Home
I j- I
Contents
1. US005662117A United States Patent ng 11 Patent Number 5 662 117 Bittman 45 Date of Patent Sep 2 1997 54 BIOFEEDBACK METHODS AND CONTROLS 4 932 880 6 1990 Kotick et al 4 984 158 1 1991 Hillsman 75 Inventor Barry B Bittman Meadville Pa 5 024 235 6 1991 Ayers 5 036 858 8 1991 Carter et al z 5 076 281 12 1991 Gavish 73 Assignee nasco Incorporated Meadville 5343871 9 1994 Bittman et al OTHER PUBLICATIONS BL Appl No 482 779 Manual excerpt by J amp J Engineering Inc 22 Filed Jun 7 1995 Tortoise and Hare Instructions Alps Animation Instructions by Biocomp Related U S Application Data Advertisement for IBVA biofeedback system by Psychic Lab Inc 60 Continuation in part of Ser No 194 260 Feb 10 1994 Pat Pamphlet entitled Video Interface for Biofeedback Equip No pct Which AR a division of Ser No 850 673 Mar ment Systems by Nebulae Productions BU Tnt CLS iaaa A61B 5 02 Primary Examiner William E Kamm 52 U S amp eee eer ae EAA 128 732 Assistant Examiner Scott M Getzow 58 Field of Search o cecsccssssscsssasesuen 128 732 905 Altormney Agent or Firm Webb Ziesenheim Bruening 128 670 733 Logsdon Orkin amp Hanson PC 57 ABSTRACT 56 References Cited 57 A method and apparatus for mediating a biofeedback session U S PATENT DOCUMENTS with a human subject in which measurements of electro 3 837 331 9 1974 Ross physiological quantities are used to co
2. 5 662 117 3 Pat No 4 354 505 teaches measurement of the length of time a subject has remained in a relaxed state by displaying numerals indicative of this length Ochs U S Pat No 4 461 301 teaches display of numerical indications depen dent on the values of monitored electrophysiological param eters Leuner et al U S Pat No 4 665 926 teaches a system for measuring a person s relaxation state but in which displayed information is not fed back to the subject but is instead monitored by a technician It is a drawback of prior art biofeedback devices and methods that the feedback provided to the subject is merely a display of values of physiological parameters or an indi cation of how successful the subject has been in achieving his goal They do not provide a target desirable in itself to assist in the attainment of success In fact the prior art devices utilize feedback means that can actually interfere with the desired objective by forcing the subject to concen trate on a wave tracing flashing light or blip on an oscillo scope screen in order to gauge his progress In prior art methods the subject must generally be coaxed by an assis tant into imagining a relaxing scene or locale in order to alter his electrophysiological responses The objects of the present invention are to improve the efficacy of biofeedback by eliminating dependence on stress inducing visual or audio targets on which the subject must concentrate t
3. Video F2 Status Indicates the position of the disc and slide door Video F3 Open Slide Door Opens the disc drawer on video player 60 so videodisc 100 may be inserted or removed therefrom Video F4 Close Slide Door Closes the disc drawer so that the disc can be read and a session can begin Video F10 Return to Main Menu The following functions are available on the Reports Screen which can be invoked from the Main Menu by depressing the F5 Reports key Report F1 Graphs Generates a line graph versus time for each modality selected in the Control Screen which corre sponds to the electrophysiological parameters being moni tored for this subject Report F2 Tables Generates a table of numerical values of each modality at discrete time steps throughout the session Report F3 Progress Note Invokes a word processor so the technician can introduce notes into the patient s medical record 5 662 117 11 Report F4 All Reports Causes the system to produce all possible output reports for this session Report F10 Return to Main Menu It will be evident to those skilled in the art that the invention is not limited to the details of the foregoing illustrative embodiment and that the present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof The present embodi ments are therefore to be considered in all respects as illustrative and not restrictive The
4. the function used to control LVRI changes is a linear combina tion weighted average of values of selected recorded parameters The parameters that make up this function are 5 662 117 9 called linking parameters For each linking parameter the technician has the ability to scale the parameter by speci fying the range of values from best to worst that the parameter may assume Values near best are associated with the most clear LVRI image LVRI 1 those near worst cause the most distant or fuzziest LVRI image to be displayed LVRI 5 By adjusting the scaling of linked parameters in subse quent sessions the technician may vary the degree of progress the subject must make in biofeedback before being rewarded with a clearer LVRI image In beginning sessions it may be desirable to reward the subject for only having made a small amount of progress in altering a parameter As the subject becomes more skilled the requirements can be adjusted so that more relaxation for example can be achieved for the same level of reward Scaling information is presented on a graphical report so the technician can review the subject s attainment during the session and decide on the appropriate scaling for the next session When the session is complete i e the preset session time has elapsed the system produces printed reports and graphs for analysis by the technician and physician These include the values of rec
