Home

Hierarchical Storage Management for OpenVMS Guide to Operations

image

Contents

1. Logical name MDMSS DATABASE SERVERS include this nodes DECnet Phase IV node name Logical name MDMSS PREV3 SUPPORT is set to TRUE to enable the SLS MDMS V2 support function in the new server Logical name MDMS VERSION3 is set to TRUE to direct ABS and or HSM to use the new MDMS VA interface If you had to change any of the logical name settings above you have to restart the server using ESYSS STARTUP MDMS STARTUP RESTART You can type the server s logfile to verify that the DECnet listener for object SLSSDB has been successfully started Step 5 To support load unload and operator requests from old SLS MDMS clients you have to edit SYSSMANAGER TAPESTART COM and change the line which defines DB NODES to read like this DB NODES This prevents a SLS MDMS V2 server from starting the old database server process SLS TAPMGRDB Step 6 Start SLS MDMS V2 with S YS STARTUP SLS STARTUP Use a STORAGE VOLUME command to test that you can access the new MDMS V4 database Step 7 Now you are ready to start up ABS HSM or SLS Note that no change is necessary for nodes running SLS MDMS V2 as a database client For any old SLS MDMS client in your domain you have to add its node object to the MDMS V4 database In V4 all nodes of an MDMS domain have to be registered see command MDMS CREATE NODE These clients can connect to a new MDMS DB server as soon as the new server is up and running and has been added to the new database
2. QUICKER DATA RETRIEVAL HIGHER COST PER MEGABYTE 1 1 3 Storage Management Planning VOLUME OF DATA NEARLINE OFFLINE DEVICE DEVICE SLOWER DATA RETRIEVAL LOWER COST PER MEGABYTE CXO 4355A MC Your storage management plan should allow you to cost effectively place your data on those devices best suited to meet your cost and access requirements This plan should include placing your active data on the most responsive devices in your system placing your dormant data on less responsive devices and placing your inactive data on the highest capacity devices File activity and associated data storage are summarized in Table 1 1 Table 1 1 File Activity and Data Storage File Activity Storage Type HSM Storage Classification Active Data that is frequently accessed and needs the fastest response time Dormant Data that is accessed less frequently and for which response time is less important Online Immediately available space that the system uses to store the active data This is usually mounted magnetic disk space but this data type could include other kinds of fast access devices Nearline Storage space that requires some intervention to be made available to the system including access by robotic library devices Access is fairly fast but takes longer than from an online device Primary Online storage managed through the OpenVMS file system HSM moves these files to shelf storage when t
3. Protection Make sure this is the default protection that you want assigned to volumes that you do not specify a protection for Maximum scratch time Make sure this is the default maximum scratch time you want for volumes in your domain This could be changed each time that you convert the TAPESTART COM file on a new node Scratch time Make sure this is the default scratch time you want for volumes in your domain This could be changed each time that you con vert the TAPESTART COM file on a new node Transition time Make sure this is the default transition time you want for vol umes in your domain This could be changed each time that you convert the TAPESTART COM file on a new node Network time out Make sure this is the network timeout you want This could be changed each time that you convert the TAPESTART COM file on a new node Location Description Make sure this is the description you want for this location This attribute is not filled in during the conversion program Spaces The conversion program cannot fill in spaces so make sure you set the spaces attribute In location The conversion program cannot fill in this attribute so make sure if this location is in a higher level location you set this attribute Converting SLS MDMS V2 X to MDMS V4 D 6 Converting SLS MDMS V2 X to MDMS V4 D 2 Things to Look for After the Conversion Table D 2 Things to Look for
4. 1 10 HSM Cache Cache is shelf storage comprised of one or more online or nearline storage devices These devices can include magnetic and magneto optical disks You can use any number of devices for the cache The cache temporarily stages shelved data between its primary online storage location and the nearline offline media used for shelf storage Cache is fully described in Section 2 8 Using a Cache Has Significant Advantages Using a cache greatly improves shelving performance because the time needed to complete the operation is only as long as it takes to copy a file to another disk The cache then can be Introduction to HSM 1 8 Introduction to HSM 1 10 HSM Cache flushed to a nearline or offline device at a later time when the shelving operation will have less impact on system performance Using Magneto Optical Devices as Cache Magneto optical MO devices make an ideal repository for shelved data because they cost less than magnetic disks but still provide excellent response time HSM supports MO devices as cache devices rather than nearline devices because the Open VMS M system sees them as sys tem mounted Files 11 devices This means you can define an MO device as temporary cache or as permanent nonflushing cache that functions as shelf storage 1 10 1 HSM Operations with Cache There are four HSM operations that involve the cache e Shelving e Preshelving e Unshelving e Flushing 1 10 2 Cache in the Shelving an
5. 955595959595955 OPCOM 6 JUN 13 55 18 39 III rom user HSMSSERVER on SYS001 HSM shelf server enabled on node SYS001 X 0 10 10 B Q o Hh This message is printed out when an HSM shelf server becomes enabled on a certain node This means that all tape operations are handled by this node from this point on This message is printed out at startup of the server node or when a node takes over as the shelf server after a fail ure Do not issue a REPLY to this message HSM Shutdown Message 2225 222 OPCOM 6 JUN 13 55 18 52 rom user HSMSSERVER on SYS001 HSM shelving facility shutdown on node SYS001 X o 10 10 Q o Hh This message indicates that HSM has been shut down with an SMU SHUTDOWN command Do not issue a REPLY to this message HSM Termination Message 95225 222 OPCOM 6 JUN 13 55 18 52 rom user HSMSSERVER on SYS001 HSM shelving facility terminated on node SYS001 X 0 10 u w Q o Hh This message indicates that HSM has terminated for some reason It immediately follows any shutdown message If it appears without a shutdown message then an error occurred Refer to the shelf handler error log to determine the cause of the error Do not issue a REPLY to this message Operator Activities in the HSM Environment 6 7 7 Solving Problems with HSM This chapter explains how to identify and correct potential HSM problems 7 1 Introduction to Troubleshoot
6. A node with either local tape drives or local jukeboxes which are accessed from new MDMS V4 servers need to have MDMS VA installed and running A node with either local tape drives or local jukeboxes which are accessed from old SLS MDMS V2 servers need to have SLS MDMS VA running If access is required from both old and new servers then both versions need to be started on that node But in all cases DB NODES in all TAPESTART COM needs to be empty D 3 3 Reverting to SLS MDMS V2 MDMS VA allows you to convert the MDMS V4 volume database back to the SLS MDMS V2 TAPEMAST DAT file Any changes you did under MDMS V4 for pool and magazine objects need to be entered manually into V2 database Any changes you did under MDMS VA for drive jukebox or media type objects need to be updated in file TAPESTART COM The following steps need to be performed to revert back to a SLS MDMS V2 only domain Step 1 Shut down all applications using MDMS i e ABS HSM and SLS Step 2 Shut down all MDMS V4 servers in the domain and deassign system logical name MDMS VERSION3 on all nodes Step 3 Convert the new database back to the old database files Refer to section Converting SLS MDMS V2 Symbols and Database for instructions Step 4 Edit TAPESTART COM on all SLS MDMS nodes which should be database servers again Add the node s DECnet name to the symbol DB NODES Converting SLS MDMS V2 X to MDMS V4 D 10 Converting SLS MDMS V2 X to MDMS V4 D 4 C
7. CompacTape III CompacTape III CompacTape III TZ85 DRIVE TZ86 DRIVE TZ87 DRIVE TZ88 DRIVE CXO6754A This task can also be performed to add new volumes into management that can use managed drives and jukeboxes Table 13 1 Creating Devices and Volumes Step Action Create Jukebox and or Drive 1 Verify that the drive is on line and available SHOW DEVICE device name FULL Verify that the jukebox is online and available SSHOW DEVICE device name FULL 2 If you are connecting the jukebox or drive to a set of nodes which do not already share access to a common device then create a group object record SMDMS CREATE GROUP group name NODES node 1 3 If you are configuring a new jukebox into management then create a jukebox object record SMDMS CREATE JUKEBOX jukebox name DISABLED 4 If the drive you are configuring uses a new type of volume then create a media type object record SMDMS CREATE MEDIA TYPE media type 5 If you need to identify a new place for volume storage near the drive then create a location object record SMDMS CREATE LOCATION location name MDMS High Level Tasks 13 2 MDMS High Level Tasks 13 1 Creating Jukeboxes Drives and Volumes Table 13 1 Creating Devices and Volumes Step Action 6 Create the drive object record for the drive you are configuring into MDMS management MDMS CREATE DRIVE drive name
8. Magazine Initialization Basic Mode only At initialization time and when a new magazine is loaded HSM performs an inventory on the magazine Each volume in the magazine is loaded and mounted and its label is noted This information is stored in a device database which has multiple magazine entries This operation takes 20 to 30 minutes during which time the drive cannot be used HP highly recommends that volumes are not shuffled around in a magazine or moved to differ ent magazines after initial configuration because this will cause HSM to perform another inven tory on the magazine If the shelf handler discovers an inventory error it loads all volumes and retakes inventory on the magazine A new magazine entry is entered into the database In addition all existing magazine entries containing any of the volumes are then invalidated Understanding HSM Concepts 2 13 Understanding HSM Concepts 2 6 Device Under ideal circumstances inventory on any magazine should have to be done only once regardless of system crashes and other disruptions Once inventory is taken the shelf handler uses random access load and unload commands to load the appropriate volumes into the drive The device database is updated on all load and unload operations so that the state of the drive and magazine is known at all times even after system disruptions If an inventory detects an illegal configuration with duplicate tape labels the shelf handler
9. Review these object records Group Drive Jukebox Pool Authorized Default Users Jukebox Drive Jukebox Magazine MDMS sets the attribute Volume MDMS sets the attribute Location Domain Offsite Onsite Location Location Magazine Offsite Onsite Location Node Volume Offsite Onsite Location Media Type Domain Drive Volume Node Drive Group Jukebox Pool Authorized Default Users Pool Volume 9 6 10 Reviewing DCL Command Procedures for References to Deleted Objects When you delete an object record review any DCL command procedures for commands that reference those objects Other than the MDMS CREATE SET SHOW and DELETE commands for a given object record Table 9 4 shows which commands to check These commands could have references to the deleted object record Basic MDMS Operations 9 24 Basic MDMS Operations 9 6 Creating Modifying and Deleting Object Records Change references to deleted object records from DCL commands If you leave a reference to a deleted object record in a DCL command an operation with MDMS could fail Table 9 4 Reviewing DCL Commands for References to Deleted Objects When you delete Review these DCL commands Drive MDMS ALLOCATE DRIVE MDMS DEALLOCATE DRIVE MDMS LOAD DRIVE MDMS LOAD VOLUME MDMS UNLOAD DRIVE Group MDMS ALLOCATE DRIVE MDMS CREATE DRIVE MDMS CREATE JUKEBOX MDMS SET DRIVE MDMS SET JUKEBOX Jukebox MDMS ALLOCATE DRIVE MDMS ALLOCA
10. User Action Check spelling of the drive name and retry or create the drive object in the database ENVUNDEFINED referenced environment s AZ undefined Explanation When creating or modifying a valid object the object s record contains a reference to a environ ment name that does not exist One or more of the specified environments may be undefined User Action Check spelling of the environment names and retry or create the environment objects in the database ERROR error Explanation A general internal MDMS error occurred User Action Provide copies of the MDMS command issued the database files and the server s logfile for fur ther analysis EXECOMFAIL execute command failed see log file for more explanation Explanation While trying to execute a command during scheduled activities a system service called failed User Action Check the log file for the failure code from the system server call EXIT MDMS server exiting with fatal error restarting Explanation The MDMS server has encountered a fatal error and is exiting The server will be restarted User Action Report incident to HP EXSCHED internal schedules are inoperable external scheduler in use MDMS Messages C 9 MDMS Messages Explanation You have created or modified an MDMS schedule object This is allowed but since the domain scheduler type is set up to an external scheduler product this schedule object will never be ex
11. cece ee 3 3 3 1 8 Working with Caches ram Lipi RUBER EDU e MOAI ia ae 3 3 3 1 9 Enabling and Disabling a Policy Definition 0 00 0 cece 3 4 3 1 10 Scheduling Policy Executions 0 0 I 3 4 32 Implementing Shelving Policies 0 0 ce cece eee ee 3 5 3 2 1 Determining the Disk Volumes 0 0 e enn ees 3 5 3 2 2 Creating Volume Definitions 0 0 0 2 coe e eee eens 3 5 3 2 3 Determining File Selection Criteria 0 0 0 ccc eee eee 3 6 3 2 4 Creating Policy Definitions ae ere in a E a E E E a c e 3 6 3 2 5 Using Expiration Dates uri Ang e a A a 3 7 3 2 6 Creating Schedule Definitions lee n 3 8 32 7 Enabling Preventive Poly cce ere RUE ORLA RRR DOR CAES e 3 8 4 Using HSM 4 1 What the User Sees in an HSM Environment o ooooooo he 4 1 4 1 1 Identifying Shelved Data using the DIRECTORY Command 00000 4 1 4 1 1 1 DIRECTORY FULEL ee eR UU edente tease Ra ate eae eR 4 2 4 1 1 2 DIRECTORY FULL for Unpopulated Index Files 0 0 0 0 esee 4 2 4 1 1 3 DIRECTORY FULL for Populated Indexed Files llle 4 3 4 1 1 4 DIRECTORY SHELVED STATE eee aee e ye m e IR er es 4 4 4 1 1 5 DIRECTORJX SIZE o tcc Ct eu cb eda at tau 4 4 4 1 2 Accessing Files 2e nx bee e e peek E RE RE a ee NER SEES 4 5 4 1 3 Decreasing Volume Full and Disk Quota Exceeded Errors 0 0 0 0 000 eee eee eese 4 5 4 1 4 Viewing Messages vele e A UA DENIS ee See Se Den
12. e As an alternative shelf using magneto optical devices or excess online disk devices A cache used forthis purposes usually uses the entire device for caching but does not flush the files to nearline or offline storage Optionally additional copies can be made to near line or offline archive classes at shelving time using the BACKUP qualifier When using a cache as a permanent shelf you cannot also use it for staging 2 8 1 Advantages and Disadvantages of Using a Cache By using a cache you gain speed for shelving operations by dedicating additional online storage for the HSM system With online cache a shelving operation can complete in the time it takes for the files to be copied to another disk The archive backup system is not needed immediately However you lose online storage capac ity otherwise dedicated to applications and users This is the trade off to consider when using online cache If your system includes some older slower online drives then online cache pro vides multilevel hierarchical storage management All cache devices must be system mounted and accessible to all nodes in the cluster except when the Catalog Server facility option is enabled In this case the cache devices need only be system mounted and accessible to all designated shelf server nodes 2 8 2 Cache Flushing Another major advantage to using online cache is that flush operations to nearline offline storage can be performed at regular intervals
13. sleleeeeee I 1 15 111 2 Understanding HSM Concepts 2 1 The HSM Environment 2 1 2 2 The HSM B acility o rere A A A a ERREUR ts 2 2 2 2 1 HSM Mode a Ud dao 2 2 2 2 2 HSM Operations velorio pia Eger 2 3 2 2 3 Shelf SefVers it c etu ede Paired A ed eae d eoo oo RSS 2 3 2 2 4 Event LoBgIlg oE OaE ET ETE E US RUD exce re Rune RR NUR Re USE RR LR A 2 4 2 3 Whe Selb sis ence A SR ID A ll el es 2 5 2 3 1 Using Multiple Shelf Copies irren riss II lh 2 5 2 3 2 Defining Shelf Copies 24 eoe enter emet re et e EE ET 2 6 2 3 2 1 Archive Lists and Restore Archive Lists leeeeeeeeeee e 2 6 2 3 2 2 Primary and Secondary Archive Classes llsllleeee eee 2 7 2 3 2 3 Multiple Shelf Copies osbesie iio ve ies 2 7 2 3 3 Shelving Operations eese eee eh hh he I m heme 2 8 2 3 4 Shelf Catalog zoo SA AAA EB ees 2 8 2 3 5 E v E aes WS Sect PSs SENE niue tel de ber oim es Ee reu 2 8 2 3 6 Number of Updates for Retention 0 0 cece cent eeees 2 8 2 4 HSM Basic Mode Archive Class 0 0 eee eet rererere 2 9 2 5 HSM Plus Mode Archive Class 0 0 cee I eee ee 2 10 2 06 DEVICE tie iS neat Te Beth eta aes te et Stak cere LE b dde 2 10 2 6 1 Sharing and Dedicating Devices 0 0 eee cee cnet eens 2 10 2 6 2 Device Operations ete ee at ate RN reed rede d des deus 2 11 2 6 3 Devices and Archive Classes 1 0 cece e te 2 12 2 6 4 Magazine Loaders for HSM Basic Mode 0 cece cette ee
14. CXO 4095A MC Table 5 2 HSM Policy Model Concept Definitions Concepts Definitions Maximum capacity The total online storage capacity you are allowed to occupy on an online disk volume This is a threshold for reactive shelving determined by the capacity of the online disk volume High water A value you define to automatically trigger mark the shelving process This is a threshold for reactive shelving that you determine Low water The shelving goal expressed in terms of a mark percentage of disk capacity Managing the HSM Environment 5 14 Managing the HSM Environment 5 11 Maintaining Shelving Policies Table 5 2 HSM Policy Model Concept Definitions Concepts Definitions Capacity latitude The capacity latitude is the range you create monitor and manage to make sure you are efficiently using your online storage resources Adjusting the limits of this latitude determines the operating efficiency of your system 5 11 1 2 Policy Governs the Shelving Process The policies you implement by creating and modifying the various HSM definitions govern the shelving process This example of reactive policy shows you how the HSM system reacts to a high water mark event returning the available capacity to the low water mark Figure 5 2 shows the policy model in the stages of the shelving process Table 5 3 lists the stages of the shelving process as they occur in response to reactive policy Figure 5 2 1 SY
15. HSM Plus mode provides the following functionality and features Complete HSM functionality for medium to large customer environments that use large tape jukeboxes and for locations that already have the MDMS or SLS software installed Support for large capacity nearline devices that support multiple terabytes of data such as the TL820 and StorageTek silos Introduction to HSM 1 11 Introduction to HSM 1 14 Media Types for HSM Basic Mode e Common media management with other OpenVMS storage management products through the MDMS software e Device and media management support provided through the MDMS command line and menu interfaces this requires a more complex configuration process than for HSM Basic mode e Support of up to 9999 archive classes for data reliability No fixed naming conventions for HSM tape volumes the Storage Administrator controls volume names through MDMS e Tape device support within the cluster the shelf server ity to all tape devices within the cluster nodes do not require direct visibil e Support for remote tape devices those that are not directly connected within the cluster through the Remote Device Facility RDF portion of MDMS HSM Mode Comparison Table 1 5 identifies the functionality HSM for OpenVMS provides and which mode pro vides it Table 1 5 HSM Basic and Plus Functionality Function Basic Plus OpenVMS Versions 6 1 6 2 6 1 6 2 Supported hardware platform
16. QTTI_RDEV RDSHOW CLIENT Result RDALLOCATED devices for pid 20200294 user DJ on node OMAHA Local logical Rmt node Remote device TAPEO1 MIAMI MIAMISMUCO DJ is the user name and OMAHA is the current RDF client node Remote Devices 14 2 Remote Devices 14 4 Monitoring and Tuning Network Performance 14 3 5 Showing Available Remote Devices on the Server Node The RDSHOW SERVER procedure shows the available devices on a specific SERVER node To execute this procedure enter the following command from any RDF client or RDF server node QTTI_RDEV RDSHOW SERVER MIAMI MIAMI is the name of the server node whose devices you want shown Result Available devices on node MIAMI Name Status Characteristics Comments MIAMISMSAO in use msa0 by pid 20200246 user CATHY local MIAMISMUAO in use mua0 by pid 202001B6 user CATHY on node OMAHA MIAMISMUBO free mub0 MIAMISMUCO in use muco by pid 2020014C user DJ on node OMAHA This RDSHOW SERVER command shows any available devices on the server node MIAMI including any device characteristics In addition each allocated device shows the process PID username and RDF client node name The text local is shown if the device is locally allocated 14 3 6 Showing All Remote Devices Allocated on the RDF Client Node To show all allocated remote devices on an RDF client node enter the following command from the RDF client node QTTI_RDEV RDSHOW DEVICES
17. Table 9 1 Reviewing and Setting MDMS Rights Step Action 1 Show the domain object record values for each high level right e For all system users examine the default rights attribute For MDMS operators examine the operator rights attribute e For MDMS users examine the user rights attribute Review the low level rights associated with each high level right If you have questions about actions view the list of low level rights and the actions they enable Example SMDMS SHOW DOMAIN FULL 2 If the low level rights associated with the high level right are not adequate for a class of user then add appropriate rights If the low level rights associated with the high level right enable inappropriate options for a class of user then remove the inappropriate rights Example SMDMS SET DOMAIN OPERATOR RIGHTS MDMS SET PROTECTED ADD or SMDMS SET DOMAIN USER RIGHTS MDMS ASSIST REMOVE 3 If you do not want all system users to have implicit access to MDMS operations then negate the domain object record default rights attribute MDMS SET DOMAIN NODEFAULT_RIGHTS By default a user with the OpenVMS SYSPRV privilege is granted all MDMS rights If you wish to disable this feature disable the SYSPRV privilege in the domain record MDMS SET DOMAIN NOSYSPRV Basic MDMS Operations 9 20 Basic MDMS Operations 9 6 Creating Modifying and Deleting Object Records Table 9 1 Reviewing and Setting MDMS
18. The domain attribute ABS RIGHTS controls whether a user having certain pre V4 0B ABS rights can map these to MDMS rights for security purposes see Chapter 5 Security for more information about rights Setting the attribute allows the mapping and setting the attribute to false disallows the mapping 10 2 2 Application Rights The right MDMS APPLICATION RIGHTS is a high level right that maps to a set of low level rights suitable for MDMS applications for example ABS and HSM Normally these rights should not be changed or at least not reduced from the default settings otherwise ABS and HSM may not function correctly You may add rights to application rights if you have your own MDMS applications or command procedures The ABS and MDMS SERVER accounts should have MDMS APPLICATION RIGHTS granted in the User Authorization File 10 2 3 Check Access The check access attribute determines if access controls are checked in the domain MDMS uses two forms of security Rights and Access Control Rights checking is a task oriented form of security and is always performed However access control is an object oriented form of security and can be optionally enabled or disabled with this attribute Setting Check Access enables access control checking Clearing Check Access disables access control checking even if there are objects with access control entries 10 2 4 Deallocate State When a volume is deallocated after its data has expired it may go in
19. The specified magazine does not exist User Action Check spelling or create magazine as needed NOSUCHMEDIATYPE specified media type does not exist Explanation The specified media type does not exist MDMS Messages C 35 MDMS Messages User Action Check spelling or create media type as needed NOSUCHNODE specified node does not exist Explanation The specified node does not exist User Action Check spelling or create node as needed NOSUCHOBJECT specified object does not exist Explanation The specified object does not exist User Action Check spelling or create the object as needed NOSUCHPOOL specified pool does not exist Explanation The specified pool does not exist User Action Check spelling or create pool as needed NOSUCHREQUESTID specified request does not exist Explanation The specified request does not exist on the system User Action Check the request id again and re enter if incorrect NOSUCHUSER no such user on system Explanation The username specified in the command does not exist User Action Check spelling of the username and re enter NOSUCHVOLUME specified volume s do not exist Explanation The specified volume or volumes do not exist User Action Check spelling or create volume s as needed MDMS Messages C 36 MDMS Messages NOSVRACCOUNT username AZ does not exist Explanation The server cannot startup because the username MD
20. Unshelving operation disabled SMU SET SHELF HSM CommandReference on shelf ENABLE UNSHELVE Guide Unshelving operation disabled SMU SET VOLUME HSM Command Reference on volume ENABLE UNSHELVE Guide Cannot unshelve file insuffi cient privilege Cannot unshelve file inconsis tent state Cannot unshelve file access information lost Cannot unshelve file catalog or catalog entry missing Ctrl Y does not cancel unshelve operation Device full on unshelve Exceeded quota on unshelve Cache problems during unshelv ing Offline device problems during unshelving Must have read access or GRP PRV READALL or BYPASS privilege UNSHELVE OVERRIDE but use with caution SMU LOCATE and manually recover See Section 7 17 UNSHELVE CANCEL Purge delete shelve some files or run HSM policy and retry Purge delete shelve some files of the same owner as the shelved file or run HSM policy and retry See Section 7 10 See Section 7 12 Section 7 2 5 HSM Command Reference Guide HSM Command Reference Guide Solving Problems with HSM 7 20 Solving Problems with HSM 7 15 Policy Problems Table 7 15 Unshelving Problems Problem Solution Reference Magazine loader problems dur See Section 7 13 ing unshelving 7 15 Policy Problems HSM policies are designed to automatically shelve files based on triggers initiated by online disk events high water marks or scheduled operation All prob
21. User Action Report the incident to HP SCHEDNOJOBEXISTS no job exists was returned from a scheduled job Explanation No job exists was returned from a scheduled job User Action Report the incident to HP SCHEDNOJOBNUM no job number was returned from a scheduled job MDMS Messages C 42 MDMS Messages Explanation No job number was returned from a scheduled job User Action Report the incident to HP SCHEDNOJOBSTART no job start time was returned from a scheduled job Explanation No job start time was returned from a scheduled job User Action Report the incident to HP SCHEDNOJOBSTATUS no job status was returned from a scheduled job Explanation No job status was returned from a scheduled job User Action Report the incident to HP SCHEDNOSUCHJOB failed to find a scheduling job Explanation MDMS failed to find a scheduling job User Action Report the incident to HP SCHEDSHOWERR failed to show a scheduling job Explanation MDMS failed to show a scheduling job User Action Report the incident to HP SCHEDSYSTEMERR failed to access the internal scheduler queue Explanation An MDMS call to a system service failed in the scheduler functions User Action Report the incident to HP SCHEDULECONFL schedule qualifier and novolume qualifier are incompatible Explanation The SCHEDULE and NOVOLUME qualifiers are incompatible for this command MDMS Messages C 43 MDMS Messages
22. Using the default authorization of all nodes is acceptable if the above conditions are met and all your nodes have similar capabilities If you operate a cluster with a few large systems and many satellite workstations restricting shelf server operations to the large systems provides much better performance for all cluster users Defining specific shelf servers is highly recommended in this case Catalog Server HSM gives you the option of directing all HSM operations and all catalog updates through the shelf server by enabling the Catalog Server option With this option all cache operations and catalog updates are performed by the shelf server node in a similar manner to tape operations There are two main reasons you may want to enable this feature If you choose to protect your catalogs using RMS after image Journaling enabling the cata log server allows you to purchase an RMS Journaling license only for the eligible server nodes Otherwise it would be required on all nodes in the cluster If you are using magneto optical cache devices as a permanent shelf the catalog server option allows you to mount the JB platters on only the eligible shelf server nodes This greatly speeds system reboots The downside of enabling the catalog server option is that caching speed is somewhat reduced due to extra intracluster communications and possible delays in shelf server response time 2 2 4 Event Logging HSM provides four event log files
23. VOLINDRV volume is currently in a drive Explanation When allocating a volume the volume is either moving or in a drive and nopreferred was speci fied User Action Wait for the volume to be moved or unloaded or use the preferred option VOLINJUKE volume is in a jukebox Explanation You attempted load a volume that is currently in a jukebox into a drive that is not in the jukebox User Action Load the volume into a drive within the current jukebox or check the jukebox name for the drive VOLINSET volume is already bound to a volume set MDMS Messages C 50 MDMS Messages Explanation You cannot bind this volume because it is already in a volume set and is not the first volume in the set User Action Use another volume or specify the first volume in the volume set VOLLOST volume location is unknown Explanation The volume s location is unknown User Action Check if the volume s placement is in a magazine and if so if the magazine is defined If not create the magazine Also check the magazine s placement VOLMOVE volume cannot be loaded but can be moved to jukebox or drive Explanation The volume is not currently in a placement where it can be loaded but can be moved there User Action Move the volume to the drive or use the automatic move option on the load and retry VOLMOVING volume is currently being moved Explanation In a move load or unload command the specified
24. referenced jukebox AZ undefined Explanation When creating or modifying a valid object the object s record contains a reference to a jukebox name that does not exist User Action Check spelling of the jukebox name and retry or create the jukebox object in the database LOCATIONEXISTS specified location already exists Explanation The specified location already exists and cannot be created MDMS Messages C 23 MDMS Messages User Action Use a set command to modify the location or create a new location with a different name LOCUNDEFINED referenced location AZ undefined Explanation When creating or modifying a valid object the object s record contains a reference to a location name that does not exist User Action Check spelling of the location name and retry or create the location object in the database LOGRESET Log file AZ by AZ on node AZ Explanation The server logfile has been closed and a new version has been created by a user User Action None MAGAZINEEXISTS specified magazine already exists Explanation The specified magazine already exists and cannot becreated User Action Use a set command to modify the magazine or create a new magazine with a different name MAGUNDEFINED referenced magazine AZ undefined Explanation When creating or modifying a valid object the object s record contains a reference to a magazine name that does not exist User Action Chec
25. 14 1 0 S 1SDKB500 ANALYZE_TEST STATUS RPT 1 Stored in catalog as FID 13 1 0 BOGUSSDEVICE1 ANALYZE TEST STATUS RPT 1 Invalid HSM metadata found for File 15 1 0 1SDKB500 ANALYZE_TEST LOGIN COM 1 Stored in catalog as FID 12 1 0 SISDKB500 ANALYZE TEST LOGIN COM 1 Invalid HSM metadata found for File 16 1 0 SISDKB500 ANALYZE TEST O4 RESULTS TXT 1 No catalog entry found file not repairable Invalid HSM metadata found for File 17 1 0 1SDKB500 ANALYZE_TEST ANALYSIS DAT 1 File 18 1 0 1SDKB500 ANALYZE_TEST RECIPE MEM 1 Revision date mismatch Current 9 JUL 1999 16 45 39 37 Catalog 10 JUL 1999 15 54 21 74 File 19 1 0 S 1SDKB500 ANALYZE_TEST MAIL SAV 1 Stored in catalog as FID 19 1 0 BOGUSSDEVICE1 ANALYZE_TEST MAIL SAV 1 SMU completed scan for shelved files on disk volume _ SMU I ERRORS 6 error s detected 0 error s repaired Example of the ANALYZE Command with Default Confirmation SMU ANALYZE REPAIR DKB500 SMU I PROCESSING processing input device DKB500 SMU I scanning for shelved files on disk volume 1 DKB500 File 14 1 0 1 DKB500 ANALYZE_TEST STATUS RPT 1 Stored in catalog as FID 13 1 0 BOGUSSDEVICEI ANALYZE TEST STATUS RPT 1 File entry repaired 1 repairs made Invalid HSM metadata found for File 15 1 0 S IS DKB500 ANALYZE TEST LOGIN COM 1 Managing the HSM Environment 5 26 Managing the HSM Environment 5 16 Catalog
26. 6 7 1 Unavailable DIVER 6 6 6 7 2 Reservation Stalled rere a e A eus 6 6 6 7 3 Wrong Tape Label ns ta Baise ech Re AA A AA E 6 7 vil 7 8 9 viii 6 8 Informational Operator Messages o o oooooooror e he 6 7 Solving Problems with HSM 7 1 Introduction to Troubleshooting oooooocooorcrnr hh m ern 7 1 1 2 Troubleshooting Tools tia A A A e tme 7 2 7 2 1 Startup Logs 5o Sor Rr ene OE beue eee e ede e seus 7 2 7 2 2 After a problem occurs the first things you should check are the event logs 7 3 1 23 ACU VIP EOB eet e de Sah U 7 3 7 2 4 SMU LOCATE ocv se sabes leans andes BUS iub tede ede ean e US ERIT PERSE Re 7 3 TERS UNSHELVE OVERRIDE RR en ee ee Ee ERA Pese bed eds 7 4 7 2 6 SMU RANK rue E A OE RUBENS IMS 7 4 7 2 7 SMU SET and SHOW Commands 0 0 cence ete ee 7 4 7 2 8 MDMS Tools for HSM Plus Mode 0 0 0 eee ete eet eee 7 5 73 Installation Problems sodes Std ea HA Se aed bale See thee dete dees estes 7 5 7 4 HSM Startup Problems ceca ees A A ee S 7 6 7 4 1 SMU Does Not Run cio tdi a a oi A EAS 7 6 7 4 2 The Shelf Handler Does Not Start Up sseseeeeeeeee cence eee 7 6 7 4 3 Policy Execution Process Does Not Start Up 20 eee cee cece 7 8 7 4 4 HSM Does Not Shut Down tiressi meteta EAEE e I e 7 8 7 4 5 Shelving and SMU Commands Do Not Work seeeeeeseeeeee e 7 9 Fo Mass SHELVING ios ie exte ppeEsetbrR A Hebe tense De oS Ma oR E 7 9
27. A repeated fatal error in the shelf handler has been detected on a certain class of operations Please refer to the SHP error log for detailed information and report the prob lem to HP Since the fatal error continually repeats HSM disabled the class of operation causing the problem so that other operations might proceed After fixing the problem you can re enable all operations using SMU SET FACILITY REENABLE SSHELVE W ERROR error shelving file filename Explanation This warning message alerts you than an error was encountered while trying to shelve the file There may be an accompanying error message that gives more informa tion about any failure privileges communications failure etc Also check the SHP error log for more information about the failure SSHELVE F FATAL fatal error condition detected Explanation This failure message alerts you that a fatal error condition was encountered while shelving a file Please check the SHP error log for more information SSHELVE F FATAL_P fatal error condition detected Explanation An unexpected error was encountered while parsing processing a confirma tion action Please see HELP or the reference documentation for valid responses SSHELVE F INCONSIST internal inconsistency detected Explanation SMU was unable to generate a request for the shelf handler This could be caused by an insufficient memory condition SSHELVE F INTERNAL internal error detected code value Explanation T
28. Also verify that the config uration file is accessible SMU E SHELF REFERR shelf is referenced by one or more volumes Explanation For SMU SET SHELF an attempt was made to delete a shelf that has volume references Use SMU SET VOLUME to change the shelf assignment and retry the com mand SMU E SHELF SMIP shelf split merge is in process on shelf shelf name Explanation For SMU SET SHELF a delete was requested while a split merge is in progress on either the current shelf or the default shelf For SMU SET VOLUME SHELF an update request was made to use a shelf where a split merge is in progress or the split merge is in progress on the shelf assigned to the default volume Retry the command later SMU I SHELF UPDATED shelf shelf name updated Explanation The shelf was successfully updated SMU E SHELF WRITERR error writing shelf definition shelf definition name Explanation For SMU SET SHELF an error was encountered while trying to access the split merge lock or an unexpected error was encountered while trying to add or update a shelf definition There may be an accompanying message that gives more information about any failure Please check the equivalence name of HHM MANAGER and redefine as needed Also verify that the configuration file is accessible SMU W SHELFUPDERR shelf handler process was unable to update information Explanation This is a generic companion message that is displayed when an error is returned f
29. CACHE BLOCK 0 BACKUP NOINTERVAL HIGHWATER_MARK 100 3 1 9 Enabling and Disabling a Policy Definition You can enable or disable specific policy definitions IF You Wantto THEN Use Enable a policy definition SMU SET POLICY ENABLE Disable a policy definition SMU SET POLICY DISABLE Disabling a policy definition affects both primary and secondary policy as follows e Disabling a preventive policy causes the files on any disk volume scheduled for shelving with that policy to not be shelved with that policy If other policies scheduled for the disk volume are enabled they remain operable e The files on any disk volume subject to a make space request high water mark reached vol ume occupancy full or disk quota exceeded event are not shelved when the named policy is disabled 3 1 10 Scheduling Policy Executions Once you have defined and enabled preventive policies you may want to ensure they run only at particular times or according to some specific interval IF You Wantto THEN Use Schedule a policy to run immediately Schedule a policy to run after a specific time Schedule a policy to run according to a regular time interval Schedule a policy to run on a specific shelf server name SMU SET SCHEDULE AFTER SMU SET SCHEDULE AFTER time SMU SET SCHEDULE INTERVAL delta SMU SET SCHEDULE SERVER node Customizing the HSM Environment 3 4 Customizing the HSM Environment 3 2 Implementing Shelving
30. MDMS Messages C 29 MDMS Messages NOFIELDS no fields specified for report Explanation A REPORT VOLUME command was entered with no fields to select or display User Action Enter at least one field for the report NOINCLUDE selection attributes not set with no include data Explanation You specified one or more of the following attributes which are not valid unless an include spec ification is present DATA TYPE INCREMENTAL NODES GROUPS The save or restore object was updated but selection attributes were not set User Action These attributes are applicable only when an INCLUDE statement is present Re enter the com mand with an INCLUDE qualifier NOINCLUDES no include specification for selection Explanation A save or restore object had some selection attributes specified but no include file specification The following attributes require an include specification e Data type e Incremental e Groups e Nodes User Action Re enter the command with an include specification NOINTSCHED internal scheduling not enabled Explanation You attempted to create a schedule object but the domain s scheduler option is set to an external scheduler The MDMS schedule object is valid only with scheduler options INTERNAL EXTERNAL and SINGLE_SCHEDULER User Action Schedule your request using the specified external scheduler product and interface NOJUKEACC access to jukebox disallowed Explanat
31. Split merge operation 5 23 request disposition 5 23 System disk file 5 5 System files protection from shelving 5 1 System operating efficiency 5 15 Index 3
32. Understanding HSM Concepts 2 9 Policy 2 8 8 6 Delete and Modify File Action You can specify how the cache reacts when an online file that is shelved to the cache is deleted or if it is unshelved and modified You can choose that the file remains in the cache when these events occur or is deleted together with its associated catalog entries The former action is safer in that the cache copy can be used to recover the file data if it is erroneously deleted or modified However it also means that extraneous copies of obsolete data are retained in the cache which may eventually be flushed to tape When migrated to tape shelf options such as delete save time and number of updates can be used to purge any obsolete data during a repack operation 2 8 4 Optimizing Cache Usage The following guidelines on configuring the cache will provide optimal HSM performance for all users on the cluster e Set your cache size to be between 100 percent and 150 percent of the typical amount of data shelved within the flush interval For example if about 100 000 blocks of data are shelved daily and your flush interval is 24 hours then set your cache size at 150 000 blocks You can then expect that no shelving operations to the shelf archive classes will be needed until the cache is flushed e Distribute the total cache size across several online volumes with different sizes for each volume This enables you to use low usage disk volumes effectively and p
33. and requires the specification of the Library ACS and LSM identifiers Media Management 10 10 Media Management 10 5 Jukeboxes 10 5 11Nodes The nodes attribute contains a list of nodes that have direct access to the jukebox Direct access includes direct SCSI access access via a controller such as an HSJ70 and access via Fibre Channel TMSCP access to jukeboxes is not supported You can specify as many nodes as you wish in addition to groups of nodes in the groups attribute 10 5 12Robot For MRD controlled jukeboxes the robot name is the OpenVMS device name of the robot device Robot names normally fall into one of several formats e GKx0 or GKxn01 for direct connect SCSI n DUAnnn for access via an HSJ type controller 2 GGnx for Fibre Channel access If the jukebox is controlled by direct connect SCSI first option the device must be first loaded on the system with one of the following DCL commands Alpha MCR SYSMAN IO CONNECT GKxxx NOADAPTER DRIVER SYSSGKDRIVER EXE VAX MCR SYSGEN CONNECT GKxxx NOADAPTER DRIVER GKDRIVER and the device name must begin with GK 10 5 13Slot Count For MRD jukeboxes the slot count is simply the number of slots which can contain volumes in the jukebox Volumes reside in numbered slots when they are not in a drive Slots are numbered from 0 to slot count 1 Filling in this field is optional MDMS calculates the slot count by polling the jukebox firmware 10 5 14State
34. attribute is added as automatic reply EOUT NETWORK TIMEOUT different in different TAPE attribute to the domain object START COM files a line is added to the conflict file PROTECTION Adds the default protection to A line is added to the conflict file if the the domain object protection is changed QUICKLOAD When drives are created this A line is added to the conflict file if a drive s automatic reply is changed TAPE JUKEBOXES Creates a jukebox object for each jukebox in the list A line is added to the conflict file if a jukebox is already defined and any of the attributes change TAPEPURGE MAIL If defined adds the mail attribute to the domain object If the TAPEPURGE MAIL is different in different TAPESTART COM files a line is added to the conflict file also sets the OFFSITE LOCATION attribute in domain object TOPERS If defined adds the Opcom If the TOPERS symbol is different in class attribute to the domain different TAPESTART COM files a line object is added to the conflict file TRANS AGE If defined adds the transition If the TRANS AGE symbol is different time attribute to the domain in different TAPESTART COM files a object line is added to the conflict file VLT Creates a location object and If the object exists or is different than the offsite location attribute in the domain object a line is added to the conflict file This can happen when you have differ ent VLT symbol
35. hierarchy of objects belonging to other objects or objects contained in other objects The left side of the screen displays most of the object classes which contain other objects the exceptions selections schedules and volumes which have no sub objects You can begin the hierarchical navigation at any level and all sub levels can be displayed For example starting at jukebox you can view all objects that reside in a jukebox Drives Mag azines and Volumes If you then click on Drives you will see all drives in this jukebox If you then select a drive and click on it you can see the volume in the drive If your domain is sufficiently complex you might want to expand the left side of the screen by using the right arrow between the left and right screen You can then view the entire hierarchy of the domain Basic MDMS Operations 9 11 Basic MDMS Operations 9 4 Graphical User Interface Figure 9 4 Domain View Showing Expanded Relationships El MDMS View Moties RENONTAnce Taste vyizarde pa al NOMS Doran A Basic MDMS Operations 9 12 Basic MDMS Operations 9 4 Graphical User Interface 9 4 9 Performing Operations on Objects If you wish to perform an operation on an object for example to load a volume into a drive you should first display the object s attributes and operations screens Then select the desired operation tab on the right side of the screen For example to load a volume show the volu
36. just specify all possible media types to which the volume could relate Use the inherit option to identify a volume object record from which to inherit other vol ume attribute values Use the slots option to specify the range of slots occupied by the volumes to be managed If the jukebox does not have a vision system use the volume range and novision options 12 3 4 Managing Volume Pools To assist with accounting for volume use by data center clients MDMS provides features that allow you to divide the volumes you manage by creating volume pools and assigning volumes to them Figure 12 3 Pools and Volumes Allocated Allocate Deallocate Create Deallocate Unitialized Retain Transition Release Unavailable Available Unavailable CXO6756A Use MDMS to specify volume pools Set the volume pool options in ABS or HSM to specify that volumes be allocated from those pools for users as needed Figure 12 3 identifies the pools respective to a designated group of users Note that No Pool is for use by all users MDMS Management Operations 12 1 1 MDMS Management Operations 12 3 Serving Clients of Managed Media 12 3 4 1 Volume Pool Authorization The pool object record includes two attributes to assign pools to users authorized users and default users Set the authorized users list to include all users by node or group name who are allowed to allo cate volumes fro
37. may cause loss or overwriting of valid data The file may be unshelved using the UNSHELVE OVERRIDE qualifier which requires BYPASS privilege After unshelving the file it should be checked for data integrity especially with regards to being the right ver sion of the data HSM E INELIGPRESHLV file filename is ineligible for preshelving Explanation The file is ineligible for preshelving Reasons might include a SET FILE NOSHELVABLE operation on the file the file resides on an ineligible disk the file name begins with HSMS or the file is too large HSM E INELIGSHLV file filename is ineligible for shelving Explanation The file is ineligible for shelving Reasons might include a SET FILE NOSHELVABLE operation on the file the file resides on an ineligible disk the file name begins with HSMS or the file is too large SHSM E INELIGUNPRESHLV file filename is ineligible for unpreshelving Explanation The file is ineligible for unpreshelving because it is currently shelved The file must be unshelved first SHSM E INELIGUNSHLV file filename is ineligible for unshelving Explanation The file is ineligible for unshelving because of its type directory file file marked for delete or locked etc These should not normally be shelved in the first place SHSM E INELIGVOL volume is ineligible for HSM operations Explanation The volume is ineligible for HSM operations because of an SMU SET VOL UME DISABLE operation or is a remote v
38. that will be kept in the HSM subsystem This option applies to files that have been updated in place not new versions of files that have been created after an update New versions are controlled by online disk maintenance outside the scope of HSM Complete flexibility is applied to both options ranging from zero delete save time and no updates to indefinite delay and number of updates and anything in between The options apply to all preshelved and shelved files on all volumes in the shelf Repacking is normally applied to all volumes in an archive class However the system adminis trator can restrict the volumes being repacked by specifying them in a VOLUME qualifier If any of the specified volumes are part of a volume set all volumes in the volume set will be repacked Finally it may or may not be worth repacking a particular volume or volume set depending on the percentage of valid data on the volume For example if a volume contains 90 valid data the 10 bonus in space acquired by repacking the volume may not justify the effort of repack ing at least not yet As such the system administrator can apply a threshold percentage value of obsolete data that is used to determine whether to repack a particular volume or volume set The default threshold value is 50 A threshold value should only be applied when repacking to the same archive class When repacking to create a new archive class or replacing a shelved volume all valid files
39. what you entered NOCHANGESOBJ no attributes were changed for AZ AZ Explanation Your set command did not change any attributes in the database because the attributes you entered were already set to those values The message indicates which object was not changed User Action Double check your command and re enter if necessary Otherwise the database is already set to what you entered NOCHECK drive not accessible check not performed Explanation The specified drive could not be physically accessed and the label check was not performed The displayed attributes are taken from the database User Action Verify the VMS device name node name or group name in the drive object Check availability on system Verify MDMS is running on a remote node Determine the reason the drive was not accessible fix it and retry NODBACC no access to database server MDMS Messages C 26 MDMS Messages Explanation This server has no access to a database server User Action Verify the setting of logical name MDMSSDATABASE SERVERS Check each node listed using MDMS SHOW SERVER NODE for connectivity and database access status Check the servers logfiles for more information NODCSC DCSC not running Explanation DCSC has not been started User Action Execute command procedure SYS STARTUP DCSC STARTUP COM and retry command NODEDISABLED node disabled Explanation The server failed to start up because it is d
40. 11 5 MDMS SYSTARTUP COM Logical Assignments Logical Name Assignment MDMS DATABASE SERVERS List of all nodes that can run as the MDMS database server See Section 11 1 3 1 for more information MDMS ROOT Device and directory of MDMS files MDMS LOGFILE_LOCATION Device and directory of the MDMS log file See Section 11 1 3 2 for more information MDMS DATABASE LOCATION Device and directory of the MDMS database files All instal lations in any one domain must define this as a common location Section 11 1 1 identifies the MDMS database files and describes how they should be managed MDMS TCPIP SENDPORTS Range of ports for the node to use for out going connections The default range is for privileged ports 1 through 1023 MDMSS SUPPORT PRE V3 Support for SLS MDMS Version 2 9x clients The default value is FALSE If you need to support some systems run ning SLS MDMS Version 2 9x then set this value to TRUE 11 1 3 1 MDMS DATABASE SERVERS Identifies Domain Database Servers Of all the nodes in the MDMS domain you select those which can act as a database server Only one node at a time can be the database server Other nodes operating at the same time communi cate with the node acting as the database server In the event the server node fails another node operating in the domain can become the database server if it is listed in the MDMS DATABASE SERVERS logical MDMS Configuration 11 7 M
41. 5 16Topology 10 5 17Usage The topology attribute specifies the physical configuration of a certain type of jukebox when it is being used with magazines Topology is only useful when all of the following conditions are true e The jukebox is controlled by MRD e The jukebox is in the TL820 class that allows you to open the jukebox door and insert entire magazines e The jukebox is configured with towers faces and levels You specify the topology of the jukebox so that you can move magazines into and out of the jukebox by specifying a position rather than a start slot For each tower in the jukebox you specify the number of faces in the tower the number of lev els in each face and the number of slots in each level For TL820 class jukeboxes the typical values for each tower are 8 faces 2 or 3 levels per face and 11 slots per level The associated magazine contains 11 slots and fits into a position specified by tower face and level Other juke boxes may vary The usage attribute determines whether this jukebox is set up to use magazines and has two val ues Magazine The jukebox is configured to use magazines e Nomagazine The jukebox is not configured to use magazines You should only set usage to magazine if you plan to use MDMS magazine objects and move all the volumes in the magazines together An alternative is to move individual volumes separately even if they reside in a physical magazine in this case set usage to n
42. 5 5 1 12HSM Archive Repacking HSM provides the capability to repack shelf media ona per archive class basis optionally with selected volumes by copying valid shelf data to new media in the same or different archive classes deleted and obsolete files are not copied The old media can then be reused In addi ton the catalog entries of deleted and obsolete files are deleted The system administrator can specify a delay in deleting shelf data after an online delete and also the number of updates a file undergoes before a shelf copy is considered obsolete Refer to Section 5 13 for more detailed information Introduction to HSM 1 10 Introduction to HSM 1 13 HSM Software Modes 1 13HSM Software Modes HSM software operates in one of two modes HSM Basic mode Provides shelving preshelving and unshelving functionality using sim ple devices Digital Linear Tape DLT magazine loaders and 4mm DAT loaders HSM Plus mode Provides shelving preshelving and unshelving functionality using the full suite of devices supported through Media Device and Management Services for Open VMS MDMS including robotically controlled devices like TL820s and StorageTek silos Except for the media device and management configuration and support both modes operate identically Note MDMS software must be installed on your system before HSM operates in Plus mode MDMS software is available from various sources as an installable product In ad
43. 7 6 Shelving on System Disks 00 0 cece e 7 10 7 6 1 HSM Plus Mode MDMS Problems 000 cc cece eee tenet eens 7 11 7 7 HSM VMsScluster Problems ee a e o eee Il 7 12 7 8 Online Disk Problems seeds epe a eb ewe SEE Ree PEN 7 13 7 9 Cache Problems o EDS RANT RUM e A ESHRE A See was 7 14 7 10 Magneto Optical Device Problems 0 00 eee e etn eens 7 15 7 1 Offline Device Problelds x e EUER Rea We hh BS eS A ee bb e en ees 7 16 7 12 Magazine and Robotic Loader Problems 0 0 c cece eee eee nee ene e ne eae 7 17 7 13 Shelving Problems gom eh ter eee eee tret ed eet equi teu 7 19 T T4 Unshelving Problems sen ra as tee A E ADR e Eun E 7 20 TVS Poligy Problems tt esL d IR i eis e o Mi ELE REL eig 7 21 7 16 HSM System Elle Problems niei RR RERO e a a EEG ER 7 22 TAT HSM TAO eee ete bea ER RE te Re e n bo ne ea E d 7 23 7 17 1 OpenVMS Limit on File Headers lsleseeeeee III 7 23 7 17 2 Attempting to Cancel Execution of a Shelved File 1 2 0 0 0 cece eee eee 7 24 7 17 3 Automatic Unshelving of Files across a Network 0 00 cece cee eee 7 24 7 17 4 Opening and Deleting RMS Indexed Files 0 0 0 eA 7 24 What is MDMS 8 3 MDMS Objects oi A A OR ORA ERO RUE ESI AES 8 1 82 MDMS Interfaces e RS peret eee ebore ta Met ine c 8 2 Basic MDMS Operations 9 MDMS User Interfaces tt eec RD A ee tle a Ac A eR D EE 9 1 9 2 DEL Interface uz c ES SEIE EA MERE ER ERU U
44. A user disk quota exceeded event Only files owned by the user whose disk quota was exceeded are potential candidates for the file selection pro Cess 2 10Schedule To prevent storage problems you set up scheduled execution for preventive policies at regular intervals HSM provides the capability to schedule policy execution with the following attributes e Online volumes e Execution timing and interval e Server node 2 10 1 Online Volumes When you schedule a policy execution you specify the online volumes on which to apply the policy When setting up a schedule a separate entry is created for the policy execution for each volume The volume selection should be based on the goal of maintaining volume capacity between the low water mark and the high water mark at all times Thus you need to schedule policies to execute more often on those volumes on which files are frequently created or modi fied and less often on those volumes on which files are infrequently created or modified 2 10 2 Execution Timing and Interval Policies can be scheduled to execute at a certain time of day and at regular intervals HP recom mends you run nightly scheduled policy runs at an hour that does not conflict with high system activity or system backups Ideally the frequency of policy runs should coincide with the rate of new data creation on the specified volumes The preventive policy should be run prior to the vol ume reaching its high water mark c
45. CACHE commands See Chapter 3 for a tutorial in configuring HSM and the appendix in the Installation Guide for an example on how to set up a moderately complex configuration 7 2 8 MDMS Tools for HSM Plus Mode To verify the MDMS configuration and evaluate MDMS problems that affect HSM use the fol lowing MDMS commands e STORAGE SHOW DRIVE e STORAGE SHOW JUKEBOX e STORAGE SHOW MAGAZINE e STORAGE SHOW VOLUME e STORAGE REPORT For more information on these commands see the Media Device and Management Services for OpenVMS Guide to Operations 7 3 Installation Problems A number of problems can appear during the installation process VMSINSTAL displays failure messages as they occur If the installation fails you see the following message SVMSINSTAL E INSFAIL The installation of HSM V2 1 has failed Depending on the problem you may see additional messages that identify the problem Then you can take appropriate action to correct the problem Sometimes the problem does not show up until later in the installation process If the IVP fails you see this message The HSM V2 1 Installation Verification Procedure failed SVMSINSTAL E IVPFAIL The IVP for HSM V2 1 has failed Errors can occur during the installation if any of the following conditions exist e The operating system version is incorrect e Quotas necessary for successful installation are insufficient e System parameter values for successful installation are in
46. DECnet Fullname SMI BLD SMITH1 TCP IP Fullname SMITH1 SMI BLD COM 2501 2510 Disabled NO Database Server YES Location BLD1 COMPUTER ROOM Opcom Classes TAPES Transports DECNET TCPIP MDMS CREATE NODE SMITH2 DECnet node name DESCRIPTION ALPHA node on cluster ACCOUN DATABASE SERVER this node is a database server DECNET FULLNAME SMI BLD SMITH2 DECnet Plus name LOCATION BLD1 COMPUTER ROOM TCPIP FULLNAME SMITH2 SMI BLD COM TCP IP name TRANSPORT DECNET TCPIP TCPIP used by JAVA GUI and JONES MDMS SHOW NODE SMITH2 Node SMITH2 Description ALPHA node on cluster ACCOUN DECnet Fullname SMI BLD SMITH2 TCP IP Fullname SMITH2 SMI BLD COM 2501 2510 Disabled NO Database Server YES Location BLD1 COMPUTER ROOM Opcom Classes TAPES Transports DECNET TCPIP MDMS CREATE NODE SMITH3 DECnet node name DESCRIPTION VAX node on cluster ACCOUN DATABASE SERVER this node is a database server DECNET FULLNAME SMI BLD SMITH3 DECnet Plus name LOCATION BLD1 COMPUTER ROOM TCPIP FULLNAME CROP SMI BLD COM TCP IP name TRANSPORT DECNET TCPIP TCPIP used by JAVA GUI and JONES MDMS SHOW NODE SMITH3 Node SMITH3 Description VAX no DECnet Fullname SMI B TCP IP Fullname CROP S Disabled NO Database Server YES Location BLD1 C Opcom Classes TAPES Transports DECNET Sample Configuration of MDMS B 4 de on cluster ACCOUN LD SMITH3 MI BLD COM 2501 2510 OMPUTER ROOM TCP
