 DIMM Module Installation Step 1 Step 2 Step 3 Step 4 Use of an ESD grounding strap is highly recommended Remove the controller module See previous section for details Remove the BBU module if installed A BBU is removed by loosening its captive screw from the charger board Using a medium size Phillips screwdriver to do that Carefully place the module for it contains Li ion bat
84. ost B accesses ID 1 one nexus e Host C accesses ID 2 one nexus These connections are all queued in the cache and are called four nexus If there is I O in the cache with four different nexus and another host l O comes with a nexus different than the four in the cache for example host A accesses ID 3 the controller returns busy This occurs with the concurrent active nexus if the cache is cleared it accepts four different nexus again Many l O operations can be accessed via the same nexus FC Host Connection Prerequisites Chapter 3 System Connection Maximum Queued I O Count Cache Status Clean BAT lt Main Menu gt Quick installation view view view LUNs per Host ID 8 view Max Number of Concurrent Host LUN Connection Def Auto view Number of Tags Reserved for each Host LUN Connectio 1 Peripheral Device Type Parameters Host Ccylinder Head Sector Mapping Configuration C Fibre Connection Option Loop only Drive side Parameters Disk Array Parameters Controller Parameters lt 5 Keys Move Cursor The Maximum Queued Count menu option enables you to configure the maximum number of I O operations per host channel that can be accepted from servers The predefined range is from 1 to 1024 I O operations per host channel or you can choose the Auto automatically configured setting The default value is 256 I O operations The maximum
85. peed A faulty fan is not individually replaced Due to the concern that system may overheat during a single fan replacement process if a fan fails replace the whole module Audible Alarm Different environmental operational parameters like temperature etc have been assigned a range of values between which they can fluctuate If either the upper or lower thresholds is exceeded an audible alarm will be triggered The alarm will also be triggered when a component fails If the system administrator is onsite and hears an alarm the manager must read the error message the terminal or RAIDWatch screen to determine what has triggered the alarm After determining what has occurred a system administrator must take appropriate actions to rectify the problem The Alarm beep pattern is described in the Troubleshooting Guide included in your product CD WARNING If an alarm is triggered it is necessary for you to determine the problem If the audible alarm is ignored and the problem is not rectified unexpected damages may occur Alarm Triggers If any of the following components fails the audible alarm will be triggered RAID controller module a redundant controller configuration Cooling fan modules PSU modules CBM module Audible Alarm Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual Hard disk drives Sensors or presence detection circuitries 6 W
86. ps pune Figure 5 4 Installing Flash Card 5 5 Replacing a Faulty PSU 5 5 1 Notes on PSU Module Maintenance Redundant load sharing PSU modules The system comes with two fully redundant hot swappable PSU modules PSU canister Each PSU module is housed in a robust steel canister with the power supply converter unit in the front and two cooling fans in the rear section Immediate replacement When a PSU fails it should ideally be replaced immediately Do not remove the PSU module unless a replacement is readily available Removing a PSU without a replacement will cause severe disruptions to the internal airflow and the system will overheat possibly causing irreparable damage to some of the system components Replacing a Faulty PSU 5 11 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual WARNING Although the system can operate with two PSUs it is not advisable to run the system with a failed PSU for an extended period of time Power Supply Fault Conditions amp Firmware Reactions No of Failed PSUs Responses and Preventive Actions 1 2 Warning messages are issued Cached data is flushed to the hard drives also depends on the Event Triggered configuration settings in firmware If previously configured to the Write back mode the caching mode is automatically switched to the conservative Write through mode Warning messages are issued The syst