5. COMPUTER KEYBOARD l GRAPHIC l I I 40 MONITOR 45 LASER PRINTER U S Patent Sep 2 1997 Sheet 2 of 2 5 662 117 VIDEODISC 100 7 5 662 117 1 BIOFEEDBACK METHODS AND CONTROLS This application is a continuation in part of U S patent application Ser No 08 194 260 entitled Biofeedback Method and Controls filed on Feb 10 1994 now U S Pat No 5 465 729 which is a divisional of U S patent applica tion Ser No 07 850 673 entitled Method and Apparatus for Biofeedback filed Mar 13 1992 now U S Pat No 5 393 871 MICROFICHE APPENDICES Microfiche Appendix A comprises 46 frames on micro fiche 1 of 2 Microfiche Appendix B comprises 56 frames on micro fiche 2 of 2 BACKGROUND OF THE INVENTION 1 Field of the Invention This invention relates to a method of mediating a bio feedback session with a human subject in which measure ments of certain of the subject s electrophysiological param eters are used to control the presentation to the subject of a series of prestored audiovisual sequences of varying levels of clarity or perspective to provide targets whose viewing induces in the subject a desired psychological state Specifically the present invention relates to the control of the speed of relative motion of the visual portion of the sequence and the audio content of the sequence 2 Description of the Prior Art Biofeedback is a process in which electrodes are
6. and quickly accessing video sequences on a video storage medium of sufficient capacity to conduct a session of sufficient duration that no reloading is required during a biofeedback session which would cause interruption of treatment The video output of video player 60 is connected to video display 70 which may be a large screen television monitor having a resolution of at least 350 horizontal lines The left and right stereophonic audio outputs of video player 60 respectively are connected to left speaker 80 and right speaker 81 In an alternate embodiment speakers 80 and 81 are integrated into a set of headphones worn by subject 11 In a further embodiment video display 70 is a television set incorporating built in speakers 80 and 81 A manual describing the use of the above described system in the best mode known to the inventor is reproduced in Microfiche Appendix A The manual supplements and explains the source code listing reproduced in Microfiche Appendix B FIG 2 shows the schematic layout of a typical videodisc which may be used with the present invention Videodisc 100 comprises eight clusters 101 108 and a title sector 109 The playing time of each of the clusters 101 107 is approxi mately 7 5 minutes The playing time of cluster 108 is approximately 2 5 minutes The playing time of the title sector is approximately 30 seconds The playing time of the entire videodisc 100 is approximately 1 hour Videodisc 100 is removably
7. con nected to a human subject to monitor electrophysiological parameters such as heart rate electroencephalographic sig nals and galvanic skin resistance These signals are con verted to a visual or audio display that can been seen and or heard by the subject who attempts to alter the parameters using the display as a guide to his progress If it is desirable to reduce blood pressure for example the display may consist of a bar graph indicating the magnitude of the pressure If the subject is successful in lowering his blood pressure he will see the size of the bar diminish and will thus know he is making progress Traditional biofeedback methods employ such mecha nisms as analog meters computer generated displays tar gets shown in cross hairs acoustic tones and audio beat frequencies to indicate to the subject the values of the parameters being monitored Biofeedback is commonly performed by a biofeedback technician who directs the subject verbally to achieve a state of calm by coaching him to develop a mental image of a relaxing scene Unfortunately it can be difficult to relax during such a session because the subject is forced to concentrate on a computer display or audio tone to gauge his progress That is the result or display viewed by the subject is not in itself calming and may actually interfere with the desired objective Biofeedback can be used to treat migraine and tension headaches pain disorders such as temporoma