47. DISABLED se Enable the drive and if you just added a jukebox enable it too MDMS SET DRIVE drive name ENABLED MDMS SET JUKEBOX jukebox name ENABLED 8 If you are adding new volumes into MDMS management then continue with Step 10 9 If you have added a new media type to complement a new type of drive and you plan to use managed volumes set the volumes to use the new media type SMDMS SET VOLUME MEDIA TYPE media type name Process New Volumes 10 Make sure all new volumes have labels 11 If the volumes you are processing are of a type you do not presently manage complete the actions in this step Otherwise continue with Step 12 Create a media type object record MDMS CREATE MEDIA TYPE media type If the drives you manage do not accept the new media type then set the drives to accept vol umes of the new media type MDMS SET DRIVE MEDIA TYPE media type 12 If you are using a jukebox with a vision system to create volume object records then continue with Step 13 Otherwise continue with Step 16 to create volume records Jukebox Inventory to Create Volume Object Records 13 If you use magazines in your operation then continue with this step Otherwise continue with Step 14 If you do not have a managed magazine that is compatible with the jukebox then create a magazine object record SMDMS CREATE MAGAZINE magazine name Place the volumes in the magazine Move the magazine into the jukebox SM
48. Description ScratchDate OffsiteLoc OnsiteLoc PoolName JukboxNa DriveName M 07 Jan 200 HSM Generated at Jan 8 2002 3 55 11 PM Save Help 9 4 12 Viewing MDMS Audit and Event Logging To examine past operations in MDMS you can use the event view to view the MDMS audit and event logfile There are five pre configured options and a fully flexible custom option to allow you to select what you wish to see from the MDMS logfile The five pre configured options all apply to the MDMS Database Server logfile and show all operations auditing and events for the following amounts of time before the current time e The last minute e The last 10 minutes e The last hour e The last 24 hours e The last 72 hours If you wish to see the logfile using other selection criteria you can use the Custom setting Byclicking on Custom a selection screen appears that allows you to select the entries to be displayed as follows Node selection You can choose the default of the DB server which contains the most com plete information or select a specific client node Note that request IDs are not supported on client nodes and nor is selection by low and high request IDs e Selection Options You can select a range of entries in the logfile to display by one of Elapsed time in minutes default of 60 minutes OR Before and or since dates specified as an absolute time OR Basic MDMS Operations
49. EEES E EEEE E EREE RAEE EES 1 7 1 5 4 Handling Duplicate Requests to Unshelve a File ooooooooooooconcoccorcr ee 1 7 1 6 The Preshelving Process 0 coves Lir Bises pads PEELE AOR ee MOR Eee ea a A Me DAN PIE PA 1 7 1 7 The Unpreshelving Process oe eet Sa Re OR UA eee EE ER e Eee Re RR 1 7 1 8 File Headers and Access Security 0 0 hte 1 8 L 9 HSM Hilesstate Diagram ti A A bk uc zu ee eG 1 8 1 10 HSM Cache z votessior Riu wa eee kd Seta ROR RF ESRB TNI B BRE ERE uS 1 8 1 10 1 HSM Operations with Cache o ooococococcoccoc I he 1 9 1 10 2 Cache in the Shelving and Preshelving Processes leleeeeeeeee nee 1 9 1 0 3 Unshelving from Cache o oo ooo oocooor e 1 9 130 4 Exceeding Cache Capacity o4 LiensssvRURRE aids ELE ORA a PRESE ER 1 10 1 10 5 Blushing Cache o yet Ee ER uen ew Oe ree IR ey ee Eie od 1 10 1 11 HSM Catalogs bari A RASEN Oke Oe NS eee ee Paes ENS EN AA es 1 10 1 12 HSM Archive Repacking cucuta BE RES nece uerb be heme ates 1 10 1 13 HSM Software Modes vicios e uc teed EE EERE RARE PAR PIN RR ERR Alte 1 11 1 13 1 HSM Basic Mode Functions ooooooooooco e e 1 11 1 3 3 HSM Plus Mode Functions 0 00 eI ERSA 1 11 1 14 Media Types for HSM Basic Mode oo o oocococco e e 1 12 TAS Device Support rem Re RI DICTRNU ae Rides OO Apaga 1 15 1 16 Online Devices Not Supported for HSM Operations 0 0 0 eee eh 1 15 1 17 HSM Support for Remote Operations
50. For policy execution to take place on the volume shelving must be enable Use the SMU SET VOLUME command to enable shelving for the volume HSM S PRESHELVED file filename preshelved Explanation When the NOTIFY qualifier is specified this message is displayed on a suc cessful completion of a preshelve operation The file data has been copied to the cache or the shelf but the file is still accessible online HSM E PSHLVERROR error preshelving file filename Explanation HSM encountered an error preshelving this file during policy execution This could be caused by such things as the file not being found possibly deleted prior to the shelving action or the device containing the file being unavailable Please check the SHP error log for more information on the failure SHSM W PSHLVOPINCOM preshelving operation incomplete for file filename Explanation HSM could not complete the preshelving operation for this file during policy execution Please check the SHP error log for more information on the failure HSM E QUOPOLDIS quota exceeded policy execution disabled on volume volu mename HSM Error Messages A 8 HSM Error Messages A 2 Shelf Handler Messages Explanation The policy execution process detected that quota exceeded policy events are currently disabled on this volume Use SMU SET VOLUME to enable SHSM I RECOVERSHLV inconsistent state found file shelved Explanation This message may be issued on recovery of a sh
51. I ARCHIVE DELETED archive id archive id deleted HSM Error Messages A 15 HSM Error Messages A 3 Shelf Management Utility Messages Explanation The archive class was successfully deleted SMU W ARCHIVE NF archive class archive class not found Explanation For SMU SET ARCHIVE DELETE the archive class was not found in the archive database Verify your configuration then retry the command SMU E ARCHIVE READERR error reading archive definition archive id Explanation For SMU SET ARCHIVE DELETE an unexpected error was encountered while trying to delete the archive class There may be an accompanying message that gives more information about any failure Please check the equivalence name of HSM MAN AGER and redefine as needed Also verify that the archive file is accessible SMU I ARCHIVE UPDATED archive id archive id updated Explanation The archive class was successfully updated SMU W ARCHUPDERR unable to update archive information archive information Explanation An error was encountered while trying to modify the archive class informa tion This could have been directly from a SMU SET ARCHIVE command or indirectly from a SMU SET DEVICE ARCHIVE command which may attempt to update the media type for the archive class There may be an accompanying message that gives more informa tion about any failure Please check your configuration the equivalence name of HSM MANAGER and redefine as needed Also verify that the archive f
52. If the volume does not exist load a scratch volume into the drive the scratch volume can can either have a blank label or a label that is not in the HSM format Enter a REPLY ABORT command to abort the operation If you load a volume into the drive you can optionally reply with a confirmation REPLY TO 2324 If you do not reply after loading a volume the mount completes and HSM proceeds anyway 6 2 3 Reinitialize Volume SSSL OPCOM 08 Jan 2003 14 25 46 05 2 2 Request 2324 from user HSMSSERVER on MYNODE Allow HSM to reinitialize volume TEST to HS0001 in drive 1 MUAO NOTE Previous contents of volume will be lost This message is displayed if you loaded a volume with a different label than the one requested Issue one of the following replies e REPLY TO message number if the volume can be safely re initialized and used by HSM REPLY ABORT message number if the volume contains useful data and HSM cannot use it This reply is required HSM will not proceed until the request is answered with one of the possi ble replies 6 2 4 Volume Initialization Confirmation 2 59 5259 559 5 OPCOM 30 MAY 14 25 46 05 959 5959 595955 Message from user HSMSSERVER on MYNODE Volume in drive 1 MUA0 has been re initialized to HS0001 Please place label HS0001 on volume when unloaded This message is a confirmation that HSM has reinitialized a volume label It serves as a reminder to place a physical volume label with the
53. If you set the SYSPRV attribute users with SYSPRV are assigned MDMS_ALL_RIGHTS which means they can perform any operation subject to access control checks Clearing SYSPRV gives users with SYSPRV no special rights Note If you wish to use the SYSPRV attribute from the MDMSView GUI the user s autho rization file must have SYSPRV defined as a privilege and a default privilege Having SETPRYV is not sufficient as there is no way to set the SYSPRV privilege from the GUI Media Management 10 4 Media Management 10 3 Drives 10 2 19Transition Time The domain default transition time is applied to volumes by default when they are deallocated into the transition state The transition time determines how long the volumes remain in the tran sition state before moving to the free state This attribute 1s used alongside the deallocation state attribute which determines the default state that volumes are deallocated into You can override the domain default transition time when you create modify or deallocate a volume 10 2 20User Rights 10 3 Drives 10 3 1 Access The right MDMS USER RIGHTS is a high level right that maps to a set of low level rights suitable for non privileged users that perform ABS or HSM operations The default set of user rights allow for user activities such as creating and manipulating their own volumes and loading and unloading those volumes into drives showing their volumes However you can add or remove low level
54. In Plus mode you can use nearline and offline devices that are e Onthe VMScluster system but not directly accessible to the shelf server e Ona VMScluster system that is physically remote from the shelf server through RDF and the SMU SET DEVICE REMOTE command Remote devices cannot be dedicated for HSM use Non remote devices can be shared or dedicated for HSM use If you set up a device for dedicated use HSM will keep a tape mounted in the device at all times in anticipation of the next opera tion With shared usage HSM dismounts and unloads the device within one minute of the last operation Except when you are using nearline devices exclusively tape operations are requested using OPCOM messages You should enable OPCOM classes CENTRAL and TAPES at all times to respond to such messages Table 7 12 shows problems that can occur with offline devices Solving Problems with HSM 7 16 Solving Problems with HSM 7 12 Magazine and Robotic Loader Problems Note In the reference column of a this table IG refers to the HSM Installation Guide When IG is not mentioned assume that the reference is to this HSM Guide to Operations Manual Table 7 12 Offline Device Problems Problem Solution Reference Tape operations hang device allocated to another user Tape operations hang no OPCOM messages Tape operations hang media offline or volume not software enabled Device not selected on node HSM Basic mode Devi
55. LOLA AO PEO ECON so det e Ee P ERRORS EATER RAUS DUROS a ed Vds 10 24 TOS A dC OUntets 6 con SS CERO A SR EE e e e tel 10 24 10 11 12 Allocate Vol me 3 eek ene SER REC Mr a CU ee edere ewe egre A 10 24 10 11 13 Allocate Volume s by Selection Criteria o ooooooococrcoocooncr eh 10 25 10 11 14 Deallocate Volume A A aetate e e CR EUNT TR AUTOR 10 25 I0 T PS Band Volume Lee a acetate SG ane Vct iis BRST OER bugis eli ket 10 26 TOL T216 Unbind Volume A RES e rep d ee RE Hee Me 10 26 10 11 17 Load Volume 2 ERR ERE te eben e rece en oc 10 27 10 11 18 nload Volume ie ERR ER ER e RR NU a DE b E s 10 27 10 11 19 Move Volume s iii a UE ted tiere eit p a ee n s 10 27 10 11 20 Initialize Volume s o oooooor e ar e 10 28 MDMS Configuration 11 1 The MDMS Management Domain oooor e eee 11 1 11 54 The MDMS Database tuvo te eer erp ee peer ve eec be es 11 2 11 1 1 1 Database Performante di A A Os SS IAS UR EDO STU ese dA goes 11 3 11 1 1 2 Database Safety cssc a tese is E ei UIS RR SIS 11 3 11 1 1 3 Moving the MDMS Database ssseleee I e 11 5 11 1 2 Th MDMS Process 5o RHET e e 3 Ee RR RE EP DUC PR i e res 11 6 11 1 2 1 Server Availability sair A UE E A Stes nse kal ae eke IUE 11 6 11 1 2 2 Th MDMS Account ji dace e b X RE EUR Ie EY veer ERE E T E EE 11 6 xi 12 xii 11 1 3 Th MDMS Start Up Pille x decree e e C E E Res 11 7 11 1 3 1 MDMSS DATABASE SERVERS Identifies Domain Database Se
56. Once in the jukebox volumes can only be loaded and unloaded relative to the slot in the magazine it occupies TL896 Example While using multiple TL896 jukebox towers you can treat the 11 slot bin packs as magazines The following command configures the topology of the TL896 jukebox as shown in Figure 11 4 for use with magazines MDMS CREATE JUKEBOX JUKE_1 TOPOLOGY TOWERS 0 1 2 FACES 8 8 8 LEVELS 3 3 2 SLOTS 11 11 11 Figure 11 4 Magazines 7 slot TZ887 magazine 11 slot TL820 bin pack CXO6749A 11 2 2 Summary of Drive and Jukebox Issues This section describes some of the management issues that involve both drives and jukeboxes 11 2 2 1 Enabling MDMS to Automatically Respond to Drive and Jukebox Requests Drive and jukebox object records both use the automatic load reply attribute to provide an addi tional level of automation When you set the automatic reply attribute to the affirmative MDMS will poll the drive or juke box for successful completion of an operator assisted operation for those operations where poll ing is possible For example MDMS can poll a drive determine that a volume is in the drive and cancel the associated OPCOM request to acknowledge a load Under these circumstances an operator need not reply to the OPCOM message after completing the load MDMS Configuration 11 18 MDMS Configuration 11 2 Configuring MDMS D
57. Policies 3 2 Implementing Shelving Policies After installing HSM you can consider then implement your own policies This section pro vides a series of tasks implementing both preventive and reactive policies The guidelines expressed in this section include the commands definitions and values that apply to each aspect of creating and implementing policy See HSM Command Reference Guide for a complete description of the commands used in this section 3 2 1 Determining the Disk Volumes Determine the disk volumes on which you want to manage storage capacity The following example commands are used to perform this task To Use This Command Determine names of online disk volumes and the SHOW DEVICE amount of capacity used RUN SYS SYSTEM AUTHORIZE UAF gt SHOW username Determine user disk quotas and shelving option in user processes 3 2 2 Creating Volume Definitions Create volume definitions for the disk volumes Use the SMU SET VOLUME command to cre ate a volume definition and consider the capabilities offered by the volume definitions To Use the Qualifier Shelve contiguous files Enable all HSM opera tions and policies on the volume Enable the volume for handling a specific trigger condition Enable shelving or unshelving operations on the volume Disable all HSM operations and policies on the volume Disable the volume for handling a specific trigger condition Disable
58. The record format used on the tape volume Options are ASCII BACKUP EBCDIC NONE RMUBACKUP Media Management 10 23 Media Management 10 11 Volumes e Record Size An integer e Block Factor An integer 10 11 10Protection The protection field provides System Owner Group and World access protection for the vol ume This protection is written to the volume when it is initialized and provides protection from unauthorized use and re initialization The standard protection is SYSTEM R W OWNER R W GROUP R WORLD None If protection is not set for the volume the domain default protection is used 10 11 11Counters MDMS provides three counters for volumes as follows Mount Count This is a count of the number of times the volume is loaded maintained by MDMS and incremented every time MDMS loads this volume e Error Count Not maintained by MDMS set this field any integer you wish e Times Cleaned If the volume is a cleaning volume this value is incremented each time the volume is loaded and used for cleaning Otherwise it is set to 0 10 11 12Allocate Volume You allocate volumes so that you can use them for writing new data Allocating a volume places it into the Allocated state and assigns the calling user or specified user UIC and account in the allocation fields This effectively reserves the volume to the user The volume remains allo cated to the user and unavailable for othe
59. These flush operations are opti mized to reduce the amount of tape reloading and positioning compared to individual shelve operations directly to tape This is especially true when multiple archive classes are specified and the archive classes are sharing devices Understanding HSM Concepts 2 17 Understanding HSM Concepts 2 8 Cache Usage 2 8 3 Cache Attributes You can specify the following attributes for each online disk volume supporting the cache e Timing of shelf copies e Block size e High water mark e Flush interval e Flush delay e Delete and modify file action 2 8 3 1 Timing of Shelf Copies You can specify that data copies to the shelf archive classes be performed at one of two times When the file is shelved e When the cache is flushed By default the shelf copies are made when the cache is flushed and this is the recommended mode of operation when using the cache as a staging area With this configuration operations to and from the cache are fast taking about as much time as a normal disk copy Permanent Cache If you are using the cache as a permanent shelf instead of a staging area for example using a magneto optical device there is no cache flushing so any shelf copies need to be made at shelv ing time When the shelf copies are made at flush time the shelving process is not complete until all shelf copies of a file have been made to the shelf archive classes 2 8 3 2 Cache Block Size You can specify the m
60. This could include missing archive or shelf definitions or an incorrectly formatted request SMU may have also encountered these problems or there was a problem communicating with the shelf handler There may be more information about the failure in the PEP or SHP error logs SSHELVE S MARKEDCANCEL file filename was marked for cancel Explanation This status message informs you that your file has been marked for cancella tion and won t be shelved SHELVE W NOFILES no files found Explanation SMU was unable to locate the specified files Reasons include insufficient memory invalid file specification file s already in requested state etc There may be an accompanying message that gives more information about any failure SSHELVE W NOMODDATE modification date not enabled for file Explanation Expiration dates are not currently enabled for this file volume Expiration dates are needed for the SINCE and BEFORE qualifiers SSHELVE W NOSUCHDEVICE no such device found Explanation For REPACK an unload request was sent to the shelf handler for a tape device that is not known The shelf handler may have encountered an unexpected error try ing to read a volume s UID file The policy execution process may be trying to access a disk volume that is no longer defined Please check the PEP or SHP error logs for more informa tion SSHELVE W NOSUCHFILE no such file filename found Explanation A cache flush shelve request was made for a fi
61. UNSHELVE DCL commands with a node name in the file descriptor or on disks that are DFS NFS or PATHWORKS served HSM Basic mode does not support the use of remote nearline or offline tape devices unless they are configured to appear as local devices HSM Plus mode supports remote devices devices that are not directly connected to the cluster through the Remote Device Facility RDF portion of MDMS For HSM Plus mode to recognize a remote device you must have defined the remote device correctly through MDMS and you must use the REMOTE qualifier on the SMU SET DEVICE command For more information see the section on Working with RDF served Devices in HSM Plus Mode in the Getting Started with HSM Chapter of the HSM Installation Guide Introduction to HSM 1 15 2 Understanding HSM Concepts Before running HSM in your production environment you need to understand various defini tions and concepts For each concept HSM provides a configuration option that you use to man age the HSM environment This chapter presents an explanation of the HSM concepts and configuration options structured around the following managed entities in the system Facility Shelf Archive class Device Volume Cache Policy Schedule This chapter also defines the relationships among the managed entities and provides guidelines fortheir definition to create an optimal HSM environment Once you understand the configura tion options you can proceed with the
62. User Action Use the SCHEDULE and VOLSET qualifiers for this command SCHEDVOLCONFL schedule qualifier and volume parameter are incompatible Explanation The SCHEDULE and the volume parameter are incompatible for this command User Action Use the SCHEDULE qualifier and leave the volume parameter blank for this command SCHEDULECONFL schedule qualifier and novolume qualifier are incompatible Explanation The SCHEDULE and NOVOLUME qualifiers are incompatible for this command User Action Use the SCHEDULE and VOLSET qualifiers for this command SCHEDVOLCONFL schedule qualifier and volume parameter are incompatible Explanation The SCHEDULE and the volume parameter are incompatible for this command User Action Use the SCHEDULE qualifier and leave the volume parameter blank for this command SCHUNDEFINED referenced schedule s AZ undefined Explanation When creating or modifying a valid object the object s record contains a reference to a schedule name that does not exist One or more of the specified schedules may be undefined User Action Check spelling of the schedule names and retry or create the schedule objects in the database SELUNDEFINED referenced selection s AZ undefined Explanation When creating or modifying a valid object the object s record contains a reference to a selection name that does not exist One or more of the specified selections may be undefined User Action Check
63. a move operation on a volume allocated to that user The MDMS_LOAD_ALL right allows the user to load any managed volume For detailed descriptions of the MDMS low level rights refer to the ABS or HSM Command Reference Guide Basic MDMS Operations 9 18 Basic MDMS Operations 9 5 Access Rights for MDMS Operations 9 5 1 2 High Level Rights MDMS associates high level rights with the kind of user that would typically need them Refer to the ABS or HSM Command Reference Guide for a detailed list of the low level rights associated with each high level right The remainder of this section describes the high level rights MDMS User The default MDMS_USER right is for any user who wants to use MDMS to manage their own tape volumes A user with the MDMS_USER right can manage only their own volumes The default MDMS_USER right does not allow for creating or deleting MDMS object records or changing the current MDMS configuration Use this right for users who perform non system operations with ABS or HSM MDMS Application The default MDMS_APPLICATION right is for the ABS and HSM applications As MDMS clients using managed volumes and drives these applications require specific rights The ABS or HSM processes include the MDMS_APPLICATION rights identifier which assumes the low level rights associated with it Do not modify the low level rights values for the Domain application rights attribute Changing the values to this attribute can cause
64. attribute FRESTA If defined adds the deallocate If the FRESTA symbol is different in state attribute to the domain different TAPESTART COM files a line object is added to the conflict file LOC Creates a location object and If the object exists or is different than the also sets the onsite location attribute in the domain ONSITE LOCATION attribute object a line to be added to the conflict in domain object file This can happen when you have dif ferent LOC symbol in two TAPE START COM files MAXSCRATCH If defined adds the maximum If the MAXSCRATCH symbol is differ scratch time attribute to the ent in different TAPESTART COM files domain object a line is added to the conflict file MTYPE x Creates a media type object for A line is added to the conflict file if a media type is already in the database and another one has the same name In SLS MDMS V2 x you could have the same media type name with compaction and nocompaction In MDMS you can not have two media types with the same name You need to change the name of one of the media type and enter it into the database You will also have to change ABS or HSM to reflect this Also you may have to change volume and drive objects Converting SLS MDMS V2 X to MDMS V4 D 3 Converting SLS MDMS V2 X to MDMS V4 D 1 Converting SLS MDMS V2 X Symbols and Database Table D 1 Symbols in TAPESTART COM NET REQUEST TIM If defined adds the Ifthe NET REQUEST TIMEOUT is
65. back up the shelved file headers for disaster recovery purposes image backup only 5 8 2 1 Considerations for OpenVMS BACKUP and Shelving If you want to use OpenVMS BACKUP to maintain backup copies of your shelved data there are some specific issues you need to consider Image Backups HSM can reduce the amount of space needed on your image backups and the time required to do them When doing image backups under HSM only the file headers of shelved files are backed up The data itself remains shelved Incremental Backups Files modified since the last backup are backed up as a part of the incremental process unless specifically excluded If a modified file is shelved before the next incremental backup it is unshelved for the incremental backup To avoid the delay caused by retrieving file contents needlessly during an incremental backup you should do incremental backups at a shorter interval than specified by HSM policy This causes the files to be backed up before being shelved thereby avoiding the unshelving delay When planning your image backups remember that only the file headers are backed up If you have shelved a file that has been modified or created since the last incremental backup its data is not backed up This can be avoided by keeping the files online for at least one incremental backup When an otherwise unmodified file is shelved it is not unshelved and backed up again during the next incremental backup because
66. beet te m Sean tea Seal eet E cC ee 10 16 10 8 2 Compaction ssc nde ERRARE A ERN IDEM eds teed 10 16 10 8 3 Density 22 04 tes e Ee e RC eret ra eee eu eet 10 16 RN AS 10 16 IA AAA A O NM a E m ATE Veo Nou O DM CE A 10 16 10 94 Database Server a eee MR 10 17 10 9 2 Disabled Era Es eed ets ns ue E eost uo d ot doblar 0 e c DET AN DEL 10 17 10 9 3 OPCOM Clas S crx Ep Ra POEM EE MA e AN ARA RATEN e e ei 10 17 10 9 4 Transports and Full Names esce E Cer ee ta Ee aed ree a ege 10 17 LOTO POS 506 or ena eR are ttt o eas e EA pte reed uot bso one d do d dao 10 17 10 10 1 Authorized Users 2 0 0 RR RR haare 10 18 10 90 27 Default Users uc A ERR EASTERN AA E NEUES ac 10 18 10 10 3 Threshold ete RERO ci eno ons ae at oditaut in gol iconos dul ae 10 18 LOTA Vollmer s eee pertes rebel eee E veu deeds eee 10 18 10 11 1 Allocation Fields Account Username UIC and Job oooooooooooooooooo o 10 20 10 11 2 Allocation and Movement Dates ras 10 20 1011 3 History Dates 352 ree Uer eet EL EU Chee ae n exti LC e e i ec 10 21 LOA Staten Siu sene E EE E EEE E EE EE E AEE EE EAE TE 10 21 TOTIS Media Types e A Al ea e tac cepe he Mgr d 10 22 T0O 41 6 Pool ER 10 22 10 11 7 Previous and Next Volumes lseeeeeeeeee ra 10 22 10 11 8 Placement Jukebox Magazine Locations Drive 0 cece ee enn ee 10 23 10 11 9 Formats Brand Format Block Factor Record Size ooooooooooooooooooooooo 10 23
67. can only assume the state for example that a volume has been moved offsite Wherever possible MDMS tries to verify the state of the object For example if MDMS finds a volume that should have been in a jukebox slot in a drive it updates the database with the current placement of the volume 8 2 MDMS Interfaces MDMS provides an internal callable interface to ABS and HSM software This interfacing is transparent to the ABS or HSM user However some MDMS objects can be selected from ABS and HSM MDMS communicates with the OpenVMS OPCOM facility when volumes need to be moved loaded unloaded and for other situations where operator actions are required Most MDMS commands allow control over whether or not an OPCOM message will be generated and whether or not an operator reply is necessary MDMS controls jukeboxes by calling specific callable interfaces For SCSI controlled jukeboxes MDMS uses the MRD MRU callable interface For StorageTek jukeboxes MDMS uses DCSC You still have access to these jukeboxes using the individual control software but doing so will make objects in the MDMS database out of date What is MDMS 8 2 9 Basic MDMS Operations This chapter describes basic MDMS operations and functions that apply to many MDMS actions 9 1 MDMS User Interfaces MDMS includes two interfaces a command line interface CLI and a graphic user interface GUI This section describes how these interfaces allow you to interact with MD
68. check the equivalence name of HSsM MANAGER and redefine as needed Also verify that the cache file is accessible SMU I CACHE UPDATED cache device device name updated Explanation The cache device was successfully updated SMU E CACHE WRITERR error writing cache device definition device name Explanation An unexpected error was encountered while adding or modifying a cache device record There may be an accompanying message that gives more information about any failure Please check the equivalence name of HHM MANAGER and redefine as needed Also verify that the cache file is accessible SMU E CANT CHANGE MODE cannot set basic mode after shelving in plus mode Explanation For SMU SET FACILITY you cannot set to Basic mode after files have been shelved in Plus mode SMU E CANT DEDICATE remote device can t be dedicated Explanation For SMU SET DEVICE the DEDICATE qualifier is not valid for use with remote devices SMU E CANT DO ARCASSOC cannot action archive class archive class due to nonzero reference Explanation For SMU SET ARCHIVE archive classes with shelf and or device associa tions cannot be deleted The archive class must be removed from the shelf and all devices prior to deletion SMU E CANT DO ARCUSED cannot action archive class archive class it has been used Explanation For SMU SET ARCHIVE a request was made to either delete an archive class that has been used for shelving or modify certain attributes
69. command issued the database files and the server s logfile for fur ther analysis DRIVEEXISTS specified drive already exists Explanation The specified drive already exists and cannot be be created User Action Use a set command to modify the drive or create a new drive with a different name DRVACCERR error accessing drive Explanation MDMS could not access the drive User Action Verify the VMS device name node names and or group names specified in the drive record Fix if necessary Verify MDMS is running on a remote node Check status of the drive correct and retry DRVALRALLOC drive is already allocated Explanation An attempt was made to allocate a drive that was already allocated User Action Wait for the drive to become deallocated or if the drive is allocated to you use it DRVEMPTY drive is empty or volume in drive is unloaded Explanation The specified drive is empty or the volume in the drive is unloaded spun down and inaccessible User Action Check status of drive correct and retry DRVINITERR error initializing drive on platform Explanation MDMS could not initialize a volume in a drive MDMS Messages C 6 MDMS Messages User Action There was a system error initializing the volume Check the log file DRVINUSE drive is currently in use Explanation The specified drive is already in use User Action Wait for the drive to free up and re enter command or try
70. conduct a dialog with users asking them about their particular configuration and needs and then provide the appropriate object screens with information about setting specific attribute values The features support tasks that accomplish the following e Configuring a new drive or jukebox and or add new volumes for management e Removing drives or jukeboxes and or deleting volumes from management e Servicing a jukebox when it is necessary to remove allocated volumes and replace them with scratch volumes e Rotating volumes from the onsite location to an offsite location and back The procedures outlined in this section include command examples with recommended qualifier settings shown If you choose to perform these tasks with the command line interface use the MDMS command reference for complete command details 13 1 Creating Jukeboxes Drives and Volumes This task offers the complete set of steps for configuring a drive or jukebox to an MDMS domain and adding new volumes used by those drives This task can be performed to configure a new drive or jukebox that can use managed volumes MDMS High Level Tasks 13 1 MDMS High Level Tasks 13 1 Creating Jukeboxes Drives and Volumes Figure 13 1 Configuring Volumes and Drives TK85 COMP TK86 COMP TK87 COMP TK88 COMP Media Type Media Type Media Type Media Type Compaction Compaction Compaction Compaction CompacTape IV
71. could also mean the file has been deleted or is other wise unavailable Retry the operation later SHSM E HWPOLDIS high water mark policy execution disabled on volume volume name Explanation This message indicates that a high water mark condition was detected but the policy execution for this condition is disabled and no policy was run on the volume No action is required if this is desired but it is recommended that the policy is enabled SHSM E INCOMEDIA Volume volumename media type mediatype inconsistent with drive drivename media type mediatype Explanation This message appears in Basic Mode only and indicates that the shelf handler has detected a discrepancy in the media type used for shelving a file and that requested for unshelving it You should re check the media type with SMU LOCATE FULL and reset the SMU databases as needed This should not normally occur HSM E INCOMEDIATYPE volume media type inconsistent with drive HSM Error Messages A 4 HSM Error Messages A 2 Shelf Handler Messages Explanation This message appears in Basic Mode only and means that the drive s speci fied for an archive class cannot physically handle the media type of a tape volume contain ing a file requested to be unshelved Please re check the SMU DEVICE and ARCHIVE definitions HSM E INCONSTATE file filename has inconsistent state for unshelving Explanation The state of the file is inconsistent for unshelving and allowing an unshelve
72. defined for the appropriate shelf Use SMU SET SHELF ARCHIVE to define archive classes to shelve files HSM E NODRIVEAVAIL no drive available to perform operation Explanation An error occurred on any shelve unshelve operation because no devices were available to perform the operation Ensure that an SMU device was defined to appropriate archive classes In Plus Mode ensure that the SMU device and archive configurations are compatible with the definitions in TAPESTART COM and the SMU SHOW DEVICE shows as Configured If it shows as Not Configured you should re verify the definitions of archive media type density and device name to be identical in the SMU and MDMS con figurations This message does not appear if the device is simply busy with other applica tions SHSM F NOLICENSE license for HSM is not installed Explanation You must install an HSM license in order to use this software SHSM E NONEXPR nonexistent process Explanation An SMU or policy execution request failed because HSM was not running Use SMU START to startup HSM and retry the operation SHSM E NOSUCHDEV volumename no such volume available Explanation The policy execution process was unable to assign a channel to the device or get information about the device Please check that the device is known and available to the system If the device is no longer in service it should be removed from the HSM configura tion SHSM E NOSUCH_FILE no such file filena
73. does not expect to compete with other applications for this jukebox If MDMS is supposed to share this jukebox with other applications set this attribute to YES Auto reply The conversion program sets this attribute to NO Make sure this is the way you want the jukebox to react Access The conversion program has no way of knowing what the access should be therefore it sets the access attribute to ALL Make sure this is the access you want for this jukebox Control Make sure that the attribute is set to MRD if MRD controls the robot If the robot is controlled by DCSC this attribute should be set to DCSC Robot Make sure this is the robot for this jukebox Slot count You need to set the slot count The conversion program has no way of finding out the slot count Usage Make sure the usage is correct for the type of jukebox you have The conversion program has no way of finding out if the juke box uses magazines or not If this jukebox uses magazines you will need to configure it Magazine Description The conversion program does not add a description to this attribute Type a description for this attribute Offsite location The old magazine record had no offsite location so you need to add this attribute Converting SLS MDMS V2 X to MDMS V4 D 7 Converting SLS MDMS V2 X to MDMS V4 D 2 Things to Look for After the Conversion Table D 2 Things to Look for After t
74. entire user list for the volume pool If you are using the GUI to change user access to volume pools just edit the contents of the authorized users field You can also authorize users with the DEFAULT USERS attribute which means that the users are authorized and that this pool is the pool for which allocation requests for volumes are applied if no pool is specified in the allocation request You should ensure that any particular user has a default users entry in only one pool 12 3 4 5 Deleting Volume Pools You can delete volume pools However deleting a volume pool may require some additional clean up to maintain the MDMS database integrity Some volume records could still have a pool attribute that names the pool to be deleted and some DCL command procedures could still refer ence the pool If volume records naming the pool exist after deleting the pool object record find them and change the value of the pool attribute The MDMS CREATE VOLUME and MDMS LOAD DRIVE commands in DCL command pro cedures can specify the deleted pool Change references to the delete pool object record if they exist to prevent the command procedures from failing MDMS Management Operations 12 12 MDMS Management Operations 12 4 Rotating Volumes from Site to Site 12 3 5 Taking Volumes Out of Service You might want to remove volumes from management for a variety of reasons e You need to retain the information recorded on a volume and remove any M
75. example if an error occurs because of a user syntax error or because of a valid but illogical HSM configuration these are generally not reported in the error log If you see an entry in the error log this means that it is worth investigating for more information It does not necessarily mean that there is a problem with the HSM system the hardware or the media that contains the shelved file data For more information on solving problems see Chapter Te Managing the HSM Environment 5 34 Managing the HSM Environment 5 20 Event Logging Each entry in the shelf handler log is tagged with a request number which is incremented in the audit log If a serious error occurs on a request the request number in the audit log can be recon ciled with the request number in the error log to obtain more information about the error The following are examples of audit and error log entries Example of a Shelf Handler Audit Log Entry Shelf handler V3 0A BL22 Oct 20 1999 started at 22 17223 25 32 Shelf handler client enabled on node SYS001 29 20 OCT 1999 19 53 05 58 22 SEP 19 53 06 62 Status Error Application request from node SYS001 process 604003B9 user SMITH Shelve file 1 DKA100 SMITH TESTJLM DAT 30 20 OCT 1999 20 03 04 66 22 SEP 20 03 13 08 Status Success System request from node SYS002 process 40201C31 user SMITH File fault unshelve file DISKSMYNODE SMITH TESTJLM DAT 1 31 20 OCI 1999 20 03 13 65 2Z0 0CT 20 03 13 98 Statu
76. file but want SMU SET VOLUME HSM Command Reference to disable NOPLACEMENT Guide Cannot shelve very large file Files larger than 45 of disk capacity can never be shelved Cannot shelve file volume inel SMU SET VOLUME HSM Command Reference igible ENABLE SHELVE Guide Can shelve files on volume but SMU SET VOLUME DIS HSM Command Reference want to disable ABLE SHELVE Guide Cannot shelve files no archive SMU SET SHELF HSM Command Reference classes for shelf ARCHIVE n RESTORE n If Guide shelving to cache only be sure that cache devices are defined and enabled Cannot shelve files no devices SMU SET DEVICE HSM Command Reference defined for archive ARCHIVE n Guide Ctrl Y does not cancel shelve SHELVE CANCEL HSM Command Reference operation Guide Solving Problems with HSM 7 19 Solving Problems with HSM 7 14 Unshelving Problems Table 7 14 Shelving Problems Problem Solution Reference Cache problems during shelving Offline device problems during shelving Magazine loader problems dur ing shelving See Section 7 10 See Section 7 12 See Section 7 13 7 14 Unshelving Problems Table 7 15 describes generic unshelving problems that are in addition to specific cache or device problems Unshelving problems also apply to file faults Table 7 15 Unshelving Problems Problem Solution Reference Unshelving operation disabled SMU SET FACILITY HSM Command Reference on facility ENABLE UNSHELVE Guide
77. for the volume If you wish to force a scheduled move you can select Scheduled In most cases the destina tion is predefined so you don t need to specify it However you can specify an alternative desti nation for the scheduled move if you wish by specifying a destination as outlined above Finally you can specify if you need operator assistance This is recommended with Move Vol ume because human intervention is necessary to move volumes Only if you plan to do the physical move yourself or you manually let someone know would you disable operator assis tance 10 11 20Initialize Volume s MDMS supports initialization of volumes to make them available for use Initializing a volume consists of writing an ANSI label on the volume and applying compaction and density attributes and the volume protection field in the label The volume is then free to be written If the volume was in the Uninitialized state it will now change to the Free state All volumes need to be initial ized at least once before ABS and HSM can allocate and use them Volumes that are already written need to be initialized again if you wish to use the whole volume for writing again Both ABS and MDMS initialize volumes on every allocation When initializing volumes you can specify four options e Media Type If the volume does not have a media type specified or has more than one media type specified this is the time to specify a single media type for
78. from the online system Refer to the error log for more details fix the problem and retry There are usually additional messages to explain the problem in the error log HSM E OPCANCELED operation canceled Explanation On a recovery of the shelf handler process the operation was canceled because it should not be retried SHSM E OPDISABLED shelving operation disabled Explanation The requested operation has been disabled by the storage administrator Oper ations can be disabled at the facility shelf disk volume and off line device levels To re enable enter the appropriate SMU SET ENABLED command This message also appears after an SMU SHUTDOWN but before the facility has actually shut down HSM E PEPCOMMERROR unable to send to policy execution process Explanation The shelf handler process could not send a request to the policy execution process This usually means that the policy execution process has not been started Issue an SMU STARTUP command to recover SHSM E PEPMBX communication mailbox mailboxname not enabled HSM Error Messages A 7 HSM Error Messages A 2 Shelf Handler Messages Explanation The policy execution process was unable to establish communications with the shelf handler process which usually means that the shelf handler process is not running or create a mailbox for it S own use Issue an SMU STARTUP command to recover HSM F PEP ALREADY STARTED policy execution process already started
79. hardware that allows stacker capabilities If you wish the drive to support the stacker loading capability set this attribute and make sure the jukebox attribute does not contain a juke box name If you wish the drive to operate as a jukebox or standalone drive clear this attribute The drive state field determines the load state of the drive The drive can be in one of four states Empty There is no volume in the drive e Full There is a volume in the drive e Loading A volume is being loaded into the drive e Unloading A volume is being unloaded from the drive This is a protected field that is normally handled by MDMS Only modify this field if you know that there are no outstanding requests and the new state reflects the actual state of the drive 10 3 14Allocate Drive DCL Only You allocate a drive so that you can it for reading and writing data to a volume If you allocate a drive your process ID and node is stored in the MDMS database and the drive is allocated in OpenVMS for your process Because the MDMSView GUI does not operate in a process con text it is not possible to allocate drives from the GUI You can either allocate a drive by name or you can specify selection criteria to be used for MDMS to select an available drive for you and allocate it The allocation selection criteria include e Media Type Select a drive with the specified media type e Location Used with media type select a drive in the specified
80. help on a field simply posi tion the cursor on that field The help appears near the field within one second and remains on the screen for 4 seconds Screen sensitive Help For every screen in the Domain Object or Task Views there is a Help button at the bottom right of each screen If you press this Help button a help screen pops up with information about the screen you from which you pressed the button The help information displayed is derived from this manual the ABS Guide to Operations Finally there is a Help pull down menu from the main screen This provides the same type of Help as the Help button but starts from the beginning of the manual You can use the left screen navigation or a search capability to find what you are interested in Basic MDMS Operations 9 17 Basic MDMS Operations 9 5 Access Rights for MDMS Operations Figure 9 9 Context Sensitive Help Screen from Show Volume Screen a MDMSViewHelp 5 x S ojola Hj A MDMSHelp 6 0 Drives amp C Jukeboxes Show H O Magazines E volumes F n e Em A volume is a physical piece of tape media that contains or will contain data written by MDMS applications ABS or HSM or user Initialize applications Volumes have many attributes concerning their placement allocation status life cycle dates protection attributes and many Move other things Load dt Volume records can be created manually with a Creat
81. here by x A lowercase italic n indicates the generic use of a number For exam ple 19nn indicates a four digit number in which the last two digits are unknown xvii Convention Description x A lowercase italic x indicates the generic use of a letter For example xxx indicates any combination of three alphabetic characters OpenVMS This term refers to the OpenVMS Alpha operating system Alpha OpenVMS VAX This term refers to the OpenVMS VAX operating system Determining and Reporting Problems xviii If you encounter a problem while using HSM report it to HP through your usual support chan nels Review the Software Product Description SPD and Warranty Addendum for an explana tion of warranty If you encounter a problem during the warranty period report the problem as indicated previously or follow alternate instructions provided by HP for reporting SPD noncon formance problems 1 Introduction to HSM This chapter provides an introduction to the general concepts of storage management in the OpenVMS environment and defines the role of HP s Hierarchical Storage Management HSM for OpenVMS software Henceforth in this book the term HSM is used as a replace ment for Hierarchical Storage Management 1 4 Storage Management in the OpenVMS Environment Storage management is the means by which you control the devices on which the frequently accessed active data on your system is kept To be
82. in the following example SMU SET VOLUME SYSSSYSDEVICE DISABLE ALL Note that if there is more than one system disk in a VMScluster system the command should be issued on each node that has its own system disk This especially applies to mixed VAX and Alpha VMScluster systems If OpenVMS system or key layered product files are shelved the consequences are that it may no longer be possible to boot any system in the VMScluster environment Specifically if a file involved in the system startup stream is shelved then accessed before HSM is started the boot procedure will fail Recovery may require a complete reinstallation of OpenVMS and affected layered products It is much better to simply disable shelving on the system disks rather than to have to worry about all these consequences The procedures in Table 7 6 should be adopted to prevent or recover from this condition Table 7 6 Shelving on System Disks Problem Solution Reference Prevent shelving on system SMU SET VOLUME disks system_disk DISABLE ALL Prevent OpenVMS system files SET FILE from being shelved disk directory_tree NO SHELVABLE Recover if system cannot boot Reinstall OpenVMS and affected layered products Solving Problems with HSM 7 10 Solving Problems with HSM 7 6 Shelving on System Disks 7 6 1 HSM Plus Mode MDMS Problems There are a number of problems that HSM Plus mode may have that are not HSM problems but are instead problems with
83. in two TAPE START COM files Converting SLS MDMS V2 X to MDMS V4 D 4 Converting SLS MDMS V2 X to MDMS V4 D 2 Things to Look for After the Conversion D 2 Things to Look for After the Conversion Because of the differences between SLS MDMS V2 x and MDMS V4 you should go through the objects and check the attributes and make sure that the objects have the attributes that you want Table D 2 shows the attributes of objects that you may want to check after the conversion Table D 2 Things to Look for After the Conversion Object Attribute Description Drive Drive Make sure you have all of the drives defined In the MDMS V4 domain you can only have one drive with a given name In SLS MDMS V2 x you could have two drives with the same name if they were in different TAPESTART COM files You should make sure that all drives in your domain are in the data base You may have to create one drive with a name of say DRIVEI with a device name of 1 MUA520 and a node of NODE 1 Then create another drive DRIVE2 with a device name of 1 MUA520 and a node of NODE2 A line is added to the conflict file every time a node is added to a drive This flags you to check that the node really belongs to this drive of if you need to create another drive Description Make sure this is the description you want for this drive This attribute is not filled in during the conversion program Device Make sure this device name doe
84. is named If you know an object record exists but it does not display in response to an operation to change it you could be entering the name incorrectly Section 9 6 1 1 describes the conventions for naming object records 9 6 6 Protected Attributes Do not change protected attributes if you do not understand the implications of making the particular changes If you change a protected attribute you could cause an operation to fail or prevent the recovery of data recorded on managed volumes MDMS uses some attributes to store information it needs to manage certain objects The GUI default behavior prevents you from inadvertently changing these attributes By pressing the Enable Protected button on the GUI you can change these attributes The CLI makes no distinction in how it presents protected attributes when you modify object records Ultimately the ability to change protected attributes is allowed by the MDMS_SET_PROTECTED right and implicitly through the MDMS SET RIGHTS right The command reference guide identifies protected attributes 9 6 7 Rights for Modifying Objects The low level rights that allow you to modify an object by changing its attribute values are shown below Table 9 2 Low Level Rights This right Enables you to modify MDMS SET ALL Any MDMS database object record MDMS SET PROTECTED Protected attributes used internally by MDMS MDMS SET OWN Attributes of volumes allocated to the user MDMS SET P
85. is not identified but the specific volume is identified You should locate the magazine containing the specific volume which should be labeled and load that entire magazine into the magazine loader You should then enter one of the following SREPLY TOzmessage number if you successfully loaded the magazine e S REPLY ABORT message number if you could not load the magazine for any reason 6 4 2 Illegal Magazine 5 225 2 5 5 OPCOM 30 MAY 14 25 46 05 Message from user HSMSSERVER on MYNODE The magazine loaded in drive 1 MUA0 has an invalid HSM configuration Please reconfigure magazine before reloading See HSM Guide to Operations Magazine Loaders The magazine contains duplicate HSM volumes Each HSM volume must have a unique label in the format HSyxxx where y is the archive class minus 1 and xxx is a string in the format 001 Z99 Please review the labels in the magazine and initialize as appropriate It is recommended that the labels in the magazine are ordered by archive class in ascending order For example HS0001 HS0002 HS1001 HS1002 etc Do not issue a REPLY to this message 6 4 3 Unload Magazine 2 9 55 559 5 OPCOM 30 MAY 14 25 46 05 959 5959595955 Message from user HSMSSERVER on MYNODE Please unload magazine from drive 1 MUAO This message requests that you unload the current magazine from the specified drive and store it in its usual place Do not enter a REPLY to this message Operator Act
86. job has com pleted SMU W LOCATE error s occurred during locate processing Explanation For SMU LOCATE one or more errors occurred during locate processing SMU E LOCKERR error locking database database name Explanation An unexpected error was encountered while trying to unlock a record in the database There may be an accompanying message that gives more information about any failure SMU E LOCKTIMEOUT timed out waiting for SPLIT MERGE lock Explanation A SMU SET VOLUME or SMU SET SHELF command timed out waiting for split merge lock to become available Re try the command later SMU E MEMALLOC error allocating memory in routine routine Explanation An error was encountered while trying to allocate memory There may be an accompanying message that gives more information about any failure SMU E MUSTUSEREMOTE device device name must be created using the REMOTE qualifier Explanation For SMU SET DEVICE a remote device name was entered contains a node name without use of the REMOTE qualifier Re enter the command with the REMOTE qualifier or remove the node name from the device specification SMU W NOARCHIVE archive class es not found Explanation A database read request sent to the shelf handler on an update failed because the archive class was not found or was outside it s valid range SMU E NOCACHELIST no cache device name or list of devices names Explanation For SMU SET CACHE no cache name or list of name
87. location e Jukebox Used with media type select a drive in the specified jukebox e Group Used with media type select a drive that is supported by a node in the group e Node Used with media type select a drive that is supported by the node e Volume Select a drive that is compatible with the specified volume media type and place ment You can also specify the following options when allocating a drive e Assist A flag indicating whether you wish operator assistance if a drive cannot be allo cated Set if you wish assistance and clear if you wish to use the retry limit and intervals to automatically retry that is wait for drives to become available e Define Use define to set a logical name for the drive The logical name evaluates to both the MDMS Drive Name and the OpenVMS device name and can be used in either MDMS or other DCL commands e Retry Limit and Interval If you wish the allocate to retry if there are no available drives set the retry limit and interval and specify noassist e Preferred If you allocated a drive for a specific volume you can set preferred to request that the same drive that the volume was last loaded is the preferred drive If you clear pre ferred this forces MDMS to perform a round robin allocation of the drives e Reply You can specify a symbol to receive an operator s reply message Media Management 10 7 Media Management 10 3 Drives e Nowrite You can specify that the dri
88. more archive classes when a file is shelved For each shelf you can specify the number of archive classes data copies to have to ensure reliability of the data Because shelved data is not backed up automatically multiple shelf copies provide the only means of recovery if the primary copy of the shelf data is lost or destroyed HP recommends you have at least two archive classes for each shelf 1 3 3 HSM Policies An HSM policy is a defined set of parameters that controls when shelving begins and ends HSM implements data management through HSM policies that specify responses to events HSM policies contain HSM specific commands to shelve or unshelve data in response to a scheduled or situational trigger event Trigger events used in conjunction with appropriately designed file selection criteria work to provide enough online disk space to satisfy users needs For detailed information about HSM policies see Section 2 9 3 1 4 The Shelving Process The shelving process moves files from primary storage to shelf storage The header information for files that have been shelved is still visible to users through the OpenVMS directory com mand even though the file s data contents are not stored online You can modify these file head ers without unshelving the files 1 4 1 Starting the Shelving Process Your control over the start of the shelving process is either explicit or implicit Explicit shelving is a process that starts in response
89. must support the use of magazines that is they must use carriers that can hold multiple volumes at once If you choose to manage the physical movement of volumes with magazines then you may set the usage attribute to MAGAZINE for jukebox object records of jukeboxes that use them You may also define the topology attribute for any jukebox used for magazine based operations If your jukebox does not have ports and requires you to use physical magazines you do not have to use the MDMS magazine object record The jukebox can still access volumes by slot number Single volume operations can still be conducted by using the move operation on individual vol umes or on a range of volumes 12 1 5 Symbols for Volume Attributes MDMS provides a feature that allows you to define a series of OpenVMS DCL symbols that describe the attributes of a given volume By using the SYMBOLS qualifier with the MDMS SHOW VOLUME command you can define symbols for all the volume object record attribute values Use this feature interactively or in DCL command procedures when you need to gather information about volumes for subsequent processing Refer to the ABS or HSM Command Reference Guide description of the MDMS SHOW VOL UME command MDMS Management Operations 12 5 MDMS Management Operations 12 2 Managing Operations 12 2 Managing Operations MDMS manages volumes and devices as autonomously as possible However it is sometimes necessary and perhaps req
90. no shelf servers are specified the devices must be accessible from all nodes in the VMScluster system e After installation be sure to run HSM STARTUP COM on all cluster nodes of the same architecture to install sharable images define logical names and correctly start up HSM Using SMU STARTUP after an installation or upgrade of HSM is not sufficient on the first startup attempt If you are still having VMScluster problems examine Table 7 8 for more information Note In the reference column of this table IG refers to the HSM Installation Guide When IG is not mentioned assume that the reference is to this HSM Guide to Operations Manual Solving Problems with HSM 7 12 Solving Problems with HSM Table 7 8 HSM VMScluster Problems 7 8 Online Disk Problems Problem Solution Reference No control over shelf server SMU SET FACILITY HSM Command Reference node SERVER node Guide Shelf server node is unavailable Specify alternate multiple shelf HSM Command Reference server nodes Guide No failover after shelf server failure Verify that multiple nodes are defined as designated servers Cannot use cache disk on a node Cannot use private cache disk on a visible node Cannot access tape drive from a server node Cannot locate a shelved file in catalog SMU database definitions dif ferent on nodes Do not know which node is server No node comes up as server HSM Command Reference Guide System mount cache d
91. of nodes in the groups attribute 10 3 10Read Only Media Types In addition to media types that a drive can read and write a drive may support one or more addi tional media types that it can only read In the read only media type attribute specify one or more MDMS defined media types that this drive can only read This allows this drive to be used when the application operation is read only for example HSM unshelves or ABS restores Do not duplicate a media type in both the media type list and read only media type list 10 3 11Shared You can designate whether a drive is to be used by MDMS applications and users only or by non MDMS users If the drive is not shared the MDMS server process allocates the drive on all clusters to prevent non MDMS users and applications from allocating it However when an MDMS user attempts to allocate the drive MDMS will deallocate it and allow the allocation Set the shared attribute if you wish to share the drive with non MDMS users and clear if you wish to restrict usage to MDMS users ABS users who do their own user backups are considered MDMS users as are all system backups and HSM shelving unshelving users Media Management 10 6 Media Management 10 3 Drives 10 3 12Stacker 10 3 13State Certain types of drive can be configured as a stacker which allows a limited automatic sequen tial loading capability of a set of volumes Such drives may physically reside in a loader or have specialized