87. r board LED Indicators The following components come with LEDs to indicate the operating statuses of individual components LCD keypad panel controller Cooling modules 2 LEDs on a PSU faceplates PSU modules 1 LED on each module System Monitoring Chapter 1 Introduction Drive trays 2 LEDs on each tray 1 3 3 Audible Alarm The system comes with an audible alarm that is triggered when a component fails or when the pre configured temperature or voltage thresholds are exceeded Whenever you hear an audible alarm it is imperative that you determine the cause and rectify the problem immediately Event notification messages indicate the completion configuration tasks status of components or fatal errors Events are always accompanied by two 2 or three 3 successive and prolonged beeps WARNING When an audible alarm is heard system administrators should rectify the cause of the alarm as soon as possible 1 4 Hot swappable Components 1 4 1 Hot swap Capabilities The system comes with a number of hot swappable components A hot swap component is one that can be exchanged while the system is still operating These components should only be removed from the chassis when they are being replaced At no other time should these components be removed from the system 1 4 2 Components The following components are hot swappable controller in a redundant controller configuration Po
88. re 4 6 PSU Module LED Color Status Steadily The power supply has not been turned on The Blinking PSU module LED will blink when the system is Green connected to a power source but not yet turned on Static Green The PSU is operating normally and experiencing no problem Static Red The PSU has failed and is unable to provide power to the system OFF The PSU is not turned on and the power cord is disconnected Table 4 7 PSU Module LED Definitions 4 27 Cooling Module LEDs Each individual cooling fan within a cooling module has a corresponding red LED on the system rear panel When an LED is on it indicates the fan has failed When the LED is off it indicates the fan is functioning normally Fan4 PSUO FanO Fan5 PSUO Fan1 B s Fan9 PSU2 Fan1 Fan6 PSU1 Fan0 Fan8 PSU2 Fan0 Fan7 PSU1 Fan1 Figure 4 7 Cooling Module LEDs and Cooling Fan Locations 4 10 Status indicating LEDs 4 3 4 3 1 Chapter 3 Subsystem Monitoring The system has a novel approach to stabilizing the temperature within the subsystem When sensors on the backplane detect elevated temperature such as high ambient temperature or the failure of any cooling or PSU module the system will raise the cooling fans rotation speed to extract more heat Once the ambient temperature cools down to normal or the failed modules have been replaced the cooling fans will return to low s
89. rflow clearance especialy at the front and rear A clearance of at least 18 to 20 centimeters is required at the rear side and any objects blocking the exhaust airflow e g cables dangling at the fan outlet should be avoided e Handle subsystem modules using the retention screws eject levers and the metal frames face plates Avoid touching PCB boards and connector pins e To comply with safety emission or thermal requirements none of the covers or replaceable modules should be removed Make sure that all enclosure modules and covers are securely in place during operation sure that the rack cabinet into which the subsystem chassis will be installed provides sufficient ventilation channels and airflow circulation around the subsystem e Provide a soft clean surface to place your subsystem on before working on it Servicing on a rough surface may damage the exterior of the chassis e f it is necessary to transport the subsystem repackage all drives separately e Dual redundant controller models come with two RAID controllers that should always be present Single controller models come with a single RAID controller and a metal sheet is placed over the lower controller bay at the rear of the subsystem Since single controller models cannot be upgraded this metal sheet should NEVER be removed xi Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual ESD Precautions Observe all conventional ant
90. rt SATA II disk drives in a redundant controller system HDX3 R1840 requires a MUX board Power SAS pri links t SSS gt connector WS SAS sec links a Power SATA physical links 1 SATA e SSS connector Figure 1 6 Comparison between Dual ported SAS and Single port SATA Connectors The MUX board provides port selector circuits for directing access from partner RAID controllers to an individual disk drive See the drawing below for how it works MUX port selector RAID controller i eue dyoeg SATA from controller B Figure 1 7 MUX Kit Working Theory If SAS drives are preferred these MUX boards will be unnecessary and must be manually removed from the drive trays by loosening retention screws from it System Components Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual LLL Drive Tray Figure 1 8 MUX Kit 1 2 3 The RAID Controller Module 1 2 4 The default size for the DDR II DIMM module on RAID controllers is 2GB A RAID controller module contains a main circuit board a preinstalled 2GB memory battery charger circuitry a daughter board with host port interfaces and a flash module The controller module contains no user serviceable components Except when servicing the cache memory or the CBM module inside the controller module should never be removed or opened WARNING Although the RAID controller can be removed the only time you s