8. times however the goal scene is maintained in view The images representing the scene are presented to the subject in order of increasing speed of relative motion and number of acoustical components to serve as a reward for achieving desired response levels The most desirable response level will preferably have a natural or live action speed of relative motion and the most complete audio portion providing the most realistic version displayed An example of the use of video enhancement is in behavior modification By gradually exposing a phobic subject to a series of stressful scenarios the subject can be rewarded via audiovisual feedback for generating a desired physiological response the reward consisting of a change in the audiovisual template For example an acrophobic indi vidual one who fears heights can be acclimatized to differing elevations under controlled conditions without actual risk by being shown a sequence of scenes taken at varying heights The method is not restricted to achieving relaxation A rehabilitation patient who is being trained to use certain muscles can be rewarded for exerting stress rather than relaxing An agoraphobe one who fears being out in public can be treated by presenting scenes commencing at home gradu ally moving outdoors a quiet street an intersection and then a mall or busy city block As the subject relaxes as moni tored by the apparatus the journey progresses The subject becomes cond
9. PRO Series Model 421 The digital output of preamplifier and converter 20 is connected to an input port of digital computer 30 In one embodiment digital computer 30 is compatible with an International Business Machines personal computer running the DOS operating system and preferably containing an Intel 386SX or higher microprocessor A fast microprocessor is required for example to process EEG signals which exhibit a high information rate The digital computer 30 may include a hard disk not shown for data storage a keyboard 40 for entering commands a printer 45 preferably a laser printer for printing reports and a high resolution graphic monitor 50 to display command menus and graphs of the subject s progress to the biofeedback technician In a preferred embodiment keyboard 40 has at least ten function keys F1 through F10 An asynchronous serial port of computer 30 is connected to video player 60 whereby the player can be controlled by the computer 30 In one embodiment video player 60 is a laser videodisc player such as the Pioneer Model LD V8000 and the connection to computer 30 is made with a Pioneer serial cable P N CC 13 The Model LD V8000 is capable of holding a video image while access to a different portion of the videodisc is being established This eliminates blanking of the display device between selection which is undesirable because it interrupts the concentration of the subject Video player 60 is capable of directly
10. VRI segments may be created by capturing real scenes on videotape using high quality commercial televi sion equipment Varying levels of speed of relative motion 5 662 117 7 within a scene can be achieved after the segments are recorded on videotape The acoustic components of the audio portion can be placed on individual tracks in an editing studio When all segments are of appropriate length and LVRI level a master videotape is made from which a videodisc can be produced by known methods Alternative audio video storage and playback medium may be utilized For example a videotape could be utilized with the computer 30 controlling the playback speed to vary the speed of relative motion within each version of the audiovisual scene The computer 30 will also control the number of audio components which is appropriate for the specific displayed version The scenes to be recorded on the recording medium are chosen so that the audiovisual segments themselves both induce the desired psychological state in the subject and to provide memorable audiovisual images that the subject may bring to mind subsequent to the biofeedback session for therapeutic effect Audiovisual changes must be performed in a way that allows the subject to focus his attention on a single scene to avoid distraction or confusion of physiological response This can be achieved by utilizing one single audiovisual scenario and successively improving its quality At ali
11. ct a sequence of versions of an audiovisual scene These versions exhibit varying speeds of relative motion of the visual portion and varying degrees of audio components of the audio portion wherein the number of audio compo nents and the speed of relative motion of the version are increased as the monitored parameters indicate that the subject s psychological response has become more desir able Accordingly I have invented a biofeedback system in which the feedback provided to the subject is itself calcu lated to induce the desired state eliminating the need for the subject to imagine a nonexistent scene The apparatus may include a high quality display device preferably a high resolution television screen and high fidelity audio system 10 15 20 35 45 50 55 65 4 a playback device capable of playing back realistic prestored audio video sequences quickly and a digital computer to monitor bioelectric signals and control the display device and the playback device including the speed of playback which may be utilized to control the speed of relative motion of the displayed scene The apparatus is used in conjunction with a conventional set of biofeedback electrodes and asso ciated amplifiers and analog to digital converters The apparatus may monitor and record such electrophysi ological parameters as among others 1 electromyographic EMG signals 2 galvanic skin resistance GSR 3 electroencephalograp