92. of space available on a disk volume volume full exceeding a high water mark the amount of space defined for use on a disk volume or exceeding a user s disk quota When you install HSM you get a set of default policy definitions You can obtain the most value from HSM by modifying the default preventive and reactive policies according to the exact types and usage of data in your installation and the specific archive storage devices that are installed Understanding HSM Concepts 2 20 Understanding HSM Concepts 2 9 Policy Figure 2 4 PREVENTIVE REACTIVE C SCHEDULED Y USER QUOTA EXCEEDED LJ HIGH WATER MARK REACHED LJ VOLUME OCCUPANCY FULL TRIGGER EVENT FILE SELECTION LEAST RECENTLY USED C SPACE TIME WORKING SET C SCRIPT GOAL C LOW WATER MARK CXO 4097A MC 2 9 2 1 Scheduled Trigger A scheduled trigger is generated according to a schedule definition You define a schedule that specifies a time interval on which HSM initiates the shelving process This trigger used with appropriate file selection criteria makes sure enough online capacity is available to meet a steady demand for storage space 2 9 2 2 User Disk Quota Exceeded Trigger The user disk quota exceeded trigger is an event that occurs when a process requests additional online storage space that would force it to exceed the allowable permanent disk quota The shelving process selects to shelve files owned by the owner of the file being
93. opera tion reaches end of tape and a new tape is required to complete the operation ABS and HSM bind the next volume to the current volume and create a volume set These fields are manipulated by Bind Volume and Unbind Volume operations both manu ally and under control of MDMS applications Media Management 10 22 Media Management 10 11 Volumes 10 11 8Placement Jukebox Magazine Locations Drive The placement fields of a volume indicate where the volume resides and where it should reside when moved to an onsite or offsite locations The placement attributes include the following Placement The current placement of the volume options can be Drive The volume is in a drive indicated by the drive field Jukebox The volume is in a jukebox indicated by the jukebox field and the slot field Magazine The volume is in a magazine indicated by the magazine field and slot field Offsite The volume is in an offsite location indicated by the offsite location field Onsite The volume is in an onsite location indicated by the onsite location field with optional space field Moving The volume is moving between one place and another Placement is a protected field managed by MDMS You should not change placement unless error recovery is needed Drive The name of the drive containing the volume This field may contain a value even if the volume is not currently in a drive The drive is a
94. operations 11 2 1 1 How to Describe an MDMS Drive You must give each drive a name that is unique within the MDMS domain The drive object record can be named with the OpenVMS device name if desired just as long as the name is not duplicated elsewhere MDMS Configuration 11 14 MDMS Configuration 11 2 Configuring MDMS Drives Jukeboxes and Locations Use the description attribute to store a free text description of anything useful to your manage ment of the drive MDMS stores this information but takes no action with it The device attribute must contain the OpenVMS allocation class and device name for the drive If the drive is accessed from nodes other than the one from which the command was entered you must specify nodes or groups in the NODE or GROUP attributes in the drive record Do not specify nodes or groups in the drive name or the device attribute If the drive resides in a jukebox you must specify the name of the jukebox with the jukebox attribute Identify the position of the drive in the jukebox by setting the drive number attribute Drives start at position 0 Additionally the jukebox that contains the drives must also be managed by MDMS 11 2 1 2 How to Control Access to an MDMS Drive MDMS allows you to dedicate a drive solely to MDMS operations or share the drive with other users and applications Specify your preference with the shared attribute You need to decide which systems in your data center are going to a
95. or offline tape device or magazine SMU SET DEVICE ARCHIVE_ID loader to a specific archive class In HSM Plus mode you can modify the media type and density only if the archive class has not been used and no devices or shelves reference the archive class You can add or remove volume pools as desired Customizing the HSM Environment 3 2 Customizing the HSM Environment 3 1 Configuring a Customized HSM Environment 3 1 5 Creating Device Definitions Create device definitions to identify the devices you will use for shelving operations Also decide whether to dedicate the devices for the sole use by HSM or to share them with other applications 3 1 6 Modifying Device Definitions The device definitions let HSM know which devices to use for a given archive class and whether to dedicate or share the devices IF You Want to THEN Use Associate a device with a specific archive class SMU SET DEVICE ARCHIVE ID Dedicate a device to be used only by HSM SMU SET DEVICE DEDICATE Allow other operations to share a device with HSM SMU SET DEVICE SHARED Remove a device definition from the database HSM SMU SET DEVICE DELETE Disable a device for HSM use SMU SET DEVICE DISABLE Enable a device for HSM use SMU SET DEVICE ENABLE 3 1 7 Enabling and Disabling a Volume Definition The volume definition allows you to enable and disable specific reactive policy operations or control operations on the entire volume IF You Want to Control T
96. or range of volume names MDMS Management Operations 12 8 MDMS Management Operations 12 3 Serving Clients of Managed Media Meeting Application Needs If you acquire preinitialized volumes for MDMS management and you want to bypass the MDMS initialization feature you must specify a single media type attribute value for the vol ume Select the format to meet the needs of your MDMS client application For HSM use the BACKUP format For ABS use BACKUP or RMUBACKUP Use a record length that best satisfies your performance requirements Set the volume protection using standard OpenVMS file protection syntax Assign the volume to a pool you might use to manage the consumption of volumes between multiple users Static Volume Attributes Static volume attributes rarely if ever need to be changed MDMS provides them to store infor mation that you can use to better manage your volumes The description attribute stores up to 255 characters for you to describe the volume its use his tory or any other information you need The brand attribute identifies the volume manufacturer Use the record length attribute to store the length or records written to the volume when that information is needed 12 3 2 Servicing a Stand Alone Drive If you use a stand alone drive enable MDMS operator communication on a terminal near the operator who services the drive MDMS signals the operator to load and unload the drive as needed You must hav
97. otherwise you will seriously disrupt HSM operations If this is absolutely necessary follow these procedures e Shut down HSM e Define a new location for the appropriate logical names e Copy HSM from the old locations to the new locations e Startup HSM If you need to dismount a disk containing a shelf catalog you should move the catalog to another disk using the SET SHELF command prior to dismounting the original disk For example SMU SET SHELF shelf name CATALOG new location Note that this operation may take tens of minutes to hours to complete See Section 5 12 for more details on this operation 5 2 Copying Shelved Files Very often it is necessary to move a directory tree of files from one location to another most often to a new larger disk If you use the normal OpenVMS facilities COPY or BACKUP to per form this operation any shelved files in the source directory will be unshelved prior to copying to the destination While this is safe it is usually undesirable because it forces the unshelving of dormant data which only becomes active due to the COPY or BACKUP being performed HSM provides a means to copy shelved files in the shelved state and update the HSM catalog to the new locations This is achieved by using the SMU COPY command which accepts a full file specification as input and a disk directory specification on output files are not renamed If you are moving shelved files from one location to another on t
98. prior to V2 6 For information about MDMS messages see the MDMS online help HELP STORAGE messages 6 7 Drive Selection and Reservation Messages for Both Modes The following OPCOM messages may be displayed when an error occurs trying to select and reserve a drive for HSM operations 6 7 1 Unavailable Drive 52 55959515159 55 OPCOM 08 Jan 2003 12 01 23 25555 5 5 Message from user HSMSSERVER on SYS001 Drive name has been marked unavailable and disabled Please re enable or disable using SMU SET DEVICE name ENABLE or DISABLE HSM has detected multiple errors while trying to use the drive has assumed the drive to be bad and has disabled operations on the drive This message is repeated every 10 minutes until the operator enters one of the following commands e SMU SET DEVICE DISABLED This disables the device while possible repairs are made Entering this command stops the OPCOM message from being displayed While the device is disabled alternative device s should be defined for HSM use e SMU SET DEVICE ENABLED This re enables the device for use by HSM 6 7 2 Reservation Stalled 2 5259 559 5 OPCOM 08 Jan 2003 12 01 23 2 2222 22 Message from user HSMSSERVER on SYS001 Drive reservation for tape volume name stalled retrying Optionally check drive availability and configuration This message is an indication that a request for a tape drive is outstanding and there are not enough drives available to handl
99. qualifier name for the attribute The list of symbols for each show command is documented for that command and is also available in DCL help When you issue a Show Symbols the show output is not displayed by default If you wish to see the output as well use Show Symbols Output 9 2 6 Help and Reference MDMS supports the normal DCL help mechanisms as follows MDMS HELP VERB KEYWORD QUALIFIER HELP MDMS VERB KEYWORD QUALIFIER In addition you can request help on any error message for example Basic MDMS Operations 9 3 Basic MDMS Operations 9 3 User Interface Restrictions MDMS HELP MESSAGE NOSUCHOBJECT You can request help on any MDMS logical name for example MDMS HELP LOGICAL MDMS S LOGFILTER Finally you can locate the mapping of the old pre version 4 0B ABS commands to the MDMS equivalent for example MDMS HELP MAPPING CREATE ARCHIVE The MDMS Reference Guide fully documents all DCL commands and qualifiers 9 3 User Interface Restrictions MDMSView and the MDMS DCL supports operations on Archive Backup System ABS objects only if an ABS or SLS license is loaded on the system The ABS objects are e Archives Environments e Restores e Saves e Selections MDMS supports operations on the other media management objects if the system only has a Hierarchical Storage Management HSM license installed or with an ABS or SLS license In addition if the ABS license is the restricted OMT li
100. qualifier on the backup command when restoring the disk 7 17 2 Attempting to Cancel Execution of a Shelved File When you attempt to execute via a RUN command for example a shelved executable file this causes a file fault If you then try to cancel that execution it does not This occurs because Open VMS does not actually allow you to cancel a DCL command using a Ctrl Y Normally when you submit a DCL command that operates on data located online and type a Ctrl Y to cancel it the execution completes and then is canceled quickly enough that you do not notice 7 17 3 Automatic Unshelving of Files across a Network If you attempt to access a shelved file across a network but have set your process to NOAUTO UNSHELVE the file is unshelved 7 17 4 Opening and Deleting RMS Indexed Files If you perform an RMS open of a shelved indexed file a file fault occurs because some of the RMS metadata resides in the data section of the file A file fault also occurs if you perform a DELETE LOG of a shelved indexed file use DELETE LOG with caution DELETE NOLOG works as expected Solving Problems with HSM 7 24 8 What is MDMS This chapter starts by describing the Media Device and Management Services software MDMS management concept and its implementation Following that is a description of the product s internal interfaces Note User interfaces are described in the following chapter Media Device and Management Services V
101. required Explanation An allocation for a volume based on node group or location also requires the media type to be specified User Action Re enter the command with a media type specification MDMS Messages C 31 MDMS Messages NOMEMORY not enough memory Explanation The MDMS server failed to allocate enough virtual memory for an operation This is an internal error User Action Provide copies of the MDMS command issued the database files and the server s logfile for fur ther analysis Restart the server NOOBJECTS no such objects currently exist Explanation On a show command there are no such objects currently defined User Action None NOPARAM required parameter missing Explanation A required input parameter to a request or an API function was missing User Action Re enter the command with the missing parameter or refer to the API specification for required parameters for each function NOPOOLSPEC no free volumes with no pool or your default pool were found Explanation When allocating a volume no free volumes that do no have a pool defined or that are in your default pool were found User Action Add a pool specification to the command or define more free volumes with no pool or your default pool NORANGESUPP slot or space ranges not supported with volset option Explanation On a set volume you entered the volset option and specified either a slot range or space ra
102. required configuration tasks as described in the Getting Started with HSM Chapter of the HSM Installation Guide For additional information and guidelines for migrating to a more specialized environment that best meets your system requirements see Chapter 3 2 1 The HSM Environment The HSM environment consists of the definitions you create and the relationships that exist among the definitions The definitions described in the following sections are maintained in def inition databases The HSM environment is shown in Figure 2 1 Understanding HSM Concepts 2 1 Understanding HSM Concepts 2 2 The HSM Facility Figure 2 1 VOLUME BEFINITION DEFINITION REACTIVE POLICY POLICY DEFINITION SCHEDULE ARCHIVE DEFINITION CLASS S H DEVICE PREVENTIVE POLICY DEFINITION CXO 4101A MC 2 2 The HSM Facility The HSM facility entity allows you to control HSM functions across the entire cluster You can control the following functions at the facility level HSM mode e HSM operations e Shelf servers Eventlogging 2 2 1 HSM Mode You can specify whether HSM operates in Basic or Plus mode e Basic mode Provides shelving preshelving and unshelving functionality using simple devices Digital Linear Tape DLT magazine loaders and 4mm DAT load ers All interaction occurs through SMU commands e Plus mode Provides shelving preshelving and unshelving functionality using the full suite of devices supported thro
103. savesets The staging area must be at least 100 000 blocks for repack to function The staging area is cleaned up after a repack operation Repack can be a time consuming process if the catalogs are huge Repack can be performed in 2 phases which is facilitated by the use of the following qualifiers REPORT If REPORT option is specified Repack will only perform the analysis phase of a repack and not actual repacking This feature would be extremely useful for a system manager to e analyze repacking requirements benefits e select the most useful threshold values and e schedule repacks at convenient times If used with the SAVE option the resultant candidates file will be saved and can be used in sub sequent repack s if the system manager wants the entire repack as analyzed to proceed RESTART Since repacks can take several hours days to complete it would be useful to allow the continua tion of a repack that had been interrupted for any reason The RESTART qualifier would help do this along with SAVE which would preserve the current candidates file The repack can be started later from where it left off without a further analysis or repacking files volumes that had already been repacked Understanding HSM Concepts 2 27 3 Customizing the HSM Environment This chapter provides a task oriented description for changing the HSM environment to better suit your operating environment It contains the following sections
104. shelving or unshelving operations on the volume Define a high water mark for the volume Specify the policy to be executed for volume full or high water mark events Specify whether placed files can be shelved Specify the policy to be executed for user disk quota exceeded events CONTIGUOUS ENABLE ALL ENABLE OCCUPANCY or ENABLE QUOTA or ENABLE HIGHWATER MARK ENABLE SHELVE or ENABLE UNSHELVE DISABLE ALL DISABLE OCCUPANCY or DIS ABLE QUOTA or DIS ABLE HIGHWATER MARK DISABLE SHELVE or DIS ABLE UNSHELVE HIGHWATER MARK percent OCCUPANCY policy name PLACEMENT default QUOTA policy name Customizing the HSM Environment 3 5 Customizing the HSM Environment 3 2 Implementing Shelving Policies To Use the Qualifier Identify the shelf on which to shelve this volume s SHELF NAME shelf name data If you do not specify a shelf HSM uses HSsM DEFAULT SHELF Prevent Inadvertent Application To prevent application of a new volume definition before you are ready to do so disable all operations with the DISABLE ALL qualifier and value Contiguous Files Files marked contiguous are not normally shelved If they are they must be unshelved contigu ously The operation fails if the files cannot be unshelved contiguously 3 2 3 Determining File Selection Criteria Determine how files should be selected for shelving on a regular basis The following list gives you some pla
105. should be repacked by specifying NOTHRESHOLD Repacking requires two compatible tape devices in order to proceed For this reason HSM allows only ONE repack operation at a time In addition a REPACK request is suspended while a catalog split merge operation is in progress the two operations cannot safely proceed simulta neously The following example shows a normal repack operation SMU REPACK 1 This command repacks archive class 1 to new media also in archive class 1 The default thresh old value of 5096 is applied When the operation is complete the old media for archive class 1 are deallocated Managing the HSM Environment 5 24 Managing the HSM Environment 5 14 Replacing and Creating Archive Classes Repack requires a disk staging area of at least 100 000 blocks in order to produce optimal multi file savesets on output For example files shelved with HSM V 1 x into single file savesets are consolidated into more efficient multi file savesets on output The staging area used is refer enced by the system wide logical name HSM REPACK which should be assigned to a suitably sized disk directory combination If this logical name is not defined the logical HSsM MAN AGER is used instead The staging area is cleaned up after a repack operation 5 13 1 Repack Performance The repack operation especially on tape volumes created under HSM V 1 x is likely to take sev eral days to complete While repacking is being performed certai
106. specified in the SMU SHELF database for other shelf catalogs Recovering the HSM UID File If you do not have a backup copy of the HSM UID file HSM will create a new one with a dif ferent UID If you then attempt to unshelve files you may see an error message To correct this problem use UNSHELVE OVERRIDE to override the UID conflict 5 10 3 Recovering Boot Up Files If you inadvertently shelved your boot up files you can only recover them if you have an alter nate system disk you can use to boot the system and then unshelve the files 5 10 4 Reshelving an Archive Class The most efficient way to recover an archive class is to use the SMU REPACK command and specify a FROM ARCHIVE and one or more volumes with the VOLUME qualifier This com mand uses the FROM ARCHIVE to retrieve shelved data and copy it to the archive class con taining the lost shelf media See Section 5 15 for more details An alternative but much slower way to reclaim lost shelf media is to reshelve files Use the fol lowing command SHELVE SELECT NOONLINE This variation of the SHELVE command shelves only data whose status is SHELVED not ONLINE It transparently unshelves the data from its current archive class and reshelves the data to any new archive classes Data in an archive class is reshelved also if the online ACL is deleted 5 11 Maintaining Shelving Policies This section explains how to evaluate your policy definitions with respect to the HS
107. specified saves may be undefined User Action Check spelling of the save names and retry or create the save objects in the database SCHEDCREATEERR failed to create a scheduling job Explanation MDMS failed to create a scheduling job User Action Report the incident to HP SCHEDDELETEERR failed to delete a scheduling job Explanation MDMS failed to delete a scheduling job User Action Report the incident to HP SCHEDDISCONNECT scheduler disconnected from mailbox Explanation The scheduler was disconnected from a mailbox User Action Report the incident to HP MDMS Messages C 41 MDMS Messages SCHEDDUPJOB duplicate scheduler job found Explanation MDMS found a duplicate scheduling job User Action Report the incident to HP SCHEDEXTSTATUS external schedule job exited with bad status Explanation An external schedule job exited with bad status User Action Report the incident to HP SCHEDLOOPERR schedule thread terminating with fatal error restarting Explanation The MDMS internal schedule thread encountered an error and terminated The thread is restarted User Action Report the problem to HP SCHEDMODIFYERR failed to modify a scheduling job Explanation MDMS failed to modify a scheduling job User Action Report the incident to HP SCHEDNOJOBCOMPLETE no job complete time was returned from a scheduled job Explanation No job complete time was returned from a scheduled job
108. success messages Using HSM 4 6 Controlling Other HSM Functions 4 5 1 Resolving Conflicting Operations on the Same File If two users simultaneously enter conflicting commands on the same file the action taken by HSM is dependent upon the nature of the conflicting commands A summary of the actions taken by HSM is given in Table 4 3 Table 4 3 How HSM Resolves Conflicting Requests WHEN the first request is AND the next request is THEN this operation is canceled DELETE PRESHELVE PRESHELVE DELETE UNSHELVE UNSHELVE PRESHELVE DELETE PRESHELVE PRESHELVE SHELVE PRESHELVE PRESHELVE UNSHELVE PRESHELVE SHELVE DELETE SHELVE SHELVE PRESHELVE PRESHELVE DELETE SHELVE SHELVE SHELVE UNSHELVE SHELVE UNSHELVE DELETE UNSHELVE UNSHELVE PRESHELVE PRESHELVE UNSHELVE SHELVE SHELVE e Unshelve means either an explicit UNSHELVE or a file fault e Shelve means either an explicit SHELVE or a make space request 4 6 Controlling Other HSM Functions In addition to explicitly shelving and unshelving files you can perform the following file man agement tasks Use the SET FILE NOSHELVABLE to specify that a file be excluded from HSM shelving and preshelving operations The default is to have all files shelvable Use the SET PROCESS NOAUTO UNSHELVE to require that a file be unshelved through an explicit UNSHELVE command only Accessing a file from a process on which this con dition is set will result in a mes
109. survive network failures of up to 15 minutes long If the net work comes back within the 15 minutes allotted time the RDCLIENT continues processing WITHOUT ANY INTERRUPTION OR DATA LOSS When a network link drops while RDF is active after 10 seconds RDF creates a new network link synchronizes I Os between the RDCLIENT and RDSERVER and continues processing The following example shows how you can test the RDF s ability to survive a network failure This example assumes that you have both the RDSERVER and RDCLIENT processes run ning Gtti rdev rdallocate tti mua0 RDF Remote Device Facility Version 4 1 RDALLOCATE Procedure Copyright c 1990 1996 Touch Technologies Inc Device TTI TTIS MUAO ALLOCATED use TAPEO1 to reference it backup rewind log ignore label sys library tape0l test from a second session run sys system NCP NCP show known links Known Link Volatile Summary as of 13 MAR 1996 14 07 38 Link Node PID Process Remote link Remote user 24593 20 4 JR 2040111C MARI 11C 5 8244 CTERM 16790 20 3 FAST 20400C3A rdclient 16791 tti rdevSRV 24579 20 6 CHEERS 20400113 REMACP 8223 SAMMY Remote Devices 14 8 Remote Devices 14 5 Controlling Access to RDF Resources 24585 20 6 CHEERS 20400113 REMACP 8224 ANDERSON NCP disconnect link 16790 Backup pauses momentarily before resuming Sensing the network disconnect RDF creates a new rdclient link Verify this by entering the following comman
110. that enable you to monitor and tune the HSM environment as well as to detect errors in HSM operation HSM LOG HSM SHP_AUDIT LOG The shelf handler audit log containing information on the parameters and final status of all requests HSM LOG HSM PEP_AUDIT LOG The policy audit log containing information on the parameters number of files processed and final status of all policy executions HSM LOG HSM SHP_ERROR LOG The shelf handler error log containing detailed information about any serious errors encountered during request processing including exception information HSM LOG HSM PEP_ERROR LOG The policy error log containing detailed informa tion about any serious errors encountered during policy execution including exception information Understanding HSM Concepts 2 4 Understanding HSM Concepts 2 3 The Shelf Event logging can be enabled and disabled within the following categories e Audit log Records all HSM requests e Error log Provides information on important errors e Exception log Provides error information that is useful to HP in the error logs HP recommends that you enable all logging at all times to keep track of all activity This is espe cially important when you have to report a problem 2 3 The Shelf A shelf is a named entity that relates a set of online disk volumes on which shelving is enabled to a set of archive classes that contains the shelved file data for those disk volumes For each shelf you can cont
111. that gives more information about any failure Please verify that the shelf handler is running and restart as needed with SMU START SSHELVE F SEARCHFAIL error searching for file filename Explanation The specified file does not exist Verify that the filename is correct and that the file exists then retry the command SSHELVE S SHELVED file filename shelved Explanation This status message informs you that your file has been shelved successfully SSHELVE F SLFCOMM shelf handler communications failure Explanation This message indicates that the shelf handler is not running Use SMU START to start the shelf handler and retry SSHELVE F SLFMESSAGE corrupt response message detected Explanation The failure message alerts you that a bad response message was received from the shelf handler or an error was encountered while trying to format and display an error message SSHELVE E UNKSTATUS unknown status returned from the shelf handler Explanation This error message informs you that the shelf handler process returned an unknown status message Please report this problem to HP and include relevant entries in the error and audit logs SSHELVE E UNSUPP operation unsupported Explanation This error message informs you that the operation you are attempting is unsupported by this software This is usually caused by a node name being included in a file specification SSHELVE F USLFCOMM user communications failure Explanation This
112. the cache is copied to the specified nearline or offline device Once the copy is complete the data in the cache is deleted As a result you need to ensure that the data is backed up while in the cache or is flushed to multiple archive classes for shelf storage 5 9 Finding Lost User Data There are two particular areas in which HSM can be used to recover lost user data e Access to shelved data has been lost e An online file header has been deleted In each of these instances if you have defined multiple archive classes for HSM you should be able to retrieve the data automatically from one of the defined archive classes In other instances such as when the online file has been deleted you may need to use SMU LOCATE to find the shelved file data Using SMU LOCATE The SMU LOCATE command retrieves full information about a file s data locations from the shelving catalog SMU LOCATE reads the HSM catalog s directly to find a shelved file s data locations You should note that SMU LOCATE does not work quite the same way as a typical OpenVMS utility when it comes to look up and wildcard processing The file descriptor you supply as input including any wildcards applies to the file as stored in the HSM catalog at the time of shelving Thus for example e You may locate a shelved file by name even ifithas been deleted from the online system unless the file was shelved to a cache defined with NOHOLD e Ifthe file has been renamed on
113. the conversion of TAPESTART COM D 1 1 Executing the Conversion Command Procedure To execute the conversion command procedure type in the following command GMDMS SYSTEM MDMS CONVERT V2 TO V3 The command procedure will introduce itself and then ask what parts of the SLS MDMS V2 x you would like to convert Converting SLS MDMS V2 X to MDMS V4 D 1 Converting SLS MDMS V2 X to MDMS V4 D 1 Converting SLS MDMS V2 X Symbols and Database During the conversion the conversion program will allow you to start and stop the MDMS server The MDMS server needs to be running when converting TAPESTART COM and the database authorization file The MDMS should not be running during the conversion of the other database files During the conversion of TAPESTART COM the conversion program generates the following file MDMSSSYSTEM MDMSS LOAD DB nodename COM This file contains the MDMS commands to create the objects in the database You have the choice to execute this command procedure or not during the conversion The conversion of the database files are done by reading the SLS MDMS V2 x database file and creating objects in the MDMS V4 database files You must have the SLS MDMS V2 x DB server shutdown during the conversion process Use the following command to shut down the SLS MDMS V2 x DB server SLSSSYSTEM SLS SHUTDOWN D 1 2 Resolving Conflicts During the Conversion Because of the difference between SLS MDMS V2 x and MDMS V4 there wil
114. the file to remain online and accessible even though a shelf copy is made A request to preshelve a file that has already been shelved or preshelved succeeds immediately After a file is preshelved it can still be accessed normally If the online file is modified the shelf copy is invalidated Any subsequent shelve or preshelve operation causes the file to be shelved again If the preshelved file is not modified a subsequent shelve operation simply truncates the file s data which removes the data from primary storage Benefits of Preshelving Files Preshelving files allows the system to respond rapidly to make space requests Because preshelved files already are copied to shelf storage HSM only needs to truncate files to respond to make space requests 1 7 The Unpreshelving Process When a shelved file is unshelved it goes into the preshelved state That is the file s HSM shelf data is still valid If the file is later shelved without being modified no additional data copies are made and the existing shelf data is used However if the file is modified its shelf data becomes obsolete This process is called unpreshelving and occurs automatically if an application writes to the file It can also be explic itly requested using the UNPRESHELV E DCL command When a file is unpreshelved its HSM shelf data is marked invalid and may be subject to deletion during repack according to the updates parameter set on the associated shelf In additio
115. the location of the Log Files For each server running MDMS uses a log file in this location The log file name includes the name of the cluster node it logs For example the log file name for a node with a cluster node name NODE A would be MDMS LOGFILE LOCATION MDMSS LOGFILE NODE A LOG 11 1 3 3 MDMS Shut Down and Start Up How to Shut Down MDMS To shut down MDMS on the current node enter this command 8SYSSSTARTUP MDMS SHUTDOWN COM How to Restart MDMS To restart MDMS shut down and immediate restart enter the shut down command and the parameter RESTART S SYSSSTARTUP MDMSSSHUTDOWN RESTART How to Start Up MDMS To start up MDMS on the current node enter this command S SYSSSTARTUP MDMS STARTUP COM MDMS Configuration 11 8 MDMS Configuration 11 1 The MDMS Management Domain 11 1 4 Managing an MDMS Node The MDMS node object record characterizes the function of a node in the MDMS domain and describes how the node communicates with other nodes in the domain 11 1 4 1 Defining a Node s Network Connection To participate in an MDMS domain a node object has to be entered into the MDMS database This node object has 4 attributes to describe its connections in a network 1 Ifthe node is part of a DECnet Phase IV network then the name of the node object must match exactly with the node s DECnet node name i e SYS NODE Otherwise the name of the node object may be any character string up to 31 characters 2 If
116. the server s logfile for further analysis INVNODNAM invalid node name specification Explanation A node name for a DECnet Phase IV node specification has an invalid syntax User Action Correct the node name and retry INVPORTS invalid port number specification Explanation The MDMS server did not start up because the logical name MDMSS TCPIP SND PORTS in file MDMS SYSTARTUP COM specifies and illegal port number range A legal port number range is of the form low port number high port number User Action Correct the port number range for the logical name MDMS TCPIP SND PORTS in file MDMS SYSTARTUP COM Then start the server INVPOSITION invalid jukebox position Explanation The position specified is invalid User Action Position is only valid for jukeboxes with a topology defined Check that the position is within the topology ranges correct and retry Example POSITION 1 2 1 INVRETDAYS invalid retention days specified Explanation You entered an invalid value for the retention days Valid values are 0 to 9999 days If you wish for no expiration of volumes specify NOEXPIRATION DATE User Action Enter a value between 0 and 9999 INVRETRY invalid value for retry count or interval Explanation You specified an invalid value for either or both the retry count or interval In addition it is invalid to specify an interval with a retry limit of zero or nolimit MDMS Messages C 19 MDMS M
117. the state of the HSM LOG device HSM E UNEXPERR unexpected error on operation Explanation This message indicates that the shelf handler experienced an unexpected error condition Please check the SHP error log for more information about the failure and report this to HP This is not a fatal error condition HSM E UNKNOWN RESP response unknown unable to locate corresponding request Explanation The policy execution process has received a response from the shelf handler for a shelve preshelve request that has already been completed No action is required HSM S UNPRESHELVED file filename unpreshelved Explanation With NOTIFY specified this message is displayed to the user upon success ful completion of an unpreshelve operation HSM S UNSHELVED file filename unshelved Explanation With NOTIFY specified this message is displayed to the user upon success ful completion of an unshelve operation The file is now online and available for user access HSM I UNSHLVPRG unshelving file filename HSM Error Messages A 10 HSM Error Messages A 2 Shelf Handler Messages Explanation A file fault is initiated as a result of attempting to read write extend trun cate execute a file that is shelved This message is printed to indicate a possible delay in pro cessing the user request HSM F VOLACCESSFAIL unable to access volume database Explanation The policy execution process was unable to access a volume s policy informa tion fro
118. the volume was purchased MDMS makes this the same values as the creation date but you can adjust this if needed The state field indicates where in a volume s life cycle the volume exists The state field itself is protected and you should not normally adjust it unless an error occurs However you can Update State using certain keywords which checks for validity and results in a consistent database state A volume can be in one of the following states which are shown in normal life cycle order e Uninitialized The default state when a volume is created This state indicates that the vol ume needs to be initialized prior to use and cannot be allocated until then e Free When a volume is initialized and after it has been freed the volume is in the free state This means that the volume s data if any is no longer valid and can be used to write new data This is the only state from which a user can allocate a new volume for use Allocated After a volume is allocated it enters the allocated state It remains in this state until the scratch date is reached MDMS automatically deallocates the volume when the Media Management 10 21 Media Management 10 11 Volumes scratch date is reached and it transitions to either the transition state if there is a transition time on the volume or the free state e Transition If a volume is deallocated to the transition state it remains in this state until the transition time expi
119. this as a paradigm rather than an HSM function because no special HSM functions are required the paradigm is implemented using normal HSM and BACKUP or SLS com mands The paradigm consists of the following elements which are described in subsequent sec tions backup product backups Managing the HSM Environment 5 28 Preshelving most files on the system Setting up SLS to handle shelved and preshelved files if you are using SLS as your regular Backing up only the headers of shelved and preshelved files in both image and incremental Managing the HSM Environment 5 17 Consolidated Backup with HSM e Restoring disks and files with files being restored in the shelved state e Hile faulting file data as it is needed or unshelving recently accessed files e Repacking shelf tapes regularly To implement this paradigm HSM has provided a special version of BACKUP called HSM BACKUP with this release This version allows backing up only the headers of preshelved and shelved files and in the shelved state It is expected that this functionality will be incorporated into a future version of OpenVMS BACKUP 5 17 1 Setting up SLS If you are using SLS as your regular BACKUP product you need to configure SLS to use the new HSM BACKUP image for your regular backups This feature is supported only with SLS V2 8 or later The steps you need to take are Defining a logical name to reference HSsMS BACKUP e Changing the SBK files to hand
120. to Add a Drive to a Managed Jukebox When you add another drive to a managed jukebox just specify the name of the jukebox in which the drive resides in the drive object record 11 2 2 4 Temporarily Taking a Managed Device From Service You can temporarily remove a drive or jukebox from service MDMS allows you to disable and enable drive and jukebox devices This feature supports maintenance or other operations where you want to maintain MDMS support for ABS or HSM and temporarily remove a drive or juke box from service Note If you remove a jukebox from service you cannot access any of its volumes Make sure you empty the jukebox or make sure your operations will continue without the use of the volumes in any jukebox you disable 11 2 2 5 Changing the Names of Managed Devices During the course of management you might encounter a requirement to change the device names of drives or jukeboxes under MDMS management to avoid confusion in naming When you have to change the device names follow the procedure in Table 11 10 MDMS Configuration 11 19 MDMS Configuration 11 2 Configuring MDMS Drives Jukeboxes and Locations Table 11 10 Changing the Names of Managed Devices Step Action l Either find a time when ABS or HSM is not using the drive or jukebox device or disable the device with MDMS Change the device names at the operating system Verify the devices respond using operat ing system comman
121. to serious These are the only commands you need to enter to distribute your volumes among shelves and to populate the catalogs When you enter these commands HSM begins a process called split merge which moves shelv ing data from the old catalog to the new catalog for a volume A split merge operation can be ini tiated by either command Since potentially thousands of catalog entries are affected by a spit merge the process can take several minutes or even hours to complete During this time the associated volume and or shelf is associated with two catalogs the old and the new These can be seen by issuing an SMU SHOW VOLUME or SMU SHOW SHELF during a split merge which have special displays as shown in the examples below SMU SHOW VOLUME 15 DKA300 FULL Volume 15 DKA300 on Shelf HSMSDEFA Unshelving is enabled High pancy full detection is disabled Dis SMU displays when changing a shelf Created 8 FEB 1998 15 57 Revised 8 FEB 19986 15 5 Ineligible files contiguous Highwater mark 90 OCCUPANCY Policy QUOTA Policy Split Merge state Alternate shelf 5 HSMS DEFAULT QUOTA COPY PRODUCTION SHELF SMU displays when changing a catal SMU SHOW SHELF Shelf TEST SHELF1 is enabled for Shel Catalog File DISKSUSER1 HSM Shelf History Created 1 DEC 1998 11 44 Revised 28 DEC 1998 15 22 Backup Verification Off Save Time lt none gt Updates Saved All Archive C
122. to the DCL SHELVE command You can issue the SHELVE command directly to the OpenVMS operating system or you can execute it in an OpenVMS command procedure Introduction to HSM 1 4 Introduction to HSM 1 4 The Shelving Process Implicit shelving is a process that occurs in response to one of the following triggers e Volume full user disk quota exceeded or high water mark exceeded requests initiated by OpenVMS M These conditions trigger reactive policy e Scheduled policy execution initiated by HSM This condition triggers preventive policy 1 4 2 File Selection for Explicit Shelving The DCL SHELVE command accepts file specifications including wildcards for files to pro cess Qualifiers to this command allow flexibility in selecting files for explicit shelving Refer to HSM Command Reference Guide for complete information about using the SHELVE command 1 4 3 File Selection for Implicit Shelving File selection for implicit shelving is specified through HSM policy Once you understand the file selection process you can use Shelf Management Utility SMU commands to specify file selection criteria and achieve efficient use of primary storage Make Space Requests When an application or user creates a file or extends the file the operation may not complete because the disk volume is full or the user has exceeded the disk quota If shelving is enabled on the volume this situation generates a make space request to HSM to free
123. to use another drive DRVLOADED drive is already loaded Explanation A drive unload appeared to succeed but the specified volume was still detected in the drive User Action Check the drive and check for duplicate volume labels or if the volume was reloaded DRVLOADING drive is currently being loaded or unloaded Explanation The operation cannot be performed because the drive is being loaded or unloaded User Action Wait for the drive to become available or use another drive If the drive is stuck in the loading or unloading state check for an outstanding request on the drive and cancel it If all else fails man ually adjust the drive state DRVNOTALLOC drive is not allocated Explanation The specified drive could not be allocated User Action Check again if the drive is allocated If it is wait until it is deallocated Otherwise there was some other reason the drive could not be allocated Check the log file DRVNOTALLUSER drive is not allocated to user Explanation You cannot perform the operation on the drive because the drive is not allocated to you User Action Either defer the operation or in some cases you may be able to perform the operation specify ing a user name DRVNOTAVAIL drive is not available on system MDMS Messages C 7 MDMS Messages Explanation The specified drive was found on the system but is not available for use User Action Check the status of the drive and c
124. type of rename you must Ensure that the SMU volume database for the old and new disk names refer to the same HSM shelf This is vital so that HSM can access the correct catalog for access There are three possible valid configurations Neither volume is defined in the SMU database and by default use the shelf defined in the default volume record Managing the HSM Environment 5 3 Managing the HSM Environment 5 4 Restoring Files to a Different Disk Both volumes are defined in the SMU database and both are using the same shelf not necessarily the default shelf One of the volumes is defined in the SMU database and this volume uses the same shelf as defined in the default volume record Run SMU ANALYZE REPAIR on the newly renamed disk This creates catalog entries for pre shelved files on the new disk Note Please note that failure to assign the same shelf for the old and new disks and or failure to run SMU ANALYZE REPAIR after the name change may result in the inability to unshelve files 5 4 Restoring Files to a Different Disk Very often after a disk failure or other reason it is desirable to restore files from a backup copy to a different disk than the one from which the backup was originally taken If the backup copy contains shelved and preshelved files such a restore will create a discrepancy between the online location of the files and the location stored in the HSM catalogs As such it is necessary
125. umes when they are created The offsite location is an MDMS location that is used for secure storage of the volumes in case of a disaster You can always override the domain default offsite location when you create or modify volumes 10 2 100nsite Location The domain onsite location attribute is applied by default to the onsite location field of new vol umes when they are created The onsite location is an MDMS location that is used for storage of the volumes when they are onsite or quickly accessible to jukeboxes and drives You can always override the domain default onsite location when you create or modify volumes 10 2 110PCOM Classes The domain OPCOM classes attribute contains the default OPCOM classes that are applied to new node objects by default when they are created OPCOM classes are classes of users whose terminals are enabled to receive certain OPCOM classes You can override the domain default OPCOM classes with specific classes on a per node basis when you create or modify a node 10 2 120perator Rights The right MDMS OPERATOR RIGHTS is a high level right that maps to a set of low level rights suitable for operators managing the domain The default set of operator rights allow for normal operator activities such as loading and unloading volumes into drives showing any object or operations and moving volumes offsite and onsite However you can add or remove low level rights to from the operator rights as you wish 10 2 13
126. useful active data must be available for use and remain unchanged persistent in the event of unexpected events such as disasters 1 1 1 Data Categories Typically data exists in one of three categories e Active Data that you access frequently You want virtually immediate access to this data e Dormant Data that you access less frequently and are willing to wait a short time to access e nactive Data that you do not expect to access again but must keep Generally this type of data is kept in an archive for legal or business purposes On most systems 80 percent of the I O requests access only 20 percent of stored data The remaining 80 percent of your data occupies expensive media magnetic disks but is used infre quently 1 1 2 Device Capacity Cost and Performance There are many different devices on which your data can be stored and the selection of which device best meets your storage needs depends on three factors e Performance e Capacity Cost The relationship among these three factors is illustrated in Figure 1 1 In general high perfor mance devices have a lower capacity and higher cost than high capacity devices High capacity devices trade performance for the ability to store large amounts of data Introduction to HSM 1 1 Introduction to HSM 1 1 Storage Management in the OpenVMS Environment Figure 1 1 SOLID STATE DISK DEVICES MAGNETIC OPTICAL DISK DEVICE MAGNETO TIME TO RETRIEVE DATA
127. verify that any catalog files are accessible HSM E CATSTATS ERROR error manipulating catalog statistics record Explanation An error occurred reading or writing the shelf catalog during a license capac ity scan or SMU facility definition Please check the equivalence name of HSM CATALOG and redefine as needed If the catalog exists you may need to recover the catalog from a BACKUP copy HSM E CLASS DISABLED command class disabled re enable with SMU SET FACIL ITY REENABLE HSM Error Messages A 2 HSM Error Messages A 2 Shelf Handler Messages Explanation A repeated fatal error in the shelf handler has been detected on a certain class of operations Please refer to the SHP error log for detailed information and report the prob lem to HP Since the fatal error continually repeats HSM disabled the class of operation causing the problem so that other operations might proceed After fixing the problem you can re enable all operations using SMU SET FACILITY REENABLE HSM E CLASSDIS commandclass command class disabled Explanation A repeated fatal error in the shelf handler has been detected on the specified class of operations Please refer to the error log for detailed information and report the problem to HP Since the fatal error continually repeats HSM disabled this class of opera tion so that other operations might proceed After fixing the problem you can re enable all operations using SMU SET FACILITY REENABLE HSM
128. volume is already being moved User Action Wait for volume to come to a stable placement and retry If the volume is stuck in the moving placement check for an outstanding request and cancel it If all else fails manually change vol ume state VOLNOTALLOC specified volume is not allocated Explanation You attempted to bind or deallocate a volume that is not allocated User Action None for deallocate For bind allocate the volume and then bind it to the set or use another vol ume VOLNOTBOUND volume is not bound to a volume set Explanation You attempted to unbind a volume that is not in a volume set User Action None MDMS Messages C 51 MDMS Messages VOLNOTINACS one or more volumes are not in this ACS Explanation One or more volumes for the command are not in this ACS User Action Verify that all volumes are in the same ACS and that the ACS id is correct VOLNOTINJUKE volume is not in a jukebox Explanation When loading a volume into a drive the volume is not in a jukebox User Action Use the move option and retry the load This will issue OPCOM messages to move the volume into the jukebox VOLNOTINPOOL loaded volume is not in the specified pool Explanation During a scratch load of a volume in a drive the volume loaded was not in the requested pool User Action Load another volume that is in the requested pool A recommended volume is printed in the OPCOM message Note that if
129. writing a new or modified device record There may be an accompanying message that gives more information about any fail ure SMU I DEVICE CREATED device device name created Explanation The device was successfully created SMU I DEVICE DELETED device device name deleted Explanation The device was successfully deleted SMU W DEVICE NF device device name was not found Explanation For SMU SET DEVICE or SMU SHOW DEVICE the device was not found in the device database For SMU SET SCHEDULE or SMU SHOW SCHEDULE there was no scheduled event for the volume SMU I DEVICE UPDATED device device name updated Explanation The device was successfully updated SMU E DEVINFOERR error getting device information for device name Explanation For SMU ANALYZE an unexpected error was encountered getting informa tion about the device SMU ANALYZE will stop processing this device set SMU E DISCLASS command class has been automatically disabled Explanation A repeated fatal error in the shelf handler has been detected on a certain class of operations Please refer to the SHP error log for detailed information and report the prob lem to HP Since the fatal error continually repeats HSM disabled the class of operation causing the problem so that other operations might proceed After fixing the problem you can re enable all operations using SMU SET FACILITY REENABLE SMU E DISPLAYERR display error encountered Explanation An error w
130. your application to fail MDMS Operator The default MDMS_OPERATOR right supports data center operators The associated low level rights allow operators to service MDMS requests for managing volumes loading and unloading drives The Default Right The low level rights associated with the MDMS_DEFAULT right apply to any OpenVMS user who does not have any specific MDMS right granted in their user authorization SYSUAF DAT file Use the default right when all users can be trusted with an equivalent level of MDMS rights 9 5 2 Granting MDMS Rights The high level rights are defined by domain object record attributes with lists of low level rights The high level rights are convenient names for sets of low level rights For MDMS users grant high and or low level rights as needed with the Authorize Utility You can take either of these approaches to granting MDMS rights You can ensure that all appropriate low level rights necessary for a class of user are assigned to the corresponding high level right then grant the high level rights to users You can grant any combination of high level and low level rights to any user Basic MDMS Operations 9 19 Basic MDMS Operations 9 5 Access Rights for MDMS Operations Use the procedure outlined in Table 9 1 to review and set rights that enable or disable access to MDMS operations CLI command examples appear in this process description but can use the GUI to accomplish this procedure as well
131. 1 whichever is greater Max value maxblock 100 Many systems use the default value for cluster factor which is 3 for disks whose capacity is greater than or equal to 50 000 blocks Occasionally you may have a problem with very large disks when the default value of three does not work and you need to calculate the minimum value using the equation For additional information see the INITIALIZE command in the OpenVMS DCL Dictionary By default MAXIMUM FILES is maxblock cluster factor 1 2 which is half of the actual maximum Managing the HSM Environment 5 32 Managing the HSM Environment 5 20 Event Logging 5 19 2 Specifying a Volume s File Headers To initialize a volume with the greatest number of file headers possible use the following DCL command INITIALIZE device label CLUSTER maxblock 255 4096 MAXIMUM FILES maxblock cluster 1 HEADERS maxblock cluster 1 If you initialize a volume with the largest number of file headers the index file will be very large and none of that space can be used for anything but file headers This is not necessary nor desirable because you end up using approximately 25 percent of your disk space for file meta data In reality you probably want to set aside about 1 percent of your disk space for file meta data Note in the INITIALIZE command that MAXIMUM FILES reserves space for the index file while HEADERS allocates space for the index file Using th
132. 12 bDEE Se ede t ERA E E a 10 6 10 3297 Drive Number ct ti C e S deeds 10 6 10 3 6 Gro ps L5 e ed elon dhe Each eases ee ad Weg sa Pee ao epa Re REESE S 10 6 T0 3 7 Jukebox culate ta tM EA tailed oe ta ite Se tal hore OAL stat fold talent tcl 10 6 10 3 8 Media Types eee RR te cece ARV BE A ee DEBATE Ue AUS RS ee Days 10 6 LOB 9 NOTES Pectin tees E ea eS RA eon ie Teh eto NE Aon Sale Mote aul te du dab ue e dut 10 6 10 3 10 Read Only Media Types 10 6 10 3 H Shared uel oie te da Lilo ert ehe Ee lie AG IL stes id LE LA TT ad 10 6 10 3212 Stacker cio ELLOS UP ee ho Exe tete ee ee DV RA eo 10 7 10 313 State o occ eet ic ee oto ee o septa tte arai E ten a artic e UR ge O Lee Las 10 7 10 3 14 Allocate Drive DCL Only ssseeeeeeee IR 3 eran 10 7 10 3 15 Deallocate Drive DCL Only sseeeeeeeeee mh 10 8 10 3 16 Load Drive o orto ete ARI A AA IS RPERD SCU BA eg Nt 10 8 LOB AT cUnload DEIV6 ai SED RR ta ete eite RR Au a iris 10 8 10 4 Gro ps eR A M E EDU A p ie RE De ERR RERO 10 9 10 41 NOES encata easet umi cec Et 10 9 10 5 TURCA A A AS DAP UNE ae ei a N 10 9 10 5 ACCESS ise E ete eoa ee d eso eS Co Oe oo t rete ot ea eA cs 10 9 10 5 2 ACS ID iis 08 feos Sek ehe enel e rU REL See RENS ede a a 10 9 10 5 3 Automatic Reply eer Rob eb i rt adapte bag 10 9 10 5 4 Cap SIZE oc o A MES E WR eate ATARI AT Ba AT RENE Ug 10 10 10 59 57 Control id Rb eta See tal n p te SA es od 10 10 10 5 6 Disabl
133. 13 1 Creating Jukeboxes Drives and Volumes 0 cece hh 13 1 13 2 Deleting Jukeboxes Drives and Volumes 0 cece ec teen eee eens 13 4 13 3 Rotating Volumes Between Sites 0 0 e 13 5 13 4 Servicing Jukeboxes Used for Backup Operations 0 0 0 0 eee cee tees 13 7 Remote Devices 14 1 The RDF Installation 3 0 2 244 22sec ke Ses ae hernu Dhaene ee RA ERIS RR 14 1 14 2 Conhiguring RDE e tb e t e p A m bosse lapi each 14 1 14 3 Using RDF with MDMS eee ee EE AUR ERAT e AUR Ske a D 14 2 14 3 1 Starting Up and Shutting Down RDF Software o oo ooocococococcro ee 14 2 14 3 2 The RDSHOW Procedures icum ERE e 14 2 143 3 Command Overyview iik E RID RED eee mE peace d 14 2 14 3 4 Showing Your Allocated Remote Devices 0 0 cee cece II 14 2 143 5 Showing Available Remote Devices on the Server Node 0 0 0 0c eee eee eee 14 3 14 3 6 Showing All Remote Devices Allocated on the RDF Client Node 0 04 14 3 14 4 Monitoring and Tuning Network Performance 00 0 0 cece cece tees 14 3 1444 DECnetPhase IV ovio pic e Saved Bale EA LEUR OE ee Se DER es Durs 14 3 xiii 1442 DECnet Plus Ph se V o LAA d ect 14 4 1443 Changing Network Parameters o o oo ooooooocrr I nee ee 14 4 1444 Changing Network Parameters for DECnet Phase IV 0 00 00 eee eee eee 14 5 14 4 5 Changing Network Parameters for DECnet Plus Phase V 00 00 00 0 eee ee
134. 2 6 When a shelf is first created the archive classes specified in the archive list are copied to the restore list if the restore list is not specified Thereafter the two lists must be maintained separately 2 3 2 2 Primary and Secondary Archive Classes When defining your restore archive list it is useful to think of the first archive class in the restore list as a primary archive class and all the others as secondary archive classes For shelving oper ations all of the archive classes in the archive list receive the same amount of operations because HSM copies data to all archive classes at the time of shelving However for unshelving this is different In most cases HSM only needs to read from the primary archive class to restore the data These concepts are useful when deciding how to relate your archive classes to media types and devices as described in Section 2 6 3 2 3 2 3 Multiple Shelf Copies You need to determine the appropriate number of shelf copies for your shelved file data depend ing on the importance of the data being shelved HP recommends a minimum of at least two shelf copies of all data because media can be lost or destroyed If the data is especially critical you can make additional copies some of which might be taken offsite and stored in a vault HSM provides a mechanism called checkpointing to syn chronize your shelved data media and backup media so that they can be removed to an offline location together s
135. 2 6 4 Magazine Loaders for HSM Basic Mode HSM Basic mode supports certain tape magazine loaders as nearline devices that can be associ ated with archive classes A magazine is a stacker containing one or more tape volumes that can be loaded into a single drive The following magazine loaders are fully supported with random access loading and unloading of tape volumes e TAS57 TF857 TZ857 e TAS867 TF867 TZ867 e TLZ6L TLZ7L e TZ875 TZ877 e TZ885 TZ887 HSM Basic mode supports multiple magazines with multiple volumes per magazine In addi tion volumes for multiple archive classes may reside in a single magazine However there are a few restrictions that must be observed for HSM e All volumes placed in magazines must be initialized prior to use with the OpenVMS INI TIALIZE command Volume labels are the same as for nonmagazine loaders and must con form to the conventions shown in Table 2 1 In addition it is vital that all tape volumes have unique labels HSM does not support multiple volumes with the same label which can result in the loss of access to shelved data e Anarchive class must be specified for loader operations or nonloader operations exclu sively and must be assigned to appropriate devices You cannot mix loader and non loader tape operations for the same archive class at the same time However you can migrate an archive class from nonloader to loader or vice versa as long as it has the same media type
136. 2 are compatible if they have a common parent location such as ROOM2 Compatible locations are used when allocating drives and volumes using selection criteria so you should only define hierarchies to the extent that you wish compatible locations Locations that extend beyond a room or floor are generally not considered compatible so you should not normally build location hierarchies beyond that level Media Management 10 13 Media Management 10 7 Magazines Locations can also contain spaces that are normally labelled areas in a location that volumes and magazines can be placed in an onsite location If a volume or magazine contains a space def inition this is output in OPCOM messages so that operator can easily locate a volume or maga zine when needed Locations contain two attributes as defined in the following sections 10 6 1 Parent Location The parent location is an MDMS location object which is the next level up on the location hier archy For example a location SHELFI might have a parent location ROOM2 indicating that SHELFI is in ROOM2 You should define a parent location only if you wish all locations belonging to the parent including the parent itself to be compatible when selecting volumes and drives For example in a hierarchy of SHELF1 and SHELF2 in ROOM2 volumes in any of the three locations would match a request to allocate a volume from ROOM2 Do not use the loca tion hierarchy for other purposes 10 6 2 Spa