91. rvicing individual modules A drop or fall can cause injury Make sure the voltage of the power source is within the rated values before connecting the system to the power source You may also refer to Appendix A of this manual for technical details Airflow considerations The system requires an airflow clearance especially on the front and the rear sides For proper ventilation a minimum of 2 5cm is required between the front of the enclosure and rack cover a minimum of 18 to 20cm is required on the rear side 2 4 Safety Precautions 12 13 14 15 16 Chapter 2 Hardware Installation Figure 2 2 Airflow Direction Do not cover the convection holes on controller faceplate They provide passages for air circulation and also a glimpse of the 7 seg LED for debug purposes Convection holes E ae oo Figure 2 3 Controller Convection Holes Handle the system modules by the retention screws ejection levers or the modules metal frames faceplates only Avoid touching the PCB boards and connector pins None of the covers or replaceable modules should be removed in order to maintain compliance with safety emission or thermal requirements If the system is going to be left unused for a long time disconnect the system from mains to avoid damages by transient over voltage Never pour any liquid into ventilation openings this could cause fire or electrical shock Safety Precautions
92. s eo conet er tre plor conve at esee rae eve vete e endo be ev Erbe yu xii ABOUT THISMANUA L reet fe rt ede Ee eR eee XII REVISION HISTORY citate at eine DI ox ane XII WHO SHOULD READ THIS MANUAL XII Related Documentation xii CONVENTIONS XIII Mice Er MEME xiii EL cM xiii WARNINGS AND 5 21100 rss ener nnns VIII LISTOF FABLES ERROR BOOKMARK NOT DEFINED SOFTWARE AND FIRMWARE n rre reser rre XIV CHAPTER 1 INTRODUCTION 1 1 PRODUCT OVERVIEW Arns 1 1 1 1 1 Introduction ee ce o hr cO 1 1 Model 2 2 0 00000 1 2 1 12 Enclosure Chassis 1 3 1252277 Chassis OVervieW poivre ctr 1 3 1 1 2 2 Physical DimensiOfs tierno etre 1 3 1 1 2 3 Front Panel nennen nennen nnne 1 3 1 1 24 Hard Drive 1 4 1 1 2 5 Rear Panel Overview sssrin irri 1 4 1 1 2 6 Backplane Boarder
93. s preferred paths Active IDs on data paths TPGS Target Port Group Service is supported 3 10 Sample Topologies Chapter 3 System Connection Sample 3 Simple End to End Connections GHDX3 R1840 ca CHO B114 CH1 B114 8 88 g 5 LDO LD1 Figure 3 4 Simple End to End Connections Channels Controller A Controller B Host CHO amp CH1 CHO amp CH1 Configuration Information RAID controller 2 Host server 2 Data path connection Fault tolerant data paths yet LD can not failover to a partner controller in the event of controller failure Host channel bandwidth 3200 MB s Sample Topologies 3 11 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual 3 12 Above is the sample drawing showing simple end to end connections with each SFP port connected to a host adapter Multiple logical drives can be created and each mapped to the corresponding host channel ID LUN combinations Note that multi pathing software is necessary for controlling and optimizing the access to logical drives via multiple data paths Sample Topologies Chapter 3 System Connection Sample 4 Switched Fabric Connections GHDX3 R1840 MultiPath SW MultiPath SW FC switches 444454 544A4 143 CHOA115 CHOA115 Standby IDs NNT je01607 LD1 Figure 3
94. sion port connects a RAID controller to a corresponding JBOD controller making fault tolerant links to different SAS domains There are two principles with the combinations of RAID and JBOD 1 Dual controller RAID connects to dual controller JBODs Single controller RAID connects to single controller JBODs 2 You should have one or two SFF 8088 to SFF 8470 cables for JBOD connections These two connector types are both made for 4x multi lane SAS connections only that their form factors and latching mechanisms are different RAID Model 3U JBOD Configuration GHDX3 R1840 GHDX3 JB2 Dual controller fault tolerant paths GHDX3 G1840 GHDX3 JB1 Single controller single path Table 3 1 RAID and JBOD Matching Table Expansion Links Expansion Links Chapter 3 System Connection Enclosure ID There is a rotary ID switch on every expansion enclosure that is manually configured using a flat blade screwdriver Configuring enclosure IDs 1 The configurable IDs start from 2 to 6 Usually the numbering starts from the one closest to the managing RAID enclosure The first two IDs 0 and 1 are occupied by the RAID enclosure 2 The GHDX3 24bay connects to a maximum of 5 JBODs making a total of 104 HDDs 3 Make sure a unique ID is configured on each JBOD so that the SAS WWN addresses of disk drives can be properly assigned RAID system firmware automatically manages these addresses Enclosure ID Figure 3 8