12. e publication BOS Biomedical Oper ating System User s Manual copyright 1990 published by Stuart Enterprises The invention can be used in the following manner A physician evaluates the subject and determines the protocol to be used and the desired physiological objectives based on which a series of scenes is chosen for presentation to the subject The subject does not see or interact with the system screen The subject is presented only with audiovisual imagery so as to keep his attention focused on the treatment The subject may even be placed in a room remote from the computer and other equipment with only a television set to observe This separation is particularly beneficial for sub jects who experience anxiety in interacting with a computer During a first session with a human subject a biofeedback technician explains the techniques that will be employed and explains the protocol and objectives The technician then performs an initial evaluation to calibrate the subject s electrophysiological responses In the initial evaluation the subject is seated in a comfortable chair with biofeedback electrodes in place and shown a series of different high quality audiovisual scene sequences each lasting about 90 seconds Electrophysiological parameter measurements are recorded by the computer and reported in graphic and tabular form to the technician who may select a sequence for viewing during later treatment sessions The technicia
13. eously generating a sound pattern to be used by the subject to control his rate of respiration Ayers USS Pat Nos 4 919 143 and 5 024 235 teach a sound and light box in addition to graph waveforms as output from a biofeedback system Hardt U S Pat No 4 928 704 teaches combining tone feedback with display of digital data to the subject Hilisman U S Pat No 4 984 158 teaches auditory prompts and use of visual graphs for instructing subjects to use a metered dose inhalation system Carter et al U S Pat No 5 036 858 teaches use of light goggles and headphones to convey beat signals to a subject indicative of how much his brain wave frequency differs from a desired frequency Gavish U S Pat No 5 076 281 teaches using synthesized sound patterns and optical effects indicative of parameters of biorhythmic activity Freeman U S Pat No 3 916 876 teaches measurement of muscle tension in two selected muscles while the subject watches electrical meters displaying the tension measure ments and other quantities derived from them There is no audio or visual feedback other than meter readings Brady U S Pat Nos 4 056 805 and 4 140 997 disclose a video display comprising a matrix of colored lights that is controlled in response to brain waves Brady s invention however does not comprise a biofeedback system Brady s invention is directed to conveying a visual indication of a subject s response to sound particularly music Shiga U S
14. hic EEG signals 4 skin tempera ture 5 blood pressure BP and 6 heart rate HR or pulse Signals indicative of these parameters are monitored by a computer capable of displaying prestored audiovisual scenes at varying levels 6f visual and acoustic clarity specifically controlling the speed of relative motion of the scene and the number of audio components forming the audio portion For example at the lowest or most undesir able physiological state the speed of relative motion of the scene may be zero i e the action within the scene is frozen At this beginning state the audio portion may be nonexistent or minimal such as a single instrument playing only a part of a complete orchestral score The scenes themselves are of pleasurable images designed to induce relaxation such as views of beaches with rolling surf walk through lush flower gardens a waterfall and the like As the subject gradually attains the desired physiological state the complete image becomes progressively enhanced The reward to the subject for approaching the desired state is a successively improved image including more natural and realistic movement of objects within the scene and more complete audio portion At the desired physiological state the speed of relative motion of the scene is the natural or live action speed of the scene and the audio portion is the most complete The complete audio portion could be a full orchestral musical score in ste
15. inserted in video player 60 The videodisc contains title information and eight ordered sequences or clusters of information each cluster compris ing five segments containing related audiovisual scenes The objective is to provide a graded sequence of scenes in which each is an improvement on the preceding scene in some respect that is each scene is more real or more desirable than its predecessor Specifically the speed of relative motion of each scene will be increased from its predecessor until ultimately a natural or live action speed of relative motion is achieved Additionally the improving scene will have an increasing number of audio components To provide the varying speeds of relative motion on the videodisc 100 the five scenes may be recorded separately at differing levels 10 15 20 25 30 35 45 50 55 65 6 of speed of relative motion with each scene being played back in similar fashion However preferably a scene may be recorded once at one speed of relative motion wherein the playback speed of the scene is controlled by the computer 30 to provide the different levels of speed of relative motion This would allow for a continuous flow in the changing of the speed of relative motion i e the playback speed of the scene The adjustment of the audio portion may be easily pro vided by recording the complete audio portion on a plurality of separate tracks Each track would include one audio com