137. 21 MDMS Messages User Action If the destination is invalid enter a correct destination and retry If a source is invalid either cre ate the source or correct the current placement of the affected volumes or magazines INVSTATE volume AZ is in an invalid state for initialization Explanation The volume loaded in the drive for initialization was either allocated or in the transition state and cannot be initialized User Action Either the wrong volume was loaded or the requested volume was in an invalid state If the wrong volume was loaded perform an inventory on the jukebox and retry If the volume is allo cated or in transition you should not try to initialize the volume INVTFULLNAM invalid TCP IP fullname Explanation A node full name for a TCP IP node specification has an invalid syntax User Action Correct the node name and retry INVTOPOLOGY invalid jukebox topology Explanation The specified topology for a jukebox is invalid User Action Check topology definition the towers must be sequentially increasing from 0 there must be a face level and slot definition for each tower Example TOPOLOGY TOWER 0 1 2 FACES 8 8 8 LEVELS 2 3 2 SLOTS 13 13 13 INVVOLPLACE invalid volume placement for operation Explanation The volume has an invalid placement for a load operation User Action Re enter the command and use the move option INVVOLSTATE volume in invalid state for oper
138. 3 5 If both primary and secondary policies have been executed and the policy goals still have not been achieved policy execution terminates with an HSM INCOMPLETE error Introduction to HSM 1 5 Introduction to HSM 1 5 The Unshelving Process 1 4 4 Modifying File Attributes of a Shelved File After a file has been shelved its header remains on the disk You still see the file in directories and you may view and modify the file s attributes without having to access the data in shelf stor age Any modifications you make to the shelved file s header will be in effect when the file is unshelved 1 5 The Unshelving Process The unshelving process moves files from shelf storage to primary storage Once the file has been unshelved you can access it normally 1 5 1 Starting the Unshelving Process Your control over the start of the unshelving process is either explicit or implicit Explicit unshelving is a process that starts in response to the DCL UNSHELVE command You can issue the UNSHELVE command directly to the OpenVMS operating system or you can execute it in an Open VMSTM command procedure The UNSHELVE command accepts one or more file specifications including wildcard file specifications Implicit unshelving is a process that HSM starts in response to a file fault A file fault is a high priority request that occurs when a shelved file is accessed for a read write extend or truncate operation Table 1 3 shows the pr
139. 3 TO V2 After introductory information this command procedure will ask you questions to complete the conversion Converting SLS MDMS V2 X to MDMS V4 D 11 Index A Access control lists ACLs 5 8 Access Security 1 8 Activity logging 5 1 ANALYZE Command 5 26 Application and User Performance Impeded 5 19 Archive Class definition 1 4 Archive class 5 13 create 5 24 multiple 5 10 repack 5 23 replace 5 26 reshelve 5 13 same in plus mode as basic 5 39 Audit logging 5 33 B Backup considerations 5 10 consolidated 5 28 critical files 5 9 image 5 9 incremental 5 9 nightly 5 30 online cache data 5 11 shelved data 5 10 shelved files 5 10 strategy 5 11 using OpenVMS 5 12 via shelving 5 28 with HSM 5 29 with multiple archive classes 5 10 Basic Mode Converting to Plus Mode 5 37 C Cache 1 7 advantages 1 8 exceeding cache capacity 1 10 flushing 1 10 5 11 HSM Processes 1 9 Magneto Optical device 1 9 Preshelving 1 9 shelving 1 9 Unshelving 1 9 usage 5 32 Cancelling requests 5 37 Capacity 5 15 Capacity latitude 5 15 Catalog 5 21 analysis 5 26 definition 1 10 managing 5 21 recovering 5 13 repair 5 26 Checkpoint for Basic to Plus mode 5 37 CHECKPOINT command 5 12 Consolidated Backup 5 1 Converting Basic to Plus 5 1 Copying shelved files 5 2 Creating new archive classes 5 25 creating new archive classes 5 25 critical files 5 4 D Data critical files 5 9 safety 5 10 Device
140. 4 1 MDMS can be used to manage locations of tape volumes in your IT environment MDMS identifies all tape volumes by their volume label or ID Volumes can be located in different places like tape drives or onsite locations Requests can be made to MDMS for moving volumes between locations If automated volume movement is possible like in a jukebox tape loader tape library MDMS moves volume s without human intervention MDMS sends out operator messages if human intervention is required MDMS allows scheduled moves of volumes between onsite and offsite locations e g vaults Multiple nodes in a network can be setup as an MDMS domain Note that e all nodes in a domain access one MDMS database e all MDMS objects like volumes and drives are described in the MDMS database MDMS is a client server application At a given time only one node in an MDMS domain will be serving user requests and accessing the database This is the database server All other MDMS servers which are not the database server are clients to the database server All user requests will be delegated through the local MDMS server to the database server of the domain In case of failure of the designated database server MDMS automatic failover procedures ensure that any of the other nodes in the domain that has the MDMS server running can take over the role of the database server 8 1 MDMS Objects MDMS manages all information in its database as objects Table 8 1 li
141. 8 Jan 2003 01 03 31 66 Note The number of these log files could grow to a large number You may want to set the version on these scheduled activities to 10 or so 12 5 4 Notify Users When Volumes are Deallocated To notify users when the volumes are deallocated place the user names in the Mail attribute of the Domain object For example MDMS show domain Description Smith s Special Domain Mail SYSTEM OPERATORI SMITH Offsite Location JOHNNY OFFSITE TAPE STORAGE Onsite Location OFFICE 65 Def Media Type TLZ09M Deallocate State TRANSITION Opcom Class TAPES Request ID 496778 Protection S RW O RW G R W DB Server Node DEBBY DB Server Date 08 Jan 2003 14 20 08 Max Scratch Time NONE Scratch Time 365 00 00 00 Transition Time 1 00 00 00 Network Timeout NONE MDMS Management Operations 12 16 MDMS Management Operations 12 5 Scheduled Activities In the above example users SYSTEM OPERATOR 1 and SMITH will receive VMS mail when any volumes are deallocated during scheduled activities or when some one issues the following command MDMS DEALLOCATE VOLUME SCHEDULE VOLSET If you delete all users in the Mail attribute nobody will receive mail when volumes are deallo cated by the scheduled activities or the DEALLOCATE VOLUME SCHEDULE command MDMS Management Operations 12 17 13 MDMS High Level Tasks MDMS GUI users have access to features that guide them through complex tasks These features
142. 9 16 9 4 13 Errors 9 4 14 Help Basic MDMS Operations 9 4 Graphical User Interface Low and high request IDs for DB server only Severity Options For audit completion entries you can select that only entries of a certain combinations of completion status are displayed You can select one or more of Success S Informational T Warning W Error E Fatal F After entering the selection criteria you click on the Show button to display Depending on the size of the log file this operation may take several seconds to complete You may want to regularly reset your log files to avoid long response times The code has been written to scan previous versions of log files if the date and or request selections are not in the latest log file The Refresh button at the bottom of the screen refreshes whatever selection is currently on thescreen The Cancel button allows you to enter a new selection MDMSView can report two types of errors Those generated by MDMSView itself these typically appear in a dialog box and in the sta tus bar at the bottom of the screen These errors normally explain an illegal user operation Those generated by the MDMS server on the log in node These errors appear in a dialog box with the standard MDMS DCL syntax These errors are documented in the MDMS Ref erence Guide MDMSView provides three types of help Tool tip Help for every field on every screen To obtain tool tip
143. A IM A A AAA AR 10 1 102 T ABS RMS ds el ed d 10 2 10 22 Application Rights terra d E 10 2 10 2 3 Check Acces it A ee nae tke AAA A eoim 10 2 102 4 Deallocate State ca NA ERREUR MUS He Re ERAT 10 2 10 2 3 Default RIgbts ua as dl del Me dad ES 10 2 10 226 Mal Users dira dra A an 10 2 10 2 7 Maximum Scratch Time seia conn esan e e a e I et 10 3 10 228 Media Ty pe giu AS IT DO MENFE I RUE RUDI RU Sce e CITUR 10 3 10 29 Offsite Location os voee sl itd 10 3 1x 10 2 10 OnsiteLocatlohn 25 c eS eot Et e ce E e ees 10 3 10 2 11 OPCOM Classes A RES EN a A 10 3 10 2 12 Operator Rights zredi it dada peace blade 10 3 10 2 13 PtotectIOm A A A AA AA mp NEU Is utis 10 3 102 14 Relaxed ACCESS e eo tct ee trita doeet e ate ute dal ee e tend 10 4 10 2 15 Request ID ie oet E EST ERE Rep e LISSE NEA ERR 10 4 10 216 Scheduler TYPE cta er ENSE ER ER ee es ke eee P 10 4 10 2 17 Scratch Lime A PU UAR Cine hea BRUDER as 10 4 10 2 184 SYSPRVS fe ceo to et ee S t P S utes afud e CN RS Cid aie La 10 4 10 2 19 Transition Time i e REED br RITE GEI eR a cee nes 10 5 10 2 20 User Rights eere eR Rp eeu eiu mee uice 10 5 10 3 Dr1V68 e cb ere Ee S b ete RT t E RULES DE AUR A 10 5 LOS AS SAC CESS is EC A E NE NIU Nea t uta weet atin I M MALE 10 5 10 3 2 Automatic Reply om IRE RT ERES ee Ope USER DERE RR RE EROR 10 5 10 3 5 Device eis Bhs e a ee uas eu eL Led ar eU ede Cea td E ott d 10 5 10 3 4 Disabled
144. ATE POOL ABS DMS SHOW POOL DMS SHOW POOL Pool Description horized Users Default Users mdms del pool hsm MDMS CREATE POOL HSM DESCRIPTION Pool for HSM M Pool Description Authorized Users Default Users DESCRIPTION Pool for ABS AUTHORIZED SMITH1 ABS SMITH2 ABS SMITH3 ABS JONES ABS M ABS ABS Pool for ABS SMITH1 ABS SMITH2 ABS SMITH3 ABS JONES ABS AUTHORIZED SMITH1 HSM SMITH2 HSM SMITH3 HSM HSM HSM Pool for HSM SMITH1 HSM SMITH2 HSM SMITH3 HSM B 1 9 Configuration Step 9 Example Defining Volumes using the VISION qualifier This example shows the MDMS commands to define the 176 volumes in the TL826 using the VISION qualifier The volumes have the BARCODES on them and have been placed in the jukebox Notice that the volumes are created in the UNINITIALIZED state The last command in the example initializes the volumes and changes the state to FREE create volumes the media type offsite location and onsite location values are taken from the DOMAIN object create 120 volumeS for ABS MDMS CREATE VOLUME DESCRIPTION Volumes for ABS JUKEBOX TL826 JUKE POOL ABS SLOTS 0 119 VISION MDMS SHOW VOLUME BEBOOO Volume BEBOOO Description Volumes for ABS Placement ONSITE BLD1_COMPUTER_ROOM Media Types TK88K Username Pool ABS Owner UIC NONE Error Count 0 Account Mount Count 0 J
145. After the Conversion Media type Media type Make sure you have all the media types that you had before In the MDMS V4 you can only have on media type with the same name If you had two media types in SLS MDMS V2 x with the same name the second one is not created in the MDMS V4 database Description The conversion program does not add a description to this attribute Type in a description for this attribute Density The density attribute is only changed when the DENS x sym bol in the TAPESTART COM file is something other than COMP or NOCOMP Check to make sure this is correct Compaction This attribute is set to YES if the DENS x symbol in the TAPE START COM file is COMP It is set to NO if the symbol is NOCOMP Check to make sure this is right Capacity This attribute is set to the value of DENS X from the TAPE START COM file if it is not defined as COMP or NOCOMP Check to make sure this right Jukebox Description The conversion program does not put a description for this attribute Type in a description to this attribute Nodes Make sure this list of nodes contains the nodes that can reach the robot Location Make sure this is the location where this jukebox is located Disabled The conversion program enables all jukeboxes If you want this jukebox disabled set this attribute to YES Shared The conversion program sets this attribute to NO NO means that MDMS
146. Analysis and Repair Stored in catalog as FID 12 1 0 S1 DKB500 ANALYZE_TEST LOGIN COM 1 File entry not repaired Invalid HSM metadata found for File 16 1 0 S1 DKB500 ANALYZE_TEST 04_RESULTS TXT 1 No catalog entry found file not repairable Invalid HSM metadata found for File 17 1 0 S1 DKB500 ANALYZE_TEST ANALYSIS DAT 1 File entry repaired repairs made File 18 1 0 S1 DKB500 ANALYZE_TEST RECIPE MEM 1 Revision date mismatch Current 9 JUL 1999 16 45 39 37 Catalog 10 JUL 1999 15 54 21 74 File entry repaired repairs made File 19 1 0 S1 DKB500 ANALYZE_TEST MAIL SAV 1 Stored in catalog as FID 19 1 0 BOGUSSDEVICE1 ANALYZE_TEST MAIL SAV 1 File entry repaired repairs made SMU completed scan for shelved files on disk volume SMU I ERRORS 6 error s detected 4 error s repaired Example of ANALYZE REPAIR CONFIRM SMU ANALYZE REPAIR CONFIRM DKB500 SMU I PROCESSING processing input device DKB500 SMU I scanning for shelved files on disk volume 1 DKB500 File 14 1 0 SISDKB500 ANALYZE TEST STATUS RPT 1 Stored in catalog as FID 13 1 0 BOGUSSDEVICE1 ANALYZE_TEST STATUS RPT 1 Repair catalog entry to reset volume FID to _ 14 1 0 Y N File entry not repaired Invalid HSM metadata found for File 15 1 0 SISDKB500 ANALYZE TEST LOGIN COM 1 Stored in catalog as FID 12 1 0 S1 DKB500 ANALYZE_TEST LOGIN COM 1 Repair catalog entry t
147. BLE EVENT CAPACITY INCREASED HIGH WATER MARK LOW WATER MARK Available Storage Capacity Below Low Water Mark Total Available Used Storage Capacity Within Capacity Capacity Latitude Unused Capacity CXO 4096A MC Resolution If volume occupancy full events occur while your preventive policy is in effect you can do either or both of the following actions to avoid them e Decrease the high water mark e Increase the frequency of scheduled policy 5 11 2 2 Situation Shelving Goal Not Reached The goal is an important part of policy as it is the result of the shelving process controlled through file selection criteria in the policy definition Figure 5 4 shows the policy model when a shelving policy fails to reach its defined goal Managing the HSM Environment 5 17 Managing the HSM Environment 5 11 Maintaining Shelving Policies Figure 5 4 1 SYSTEM IN USE 2 HIGH WATER 3 SHELVING GOAL MARK EXCEEDED LOW WATER MARK NOT REACHED HIGH WATER MARK LOW WATER MARK Available Storage Capacity Below Low Water Mark Total Available Used Storage Capacity Within gt Capacity Capacity Latitude Unused Capacity CXO 4099A MC Resolution If shelving operations fail to reclaim the defined capacity you can do either or both of the fol lowing actions to make sure your shelving goal is reached Change the file selection criteria to i
148. CK internal consistency failure Explanation An internal error occurred and the shelf handler process terminated and is automatically restarted This error is nonrecoverable and is written to the error log Please report this problem to HP and include relevant entries in the error and audit logs HSM W CACHEERROR shelf caching error Explanation An error occurred trying to access a cache disk or a cache file on a preshelve shelve or unshelve request or during a cache flush to tape Consult the SHP error log for more information HSM I CACHEFULL shelf cache full Explanation All disk and MO devices specified as caches have exhausted their capacity as defined by the block size or the physical size of the device Either define additional cache devices or initiate cache flushing using SMU commands Any preshelve or shelve opera tions are directed to tape if defined SHSM W CANCELED shelving operation canceled on file filename Explanation The specified request has been canceled due to a specific cancel request a request that conflicts with another user or a failure of a multi operation request In the last case please check the SHP error log for more information HSM E CATOPENERROR error opening shelf catalog file Explanation An unexpected error occurred trying to open the shelf catalog file s Consult the SHP error log for further information Please check the equivalence name of HSM CATALOG and redefine as needed Also
149. Command Reference Guide HSM policy is at the center of the shelving process The policy options you define establish the conditions that start the shelving process and determine the amount of primary storage available when shelving operations end Understanding HSM Concepts 2 19 Understanding HSM Concepts 2 9 Policy 2 9 1 HSM Policy Options HSM policies are implemented through the available file selection options These options allow you to define how HSM will implement storage management on your system The HSM policy file selection options which may be set are Trigger events e File selection criteria e Goal Figure 2 4 shows the general sequence of HSM policy operations Once a reactive or preventa tive policy is established system operations continue normally until a trigger event occurs The trigger event activates HSM policy and files are shelved in accordance with the file selection cri teria until the policy goal is reached 2 9 2 Trigger Events The trigger is an event that causes the shelving process to begin moving files to shelf storage These events activate HSM policies that fall into two general categories based on the kind of trigger used e Preventive Preventive policy criteria include scheduled movement of files between primary and shelf storage using such determinants as file event dates and file size e Reactive Reactive policy criteria include reactions to system events such as exceeding the amount
150. Concepts 2 6 Device Advantages of Dedicating a Device Dedicated devices have the following advantages e The device is always available for HSM use and pending HSM operations should not be blocked by other potentially long running applications e Slow operations like tape loading and positioning are minimized as is operator intervention e Response time for shelving and unshelving operations is generally better Disadvantages of Dedicating a Device Dedicated devices have the following disadvantages e The device is not available for other purposes while the device is dedicated e Additional nearline offline devices may be needed for non HSM operations Device Mixed Mode Operations It is possible to operate in a mixed mode whereby the device is sometimes shared and some times dedicated For example you can set up a scheduled policy with a script that toggles between the two modes at specified times A useful application of this would be to dedicate devices to HSM during normal working hours and at policy execution time but switch to shared devices during the backup cycle 2 6 2 Device Operations For each device you can specify which operations are enabled The choices are shelving and unshelving By default both operations are enabled when a device is specified When operating in Plus mode it is recommended that all devices are defined for both shelving and unshelving as MDMS not HSM actually chooses the optimal device Rest
151. Converting SLS MDMS V2 X to MDMS V4 D 5 Converting SLS MDMS V2 X to MDMS V4 D 2 Things to Look for After the Conversion Table D 2 Things to Look for After the Conversion Drive Number Make sure this is the drive number for robot commands Domain Description Make sure this is the description you want for your domain The default is Default MDMS Domain Mail Make sure this is where you want mail sent when a volume reaches its scratch data and MDMS dellocates it If you do not want mail sent make the value blank The default is SYSTEM Offsite location Make sure this is the offsite location that you want for the default when you create objects This was set to the value of VLT from TAPESTART COM file This could be different in each TAPESTART COM file Onsite location Make sure this is the onsite location that you want for the default when you create objects Default media type Make sure this is the media type you want assigned to volumes that you do not specify a media type for while creating Deallocate state Make sure this is the default state you want volumes to go to after they have reached their scratch date This could be changed each time that you convert the TAPESTART COM file on a new node Opcom classes Make sure these are the Opcom classes where you want MDMS OPCOM messages directed This could be changed each time you convert the TAPESTART COM file on a new node
152. DMS Configuration 11 1 The MDMS Management Domain For instance in an OpenVMS Cluster environment you can identify all nodes as a potential server node If the domain includes an OpenVMS Cluster environment and some number of nodes remote from it you could identify a remote node as a database server if the MDMS data base is on a disk served by the Distributed File System software DECdfs However if you do not want remote nodes to function as a database server do not enter their names in the list for this assignment The names you use must be the full network name specification for the transports used shows example node names for each of the possible transport options If a node uses both DECnet and TCP IP full network names for both should be defined in the node object Note When you specify the use of both DECnet and TCP IP network transports in the con figuration you should include node names for each transport as appropriate Specify ing only one node name for a specific transport is allowable However when that node attempts to locate a database server on start up only the transport for which the name applies will be used thereby limiting reliability Table 11 6 Network Node Names for MDMS DATABASE_NODES Network Transport Node Name Examples DECnet NODE A NODE B DECnet Plus SITE NODE A SITE SITE NODE B SITE TCP IP node a site inc com node b site inc com 11 1 3 2 MDMS LOGFILE LOCATION Defines
153. DMS MOVE MAGAZINE magazine name jukebox name START_SLOT n or SMDMS MOVE MAGAZINE magazine name jukebox name START SLOT n n n 14 Place the volumes in the jukebox If you are not using all the slots in the jukebox note the slots you are using for this operation Inventory the jukebox or just the slots that contain the new volumes If you are processing pre initialized volumes use the PREINITIALIZED qualifier then your volumes are ready for use SMDMS INVENTORY JUKEBOX jukebox name CREATE VOLUME RANGE range MDMS High Level Tasks 13 3 MDMS High Level Tasks 13 2 Deleting Jukeboxes Drives and Volumes Table 13 1 Creating Devices and Volumes Step Action 15 Initialize the volumes in the jukebox if they were not created as preinitialized MDMS INITIALIZE VOLUME JUKEBOX jukebox name SLOTS range After you initialize volumes you are done with this procedure Create Volume Object Records Explicitly 16 Create volume object records for the volumes you are going to manage If you are processing preinitialized volumes use the PREINITIALIZED qualifier then your volumes are ready for use SMDMS CREATE VOLUME volume id 17 Initialize the volumes This operation will direct the operator when to load and unload the vol umes from the drive SMDMS INITIALIZE VOLUME volume range ASSIST 13 2Deleting Jukeboxes Drives and Volumes This task describes the complete set of
154. DMS manage ment access to it e The volume cartridge has broken e The volume has become unreliable 12 3 5 1 Temporary Volume Removal To temporarily remove a volume from management set the volume state attribute to UNAVAILABLE Any volume object record with the state set to UNAVAILABLE remains under MDMS management but is not processed though the life cycle These volumes will not be set to the TRANSITION or FREE state However these volumes can be moved and their loca tion maintained 12 3 5 2 Permanent Volume Removal Caution Before you remove a volume from the MDMS database MAKE SURE the volume is not storing information for ABS or HSM If you remove a volume from MDMS man agement that is referenced from ABS or HSM you will not be able to restore the data stored on it To permanently remove a volume from management delete the volume object record describing it 12 4 Rotating Volumes from Site to Site Volume rotation involves moving volumes to an off site location for safekeeping with a sched ule that meets your needs for data retention and retrieval After a period of time you can retrieve volumes for re use if you need them You can rotate volumes individually or you can rotate groups of volumes that belong to magazines 12 4 1 Required Preparations for Volume Rotation The first thing you have to do for a volume rotation plan is create location object records for the on site and off site locations Make sure these
155. E 12 5 Scheduled Activities MDMS starts three scheduled activities at 1AM by default to do the following e Deallocate all volumes in the database that have exceeded their scratch date e Release all volumes in the database that have exceeded their transition time e Schedule all volumes that have exceeded their onsite or offsite date e Schedule all magazines that have exceeded their onsite or offsite date These three activities are controlled by a logical are separate jobs with names generate log files and notify users when volumes are deallocated These things are described in the sections below 12 5 1 Logical Controlling Scheduled Activities The start time for scheduled activities is controlled by the logical MDMS SCHEDULED ACTIVITIES START HOUR By default the scheduled activities start a 1AM which is defined as DEFINE SYSTEM NOLOG MDMS SCHEDULED ACTIVITIES START HOUR 1 You can change when the scheduled activities start by changing this logical in SYS STAR TUP MDMS S Y STARTUP COM The hour must be an integer between 0 and 23 12 5 2 Job Names of Scheduled Activities When these scheduled activities jobs start up they have the following names e MDMSS DEALVOL deallocates and releases volumes e MDMS MOVVOL moves scheduled volumes MDMS MOVMAG moves scheduled magazines If any volumes are deallocated the users in the Mail attribute of the Domain object will receive notification by VMS m
156. E DBACCESS ERROR unable to access SMU database Explanation The shelf handler process could not access one or more of the SMU data bases Please check the equivalence name of HSM MANAGER and redefine as needed If the database does not exist you can create a new version by simply running SMU and answering Yes to the create questions then use SMU SET commands to configure HSM HSM E DBDATA ERROR consistency error in SMU database Explanation A consistency error was detected in the SMU database This could be from the number of archive classes exceeding the maximum allowed for a shelf an invalid shelf definition inconsistent definitions etc Please examine the error log then enter SMU SET commands to correct the discrepancy HSM E DBNOTIFY ERROR propagation error for SMU update to all shelf handlers Explanation There was a problem notifying all shelf handlers in the VMScluster about a change to an SMU database Please retry the SMU command and report the problem to HP if the problem persists HSM E DEVICEIDERR error accessing volume identifier Explanation An error occurred trying to access or create the file 000000 HSMS UID S YS on a disk volume or cache device Please check the volume for read write accessibility and ensure there is sufficient space to create this file only one cluster factor is usually required This file is required on all disk volumes for which HSM operations are enabled HSM S DMPACTREQS shelv
157. EXED DAT 1 File ID 645 26 0 Size 3 3 Owner SYSTEM Created 08 Jan 2003 14 18 13 79 Revised 08 Jan 2003 14 18 13 93 1 Expires None specified Backup No backup recorded Effective None specified Using HSM 4 1 What the User Sees in an HSM Environment Recording None specified File organization Indexed Prolog 3 Using 5 keys Shelved state Online File attributes Allocation 3 Extend 0 Maximum bucket size 2 Global buffer count 0 Version limit 3 Contiguous best try Record format Variable length maximum 484 bytes longest 0 bytes Record attributes None RMS attributes None Journaling enabled None File protection System R Owner RWED Group World Access Cntrl List None Total of 1 file 3 3 blocks SHELVE EMPTY INDEXED DAT DIRECTORY FULL EMPTY INDEXED DAT Directory DISK USERI1 SHELVING FILES EMPTY INDEXED DAT 1 File ID 645 26 0 Size 0 0 Owner SYSTEM Created 08 Jan 2003 14 18 13 79 Revised 08 Jan 2003 14 18 13 93 5 Expires None specified Backup lt No backup recorded Effective None specified Recording None specified File organization Indexed further information shelved Shelved state Shelved File attributes Allocation 0 Extend 0 Maximum bucket size 2 Global buffer count 0 Version limit 3 Contiguous best try Record format Variable length maximum 484 bytes longest 0 bytes Record attributes None RMS attributes No
158. Explanation The HSM policy execution process has already been started HSM E PEP INCOMPLETE policy execution unable to satisfy request Explanation The policy execution was unable to reach the specified lowwater mark Verify that the file selection criteria is suitable for the selected lowwater mark HSM F POLACCESSFAIL unable to access policy database Explanation The policy execution process was unable to access the policy database Please check the equivalence name of HASM MANAGER and redefine as needed Also verify that any policy files are accessible HSM E POLDISABLED policy policyname is disabled Explanation On a scheduled policy run the requested policy is disabled Either enable it or cancel the scheduled policy run HSM E POLDEF NF policy definition policyname was not found Explanation The policy execution process was unable to locate this policy definition in the policy database Verify that any policies specified for volumes or scheduled have been defined with SMU SET POLICY HSM E POLEXEFAIL unable to initiate policy execution Explanation The shelf handler process could not send a request to the policy execution process This usually means that the policy execution process has not been started Issue an SMU STARTUP command to recover HSM E POLVOLDIS policy execution disabled on volume volumename Explanation The policy execution process has detected that shelving is currently disabled on this volume
159. HELVE OVERRIDE When a shelved file is accessed causing a file fault or when a request to unshelve a file is made HSM performs consistency checking to validate that the shelved file data actually belongs to the file being requested There are many such tests including verification of the file identifier device and revision dates to ensure that the data being retrieved for the file is correct If any of the consistency checks fail the file is not unshelved and the user requested operations fail with an error message As the system manager you may be able to force unshelving of the file if some of these tests fail by using the UNSHELVE OVERRIDE command which requires BYPASS privilege This tool enables you to retrieve important file data in the event that an unusual situation has occurred HP recommends that you examine the circumstances of the original consistency failure before using the UNSHELVE OVERRIDE option For example use the SMU LOCATE command to verify the file revision dates It is very likely that the data that you would restore is not exactly current and additional recovery may be needed Under no circumstances should UNSHELVE OVERRIDE be used during normal operations in policy scripts for example The consistency failure indicates that HSM has detected a real problem that needs to be examined 7 2 06 SMU RANK The SMU RANK command provides the capability of previewing an actual policy execution against a volume before any f
160. HEN Use Option Qualifier All HSM operations on the SMU SET VOLUME ENABLE DISABLE ALL named volume Shelving operations on the SMU SET VOLUME ENABLE IDISABLE SHELVE named volume Unshelving operations on the SMU SET VOLUME ENABLE DISABLE UNSHELVE named volume Shelving operations initiated by SMU SET VOLUME ENABLE DIS the high water mark event ABLE HIGHWATER_ MARK Shelving operations initiated by SMU SET VOLUME ENABLE DISABLE OCCUPANCY the volume full event Shelving operations initiated by SMU SET VOLUME ENABLE DISABLE QUOTA the user disk quota exceeded event 3 1 8 Working with Caches HSM allows you to defines temporary caches or permanent caches If you want to use magneto optical devices with HSM you must define them as a cache Customizing the HSM Environment 3 3 Customizing the HSM Environment 3 1 Configuring a Customized HSM Environment IF You Want to THEN Use Define an online disk cache SMU SET CACHE Tell the cache to flush its data to nearline or SMU SET CACHE AFTER offline storage Control whether the data shelved through the cache is copied to nearline or offline storage when shelving occurs or when the cache is flushed NOBACKUP BACKUP SMU SET CACHE BACKUP NOBACKUP Control whether files shelved to the cache are deleted when the online file is deleted or modified SMU SET CACHE NO HOLD Define a magneto optical device as a permanent cache SMU SET
161. HSM supports two logical names that alter the behavior of opening a shelved file for NFS and PATHWORKS access support These are HSM FAULT ON OPEN This logical name forces a file fault on an Open of a file for the processes listed in the equivalence name and the open waits until the file fault is com plete Designed for use with the NFS server HSM FAULT AFTER OPEN This logical name forces a deferred file fault on the file when it is opened If the fault completes within three seconds the open completes success fully otherwise it fails with file busy but initiates a background file fault Repeated attempts to open the file will eventually succeed Designed for use with the PATH WORKS server The default behavior is to perform no file fault on Open rather the file fault occurs upon a read or write to the file Each logical name can take a list of process names to alter the behavior of file faults on open For example DEFINE SYSTEM HSM FAULT ON OPEN NFSSSERVER USER SERVER SMITH The HSM FAULT ON OPEN can also be assigned to HSM ALL which will cause a file fault on open for all processes This option is not allowed for HSsM FAULT AFTER OPEN As these logicals are defined to allow NFS and PATHWORKS access they are not recom mended for use with other processes since they will cause many more file faults than are actu ally needed in a normal OpenVMS environment When used the logicals must be system wide and sh
162. Hierarchical Storage Management for OpenVMS Guide to Operations Order Number AA PWQ3S TE This manual contains information and guidelines for operation of HSM and Media Device and management Services MDMS Required Operating System OpenVMS V6 2 or higher Required Software Storage Library System for OpenVMS V2 9B or higher or Media Device and Management Services for OpenVMS Version V4 1 DECnet Phase IV or DECnet Plus Phase V TCP IP Services for OpenVMS Revision Update Information This manual replaces version AA PWQ3R TE Software Version HSM Version V4 1 January 2003 O Hewlett Packard Development Company L P 2003 Confidential computer software Valid license from HP and or its subsidiaries required for possession use or copying Consistent with FAR 12 211 and 12 212 Commercial Computer Software Computer Software Documentation and Technical Data for Commercial Items are licensed to the U S Government under vendor s commercial license Neither HP nor any of its subsidiaries shall be liable for technical or editorial errors or omissions contained herein The information in this document is provided as is without warranty of any kind and is subject to change without notice The warranties for HP products are set forth in the express limited warranty statements accompanying such products Nothing herein should be construed as constituting an additional warranty Printed in the U S A Contents Preface o aer
163. ID Original Validated Free space of 171 blocks for user BAILEY on volume 1 DKA100 3 20 OCT 1999 16 34 42 02 Request in progess Status Null status Shelf request from node MYNODE process 20200B26 user HSMSSERVER Original Validated Flush cache file 1 DKA0 HSM CACHE TEST2 DAT 7702292510 1 to shelf stor age 4 20 OCT 1999 16 34 42 01 Request in progess Status Null status Shelf request from node MYNODE process 20200B26 user HSMSSERVER Original Validated Flush cache file _ 1SDKA0 HSM_CACHE TEST1 DAT 7702292519 3 to shelf stor age Managing the HSM Environment 5 36 Managing the HSM Environment 5 22 Converting from Basic Mode to Plus Mode In the activity log requests are logged in reverse order of being received Also all active requests are logged including internal requests that do not appear in the audit log Canceling Requests If upon monitoring the activity log or otherwise you wish to cancel certain requests there are several means to accomplish this This is useful if a policy has started that is about to shelve files that you do not want to be shelved Use the following table to determine how to cancel classes of requests Table 5 6 Canceling Requests To Cancel Issue the Following Command All requests SMU SET FACILITY DISABLE ALL All shelve requests SMU SET FACILITY DISABLE SHELVE All unshelve requests SMU SET FACILITY DISABLE UNSHELVE All requests o
164. II No TF857 CompacTape III Yes TF86 CompacTape III No TF867 CompacTape III Yes TK50 CompacTape I No TK50S CompacTape I No TK70 CompacTape II No TK70L CompacTape II No TKZ60 3480 Cartridge No TLZ04 4mm DAT No TLZ06 4mm DAT No TLZO7 4mm DAT No TLZ6L 4mm DAT Yes TLZ7L 4mm DAT Yes TS11 9 Track Magtape No TSVOS 9 TrackMagtape No TSZOS 9 TrackMagtape No TU45 9 TrackMagtape No TU70 9 TrackMagtape No TU72 9 TrackMagtape No Introduction to HSM 1 13 Introduction to HSM 1 14 Media Types for HSM Basic Mode Table 1 6 Media Type to Device Map Device Type Media Type Magazine Loader TU77 9 TrackMagtape No TU78 9 TrackMagtape No TU80 9 TrackMagtape No TU81 9 TrackMagtape No TZ30 CompacTape I No TZ30S CompacTape I No TZ85 CompacTape III No TZ857 CompacTape III Yes TZ86 CompacTape III No TZ867 CompacTape III Yes TZ87 CompacTape III No TZ875 CompacTape III Yes TZ877 CompacTape III Yes TZ88 CompacTape IV No TZ885 CompacTape IV Yes TZ887 CompacTape IV Yes TZK10 6320 Cartridge No TZK116320 Cartridge No Note The media type defined for HSM Basic mode is the media type that HSM recognizes for the specified device This is very different from the media type used for HSM Plus mode which is the media type defined in the MDMS TAPESTART COM file for the associated drives With these device types and media types HSM Basic mode provides formal support and identi fication of the device and media types In addition HS
165. IP Sample Configuration of MDMS B 1 Configuration Order B 1 5 Configuration Step 5 Example Defining a Client Node This example shows the MDMS command for creating a client node TCP IP is the only transport on this node X Xr Xr Y D T D client node only has TCP IP MDMS CREATE NODE JONES DESCRIPTION ALPHA client node standalone NODATABASE SERVER not a database server LOCATION BLD1 COMPUTER ROOM TCPIP FULLNAME JONES SMI BLD COM TCP IP name TRANSPORT TCPIP TCPIP is used by JAVA GUI MDMS SHOW NODE JONES Node JONES Description ALPHA client node standalone ECnet Fullname CP IP Fullname JONES SMI BLD COM 2501 2510 Disabled NO atabase Server NO Location BLD1 COMPUTER ROOM Opcom Classes TAPES Transports TCPIP B 1 6 Configuration Step 6 Example Creating a Jukebox This example shows the MDMS command for creating a jukebox XY Xr Xr Y create jukebox MDMS CREATE JUKEBOX TL826 JUKE DESCRIPTION TL826 Jukebox in Building 1 ACCESS ALL local remote for JONES AUTOMATIC REPLY MDMS automatically replies to OPCOM requests CONTROL MRD controled by MRD robot control NODES SMITH1 SMITH2 SMITH3 nodes the can control the robot ROBOT 1 DUA560 the robot device SLOT COUNT 176 176 slots in the library MDMS SHOW JUKEBOX TL826 JUKE Jukebox TL826 JUKE Description TL826 Jukebox in Building 1 Nodes SMITH1 SMITH2 SMITH3 Groups Loc
166. IS ABLE See Section 7 12 IG Section 1 4 4 HSM Installation amp Configura tion Guide Chapter 6 IG Section 1 4 4 HSM Command Reference Guide Solving Problems with HSM 7 18 7 13Shelving Problems Solving Problems with HSM 7 13 Shelving Problems Table 7 14 describes generic shelving problems These problems may additional to specific cache or device problems Many of these problems also apply to preshelving Table 7 14 Shelving Problems Problem Solution Reference Cannot shelve capacity license Delete obsolete files or increase exceeded license capacity Shelving operation disabled on SMU SET FACILITY HSM Command Reference facility ENABLE SHELVE Guide Shelving operation disabled on SMU SET SHELF HSM Command Reference shelf ENABLE SHELVE Guide Shelving operation disabled on SMU SET VOL HSM Command Reference volume UME ENABLE SHELVE Guide Cannot shelve file insufficient Must have read and write privilege access GRPPRV or BYPASS privileges Cannot shelve file ineligible SET FILE SHELVABLE Cer Section 5 5 file tain types of file are always ineligible however Can shelve file but want to dis SET FILE NOSHELVABLE able Cannot shelve contiguous file SMU SET VOLUME CON HSM Command Reference TIGUOUS Guide Can shelve contiguous file but SMU SET VOLUME NOCON HSM Command Reference want to disable TIGUOUS Guide Cannot shelve placed file SMU SET VOLUME PLACE HSM Command Reference MENT Guide Can shelve placed
167. ITY TIMEOUT seconds For example to set the RDserver Inactivity Timer to 10 hours you would execute the following command on the RDserver node DEFINE SYSTEM RDEV SERVER INACTIVITY TIMEOUT 36000 14 7 RDF Error Messages CLIDENY Access from this CLIENT to the SERVER is not allowed Check for CLI ENT ALLOW in the RDserver s configuration file CLIENTSBUSY DEVDENY EMPTYCFG LINKABORT NOCLIENT NOREMOTE SERVERTMO All 16 pesudo devices are already in use Client is not allowed to the Device or to the Node This error message is depen dent on the CLIENT ALLOW ALLOW or CLIENT DENY DENY qualifiers in the configuration file Verify that the configuration file qualifier is used appropriately The RDserver s configuration file has no valid devices or they are all com mented out The connection to the device was aborted For some reason the connection was interrupted and the remote device could not be found Check the configuration file as well as the remote device The RDdriver was not loaded Most commonly the RDCLIENT STARTUP COM file was not executed for this node This is a RDF status message The remote device could not be found Verify the configuration file as well as the status of the remote device The RDserver did not respond to the request Most commonly the RDSERVER_ STARTUP COM file was not executed on the server node Or the server has too many connections already to reply in time
168. If the server node is MIAMI and access to MUAO is allowed by RDF client nodes OMAHA and DENVER then do the following 1 Edit TTI RDEV CONFIG MIAMI DAT 2 Find the device designation line for example DEVICE 1 MUAO 3 Atthe end of the device designation line add the ALLOW qualifier Remote Devices 14 9 Remote Devices 14 6 RDserver Inactivity Timer Edit TTI RDEV CONFIG MIAMI DAT DEVICE 1 MUAO MUAO TK50 ALLOW OMAHA DENVER DEVICE MSAO TU80 1600bpi OMAHA and DENVER the specific RDF client nodes are allowed access only to device MUAO In this situation OMAHA is not allowed to access device TU80 14 5 3 Deny Specific RDF Clients Access to All Remote Devices You can deny access from specific RDF client nodes to all remote devices For example if the server node is MIAMI and you want to deny access to all remote devices from RDF client nodes OMAHA and DENVER do the following 1 Edit TTI RDEV CONFIG MIAMI DAT 2 Before the first device designation line insert the DENY qualifier Edit TTI RDEV CONFIG MIAMI DAT CLIENT DENY OMAHA DENVER DEVICE 1 MUAO MUAO TK50 DEVICE MSAO TU80 16700bpi OMAHA and DENVER are the specific RDF client nodes denied access to all the remote devices MUAO TU80 on the server node MIAMI 14 5 4 Deny Specific RDF Clients Access to a Specific Remote Device You can deny specific client nodes access to a specific remote device Example If the server node is MIAMI and you wa
169. KB500 ANALYZE TEST L Stored in catalog as log as pairs made for File OGIN COM 1 SISDKB500 ANALYZE_TEST STATUS RPT 1 BOGUSSDEVICE1 ANALYZE_TEST STATUS RPT 1 15 1 0 FID 12 1 0 SISDKB500 ANALYZE TEST LOGIN COM 1 File entry repaired 1 repairs made Invalid HSM metadata found for File 16 1 0 S1SDKB500 ANALYZE_TEST 04_RESULTS TXT 1 No catalog entry found file not repairable Invalid HSM metadata found for File 17 1 0 S 1SDKB500 ANALYZE_TEST ANALYSIS DAT 1 File entry repaired repairs made File 18 1 0 1 DKB500 ANALYZE_TEST RECIPE MEM 1 Revision date mismatch Current 9 JUL 1999 18 38 58 06 Catalog 10 JUL 1999 17 47 40 42 File entry repaired repairs made File 19 1 0 S 1SDKB500 ANALYZE_TEST MAIL SAV 1 Stored in catalog as FID 19 1 0 BOGUS DEVICE1 ANALYZE_TEST MAIL SAV 1 File entry repaired repairs made SMU completed scan for shelved files on disk volume SMU I ERRORS 6 error s detected 5 error s repaired 5 17 Consolidated Backup with HSM HSM offers a paradigm to consolidate HSM shelf data with that required for backup restore pur poses This paradigm is called Consolidated Backup With HSM and is designed for use with very large sites where the number of tapes is problematic or sites who are reaching the limit of their backup window This paradigm is also known as Backup via shelving We refer to
170. L003 exported from tape jukebox SLS S MAGVOLEXP magazine volume AEL004 exported from tape jukebox SLS S MAGVOLEXP magazine volume AEL005 exported from tape jukebox SLS S MAGVOLEXP magazine volume AEL006 exported from tape jukebox SLS S MAGVOLEXP magazine volume AEL007 exported from tape jukebox 4 The operator then physically removes the magazine from the jukebox 5 The operator then tells MDMS to import the magazine that contains the necessary volume STORAGE IMPORT MAGAZINE MAGOO01 JUKEBOX1 5 S S SS S S S S OPCOM 08 Jan 2003 15 30 51 38 S S Request 65515 from user SLS on SLOPER Place Magazine MAG001 into Tape Jukebox JUKEBOX1 REPLY when DONE 6 The operator physically places the magazine into the jukebox 7 Once the magazine is physically in the jukebox the operator needs to reply to the OPCOM request to place the magazine in the jukebox The operator s reply must come from another process besides the one that submitted the STORAGE IMPORT MAGAZINE command REPLY TO 65515 15 31 08 27 request 65515 was completed by operator _SLOPERSFTA6 8 MDMS then logically imports the volumes into the jukebox SLS S MAGVOLIMP magazine volume AEL008 imported into tape jukebox SLS S MAGVOLIMP magazine volume AEL009 imported into tape jukebox SLS S MAGVOLIMP magazine volume AEL010 imported into tape jukebox SLS S MAGVOLIMP magazine volume AELO11 imported into tape jukebox SLS S MAGVOLIMP magazine volume AEL012 im
171. M 7 2 Troubleshooting Tools If you have problems starting up HSM using SMU STARTUP examine these logs for more information All messages to SYSSOUTPUT from the startup process and its subprocesses are written to this log A new log file version is created for each startup event and spans all nodes in the VMScluster system You need to read the log to determine the node to which the log file refers Event Logs 7 2 2 After a problem occurs the first things you should check are the event logs HSM LOG HSM SHP AUDIT LOG Shelf handler audit log HSM LOG HSM SHP ERROR LOG Shelf handler error log HSM LOG HSMS PEP AUDIT LOG Policy execution audit log HSM LOG HSM PEP ERROR LOG Policy execution error log These logs report requests and errors and have clusterwide scope You should examine shelf handler logs first as these cover all activities performed by HSM All user visible requests are reported in the shelf handler audit log on both success and error If a problem occurs during the execution of a policy whether scheduled preventative policy or reactive policy you can obtain more details on the error and associated policy execution in the policy execution audit log The policy audit log gives quite detailed information about the progress of the policy execution and is logged for all policy runs The policy error log gives additional information if the policy failed because of an unexpected error An error log entry is not written if
172. M Basic mode checks that devices and media are compatible to support operations within an archive class HSM Basic mode does not formally support other devices and media types but they might work under the following cir cumstances e The unsupported type is not a magazine loader e The unsupported device is not a large multiple drive tape jukebox specifically the TL81x and TL82x jukeboxes are not supported in Basic mode e Supported and unsupported types are not mixed within a single archive class Generally a nonmagazine loader third party tape drive with any media type may work as an unknown device and media type Introduction to HSM 1 14 Introduction to HSM 1 15 Device Support 1 15 Device Support HSM supports the nearline and offline devices listed in the HSM Software Product Description SPD 46 38 xx HP is continually testing new devices and adding them to the list If you have a question about a particular device contact HP customer support Note The STK 9360 Wolfcreek Silo is supported in Plus Mode when host access from VAX and Alpha machines is configured according to the manufacturer s directions 1 16 Online Devices Not Supported for HSM Operations HSM provides shelving support for most online disk devices within a cluster However HSM does not support the following types of online disk devices e Read only devices such as CD ROM or any disk that is software locked or write protected Disks that are mo
173. M policy model Understanding this model will help you define the most effective policies for your envi ronment Managing the HSM Environment 5 13 Managing the HSM Environment 5 11 Maintaining Shelving Policies 5 11 1 The HSM Policy Model This section presents a model related concepts that explains how shelving works Understanding the model will help you define and manage an effective shelving policy By implementing HSM you can maintain a reasonable amount of available online storage capacity and reduce the cost of storing large amounts of data Your particular disk configurations and their usage dictate specific values to consider when you create the various definitions The policies you implement with HSM determine how you meet your storage management needs 5 11 1 1 Concepts of HSM Policy To apply these concepts first think of each of your online disk volumes in terms of its total online storage capacity Then consider how much space should always remain available The central element of policy is the latitude of available online storage capacity you maintain Figure 5 1 shows the HSM policy model Table 5 2 provides definitions for each of the concepts shown in the figure Figure 5 1 HIGH WATER MARK CAPACITY LATITUDE LOW WATER MARK Legend Unused Capacity Total Available Capacity Within Capacity Latitude ONLINE STORAGE CAPACITY Used Storage Capacity
174. MDMS USERNOTAUTH user is not authorized for volume pool Explanation When allocating a volume you specified a pool for which you are not authorized User Action Specify a pool for which you are authorized or add your name to the list of authorized users for the pool Make sure the authorized user includes the node name or group name in the pool object VISIONCONFL vision option and volume parameter are incompatible Explanation You attempted to create volumes with the vision option and the volume parameter This is not supported MDMS Messages C 49 MDMS Messages User Action The vision option is used to create volumes with the volume identifiers read by the vision system on a jukebox Re enter the command with either the vision option specifying jukebox and slot range or with volume identifier s but not both VOLALRALLOC specified volume is already allocated Explanation You attempted to allocate a volume that is already allocated User Action Use another volume VOLALRINIT volume is already initialized and contains data Explanation When initializing a volume MDMS detected that the volume is already initialized and contains data User Action If you are sure you still want to initialize the volume re enter the command with the overwrite option VOLIDICM volume ID code missing Explanation The volume ID is missing in a request User Action Provide voluem ID and retry request
175. MDMS Many of these problems are related to MDMS configuration issues For more information see the Plus Mode Offline Environment Chapter of the HSM Installation and Configuration Guide and the Media Device and Management Services for OpenVMS Guide to Operations Note In the reference column of a this table IG refers to the HSM Installation Guide When IG is not mentioned assume that the reference is to this HSM Guide to Operations Manual unless otherwise specified Table 7 7 MDMS Problems Problem Solution Reference No volumes are defined in the MDMS volume database for the volume pool HSM is using HSM is not authorized to access the volume pool The media type specified for the archive class in HSM does not match any valid media type defined in TAPESTART COM MDMS is not running HSM asks you to load volumes that are contained in a roboti cally controlled device Use the following HSM com mand to add new volumes to the volume pool STORAGE ADD VOLUME 6 vol name POOL pool name or use the following command to add existing volumes to the volume pool STORAGE SET VOL UME vol name POOL pool name Use the MDMS Administrator menu to authorize access to the volume pool Look at TAPESTART COM to find a valid media type defin tion Use HSM SMU SET ARCHIVE MEDIA_TYPE media_ type to associate the appropriate media type with the archive class Use the following command to start up MDMS
176. MDMS Operations 9 4 Graphical User Interface Figure 9 2 MDMS Object View Screen E MDMSView Bele File View Connection Server Help Mon Jan 7 2002 10 40 14 AM MOMSView Calendar Domain Fiz ictives Objects Fenomen Reports Requests 1255 tours viz Objects R Archives Objects Catalogs Domain gt Drives Environments gt Groups Ri Jukeboxes BJ Locations E Magazines Hi Media Types H E Nodes Archives Catalogs Drives o mn mi amp Saves T Schedules Environments Groups Jukeboxes Locations Selections RAS CEP H O Volumes BH MUN e X 7 Magazines Media Types Nodes Pools SA Ef Q Restores Saves Schedules Selections Volumes 9 4 5 Creating Objects If you wish to create a new object you can choose the Domain Object or Task Views to accom plish this The Domain and Object Views create objects one at a time while the Task View can create multiple objects To create an object use one of the following methods e Click on a class name e g Jukebox on the left screen and the class object s icons are dis played on the right screen On the right screen press the Create button to display a create screen e From the object view only click on Object then double click on one of the class icons that are displayed On the right screen press the Create button to display a create screen e From the left screen right click on a c
177. MITH2 SMITH3 Groups Volume Disabled NO Shared NO Available NO State EMPTY Stacker NO Automatic Reply YES RW Media Types TK88K RO Media Types Access ALL Jukebox TL826_JUKE Drive Number 1 Allocated NO MDMS CREATE DRIVE TL826 D5 DESCRIPTION Drive 5 in the TL826 JUKEBOX ACCESS ALL local remote for JONES AUTOMATIC REPLY MDMS automatically replies to OPCOM requests DEVICE 1 MUA565 physical device DRIVE NUMBER 5 the drive number according to the robot JUKEBOX TL826 JUKE jukebox the drives are in MEDIA TYPE TK88K media type to allocate drive and volume for NODES SMITH1 SMITH2 SMITH3 nodes that have access to drive MDMS SHOW DRIVE TL826 D5 Drive TL826 D5 Description Drive 5 in the TL826 JUKEBOX Device 1 MUA565 Nodes SMITHI SMITH2 SMITH3 Groups Volume Disabled NO Shared NO Available NO State EMPTY Stacker NO Automatic Reply YES RW Media Types TK88K Sample Configuration of MDMS B 6 Sample Configuration of MDMS B 1 Configuration Order RO Media Types Access Jukebox Drive Number Allocated COUNT IF COUNT COUNT LT ALL TL826 JUKE 5 NO A 6 THEN GOTO DRIVE LOOP B 1 8 Configuration Step 8 Example Defining Pools This example shows the MDMS commands to define two pools ABS and HSM The pools need to have the authorized users defined XY X or MN Aut i create poo is mdms del pool abs MDMS CRE
178. MS 9 2 DCL Interface MDMS provides a DCL command line interface in addition to MDMS View Some people prefer a command line interface and it can also be used for automated command procedures With this release the entire command line interface is supported within MDMS which maintains the data base for media management 9 2 1 Syntax Overview The MDMS DCL interface uses a consistent syntax for virtually all commands in the format MDMS VERB OBJECT KEYWORD OBJECT NAME QUALIFIERS The verb is an simple action word and may be one of the following ALLOCATE BIND CREATE DEALLOCATE DELETE INITIALIZE INVENTORY LOAD SET SHOW UNBIND UNLOAD The object keyword is the object class name that the verb is to operate on In MDMS the object keyword cannot be omitted MDMS supports the following object keywords DOMAIN DRIVE Basic MDMS Operations 9 1 Basic MDMS Operations 9 2 DCL Interface GROUP JUKEBOX LOCATION MAGAZINE MEDIA TYPE NODE POOL SERVER SCHEDULE VERSION VOLUME Following the object keyword you should enter an object name This must be the name of an already existing object unless the verb is Create in which case the object must not already exist The line qualifiers for all commands are non positional and may appear anywhere in the command There are two exceptions to the general command syntax as follows The Move verb takes two arguments The first is the object name as normal a
179. MS SERVER is not defined in file SYSUAF DAT User Action Enter the username of MDMS SERVER see Installation manual for account details and then start the server NOSVRMB no server mailbox or server not running Explanation The MDMS server is not running on this node or the server is not servicing the mailbox via log ical name MDMS MAILBOX User Action Use the MDMS STARTUP procedure with parameter RESTART to restart the server If the problem persists check the server s logfile and file SYS MANAGER MDMSSSERVER LOG for more information NOSYMBOLS symbols not supported for multiple volumes Explanation A SHOW VOLUME SYMBOLS command was entered for multiple volumes The SYMBOLS qualifier is only supported for a single volume User Action Re enter command with a single volume ID or don t use the SYMBOLS qualifier NOTALLOCUSER volume is not allocated to user Explanation You cannot perform the operation on the volume because the volume is not allocated to you User Action Either use another volume or in some cases you may be able to perform the operation specify ing a user name NOTSCHEDULED specified save or restore is not scheduled for execution Explanation The save or restore request did not contain enough information to schedule the request for exe cution The request requires the definition of an archive an environment and a start time User Action If you wish this request to be sch
180. MS rights MDMS Client Applications MDMS defines default low level rights for the application rights attribute according to what ABS and HSM minimally require to use MDMS Caution The ABS or HSM processes include the MDMS APPLICATION RIGHTS identifier which assumes the low level rights associated with it Do not modify the low level rights for the domain application rights attribute Changing the values to this attribute can cause your application to fail Default Rights for Various System Users If you want to grant all users certain MDMS rights without having to modify their UAF records you can assign those low level rights to the default rights attribute Any user without specific MDMS rights in their UAF file will have the rights assigned to the default rights identifier Use the operator rights attribute to identify all low level rights granted to any operator who has been granted the MDMS OPERATOR right in their UAF Use the SYSPRV attribute to allow any process with SYSPRV enabled the rights to perform any and all operations with MDMS Use the user rights attribute to identify all low level rights granted to any user who has been granted the MDMS USER right in their UAF 11 1 6 3 Domain Default Volume Management Parameters The MDMS domain includes attributes used as the foundation for volume management Some of these attributes provide defaults for volume management and movement activities others define particular behavior f
181. Manual and Automatic Operations This section describes the transitions between volume states These processes enable you to secure volumes from unauthorized use by MDMS client applications or make them available to meet continuing needs Additionally in some circumstances you might have to manually force a volume transition to meet an operational need Understanding how these volume transitions occur automatically under MDMS control or take place manually will help you manage your volumes effectively MDMS Management Operations 12 2 MDMS Management Operations 12 1 Managing Volumes 12 1 2 1 Creating Volume Object Records You have more than one option for creating volume object records You can create them explic itly with the MDMS CREATE VOLUME command individually or for a range of volume iden tifiers You can create the volumes implicitly as the result of an inventory operation on a jukebox If an inventory operation finds a volume that is not currently managed a possible response as you determine is to create a volume object record to represent it You can also create volume object records for large numbers of volumes by opening the jukebox loading the volumes into the jukebox slots then running an inventory operation Finally it is possible to perform scratch loads on standalone or stacker drives using the MDMS LOAD DRIVE CREATE command If the volume that is loaded is does not exist in the data base MDMS will create
182. Mode this means that the volume pools s specified do not contain enough volumes to allocate a new volume Either add new volumes to the pool or define additional pools for the archive class HSM E OCCPOLDIS occupancy full policy execution disabled on volume volu mename Explanation The occupancy full policy has been disabled on this volume Use SMU SET VOLUME command to enable occupancy full condition handling HSM E OFFLINERROR off line system error function not performed Explanation An error occurred trying to read or write to the near line off line system Refer to the error log for more details fix the problem and retry There are usually addi tional messages to explain the problem in the error log HSM E OFFREADERR off line read error on drive drivename Explanation An error occurred trying to read a file on the specified near line off line drive Refer to the error log for more details fix the problem and retry There are usually addi tional messages to explain the problem in the error log HSM E OFFWRITERR off line write error on drive drivename Explanation An error occurred trying to write a file on the specified near line off line drive Refer to the error log for more details fix the problem and retry There are usually additional messages to explain the problem in the error log HSM E ONLINERROR unrecoverable online access error Explanation HSM was unable to access or read a file or the disk itself