95. sociations e g which logical drive is associated with which host ID LUN and it will be necessary to restore the previous settings using the Restore NVRAM from Disks Restore NVRAM from Files functions Configurations such as ID LUN mapping will be restored after a system reset How to use the button Single controller system After the system is powered down you can use a straighten paper clip to press the button Press and hold the button down power on the system and wait for the associated LED and the system Ready LED to light up The Restore Def LED and the firmware Default Restored event message will indicate a successful restoration of firmware defaults Redundant controller With redundant RAID controllers the procedure can be more complicated Step 1 Remove controller B from the subsystem power down and then power on with the Restore Def button depressed to restore the firmware defaults on the remaining controller Step 2 When the Restore Def LED is lit and the default restored firmware event appears on the LCD screen release the button You may ask your colleague to observe the message on the other end of the chassis to see if the default restored event appears Step 3 Power down install controller B to the controller A slot and repeat the restoration process Step 4 When completed with restoring defaults on both controllers install both controllers and power on 4 8 St
96. stallation and Hardware Reference Manual CCC For Power Supplies compatibility to China Compulsory Certification China RoHS In Compliance with AeA China RoHS Regulations SJ T 11364 2006 5E n SUE BU SSMUS E E ABARMARRR BERN __ Cd AAC S REB x 8 nang x jo o o OURmiEBSSEY m fIEBER SIS RMA PM S REIS TESJ T 11363 20068 GE BER EE SR DAT XR SASMREYERRAMR HAMA PHS RE ER 5 11363 20069 ZE B9 TR SER 1 2 RHA BF 3 5 2 A 4 LCDR TA Er e FH RS 26S SUR RT 112 2 2 BRFERTRRLATIMSAT EASA ITE BSMI Class A CNS 13438 for Taiwan 033225 Ee EATER H IRE EDS RETE TERRENT EAB REI BATH 5 U This device is in conformity with UL standards for safety L pc 004 FC to SAS SATA 30 16 40 24 Bay RAID Subsystem Models where x be 0 9 A Z blank or dash x for marketing purpose and no impact safety related critical components and constructions 1 2
97. stem wait for the front panel LCD screen to show READY or No Host LUN before you power up the application servers Model Name Status Data Transfer Indicator Figure 3 17 The LCD Initial Screen The LCD screen startup sequence is shown and described in the sequence below Initializing This screen appears when the system Please Wait PP j is powering on Power On Self Test Please Wait System is performing a self test Power on System power on self test is Init Completed completed GHDX3 System is accessing various interfaces GHDX3 2000MB RAM Wait Verifying installed memory GHDX3 System is ready You can now start to No Host LUN configure the system GHDX3 With host LUN mapping system is Ready ready for I Os Power On 3 29 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual 3 8 3 30 Power Off Procedure If you wish to power down the subsystem please follow these steps If you wish to power down the subsystem please make sure that no time consuming processes like a logical drive parity check or a background scrub are running Step 1 Step 2 Step 3 Stop I O access to the system Close your applications to stop all IO accesses to the subsystem Please refer to the documentation that came with your applications Flush the cache Locate the Dirty LED on the controller module to check if ther
98. t The options can be found in terminal console with firmware in Main Menu gt View and Edit Configuration Parameters gt Host side Parameters For example you may need to enlarge values for the following parameters Maximum Concurrent Host LUN Connection Nexus in SCSI Cache Status Clean lt Main Menu gt Quick installation view view Maximum Queued I O Count 256 view LUNs per Host ID 8 view view Number of Tags Reserved for each Host LUN Connectio Peripheral Device Type Parameters V Host Cylinder Head Sector Mapping Configuration 1 C Fibre Connection Option Loop only c Host side Parameters Drive side Parameters Disk Array Parameters Redundant Controller Parameters controller Parameters Arrow Keys Move Cursor Enter Se lect Esc Exit Ctri L Retresh Screen The Max Number of Concurrent Host LUN Connection menu option is used to set the maximum number of concurrent host LUN connections Change this menu option setting only if you have more than four logical drives or partitions Increasing this number might increase your performance Maximum concurrent host LUN connection nexus in SCSI is the arrangement of the controller internal resources for use with a number of the current host nexus For example you can have four hosts A B C and D and four host IDs LUNs IDs 0 1 2 and 3 in a configuration where e Host A accesses ID 0 one nexus e H