16. itioned to associate relaxation with situations that formerly induced anxiety Similar methods can be used to treat other phobias such as vertigo reactive anxiety states or panic attacks Reduction of tension has been shown to reduce learning time for certain motor skills as typing stenography and repetitive manufacturing activities It also improves work efficiency and can assist athletes in preparing for competi tive sporting events The present invention is also useful in these applications A number of distinct audiovisual sequences can be recorded on a single videodisc or videotape and are available for selection by the biofeedback technician controlling the session The software used to control the apparatus of the present invention is listed in source code form in Microfiche Appen 5 10 15 20 25 35 45 50 55 65 8 dix B It is written in a programming language known as the BOS Protocol Programming Language implemented under the Biomedical Operating System BOS which is available for license from Stuart Enterprises 11330 Southwind Court NE Bainbridge Island Wash 98110 BOS supports popular biofeedback processors comprising electrodes amplifiers and analog to digital converters making it possible to con nect the present invention to many types of standard bio feedback equipment BOS and its programming language in which the software of the present invention is written are described in full in th
17. ked from the Main Menu by depressing the F4 key l Control F1 Session Time Allows the technician to set the duration of the session Control F2 Modalities Allows selection of electrophysi ological parameters to be recorded for this session Control F3 LVRI Link Establishes a relationship between electrophysiological parameters and the reality index progression for this session The technician is able to choose which of the recorded parameters will actually be used to change LVRI levels and can assign relative weights to their importance Control F4 Scaling Allows setting of baseline levels and ranges for electrophysiological parameters Control F5 Start Stop Begins and ends a biofeedback session and controls recording of parameters and output of reports Control F6 Pause Temporarily halts data recording to allow interruptions such as for adjustment of electrodes Control F7 Progress Allows toggling between the Con trol Screen and the Progress Screen The Progress Screen displays to the technician a graphic representation of the recorded parameters versus time so the progress of the subject can be monitored Control F10 Main Menu Returns to the Main Menu This option cannot be selected until a session has been halted with the F5 key The following functions are available on the Video Screen which can be invoked from the Main Menu by depressing the F6 Utilities key Video F1 Help Provides documentation of options
18. med function keys F1 through F6 and F10 on computer keyboard 40 The Main Menu Screen functions are Main F1 Demographics This option invokes another screen permitting the technician to record biographical data including the subject s name and other identifying information for later report generation Main F2 Initial Evaluation This causes the computer to display to the technician the values of actual signals being received by the biofeedback electrodes 15 so the electrodes can be adjusted It also presents the subject with a sequence of audiovisual displays so the technician can determine which scene on the videodisc produces the most favorable response from the subject Main F3 Screen Selection This permits a choice of the scene sequence to be used for the present biofeedback session among those available on the videodisc that is currently mounted 10 15 20 30 35 45 50 55 65 10 Main F4 Control Screen This screen controls the actual biofeedback session and itself provides eight programmed functions discussed below Main F5 Reports Screen This invokes a screen to control report generation including selection of report format as discussed below Main F6 Utilities Screen This invokes the Disk Operat ing System DOS housekeeping functions such as copying formatting etc Main F10 End This terminates the session The following functions are available on the Control Screen which is invo