183. N COM 1 Stored in catalog as FID 12 1 0 S1 DKB500 ANALYZE_TEST LOGIN COM 1 Repair catalog entry to reset FID to 15 1 0 Managing the HSM Environment 5 27 Managing the HSM Environment 5 17 Consolidated Backup with HSM WARNING Repair may affect the wrong file with caution N Y File entry repaired 1 repairs made Invalid HSM metadata found for File 16 1 0 SIS DKB500 ANALYZE TEST O4 RESULTS TXT 1 No catalog entry found file not repairable Invalid HSM metadata found for File 17 1 0 S 1SDKB500 ANALYZE_TEST ANALYSIS DAT 1 k k File entry repaired 1 re File 18 1 0 S ISDKB500 Repair by adding HSM metadata for file pairs made ANALYZE TES 17 1 0 Y l RECIPE MEM 1 Revision date mismatch Current 9 JUL 1999 18 38 58 06 Catalog 10 JUL 1999 17 4 Repair by deleting HSM File entry repaired 1 re File 19 1 0 S1 DKB500 Stored in catalog as FID 19 1 0 BOGUSSDEVICE Repair catal File entry repaired 1 re TYPE ANALYZE SMU I PROCESS OUT NG 7 40 42 metadata for file pairs made ANALYZE TES 1 ANALYZE_1 log entry to reset volume to _ pairs made 18 1 0 Y Y P MAIL SAV 1 TEST MAIL SAV 1 EN OE Ed processing input device DKB500 SMU I scanning for shelved files on disk volume _ 1 DKB500 File 14 1 0 Stored in catal FID 13 1 0 File entry repaired 1 re Invalid HSM metadata found SISD
184. NAGEMENT SERVICES FOR ABS AND HSM COMPAQ Inspiration Technology Basic MDMS Operations 9 6 Basic MDMS Operations 9 4 Graphical User Interface 9 4 4 Selecting A View The next step is to select a view depending on what you want to do Here are some tasks that you might wish to perform and the associated view s that support them e Configure the MDMS domain Domain view object view or task view e Create new objects Domain view object view or task view e Modify object attributes Domain view object view or task view e See relationships between objects Domain view e Delete objects Domain view or object view e Observe current MDMS operations Request view e Generate volume reports Report view e Create multiple objects Task view e Allocate volumes based on selection criteria Task view nitialize a set of volumes Task view Run and save or restore request Domain view or object view The domain view and object view produce attribute and operation screens that work on one object at a time The task view produces screens that can operate on multiple objects but restrict the display of attributes to those that are common across the objects The request view is a spe cialized view that allows you to show current requests as a whole or in detail and allows you to delete requests as needed The report view is a specialized view that generates customized vol ume reports All view displays are divided i
185. NTERNAL fatal internal error detected error string Explanation Internal inconsistency detected There may be an accompanying message that gives more information about any failure If the problem can t be corrected locally please report this problem to HP SMU W INVALANS string is an invalid answer Explanation The response given to a confirmation action is incorrect Please see HELP or the reference documentation for valid responses SMU E INVALARCHIVE invalid archive archive id Explanation For SMU SET ARCHIVE the archive id is outside the range of valid values Currently for Basic mode this range is 1 thru 36 and for Plus mode is 1 thru 9999 SMU W INVALDIR invalid directory specification directory spec HSM Error Messages A 21 HSM Error Messages A 3 Shelf Management Utility Messages Explanation An invalid file specification was given for the OUTPUT qualifier Re enter the command with a valid output location SMU E INVALIST exceeded maximum list count of count Explanation Maximum number of parameter list elements were found There will be an accompanying message indicating which parameter or qualifier is in violation Please see HELP or the reference documentation for more information about the command SMU E INVALPSIZE exceeded maximum parameter size value Explanation A parameter value entered in the command exceeds it s valid range or size The maximum value will be displayed for reference The accompan
186. ODENOTINDB no node object with AZ name AZ in database Explanation The current server could not find a node object in the database with a matching DECnet Phase IV or DECnet Plus Phase V or TCP IP node full name User Action Use SHOW SERVER NODES to see the exact naming of the server s network names Cor rect the entry in the database and restart the server NODRIVES no drives match selection criteria Explanation When allocating a drive none of the drives match the specified selection criteria User Action Check spelling and re enter command with valid selection criteria NODRVACC access to drive disallowed Explanation You attempted to allocate load or unload a drive from a node that is not allowed to access it User Action The access field in the drive object allows local remote or all access and your attempted access did not conform to the attribute Use another drive NODRVSAVAIL no drives are currently available Explanation All of the drives matching the selection criteria are currently in use or otherwise unavailable User Action Check to see if any of the drives are disabled or inaccessible Re enter command when corrected NODRVSGRP no drives in the specified group were found Explanation When allocating a drive no drives on nodes in the specified group were found User Action Check group name and retry command MDMS Messages C 28 MDMS Messages NODRVSJUKE no dr
187. OGERR server logged error Explanation The server failed to execute the request Additional information is in the server s logfile User Action Depends on information in the logfile SVRRUN server already running Explanation The MDMS server is already running User Action Use the MDMS SHUTDOWN procedure with parameter RESTART to restart the server SVRSTART Server AZ UL UL UL started MDMS Messages C 46 MDMS Messages Explanation The server has started up identifying its version and build number User Action None SVRSTARTSTRING Server AZ started Explanation The server has started up identifying its version and build number User Action None SVRTERM Server terminated abnormally Explanation The MDMS server was shut down This could be caused by a normal user shutdown or it could be caused by an internal error User Action Check the server s logfile for more information If the logfile indicates an error has caused the server to shut down then provide copies of the MDMS command issued the database files and the server s logfile for further analysis SVRUNEXP unexpected error in SERVER AZ line UL Explanation The server software detected an internal inconsistency User Action Provide copies of the MDMS command issued the database files and the server s logfile for fur ther analysis TCPIPLISEXIT TCP IP listener exited Explanation The TCP IP listener has exited due to a
188. OL TK85K POOL STORAGE ADD VOLUME DECO04 MEDIA TYPE TK85K POOL TK85K POOL Checkpoint the archive class to use new Plus mode volumes SMU CHECKPOINT 1 2 Shut down HSM again SMU SHUTDOWN Restart HSM SMU STARTUP Enable HSM shelving operations SMU SET FACILITY ENABLE ALL At this point you can begin shelving files to the new volumes in Plus mode as well as unshelve files from the previous volumes written in Basic mode Managing the HSM Environment 5 40 6 Operator Activities in the HSM Environment This chapter provides information on operator activities in the HSM environment It covers the following Enabling and running the operator interface e Loading and unloading single volumes for HSM Basic mode e Responding to BACKUP requests for HSM Basic mode e Working with magazine loaders for HSM Basic mode Working with automated loaders for HSM Plus mode e Identifying typical operator messages 6 1 Enabling the Operator Interface In most environments HSM performs operations to nearline and offline storage devices In many cases manual loading and unloading of tape volumes and tape magazines are required This section describes the messages that HSM issues to the OpenVMS OPCOM interface and what the operator s possible options are When running HSM the OPCOM operator interface must be enabled to allow the operator to perform such loading and unloading To enab
189. OLUME MDMS ALLOCATE DRIVE MDMS ALLOCATE VOLUME LIKE_VOLUME MDMS BIND VOLUME TO_SET Basic MDMS Operations 9 26 Basic MDMS Operations 9 6 Creating Modifying and Deleting Object Records 9 6 11 Rights for Deleting Objects The low level rights that enable a user to delete objects are MDMS DELETE ALL delete any MDMS object record and MDMS DELETE POOL delete volumes in a pool authorized to the user Basic MDMS Operations 9 27 10 Media Management This chapter expands on the MDMS object summary given in Chapter 2 and describes all the MDMS objects in detail including the object attributes and operations that can be performed on the objects Before going into details on each object however the use of the MDMS CONFIGURE COM procedure is recommended to configure your MDMS domain and the objects in it In many cases this should take care of your entire initial configuration 10 1 MDMS Domain Configuration If you are configuring your MDMS domain including all objects in the domain for the first time HP recommends that you use the MDMS CONFIGURE COM command procedure This procedure prompts you for most MDMS objects including domain drives jukeboxes media types locations and volumes and establishes relationships between the objects The goal is to allow complete configuration of simple to moderately complex sites without having to read the manual The configuration procedure offers extensive help and contai
190. OOL Attributes of volumes in pools authorized to the user MDMS SET RIGHTS The MDMS domain high level rights defini tion 9 6 8 Deleting Object Records When managed objects such as drives or volumes become obsolete or fail you may want to remove them from management When you remove these objects you must also delete the object records that describe them to MDMS When you remove object records there are two reviews you must make to ensure the database accurately reflects the management domain review the remaining object records and change any attributes that reference the deleted object records review any DCL command procedures and change any command qualifiers that reference deleted object records Basic MDMS Operations 9 23 Basic MDMS Operations 9 6 Creating Modifying and Deleting Object Records 9 6 9 Reviewing Managed Objects for References to Deleted Objects When you delete an object record review object records in the database for references to those objects Table 9 3 shows which object records to check when you delete a given object record Use this table also to check command procedures that include the MDMS SET command for the remaining objects Change references to deleted object records from the MDMS database If you leave a reference to a deleted object record in the MDMS database an operation with MDMS could fail Table 9 3 Reviewing Managed Objects for References to Deleted Objects When you delete
191. OUNT is not set below 50 NETACP BYTLM The default value of NETACP is a BYTLM setting of 65 535 Including overhead this is enough for only 25 to 30 line receive buffers This default BYTLM may not be enough Recommendation Increase the value of NETACP BYTLM to 110 000 Remote Devices 14 7 Remote Devices 14 4 Monitoring and Tuning Network Performance How to increase NETACP BYTLM Before starting DECnet define the logical NETACP BUFFER_ LIMIT by entering DEFINE SYSTEM NOLOG NETACPSBUFFER LIMIT 110000 SYSSMANAGER STARTNET COM 14 4 7 Controlling RDF s Effect on the Network By default RDF tries to perform I O requests as fast as possible In some cases this can cause the network to slow down Reducing the network bandwidth used by RDF allows more of the network to become available to other processes The RDF logical names that control this are RDEV WRITE GROUP SIZE RDEV WRITE GROUP DELAY Default The default values for these logical names is zero The following example shows how to define these logical names on the RDF client node DEFINE SYSTEM RDEV WRITE GROUP SIZE 30 DEFINE SYSTEM RDEV WRITE GROUP DELAY 1 Further reduction To further reduce bandwidth the RDEV WRITE GROUP DELAY logical can be increased to two 2 or three 3 Note Reducing the bandwidth used by RDF causes slower transfers of RDF s data across the network 14 4 8 Surviving Network Failures Remote Device Facility RDF can
192. Piles it RARE LE AR ERRORS Rae aa Dun 5 29 ATI Nightly Backups 5e t EE Rut eb e Rae e PU needa Ta etre ia 5 30 SATA Restore Volumes i RE e a ebbe pA Eres 5 31 5 E7 Restoning Flles i uet ee ER dct het ERE EE EE E Ls 5 31 3 LL6 a A RRRUS REUS rah eae Va Rha Bene Sw aod e UE SE a 5 32 SAT7 Other Recommendations erect ah PA eA es Op A eee ha Re ean 5 32 5 18 Determining Cache Usage 0 0 cece ence eet ENEG 5 32 5 19 Maintaming File Headers i eu aie ie tac Eb epe beh t ure pecie gne 5 32 5 19 1 Determining File Header Limit 00 ee cece eee 5 32 5 19 2 Specifying a Volume s File Headers 0 0 eect eee 5 33 5 19 3 Extending the Index File esos RES ee e 5 33 5 19 4 Maintaining the Number of File Headers 0 0 ee eee ee 5 33 5 20 Event Logging ts cto em D A e Sayeed satay DARAUS UE E AUR Sors 5 33 5 20 sAccessing the Logs i se datae ee C Re ERE EU UR eum 5 34 5 20 2 Shelf Handler Log Entries o oo oooooooooocor I eens 5 34 S21 Activity LOLAS 3 ee Re erc o bebe eu ip iiu x biete ise cic basado 5 36 5 22 Converting from Basic Mode to Plus Mode oooooocococcocoo eA 5 37 522 1 Shutting Down the Shelf Handler 1 0 0 0 00 cee ee 5 38 5 222 Disabling the Shelving Facility ooo ooococococorcoroor RII 5 38 5 22 3 Entering Information for MDMS ssseeeeeeeee e e 5 38 5 224 Changing from Basic Mode to Plus Mode 0 0 0 eee teens 5 38 522 5 Restarting the Shelf Handl
193. Plus mode SMU SHUTDOWN Redefine the archive classes TK85K is a standard MDMS SLS media type for CompacTape III Pool TK85K POOL is a pool for new volumes to be allocated in Plus mode SMU SET ARCHIVE 1 2 MEDIA TYPE TK85K ADD POOL TK85K POOL If needed define the HSM device in TAPESTART COM and restart MDMS SLS If the device is a magazine loader additional configuration is necessary see section 5 5 2 in the Guide to Operations 1 MTYPE 1 TK85K DENS 1 DRIVES_1 1 MKA100 QSYSSSTARTUP SLSSSTARTUP COM Define the Basic mode volumes in the MDMS SLS Database using a Managing the HSM Environment 5 39 Managing the HSM Environment 5 22 Converting from Basic Mode to Plus Mode specific pool called HSM BASIC This helps prevent these volumes being allocated by another application STORAGE ADD VOLUME HS0001 MEDIA TYPE TK85K POOL HSM BASIC STORAGE ADD VOLUME HS0002 MEDIA TYPE TK85K POOL HSM BASIC STORAGE ADD VOLUME HS0003 MEDIA TYPE TK85K POOL HSM BASIC STORAGE ADD VOLUME HS0004 MEDIA TYPE TK85K POOL HSM BASIC STORAGE ADD VOLUME HS1001 MEDIA TYPE TK85K POOL HSM BASIC STORAGE ADD VOLUME HS1002 MEDIA TYPE TK85K POOL HSM BASIC STORAGE ADD VOLUME HS1003 MEDIA TYPE TK85K POOL HSM BASIC STORAGE ADD VOLUME HS1004 MEDIA TYPE TK85K POOL HSM BASIC A
194. Protection The domain protection attributes defines the default protection applied to new volumes when they are created This protection is used by MDMS when it initializes volumes and writes the protection on the magnetic tape volume itself You can always override the domain default pro tection by specifying the protection specifically when creating or modifying a volume Media Management 10 3 Media Management 10 2 Domain 10 2 14Relaxed Access The relaxed access attribute controls the security when a user or application tries to access an object without any access control entries and access control checking is enabled If relaxed access is set such access is granted If relaxed access is clear such access is denied The relaxed access attribute is ignored if the check access attribute is clear 10 2 15Request ID MDMS uses sequentially increasing request identifiers for each request received by the MDMS database server and this attribute displays the ID of the next request If this ID is becoming very large you can reset it to zero or one or indeed any value if you wish The request ID automati cally resets to one when it reaches one million 10 2 16Scheduler Type MDMS performs scheduling operations on behalf of itself and ABS For ABS scheduling you can choose a scheduler type that best meets your needs as follows e Internal The default internal scheduler type uses MDMS schedule objects and OpenVMS batch queues This
195. R UE eS pack Gu Is 9 1 9 2 1 Sybtax OVERVIEW in A AA dau E ea 9 1 9 2 2 Objects A eo 9 2 9 2 3 E A MM 9 3 9 2 4 AC A A A AS Ue Rg se tees 9 3 10 9 2 5 SVMDOIM Ss odo e dte A A A AAA e 9 3 9 2 6 Help and Reference i RR Bex e a 9 3 9 3 User Interface Restrictions ie eek e E ede ees a de entra Y er RU en 9 4 9 4 Graphical User Interface icol e EOR EE ons Dae MR AUS ie DE RE p s 9 4 9 4 1 Starting MDMS View ic ete Rete cate Sia Se foe xe Recte ecu Fl ed ac m CURE 9 5 9 4 1 1 OpenVMS Systems soe e pee TURNS e ge aes 9 5 9 4 1 2 Windows Systems sic iuc reete edt be ep LEE enis 9 5 9 4 2 Look and Reel nesena E eee ie RR Van be DURAS Eug DREW UR WIR ede 9 5 9 4 3 Logging In reete ce E I C t eu b ita e ud eats 9 6 9 4 4 Selecting A View scs oos RERUM RIED RADAR E ee dee ERREUR E Re 9 7 9 4 5 Creating Objects 7 e eee e diga dre ie artt E 9 8 9 4 6 Showing and Modifying Objects 0 eee cece eee t eee ee 9 10 9 4 7 Deleting Objects ce C Ea ete xr e xe Napanee Sa ee BUS Shere ES 9 11 9 4 8 Viewing Relationships Between Objects 0 0 0 cece se 9 11 9 4 9 Performing Operations on Objects 2 0 cee teens 9 13 9 4 10 Showing Current Operations 0 0 0 eI ee 9 13 9411 Reporting on Volumes 5 sen neces ake eee site eee coe ERE AG ENA See nun 9 14 9 4 12 Viewing MDMS Audit and Event Logging 0 0 0 0 eee eee eee 9 16 pM EI Met c 9 17 94 14 Help psa domes ERE REAUERER T UENRRAOR
196. RC and VERIFY options to help ensure your copy is valid Using the OpenVMS Backup Utility restore the copy of the database files into the new location Use CRC and VERIFY options to ensure the restored copy is valid In every MDMS start up file SYS MANAGER MDMS SYSTARTUP COM define the MDMS DATABASE FILES logical to point to the new location Start up MDMS on a node enabled as a database server MDMS Configuration 11 5 MDMS Configuration 11 1 The MDMS Management Domain Table 11 4 How to Move the MDMS Database Step Action 7 From the node make sure you can access the database by entering an MDMS SHOW command to examine a record from each database file If you get an error first check to make sure that the logical assignment for the MDMSS DATABASE FILES is correct If the logical assignment is correct then you will have to determine why the files are not accessible Start up the remaining MDMS nodes Keep the previous database files on line until you know the new database files are accessible 10 After you are certain the new database files are accessible delete the original files 11 1 2 The MDMS Process This section describes the MDMS software process including server availability interprocess communication and start up and shut down operations 11 1 2 1 Server Availability Each node in an MDMS domain has one MDMS server process running Wi
197. Result Devices RDALLOCATED on node OMAHA RDdevice Rmt node Remote device User name PID RDEVAO MIAMI MIAMISMUCO DJ 2020014C RDEVBO MIAMI MIAMISMUAO CATHY 202001B6 This command shows all allocated devices on the RDF client node OMAHA Use this command to determine which devices are allocated on which nodes 14 4Monitoring and Tuning Network Performance This section describes network issues that are especially important when working with remote devices 14 4 1 DECnet Phase IV The Network Control Program NCP is used to change various network parameters RDF and the rest of your network as a whole benefits from changing two NCP parameters on all nodes in your network These parameters are e PIPELINE QUOTA e LINE RECEIVE BUFFERS Remote Devices 14 3 Remote Devices 14 4 Monitoring and Tuning Network Performance Pipeline quota The pipeline quota is used to send data packets at an even rate It can be tuned for specific net work configurations For example in an Ethernet network the number of packet buffers repre sented by the pipeline quota can be calculated as approximately buffers pipeline quota 1498 Default The default pipeline quota is 10000 At this value only six packets can be sent before acknowl edgment of a packet from the receiving node is required The sending node stops after the sixth packet is sent if an acknowledgment is not received Recommendation The PIPELINE QUOTA can be increased
198. Rights Step Action 4 If you want any user with ABS privileges to have access to appropriate MDMS rights to support just ABS operations set the domain object record ABS rights attribute MDMS SET DOMAIN ABS RIGHTS For all system user accounts that need access to MDMS grant the appropriate rights If a user needs only the rights associated with a class of user grant that user the high level right associated with that class only UAF gt GRANT IDENTIFIER MDMS USER DEVUSER 5 If a user needs a combination of rights then grant that user the high and or low level rights needed to enable the user to do their job with MDMS You must issue a separate command for each right granted UAF gt GRANT IDENTIFIER MDMS OPERATOR DCOPER UAF I GRANTMSG identifier MDMS OPERATOR granted to DCOPER UAF gt GRANT IDENTIFIER MDMS LOAD SCRATCH DCOPER UAF GRANTMSG identifier MDMS LOAD SCRATCH granted to DCOPER If you do not want a particular user to acquire the default rights then disable the user s ability to operate MDMS with the default rights UAF gt GRANT IDENTIFIER MDMS NO DEFAULT APPUSER 9 6 Creating Modifying and Deleting Object Records This section describes the basic concepts that relate to creating modifying and deleting object records 9 6 1 Creating Object Records Both the CLI and GUI provide the ability to create object records MDMS imposes rules on the names you give object records When creat
199. S the index file that contains the file headers for both online and shelved files Also you may not have preallocated space for the file headers using the HEADERS qualifier on the disk initialization IDXFILEFULL Error If your users get IDXFILEFULL errors while trying to create files on the volume it means they are attempting to create more files than that specified on the MAXIMUM FILES qualifier when the volume was initialized There are two possible solutions to this e Delete unwanted files from the disk e Perform an image backup of the disk reinitialize the disk with a larger MAXIMUM FILES value then do an image restore operation specifying the NOINITIALIZE qualifier on the BACKUP command line HEADERFULL Error If your users get a HEADERFULL error on INDEXFE S YS when creating files it means the INDEXE SYS file has reached its fragmentation limit That is adding one more file extent to INDEXF SYS causes the Map area words in use field of INDEXESYS s header to exceed 155 To solve this problem 5 Perform an image backup of the disk 6 Reinitialize the disk 7 Perform an image restore of the disk Solving Problems with HSM 7 23 Solving Problems with HSM 7 17 HSM Limitations The second step reinitialize the disk is not necessary unless you want to increase the MAXIMUM FILES value of the disk or preallocate a larger INDEXF SYS file via HEAD ERS If you do reinitialize the disk remember to use the NOINITIALIZE
200. SM Environment 5 29 Managing the HSM Environment 5 17 Consolidated Backup with HSM e Empty files However all other files except those on system disks can and should be preshelved to utilize this paradigm This can be done in two ways This sets up a preshelve policy to regularly execute on all affected volumes on a regular basis SMU SET POLICY policy name PRESHELVE NOELAPSED LOWWATER MARK 0 SMU SET SCHEDULE volume list policy name AFTER time This manually preshelves all files on a volume this command may be placed in an HSM policy script file PRESHELVE volume 000000 HSM will not preshelve files that are already preshelved or shelved so these commands affect only files that have been created or modified since the last preshelve operation Since HSM does not preshelve open files you can perform the preshelving during the day When starting this paradigm up for the first time however thousands of files per volume will be preshelved so it is recommended that only one volume at a time is processed during this startup phase 5 17 3 Nightly Backups While using this paradigm it is still necessary to perform regularly for example nightly back ups using your regular backup regimen This is required to restore a disk s index file and direc tory structure following a disk failure For this paradigm to work you must use HSM BACKUP as provided with the HSM kit as your backup engine Th
201. SMU SET FACILITY no new attributes were defined for the facility The update was not performed SMU W NOTUPDPOLICY policy policy name was not updated no new attributes Explanation For SMU SET POLICY no new attributes were defined for the policy The update was not performed SMU W NOTUPDSCHED scheduled entry entry name was not updated no new attributes Explanation For SMU SET SCHEDULE no new attributes were defined for the entry The update was not performed SMU W NOTUPDSHELF shelf shelf name was not updated no new attributes Explanation For SMU SET SHELF no new attributes were defined for the shelf The update was not performed SMU W NOTUPDVOLUME volume volume name was not updated no new attributes Explanation For SMU SET VOLUME no new attributes were defined for the volume The update was not performed SMU F NOUID no device UIDs found for device device name SMU F NOUID no device UIDs found for set device name Explanation For SMU ANALYZE no valid UIDs were found in the HSM UID SYS file SMU ANALYZE will stop processing this device set SMU F NOUIDFILE HSMSUID SYS not available for device device name SMU F NOUIDFILE HSMSUID SYS not available for set device name HSM Error Messages A 25 HSM Error Messages A 3 Shelf Management Utility Messages Explanation For SMU ANALYZE no HSM UID SYS file was found on the device set or the file could not be opened The missing file indicates that shelving has no
202. STEM IN USE Unused Capacity Total Available Capacity Within Capacity Latitude 2 USED CAPACITY EXCEEDS HIGH WATER MARK Available Storage Capacity Below Low Water Mark Used Storage Capacity 3 AVAILABLE CAPACITY INCREASED HIGH WATER MARK LOW WATER MARK CXO 4094A MC Managing the HSM Environment 5 15 Managing the HSM Environment 5 11 Maintaining Shelving Policies Table 5 3 Process for Shelving to Reactive Policy Stage Event 1 The system is in use Online storage capacity 1s within the limits that define the capacity latitude Implications When the amount of online storage capacity lies within the capacity latitude 1t implies the following e The files on the disk are frequently accessed meeting the demands of their applications and users for immediate access Enough space is available to accommodate new files or extensions to files on the disk volume Enough space is available to accommodate unshelved files if they need to be accessed e Average access latency is acceptable for the users and applications whose files are shelved from the disk volume 2 Used storage capacity exceeds the defined high water mark This condition is caused by a user or application requiring more capacity than is allowed by definition on the online disk volume Any of the following require more online storage Creating a new file Extending an existing file e Uns
203. SYS STAR TUP SLS STARTUP Check value for QUICKLOAD in TAPESTART COM QUICKLOAD should be set to 1 to indicate the operator does not need to respond to requests to load volumes Be sure all jukeboxes are defined correctly Installation amp Configuration Guide Chapter HSM Installation amp Configura tion Guide Chapter 6 Installation amp Configuration Guide Chapter 6 MDMS Guide to Operations MDMS Guide to Operations Solving Problems with HSM 7 11 Solving Problems with HSM 7 7 HSM VMScluster Problems 7 7 HSM VMScluster Problems HSM is designed to run in a VMScluster environment It must run on all nodes in the cluster so that files can be accessed from any node The following requirements define how HSM must be run in a cluster environment for correct operation e HSM must be started on all nodes in the VMScluster system it is recommended that HSM is started automatically in each node s startup procedure The logical names HYM MANAGER HSM LOG and HSM CATALOG must be defined as systemwide logical names with the same definition on all nodes in the VMScluster sys tem Use SYSMAN with VMScluster environment to define these logical names e All devices defined as cache devices including magneto optical disks must be system mounted and accessible from all nodes in the VMScluster system e In Basic mode tape devices must be accessible from all nodes enabled as shelf servers in the VMScluster system If
204. Solution Reference Version limits on HSM LOG directory Policy execution process already started Insufficient quotas Insufficient privilege Insufficient disk space on HSM MANAGER HSM LOG SMU database corrupted Installation not complete Remove version limits from HSM LOG directory Nothing Increase quotas IG Section 1 2 4 Check and change IG Section 1 2 1 HSM SERVER account privi leges Delete some files or redirect to another disk Delete HSM LOG HSM SMU rec reate databases and restart run SMUor HSM STARTUP COM Complete installation IG Section 1 3 7 4 4 HSM Does Not Shut Down If you have entered a SHUTDOWN command but HSM does not shut down and you have waited at least 30 seconds examine Table 7 4 for more information Table 7 4 HSM Does Not Shut Down Problem Solution Reference HSM requests are in progress BACKUP operation is in progress HSM is hung SMU SHUTDOWN NOW Wait 5 minutes HSM does not exit if a BACKUP SAVE opera tion is in progress unless a 5 minute timeout expires look for HSMS SERVER_xx processes in SHOW SYSTEM to verify Use SYSMAN DO SMU SHUTDOWN FORCE on all nodes Solving Problems with HSM 7 8 7 4 5 Solving Problems with HSM 7 5 Mass Shelving Shelving and SMU Commands Do Not Work The following symptoms mean that parts of the HSM system are not running e Shelving and SMU commands hang e Shelving commands and SMU commands rec
205. TABASERR error detected on database database Explanation An unexpected error was encountered while trying to delete a record from this database There may be an accompanying message that gives more information about any failure SMU E DELERR error deleting database record database record Explanation An unexpected error was encountered while trying to delete a record from this database or the record entry does not exit Other causes could be an attempt to delete a default policy facility record default shelf record a shelf that still has volume disk refer ences a shelf that contains a catalog reference other than the one assigned to the default shelf a shelf where a split merge is currently active default volume record a volume that contains a shelf reference other than the one assigned to the default volume or a volume where a split merge is currently active There may be an accompanying message that gives more information about any failure SMU E DEV DELERR error deleting device definition device name Explanation An attempt was made to delete the default device record or a device that does not exist in the database There may be an accompanying message that gives more informa tion about any failure Verify your configuration and retry the command SMU E DEV DISPERR error displaying device device name Explanation For SMU SHOW DEVICE an error was encountered while trying to read the device information There may be
206. TE VOLUME MDMS CREATE MAGAZINE MDMS CREATE VOLUME MDMS INITIALIZE VOLUME MDMS INVENTORY JUKEBOX MDMS SET MAGAZINE MDMS SET VOLUME MDMS REPORT VOLUME Location MDMS ALLOCATE DRIVE MDMS ALLOCATE VOLUME MDMS CREATE LOCATION Location attribute MDMS CREATE JUKEBOX MDMS CREATE MAGAZINE Onsite Offsite Location MDMS CREATE NODE MDMS CREATE VOLUME Onsite Offsite Location MDMS MOVE VOLUME MDMS REPORT VOLUME Onsite Offsite Location Fields MDMS SET DOMAIN Onsite Offsite Location MDMS SET JUKEBOX Basic MDMS Operations 9 25 Basic MDMS Operations 9 6 Creating Modifying and Deleting Object Records Table 9 4 Reviewing DCL Commands for References to Deleted Objects When you delete Review these DCL commands Media Type Node Pool Volume Volume Set MDMS SET LOCATION Location attribute MDMS SET MAGAZINE Onsite Offsite Location MDMS SET NODE MDMS SET VOLUME Onsite Offsite Location MDMS ALLOCATE DRIVE MDMS ALLOCATE VOLUME MDMS CREATE DRIVE MDMS CREATE VOLUME MDMS INITITALIZE VOLUME MDMS INVENTORY JUKEBOX MDMS LOAD DRIVE MDMS REPORT VOLUME MDMS SET DOMAIN MDMS SET VOLUME MDMS ALLOCATE DRIVE MDMS CREATE DRIVE MDMS CREATE GROUP MDMS CREATE JUKEBOX MDMS CREATE POOL Authorized Default Users MDMS SET DRIVE MDMS SET GROUP MDMS SET JUKEBOX MDMS SET POOL Authorized Default Users MDMS ALLOCATE VOLUME MDMS LOAD DRIVE MDMS REPORT VOLUME MDMS SET V
207. The specified volume or volume set was successfully bound to the end of the named volume set User Action None BUGCHECK internal inconsistency Explanation The server software detected an inconsistency This is an internal error User Action Provide copies of the MDMS command issued the database files and the server s logfile for fur ther analysis Restart the server CANCELLED request cancelled by user Explanation The request was cancelled by a user issuing a cancel request command User Action None or retry command CLEANVOL cleaning volume loaded Explanation During a load of a volume a cleaning volume was loaded User Action During an inventory this message can be ignored During a load of a requested volume or a scratch load on a drive or an initialize command a cleaning volumes was loaded Check loca tion of the cleaning volume update database as needed and re issue command using a non cleaning volume CONFLITEMS conflicting item codes specified Explanation The command cannot be completed because there are conflicting item codes in the command This is an internal error User Action Provide copies of the MDMS command issued the database files and the server s logfile for fur ther analysis MDMS Messages C 3 MDMS Messages CREATVOLUME volume AD created Explanation The named volume was successfully created User Action None DBLOCACC local access to datab
208. The state attribute is a protected field that describes the current state of the jukebox A jukebox can be in one of three states e Available Available for use and not currently performing an operation e In Use Currently performing a robot operation robot operations occur sequentially any new operation requested while the robot is in use is queued e Unavailable The robot is unavailable for use for some reason This field is normally maintained by MDMS so you should not modify it unless a problem has occurred that needs manual cleanup for example the robot is stuck in the in use state when it is clear that it is not in use 10 5 15Threshold MDMS provides the capability of monitoring the number of free volumes in a jukebox A free volume is one that is available for allocation and writing new data Many users would like to maintain a minimum number of free volumes in a jukebox to handle tape writing needs for some period of time You can specify a threshold value of free volumes below which an OPCOM message is issued that asks an operator move some more free volumes into the jukebox In addi tion the color status of the jukebox in MDMSView changes to yellow if the number of free vol umes falls below the threshold and to red if there are no free volumes in the jukebox If you wish to disable threshold OPCOM messages and color status set the threshold value to 0 Media Management 10 11 Media Management 10 5 Jukeboxes 10
209. U E NONEXIST SHELF nonexistent shelf shelf name Explanation For SMU SET VOLUME SHELE a shelf name was given that doesn t exist in the database Re enter the command and specify a defined shelf or define the new shelf and then re enter the command SMU E NONEXT no next device found in set after device name Explanation For SMU ANALYZE an unexpected error was encountered getting informa tion about the next device in the volume set There may be an accompanying message that gives more information about any failure SMU ANALYZE will stop processing this device set SMU E NOPOLSERV no policy execution servers found Explanation For SMU SET SCHEDULE since the SERVER qualifier was not used an attempt was made to select a server from the facility definition This attempt failed due to errors getting system or cluster information SMU E NOPOLLIST no policy name or list of policies found Explanation For SMU SET POLICY no policy name or list of names was present in the command Re enter the command and specify a policy name or list of policies SMU E NOSHELFLIST no shelf name or list of shelves found Explanation For SMU SET SHELE no shelf name or list of names was present in the com mand Re enter the command and specify a shelf name or list of shelves SMU E NOSUCHENT no such entry entry name Explanation For SMU SET SCHEDULE or SMU SHOW SCHEDULE no job entry was found for the listed volume s or specific entry number
210. UPQADASIe AUS he ADEL UPS 9 17 9 5 Access Rights for MDMS Operations o o ooooooooro e e nee 9 18 9 5 1 Description of MDMS Rights 0 0 0 cece eee e eens 9 18 9 5 1 1 Low Level Rights eL E Pee Ge ih eh eee 9 18 9 5 1 2 High Level Rights sts ees Roe e a wearer hays bee A 9 19 9 5 2 Granting MDMS Rights scere eU CUu ste Saha hee eas 9 19 9 6 Creating Modifying and Deleting Object Records 0 0 00 cee ees 9 21 9 6 1 Creating Object Records ive eere a x en acre ck tds ep prr s 9 21 9 6 1 1 Naming Objects ci a A eee ee 9 21 9 6 1 2 Differences Between the CLI and GUI for Naming Object Records o o ooo ooomooo o 9 22 9 6 2 Inheritance om Creation ss 9 22 9 6 3 Referring to Non Existent Objects o oooooooooococrr m e nee 9 22 9 6 4 Rights for Creating Objects ooooooooooororrrr e mme 9 23 9 6 5 Modifying Object Records see etes eh Cem ke ERE Rr Ear 9 23 9 6 6 Protected Attributes lt 5 2556 ec eee renni pee on Dee oe eee ea ea 9 23 9 6 7 Rights for Modifying Objects 0 m 9 23 9 6 8 Deleting Object Records cce cs xe ERA Ie D EDS ex WE 9 23 9 6 9 Reviewing Managed Objects for References to Deleted Objects oooooooooomomoooo 9 24 9 6 10 Reviewing DCL Command Procedures for References to Deleted Objects 9 24 9 6 11 Rights for Deleting Objects ss eec iea ha a a IH Ih 9 27 Media Management 10 1 MDMS Domain Configuration oo 10 1 10 2 Domain AT IST EARN R M
211. W R DMS UNBIND DMS UNLOAD tg O O E DMS CANCEL OWN DMS DEALLOCATE OWN DMS LOAD OWN DMS SHOW OWN DMS SHOW POOL DMS UNBIND OWN DMS UNLOAD OWN E omEGEO EGEOXSoX Xo X X X X oXoX S EoXEGEGEOGXSGXmoGX X oXSoX XoXoX x n Q Sample Configuration of MDMS B 1 Configuration Order Sample Configuration of MDMS B 3 Sample Configuration of MDMS B 1 Configuration Order B 1 4 Configuration Step 4 Example Defining MDMS Database Nodes This example shows the MDMS commands for defining the three MDMS database nodes of the cluster ACCOUN This cluster is configured to use DECnet PLUS Note that a node is defined using the DECnet node name as the name of the node net PLUS full name If you use the GUI you mu ports attribute create nodes database node MDMS CREATE NODE SMIT rH1 If the node has DECnet PLUS installed the DECnet Fullname attribute must be the DEC If the node uses TCP IP the TCP IP attribute should be defined st define the TCP IP attribute and include TCPIP in the Trans DECnet node name DESCRIPTION ALPHA node on cluster ACCOUN DATABASE SERVER DECNET FULLNAME SMI LOCATION BLD1 COMPUT this node is a database server DECnet Plus name BLD SMITH1 ER ROOM TCPIP_FULLNAME SMITH1 SMI BLD COM TCP IP name MDMS SHOW NODE SMITH Node SMITH Description ALPHA node on cluster ACCOUN
212. a catalog or for all shelves to use the default catalog Defining a separate catalog for each shelf has the following advantages e Itrestricts the impact of a temporary loss of a catalog to a known set of volumes associated with the shelf e It reduces the size of the catalog file allowing more flexible placement in your storage sub system e It increases catalog access performance since the catalog is smaller and there are fewer records to scan e treduces the time for a restoration of a catalog from BACKUP tapes As a guideline HP recommends that each shelf be associated with between 10 and 50 volumes and that each shelf has its own catalog A shelf catalog needs to be protected with a similar level of protection as the default catalog namely e The catalog should be in a shadow set or RAID set e The catalog should be backed up on a regular basis It is also recommended that the catalog for a shelf be placed on a disk volume other than one associated with the shelf itself In very large environments it might be appropriate to dedicate one or more shadowed disk sets for HSM catalogs and to disable shelving on those disks When defining a new catalog for a shelf or a new shelf for a volume HSM automatically splits all associated shelving data from the old catalog and merges it into the new catalog See Section 5 12 for more information on this process 2 3 5 Save Time You can specify a delete save option for shelved files t
213. a policy simply fails to reach its goal this information is written in the audit log Please note that entries are placed in the event logs at the completion of a request Requests in progress are not reported in the event logs but rather in the activity log see Section 7 2 3 7 2 3 Activity Log In contrast to the event logs the activity log allows you to examine requests that are in progress This is useful if you suspect that an operation is hung or there are requests that have been gener ated that you wish to cancel such as an unintended mass shelving An activity log can be obtained using the SMU SHOW REQUESTS FULL command which dumps all in progress requests to the file HSM LOG HSM SHP_ ACTIVITY LOG Note that the activity log is node specific The activity log is similar to the shelf handler audit log in format except that the status and completion time are necessarily different In addition flags showing the input options and progress of the request also are displayed 7 2 4 SMU LOCATE If you are experiencing a problem in unshelving a shelved file s data you can use the SMU LOCATE command to retrieve full information about the file s data locations Although HSM tries to restore data from all known locations automatically even when some of its metadata is missing there may be occasions when this is not possible In these situations you should use the SMU LOCATE command to locate the file s data Once you have found the d
214. a space which is a labelled part of a loca tion that uniquely identifies where the magazine is A space can be designed to handle a single volume but since magazines hold multiple volumes multiple spaces can also be assigned Enter either a space or a range of spaces for the magazine 10 7 5 Move Magazine s The supported way to move magazines from one place to another is to use the Move Magazine operation You can move magazines on demand by issuing this operation or you can let MDMS automatically move magazines according to pre defined onsite or offsite dates this is called a scheduled move You can also force an early scheduled move if you want it to occur before the time that MDMS would initiate the move Moving magazines into jukeboxes must always be performed manually When intiating a Move Magazine you can choose a destination for the magazine if the move is not a scheduled move The destination can be one of three types of places e Jukebox You wish to move the magazine and all of its volumes into a jukebox you would then specify the jukebox name If the jukebox is a large TL820 type jukebox you must also specify the Position using tower face and level or start slot for the magazine e Onsite location You wish to move the magazine to a location that is onsite to the computer hardware that normally uses it You would then specify the onsite location name and optionally one or more spaces that the magazine or volu
215. able by both device types in this case TK50 and all media must be in the same format for a specified archive class Understanding HSM Concepts 2 11 Understanding HSM Concepts 2 6 Device 2 6 3 Devices and Archive Classes Nearline and offline devices are associated with archive classes that relate to shelves When specifying archive classes for shelf copies you must consider the media type on which you want these copies to reside Each archive class uses exactly one media type so that all data written to a specific archive class uses compatible media Be aware that multiple archive classes can use the same media type You establish the relationship between archive classes devices and media type by using the SMU SET DEVICE command and specifying an archive list Remember that for HSM Plus mode you also use the media type definitions in the MDMS TAPESTART COM file to encap sulate the media type and drives relationship Regardless of how archive classes and shelves relate the relationship between archive classes and devices is not one to one This means that e A single device for example a TA90 tape drive can support multiple archive classes of the same media type e Operations on different shelves and archive classes can share devices e Anarchive class can use one or more compatible tape drives e Different volumes from within an archive class can be mounted simultaneously on separate compatible drives Figure 2 3 shows the a
216. according to the MDMS functionality and require ments In general MDMS recognizes automated loaders and the volumes contained therein only by process of how you configure the information in TAPESTART COM and through the STOR AGE commands For more information see the Getting Started with HSM Chapter of the HSM Installation and Configuration Guide HSM allows you to customize HSM activity on a per volume basis By default there is only one HSM volume entity HSsM DEFAULT VOLUME which is used as the basis for HSM activity for all volumes in the cluster You can add any number of specific volumes each relating to a single online disk volume as you want Any disk volumes not associated with a specific volume entry are implicitly associated with the default volume Default Volume Attributes The default volume is preconfigured with a default set of attributes You can modify any or all of the attributes on the default volume which are then applied to all volumes associated with the default volume The attributes of the default volume also are used as a template for specific vol ume entities With the volume entity you can specify the following attributes Shelf e Shelving operations e Volume policy e High water mark e Files excluded from shelving The shelf attribute relates the disk volume definition to a single shelf definition The shelf must be set up before associating a volume with it For information on setting up the shelf s
217. action with operators The message option for these com mands Load drive Load volume For load operations use the message option to pass additional information to the operator identified to respond to the load request MDMS Management Operations 12 7 MDMS Management Operations 12 3 Serving Clients of Managed Media 12 3Serving Clients of Managed Media Once configured MDMS serves ABS and HSM with uninterrupted access to devices and vol umes for writing data Once allocated MDMS catalogs volumes to keep them safe and makes them available when needed to restore data To service ABS and HSM you must supply volumes for MDMS to make available enable MDMS to manage the allocation of devices and volumes and meet client needs for volume retention and rotation 12 3 1 Maintaining a Supply of Volumes To create and maintain a supply of volumes you must regularly add volumes to MDMS man agement and set volume object record attributes to allow MDMS to meet ABS and HSM needs 12 3 1 1 Preparing Managed Volumes To prepare volumes for use by MDMS you must create volume object records for them and ini tialize them if needed MDMS provides different mechanisms for creating volume object records the create load and inventory operations When you create volume object records you should consider these factors e The situational demands under which you create the volume object records e The application nee
218. age remote devices using the Remote Device Facility RDF RDF is used for devices remotely connected over a wide area network and DECnet is still a requirement for access to these remote devices RDF is not required for devices connected remotely via Fibre Channel as these are considered local devices 14 1 The RDF Installation When you install ABS non standard installation or MDMS you are asked whether you want to install the RDF software With the ABS standard installation the RDF client and server software is installed by default During the installation you place the RDF client software on the nodes with disks you want to access for ABS or HSM You place the RDF server software on the systems to which the tape devices jukeboxes and drives are connected This means that when using RDF you serve the tape device to the systems with the client disks All of the files for RDF are placed in SYSSCOMMON MDMS TTI RDF for your system There are separate locations for VAX or Alpha Note RDF is not available if you are running ABS MDMS with the ABS OMT license 14 2 Configuring RDF After installing RDF you should check the TTI_RDEV CONFIG_nodename DAT file to make sure it has correct entries This file e is located on the RDF server node with the tape device e is created initially during installation e isa text file e includes the definition of each device accessible by the RDF software This definition con sists of a physica
219. ail Operators will receive Opcom requests to move the volumes or magazines MDMS Management Operations 12 15 MDMS Management Operations 12 5 Scheduled Activities 12 5 3 Log Files for Scheduled Activities These scheduled activities generate log files These log files are located in MDMSSLOGFILE LOCATION and are named MDMS DEALVOL LOG for deallocating and releasing volumes MDMS MOVVOL for moving of scheduled volumes MDMS MOVMAMG for moving of scheduled magazines These log files do not show which volumes or magazines were acted upon They show the com mand that was executed and whether it was successful or not If the Opcom message is not replied to by the time the next scheduled activities is started the activity is cancel and a new activity is scheduled For example nobody replied to the message from Saturday at 1AM so on Sunday MDMS canceled the request and generated a new request The log file for Saturday night would look like this SET VERIFY SET ON MDMS MOVE VOL SCHEDULE MDMS E CANCELED request canceled by user MDMSSSERVER job terminated at 08 Jan 2003 01 01 30 48 Nothing is lost because the database did not change but this new request could require more vol umes or magazines to be moved The following shows an example that completed successfully after deallocating and releasing the volumes SET VERIFY SET ON MDMS DEALLOCATE VOLUME SCHEDULE VOLSET MDMSSSERVER job terminated at 0
220. al phase that veri fies that the shelving ACE on the files to be copied is correct There may be an accompany ing message that gives more information about any failure SMU I COPYCHK verifying shelving ACE on files to be copied Explanation SMU COPY is verifying that the shelving ACE on the files to be copied is correct SMU E COPYDEV cannot copy to source device use DCL RENAME instead Explanation The SMU COPY command has detected that the source and destination devices are the same If this is desired then the DCL RENAME command should be used instead SMU E COPYDST specify device or device and directory location only Explanation The SMU COPY command has detected that the destination specified con tains more than a device and or directory location Node names are not allowed as are any attempt to specify a file name or portion of one SMU I COPYSTART starting file copy HSM Error Messages A 18 HSM Error Messages A 3 Shelf Management Utility Messages Explanation SMU COPY has completed all initial verifications and is starting the actual file copy SMU F CREATERR error creating database database name Explanation An error was encountered while trying to create a new database file There may be an accompanying message that gives more information about any failure Please check the equivalence name HSM MANAGER and redefine as needed Also verify that the device is accessible and has enough free space SMU E DA
221. an accompanying message that gives more information about any failure SMU W DEV INELIG device device name is ineligible Explanation An attempt was made to use a device which is not currently available on the system This could come from SMU SET CACHE to add a new cache device SMU SET SCHEDULE on one of the listed volumes or SMU SET VOLUME to add a new volume There may be an accompanying message that gives more information about any failure SMU E DEV NOTREMOTE device device is not a remote device specification Explanation For SMU SET DEVICE REMOTE the device name must contain a node name or the node name must be included in a logical name assignment for the device SMU E DEV READERR error reading device definition device name Explanation For SMU SET DEVICE or SMU SHOW DEVICE an unexpected error was encountered while trying to delete a device record or read a device record for display There may be an accompanying message that gives more information about any failure SMU E DEV WRITERR error writing device definition device name HSM Error Messages A 19 HSM Error Messages A 3 Shelf Management Utility Messages Explanation For SMU SET DEVICE an attempt was made to add a device where the media type is not compatible with it s associated archive class es the DEDICATE qualifier was specified for a remote device the REMOTE qualifier was specified for an existing local device or an unexpected error was encountered while
222. anation MDMS encountered an error when performing a jukebox operation An accompanying message gives more detail User Action Examine the accompanying message and perform corrective actions to the hardware the volume or the database and optionally retry the operation DCSCMSG IAZ Explanation This is a more detailed DCSC error message which accompanies DCSCERROR User Action Check the DCSC error message file DECNETLISEXIT DECnet listener exited Explanation The DECnet listener has exited due to an internal error condition or because the user has dis abled the DECNET transport for this node The DECnet listener is the server s routine to receive requests via DECnet Phase IV and Phase V User Action The DECnet listener should be automatically restarted unless the DECNET transport has been disabled for this node Provide copies of the MDMS command issued the database files and the server s logfile for further analysis if the transport has not been disabled by the user DECNETLISRUN listening on DECnet node AZ object AZ Explanation The server has successfully started a DECnet listener Requests can now be sent to the server via DECnet MDMS Messages C 5 MDMS Messages User Action None DEVNAMICM device name item code missing Explanation During the allocation of a drive the drive name was not returned by the server This is an inter nal error User Action Provide copies of the MDMS
223. anation The input device is currently being processed by SMU ANALYZE SMU F READERR fatal error encountered reading database database name Explanation An unexpected error was encountered while reading the catalog There may be an accompanying message that gives more information about any failure Please check the equivalence name of HSM CATALOG and redefine as needed Also verify that the cat alog file is accessible SMU E RDVOLSHLF error reading volume or shelf data for device name Explanation For SMU ANALYZE an unexpected error was encountered getting volume or shelf data for the device There may be an accompanying message that gives more infor mation about any failure SMU ANALYZE will stop processing this device SMU W RSPCOMM shelf handler response communications error HSM Error Messages A 27 HSM Error Messages A 3 Shelf Management Utility Messages Explanation When SMU started processing a response from the shelf handler it discov ered that the shelf handler process no longer existed or there was an error reading the response There may be an accompanying message that gives more information about any failure Start the shelf handler with SMU START if needed SMU I SCHED CREATED scheduled policy policy name for volume volume name was created on server server name Explanation The scheduled policy was successfully created SMU I SCHED DELETED scheduled policy policy name for volume volume name was deleted on se
224. and using the CANCEL qualifier as shown in the following example UNSHELVE TXT Ctrl Y UNSHELVE CANCEL TXT 4 3 Finding Lost Data If you have lost data you think was shelved see your storage administrator There are several procedures explained in Section 5 9 that the storage administrator can use to find the lost data 4 4 Working with Remote Files You can perform all regular DCL command line operations on files residing in a system or VMScluster from a remote node in the same manner as you can for operations on a local node However you cannot use the HSM DCL commands SHELVE PRESHELVE and UNSHELVE on remote files Implicit shelving and unshelving operations are possible for remote systems Unlike local opera tions you do not receive the Unshelving filename or Shelving Files To Free Disk Space sta tus messages for remote operations If you cancel an implicit operation on a file from a remote node implicit operations only are allowed the operation will continue at the HSM system but the request will be canceled with out returning the result of the operation to the remote node 4 5 Resolving Duplicate Operations on the Same File Using HSM 4 8 If two users simultaneously enter duplicate command on the same file HSM performs the oper ation for both users as if each had entered the command alone For example if an UNSHELVE command is entered on the same file HSM unshelves the file once and issues duplicate
225. apacity so that all shelving operations can be controlled to occur at certain times of day This not only reduces overhead of reactive policy execution during the period of high system activity but also minimizes the use of nearline offline resources for HSM purposes 2 10 3 Server Node You can specify the node on which you want the policy to run Although policies can run on any node that has access to the online volume cache devices and nearline offline devices it is more efficient if it runs on a shelf server node If the shelf server node changes you can use HSM s requeue feature to requeue any and all policy entries to run on an alternative shelf server node Understanding HSM Concepts 2 25 Understanding HSM Concepts 2 11 HSM System Files and Logical Names 2 11 HSM System Files and Logical Names HSM uses four logical names that point to devices and directories that hold important files for HSM operations The logical names are needed because different levels of data reliability are required to ensure proper HSM operation and for the security of user data The four logical names are e HSM CATALOG HSM MANAGER e HSM LOG e HSM REPACK The first three logical names must be defined at installation or later as system wide logical names affecting all processes Moreover the definitions must be the same on all nodes in the cluster The logical name HSM REPACK is optional HSMS CATALOG The HSM CATALOG logical name points to t
226. archive class 3 using all valid data from archive class 1 Archive class 3 may be of a different media type than archive class 1 5 15 Replacing A Lost or Damaged Shelf Volume If you lose or damage a shelf tape you will not be able to recover the data on that tape and are at risk for not providing the level of data safety that HSM provides As soon as you discover that a shelf tape has been lost or damaged you should take steps to replace it by using REPACK to copy the contents of the tape from another archive class to new media When discovering the lost or damaged tape you should determine which archive class it belonged to Then issue a REPACK command specifying an alternate archive class that is or was defined for the shelf When performing this operation you should specify the volume to be replaced but no thresholds for the copy However as with all repack operations obsolete files are not copied The following example replaces a lost or damaged shelf volume SMU REPACK 1 VOLUME ACG001 FROM_ARCHIVE 2 NOTHRESHOLD Managing the HSM Environment 5 25 Managing the HSM Environment 5 16 Catalog Analysis and Repair This example replaces shelf volume ACGO01 from archive class 1 using media from archive class 2 It may take several volumes from archive class 2 to replace the data in the volume Also the replacement volume will have a different label to ACG001 but its contents contain the valid replacement data for ACGOOI If the a
227. as a database server enable and disable the node Designating Potential Database Servers When you install MDMS you must decide which nodes will participate as potential database servers To be a database server the node must be able to access the database disk device Typically in an OpenVMS Cluster environment all nodes would have access to the database disk device and would therefore be identified as potential database servers Set the database server attribute for each node identified as a potential database server For nodes in the domain that are not going to act as a database server negate the database server attribute Disabling and Enabling MDMS Nodes There are several reasons for disabling an MDMS node Preventing the node you are disabling from becoming the database server Preventing applications and users on the node from issuing or processing MDMS requests Disable the node from the command line or the GUI and restart MDMS When you are ready to return the node to service enable the node MDMS Configuration 11 9 MDMS Configuration 11 1 The MDMS Management Domain 11 1 4 3 Enabling Interprocess Communication Nodes in the MDMS domain have two network transport options one for DECnet the other for TCP IP When you configure a node into the MDMS domain you can specify either or both these transport options by assigning them to the transport attribute If you specify both MDMS will attempt interprocessor communi
228. as a magazine Setting the usage attribute to nomagazine means that you will move volumes into and out of the jukebox independently using separate commands for each volume regardless if they are placed into a physical magazine or not Figure 11 3 Jukebox Topology Topology Tower Faces Levels Slots Tower O Tower 1 Tower 2 Drives Level 0 Level 1 Level 2 CXO6748A The following paragraphs explain jukebox topology Towers Faces Levels and Slots Some jukeboxes have their slot range subdivided into towers faces and levels See Figure 11 3 for an overview of how the configuration of Towers Faces Levels and Slots constitute Topol ogy Note that the topology in Figure 11 3 comprises 3 towers In the list of topology character istics you should identify every tower in the configuration For each tower in the configuration you must inturn identify e the tower by number starting at zero MDMS Configuration 11 17 MDMS Configuration 11 2 Configuring MDMS Drives Jukeboxes and Locations e the number of faces in the tower starting at one e the number of levels per face starting at one e the number of slots per magazine starting at one Restrictions for Using Magazines You must manually open the jukebox when moving magazines into and out of the jukebox