99. teries Do not drop it to the floor or place it near any heat source Wait for one minute for the remaining electricity on main board to disperse Remove the faulty module from the DIMM socket To do this push the white module clips on either side of the DIMM socket down The DIMM will be ejected from the DIMM socket 5 6 Replacing or Upgrading Memory Modules Chapter 5 Subsystem Maintenance and Upgrading DIMM socket Figure 5 2 Removing a DIMM Module Step 5 Insert the replacement module into the DIMM socket Make sure the white clips of the DIMM socket are in the open positions Align the DIMM module with the DIMM socket by checking its keyed position Once aligned gently and firmly push the DIMM module into the socket The white clips on the sides of the socket will close automatically and secure the DIMM module into the socket Step 6 Reinstall the BBU module Step 7 Reinstall the controller module After the DIMM module has been properly installed install the RAID controller 7 1 To do this align the controller module with the module bay Then gently push the controller module into the controller bay 7 2 Carefully push the controller until you feel the contact resistance when the board edge connectors are engaging the backplane connectors Do not use force If unusual contact resistance is felt try it again 7 3 Use the ejection levers to secure it to the chassis when the controller is almost
100. the controller is reaching the end and you feel the contact resistance use slightly more force to mate the controller with backplane connectors When the controller is almost fully inserted use the ejection levers to secure the controller The levers help ensure that the back end connectors are properly mated Controller Installation 2 17 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual Ejection levers Figure 2 17 Using Ejection Levers to Secure Controller Step 5 Fasten the retention screws Once fully inserted secure the controller module to the chassis by fastening the retention screws through the holes underneath the ejection lever Step 6 Continue with installing cabling other components 2 18 Controller Installation Chapter 2 Hardware Installation 2 8 Hard Drive Installation 2 8 1 Hard Drive Installation Prerequisites Hard drives for the Galaxy HDX3 have been pre installed in the drive canisters However if a drive is defective use this procedure to install a drive into a drive canister Before installing hard drives the following factors should be considered Capacity MB GB Use drives with the same capacity RAID arrays use least common denominator approach The maximum capacity allocated from each disk drive is the maximum capacity that can be leveraged from the smallest drive Choose big drives with the same storage capacity Contact Rorke sales for your
101. the plan can also include firmware and software maintenance details 2 Confirm that you have a Fibre Channel cable loops 6 inch or longer 3 Ensure proper airflow and keep cables away from ventilation airflow outlets Cabling Steps Step 1 Remove the SFP module from its static protective package Step 2 Remove the dust plug from the SFP transceiver module Save the dust plug for future use FC Cabling FC Cabling Chapter 3 System Connection SFP transceiver protective cap LC LC cable ae Figure 3 7 Connecting SFP Transceiver and LC Type Cables Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Remove the dust plugs from the RAID system SFP ports Insert the SFP module into the system host ports The module will click into place Connect an LC to LC type cable Remove the two protective caps from the LC to LC type cable Save the protective caps for future use Carefully insert the cable into an SFP module that is already on the system The cable connector is keyed and will click into place Remove the protective caps on the other end and connect this end to an SFP transceiver module on a Fibre Channel switch port or a Fibre Channel host bus adapter HBA port 3 17 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual 3 4 Expansion Links Expansion Links The SAS expansion port connects to expansion enclosures Fora dual controller system each expan
102. thin controller canister and is not hot swappable Flash Heatpiped fanless heatsink Host board Cache memory Figure 1 10 Modules within a Controller Canister In accordance with international transportation regulations the BBU module is only charged to between 35 and 45 of its total capacity when shipped Therefore when powering on the system for the first time the BBU will begin to charge its batteries to its full capacity It normally requires approximately twelve 12 hours for the battery to be fully charged If the battery is not fully charged after twelve 12 hours there may be a problem with the BBU module You may re install the battery and if the battery still shows problems with charging contact your system vendor for a replacement While the battery is being charged a system event will prompt You can check battery s charge level using a terminal console with firmware s embedded utility System Components 1 2 7 1 2 8 Chapter 1 Introduction Power Supply Units The system is equipped with three 3 redundant hot swappable load sharing 405W PSUs at the rear section of the chassis PSU is housed in a 1U canister containing both the power supply and dedicated cooling modules A single LED indicates the PSU status When a power supply failure occurs the LED lights red An extraction handle at the rear of the PSU is designed to help properly install or remove the module A screw hole o