19. n may also select one or more parameters whose values will be used to control changes in audiovisual levels in the chosen sequence For a treatment session the technician places electrodes on the subject and inserts in the videodisc player a disc containing the scene sequence to be used during treatment Of the several sequences that may be present on the disc the particular one to be used can be chosen by the technician from a menu of choices presented on graphic monitor 50 The technician controls the apparatus by viewing the moni tor and entering information through computer keyboard 40 During the session the monitor displays graphically the values of the subject s electrophysiological parameters The technician interacts with computer 30 through screens that appear on monitor 50 The screens whose content and order is controlled by software in computer 30 provide menu choices that are selected by pressing one of the function keys F1 through F10 The technician may also be asked to enter textual or numeric information through keyboard 40 The technician may choose the duration of the biofeed back session and the particular set of parameters to be recorded during the session The parameters being recorded are not necessarily all used to control changes in LVRI level The technician may choose for each recorded parameter whether it is to participate in LVRI changes and if so what linear weight will be given to the parameter That is
20. ndibular joint dysfunction TMJ and myofascial syndromes musculosk eletal tension hypertension anxiety and panic disorders asthma dyspepsia and other conditions that can be con trolled by reducing muscular tension inducing a state of caim or stabilizing autonomic function Biofeedback can be used both for treatment and prevention of such syndromes Biofeedback devices and methods comprising visual dis plays are known in the prior art Ross U S Pat Nos 10 15 20 30 35 45 50 55 65 2 3 837 331 and 3 967 616 teach use of a transducing means for exhibiting sensory signal output to the human subject which may include a matrix of numbered lamps slides projected on a screen or an audible chime Hidalgo Briceno U S Pat No 3 855 998 discloses an entertainment device that monitors electrophysiological parameters of a human subject and presents audiovisual stimulation comprising passages of music flashing lights or projected images intended to place the subject in a desired psychological state The Hidalgo Briceno invention while it receives electrical signals from the subject is not a biofeedback device because the subject is not guided by stimuli to modify his own physiological parameters providing no feedback within the system Cornellier et al U S Pat No 4 683 891 teaches use of a visual display to indicate the values of a subject s physiological parameters at the point where stress is i
21. nduced during performance of a goal oriented task A number of prior art biofeedback devices employ purely audio feedback to the subject Silva et al U S Pat No 3 875 930 teaches using a fixed audio signal that decays to silence as an indication that the desired brain wave wave form has been achieved Spector U S Pat No 4 776 323 teaches playing sounds through headphones to induce relax ation in a subject for the purpose of creating a calm state that can then be interrupted by high amplitude noises to cause stress Knispel et al U S Pat No 4 883 067 teaches a method of transforming brain wave activity into musical sound which is fed back to the subject via headphones Numerous prior art devices combine audio and visual feedback Glynn et al U S Pat No 3 942 516 teaches simultaneous monitoring of a plurality of electrophysiologi cal parameters to produce a single audiovisual output for feedback Fehmi et al U S Pat No 3 978 847 teaches using audio tones and a light that increases in amplitude and stroboscopic frequency as the frequency of the subject s brain waves increases Clegg et al U S Pat No 4 823 808 teaches a method for treating eating disorders by measuring parameters of the gastrointestinal tract and providing indi cations of gastric activity by visual and audio means such as by amplifying stomach noises Ohsuga et al U S Pat No 4 896 675 teaches providing graphs of physiological param eters and simultan
22. nt to a natural speed of said audiovisual scene 5 The method of claim 1 wherein at step b said increase is in response to a weighted combination of said parameters and said speed of relative motion is decreased as said weighted combination indicates that the subject s psycho logical response has become less desirable and increased as said weighted combination indicates a more desirable psy chological response 6 A method of conditioning a desired psychological response in a subject comprising the steps of a monitoring at least one of the subject s electrophysi ological parameters indicative of his psychological response and b presenting to the subject a sequence of versions of an audiovisual scene said versions exhibiting varying degrees of audio components wherein the number of said audio components increases as said monitored parameters indicate that the subject s psychological response has become more desirable k k