229. as encountered while trying to display the requested information There may be an accompanying message that gives more information about any failure SMU I ENDSCAN completed scan for shelved files on disk volume device name Explanation SMU ANALYZE has completed processing of this device SMU E ENF job entry not found Explanation For SMU SET SCHEDULE or SMU SHOW SCHEDULE no job entry was found for the listed volume s or specific entry number if ENTRY was used There may be an accompanying message that gives more information about any failure SMU I ERRORS number error s detected number error s repaired Explanation For SMU ANALYZE this message is for the device indicating the number of errors detected and repaired SMU I FAC UPDATED HSM facility modified Explanation The facility was successfully modified SMU W FACUPDERR unable to update facility information HSM Error Messages A 20 HSM Error Messages A 3 Shelf Management Utility Messages Explanation For SMU SET FACILITY an error was encountered while trying to modify the facility information There may be an accompanying message that gives more informa tion about the failure Please check your configuration and the equivalence name of HSM MANAGER and redefine as needed Also verify that the configuration file is accessi ble SMU F FNF file not found Explanation For SMU SET SCHEDULE the supplied command procedure to initiate pol icy execution was not f
230. ase Explanation This node has the database files open locally User Action None DBRECERR error AZ AZ record for AZ Explanation The search for a database server received an error from a remote server User Action Check the logfile on the remote server for more information Check the logical name MDMSS DATABASE SERVERS for correct entries of database server node DBREMACC access to remote database server on node AZ Explanation This node has access to a remote database server User Action None DBREP Database server on node AZ reports Explanation The remote database server has reported an error condition The next line contains additional information User Action Depends on the additional information DCLARGLSOVR DCL extended status format argument list overflow Explanation During formating of the extended status the number of arguments exceeded the allowable limit This is an internal error MDMS Messages C 4 MDMS Messages User Action Provide copies of the MDMS command issued the database files and the server s logfile for fur ther analysis DCLBUGCHECK internal inconsistency in DCL Explanation The MDMS comand line software MDMS DCL EXE detected an inconsistency This is an internal error User Action Provide copies of the MDMS command issued the database files and the server s logfile for fur ther analysis DCSCERROR error accessing jukebox with DCSC Expl
231. asons Such operations are passed from other client nodes to the shelf server for processing The shelf server consolidates requests from all nodes and optimizes operations to minimize tape loading and positioning as well as to support dedicated device access Eligible Servers Although many nodes can be authorized for shelf server operation only one HSM node func tions as the shelf server at any given time This way if the current shelf server node fails opera tions are immediately transferred and recovered by another authorized shelf server node You can specify up to 10 specific nodes to be authorized for shelf server operation By default all nodes in the cluster are authorized The current shelf server node can be displayed using an SMU SHOW FACILITY command Understanding HSM Concepts 2 3 Understanding HSM Concepts 2 2 The HSM Facility When deciding whether to authorize a node as a shelf server consider the following In Basic mode all specified nearline and offline devices must be accessible to all shelf server nodes By contrast they do not need to be accessible to client nodes The shelf server undertakes the bulk of shelving operations for the cluster so more powerful CPUs are recommended To support transparent operations when a node fails multiple shelf servers should be autho rized Scheduled policy execution should be run on an authorized shelf server node for optimal performance unless a cache is defined
232. ata you can restore it manually using BACKUP from tape or COPY from cache commands SMU LOCATE reads the HSM catalog directly to find a shelved file s data locations You should note that the SMU LOCATE command does not work quite the same way as a typi cal OpenVMS commands when processing look up and wildcard operations The file name you supply as input including any wildcards applies to the file as stored in the HSM catalog at the time of shelving Thus for example e You may locate a shelved file by name even if ithas been deleted from the online system Solving Problems with HSM 7 3 Solving Problems with HSM 7 2 Troubleshooting Tools e Ifthe file has been renamed on the online system you must use the old name current at the time of shelving to locate it e Alternatively you can identify a file by file identifier which together with a device name uniquely identify a file regardless of any renaming that may have been done after shelv ing e Ifyou do not specify a device and or directory in the SMU LOCATE command it uses the default of 000000 5 When you retrieve information using the SMU LOCATE command several instances or groups of stored locations may be displayed These reflect the locations of the file when it was shelved at various stages of its life You should carefully review the shelving time and revision time of the file to determine which if any is the appropriate copy to restore 7 2 5 UNS
233. ate as the selection criteria for HSM policies Using the expiration date coupled with volume retention time is the recommended and default configuration for HSM policies This ensures that files are shelved only if they have not been accessed for read or write operations within a certain time frame Use of the other date fields while supported may result in some frequently accessed files being shelved For more information see Section 3 2 5 Understanding HSM Concepts 2 22 Understanding HSM Concepts 2 9 Policy Candidate file ordering is then achieved by using one of the following algorithms which use the specified date e Least recently used LRU e Space time working set STWS Least Recently Used The least recently used policy selects files based on the selected date option and the last time the date changed It creates a listing of files ranked from the greatest time since last accessed to the smallest time since last accessed Space Time Working Set The space time working set policy selects files based on a combination of the file size and the LRU ranking STWS is the product of the file size and the time since last access Candidates are ordered from the greatest to the least ranking value returned for all files Larger files tend to be ranked higher than smaller files Script The script is a DCL command file containing SHELVE PRESHELVE or UNSHELVE com mands Other DCL commands also may be included Primary and S
234. ation Explanation The operation cannot be performed on the volume because of the volume state does not allow it User Action Defer the operation until the volume changes state If the volume is stuck in a transient state e g moving check for an outstanding request and cancel it If all else fails manually change the state MDMS Messages C 22 MDMS Messages JUKEBOXEXISTS specified jukebox already exists Explanation The specified jukebox already exists and cannot be created User Action Use a set command to modify the jukebox or create a new jukebox with a different name JUKENOTINIT jukebox could not be initialized Explanation An operation on a jukebox failed because the jukebox could not be initialized User Action Check the control robot name node name and group name of the jukebox and correct as needed Check access path to jukebox HSJ etc correct as needed Verify MDMS is running on a remote node Then retry operation JUKETIMEOUT timeout waiting for jukebox to become available Explanation MDMS timed out waiting for a jukebox to become available The timeout value is 10 minutes User Action If the jukebox is in heavy use try again later Otherwise check requests for a hung request can cel it Set the jukebox state to available if all else fails JUKEUNAVAIL jukebox is currently unavailable Explanation The jukebox is disabled User Action Re enable the jukebox JUKUNDEFINED
235. ation BLD1 COMPUTER ROOM Disabled NO Shared NO Auto Reply YES Access ALL State AVAILABLE Control MRD Robot 1 DUA560 Slot Count 176 Usage NOMAGAZINE Sample Configuration of MDMS B 5 Sample Configuration of MDMS B 1 Configuration Order B 1 7 Configuration Step 7 Example Defining a Drive This example shows the MDMS commands for creating the six drives for the jukebox This example is a command procedure that uses a counter to create the six drives In this example it is easy to do this because of the drive name and device name You may want to have the drive name the same as the device name For example MDMS CREATE DR IVE 1 MUA560 DEVICE 1 MUA560 This works fine if you do not have two devices in your domain with the same name COUNT COUNT 1 IF COUNT LT 6 THEN GOTO DRIVE_LOOP SDRIVE LOOP MDMS CREATE DRIVE TL826_D1 DESCRIPTION Drive 1 in the TL826 JUKEBOX ACCESS ALL local remote for JONES AUTOMATIC REPLY MDMS automatically replies to OPCOM requests DEVICE 1 MUA561 physical device DRIVE NUMBER 1 the drive number according to the robot JUKEBOX TL826 JUKE jukebox the drives are in MEDIA TYPE TK88K media type to allocate drive and volume for NODES SMITH1 SMITH2 SMITH3 nodes that have access to drive MDMS SHOW DRIVE TL826 D1 Drive TL826 D1 Description Drive 1 in the TL826 JUKEBOX Device 1 MUA561 Nodes SMITH1 S
236. ations 9 4 Graphical User Interface 9 4 6 Showing and Modifying Objects For objects that already exist you can use the Domain View Object View or Task View to show and optionally modify objects or to perform operations on them To view an object use one of the following methods e From the Domain or Object Views from the left screen expand a class name and click on an object name e From the Domain or Object View click on a class name from the left to bring up the class object icons on the right screen then double click on an object icon e From the task View expand the Show task and click on one of the objects e From the Task View right click on the Show task and a popup menu appears then click on an appropriate class and object When an object is selected its attributes and operations are displayed in a two dimensional tab screen as follows e Vertical tabs on the right side of the screen contain the Show and any operations associated with the object Many objects just have a Show tab but some for example volumes have a whole list of operational tabs such as load unload and so on You can switch between the tabs by simply clicking on them e For the Show screen there are also horizontal tabs that display related attributes about the object Many simple objects have only a General tab that shows all attributes Other attributes have General and Advanced tabs if there is not enough room on one tab Other tabs in
237. aximum amount of space on the online volume to be used for HSM cach ing HSM never exceeds this amount If shelving a file would exceed this amount it is diverted to another cache device that can hold the data or the file is copied directly to the shelf archive classes To allow an unlimited amount of space on a disk to be used for caching you can enter a block size of zero which defaults to the device capacity This is useful when using magneto optical devices as a permanent shelf If you do not specify a block size HSM uses a default value of 50 000 blocks 2 8 3 8 High Water Mark You can specify that a cache flush be triggered when a specified percentage of the cache block size is exceeded In this way you should never get into a situation where the block size is exceeded By default cache flushing begins when 80 percent of the block size is used 2 8 3 4 Cache Flush Interval In addition to high water mark cache flushing you also can flush the cache at regular intervals This allows you to restrict all nearline or offline shelving operations to occur at a specific time of day ideally at times other than during the backup cycle By default the cache is flushed every 6 hours 2 8 3 5 Cache Flush Delay In conjunction with the flush interval you can specify a delay to start the first cache flush Thereafter the delay is used in conjunction with the interval to flush at regularly timed intervals Understanding HSM Concepts 2 18
238. bout Hierarchical Storage Management for Open VMSTM HSM and Media Device and Management Services MDMS software Use this document to define configure operate and maintain your HSM and MDMS environment Installation infor mation is found in a separate Installation and Configuration Guide listed in the related docu ments table Command information for both HSM and MDMS is found in the HSM Command Reference Guide also listed in the related documents table Audience The audience for this document includes people who apply HSM for Open VMS M HSM to solve storage management problems in their organization The users of this document should have some knowledge of the following e OpenVMS system management e DCL commands and utilities Document Structure This document is organized in the following manner and includes the following information Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9 Introduction to HSM Understanding HSM Concepts Customizing the HSM Environment Contains information on using HSM Managing the HSM Environment Operator Activities in the HSM Environment Solving Problems with HSM Provides an introduction to Media Device and Management Services MDMS Contains information on MDMS menu Operations XV Chapter 10 Contains information on Media Management Chapter 11 Contains information on MDMS Configuration Chapter 12 Contains informati
239. btain a dynamic output of events by issuing the following command on any of the event log files TYPE TAIL INTERVAL 1 CONTINUOUS HSM LOG l1og file name LOG The logs grow with use and are not re created on HSM startup If you wish to reinitialize the logs you can do so with the SMU SET FACILITY RESET command which opens a new ver sion of each log file The old files can then be purged renamed and shelved or otherwise dis posed of to make space available Internally generated HSM requests are generally not reported in the audit log as these are not visible to either the user or the system manager However they may be reported in the error log if they fail Such internal requests include e Information requests upon an OPEN operation of a shelved file Delete requests upon a DELETE operation of a shelved file e File flush requests an individual request to flush a cache file to shelf storage e SMU SHOW REQUESTS and SHOW VERSION requests If you wish to see the invisible requests logged in the audit log as well as shelf server logging of requests you can enable the following logical name DEFINE SYSTEM HSM SHP REMOTE AUDIT 1 Please note that this will more than double the size of the audit log and is only recommended when troubleshooting problems 5 20 2 Shelf Handler Log Entries The shelf handler error log reports only requests that have not succeeded because of an unex pected error It does not report all errors for
240. c MDMS Operations 9 4 Graphical User Interface e Object View Similar to the domain view but the navigation is by object class and is not hierarchical For example all 16 objects classes are listed and all objects in those classes are displayed You can then select an object to manipulate e Report View This view allows you to generate reports on a class of object using selection criteria and attribute display options Currently the report view supports only volumes e Request View This view allows you to examine current activities in the MDMS database server A request summary and detailed request information is available with a single click refresh e Task View While both the domain and object view allow manipulation on a single object at a time the task view allows you to perform operations on multiple objects at once or use selection criteria to allocate objects For example you can create show delete and modify multiple objects of the same type in one operation Each view is provided in a tab from the main screen and you can be working in several views at the same time although only one is visible at a time When switching from one view tab to another the contents of the tab you are leaving are retained and you can return to it at any time 9 4 1 Starting MDMSView 9 4 1 1 OpenVMS Systems MDMS View is installed at installation time on OpenVMS systems Please refer to the Installa tion Guide for instructions on how
241. can be stored If you do not need that level of detail in the placement of volumes at the location negate the attribute 11 3 Sample MDMS Configurations The Appendix Sample Configuration of MDMS contains a set of sample MDMS V4 configu rations These samples will help you make necessary checks for completeness MDMS Configuration 11 21 12 MDMS Management Operations 12 1 Managing Volumes 12 1 1 Volume MDMS manages volume availability with the concept of a life cycle The primary purpose of the life cycle is to ensure that volumes are only written when appropriate and by authorized users By setting a variety of attributes across multiple objects you control how long a volume once written remains safe You also set the time and interval for a volume to stay at an offsite loca tion for safe keeping then return for re use once the interval passes This section describes the volume life cycle relating object attributes commands and life cycle states This section also describes how to match volumes with drives by creating media type object records Life Cycle The volume life cycle determines when volumes can be written and controls how long they remain safe from being overwritten Table 12 1 describes operations on volumes within the life cycle Figure 12 1 Volume States Allocate Deallocate Create DWS Deallocate Unitialized Unavailable Available Unavailable CX06756A MDMS Mana
242. cations on the first transport value listed MDMS will then try the second transport value if communication fails on the first If you are using the DECnet Plus network transport define the full DECnet Plus node name in the decnet fullname attribute If you are using an earlier version of DECnet leave the DECnet Plus fullname attribute blank If you are using the TCP IP network transport enter the node s full TCP IP name in the TCPIP fullname attribute You can also specify the receive ports used by MDMS to listen for incoming requests By default MDMS uses the port range of 2501 through 2510 If you want to specify a different port or range of ports append that specification to the TCPIP fullname For example node a site inc com 2511 2521 11 1 4 4 Describing the Node Describe the function purpose of the node with the description attribute Use the location attribute to identify the MDMS location where the node resides 11 1 4 5 Communicating with Operators List the OPCOM classes of operators with terminals connected to this node who will receive OPCOM messages Operators who enable those classes will receive OPCOM messages pertain ing to devices connected to the node For more information about operator communication see Section 12 2 11 1 5 Managing Groups of MDMS Nodes MDMS provides the group object record to define a group of nodes that share common drives or jukeboxes Typically the group object record represents all no
243. ccess the drives you manage Use the groups attribute if you created group object records to represent nodes in an OpenVMS Cluster environment or nodes that share a common device Use the nodes attribute if you have no reason to refer to any collection of nodes as a single entity and you plan to manage nodes and the objects that refer to them individually The last decision is whether the drive serves locally connected systems or remote systems using the RDF software The access attribute allows you to specify local remote RDF or both 11 2 1 3 How to Configure an MDMS Drive for Operations Specify the kinds of volumes that can be used in the drive by listing the associated media type name in the media types attribute You can force the drive to not write volumes of particular media types Identify those media types in the read only attribute If the drive has a mechanism for holding multiple volumes and can feed the volumes sequen tially to the drive but does not allow for random access or you choose not to use the random access feature then you can designate the drive as a stacker by setting the stacker attribute Set the disabled attribute when you have to exclude the managed drive from operations by MDMS If the drive is the only one of its kind for example if it accepts volumes of a particular media type that no other drives accept make sure you have another drive that can take load requests Return the drive to operation by se
244. ce not released to other applications device in use Device not released to other applications device not in use Tape operations are slow for online user Magazine loader problems Wait until other user dismounts tape HSM will then proceed Enable OPCOM classes CEN TRAL and TAPES Put media online with online Release Notes button if this does not work there may be a subsystem access error to the drive see Release Notes Ensure device is accessible from all server nodes or spec ify server nodes and shutdown and restart HSM SMU SET DEVICE DIS HSM Command Reference ABLE Guide SMU SET HSM Command Reference DEVICE SHARE operation Guide Use a cache See Section 7 13 7 12Magazine and Robotic Loader Problems HSM supports various types of Digital magazine loaders and robotically controlled large tape jukeboxes for use as nearline shelf storage Specific support varies depending on whether you are running HSM in Basic mode or Plus mode You define these devices with SMU SET DEVICE commands as you would for any offline device and additional MDMS commands for HSM Plus mode Table 7 13 shows problems that can occur with magazine or robotic loaders Note In the reference column of a this table IG refers to the HSM Installation Guide When IG is not mentioned assume that the reference is to this HSM Guide to Operations Manual Solving Problems with HSM 7 17 Solving Problems with HSM 7 12 Magazine and Robo
245. cense the following operations are not supported e Creation of archives or environments e Support of the Remote Device Facility e Support of DCSC controlled jukeboxes e Support of external scheduler products e Save restore frequencies other than Daily_Full_Weekly On Demand and One Time Only 9 4 Graphical User Interface MDMS provides a graphical user interface called MDMS View which provides several views that you can use to manage your MDMS domain MDMS view provides support for both media man agement and if you have an ABS license the Archive Backup System MDMS View is designed to be the preferred interface to ABS and MDMS with the goal of supporting most if not all of the regular management tasks MDMS View supersedes all previous graphical interfaces for both ABS and MDMS MDMSview provides several views into the management of MDMS objects and requests including ABS objects managed by MDMS In V4 1 a limited number of views have been implemented but many more are planned for future releases MDMS View currently supports the following views e Domain View With this view you can see the relationship between objects For example under a specific location you can see the nodes child locations and jukeboxes in that loca tion At the next level you can for example see the drives in the jukebox On selecting a specific object you can then examine and optionally change its attributes Basic MDMS Operations 9 4 Basi
246. ces Locations can contain spaces that are used in OPCOM messages when volumes and magazines are being moved from one place to another Enter a range of spaces in an alphanumeric range separated by a dash Examples of space ranges are 1 10 A Z AAA001 AAA099 10A 10Z 10 7 Magazines A magazine is an MDMS object that contains a set of volumes that are planned to be moved together as a group It can also relate to physical magazines that some jukeboxes most notably small loaders require to move volumes into and out of the jukebox Magazines can be moved into and out of MRD controlled jukeboxes with all their volumes at once However just because a jukebox requires a physical magazine does not necessarily mean that you must use MDMS magazines The physical magazine jukebox can be handled without maga zines and volumes are moved individually as far as MDMS is concerned The choice should depend on whether you wish the volumes to move independently don t use magazines or as a group together use magazines Magazines are not supported for DCSC controlled jukeboxes Magazines have the following attributes 10 7 1 Jukebox Start Slot and Position The jukebox name contains the name of the jukebox if the magazine is in a jukebox When in a jukebox a magazine can optionally have a start slot or position as follows e nasingle drive loader jukebox only one magazine can be loaded at a time In this case the start slot is always zero and
247. ces e DECnet The DECnet transport is used e TCPIP The TCP IP transport is used and the TCP IP full name is specified e DECnet TCPIP The DECnet and TCP IP transports can be used with DECnet preferred e TCPIP DECnet The TCP IP and DECnet transports can be used with TCP IP preferred If you identify TCP IP as a supported transport you must define the TCP IP fullname in the TCP IP fullname field These fullnames are normally in the format node loc org ext For example SLOPER CXO CPQCORP COM If you identify DECnet as a transport you need to specify a DECnet full name only if you are using DECnet Plus Phase V In this case enter the full name which is normally in a format such as LOCAL node If you are running DECnet Phase IV do not specify a DECnet full name The node s node name is used A pool is a logical MDMS object that associates a set of volumes with a set of users that are authorized to use those volumes Every volume can be assigned one pool for which we say that the volume is in the pool The pool is then assigned a set of users that are authorized to use the volumes in the pool If a volume does not have a pool specified then it is said to belong to the scratch pool for which no authorization is required Pools have three attributes that are discussed in the following sections Media Management 10 17 Media Management 10 11 Volumes 10 10 1Authorized Users You can specify a list of authorized use
248. ces and Volumes Step Action 4 If the drives you have deleted belonged to a jukebox then complete the actions in this step Otherwise continue with Step 5 If the jukebox still contains volumes move the volumes or magazines if you manage the jukebox with magazines from the jukebox to a location that you plan to keep under MDMS management SMDMS MOVE VOLUME volume id location or SMDMS MOVE MAGAZINE magazine name location If a particular location served the drives or jukebox and you no longer have a need to manage it then delete the location SMDMS DELETE LOCATION location name Move all volumes the records of which you are going to delete to a managed location SMDMS MOVE VOLUME volume id location If the volumes to be deleted exclusively use a particular media type and that media type has a record in the MDMS database then take the actions in this step Otherwise continue with Step 8 Delete the media type object record SMDMS DELETE MEDIA TYPE media type If drives remaining under MDMS management reference the media type you just deleted then update the drives media type list accordingly SMDMS SET DRIVE MEDIA TYPE media type REMOVE If the volumes to be deleted are the only volumes to belong to a volume pool and there is no longer a need for the pool then delete the volume pool SMDMS DELETE POOL pool name If the volumes to be deleted exclusively used certain managed maga
249. ces for Open VMS M soft ware SMF refers to Sequential Media File System for OpenVMS software SLS refers to Storage Library System for Open VMS M software Conventions The following conventions are used in this document Convention Description boldface italic Starting test Ctrl x PFI x In format command descriptions braces indicate required elements You must include one of the elements Brackets show optional elements in a command syntax You can omit these elements if you wish to use the default response Horizontal ellipsis points indicate the omission of information from a sentence or paragraph that is not important to the topic being dis cussed Vertical ellipsis points indicate the omission of information from an example or command format The information has been omitted because it is not important to the topic being discussed Boldface type in text indicates the first type instance of terms defined in the Glossary or in text Italic type emphasizes important information type indicates variables indicates complete titles of manuals and indicates parameters for sys tem information This type font denotes system response user input and examples Hold down the key labeled Ctrl Control and the specified key simul taneously such as Ctrl Z The key sequence PF1 x indicates that you press and release the PF1 key and then you press and release another key indicated
250. chive type The fol lowing attributes are incompatible for archive types e DISK CONSOLIDATION DRIVES MEDIA TYPE POOL VOLUME SETS e TAPE DESTINATION User Action Do not specify these attributes if they are incompatible with the archive type INCOMPATVOL volume is incompatible with volumes in set Explanation You cannot bind the volume to the volume set because some of the volume s attributes are incompatible with the volumes in the volume set User Action Check that the new volume s media type onsite location and offsite location are compatible with those in the volume set Adjust attributes and retry or use another volume with compatible attributes INSCMDPRIV insufficient privilege to execute request Explanation You do not have sufficient privileges to enter the request User Action Contact your system administrator and request additional privileges or give yourself privs and retry INSOPTPRIV insufficient privilege for request option Explanation You do not have sufficient privileges to enter a privileged option of this request User Action Contact your system administrator and request additional privileges or give yourself privs and retry Alternatively retry without using the privileged option INSSHOWPRIV some volumes not shown due to insufficient privilege Explanation Not all volumes were shown because of restricted privilege User Action None if you just want to see volumes you
251. cified in the command re enter with a larger slot range NOSTATUS no status defined Explanation An uninitialized status has been reported This an internal error User Action Provide copies of the MDMS command issued the database files and the server s logfile for fur ther analysis NOSUCHDEST specified destination does not exist Explanation In a move command the specified destination does not exist User Action Check spelling or create the destination as needed NOSUCHDRIVE specified drive does not exist MDMS Messages C 34 MDMS Messages Explanation The specified drive does not exist User Action Check spelling or create drive as needed NOSUCHGROUP specified group does not exist Explanation The specified group does not exist User Action Check spelling or create group as needed NOSUCHINHERIT specified inherited object does not exist Explanation On a create of an object the object specified for inherit does not exist User Action Check spelling or create the inherited object as needed NOSUCHJUKEBOX specified jukebox does not exist Explanation The specified jukebox does not exist User Action Check spelling or create jukebox as needed NOSUCHLOCATION specified location does not exist Explanation The specified location does not exist User Action Check spelling or create location as needed NOSUCHMAGAZINE specified magazine does not exist Explanation
252. clude A Show Access tab which shows the access controls on the object This is in a common format for all objects If your site does not use access controls you can disable these tabs using the view menu View gt No Access Control Tabs The Show screen for Jukeboxes and Magazines also has a Contents tab that shows the current contents of the drives and slots in the jukebox and the slots in a magazine Saves and Restores have a selections tab that shows all selections for the save or restore and a log tab that displays the latest version of the associated log file If you select the Show screen and wish to modify attributes use the tool tip text for help on any field Select appropriate values from all the show tabs as needed then click on Set This sends the currently displayed values from all tabs to the MDMS server If you just wish to view the object s attributes without modification click on Cancel after viewing the attributes This returns you to the object class screen MDMS View supports switching from one object to another during displaying of values For objects that appear in combo boxes or lists you can view related objects without losing the con text of the current object Each combo box or list attribute supports two methods of viewing selecting and creating objects e Click ona small button to the right of the combo box or list to receive a popup menu for the field e Right click on the combo box or list a
253. cratch date Set the onsite location and date based on when it will be freed Set the offsite location and date based on when it will be ready to be moved offsite However make sure that the volume is not part of an ABS continua tion set and still needed for subsequent ABS operation e For HSM identify volumes to go offsite based on the last access date If a volume has not been accessed for a long period of time there has been no need to unshelve the files stored on it Set the offsite date based for any time after the last access If multiple archive classes are used the secondary archive class es can be removed off site as soon as a volume is filled Set the onsite date for any time you might want to archive or delete the files on the volume Identify the volumes or magazines to be moved offsite by selecting the offsite schedule option You can use the MDMS report or show volume features or the show magazine feature The following CLI examples illustrate this SMDMS SHOW VOLUME SCHEDULE OFFSITE SMDMS SHOW MAGAZINE SCHEDULE OFFSITE Move the volumes offsite With the GUI you can move the volumes selected from the display With the CLI interactive or command procedure use the MDMS MOVE command with the SCHEDULE qualifier For example SMDMS MOVE VOLUME SCHEDULE OFFSITE location_name SMDMS MOVE MAGAZINE SCHEDULE OFFSITE location_name MDMS communicates with operators through OPCOM providing a list of volum
254. created or extended This trigger used in conjunction with an appropriately designed file selection criteria provides enough online disk space to satisfy the request This trigger uses the quota policy defined for the volume The shelving process initiated with the disk quota exceeded trigger shelves files owned by the owner of the file being created or extended This trigger is independent of the owner of the process that extends the file only the file ownership is significant Understanding HSM Concepts 2 21 Understanding HSM Concepts 2 9 Policy For example if user A creates a file and user B extends the file beyond user A s disk file quota user A s files will be shelved 2 9 2 3 High Water Mark Trigger The high water mark trigger is an event that occurs when the amount of online disk storage space used exceeds a defined percentage of capacity The HSM system regularly polls all online disk devices and compares the used storage with a defined value This trigger used with appropri ately designed file selection criteria ensures enough online capacity is available to meet a steady demand of storage space This trigger uses the occupancy policies defined for the volume 2 9 2 4 Volume Full Trigger The volume full trigger is an event that occurs when the file system encounters a request for more space than is currently available on the disk volume This trigger used in conjunction with an appropriately designed file selection criteria
255. cribes how to process the MDMS database files when they are copied as part of an image backup on the disk device To Make Backup Copies of the MDMS Database The procedure outlined in describes how you can make backup copies of just the MDMS data base files using the OpenVMS Backup Utility This procedure does not account for other files on the device MDMS Configuration 11 3 MDMS Configuration 11 1 The MDMS Management Domain Table 11 2 How to Back Up the MDMS Database Files Step Action 1 Prepare for making back up copies by finding a disk with enough available space to tem porarily hold a copy of each file in the MDMS database Determine a time of relative inactivity by MDMS clients ABS or HSM For ABS this could be a few hours after the completion of system backups For HSM this is more difficult to determine because a shelving policy could be activated at any time If necessary shut down ABS and or HSM to make sure there are no requests of MDMS Note If you cannot shut down HSM or ABS when running MDMS COPY DB FILES COM it is possible an update to the data base file can occur after it has been opened This can create a possibility that the copy of the database file will be out of synchronization with other database files At the determined time copy the MDMS database files with the supplied command pro cedure MDMS COPY DB FILES COM GMDMSSROOT TOOLS MDMS COPY DB FILES After t
256. cted results SMU COPY 1 DKA100 000000 15 DKA100 000000 The above example flattens the sub directory structure in somewhat unpredictable ways which is usually not desired Please avoid this form of the command Note also that SMU COPY will not preserve more than seven levels of subdirectory which is a restriction imposed by BACKUP Warning Da L Do not use HSM BACKUP to copy shelved files from one disk to another While this might appear to work the HSM catalog is not updated and the output files may not be able to be unshelved SMU COPY is the only supported mechanism to copy shelved files from one location to another 5 3 Renaming Disks It is often necessary to rename disks on the system and this has an impact on the ability of HSM to process shelved files There are two ways to rename disks from an HSM viewpoint e Change a logical name pointing to a disk but leaving the alldevnam alone For example you may change the logical name pointing to 1 DKA 100 from DISK CURRENT_ ACCOUNTS to DISKS PAST ACCOUNTS but the actual contents of the disk as referred to by its alldevnam does not change For this kind of change no HSM action is required since HSM stores catalog information using alldevnam e Rename the alldevname of a disk in any way For example you might want to change the allocation class of a disk from 2 DUA400 to 15 DUA400 or change the physical unit number of a disk If you perform the second
257. d NCP show known links Known Link Volatile Summary as of 13 MAR 1996 16 07 00 Link Node PID Process Remote link Remote user 24593 20 4 JR 2040111C MARI 11C 5 8244 CTERM 24579 20 6 CHEERS 20400113 REMACP 8223 SAMMY 24585 20 6 CHEERS 20400113 REMACP 8224 ANDERSON 24600 20 3 FAST 20400C3A rdclient 24601 tti rdevSRV NCP exit 14 5 Controlling Access to RDF Resources The RDF Security Access feature allows storage administrators to control which remote devices are allowed to be accessed by RDF client nodes 14 5 1 Allow Specific RDF Clients Access to All Remote Devices You can allow specific RDF client nodes access to all remote devices Example For example if the server node is MIAMI and access to all remote devices is granted only to RDF client nodes OMAHA and DENVER then do the following 1 Edit TTI RDEV CONFIG MIAMI DAT 2 Before the first device designation line insert the ALLOW qualifier Edit TTI RDEV CONFIG MIAMI DAT CLIENT ALLOW OMAHA DENVER DEVICE 1SMUA0 MUAO TK50 DEVICE MSAO TU80 1600bpi OMAHA and DENVER the specific RDF CLIENT nodes are allowed access to all remote devices MUAO TU80 on the server node MIAMI Requirements If there is more than one RDF client node being allowed access separate the node names by commas 14 5 2 Allow Specific RDF Clients Access to a Specific Remote Device You can allow specific RDF client nodes access to a specific remote device Example
258. d Preshelving Processes Because cache is an alternate location for temporarily storing shelved files the shelving and preshelving processes differ only slightly when cache is enabled The file selection process does not function differently when cache is used Table 1 4 describes both the shelving and preshelving processes in which cache is used Table 1 4 Process for Shelving and Preshelving with Cache Stage Event 1 The HSM system creates a cache file on a cache device 2 The file data is copied from the original file to the cache file The cache file is closed 3 Subsequent events are determined by the SMU SET CACHE command s BACKUP qualifier as follows The BACKUP qualifier is The file also is copied to the nearline offline used for the cache media used for shelf storage when the file is shelved The NOBACKUP quali The file is not immediately copied to the near fier is used for the cache line offline media The file is copied later default when the cache is flushed media The file is copied later 1 10 3 Unshelving from Cache The time taken to unshelve a file from cache is almost the same as that for copying the file from one disk to another Introduction to HSM 1 9 Introduction to HSM 1 11 HSM Catalogs 1 10 4 Exceeding Cache Capacity Files that exceed the capacity of the cache are moved directly to the nearline offline media You can limit the amount of storage the cache can u
259. d the volume is not in the jukebox you can specify is an automatic Move Volume request to move the volume into the jukebox is desired If you do not specify this option and the volume is not in the jukebox the operation will fail Another option is to request MDMS to check the volume label This is normally a good idea as there can be mismatches between the volume s magnetic label and its bar code label If the labels do not match the load fails If you do not set the label check flag the load may succeed but the label may be wrong Use this option with caution When issuing the load volume request you can specify whether the load is for read write or read only and whether operator assistance is required You can also specify an alternative message for the operator This is included in the OPCOM message instead of the normal MDMS operator message Use of an alternative message is not recommended 10 11 18Unload Volume You can unload a specific volume from a drive by issuing the Unload Volume operation Unlike the Unload Drive operation which unloads any volume from the drive the Unload Volume function checks the label on the volume on the drive before unloading it If the label can be read and does not match the specified volume the unload fails There is only one option for unload volume operator assistance This is recommended unless you are personally monitoring the unload operation 10 11 19Move Volume s The
260. decisions and actions you could take in the case of removing a drive from management That is when you have to remove the last drives of a partic ular kind and take with it all associated volumes then update any remaining MDMS object records that reference the object records you delete Any other task of removing just a drive one of many to remain or removing and discarding volumes involves a subset of the activities described in this procedure Table 13 2 Deleting Devices and Volumes Step Action l If there is a volume in the drive you are about to remove from management then unload the volume from the drive SMDMS UNLOAD DRIVE drive name Delete the drive from management SMDMS DELETE DRIVE drive name If you have media type object records to service only the drive you just deleted then complete the actions in this step Otherwise continue with Step 4 Delete the media type object record MDMS DELETE MEDIA TYPE media type If volumes remaining in management reference the media type then set the volume attribute value for those volumes to reference a different media type value Use the following command for uninitialized volumes MDMS SET VOLUME MEDIA TYPE media type REMOVE Use the following command for initialized volumes SMDMS SET VOLUME MEDIA TYPE media type MDMS High Level Tasks 13 4 MDMS High Level Tasks 13 3 Rotating Volumes Between Sites Table 13 2 Deleting Devi
261. ded APIBUGCHECK internal inconsistency in API Explanation The MDMS API MDMS SHR EXE detected an inconsistency This is an internal error User Action Provide copies of the MDMS command issued the database files and the server s logfile for fur ther analysis APIUNEXP unexpected error in API AZ line UL Explanation The shareable image MDMSSSHR detected an internal inconsistency User Action Provide copies of the MDMS command issued the database files and the server s logfile for fur ther analysis ARCUNDEFINED referenced archive s AZ undefined Explanation When creating or modifying a valid object the object s record contains a reference to a archive name that does not exist One or more of the specified archives may be undefined User Action Check spelling of the archive names and retry or create the archive objects in the database ATTRINMAG onsite offsite attributes invalid for magazine based volumes Explanation You attempted to specify offsite or onsite dates or locations for a volume whose placement is in a magazine These attributes are controlled by the magazine and are not valid for individual vol umes MDMS Messages C 2 MDMS Messages User Action Specify the dates and locations in the magazine object or do not use magazines for volumes if you want the individual offsite onsite dates to be different for each volume BINDVOLUME volume AD bound to set AD Explanation
262. des in an OpenVMS Cluster envi ronment when drives in the environment are accessible from all nodes MDMS Configuration 11 10 MDMS Configuration 11 1 The MDMS Management Domain Figure 11 2 Groups in the MDMS Domain TL896 JUKE B TL896 JUKE C TL896 JUKE D Jukebox Jukebox Jukebox Group CLUOO2 Group CLUOO1 Group SHDOO1 TL896_JUKE_A Jukebox CXO6747A Some configurations involve sharing a device between nodes of different OpenVMS Cluster environments You could create a group that includes all nodes that have access to the device When you create a group to identify shared access to a drive or jukebox assign the group name as an attribute of the drive or jukebox When you set the group attribute of the drive or jukebox object record MDMS clears the node attribute The following command examples create a functionally equivalent drive object records These commands create a drive connected to a Group object SMDMS CREATE GROUP CLUSTER A NODES NODE 1 NODE 2 NODE 3 SMDMS CREATE DRIVE NODESMUA501 GROUPS CLUSTER A This command creates a drive connected to NODE 1 NODE 2 and NODE 3 SMDMS CREATE DRIVE NODES MUA501 NODES NODE 1 NODE 2 NODE 3 Figure 11 2 is a model of organizing clusters of nodes in groups and how devices are shared between groups 11 1 6 Managing the MDMS Domain The domain object record describes global attributes for the domain and includes
263. di tion MDMS functionality installs as part of the Storage Library System for Open VMS Version software You choose a mode to operate when you install the HSM for OpenVMS software However you can change modes after you make the initial decision The following restrictions apply to changing modes after installation You can always change from Basic mode to Plus mode For more information see Section 5 22 You can change from Plus mode to Basic mode only if you have not written any shelved file information to a catalog in Plus mode Once you write information to a catalog in Plus mode you cannot change back to Basic mode For a change in operating mode to have effect you must restart HSM 1 13 1 HSM Basic Mode Functions HSM Basic mode provides the following functionality and features Complete HSM functionality for small to medium customer environments that can use smaller capacity tape loaders for example DLT loaders standalone tape devices and magneto optical devices A simple integrated user interface provided completely by HSM Limited media management that is not integrated with other storage management products Support of up to 36 archive classes for data reliability An HSM naming convention for tape volume labels Local tape device support within the VMScluster TM environment the shelf server nodes must have visibility to all tape devices this can include TMSCP served devices 1 13 2 HSM Plus Mode Functions
264. dismounting 5 2 DFS 5 6 access 5 6 Directory files 5 29 Dismounting Disks 5 2 E Event logging capabilities 5 33 reinitialize 5 34 types 5 33 Example ANALYZE Command with Default Confirmation 5 26 ANALYZE REPAIR CONFIRM 5 27 ANALYZE REPAIR CONFIRM OUTPUT 5 27 Mode Conversion 5 39 Policy Audit Log Entry 5 35 Shelf Handler Audit Log Entry 5 35 Shelf Handler Error Log Entry 5 35 File Index 1 file header limit 5 33 File header back up 5 10 Files contiguous 5 6 critical HSM files 5 5 Critical HSM product files 5 4 extending the index File 5 33 frequent reactive shelving requests 5 18 HSM PEP_AUDIT LOG 5 34 HSM PEP_ERROR LOG 5 34 HSMSSHP AUDIT LOG 5 34 HSM SHP_ERROR LOG 5 34 not Shelved 5 6 placed files 5 9 policy audit log 5 34 policy error log 5 34 preshelved 5 4 recovering boot up files 5 13 recovering critical files 5 5 recovering the HSM UID file 5 13 restoring 5 31 shelf handler audit log 5 34 shelf handler error log 5 34 should not be preshelved 5 32 that will not be preshelved 5 30 H High water mark 5 15 HSM catalog 5 21 data safety 5 25 managing the environment 5 1 recovering the database 5 13 HSM Basic convert to Plus mode 5 38 HSM Plus convert from Basic 5 38 HSM policy model 5 13 HSM MANAGER directory 5 25 Image backup 5 9 Incremental backup 5 9 L Large files 5 6 Latitude storage capacity 5 14 Log files 5 34 Index 2 accessing 5 34 activity logs 5 36 event logs 5 36
265. ds of the volumes for which you create object records e Those additional aspects of the volume for which you will have little if any need to change later on The following sections provide more detailed information Meeting Situational Demands If you create volume object records with the use of a vision equipped jukebox you must com mand MDMS to use the jukebox vision system and identify the slots in which the new volumes reside These two operational parameters must be supplied to either the create or inventory oper ation For command driven operations these two commands are functionally equivalent SMDMS INVENTORY JUKEBOX jukebox name VISION SLOTS slot range CREATE SMDMS CREATE VOLUME JUKEBOX jukebox name VISION SLOTS slot range If you create volume object records with the use of a jukebox that does not have a vision system you must supply the range of volume names as they are labelled and as they occupy the slot range If you create volume object records for volumes that reside in a location other than the default location as defined in the domain object record you must identify the placement of the vol umes and the location in the onsite or offsite attribute Additionally you must specify the vol ume name or range of volume names If you create volume object records for volumes that reside in the default onsite location you need not specify the placement or onsite location However you must specify the volume name
266. ds or MRU commands for a jukebox device Change the MDMS drive device name and or the jukebox robot name as needed to reflect the new system device names If your drive and or jukebox object records are named according to the operating system device name then you should create new object records If you want to create new object records use the inherit feature and specify the previous object record For GUI operation If you created new object records then delete the old object records and check and modify any references to the old object records For more information Enable the new drive and or jukebox with MDMS 11 2 3 Locations for Volume Storage MDMS allows you to identify locations in which you store volumes Create a location object record for each place the operations staff uses to store volumes These locations are referenced during move operations load to or unload from stand alone drives Figure 11 5 Volume Locations MDMS Configuration 11 20 Onsite CXO EXE LC E C4 C10 pc tM A10 Misc E CXO6750A Offsite vault MDMS Configuration 11 3 Sample MDMS Configurations If you need to divide your location space into smaller named locations define locations hierach ically The location attribute of the location object record allows you to name a higher level loca tion For example you can create location object records to describe separate rooms in a data cent
267. e cuted User Action If you are not planning ot change the scheduler type to INTERNAL or EXTERNAL you should modify the associated save or restore request to use a standard frequency or an explicit fre quency EXTRAVOL extra volume s processed Explanation One or more volumes unknown to MDMS have been processed by this command User Action See next message line s for more details Use MDMS or jukebox utility programs MRU or CARTRIDGE to correct the problem FAILALLOCDRV failed to allocate drive Explanation Failed to allocate drive User Action The previous message is the error that caused the failure FAILCONSVR failed connection to server Explanation The connection to an MDMS server either failed or could not be established See additional mes sage lines and or check the server s logfile User Action Depends on additional information FAILCONSVRD failed connection to server via DECnet Explanation The DECnet connection to an MDMS server either failed or could not be established See addi tional message lines and or check the server s logfile User Action Depends on additional information FAILCONSVRT failed connection to server via TCP IP Explanation The TCP IP connection to an MDMS server either failed or could not be established See addi tional message lines and or check the server s logfile MDMS Messages C 10 MDMS Messages User Action Depends on additional i
268. e HEADERs qualifier is the only way to guarantee you can create that many files Once initialized you cannot ever have more files on the disk than the value given with the MAXIMUM FILES qualifier 5 19 3 Extending the Index File If you do not initialize your volumes using the HEADERS qualifier the file system will extend INDEXE SYS for you as it needs file headers The file system will not allow INDEXESYS to become multiheadered which means you can have a maximum of approximately 77 extents in the header before you will get an error saying the index file is full You can tell how close you are to the index file limit using DUMP HEADER BLOCK COUNT 0 000000 INDEXF S YS The display contains a field called Map area words in use This field has a maximum of 155 for INDEXESYS If the num ber of mapping words in use is around 120 to 130 you should schedule an image backup restore cycle for the volume 5 19 4 Maintaining the Number of File Headers To prevent your system from reaching its file header limit make sure you delete file headers as appropriate What this means is when you no longer need a file do not leave it shelved with the file header on disk Use another strategy to archive the file just in case you need it someday Then delete the file from the disk 5 20 Event Logging HSM provides a comprehensive set of event logging capabilities that you can use to analyze shelving activity on your cluster and tune your system to pro
269. e HSM allows limited maintenance on archive classes by allowing you to mod ify the shelving volume label attribute The volume labels must be in the proper format for each archive class as listed in Table 2 1 Table 2 1 HSM Basic Mode Archive Class Identifier Label Reference Table 2 1 HSM Basic Mode Archive Class Identifier Label Reference Archive Id nd Archiveld Volume Label Archive Id a 1 HSOxxx 13 HSCxxx 25 HSOxxx 2 HS1xxx 14 HSDxxx 26 HSPxxx 3 HS2xxx 15 HSExxx 27 HSQxxx 4 HS3xxx 16 HSFxxx 28 HSRxxx 5 HS4xxx 17 HSGxxx 29 HSSxxx 6 HS5xxx 18 HSHxxx 30 HSTxxx Ts HS6xxx 19 HSIxxx 31 HSUxxx 8 HS7xxx 20 HSJxxx 32 HSVxxx 9 HS8xxx 21 HSKxxx 33 HSWxxx 10 HS9xxx 22 HSLxxx 34 HSXxxx 11 HSAxxx 23 HSMxxx 35 HSYxxx 12 HSBxxx 24 HSNxxx 36 HSZxxx For each of the 36 archive classes the first three characters of the volume label are fixed and rep resent the archive class The last three characters of the volume label shown in Table 2 1 as xxx represent a sequence number in the range 001 to Z99 allowing up to 3600 tape volumes per archive class At any one time there is one shelving volume for each archive class This volume represents the volume on which the next shelve write operation is to be performed In the case of an error you can explicitly change the shelving volume label for the archive class However if you do so the specified volume label must adhere to the convention shown in the table otherwise HSM cannot us
270. e IG refers to the HSM Installation Guide When IG is not mentioned assume that the reference is to this HSM Guide to Operations Manual Table 7 10 Cache Problems Problem Solution Reference Cache is not used on all nodes Ensure cache device is visible and system mounted on all nodes Cache disk is never used Cache disks are filled to high water mark before switching to another cache Cache is not used files go to Cache disabled enable the HSM Command Reference tape cache Guide Cache is not used files go to Cache is full define additional HSM Command Reference tape cache disks or increase block Guide size Cache is not used files go to File is too large to fit in the HSM Command Reference tape cache increase block size if Guide needed Cache gets device full Cache HSM Command Reference disk is full define additional Guide cache disks Cache is as slow as tape opera Normal behavior with HSM Command Reference tion BACKUP qualifier Guide Cache flush does not occur Define a high water mark of less HSM Command Reference when cache high water mark is than 100 Guide reached Cache flush does not occur on schedule See Offline Device Problems Section 7 12 7 10 Magneto Optical Device Problems You can use magneto optical devices in HSM by defining them as cache devices As with other cache devices each device must be accessible and system mounted on all nodes in the VMScluster system You can use magneto optical dev
271. e Configuring a customized environment e Implementing shelving policies For a complete example of a custom configuration for HSM Basic mode or PLUS mode see the Appendix in the HSM Installation Guide 3 1 Configuring a Customized HSM Environment This section describes the various definitions used to customize an HSM environment and the operations enabled and disabled by each command 3 1 1 Customizing the HSM Facility Commands submitted to the HSM facility control operations across the entire cluster Enabling and Disabling the Facility The following options are for enabling or disabling the HSM facility using the SMU SET FACILITY command IF You Want to THEN Use Enable all HSM operations on the SMU SET FACILITY ENABLE ALL cluster Enable shelving operations through SMU SET FACILITY ENABLE SHELVE out the cluster Enable unshelving operations SMU SET FACILITY ENABLE UNSHELVE throughout the cluster Disable all HSM operations on the SMU SET FACILITY DISABLE ALL cluster Disable shelving operations SMU SET FACILITY DISABLE SHELVE throughout the cluster Disable unshelving operations SMU SET FACILITY DISABLE UNSHELVE throughout the cluster 3 1 2 Creating Shelf Definitions Create shelf definitions that include the archive classes for shelving and unshelving data Customizing the HSM Environment 3 1 Customizing the HSM Environment 3 1 Configuring a Customized HSM Environment Limitations The follow
272. e Volume operation or automatically be MDMS with Inventory Jukebox and Load Deallocate Drive operations The MDMS CONFIGURE command procedure can also be used to create volumes Bind Unbind Once a volume is created it acquires a state This state determines how the volume may be used at any time and to an extent where the Archives volume should be placed Catalog Domain The following figure illustrates the life cycle of volumes and the following table indicates how a volume transitions from one state to another Environments Groups Locations Media Types Nodes Pools Restores Saves Schedules Selections 9 5 Access Rights for MDMS Operations This section describes access rights for MDMS operations MDMS works with the OpenVMS User Authorization File UAF so you need to understand the Authorize Utility and OpenVMS security before changing the default MDMS rights assignments MDMS rights control access to operations not to object records in the database Knowing the security implementation will allow you to set up MDMS operation as openly or securely as required 9 5 1 Description of MDMS Rights MDMS controls user action with process rights granted to the user or application through low and high level rights 9 5 1 1 Low Level Rights The low level rights are named to indicate an action and the object the action targets For instance the MDMS_MOVE_OWN right allows the user to conduct
273. e a free text description of the drive You can describe its role in the data center operation or other useful information MDMS stores this information for you but takes no actions with it 11 2 1 8 How to Control Access to an MDMS Jukebox You can dedicate a jukebox solely to MDMS operations or you can allow other applications and users access to the jukebox device Specify your preference with the shared attribute You need to decide which systems in the data center are going to access the jukebox Use the groups attribute if you created group object records to represent nodes in an OpenVMS Cluster environment or nodes that share a common device Use the nodes attribute if you have no reason to refer to any collection of nodes as a single entity and you plan to manage nodes and the objects that refer to them individually 11 2 1 9 How to Configure an MDMS Jukebox for Operations Disable the jukebox to exclude it from operations Make sure that applications using MDMS will either use other managed jukeboxes or make no request of a jukebox you disable Enable the jukebox after you complete any configuration changes Drives within a disabled jukebox cannot be allocated 11 2 1 10 Attribute for DCSC Jukeboxes Set the library attribute to the library identifier of the particular silo the jukebox objects repre sents MDMS supplies 1 as the default value You will have to set this value according the num ber silos in the configuration a