103. to EMI Contact Rorke Sales for the proper optical cables Fibre Channel HBAs SFPs and Fibre switches needed for your configuration The Fibre host ports connect to Fibre Channel host adapters HBA that feature a 8Gbps transfer rate SFP interface and support for full duplex transfer best come with a 64 bit 1 33MHz PCI X or PCI E interface WARNING All fiber optic cables are sensitive and must be handled with care To prevent interference within a rack system the cable routing path must carefully planned and the cables must not be bent FC Host Connection Prerequisites 3 1 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual FC Lasers CAUTION Lasers can be hazardous and may cause permanent eye damage or blindness and therefore must be treated with respect and used with caution Never look at lasers without confirming that they are off Wavelengths The system supports SFP transceivers using lasers on fiber optic cables emitting short wave SW beams 770nm 860nm Cables using either of these wavelengths can be used Laser types Two 2 types of laser devices can be used in FC cables Optical Fibre Control OFC and non OFC lasers The OFC lasers are high powered and can be used over long distances Safety features Due to their high power output OFC lasers usually come with a safety mechanism that switches the laser off as soon as it is unplugged Non OFC lasers are low power and d
104. troller slowly into the module slot When you feel the contact resistance by your hands use more force and then pull both of the ejection levers upwards to secure the controller into chassis Step 8 Secure the controller by fastening two screws you previously removed to the ejection levers 2 24 Installing CBM Optional for Single controller models Chapter 2 Hardware Installation Installing CBM Optional for Single controller models 2 25 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual This page is intentionally left blank 2 26 Chapter 3 System Connection This chapter outlines some general configuration rules you should follow when cabling a storage system and introduces basic information about Fibre cables and topologies for the HDX3 system You can use these topologies or refer to them as a guide for developing your own unique topologies A complete description of the power on and power off procedures is also given in this chapter 3 1 FC Host Connection Prerequisites 3 1 1 Choosing the Fibre Cables The Fibre Channel standard allows for both copper and optical connections Copper cable is cheaper but limited to lengths of less than 30m 33 yards Optical cables can be used over longer distances and have been shown to be more reliable Due to the demands of high transfer rates optical cables are preferred for 8 4Gbps fiber connectivity Optical cables are also less susceptible
105. ule Cooling module RAID controller Cooling module PSU PSU PSU Figure 1 4 GHDX3 1840S 24F8D Rear View The enclosure rear section accommodates the following components RAID controller module s The RAID controller module manages all functionalities provided with the system and all interface connectors are provided on the controller faceplates CBM module CBM modules come as standard equipment for the redundant controller R1840 model and as an optional module for the single controller G1840 The BBU within CBM sustains unfinished writes cached in memory and cached data will be transferred to a flash module during a power outage in order to protect data integrity PSU modules The hot swappable PSUs receive single phase power and deliver 5V and 12V power to system A power switch is located on the rear panel to turn all PSU on and off Cooling modules The redundant cooling modules ventilate the system to maintain a cooling airflow across the system 1 1 2 6 Backplane Board An internal backplane board separates the front and rear sections of the enclosure The backplane consists of traces for logic level signals and low voltage power paths lt contains no user serviceable components Product Overview Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual 1 2 1 2 1 WARNING When inserting a removable module DO NOT USE EXCESSIVE FORCE Forcing or slamming a module ca