23. ntrol the presentation 3 855 998 12 1974 Hidalgo Briceno to the subject of a series of audiovisual sequences of varying 3 875 930 4 1975 Silva et al levels of relative speed and audio composition The 3 916 876 11 1975 Freeman sequences are real scenes designed to induce a desired 3 942 516 3 1976 Glynn et al psychological state when viewed As the subject succeeds in ees sagt Sat altering his physiological parameters the speed and audio 978 ehmi et al h 5 ERRA 4056805 11 1977 portion of the presented scene improve as an indication of 4 140 997 2 1979 success By using the invention the subject develops a 4 354 505 10 1982 conditioned response to the scene and is able to control his 4 461 301 7 1984 physiological parameters even when away from the appa 4 665 926 5 1987 ratus by remembering the audiovisual sequences used during 4 683 891 8 1987 Comellier et al treatment 4 776 323 10 1988 Spector 4 823 808 4 1989 Clegg et al 4 883 067 11 1989 Knispel et al 6 Claims 2 Drawing Sheets 4 896 675 1 1990 Ohsuga et al 4 919 143 4 1990 Ayers Microfiche Appendix Included 4 928 704 5 1990 Hardt 2 Microfiche 102 Pages BIOFEEDBACK APPARATUS oF BIOFEEDBACK PREAMPLIFIER AND CONVERTER 50 GRAPHIC MONITOR U S Patent My BIOFEEDBACK PREAMPLIFIER AND CONVERTER Sep 2 1997 Sheet 1 of 2 5 662 117 BIOFEEDBACK APPARATUS 81 RIGHT SPEAKER DIGITAL COMPUTER l l l l
24. o determine an effective weighted com bination of physiological potentials for a given subject that can be used in conditioning biofeedback response to moni tor and record a subject s progress through one or more biofeedback treatments by storing and reporting data con cerning the subject s responses on a digital computer so that the combination of physiological potentials monitored can be altered to maximize the effectiveness of the treatment to provide a means by which a subject s success in controlling his physiological potentials causes presentation of a graded sequence of pleasant scenes of successively greater video and audio clarity specifically by controlling the relative speed of motion of the video portion and controlling the content of the audio portion to train the subject through biofeedback to induce self relaxation subsequent to a train ing session without having to rely on a machine for audio visual response and to develop a conditioned response on the part of a subject so that he can induce in himself a desired psychoneurological state by recalling to memory one or more prestored audiovisual scenes SUMMARY OF THE INVENTION The present invention provides an apparatus for condi tioning a desired psychological response in a subject includ ing a device for monitoring at least one of the subject s electrophysiological parameters indicative of his psycho logical response and a mechanism for presenting to the subje
25. orded parameters and LVRI level changes against time in the form both of tables and plotted graphs The technician also has the capability of annotating the reports from the keyboard The annotations and a signature line in accordance with accepted medical recordkeeping practice appear on the printed reports which are produced on laser printer 45 The result of the session is that the subject has been made to relax and to associate the relaxation with the particular audiovisual sequence that was displayed Furthermore the sequence itself as a result of the initial evaluation is known to assist the subject in attaining the desired relaxation The technician does not need to coach the subject to conjure up an imagined scene The subject will be able after one or more sessions to induce himself into a state of relaxation outside of a moderated biofeedback session by remembering the particular audiovisual sequence By using the present invention the subject develops a conditioned biofeedback Tesponse The technician controls the system by interacting with it through a small number of screen displays which are primarily menu driven The complete computer source code implementing these functions is given in Microfiche Appen dix B The Initial Screen simply displays title information stored on videodisc 100 in title sector 169 The Main Menu Screen permits the choice of seven functions each of which is invoked by depressing one of the program
26. ponent such as for example the sounds of birds asso ciated with the visual scene or a single musical instrument Additionally the transition from monotonic to stereophonic sound may form one of the audio components i c one of the improvements in the audio portion would be the addition of stereophonic sound The objective of the sequences is to provide the subject with an audiovisual objective that becomes better as the subject improves his physiological parameters A discrete level of reality is known as a Laser Video Reality Index LVRI The five levels are assigned the labels LYRI 1 through LVRI 5 LVRI 1 represents the highest level of reality LVRI 5 represents the lowest level of reality The subject is rewarded for favorable biofeedback response by being shown an audiovisual scene at a higher reality level lower LVRI level The purpose of using differing reality levels is to provide the subject with successive related image targets and to indicate to the subject by nondistracting means that biofeedback is succeeding Because the displayed scene of the degraded versions is of the same scene the subject recognizes the target scene and anticipates improvement in the display further inspiring his effort at biofeedback Negative feedback can be provided by decreasing the level of reality if the subject s physiological parameters move away from the desired direction The present invention has divided reality levels into discrete ste