274. e a ready supply of volumes to satisfy load requests If your application requires specific volumes they must be available and the operator must load the specific volumes requested To enable an operator to service a stand alone drive during MDMS operation perform the actions listed in Table 12 4 Table 12 4 Configuring MDMS to Service a Stand Alone Drive Stage Action 1 Enable operator communication between nodes and terminals 2 Stock the location where the drive resides with free volumes 3 For all subsequent MDMS actions involving the drive use the assist feature 12 3 3 Servicing Jukeboxes MDMS incorporates many features that take advantage of the mechanical features of automated tape libraries and other medium changers Use these features to support lights out operation and effectively manage the use of volumes Jukeboxes that use built in vision systems to scan volume labels provide the greatest advantage If the jukebox does not have a vision system MDMS has to get volume names by other means For some operations the operator provides volume names individually or by range For other operations MDMS mounts the volume and reads the recorded label MDMS Management Operations 12 9 MDMS Management Operations 12 3 Serving Clients of Managed Media 12 3 3 1 Inventory Operations The inventory operation registers the contents of a jukebox correctly in the MDMS database You can use this ope
275. e eee 14 6 14 4 6 Resource Considerations o 14 6 14 4 7 Controlling RDF s Effect on the Network 0 0 0 cee I 14 8 14 4 8 Surviving Network Failures 0 ee I eens 14 8 14 5 Controlling Access to RDF Resources 00 eee I e 14 9 14 5 1 Allow Specific RDF Clients Access to All Remote Devices 0 2 0 00000 e eee ee 14 9 14 5 2 Allow Specific RDF Clients Access to a Specific Remote Device 0 004 14 9 14 5 3 Deny Specific RDF Clients Access to All Remote Devices 0 0 00 02 e ee 14 10 145 4 Deny Specific RDF Clients Access to a Specific Remote Device ooo oooooomooooooo 14 10 14 6 RDserver Inactivity Timer oe duree aot dr Ne ob dete ee E 14 10 14 7 RDF Error Messag68 ec Sed anier We wis A E Eu 14 11 HSM Error Messages A OpenVMS Messages osxetere RehIeReSeNsRec ebaes eases E Blache Hee beep E d PULO PER ETE A 1 A2 Shelf Handler Messages 22 05 22 ke et et eii A 1 A 3 Shelf Management Utility Messages 0 0 I A 15 Sample Configuration of MDMS B 1 Configurati n Order oree eee a ER Res heroe aded ea ies B 1 B 1 1 Configuration Step 1 Example Defining Locations 0 0 00 eee B 2 B 1 2 Configuration Step 2 Example Defining Media Type 0 00 00 eee eee B 2 B 1 3 Configuration Step 3 Example Defining Domain Attributes oo ooooocoocoococoooo B 2 B 1 4 Configuration Step 4 Example Defining MDMS Database Nod
276. e files are restored Figure 5 6 shows the policy model in a situation when available storage is maintained at the expense of application and user performance Managing the HSM Environment 5 19 Managing the HSM Environment 5 11 Maintaining Shelving Policies Figure 5 6 1 SYSTEMINUSE 2 USED CAPACITY 3 AVAILABLE EXCEEDS HIGH CAPACITY WATER MARK INCREASED HIGH WATER MARK LOW WATER MARK Available Storage Capacity Below Low Water Mark Total Available Used Storage Capacity Within Capacity Capacity Latitude Unused Capacity CXO 4098A MC Resolution If your applications or users experience delays in their work or if productivity drops because files must frequently be unshelved to be accessed you can do any or all of the following actions e Implement online cache e Increase the high water mark value e ncrease the low water mark value 5 11 3 Ranking Policy Execution HSM provides the means to determine what a policy execution would do before the policy is run This process is called ranking a policy on a volume and is initiated by the SMU RANK command This feature helps you determine the effectiveness of your policies by letting you see exactly what files would be shelved if the policy were run The files are listed in the order that they would be shelved Ranking applies only to policies that use the automatic algorithms STWS and LRU HSM cannot rank policies based on user scr
277. e files selected for shelving The additional criteria considers file size and is specified with the SELEC qualifier Table 4 2 lists three options for applying the SELECT qualifier Table 4 2 File Selection Files with Block Sizes Enter This Qualifier and Option Smaller than that specified SELECT SIZE MAXIMUM n Greater than or equal to that specified SELECT SIZE MINIMUM n Falling within the specified range SELECT SIZE MINIMUM n MAXI MUM m Shelving or Preshelving Specific File Versions You have the option of specifying the number of file versions you shelve or preshelve with any manual operation In most cases you want to shelve the earlier versions of a file leaving later versions of the file available for immediate access To specify the number of versions to keep in primary storage use the KEEP qualifier with the SHELVE or PRESHELVE command Time to Complete Shelving Operations When you enter the PRESHELVE or SHELVE command the amount of time taken to complete the operation depends on the following factors The amount of data The number and size of the files to be preshelved or shelved will determine how long the operation takes More and or larger files require more time to process than fewer and or smaller files Online cache When you implement online cache the operation requires approximately twice the amount of time taken to perform an OpenVMS COPY operation to copy the files to another d
278. e g from cache the user sees only the delay in accessing the file If the unshelve is not quick enough an application defined timeout may occur and a message window pops up indicating the served disk is not responding The tim eout value depends on the application No retry is attempted However this behavior can be modified by changing HSM s behavior to a file open by returning a file access conflict error upon which most PC applications retry or allow the user to retry the operation after a delay After a few retries the file fault will succeed and the file can be accessed normally To enable PATHWORKS access to shelved files using the retry mechanism HSM defines the following logical name on installation DEFINE SYSTEM HSMSFAULT AFTER OPEN PCFS SERVER PWRKSLMSRV This definition supports access to PATHWORKS files upon an OPEN of a file If you do not want PATHWORKS to access shelved files via retries simply de assign the logical name as fol lows DEASSIGN SYSTEM HSM FAULT AFTER OPEN For a permanent change this command should be placed in SYS STARTUP HSM LOGICALS COM The decision on which access method to use depends upon the typical response time to access shelved files in your environment If the logical name is defined HSM imposes a 3 second delay in responding to the OPEN request for PATHWORKS accesses only During this time the file may be unshelved other wise a background unshelve is initiated which will re
279. e iden tifiers for the volumes to be gathered and moved If you need to retrieve volumes or magazines to service a restore or unshelve request you must physically move them back to the onsite location Use the MDMS GUI move feature for the selected volumes or magazines or use the CLI MOVE command For example SMDMS MOVE VOLUME volume_id location_name SMDMS MOVE MAGAZINE magazine_id location_name MDMS Management Operations 12 14 MDMS Management Operations 12 5 Scheduled Activities Table 12 6 Sequence of Volume Rotation Events Stage Action 5 To return volumes to the onsite location based on their scheduled return date use the GUI to select and move volumes and magazines based on their onsite schedule With the GUI you can move the volumes selected from the display With the CLI interactive or command procedure use the MDMS MOVE command with the SCHEDULE qualifier For example SMDMS MOVE VOLUME SCHEDULE ONSITE volume id location name SMDMS MOVE MAGAZINE SCHEDULE ONSITE magazine name location name Once the volumes and magazines arrive at the onsite location negate the offsite and onsite schedules This prevents the volumes from showing up in subsequent reports With the GUI remove the location date values associated with the offsite and onsite attributes With the CLI use the NOONSITE and NOOFFSITE qualifiers For example SET VOLUME volume id NOONSITE NOOFFSIT
280. e initialized HSM automati cally initializes expiration dates on all files on the volume that do not already have an expiration date upon the first running of the policy on the volume The expiration date is set to the current date and time plus the maximum retention time as specified in the SET VOLUME RETEN TION command After the expiration date has been initialized the OpenVMS file system automatically updates the expiration date upon read or write access to the file at a frequency based on the minimum and maximum retention times Example of Setting Volume Retention The following command sets the minimum retention period to 15 days and the maximum to 20 days SET VOLUME DUAO RETENTION 15 0 0 20 0 0 The following command sets the minimum retention period to 3 days and calculates the maxi mum Twice the minimum is 6 days the minimum plus 7 days is 10 Thus the value for the maximum is 6 days because that is the smaller value SET VOLUME DUA1 RETENTION 3 Customizing the HSM Environment 3 7 Customizing the HSM Environment 3 2 Implementing Shelving Policies If you are not already using expiration dates the following settings for retention times are sug gested SET VOLUME RETENTION 1 0 00 00 00 01 3 2 6 Creating Schedule Definitions Use the SMU SET SCHEDULE command to create the schedule definitions that apply the pol icy definitions to the volume definitions IF You Want To THEN Use the Qualifie
281. e it Manually setting the shelving volume label is not recommended By default HSM uses the first shelving volume label for an archive class for example HSA001 then increments the labels automatically HSA002 HSA003 and so forth as the volumes become full If you want to remove the current shelving volume and go to the next one use the CHECKPOINT command rather than resetting the label manually Understanding HSM Concepts 2 9 Understanding HSM Concepts 2 5 HSM Plus Mode Archive Class 2 5 HSM Plus Mode Archive Class 2 6 Device As previously discussed HSM Plus mode supports up to 9999 archive classes named HSMSARCHIVEOI through HSsMSARCHIVE9990 with archive identifiers of 1 to 9999 respectively You must configure archive classes by using the SMU SET ARCHIVE command to identify the archive class media type and optionally density When specifying media type and density they must exactly match the corresponding media type and density defined in the MDMS TAPE START COM file Once you have defined the archive class you can then associate archive classes with shelves and devices using appropriate commands Unlike HSM Basic mode HSM Plus mode does not require special naming conventions for vol umes because MDMS chooses the volumes for HSM Plus mode to use When setting up your HSM environment you need to consider which nearline and offline devices you want to use When setting up a device for HSM you can control e Wh
282. e lowwater mark 0 blocks must be reclaimed Example of a Shelf Handler Error Log Entry ck ck ck kk ke e e e ee S Se Se Se See SS Sk kk Sk e kk kk kk ck ko ck ko ck Ck Ck Ck Ck Ck Ck Ck Ck Ck Ck Ck Ck Ck Ck Ck Ck Ck Ck Ck Ck Ck Ck Ck Ck Ck Ck Ck Ck Ck Ck ck ck KKK WU CDI TOUR REQUEST ERROR REPORT Error detected on request number 29 on node SYS001 Entry logged at 20 OCT 1999 19 53 06 86 Request Information Identifier 1 Process 604003B9 Username SMITH Timestamp 20 OCT 1999 19 53 05 58 Client Node SYS001 Source Application Type Shelve file Flags Nowait Notify State Original Validated Status Error Request Parameters Managing the HSM Environment 5 35 Managing the HSM Environment 5 21 Activity Logging File S1 DKA100 SMITH TESTILM DAT 1 Error Information HSM E shelf access information unavailable for 1SDKA100 SMITH TESTJLM DAT 1 SYSTEM E SHELFERROR access to shelved file failed Request Disposition Non fatal shelf handler error Fatal request error Operation was completed Exception Information Exception Module Line SHP NO OFFLINE INFO SHP 3851 Exception Module Line SHP INVALID OFFLINE INFOSHP 4015 5 21 Activity Logging The event logs contain information that is logged at the end of each request together with its final status However there is often a need to examine activity in progress for the following rea sons e To monitor HSM activity e To
283. e protection specification format 11 1 7 MDMS Domain Configuration Issues This section addresses issues that involve installing additional MDMS nodes into an existing domain or removing nodes from an operational MDMS domain 11 1 7 1 Adding a Node to an Existing Configuration Once you configure the MDMS domain you might have the opportunity to add a node to the existing configuration Table 11 8 describes the procedure for adding a node to an existing MDMS domain MDMS Configuration 11 13 MDMS Configuration 11 2 Configuring MDMS Drives Jukeboxes and Locations Table 11 8 Adding a Node to an Existing Configuration Step Action 1 Create a node object record with either the CLI or GUL Set the transport and network name attributes in accordance with available net work options For more information see Section 11 1 4 3 2 Decide if the node will be a database server or will only function as an MDMS cli ent e Ifthe node is to be a database server set the database server attribute default e Ifthe node is not to be a database server negate the database server attribute 3 Set the remaining node object attributes then complete the creation of the node 4 If the node will not share an existing startup file and database server image then install the MDMS software with the VMSINSTAL utility 5 If the new node is a database server then add the node by its network transport names to t
284. e the request This could be because all defined drives are busy or that a defined drive is disabled or otherwise cannot accept the request Normally no action is needed on this message and the request is processed when a drive frees up However if this message persists for a long time the operator should examine the HSM configuration and the drives to see if there is a problem Operator Activities in the HSM Environment 6 6 Operator Activities in the HSM Environment 6 8 Informational Operator Messages 6 7 3 Wrong Tape Label 2 9 5259 559 5 OPCOM 30 MAY 12 01 23 S Message from user HSM SERVER on E Tape volume label on drive name detected Expected volume right name but read wrong name Please check volume and configuration This message is displayed when HSM mounts the wrong tape for an operation An accompany ing message will be issued for non robot tape devices to request a load of the correct volume to the specified drive 6 8 Informational Operator Messages The following OPCOM messages are printed out to log significant events in HSM operations They are also logged in the shelf handler audit log HSM Startup Message 95259595955555 OPCOM 6 JUN 13 255 18 52 555 II IIS Message from user HSMSSERVER on SYS001 HSM shelving facility started on node SYS001 This message is printed out when HSM is started on a node via an SMU STARTUP command Do not issue a REPLY to this message HSM Shelf Server Message
285. e will be an HSM UID SYS file on each volume that has HSM operations enabled Any shelf catalog Defined in the shelf structure Shelf Catalogs The HSM shelf catalogs contain the information needed to locate and unshelve all files that have been shelved The catalog locations are defined in the SMU SHELF database It is recommended that all catalog names begin with HSM to preclude any possibility that they could be shelved If a shelf catalog suffers an unrecoverable loss access to the associated shelved file data can also be lost For this reason the shelf catalogs are an essential part of the HSM environment You must protect the shelf catalogs from loss or corruption by using one or more of the follow ing procedures e Backing up the catalogs on a regular basis daily backups are recommended e Shadowing the disk s containing the catalogs e For additional protection periodically copying the catalog files to different file names and locations Recovering Critical Files If any or all of the critical HSM product files are deleted they should be restored from the latest backup sets as soon as possible HSM should be shut down during the restore process Data shelved since the last backup may be lost 5 5 2 OpenVMS System Files and System Disks HP recommends that shelving be disabled on system disks If shelving is allowed on system disks critical files may be shelved when a policy is triggered Serious performance degradation
286. ead and write access to that volume only by that application MDMS sets volume object record attributes to control transitions between volume states Those attributes include e the allocated date attribute contains the date and time MDMS allocates the volume e the scratch date attribute contains the date and time MDMS will deallocate the volume The application requesting the volume can direct MDMS to set additional attributes for control ling how long it keeps the volume and how it releases it These attributes include e the scratch date attributes indicates the date when MDMS automatically sets the volume to a non allocated state A volume reaching the scratch date may be either free for use or may be placed in a transition state MDMS Management Operations 12 3 MDMS Management Operations 12 1 Managing Volumes e the transition time attribute contains the time interval a volume remains in the transition state The transition state allows you to buffer or stage the release of volumes between their allocation for keeping data safe and their subsequent re use overwriting data To release volumes directly to a free state negate the attribute 12 1 2 4 Holding a Volume MDMS allows no other user or application to load or unload a volume with the state attribute value set to ALLOCATED unless the user has MDMS LOAD ALL rights This volume state allows you to protect your data Set the amount of time a volume remains allocated accord
287. eated Explanation The shelf was successfully created SMU E SHELF DELERR error deleting shelf definition shelf name Explanation For SMU SET SHELF DELETE a request was made to delete a shelf that does not exist in the database Verify your configuration and re enter the command SMU I SHELF DELETED shelf shelf name deleted Explanation The shelf was successfully deleted SMU E SHELF DISPERR error displaying shelf configuration shelf name HSM Error Messages A 28 HSM Error Messages A 3 Shelf Management Utility Messages Explanation For SMU SHOW SHELF an error was encountered while trying to read the shelf information from the configuration database There may be an accompanying message that gives more information about any failure Please check the equivalence name of HSM MANAGER and redefine as needed Also verify that the configuration file is accessi ble SMU W SHELF NF shelf shelf name was not found Explanation For SMU SET SHELF or SMU SHOW SHELF the shelf was not found in the configuration database Verify your configuration then retry the command SMU E SHELF READERR error reading shelf definition shelf name Explanation For SMU SET SHELF or SMU SET VOLUME an error was detected while trying to read the shelf information from the configuration database There may be an accompanying message that gives more information about any failure Please check the equivalence name of HHM MANAGER and redefine as needed
288. ece teen e 12 8 12 3 2 Servicing a Stand Alone Drive 0 0 0 eee eee teen eee 12 9 12 3 3 ServucngJukeboxes scudo eg RR RR EN M ee Sa AR ee 12 9 12 3 3 1 Inventory Operations sins ce Ashes RD ERE e ehe hr edes 12 10 12 3 4 Managing Volume Pools 0 0 ee eh 12 11 12 3 4 1 Volume Pool Authorization ns eisa aaa e e eens 12 12 12 3 4 2 Adding Volumes to a Volume Pool 0oooocccococooo e 12 12 12 3 43 Removing Volumes from a Volume Pool leleeeeeeeee eee 12 12 12 3 4 4 Changing User Access to a Volume Pool 0 ee 12 12 12 3 4 5 Deleting Volum Pools eii ue tre eMe Rr 12 12 12 3 5 Taking Volumes Out of Service o o o oocococoocroo eh 12 13 12 3 5 1 Temporary Volume Removal 1 0 0 0 0 eee ec eet e ena 12 13 12 3 5 2 Permanent Volume Removal 00 cece cece cee e een ae 12 13 12 4 Rotating Volumes from Site to Site 1 cece teens 12 13 12 4 1 Required Preparations for Volume Rotation 0 0 cece eee eee eee 12 13 12 4 2 Sequence of Volume Rotation Events 0 0 ccc cee eee eee 12 13 12 5 Scheduled Activities ooet ei e pees t dA CAE ER CA Od DERE a See ER 12 15 12 5 1 Logical Controlling Scheduled Activities eee 12 15 12 5 2 Job Names of Scheduled Activities 0 0 0 eh 12 15 12 5 3 Log Files for Scheduled Activities 2 0 0 2 eee o 12 16 12 5 4 Notify Users When Volumes are Deallocated 0 0 0 0 eee ees 12 16 MDMS High Level Tasks
289. ecification error Explanation You specified an invalid user profile for the environment Verify that the user name specified default is ABS exists on the specified node or cluster User Action Re enter with a valid combination of node or cluster name and user name QUEUED operation is queued for processing Explanation The asynchronous request you entered has been queued for processing User Action You can check on the state of the request by issuing a show requests command RDFERROR error allocating or deallocating RDF device Explanation During an allocation or deallocation of a drive using RDF the RDF software returned an error User Action The error following this error is the RDF error return MDMS Messages C 40 MDMS Messages REQUESTID request ID is UL Explanation The number is the request ID for the command just queued User Action None RESUNDEFINED referenced restore s AZ undefined Explanation When creating or modifying a valid object the object s record contains a reference to a restore name that does not exist One or more of the specified restores may be undefined User Action Check spelling of the restore names and retry or create the restore objects in the database SAVUNDEFINED referenced save s AZ undefined Explanation When creating or modifying a valid object the object s record contains a reference to a save name that does not exist One or more of the
290. econdary Policy Each HSM policy supports both a primary and a secondary policy definition The primary policy definition is always executed If the volume s lowwater mark is reached after the primary policy execution completes the secondary policy definition is not executed If the volume s lowwater mark is not reached after the primary policy execution completes the secondary policy defini tion may be executed This second execution occurs only when either one or both policy defini tions is a user defined script Refer to the SMU SET POLICY command description in HSM Command Reference Guide for a detailed description of primary and secondary policy File Exclusion Criteria When using the predefined file selection algorithms STWS and LRU you can specifically exclude files that may be selected based on a relative or absolute date For example you may want to always exclude files that have been accessed within the last 60 days There are three fields from which you can choose to exclude files e Elapsed time Specified as a delta time this isa relative period of time that applies to the selected date which exclude files from being shelved during the policy execution For example if you specify the expiration date with volume retention and an elapsed time of 180 days then files accessed within the last 180 days are excluded from shelving This is the default value e Before time Specified as an absolute time this restricts shelvi
291. ect records MDMS Configuration 11 2 MDMS Configuration 11 1 The MDMS Management Domain 11 1 1 1 Database Performance If you are familiar with the structure of OpenVMS RMS files you can tune and maintain them over the life of the database You can find File Definition Language FDL files in the MDMS ROOT SYSTEM directory for each of the database files Refer to the OpenVMS Record Management System documentation for more information on tuning RMS files and using the supplied FDL files 11 1 1 2 Database Safety MDMS keeps track of all objects by recording their current state in the database In the event of a catastrophic system failure you would start recovery operations by rebuilding the system and then by restoring the important data files in your enterprise Before restoring those data files you would have to first restore the MDMS database files Another scenario would be the failure of the storage system on which the MDMS files reside In the event of a complete disk or system failure you would have to restore the contents of the disk device containing the MDMS database The procedures in this section describe ways to create backup copies of the MDMS database These procedures use MDMS SYSTEM MDMSS COPY DB FILES COM command proce dure This command procedure copies database files with the CONVERT SHARE command The procedure in Table 11 2 describes how to copy MDMS database files only The procedure in Table 11 3 des
292. ed Media Management 10 8 10 4 Groups 10 4 1 Nodes Media Management 10 4 Groups When initiating an unload from the DCL you can choose a synchronous operation default or an asynchronous operation using the NOWAIT qualifier From MDMS View an unload is always asynchronous so that you can continue performing other tasks The group object is a logical object that is simply a list of nodes that have something in common Groups can be used to represent an OpenVMS cluster a collection of nodes that have access to a device or for any other purpose A node may appear in any number of groups Groups can be specified instead of or in addition to nodes in drive jukebox save and restore objects and can be used interchangeably with nodes in pool authorization and access control definitions Groups contain only one attribute The list of nodes that comprise the group Nodes must be OpenVMS nodes that are defined in the MDMS database You should not use groups for non OpenVMS nodes for example ABS UNIX or Windows clients 10 5 Jukeboxes 10 5 1 Access 10 5 2 ACS ID In MDMS a jukebox is a generic term applied to any robot controlled device that supports auto matic loading of volumes into drives Jukeboxes include small single drive loaders large multi drive libraries and very large silos containing thousand of volumes In general MDMS does not make distinctions among the types of jukeboxes except for the software subsystem u
293. ed ii REIR PAR eR Eee edu RE US 10 10 105 7 GroUpsS Lee ete ete Lt te E ELSE EE ee 10 10 10 382 Library TDi A ERAT AE BA TUNE RA A NOE Que 10 10 10 39 Location 45 mon td Re Uer ile deat ei ette obi uses e 10 10 10 510 ESM ID ii ree BO oS eo Ee eh oe ge eS bn AL ioe Sed ea a eS 10 10 10 51 Nodes er del E tie Akl e s Ad 10 11 10 512 Robot ee ou Ee HERRERA URNA UELUT RUE NIU LEUR 10 11 10 5 13 Slot Count eo ettet ens a Stes or e Ent qun O et et 10 11 10 5 14 Stata eoe te cete Ee Epp re NS pube obere bie 10 11 10 315 Threshold cat Eo eU 1 sel a ees v ses et ect atem 10 11 10 5 16 gt Topology icc eR A A Re ig DATUR ae REGE 10 12 10 517 Usage uoce x tee eet Se AA A Ce aue b t us 10 12 10 5 18 Inventory Jukebox 0526 4 ede ee cach xe e eS 10 12 10 6 Locations ien reete Ratis ete Ai doen Uso cep oleae Alt ie c ds tal dale 10 13 10 6 4 Parent Locations eenn REUS ERA OU eI SR NUS Tus 10 14 11 10 6 2 Spaces e eec ceto E D C E C Ce m ea 10 14 10 7 Magazines eR ELA IURNRR aa ERR oe RE 10 14 10 7 1 Jukebox Start Slot and Position o o o I 10 14 10 7 2 Onsite and Offsite Locations and Dates o oooooooooor e 10 15 TOSS CSIOE COU aie eee A CR DR aee ertet E dr E eta Todd 10 15 LOTA Spaces ce ERREUR REESE EE A EE ROS 10 15 107 5 Moye Magazine S oes oec ene d oh RC aee mA Mori ee ii e D eee e nes 10 15 10 8 Media Types cune lee e EI RE REGIA MERE Te 10 16 10 8 Y Capacity oot
294. ed at HSM CATALOG HSMSCATALOG SYS As the amount of shelving information increases over time HP recommends that you define multiple shelves distribute your disk volumes amongst these shelves and define a separate cata log for each shelf HP recommends that a shelf be associated with between 10 and 50 volumes each depending on the size of the volumes and the amount of shelving activity on those vol umes After analyzing your storage subsystem and coming up with a distribution plan for volumes and shelves the following commands can be used to implement this distribution for example Define new shelves with separate catalogs SMU SET SHELF PRODUCTION SHELF1 _ CATALOG DISKSSYSTEM2 HSM CATALOG SMU SET SHELF PRODUCTION SHELF2 CATALOG DISKSSYSTEM2 HSM CATALOG SMU SET VOLUME SMU SET VOLUME SMU SET VOLUME SMU SET VOLUME X orm rcu NN e el Re associate volumes to the new shelves HSMSPRODUCTION_SHELF1_CAT SYS HSMSPRODUCTION_SHELF2_CAT SYS DISKSUSER1 SHELF PRODUCTION SHELF1 DISKSUSER2 SHELF PRODUCTION SHELF1 DISKSUSER20 SHELF PRODUCTION_SHELF2 DISKSUSER21 SHELF PRODUCTION SHELF2 Managing the HSM Environment 5 21 Managing the HSM Environment 5 12 Managing HSM Catalogs It is recommended that the catalog file names are ity that they might be shelved shelving a catalog problems preceded by HSM to eliminate any possibil file is not supported and can lead
295. ed file or object could not be looked up The next line contains additional information User Action Depends on the additional information FAILURE fatal error Explanation The MDMS server encountered a fatal error during the processing of a request User Action Provide copies of the MDMS command issued the database files and the server s logfile for fur ther analysis FILOPNERR file AZ could not be opened Explanation An MDMS database file could not be opened User Action Check the server s logfile for more information FIRSTVOLUME specified volume is first in set Explanation The specified volume is the first volume in a volume set User Action You cannot deallocate or unbind the first volume in a volume set However you can unbind the second volume and then deallocate the first or unbind and deallocate the entire volume set FUNCFAILED Function AZ failed with Explanation An internal call to a system function has failed The following lines identify the function called and the failure status User Action Depends on information following this message GRPUNDEFINED referenced group s AZ undefined MDMS Messages C 12 MDMS Messages Explanation When creating or modifying a valid object the object s record contains a reference to a group name that does not exist One or more of the specified groups may be undefined User Action Check spelling of the group names and retry or create
296. ed volume AZ undefined Explanation When creating or modifying a valid object the object s record contains a reference to a volume ID that does not exist User Action Check spelling of the volume ID and retry or create the volume object in the database VOLWRTLCK volume loaded with hardware write lock Explanation The requested volume was loaded in a drive but is hardware write locked when write access was requested User Action If you need to write to the volume unload it physically enable it for write and re load it WRONGLABEL initializing volume AZ as AZ is disallowed Explanation The label of the volume loaded in the drive for initialization does not match the requested vol ume label and there is data on the volume Or initializing the volume with the requested label causes duplicate volumes in the same jukebox or location User Action If you wish to overwrite the volume label re issue the command with the overwrite qualifier If there are duplicate volumes in the same location or jukebox you need to move the other volume from the jukebox or location before retrying WRONGVOLUME wrong volume label or unlabelled volume was loaded MDMS Messages C 53 MDMS Messages Explanation On a load volume command MDMS loaded a volume with the wrong volume label or a blank volume label into the drive User Action Check the volume and optionally perform an initialization of the volume and retry If
297. eduled enter a SET SAVE or SET RESTORE and enter the required information NOUNALLOCDRV no unallocated drives found for operation MDMS Messages C 37 MDMS Messages Explanation On an initialize volume request MDMS could not locate an unallocated drive for the operation User Action If you had allocated a drive for the operation deallocate it and retry If all drives are currently in use retry the operation later NOVOLSJUKE no free volumes in the specified jukebox were found Explanation When allocating a volume no free volumes in the specified jukebox were found User Action Check jukebox name and retry command or move some free volumes into the jukebox NOVOLSLOC no free volumes in the specified location were found Explanation When allocating a volume no free volumes in the specified location were found User Action Check location name and retry command or move some free volumes into the location NOVOLSMED no free volumes with the specified media type were found Explanation When allocating a volume no free volumes with the specified media type were found User Action Check media type and retry command or specify the media type for more free volumes NOVOLSMOVED no volumes were moved Explanation No volumes were moved for a move volume operation An accompanying message gives a rea son User Action Check the accompanying message correct and retry NOVOLSPOOL no free volum
298. ee HSM Command Reference Guide Figure 2 2 illustrates the relationship between volumes and archive classes Each disk volume has an associated archive class and restore archive class as shown in the archive and restore archive lists In this example as with most cases the archive and restore lists are identical Figure 2 2 ARCHIVE CLASSES 3 SHELF COPIES HSM ARCHIVEO 1 1 ARCHIVE HSM ARCHIVEO 2 LIST HSM ARCHIVEOS 3 DISK VOLUMES WITH CRITICAL DATA HSM ARCHIVEO 1 1 RESTORE HSM ARCHIVEO 2 2 ARCHIVE HSM ARCHIVEOS3 3 LIST CXO 4164A MC Understanding HSM Concepts 2 7 Understanding HSM Concepts 2 3 The Shelf 2 3 8 Shelving Operations You can control the same operations for a shelf as you can for the facility except that the opera tions defined for the shelf affect only the volumes associated with the shelf This gives you a finer level of shelving control which might be useful if certain classes of vol umes are not regularly accessed at certain times and you want to disable shelving activity How ever as with the facility control it is expected that shelving and unshelving operations usually are enabled 2 3 4 Shelf Catalog The shelf catalog contains information regarding the location of near line and off line data for all volumes associated with the shelf HP recommends that you define a separate catalog for each shelf but it is possible for several shelves to share
299. ee Section 2 3 By default all volumes use the default shelf HSM DEFAULT_ SHELF Understanding HSM Concepts 2 15 Understanding HSM Concepts 2 7 Volume 2 7 2 Shelving Operations HSM provides volume definition options that allow you to control shelving operations on the online disk volume for which the volume definition applies If no volume definition is found HSM uses the HSsM DEFAULT VOLUME definition The following operations can be enabled on a per volume basis High water mark The ability to trigger the specified occupancy policy if disk usage exceeds the specified high water mark e Occupancy The ability to trigger the specified occupancy policy if an application attempts to exceed the volume capacity e Exceeded quota The ability to trigger the specified occupancy policy if an application attempts to exceed a file owner s quota e Shelving Any shelving or preshelving operation including those initiated by policy and manual operations e Unshelving Any unshelving operation including those initiated by file access and manual operations By default implicit operations high water mark occupancy and quota are disabled and explicit operations shelve and unshelve are enabled on the volume 2 7 3 Volume Policy The volume policy parameters identify the policy definitions used to shelve files when a critical need for space on the disk is encountered This policy implementation reacts to critical situations in w
300. ee au ex ree i rte du dice t gs XV 1 Introduction to HSM 1 1 Storage Management in the OpenVMS Environment 0 0 00 1 1 1 1 1 Data Categories coii sa ans paling ee RE BAe drid ale esa tebe Pe RE 1 1 1 1 2 Device Capacity Cost and Performance 0 0 eee eect eee 1 1 1 1 3 Storage Management Planning 0 0 eee cnc he 1 2 1 2 Storage Management with HSM 0 cc cence me 1 3 1 2 1 File Headers and Location itor bch a baht AGRE Oo REA oR Ae waa se eed oy rH ES 1 3 1 2 2 Controlling File Movement 0 0 cece I een eee 1 3 1 3 HSM Storage Management Concepts 0 0 cece eee ences 1 4 1 3 1 Sheldon NS I puits Ibo tees Suh in en Bach prec pest E buds 1 4 1 3 2 Archive Clas irradia bale ebd ts p CORPER EET GM M tae bere eng 1 4 1 3 3 HSM Policies 5o eut A eM ihrer be duced ed p is 1 4 1 4 Ehe Shelving Process rsen A MEC te eels AI 1 4 1 4 1 Starting the Shelving Process o o ooooocococorcoo e e 1 4 1 4 2 File Selection for Explicit Shelving sseeeeeeeeeeeee eh 1 5 1 4 3 File Selection for Implicit Shelving sleeeeeeeeeeeee Ih 1 5 1 4 4 Modifying File Attributes of a Shelved File 0 0 eee eee 1 6 L5 The Unsh lving Processo cov a REEL ver he eb A EU 1 6 1 5 1 Starting the Unshelving Process lsseleeeeeeee ht 1 6 1 5 2 Process Default Unshelving Action oo ooocococcoococo I 1 6 1 5 3 The Results of Unshelvinga File swe cpersss onepu ager eia
301. ee space amount of 30 This also indicates that LRPCOUNT should be raised Raising LRPCOUNT to 50 when there are currently 36 LRPs has the effect of adding 14 LRPs Fourteen plus the 20 free space equals over 30 This means that the recom mended value of 30 free space LRPs is met after LRPCOUNT is set to 50 The SYSGEN parameter LRPCOUNTV LRP count virtual has been set to 200 The LRPCOUNTV parameter should be at least four times LRPCOUNT Raising LRPCOUNT may mean that LRPCOUNTV has to be raised In this case LRPCOUNTV does not have to be raised because 200 is exactly four times 50 the new LRPCOUNT value Make changes to LRPCOUNT or LRPCOUNT in both SYSGEN using CURRENT SYS SYSTEM MODPARAMS DAT file for when AUTOGEN is run with REBOOT Example Changing LRPCOUNT to 50 in SYSGEN Username SYSTEM Password the system password SET DEFAULT SYSSSYSTEM RUN SYSGEN SYSGEN gt USE CURRENT SYSGEN gt SH LRPCOUNT Parameter Name Current Default Minimum Maximum LRPCOUNT 25 4 0 4096 SYSGEN gt SET LRPCOUNT 50 SYSGEN gt WRITE CURRENT SYSGEN gt SH LRPCOUNT Parameter Name Current Default Minimum Maximum LRPCOUNT 50 4 0 4096 Requirement After making changes to SYSGEN reboot your system so the changes take effect Example Changing the LRPCOUNT for AUTOGEN Add the following line to MODPARAMS DAT MIN_LRPCOUNT 50 ADDED the date your initials Result This ensures that when AUTOGEN runs LRPC
302. eee teen eee 5 13 5 10 4 Reshelvingan Archive Class 0 0 ec eme 5 13 5 11 Maintaining Shelving Policies 2 0 nee e ene eee 5 13 51 1 The HSM Policy Model st sosen beck ke e ae ee tes 5 14 5 11 1 1 Concepts of HSM Policy rere RE SURG Rado xu RIS RUE MS NUES Rupee 5 14 5 11 12 Policy Governs the Shelving Process seeeleeeeeeee e 5 15 5 11 1 3 The Balance to Achieve When Implementing Policy 00 0 0 000 00088 5 16 5 11 2 HSM Policy Situations and Resolutions 0 00 00 cece 5 16 5 11 2 1 Situation Volume Occupancy Full Event 0 00 cece eee 5 16 5 11 22 Situation Shelving Goal Not Reached ooooccoccccocco eee 5 17 5 11 23 Situation Frequent Reactive Shelving Requests 0 00 eee 5 18 5 11 2 4 Situation Application and User Performance Impeded 0 000 008 5 19 5 11 3 Ranking Policy Execution 0 0 a Er naa cece e e 5 20 5 12 Managing HSM Catalogs 2 06 0 2 be ehe Re eet eben herr heel e 5 21 5 13 Repackimg Archive Classes respira 5 23 5 13 1 Repack Performance oec eee A Pe ER be eee eet ed 5 25 5 14 Replacing and Creating Archive Classes 5 25 5 15 Replacing A Lost or Damaged Shelf Volume sesseleeeee eA 5 25 5 16 Catalog Analysisand Repair ero ep AA REA CER ean 5 26 5 17 Consolidated Backup with HSM 0 0 e cnet eee ee 5 28 SATA Setting up SLS tt eere EV epe e teet A tal a 5 29 3 FE2 gt Preshelving
303. eive a shelf handler communications error message e The text unknown version appears on a component of the SMU SHOW VERSION com mand If the shelving driver is not loaded issue the following command on OpenVMS VAX sys tems MCR SYSGEN CONNECT HSA0 NOADAPTER If the shelving driver is not loaded issue the following command on OpenVMS Alpha sys tems MCR SYSMAN IO CONNECT HSA0 NOADAPTER To recover any other component issue the following command SMU STARTUP 7 5 Mass Shelving Unintended mass shelving can occur when you enable OCCUPANCY HIGHWATER MARK and QUOTA operations on specific volumes or the default volume without careful preparation HP recommends that you stage automatic shelving one volume at a time and in manageable quantities on those volumes by gradually lowering the volume s low water mark from its current occupancy level to the desired level You should not attempt to shelve more than 1000 files at a time otherwise HSM s performance will degrade Use the SMU RANK command to determine the quantity and names of files that would be shelved before enabling the policy If you have accidentally initiated a mass shelving operation on a volume use Table 7 5 to recover Note In the reference column of a this table IG refers to the HSM Installation Guide When IG is not mentioned assume that the reference is to this HSM Guide to Operations Manual Table 7 5 Accidentally Starting Mass Shelvi
304. elf handler process after find ing a file in an inconsistent state The file has been made into a consistent state by shelving it it was really already shelved No action is required SHSM I RECOVERUNSHLV inconsistent state found file unshelved Explanation This message may be issued on recovery of a shelf handler process after find ing a file in an inconsistent state The file has been made into a consistent state by unshelv ing it it was really already unshelved No action is required HSM E REPACKINPRG cannot checkpoint during repack please try later Explanation An attempt to checkpoint an archive class while that archive class was being repacked was made Checkpoint and repack are incompatible operations on an archive class Please re enter the checkpoint command after the repack has completed HSM E RESHELVERR unable to re shelve file filename manual recovery required Explanation An attempt to re shelve a file to additional archive classes failed for some rea son Please examine the error log As the result of this the specified file may remain shelved or be unshelved Existing shelf copies remain available HSM W SELECTFAILED MDMS SLS error selecting a drive for volume volumename retrying Explanation In Plus Mode an error occurred trying to select a drive for an HSM operation Please read the error log for more details SHSM I SERVER HSM shelf server enabled on node nodename Explanation This is an informat
305. er oceans a Del ERI AS AA ee 5 38 5 22 6 Using the Same Archive Classes o o oo ooocococororcr e eh 5 39 5 221 Emnabling the Facilty eoe e ep ph ote etx me tescicec inscr 5 39 5 22 8 Example Mode Conversion o 5 39 6 Operator Activities in the HSM Environment 6 1 Enabling the Operator Interface 0 0 0 ccc e 6 1 6 2 Loading and Unloading Single Tapes for HSM Basic Mode 0 0 0 0 c eee eee eee eee 6 1 6 2 1 Load Volume No Reply Needed ooocooccccccoc eh 6 2 6 2 2 Load VOLUME La RA NIE em Lee INA 6 2 6 2 3 Remitiabze Volume id ta 6 2 6 2 4 Volume Initialization Confirmation o ooo ooooooor ccc eee ene 6 2 6 2 5 Unload Label Request Voir ERR aude ean Ea Rees RE UAE AAE Ia 6 3 6 3 Responding to BACKUP Requests for HSM Basic Mode 0 0 cece ee eee 6 3 6 4 Working with Magazine Loaders for HSM Basic Mode slssseeee eese 6 3 6 4 1 Load Magazine ets ob RV PENES REB CANIS eee PASS REDI E Red EURPIS 6 3 6 4 2 Illegal Magazine 3 4 here A DAE RE UU Pa e ed E Redes 6 3 6 4 3 Unload M gazine AA AAA IA IP m A 6 3 6 5 Working with Automated Loaders for HSM Plus Mode ooocooccccccococo eee 6 4 6 5 1 Providing the Correct Magazine lies tenes 6 4 6 5 2 Providing the Correct Volume fora TL820 o ooooocococococcroo nee 6 5 6 6 Other MDMS M SSaBeS ui AA ERI Bee oR Race RUE REIR RUN 6 5 6 7 Drive Selection and Reservation Messages for Both Modes o ooocoocccococcccoco eee eee 6 6
306. er by first creating a location object record for the data center After that create object records for each room specifying the data center name as the value of the location attribute for the room locations When allocating volumes or drives by location the volumes and drives do not have to be in the exact location specified rather they should be in a compatible location A location is considered compatible with another if both have a common root higher in the location hierarchy For exam ple in Figure 11 6 locations Room 304 and Floor 2 are considered compatible as they both have location Building 1 as a common root Figure 11 6 Named Locations Location Location Floor 3 Location Location Floor 1 Floor 2 Location Room 301 Location Room 302 Location Location Room 102 Room 202 Location Location Room 101 Room 201 Location Room 303 Location Room 103 Location Room 304 CXO6751A Your operations staff must be informed about the names of these locations as they will appear in OPCOM messages Use the description attribute of the location object record to describe the location it represents as accurately as possible Your operations staff can refer to the information in the event they become confused about a location mentioned in an OPCOM message You can divide a location into separate spaces to identify locations of specific volumes Use the spaces attribute to specify the range of spaces in which volumes
307. es ooooococoococooo momo B 4 B 1 5 Configuration Step 5 Example Defining a Client Node 00 0 00008 B 5 B 1 6 Configuration Step 6 Example Creating a Jukebox 0 00 0 eee eee B 5 B 1 7 Configuration Step 7 Example Defining a Drive o ooo oooocoococororooo ees B 6 B 1 8 Configuration Step 8 Example Defining Pools 0 00 eee eee eee B 7 B 1 9 Configuration Step 9 Example Defining Volumes using the VISION qualifier B 7 MDMS Messages Converting SLS MDMS V2 X to MDMS V4 D 1 Converting SLS MDMS V2 X Symbols and Database 0 0 00 eee eese D 1 D 1 1 Executing the Conversion Command Procedure 0 0 00 cee eese D 1 D 1 2 Resolving Conflicts During the Conversion 0 0 0 cece eee re D 2 D 2 Things to Look for After the Conversion o oo o oooocororcor cece eee teen ees D 5 D 3 Using SLS MDMS V2 x Clients With the MDMS V4 Database 0000000008 D 9 D 3 1 Limited Support for SLS MDMS V2 during Rolling Upgrade l l eese D 9 D 3 2 Upgrading the Domain to MDMS V4 sseeseeeee e D 9 D 3 3 Reverting to SE S MDMS V2 cs esse eg Aha ne etae TAG pA Xe ARR ii D 10 D34 Restrictions eoe RARE RSS ESSAI NEN ee aoe Pee aod ER SER Ra er e RR D 11 D 4 Convert from MDMS Version 3 to a V2 X Volume Database 0 0 0 eese D 11 Preface Purpose of this Document This document contains information a
308. es Carriage return carriage control RMS attributes None Journaling enabled None File protection System RWED Owner RWED Group RE World R DECW SM LOG 2 File ID 3270 13 0 Size 5 6 Owner COLORADO Created 08 Jan 2003 08 16 14 08 Revised 08 Jan 2003 14 24 01 47 3 Expires lt None specified gt Backup lt No backup recorded gt Effective lt None specified gt Recording lt None specified gt File organization Sequential Shelved state Online File attributes Allocation 6 Extend 0 Global buffer count 0 Version limit 3 Not shelvable Record format VFC 2 byte header Record attributes Print file carriage control RMS attributes None Journaling enabled None File protection System RWED Owner RWED Group RE World Access Cntrl List None 4 1 1 2 DIRECTORY FULL for Unpopulated Index Files Using HSM 4 2 If you shelve an empty unpopulated index file the file size will look different after you shelve it if you do a DIRECTORY FULL on the file In Example 4 1 notice that the file size before shelving is 3 3 and after shelving its 0 0 When you see this do not be alarmed No data has been lost This is a normal representation of an unpopulated index file Example 4 1 Shelve an empty unpopulated indexed file CREATE FDL HSMS CATALOG FDL EMPTY INDEXED DAT DIRECTORY FULL EMPTY INDEXED DAT Directory DISKS USER1 SHELVING FILES Example 4 1 Cont Shelve an empty unpopulated indexed file EMPTY IND
309. es are files that are placed on specific blocks of disk space by an application By default HSM shelves these files but does not necessarily unshelve placed files to their original location on the disk volume Usually this change is not critical to the operation of an application If a problem arises with a placed file after unshelving the file should be set to NOSHELVABLE or you can use the SMU SET VOLUME NOPLACEMENT command to cause these files to not be shelved for a speci fied volume 5 8 Using Backup Strategies with HSM This section explains backup strategies you may want to use to protect data shelved through HSM There are several areas of concern e Backing up critical HSM files e Backing up data shelved through HSM e Backing up information stored in an online cache 5 8 4 Backing up Critical HSM Files As explained in Section 5 5 1 HSM requires certain files to operate To facilitate HSM recovery in the event a disaster occurs HP strongly recommends you backup these critical files using one of the methods described in this section This is a preventive situation if you do not use one of these methods to backup the critical files you may not be able to easily recover shelved data after a disaster 5 8 1 1 Defining a Backup Strategy If you already have a backup strategy designed and implemented on your system for the volume on that the critical HSM project files reside then these files will be backed up as part of that imp
310. es in the specified pool were found Explanation When allocating a volume no free volumes in the specified pool were found User Action Check pool name and retry command or specify the pool for more free volumes add them to the pool NOVOLSPROC no volumes were processed MDMS Messages C 38 MDMS Messages Explanation In a create set or delete volume command no volumes were processed User Action Check the volume identifiers and re enter command NOVOLSVOL no free volumes matching the specified volume were found Explanation When allocating a volume no free volumes matching the specified volume were found User Action Check the volume ID and retry command or add more free volumes with matching criteria NOVOLUMES no volumes match selection criteria Explanation When allocating a volume no volumes match the specified selection criteria User Action Check the selection criteria Specifically check the relevant volume pool If free volumes are in a volume pool the pool name must be specified in the allocation request or you must be a default user defined in the pool You can re enter the command specifying the volume pool as long as you are an authorized user Also check that newly created volumes are in the FREE state rather than the UNITIALIZED state OBJECTEXISTS specified object already exists Explanation The specified object already exists and cannot be created User Action Use a set com
311. essages User Action Use values within the following ranges e RETRY LIMIT 0 10000 or NOLIMIT e INTERVAL 00 01 00 01 00 00 1 60 mins INVRETRYINTERVAL invalid value for retry interval Explanation You specified an invalid value for retry interval In addition it is invalid to specify an interval with a retry limit of zero User Action Use a value within the following range only if retry limit is non zero 00 01 00 01 00 00 1 60 mins INVRETRYLIMIT invalid value for retry limit Explanation You specified an invalid value for retry limit User Action Use a value in the range 0 to maximum integer or use NORETRY LIMIT INVSCHEDENUM invalid scheduling translation defined Explanation An invalid parameter translation was entered for a scheduling option User Action Report the incident to HP INVSCHEDOPT invalid schedule options entered Explanation You entered invalid schedule date time options for a schedule object The following values are allowed e DATES List of values or ranges values 1 31 e DAYS List of values or ranges values MON SUN MONTHS List of values or ranges values JAN DEC e TIMES List of values 00 00 23 59 INCLUDE List of dates 01 Jan yyyy 31 Dec yyyy e EXCLUDE List of dates 01 Jan yyyy 31 Dec yyyy The yyyy for INCLUDE and EXCLUDE must be between the current year and up to 9 years into the future e g 2001 2010 If omitted the current year i
312. essages are repeated every 10 minutes if the select error continues to occur Another MDMS OPCOM message is printed if MDMS selects a drive for a tape volume but cannot load the volume because it is already loaded in another drive Operator Activities in the HSM Environment 6 5 Operator Activities in the HSM Environment 6 7 Drive Selection and Reservation Messages for Both Modes 5 225 2 5 OPCOM 08 Jan 2003 12 01 23 Message from user HSMSSERVER on SYS001 Volume APW032 cannot be loaded into selected drive 1 MKA100 Volume is loaded in another drive Check volume location and drive availability REPLY when corrected This message should not normally happen but if it does you should check the following e Determine whether another user besides HSM is using the volume If so you will need to wait until that user has finished with the volume and has deallocated the other drive Then you can reply to the OPCOM message Ifno other user has allocated a drive with this volume check access to the other drive via STORAGE commands MRU commands and or OpenVMS MOUNT If the volume cannot be accessed on the other drive please follow corrective procedures by troubleshooting the hardware problem When the volume is accessible then reply to the OPCOM message In addition to the specific information given here about working with automated loaders MDMS may display other messages that you need to respond to or deal with on versions
313. ether the device is shared or dedicated e Whether operations are enabled for the device e Which archive classes use the device Note To use magneto optical devices for shelf storage you define these devices as caches not as shelving devices For more information see Section 2 8 5 Default Device HSM DEFAULT DEVICE HSM provides a default device record that has the following attributes e Device is shared e Device is enabled for HSM use e No archive class is associated with the device These defaults are applied if you specify a device for HSM without identifying these attributes Once the device is defined you can modify the attributes for that device You also can modify the default device record attributes if you find that you are typically using a different set of attributes for your devices 2 6 4 Sharing and Dedicating Devices For HSM use you can specify a nearline or offline device to be used for dedicated or shared usage When a device is dedicated HSM does not release it to other applications and keeps the current volume mounted until the drive is needed for another HSM volume When a device is shared HSM releases the device and dismounts and unloads the associated media within one minute of inactivity on the device The media is unloaded for security reasons When thinking about devices you should consider the trade offs involved in dedicating devices to HSM Understanding HSM Concepts 2 10 Understanding HSM
314. eviously stored in TAPESTART COM Media type information previously stored in TAPESTART COM e Slot information previously stored in SLOTMAST DAT Node information previously stored in NODE VALIDATE DAT The new MDMS server keeps all its information in a per object database The MDMS V4 installation process propagates definitions of the objects from the old database to the new V4 database However any changes made after the installation of V4 have to be carefully entered by the user in the old and new databases Operational problems are possible if the databases diverge Therefore it is recommended to complete the upgrade process as quickly as possible D 3 2 Upgrading the Domain to MDMS V4 Upgrading your SLS MDMS V2 domain starts with the nodes which have been defined as database servers in symbol DB NODES in file TAPESTART COM Refer to the Installation Guide for details on how to perform the following steps Step 1 Shut down all SLS MDMS database servers in your SLS MDMS domain Step 2 Install version MDMS V4 on nodes which have been acting as database servers before Step 3 When the new servers are up and running check and possibly change the configuration and database entries so that it matches your previous SLS MDMS V2 setup Step 4 Edit SYS MANAGER MDMS SYSTARTUP COM and make sure that Converting SLS MDMS V2 X to MDMS V4 D 9 Converting SLS MDMS V2 X to MDMS V4 D 3 Using SLS MDMS V2 x Clients With the MDMS V4 Database
315. f you create an object name with lower case letters and refer to it as an attribute value which includes upper case letters MDMS may fail an operation Naming Examples The following examples illustrate the concepts for creating object names with the CLI These commands show the default CLI behavior for naming objects Volume created with upper case locked SMDMS CREATE VOLUME CPQ231 INHERIT CPQ000 Standard upper case DCL SMDMS SHOW VOLUME CPQ231 Volume created with lower case letters SMDMS CREATE VOLUME cpq232 INHERIT CPQ000 Standard lower case DCL SMDMS SHOW VOLUME CPQ232 Volume created with quote delimited lower case forcing lower case naming SMDMS CREATE VOLUME icpq2331 INHERIT CPQ000 Forced lower case DCL This command fails because the default behavior translates to upper case SMDMS SHOW VOLUME CPQ233 Use quote delimited lower case to examine the object record SMDMS SHOW VOLUME icpq233i 9 6 2 Inheritance on Creation This feature allows you to copy the attributes of any specified object record when creating or changing another object record For instance if you create drive object records for four drives in a new jukebox you fill out all the attributes for the first drive object record Then use the inherit option to copy the attribute values from the first drive object record when creating the subsequent three drive object records If you use the inherit feature you do no
316. failure message alerts you that the shelf handler detected a failure in user communications SMU was either unable to create a mailbox to receive responses from the shelf handler on the user s behalf or get the name of the mailbox There may be an accompa nying message that gives more information about any failure HSM Error Messages A 14 HSM Error Messages A 3 Shelf Management Utility Messages A 3 Shelf Management Utility Messages The following messages are printed out by the shelf management utility SMU F ABORTANA user aborted ANALYZE Explanation SMU ANALYZE was aborted when a Z was entered in response to a repair confirmation SMU F ABORTSCAN aborted scan for shelved files on disk volume device name Explanation SMU ANALYZE aborted processing of the device due to an error or Z was entered in response to a repair confirmation SMU E ARCHID ADDERR qualifier required on first SET ARCHIVE archive id not created Explanation In plus mode the MEDIA TYPE qualifier is required for the initial creation of the archive class with the SMU SET ARCHIVE command Subsequent use of the SMU SET ARCHIVE command to modify the archive class does not require the MEDIA TYPE qualifier Re enter the command using the qualifier SMU E ARCHID DELERR error deleting archive id Explanation For SMU SET ARCHIVE DELETE an error was encountered while trying to delete the archive class There may be an accompanying message that gives more i
317. fiers use only one Explanation When specify more than one field to sort on User Action Specify only one field to sort on UNDEFINEDREFS success but object references undefined objects Explanation The command was successful but the object being created or modified has references to unde fined objects Subsequent messages indicate which objects are undefined User Action This allows objects to be created in any order but some operations may not succeed until the objects are defined Verify correct the spelling of the undefined objects or create the objects if needed UNKVOLENT unknown volume AZ entered in jukebox AZ MDMS Messages C 48 MDMS Messages Explanation A volume unknown to MDMS has been entered into a jukebox User Action Use the INVENTORY command to make the volume known to MDMS or use a jukebox utility program CARTRIDGE or MRU to eject the volume from the jukebox UNSUPPORTED unsupported function Explanation You attempted to perform an unsupported function User Action None UNSUPPORTED1 unsupported function AZ Explanation You attempted to perform an unsupported function User Action None UNSUPRECVER unsupported version for record AZ in database AZ Explanation The server has detected unsupported records in a database file These records will be ignored User Action Consult the documentation about possible conversion procedures provided for this version of
318. files are to be moved between primary storage and shelf storage e You can specify which files are not to be moved from primary storage Introduction to HSM 1 3 Introduction to HSM 1 3 HSM Storage Management Concepts e You can set a high water mark on primary storage to automatically trigger shelving of your dormant data to shelf storage A high water mark is a defined percentage of disk space used that when exceeded causes shelving to begin e You can set a low water mark as a space recovered goal to limit the number of files that are moved to shelf storage A low water mark is a defined percentage of disk space used that when reached causes policy defined shelving to stop To implement shelving control you use HSM policies For additional information about HSM policies see Section 1 3 3 1 3 HSM Storage Management Concepts 1 3 1 Shelf There are several key storage management concepts required to properly understand and use HSM These concepts include e Shelf e Archive class e HSM policies and policy creation These concepts are described in detail in Chapter 2 An HSM shelf is a logical software object that relates the data in a set of online disk volumes on which shelving is enabled to a set of archive classes that contain the shelved data for those vol umes 1 3 2 Archive Class An archive class is a logical software object that represents a single copy of shelved data Identi cal copies are written to one or