106. usy and Drive Busy LEDs should all flash green during the initialization process 2 Drive tray LEDs The green LEDs for all populated drive trays should light constant blue after the initialization process 3 LCD panel LEDs The Power LED on the LCD panel should light blue and the ATTEN LED should be flashing red during the initial stage and turns off once the initialization is completed 4 Fibre Port LEDs The LEDs underneath each FC port should illuminate green indicating that the Fibre Channel link has been established 5 BBU LEDs The LEDs on the BBU rear panel should start flashing amber indicating that the BBU is being charged 6 PSU LEDs If the PSU is operating normally and experiencing no problem after power on the LEDs on the PSU should light green constantly 7 Firmware and RAIDWatch Various aspects of the system operating information can be accessed through the firmware configuration utilities or the RAIDWatch GUI 8 Audible alarm If any errors occur during the initialization process the onboard alarm will sound in a hastily repeated manner 9 Drive BUSY LEDs should start flashing during the power up process indicating that the RAID controllers are attempting to access the hard drives 4 7 NOTE The subsystem has been designed to run continuously If a component fails the fault can be corrected online 3 28 Power On Chapter 3 System Connection LCD Screen When powering on the subsy
107. vent use the arrow keys to select an event and press and hold down the ENT key until an event ID is shown on the screen then use arrow keys to browse through the description lines If you tab the ENT key lightly system will prompt you to delete all events Mute Button The MUTE button silences the alarm temporarily until the next event occurs The definitions of LEDs on the panel are given in Table 4 1 below Figure 4 1 LCD Keypad Panel Name Color Status ON indicates that power is supplied to PWR Blue the system and system state is normal Power OFF indicates that no power is supplied Status indicating LEDs 4 3 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual 4 2 2 to the system or the RAID controller has failed FLASHING indicates that there is active traffic on the host drive channels BUSY White OFF indicates that there is no activity on the host drive channels ON indicates that a component ATTEN failure status event has occurred Red Attention OFF indicates that the subsystem and all its components are operating correctly Table 4 1 LCD Panel LED Definitions N NOTE During the power on process the ATTEN LED will light up steadily Once the subsystem successfully boots up with no faults the ATTEN LED will turn off Drive Tray LEDs Two 2 LED indicators are located on the right side of each dr
108. wer supply units PSUs Cooling modules Hard disk drives 1 4 3 Normalized Airflow Proper cooling is referred to as normalized airflow Normalized airflow ensures the sufficient cooling within the system and is only attained when all components are properly installed Therefore a Hot swappable Components 1 13 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual failed component should only be removed when a replacement is available If a failed component is removed but not replaced airflow will be disrupted and damage to the system can result 1 14 Hot swappable Components Chapter 2 Hardware Installation 2 1 Introduction This chapter provides detailed instructions on how to install the system Installation into a rack or cabinet should occur before the hard drives or drive trays are installed into the system Please confirm that you received all of the components listed on the included Unpacking List before proceeding with the installation process 2 2 Installation Prerequisites 1 Static free installation environment The Galaxy HDX3 system must be installed in a static free environment to minimize the possibility of electrostatic discharge ESD damage See Section 2 3 2 2 Component check Before installing the Galaxy HDX3 system you should first check to see that you have received all the required components See Section 2 5 If any items appear damaged contact your vendor
109. when work order can be mis conceived These messages also provide important information associated with other aspects of system operation The word important is written as IMPORTANT both capitalized and bold and is followed by text in italics The italicized text is the message to be delivered Warnings Warnings appear where overlooked details may cause damage to the equipment or result in personal injury Warnings should be taken seriously Warnings are easy to recognize The word warning is written as WARNING both capitalized and bold and is followed by text in italics The italicized text is the warning message Cautions Cautionary messages should also be heeded to help you reduce the chance of losing data or damaging the system Cautions are easy to recognize The word caution is written as CAUTION both capitalized and bold and is followed by text in italics The italicized text is the cautionary message Bk e Notes These messages inform the reader of essential but non critical information These messages should be read careful as any directions or instructions contained therein can help you avoid making mistakes Notes are easy to recognize The word note is written as NOTE both capitalized and bold and is followed by text in italics The italicized text is the cautionary message Lists Bulleted Lists Bulleted lists are statements of non sequential facts They can be r