27. ps so that the subject is not presented with a constantly fluctuating image on which attention or enjoyment would be difficult For example if the size of a viewed object were to change continually based on the subject s galvanic skin resistance the subject would have no fixed target on which to gaze and would be distracted or disturbed by its incessant movement By dividing the range of responses into discrete quanta the subject is better able to concentrate on the scenes being presented However the present invention provides for continuous flow between the distinct levels to prevent sharp discontinuities in display which may adversely affect the biofeedback session During the use of the present invention the human subject sees and hears only material designed to induce and lead the subject to the desired state No objective indications of progress such as graphs meters flashing lights moving dots or other means used in prior art devices and which 1 cause distraction and 2 do not provide the subject with a desirable mental image for later recall are employed here FIG 3 shows a schematic layout of a possible audiovisual scene cluster Cluster 110 comprises five LVRI segments 111 115 in order of reality index from highest LVRI 1 to lowest LVRI 5 The playing time of each LVRI segment is approximately 1 5 minutes If the subject has not progressed during that time the segment is automatically replayed or looped The L
28. reo or all of the natural sounds associated with the scene such as the sounds of waves the wind birds etc or other audio associated with the scene In this way the subject is able to perform biofeedback without the distraction of prior art feedback indicators which are not themselves relaxation inducing Subsequent to the treatment the subject is able to induce a relaxed state in himself by recalling the scenes used during treatment BRIEF DESCRIPTION OF THE DRAWINGS FIG 1 shows a block diagram of an apparatus according to the present invention FIG 2 shows a layout of clusters of audiovisual scenes on a videodisc of the type which may be used in the present invention and FIG 3 shows an internal arrangement of a single cluster of audiovisual scenes on the videodisc of FIG 2 DETAILED DESCRIPTION OF THE INVENTION FIG 1 shows a block diagram of the apparatus according to the present invention including a biofeedback system 10 Electrodes 15 lead from human subject 11 into the input terminals of preamplifier and converter 20 Preamplifier and converter 20 contains preamplifiers and amplifiers and analog to digital converters to transform analog signals into digital outputs indicative of the magnitude of said analog signals Preamplifier and converter devices of this type are well known in the art Examples of such devices are the Autogenics A 8000 the J amp J 1 330 Modular System and the 5 662 117 5 SRS Orion 8600 and
29. scope of the invention being indicated by the appended claims and rather than by the foregoing description and all changes which come within the meaning and range of the equivalency of the claims are therefore intended to be embraced therein I claim 1 A method of conditioning a desired psychological response in a subject comprising the steps of a monitoring at least one of the subject s electrophysi ological parameters indicative of his psychological response and b presenting to the subject a sequence of versions of an audiovisual scene said versions exhibiting varying speeds of relative motion wherein said speed of relative motion is varied as said monitored parameters indicate that the subject s psychological response has become more desirable 2 The method of claim 1 wherein said version exhibits varying degrees of audio components wherein the number of audio components is varied as said monitored parameters indicate that the subject s psychological response has become more desirable 15 20 25 30 12 3 The method of claim 2 wherein each said audio component comprises an instrument playing a musical score 4 The method of claim 1 further comprising the step of c repeating steps a and b until said monitored param eters indicate that the subject has become conditioned to exhibit the desired response to said audiovisual scene wherein a final one of said versions has a speed of relative motion equivale
Download Pdf Manuals
Related Search
Related Contents
Voir la fiche VPCF13CGX/B - Clearance Club Electronic Casual Pay Claim User Guide for Schools and other DET HP LaserJet 3020, 3030 user guide - DEWW SGY-PM900H90 取扱説明書 - Pioneer cyclesports USER`S MANUAL - Propellerhead-inc BIOCAM Series Product User Manual ZONE USER`S MANUAL Guide du Tri - Communauté de communes du sénonais Copyright © All rights reserved.
Failed to retrieve file