110. with and without the MUX Board Secure the disk drive with four 4 of the supplied 6 32 flat head screws Once the hard drives are installed into drive trays install all drive trays into the enclosure See detailed instructions in the following section 2 20 Hard Drive Installation Chapter 2 Hardware Installation 2 9 Drive Tray Installation Once the hard drives have been secured within the drive trays the drive trays can be installed into the system WARNING All drive trays must be installed into the enclosure even if they do not contain a hard drive there are empty drive bays the ventilation airflow will be disrupted and the system will overheat Step 1 Use a small size 1 8 flat blade screwdriver to turn the rotary bezel lock to the unlocked position i e the groove on its face is in a horizontal orientation Rotary Bezel Lock Drive Busy LED Release Button Power Status LED Figure 2 20 Drive Tray Front Bezel Step 2 Open the front bezel on the drive tray Push the release button on the drive tray The front bezel will spring open Figure 2 21 Drive Tray Release Button Drive Tray Installation 2 21 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual Step 3 Align the drive tray with a drive bay Gently slide it in until the drive tray reach the end of drive bay This should be done smoothly and gently Zee up fep Ls 22 9 2
111. ws a flowchart of the installation procedure As you complete each step check off the Done box on the right Please use this flowchart in conjunction with the instructions that follow General Procedure 2 7 Galaxy Raid GHDX3 1840R S 24F 8D Installation and Hardware Reference Manual Unpack C Done CBM installation G model A DONE Rack mounting C Controller installation _ pone Hard drive installation _ Done Drive tray installation C pone Cabling pone e RAID configuration Refer to firmware Operation Manual Figure 2 4 Installation Procedure Flowchart 2 8 General Procedure Chapter 2 Hardware Installation 2 5 Unpacking the System Use the Unpacking Checklist in your package to verify package contents Carefully check the items contained in each box before proceeding with installation A detailed unpacking list can be found in your product shipping package or product CD The package contents are shown below Slide rails power cords accessories Auxiliary box Cardboard shield Tray carton Controller box Base unit carton tm Filler foam Figure 2 5 System Package 1 2 3 4 Three power cords A printed copy of Quick Installation Guide Screws for rack mounting and securing disk drives A product utility CD containing the Installation and Hardware Reference Manual this document the Operation Manual firmware and other related documentatio
112. ystem ensure that your applications have been properly closed users notified of the down time all cached writes conducted etc All precautionary measures without exception are adhered to Al WARNING When inserting a removable module take heed that DO NOT USE EXCESSIVE FORCE Forcing or slamming a module can damage the connector pins either on the module itself or on the backplane Gently push the module until it reaches the end of module slot Feel the contact resistance and use slightly more force to ensure the module connectors are correctly mated If the module comes with ejection levers or retention screws use them to secure the module 5 2 Overview Chapter 5 Subsystem Maintenance and Upgrading 5 2 Replacing a Controller Module 5 2 1 Overview Two replaceable components are contained in a controller module DIMM Module The DIMM module can be replaced when a DIMM module fails or if a larger capacity DIMM is required CBM As part of the CBM module a BBU within is usually replaced every 3 years If a BBU has lost its ability to hold electric charge replace it with a certified module A WARNING The battery cells are not hot swappable The cell pack BBU is contained in a RAID controller canister To replace a BBU you must remove RAID controller It is recommended to remove the BBU before replacing a DIMM module because once a controller is removed from chassis BBU will discharge to support the cac

Download Pdf Manuals

image

Related Search

Related Contents

Wentronic E27 Daylight PAR20  TDSHーBA - 東芝ライテック  Sony XR-3100R User's Manual  Samsung GT-I9060 راهنمای محصول  LevelOne 16-Port Fast Ethernet PoE-Plus Switch, 480W  TCS User Manual  NTC 5232 - ICONTEC Internacional  2044CL-O (2044CL-O-T) User Manual  mode d`emploi avril 2015  

Copyright © All rights reserved.
Failed to retrieve file