319. for shelving in Plus mode The SMU CHECKPOINT command allows HSM to use the next volume in sequence for shelv ing operations within the archive class but stops writing to the existing volumes for that archive class 5 22 7 Enabling the Facility The last thing you need to do for HSM Plus to start running is to enable the facility for shelving and unshelving operations because you disabled it earlier To do this use the following com mand SMU SET FACILITY ENABLE ALL 5 22 8 Example Mode Conversion The following is an example of a Basic mode configuration successfully converted to Plus mode The Basic mode configuration consists of One tape device used for HSM purposes 1 MKA100 e Two archive classes 1 and 2 of media type CompacTape III used for HSM Four volumes used in each archive class HS0001 HS0004 for archive class 1 and HS1001 HS1004 for archive class 2 that have been used in Basic mode For the initial conversion to Plus mode we will retain the same devices and archive classes for operation Additional archive classes and devices can be added later in the usual way The following example shows the commands to issue to convert the above Basic mode configu ration to Plus mode Convert HSM to Plus Mode does not affect current operations nnn SMU SET FACILITY MODE PLUS Disable HSM shelving operations SMU SET FACILITY DISABLE ALL Shut Down HSM and bring back up in
320. g 4 6 4 2 Controlling Shelving and Unshelving 00 2c eee Ih 4 6 4 2 1 Automatic Shelving Operations o oo oooooooorr e e eee eee 4 6 4 2 2 User Controlled Shelving Operations 00 eee ccc cent eeee 4 6 4 2 3 Unshelving Files ze ere See Maa eg oo ee ee Ca ae 4 8 4 3 Finding Lost Data eter Ce ewe uut ARG AA tea e AR eto s 4 8 4 4 Working with Remote Files 0 0 ce cece eee e 4 8 4 5 Resolving Duplicate Operations on the Same File 2 0 0 eee cee eee 4 8 4 5 1 Resolving Conflicting Operations on the Same File 0 0 e eee eee eee 4 9 4 6 Controlling Other HSM Functions o ooooooooorr e 4 9 5 Managing the HSM Environment vi 5 E Dismoun ng DISKS EA RE eR EE creuse EN 5 2 5 2 Copying Shelved Pes sse nA ERREUR UE IIEELAUEERUA E ISERDI a 5 2 5 3 Renaming Disks onde RR ep eet anche du etes ice emus 5 3 5 4 Restoring Files to a Different Disk leseleeeeeeeee e 5 4 5 5 Protecting System Files from Shelving eeeseeeeeee ee 5 4 5 5 1 Critical HSM Product Files ecos reet RREDR IU RELY e os 5 4 5 5 2 OpenVMS System Files and System Disks 0 0 0 cee es 5 5 5 5 3 Files NotShelved ii IS IU ERA RR NR RES 5 6 5 6 DFS NFS and PATHWORKS Access Support 0 0 2 ce ee 5 6 5 6 1 DES ACCESS ui besRwERLAPPUPR pi Remp MU e Red 5 6 5 6 2 NES ACCeSS eL quac be bete Sate ais e o ee tee db entum 5 6 5 6 3 PATHWORKS o cuc RRA UNUS RENEW NIAE ew 5 7 5 6 4 Lo
321. g parameter controls unshelving and automatically generated file faults Under normal circumstances you should enable both shelving and unshelving across your clus ter This allows HSM to maintain desired disk usage through automatic policy operations and also allows users access to shelved data at all times Considerations for Disabling Shelving and Unshelving You may need to disable HSM operations at certain times if they conflict with other activities such as backups and there are limited offline devices available For example if backups are performed nightly at midnight you could set up a policy to disable shelving at that time When necessary you can disable shelving and probably not cause problems with disk usage exceeding the defined goals However if you disable unshelving your users and applications may experience errors accessing shelved files You should disable unshelving only if you do not anticipate needing access to shelved data 2 2 3 Shelf Servers A shelf server is a single HSM node in a cluster that performs all operations to nearline and offline devices on behalf of all nodes in the cluster It also coordinates clusterwide operations such as checkpointing archive classes and resetting event logs If the facility option Catalog Server is enabled all cache operations and catalog updates are also performed by the shelf server By default cache operations are performed by the requesting cli ent node for performance re
322. g the possibility that files you do intend to use are not shelved automati cally Using the PRESHELVE command copies the file to shelf storage The data in the file remains in your work area Preshelving files allows the system to respond more rapidly when it needs to free up disk space for use Note To shelve a file you must have READ and WRITE access to that file Canceling an Explicit SHELVE or PRESHELVE Operation To stop an explicit shelving operation type Ctrl Y The operation will complete on the file that is currently being shelved All files that were shelved before you entered the Ctrl Y will remain shelved To cancel any remaining pending operations you must reenter the command using the CANCEL qualifier as shown in the following example SHELVE TXT Ctrl Y SHELVE CANCEL TXT Using HSM 4 2 Controlling Shelving and Unshelving File Selection for Explicit Shelving HSM provides three methods to select files for explicit shelving Explicitly naming files You can use one or more file specifications including wildcards File event and time span You can include files based on a time span around one of four file dates The file dates used include the following Creation date Backup date Modification date Expiration date Time values are specified with the SINCE and BEFORE qualifiers File size In addition to specifying file names file dates and time spans you have the option of fur ther limiting th
323. ge Check privileges in current account IG Section 1 2 1 7 4 2 The Shelf Handler Does Not Start Up If the shelf handler process HSM SHELF_HANDLER does not start up examine Table 7 2 and the following files for more information HSM LOG HSM SHELF HANDLER LOG Shelf handler startup log HSM LOG HSM SHP ERROR LOG Shelf handler error log Note In the reference column of a this table IG refers to the HSM Installation Guide When IG is not mentioned assume that the reference is to this HSM Guide to Operations Manual Solving Problems with HSM 7 6 Solving Problems with HSM 7 4 HSM Startup Problems Table 7 2 The Shelf Handler Does Not Start Up Problem Solution Reference HSM license not installed Install the HSM License IG Section 1 1 3 Catalog not created Create a catalog IG Section 1 4 2 SMU databases not created Create databases run SMU or HSM STARTUP COM HSDRIVER not loaded On VAX systems SYSGEN CON IG Section 1 4 1 HSM logical names not defined HSM logical names not system wide HSM logical names not same clusterwide HSM logical names not correct Version limits on HSM LOG directory Shelf handler already started Insufficient quotas Insufficient privilege Insufficient disk space on HSM MANAGER HSMS CAT ALOG HSM LOG Request log corrupted SMU database corrupted Catalog corrupted Installation not complete Shelf handler running in Basic mode after converting to Plus mode Verify all co
324. gement 10 10 Pools 10 9 1 Database Server MDMS operates as a group of co operating processes running on multiple nodes in multiple clusters in an MDMS domain One of these MDMS processes is known as the Database Server and it actually controls all MDMS operations in the domain Although only one node is the database server at any one time you should enable multiple nodes to be possible database servers in case the actual database server node fails In this way failover is supported A database server must have direct access to the database files located in MDMS DATABASE LOCATION Direct access access via MSCP and access via Fibre Channel are all considered local access Access via a network protocol or DFS are not consid ered local access It is recommended that you enable at least 3 nodes as potential database serv ers to ensure failover capabilities 10 9 2 Disabled Set to disable the node as an MDMS node Clear to enable the node as an MDMS node 10 9 3 OPCOM Class You can specify the OPCOM classes to be used by MDMS for operator messages on this node By default the domain default OPCOM classes are used but you can override this on a node by node basis Specify one or more of the standard OpenVMS OPCOM classes messages are directed to all login sessions with these OPCOM classes enabled 10 9 4 Transports and Full Names 10 10Pools You can define which network transports are defined for this node There are four choi
325. gement Operations 12 1 MDMS Management Operations 12 1 Managing Volumes Each row describes an operation with current and new volume states commands and GUI actions that cause volumes to change states and if applicable the volume attributes that MDMS uses to cause volumes to change states Descriptions following the table explain important aspects of each operation Table 12 1 MDMS Volume State Transitions Current State Transition to New State New State Blank MDMS CREATE VOLUME Volume Create UNINTIALIZED Blank MDMS CREATE VOLUME PREINIT FREE UNINITIALIZED MDMS INITIALIZE VOLUME Volume Initialize FREE FREE MDMS INITIALIZE VOLUME Volume Initialize FREE FREE MDMS ALLOCATE VOLUME Volume Allocate ALLOCATED ALLOCATED MDMS DEALLOCATE VOLUME Volume Deallocate or automatically on the volume scratch date TRANSITION ALLOCATED MDMS DEALLOCATE VOLUME Volume Deallocate or automatically on the volume scratch date FREE TRANSITION MDMS SET VOLUME RELEASE Volume Release or automatically on the volume transition time FREE Any State MDMS SET VOLUME UNAVAILABLE Volume Unavailable UNINITIALIZED UNINITIALIZED MDMS SET VOLUME AVAILABLE Volume Available Previous State UNINITIALIZED MDMS DELETE VOLUME Volume Delete BLANK FREE MDMS DELETE VOLUME Volume Delete BLANK 12 1 2 Volume States by
326. gical Names for NFS and PATHWORKS Access 0 oooococcoccocococo es 5 8 5 7 Ensuring Data Safety with HSM 0 0 e he 5 8 5 7 1 Access Control Lists for Shelved Files lleleeeeeeee eh 5 8 5 7 2 Handling Contiguous and Placed Files 5 9 5 8 Using Backup Strategies with HSM lsseeeeeeeeee he 5 9 5 8 1 Backing up Critical HSM Files ssseeeeeeeee I e 5 9 5 8 1 1 Defining a Backup Strategy o ooooooococrrcr e eee eens 5 9 5 8 1 2 Using OpenVMS BACKUP to Save the Files 0 0 2 cee ee 5 9 5 8 1 3 Maintaining a Manual Copy of the Files 0 0 0 0 0 eee eee 5 10 5 8 2 Backing Up Shelved Data vomita gue DEPRISGG DOL APE SES Eee Se Delp ERS 5 10 5 8 2 1 Considerations for OpenVMS BACKUP and Shelving 0000000000082 5 10 5 8 2 2 Using Multiple HSM Archive Classes for Backup 0 0 0 c eee ee 5 10 5 8 2 3 Storing HSM Archive Classes Offsite 00 cee eee eee 5 11 5 8 3 Backing Up Data Stored in an Online Cache 20 0 cece eee 5 11 5 8 3 1 Flushing the Cache 2 5 Reeve takes Siete e ete teeta 5 11 5 9 Finding Lost User Data lt 2 ursecuideterveru AE ES ee UE eh ee ee Ee nus 5 11 5 10 Disaster Recovety o SU IIb MEER te IL IR escala da Aedo a dad 5 12 5 10 1 Recovering Data Shelved Through HSM sssleeeeee eee eee 5 12 5 10 2 Recovering Critical HSM Files lsseeeeleeeeee e 5 12 5 10 3 Recovering Boot Up Files o ooocoooocoococoror cece
327. gin Fails Pwdlifetime 30 00 00 Pwdchange 08 Jan 2003 12 19 MDMS Configuration 11 6 MDMS Configuration 11 1 The MDMS Management Domain Maxjobs 0 Fillm 500 Bytlm 100000 Maxacct jobs 0 Shrfillm 0 Pbytlm 0 Maxdetach 0 BIOlm 10000 JTquota 4096 Prclm 10 DIOlm 300 WSdef 5000 Prio 4 ASTlm 300 WSquo 10000 Queprio 0 TOE1m 300 WSextent 30000 CPU none Enqlm 2500 Pgflquo 300000 Authorized Privileges DIAGNOSE NETMBX PHY_IO READALL SHARE SYSNAM SYSPRV TMPMBX WORLD Default Privileges DIAGNOSE NETMBX PHY IO READALL SHARE SYSNAM SYSPRV TMPMBX WORLD 11 1 3 The MDMS Start Up File MDMS creates the SYS STARTUP MDMS SYSTARTUP COM command procedure on the initial installation This file includes logical assignments that MDMS uses when the node starts up The installation process also offers the opportunity to make initial assignments to the logi cals If you install MDMS once for shared access in an OpenVMS Cluster environment this file is shared by all members If you install MDMS on individual nodes within an OpenVMS Cluster environment this file is installed on each node In addition to creating node object records and setting domain and node attributes you must define logicals in the MDMS start up file These are all critical tasks to configure the MDMS domain Table 11 5 provides brief descriptions of most of the logical assignments in MDMS S YSTAR TUP COM More detailed descriptions follow as indicated Table
328. h HSM media since they contain the only copies of the shelved file data Without some sort of custom analysis of HSM media the media would have to be retained indefinitely After a long time where the majority of the data is obsolete this would result in shelf media having a very low percentage of valid data resulting in wastage Managing the HSM Environment 5 23 Managing the HSM Environment 5 13 Repacking Archive Classes HSM provides the SMU REPACK function to perform an analysis of valid and obsolete data on shelf media and copy the valid data to other media allowing the old media to be freed up In addition REPACK purges the catalog entries associated with the obsolete data Shelf file data can become obsolete in two ways e The online copy of the shelved file is deleted e The online copy of the shelved file is unshelved updated and shelved again HSM provides the system administrator a way to control the obsolescence of files for use in repacking It may not be appropriate for a file to become obsolete as soon as it is deleted or updated as it may need to be recovered in its old state at a later date As such two new options are provided in the SMU SHELF definition as follows e SAVE TIME This option allows the specification of a delta time which keeps a file s shelved data in the HSM subsystem for this period after the file is deleted e UPDATES This option allows the specification of a number of updates to a shelved file
329. h firmware compac tion Enabling compaction usually doubles the capacity of the tape so this is a desirable option which is set by default Clear the attribute if you do not wish compaction 10 8 3 Density This field indicates the density of the tape that you desire Many types of tape media especially DLT tapes support multiple densities and certain types of drive can either read and write a cer tain density or just read some densities As such you can define many media types with differ ent densities that can be assigned to volumes and drives MDMS uses the density field when initializing volumes so the density must be a valid Open VMS density for the version of the operating system being used Issue a HELP INITIALIZE DENSITY command to determine the valid densities on the platform 10 8 4 Length The length field is used for information purposes only If your media comes in various lengths you can differentiate between types by using the length field Specify an integer value that has meaning to your operators 10 9 Node An MDMS node is an OpenVMS system that is running MDMS All nodes running MDMS must have a node object defined in the database for MDMS to work properly The node name must be the DECnet Phase IV name of the system if DECnet Phase IV is running or a Phase IV alias is used Otherwise it can be any name Nodes contain attributes as outlined in the following sections Media Management 10 16 Media Mana
330. h space available to do so you might see this message SHSM I SHLVPRG shelving files to free disk space You see these messages only if you have enabled BROADCAST on your terminal 4 2 Controlling Shelving and Unshelving From your perspective shelving and unshelving files can be defined to occur automatically or manually In the case of automatic shelving and unshelving the storage administrator defines policies that control this behavior and you may not realize shelving and unshelving are occur ring In the case of manual shelving and unshelving you issue specific commands to shelve and unshelve files 4 2 1 Automatic Shelving Operations If the storage administrator defines policies to shelve and unshelve files you do not need to spe cifically request files be shelved and unshelved In this case the storage administrator decides when data ought to be shelved based on various criteria discussed in Chapter 2 You may not notice when the files are shelved and may only notice when a file is unshelved if the file access time is significantly longer than expected You can find out if you have shelved files using the qualifiers discussed above for the DIRECTORY command 4 2 2 User Controlled Shelving Operations Using HSM 4 6 To specifically shelve a file or files use the DCL SHELVE command or the DCL PRESHELVE command Using the SHELVE command frees up disk space by shelving files you do not expect to need soon and by minimizin
331. hat have been deleted This option allows the specification of a delta time which keeps a file s shelved data in the HSM subsystem for this period after the file is deleted The actual purging of deleted files after the specified delay is performed by the REPACK function 2 3 6 Number of Updates for Retention This option allows the specification of a number of updates to a shelved file that will be kept in the HSM subsystem This option applies to files that have been updated in place not new versions of files that have been created after an update New versions are controlled by online disk maintenance outside the scope of HSM The actual purging of obsolete shelf data is performed by the REPACK function Understanding HSM Concepts 2 8 Understanding HSM Concepts 2 4 HSM Basic Mode Archive Class 2 4 HSM Basic Mode Archive Class As previously discussed HSM Basic mode supports 36 archive classes named HSMSARCHIVEOI through HSM ARCHIVE36 with archive identifiers of 1 to 36 respec tively You must configure archive classes by using the SMU SET ARCHIVE command to iden tify the archive class name Once you have defined the archive class you can then associate archive classes with shelves and devices using appropriate commands From these associations HSM Basic mode determines the appropriate media type for the archive class There is a separate set of tape volumes with specific labels associated with each archive class for HSM Basic mod
332. he MDMS DATABASE SERVERS list in all start up files in the MDMS domain 11 1 7 2 Removing a node from an existing configuration When you remove a node from the MDMS domain there are several additional activities you must perform after deleting the node object record e Ifthe node was a database server remove its node names from all MDMS start up files in the MDMSS DATABASE SERVERS logical assignment e Remove any references to the node that might exist in remaining MDMS object records e Remove any references to the node that might exist in DCL command procedures 11 2 Configuring MDMS Drives Jukeboxes and Locations MDMS manages the use of drives for the benefit of its clients ABS and HSM You must config ure MDMS to recognize the drives and the locations that contain them You must also configure MDMS to recognize any jukebox that contains managed drives You will create drive location and possibly jukebox object records in the MDMS database The attribute values you give them will determine how MDMS manages them The meanings of some object record attributes are straightforward This section describes others because they are more important for configuring operations 11 2 1 Configuring MDMS Drives Before you begin configuring drives for operations you need to determine the following aspects of drive management e How to describe the drive e Which systems need access to the drive e How the drive fits into your
333. he Conversion Offsite date The old magazine record had no offsite date so you need to add this attribute Onsite location The old magazine record had no onsite location so you need to add this attribute Offsite date The old magazine record had no onsite date so you need to add this attribute Node Description The conversion program does not put a description in this attribute Type a description for this attribute DECnet Plus fullname TAPESTART COM does not support DECnet Plus therefore the conversion program cannot put in the DECnet Plus fullname attribute If this node uses DECnet Plus you should set this attribute TCP IP fullname TAPESTART COM does not support TCP IP therefore the conversion program cannot put in the TCP IP fullname attribute If this node uses TCP IP you should set this attribute Disabled The conversion program sets the enabled attribute Make sure you want this node enabled Database server If this attribute is set to YES this node has the potential to become a database server The logical MDMSS DATABASE SERVERS must have this node name in is definition of nodes in the domain This defini tion is defined in the SYS STARTUP MDMS S YSTAR TUP COM file Location Make sure this is the location that this node is located in Dur ing the conversion it could have been changed depending on the TAPESTART COM file or what the default was in the domai
334. he MDMS COPY DB FILES command procedure ends copies of the database files reside on the same disk as the original files Use the OpenVMS Backup Utility to create a back up copy of the database files You must have at least one tape device configured to be shared with applications other than MDMS The following shows an example BACKUP command SBACKUP MDMS DATABASE LOCATION DAT COPY tape device name After the OpenVMS Backup Utility operation completes delete the file copies from the database directory Store the copies of the MDMS database in a safe location To Process the MDMS Database for an Image Backup of the Device The procedure in shows how to process the MDMS database files for an image backup The image backup could be part of a periodic full backup and subsequent incremental This proce dure also describes how to use the files in case you restore them MDMS Configuration 11 4 MDMS Configuration 11 1 The MDMS Management Domain Table 11 3 Processing MDMS Database Files for an Image Backup Step Action 1 Create a preprocessing command procedure to execute before the image backup on the disk The command procedure must first purge old database file copies from the direc tory then creates a new set of copies SPURGE MDMSSDATABASE_LOCATION DAT_COPY S MDMSSSYSTEM MDMSSCOPY_DB_FILES Plan the backup operation on the disk containing the MDMS database files to make sure that t
335. he background the SMU command that initiated the split merge does not wait for the operation to complete As such it is possible to request an incompatible split merge operation for example SMU SET VOLUME DISKSUSER1 SHELF SHELF1 SMU SET VOLUME DISKSUSER1 SHELF SHELF2 In this example the second command is rejected while the split merge for the first command is processed If an error occurs during a background split merge operation the final completion state of the operation will either revert to the old definition or the new definition depending on the phase of split merge that failed There are essentially two phases of split merge e COPY Copying the shelf data from the old to the new catalog e DELETE Deleting the information from the old catalog If an error occurs during the copy phase the SMU database is reset to the old catalog shelf If an error occurs during the delete phase the new catalog shelf definition stays in effect You may wish to examine the database later with SMU to determine if the operation succeeded and the definitions are as you expect Also the shelf handler audit and error logs contain entries for all split merge operations for further information 5 13Repacking Archive Classes Shelf media used by HSM contain shelved file data from many sources some of which remains valid for a long time but some also becomes obsolete Unlike BACKUP tapes which can be recycled regularly this is not the case wit
336. he location of the default HSM catalog The catalog contains the information needed to locate a shelved file s data in the cache or the shelf HSM supports multiple catalogs which can be specified on a per shelf basis Warning Loss of any catalog is a critical problem and will probably result in losing the data for shelved files served by that catalog HSM catalogs are considered critical files and should be stored on devices and in a directory that has the maximum protection for loss In particular The devices should be shadowed to recover from disk rashes e The devices should be backed up regularly and media removed offsite for disaster recov ery The size of the catalog file depends on the number of files you intend to shelve on the system Approximately 1 25 blocks are used for each copy of a file in the cache or the shelf When a cache copy is flushed to the shelf the cache catalog entry is deleted However copies to the nearline offline shelf remain permanently in the catalog For information on backing up the cata log see Section 5 12 2 11 1 HSM MANAGER The files stored in the location referenced by HSM MANAGER are important in HSM opera tions but can usually be recovered These files include e All SMU databases e The shelf handler request log e The magazine loader database for HSM Basic mode Loss of these files will result in a temporarily unusable HSM system until SMU commands are entered to restore the e
337. he preprocessing command procedure executes before the actual backup procedure Run the backup operation Each time you create a backup copy of the disk you will get a consistent copy of the MDMS database files When you need to restore the data to the device you need to use the consistent files Rename the DAT_COPY files to become the DAT files then purge the DAT files from the directory SRENAME MDMSSDATABASE DAT_COPY MDMSSDATABASE DAT SPURGE MDMSSDATABASE 11 1 1 3 Moving the MDMS Database In the event the disk device on which you keep the MDMS database runs out of space you have the option of moving the MDMS database or moving other files off the device The procedure described in this section explains the actions you would have to perform to move the MDMS database Use this procedure first as a gauge to decide whether moving the MDMS database would be easier or more difficult than moving the other files Secondarily use this procedure to relocate the MDMS database to another disk device Table 11 4 describes how to move the MDMS database to a new device location Table 11 4 How to Move the MDMS Database Step Action 1 Shut down any applications using MDMS ABS or HSM Refer to the respective appli cation documentation for specific commands Shut down the MDMS process on all nodes in the domain Using the OpenVMS Backup Utility create a copy of the database files Use the C
338. he same disk the OpenVMS RENAME command is recommended SMU COPY should be used to copy shelved files to another disk in the same HSM environment If you are copying files to be taken to a different Managing the HSM Environment 5 2 Managing the HSM Environment 5 3 Renaming Disks system outside of the current HSM environment then COPY or BACKUP should be used to unshelve the files prior to the copy The SMU COPY command implicitly uses the BACKUP utility which has different semantics to the OpenVMS COPY command especially when using wildcard directory trees Therefore you should review the behavior of BACKUP wildcard operations when using this command Specif ically the following are examples of correct operation SMU COPY DISKS USERI JONES DISKSUSER15 JONES SMUCOPYDISK PROD1 ACCOUNTS DISKSPRODARC ARCHIVE ACCOUNTS SMU COPY 1 DKA100 000000 15SDKA100 The first example moves user JONES directory tree from one disk to another preserving all subdirectories from the input disk on the output disk The second example moves all files from DISKSPRODI ACCOUNTS and all subdirectories to a new disk and new subdirectory structure preserving all subdirectories from DISK PROD1 ACCOUNTS to DISKSPRODARC ARCHIVE ACCOUNTS The third example moves all files from 1 DKA100 to 15 DKA 100 preserving all subdirec tories Note however that the following syntax does not provide the expe
339. helving a file 3 Available capacity increases in response to the event HSM automatically moves those files meeting the selection criteria in the policy definition to shelf storage Implications Having completed the shelving process implies the following e The likelihood that shelved files will be accessed soon is small because the use and access patterns were matched to the file selection criteria Adequate disk space has been made available to satisfy additional requests for storage for an acceptable of time 5 11 1 3 The Balance to Achieve When Implementing Policy An effective HSM policy balances these two conditions Maintaining an adequate amount of available online storage space e Achieving adequate overall system response time by shelving files that are least likely to be accessed 5 11 2 HSM Policy Situations and Resolutions The model described in Section 5 11 1 has practical application This section demonstrates how the model can be applied to help monitor the effectiveness of policy in various situations 5 11 2 1 Situation Volume Occupancy Full Event One of the benefits of HSM is the ability to implement a preventive policy that helps avoid vol ume occupancy full events Figure 5 3 shows the policy model as it applies during a volume occupancy full event Managing the HSM Environment 5 16 Managing the HSM Environment 5 11 Maintaining Shelving Policies Figure 5 3 1 SYSTEM IN USE 2 VOLUME FULL 3 AVAILA
340. hether operator acknowledgments are required for certain drive and jukebox operations The default negated value requires operator acknowledgment for all operations Setting the attribute to the affirmative will result in MDMS poll ing the devices for most operations and completing the request without specific operator acknowledgment The operator should observe the OPCOM message and look for one of two phrases e and reply when completed this means that the OPCOM message must be acknowledged before the request will continue e auto reply enabled this means that the OPCOM message will be automatically cancelled and the request will continue after the requested action has been performed Assist or noassist options and the reply option for these commands or actions A Allocate drive nitialize volume Load drive Load volume Move magazine Move volume Unload drive Unload volume For all listed commands you can either request or forego opera tor assistance When you use the assist option MDMS will com municate with the operators specified by the OPCOM classes set in the domain object record Using the noassist option directs MDMS not to send operator messages You must be granted the MDMS ASSIST right to use the assist option The reply option allows you to capture the operator reply to the command This feature facilitates the use of DCL command pro cedures to manage inter
341. hey have not been accessed for a predetermined time or when the storage device s remaining capacity exceeds a predefined threshold These criteria are termed policy Shelf Any storage device including mag netic disk that holds dormant data files Data in shelf storage is termed shelved When shelved files are accessed through the Open VMS TM file system HSM moves he shelved files back to primary storage Introduction to HSM 1 2 Introduction to HSM 1 2 Storage Management with HSM Table 1 1 File Activity and Data Storage File Activity Storage Type HSM Storage Classification Inactive Offline Data that is not expected Access to this data requires to be accessed frequently human intervention for operations but must be kept for such as mounting tape media archival or legal purposes Because the operator response is the significant factor the access time is unpredictable 1 2 Storage Management with HSM HSM software is an extension of the Open VMS M file system that allows you to manage your dormant data efficiently It moves your dormant data from primary storage where your active data is usually kept to shelf storage This frees the space in primary storage for use while the dormant data remains available on lower cost media The movement of your dormant data to shelf storage is called shelving To meet your storage management requirements HSM e Operates as an integrated part of OpenVMS Maintai
342. hich additional primary storage space is needed A reactive policy is implemented with a disk volume definition Reactive policy determines how to react to high water mark volume occupancy exceeded and user disk quota exceeded events In these instances some event takes place that requires primary storage space be made available HSM takes action to make the space available only when the event takes place A reactive policy execution can be disabled by specifying that no policy is desired for the specified event 2 7 4 High Water Mark You can specify a percentage of the volume s capacity that will be used as a trigger for running the occupancy policy on the volume See Section 2 9 for more details 2 7 5 Files Excluded from Shelving There are two types of files that you should give special attention to when considering their dis position in an HSM environment e Files marked contiguous e Files placed at specific logical block numbers These files have special attributes when they are created that may not be possible to recreate when the files are shelved and later unshelved Understanding HSM Concepts 2 16 Understanding HSM Concepts 2 8 Cache Usage Contiguous Files Files that are marked contiguous must occupy contiguous logical block numbers on the disk When such a file is shelved its storage is released During unshelving operations this type of file must be restored contiguously If this is not possible because the availab
343. his failure message alerts you that an internal error condition was detected with a code of value This could have come from the policy execution process if memory couldn t be allocated there was a problem queuing a job or getting job information there was an unexpected error getting system information etc There may be more information about the failure in the PEP error log From SMU this could mean that an unexpected error was encountered while parsing processing a confirmation action getting job or system information etc SSHELVE W INVALANS text is an invalid answer Explanation The response given to a confirmation action is incorrect Please see HELP or the reference documentation for valid responses SSHELVE W INVFILESPEC invalid file specification format Explanation This warning message alerts you that your file specification format is invalid Please re enter the command with a valid file specification SSHELVE W INVFORMAT invalid internal format HSM Error Messages A 12 HSM Error Messages A 2 Shelf Handler Messages Explanation A request generated by SMU and sent to the shelf handler has an invalid internal format The request cannot be processed by the shelf handler There may be more information about the failure in the SHP error log SSHELVE W INVREQUEST invalid shelving request Explanation For policy execution the policy execution process received an unexpected error from the shelf handler for the shelve request
344. ices in one of two ways As a Staging area prior to shelving to tape Define the cache as NOBACKUP with a HIGHWATER_MARK and INTERVAL and AFTER which enabled periodic cache flushing As a permanent shelf Define the cache with BACKUP with HIGHWATER 100 and NOINTERVAL to inhibit cache flushes Solving Problems with HSM 7 15 Solving Problems with HSM 7 11 Offline Device Problems Each platter or side of platter that you wish to use as a cache must be defined with an SMU SET CACHE command and system mounted on all nodes in the VMScluster system Use the logical device name of the mounted MO volume JBxxx in the SET CACHE commands not the name of the MO drives Table 7 11 shows problems that can occur with magneto optical devices See also cache prob lems in Section 7 10 Note In the reference column of this table IG refers to the HSM Installation Guide When IG is not mentioned assume that the reference is to this HSM Guide to Operations Manual Table 7 11 MO Device Problems Problem Solution Reference MO devices do not work Install and run OSMS V3 3 software Other problems See Cache Problems Section 7 10 7 11 Offline Device Problems You can configure any number of nearline offline devices for HSM use In Basic mode nearline and offline devices must be accessible by all nodes in the VMScluster system designated as shelf servers or all nodes in the VMScluster system if no servers are spec ified
345. if ENTRY was used There may be an accompanying message that gives more information about any failure SMU E NOSUCHQUE no such server queue queue name Explanation For SMU SET SCHEDULE a request was made to modify or remove a pol icy job but the queue was not found on the policy server SMU W NOTSTARTED process name process was not started HSM Error Messages A 24 HSM Error Messages A 3 Shelf Management Utility Messages Explanation A startup or shutdown attempt was made from an account with insufficient privileges or an unexpected error was encountered while starting up the shelf handler pro cess or the policy execution process There may be an accompanying message that gives more information about any failure SMU W NOTUPDARCH archive id archive id name was not updated no new attributes Explanation For SMU SET ARCHIVE a negative response was given to the update con firmation a delete was requested for a non existent archive class or there was no new data to change SMU W NOTUPDCACHE cache device device name was not updated no new attributes Explanation For SMU SET CACHE no new attributes were defined for the cache The update was not performed SMU W NOTUPDDEVICE device device name was not updated no new attributes Explanation For SMU SET DEVICE no new attributes were defined for the device The update was not performed SMU W NOTUPDFAC facility was not updated no new attributes Explanation For
346. ile is accessible SMU E BASIC MODE ONLY basic mode feature is a basic mode feature see SET FACILITY MODE Explanation The use of this qualifier is for Basic mode only SMU I CACHE CREATED cache device device name created Explanation The cache device was successfully added SMU E CACHE DELERR error deleting cache definition cache name Explanation A request was made to delete a cache device that does not exist in the data base Verify your configuration and re enter the command SMU I CACHE DELETED cache device device name deleted Explanation The cache device was successfully deleted SMU E CACHE DISPERR error displaying cache device device name Explanation For SMU SHOW CACHE an error was encountered while trying to read the cache information There may be an accompanying message that gives more information about any failure SMU W CACHE NF cache device device name was not found Explanation For SMU SET CACHE or SMU SHOW CACHE the specified cache device was not found in the cache database Verify your configuration and re enter the command SMU E CACHE READERR error reading cache device definition device name HSM Error Messages A 16 HSM Error Messages A 3 Shelf Management Utility Messages Explanation An unexpected error was encountered while trying to read the cache data for a delete or display operation There may be an accompanying message that gives more infor mation about any failure Please
347. iles are actually shelved This lists the names of all files that would be shelved if a policy were to be executed on a volume To avoid a mass shelving problem HP recommends that you make extensive use of this com mand before enabling any automatic policy executions on a volume see Section 7 5 This command also can be used to tune your policies so that they select the correct files for shelving based on usage in your environment and that the quantity of files that they select is manageable 7 2 7 SMU SET and SHOW Commands Many operational problems are caused by invalid or illogical configurations as set up using SMU commands You can use the SMU SET and SHOW commands to determine if your con figuration is valid and to make the configuration valid The following are examples of common configuration problems that can easily be corrected using the SMU SET and SHOW commands e A shelf is defined with no archive classes e A shelf with archive classes has no devices that support those archive classes e Operations are disabled on the facility the shelf the device the cache or the volume for an operation Solving Problems with HSM 7 4 Solving Problems with HSM 7 3 Installation Problems e Anarchive class is supported by a device with an incompatible media type e A magneto optical MO device is set up using the SMU SET DEVICE instead of the SMU SET CACHE command MO devices are supported only as permanent shelves using the SMU SET
348. in an HSM Environment DIRECTORY FULL POPULATED INDEXED DAT Directory DISKS USER1 SHELVING FILES POPULATED INDEXED DAT 1 691 51007 0 Size 84 0 Owner SYSTEM Created 08 Jan 2003 14 30 47 15 Revised 08 Jan 2003 14 30 47 31 5 Expires None specified Backup No backup recorded Effective None specified Recording None specified File organization Indexed further information shelved Shelved state Shelved File attributes Record format Record attributes RMS attributes Journaling enabled File protection Total of 1 file 4 1 1 4 DIRECTORY SHELVED STATE Allocation 0 Extend 0 Maximum bucket size 2 Global buffer count 0 Version limit 3 Variable length None None None System RWED maximum 484 bytes longest 0 bytes Owner RWED Group RE World 84 0 blocks The DIRECTORY SHELVED STATE command lists the files and a keyword that tells you if the file is online or shelved Example DIR SHELVED Directory DISKSMYDISK IAMUSER Al DAT Shelved AA A 1 Shelved BAD LOGIN COM 1 Shelved BOINK EXE 1 Shelved BUILD DIR 1 Online CLUSTER END 031694 COM 1 Shelved CLUSTER TEST 030194 COM 2 Shelved CLUSTER TEST 030394 COM Shelved CMA DIR 1 Online CODE DIR 1 Online COSI DIR 1 Online COSI TEST DIR 1 Online Z6 DAT 1 Shelved Z71 DAT 1 Shelved Z8 DAT 1 Shelved Z9 DAT 1 Shelved Total of 153 files 4 1 1 5 DIRECTORY SIZE The DIRECTORY SIZE co
349. ined volumes it finds Conversely you can also define what to do if a volume that should be in the jukebox according to the database is found not to be in the jukebox There are three options that you can apply using the Missing attribute Delete Delete the volume from the database this is not normally what you would want to do because in most cases the volume is simply in another location and you probably want to keep it e Ignore Do not change the database this will probably leave the database in an inconsistent state but you may prefer to perform the changes manually e Move This is the default option and changes the database to flag that the volume is in the volume s onsite location When initiating an inventory from the DCL you can choose a synchronous operation default or an asynchronous operation using the NOWAIT qualifier From MDMS View an inventory is always asynchronous so that you can continue performing other tasks 10 6Locations A location is an MDMS object that describes the physical location other objects Nodes juke boxes magazines volumes and archives can all have locations associated with them Locations are used for volume and drive allocation selection criteria and for placing volumes and maga zines in known labelled locations Locations can be hierarchical and locations in hierarchy that have a common source are consid ered compatible locations For example locations SHELF1 and SHELF
350. information about any failure Please check the equivalence names of HSM MANAGER and HSM CATALOG and redefine as needed Also verify that the catalog and database files are accessible HSM Error Messages A 32 B Sample Configuration of MDMS This appendix shows a sample configuration of Media Device Management Services MDMS including examples for the steps involved B 1 Configuration Order Configuration which involves the creation or definition of MDMS objects should take place in the following order 1 Location Media type Node Drives 2 3 4 Jukebox 5 6 Pools 7 Volumes Creating these objects in the above order ensures that the following informational message does not appear MDMS I UNDEFINEDREFS object contains undefined referenced objects This message appears if an attribute of the object is not defined in the database The object is created even though the attribute is not defined The sample configuration consists of the following Four nodes SMITH1 ACCOUN cluster node SMITH2 ACCOUN cluster node SMITH3 ACCOUN cluster node JONES a client node TL826 Jukebox with robot 1 DUA560 and the following six drives 1 MUA560 1 MUA561 1 MUA562 1 MUA563 1 MUA564 1 MUA565 Sample Configuration of MDMS B 1 Sample Configuration of MDMS B 1 Configuration Order The following examples illustrate each step in the order of configuration B 1 1 Configuration Step 1 Example Defin
351. ing This chapter describes many of the common problems that can arise as a result of using HSM and lists appropriate solutions The chapter is structured into the following sections Introduction to Troubleshooting Roadmap for locating appropriate log files tools and problem categories while troubleshooting a problem Troubleshooting Tools An overview of HSM tools that you can use to diagnose and resolve problems Installation Problems Problems that can arise when you install HSM HSM Startup Problems Problems that can arise when you startup or shutdown HSM in a VMScluster environment Mass Shelving Problems The problem of unintentionally shelving a large number of files all at once how to avoid this problem and how to recover if it proceeds System Disk Shelving Problems The potential problems associated with allowing files on the system disks to be shelved and recovery solutions HSM Plus Mode MDMS Problems Problems that HSM Plus mode may have that are actually MDMS problems VMScluster Problems Problems associated with running HSM on multiple nodes in a VMScluster system Online Disk Problems Problems associated with management of online disks in an HSM environment Cache Problems Problems associated with the use of an online cache as a staging area or permanent shelf Magneto Optical Device Problems Problems associated with using magneto optical devices Offline Device Problems Problems associated with near
352. ing Locations This example lists the MDMS commands to define an offsite and onsite location for this domain create onsite location MDMS CREATE LOCATION BLD1 COMPUTER ROOM DESCRIPTION Building 1 Computer Room MDMS SHOW LOCATION BLD1 COMPUTER ROOM Location BLD1 COMPUTER ROOM Description Building 1 Computer Room Spaces In Location create offsite location MDMS CREATE LOCATION ANDYS STORAGE DESCRIPTION Andy s Offsite Storage corner of 5th and Main MDMS SHOW LOCATION ANDYS STORAGE Location ANDYS STORAGE Description Andy s Offsite Storage corner of 5th and Main Spaces In Location B 1 2 Configuration Step 2 Example Defining Media Type This example shows the MDMS command to define the media type used in the TL826 create the media type MDMS CREATE MEDIA TYPE TK88K DESCRIPTION Media type for volumes in TL826 with TK88 drives COMPACTION volumes are written in compaction mode MDMS SHOW MEDIA TYPE TK88K Media type TK88K Description Media type for volumes in TL826 with TK88 drives Density Compaction YES Capacity 0 Length 0 B 1 3 Configuration Step 3 Example Defining Domain Attributes This example shows the MDMS command to set the domain attributes The reason this command is not run until after the locations and media type are defined is because they are default attributes for the domain object Note that the deallocation state transition is
353. ing are directed to compatible media For this level HSM ensures that the media type is physi cally capable of being loaded into the specified device and that the media can support the operation HSM also verifies that media contained in magazine loaders are not requested for nonloader drives and vice versa Table 2 2 lists the compatible media types HSM supports HSM also supports unknown media types but does not check them for compatibility It is therefore possible to specify different types of tape devices with Unknown media type into an impractical configuration If using such drives and media you must ensure that the configuration is practical Table 2 2 Compatible Media Types Devices That Write Can Read Comments 9 Track Magtape 9 Track Magtape No density checking is per formed Understanding HSM Concepts 2 14 Understanding HSM Concepts 2 7 Volume Table 2 2 Compatible Media Types Devices That Write Can Read Comments 3480 Cartridge 3480 Cartridge No compression checking is per formed DigitalTape I CompacTape I TK50 Format DigitalTape II CompacTape I II TK70 Format DigitalTape III CompacTape I II III TK8x DigitalTape IV CompacTape I II HI IV Format Number of tracks not checked 4mmDAT 4mmDAT Differences in length not checked Unknown Any No checking is performed 2 6 6 Automated Loaders and HSM Plus Mode 2 7 Volume 2 7 1 Shelf HSM Plus mode supports automated loaders
354. ing facility active with n requests Explanation Normal response to an SMU SHOW REQUESTS command with n active p P requests The messages indicates the number of requests active on the shelf handler on the node from which the command was entered not cluster wide HSM I DMPFILE active requests dumped to file HSM LOG HSMSSHP_ ACTIVITY LOG Explanation Normal response to an SMU SHOW REQUESTS FULL command indicat ing that the activity log was dumped to the fixed named file This message and the activity log are only produced if there is at least one active request HSM W DMPNOMUTEX unable to lock shelf handler database HSM Error Messages A 3 HSM Error Messages A 2 Shelf Handler Messages Explanation An SMU SHOW REQUESTS operation proceeds even if it cannot lock the appropriate mutexes after 5 seconds This might occasionally be seen under heavy load and is not a concern However if repeated requests display this message the shelf handler might be hung and a shutdown restart may be necessary When this message occurs any resulting activity log may contain entries with incomplete data HSM S DMPNOREQS shelving facility idle with no requests Explanation Normal response to an SMU SHOW REQUESTS when HSM has no out standing requests No activity log is generated on FULL Note that there may be outstand ing requests on other shelf handlers in the VMScluster M environment HSM F DUPPROCESS shelf handler already active Ex
355. ing limitations apply to the number of archive classes volume sets per archive class and members per volume set For Basic Mode Limit Plus Mode Limit Shelve archive classes 10 10 Restore archive classes 36 36 Total archive classes 36 9999 Tape volume sets 36 Unlimited Tape volumes per set 99 Unlimited Prevent Inadvertent Application To prevent inadvertent application of a new shelf definition disable all operations with the DIS ABLE ALL qualifier and value 3 1 3 Enabling and Disabling a Shelf Definition There are three options for enabling and disabling shelving operations that use a particular shelf The following table lists the options that may be used with the SET SHELF ENABLE or SET SHELF DISABLE command IF You Want to Control THEN Use Option All HSM operations using the named shelf ALL Shelving operations using the named shelf SHELVE Unshelving operations using the named shelf UNSHELVE 3 1 4 Modifying Archive Classes HSM provides multiple archive classes for you to use You cannot modify the archive class names You can however determine the devices to which an archive class is written and reas sign volumes to allow you to move archive class to offsite storage IF You Wantto THEN Use Dismount the current tape volume for specific archive SMU CHECKPOINT archive id class and continue shelving operations with the next volume in the archive class sequence a Assign a nearline
356. ing object records define as many attribute values as you can or inherit attributes from object records that describe similar objects 9 6 1 1 Naming Objects When you create an object record you give it a name that will be used as long as it exists in the MDMS database MDMS also accesses the object record when it is an attribute of another object record for instance a media type object record named as a volume attribute MDMS object names may include any digit 0 through 9 any upper case letter A through Z and any lower case letter a through z Additionally you can include dollar sign and _ underscore Basic MDMS Operations 9 21 Basic MDMS Operations 9 6 Creating Modifying and Deleting Object Records 9 6 1 2 Differences Between the CLI and GUI for Naming Object Records The MDMS CLI accepts all these characters However lower case letters are automatically converted to upper case unless the string containing them is surrounded by the double quote characters The CLI also allows you to embed spaces in object names if the object name is surrounded by the characters The MDMS GUI accepts all the allowable characters but will not allow you to create objects that use lower case names or embed spaces The GUI will display names that include spaces and lower case characters if they were created with the CLI HP recommends that you create all object records with names that include no lower case letters or spaces I
357. ing to your data retention requirements During this time you can choose to move the volume to an offsite location 12 1 2 5 Freeing a Volume When a volume s scratch date passes MDMS automatically frees the volume from allocation If the application or user negates the volume object record scratch date attribute the volume remains allocated permanently Use this feature when you need to retain the data on the volume indefinitely After the data retention time has passed you have the option of making the volume immediately available or you can elect to hold the volume in a TRANSITION state To force a volume through the TRANSITION state negate the volume object record transition time attribute You can release a volume from transition with the DCL command MDMS SET VOLUME RELEASE Conversely you can re allocate a volume from either the FREE or TRANSITION states with the DCL command MDMS SET VOLUME RETAIN Once MDMS sets a volume s state to FREE it can be allocated for use by an application once again 12 1 2 6 Making a Volume Unavailable You can make a volume unavailable if you need to prevent ongoing processing of the volume by MDMS MDMS retains the state from which you set the UNAVAILABLE state When you decide to return the volume for processing the volume state attribute returns to its previous value The ability to make a volume unavailable is a manual feature of MDMS 12 1 3 Matching Volumes with Drives MDMS matches vo
358. ing to start HSM batch queue Explanation During startup an error was encountered while trying to start the policy exe cution queue on this node There may be an accompanying message that gives more infor mation about any failure SMU W UHSMCOMM user communications failure Explanation An error was encountered while trying to establish a response mailbox for the request There may be accompanying messages that give more information about any fail ure It is possible that the request was successfully sent to the shelf handler and will execute SMU E UNDEL CATREF catalog referenced by shelf must match HSMS DEFAULT SHELF Explanation For SMU SET SHELF DELETE the delete cannot take place until the cata log for the shelf is changed to be the same as the one assigned to HSM DEFAULT SHELF Use SMU SET SHELF to change the catalog and retry the command SMU E UNDEL DEFPOL default policy definition cannot be deleted Explanation For SMU SET POLICY DELETE an attempt was made to delete one of the default policies Retry the command without specifying the default policy SMU E UNDEL DEFSHELF default shelf definition cannot be deleted Explanation For SMU SET SHELF DELETE an attempt was made to delete the default shelf Retry the command without specifying the default shelf SMU E UNDEL DEFVOL default volume definition cannot be deleted Explanation For SMU SET VOLUME DELETE an attempt was made to delete the default volume Retry the com
359. ingle volume clearing the vol ume set attribute Note that the volume set is still unbound at the deallocated volume 10 11 15Bind Volume Binding volumes is the way to create volume sets by binding one volume or volume set to another volume or volume set Normally MDMS applications such as ABS and HSM perform automatic binding when they reach end of tape However it is sometimes necessary to perform manual binding For example if a volume set has been accidentally deallocated but is still needed you may need to manually bind the set together although the retain feature does this quite well There are only two options when binding a volume set e Bind Volume ID The volume or volume set you wish to bind the current volume to The current volume is always bound to the end of the specified volume set Note that the allo cated user of the volume set must match the allocated user of the current volume for the bind to be successful e User Name If this volume is allocated to a different user than yourself you must specify that user name This requires the MDMS BIND ALL right When you bind a new volume to a volume or volume set the new volume acquires the following attributes of the volume set e Onsite Date e Offsite Date e Scratch Date The next and previous volumes are also updated appropriately 10 11 16Unbind Volume Unbinding a volume removes the volume from the volume set without deallocating it When unbinding a v
360. invalid for scheduler type or frequency Explanation You specified a schedule object for a non custom frequency or for an external scheduler option A schedule object can only be specified for frequency CUSTOM with domain scheduler type of INTERNAL EXTERNAL or SINGLE User Action Do not specify a schedule name MDMS Messages C 33 MDMS Messages NOSCRATCH scratch loads not supported for jukebox drives Explanation You attempted a load drive command for a jukebox drive User Action Scratch loads are not supported for jukebox drives You must use the load volume command to load volumes in jukebox drives NOSENDPORTS no available send port numbers for outgoing connection Explanation The server could not make an outgoing TCP IP connection because none of the send ports spec ified for the range in logical name MDMSS TCPIP SND PORTS are currently available User Action Use a suitable network utility to find a free range of TCP IP ports which can be used by the MDMS server Change the logical name MDMSS TCPIP SND PORTS in file MDMS SYS TARTUP COM Then restart the server NOSLOT not enough slots defined for operation Explanation The command cannot be completed because there are not enough slots specified in the com mand or because there are not enough empty slots in the jukebox User Action If the jukebox is full move some other volumes out of the jukebox and retry If there are not enough slots spe
361. ion You attempted to use a jukebox from a node that is not allowed to access it MDMS Messages C 30 MDMS Messages User Action The access field in the jukebox object allows local remote or all access and your attempted access did not conform to the attribute Use another jukebox NOJUKESPEC jukebox required on vision option Explanation The jukebox option is missing on a create volume request with the vision option User Action Re enter the request and specify a jukebox name and slot range NOLICENSE your current license does not support this operation Explanation The requested operation is not licensed If you are licensed for ABS OMT only you have attempted to perform an operation that requires a full ABS license User Action Use an alternative mechanism to perform the operation If this is not possible you cannot per form the operation with your current license You may purchase an upgrade ABS license to enable full ABS functionality Contact HP for details NOMAGAZINES no magazines match selection criteria Explanation On a move magazine request using the schedule option no magazines were scheduled to be moved User Action None NOMAGSMOVED no magazines were moved Explanation No magazines were moved for a move magazine operation An accompanying message gives a reason User Action Check the accompanying message correct and retry NOMEDIATYPE no media type specified when
362. ion about any failure SMU ANALYZE will stop process ing the current device SMU E CATWRITERR error encountered writing catalog no repair Explanation For SMU ANALYZE an unexpected error was encountered while writing the new catalog entry for a repair There may be an accompanying message that gives more information about any failure No repair will be made SMU E CON READERR error reading configuration definition configuration definition Explanation An unexpected error was encountered while trying to read the facility infor mation for SMU SET FACILITY SMU SET SCHEDULE SMU SHOW SHELF or SMU COPY There may be an accompanying message that gives more information about any fail ure Please check the equivalence name of HSM MANAGER and redefine as needed Also verify that the configuration file is accessible SMU W CONFIG NF configuration configuration name was not found Explanation The facility information was not found in the configuration database for SMU SET FACILITY SMU SET SCHEDULE SMU SHOW FACILITY or SMU COPY This error could also mean that the shelf handler was unable to locate the facility information during a shelf update request There may be an accompanying message that gives more information about any failure The SMU SET FACILITY command should be used to create the facility data if none exists SMU E COPYCHKERR error s verifying shelf ACE Explanation For SMU COPY an error was encountered during the initi
363. ional message indicating that a shelf handler on the speci fied node is now the shelf server This message is printed in the audit log and to the OPCOM terminal If at any time you wish to determine which node is the shelf server examine the tail of the audit log for the last such message SHSM E SHELFERROR unrecoverable shelf error data for filename lost Explanation The file could not be found or accessed in the cache or shelf archive classes This failure results in the loss of the file data This is written to the error log SHSM E SHELFINFOLOST shelf access information unavailable for file filename Explanation There was a problem accessing the ACE and or catalog information trying to unshelve a file Please use SMU LOCATE to retrieve the file information then use BACKUP to retrieve the file HSM S SHELVED file filename shelved Explanation With NOTIFY specified this message is displayed to the user upon success ful completion of an explicit shelve operation The operation is complete when the file is shelved to the initial shelving location which can be the cache or directly to the shelf HSM E SHLVERROR error shelving file filename HSM Error Messages A 9 HSM Error Messages A 2 Shelf Handler Messages Explanation HSM encountered an error shelving this file during policy execution This could be caused by such things as the file not being found possibly deleted prior to the shelving action or the device containing
364. ipt files HP recommends that you rank all your policies before putting them into a production environ ment Managing the HSM Environment 5 20 Managing the HSM Environment 5 12 Managing HSM Catalogs The following example shows how to rank a policy SMU RANK DISKS USERI HSMSDEFAULT_OCCUPANCY Policy HSMSDEFAULT_OCCUPANCY is enabled for shelving Policy History Created Revised Selection Criteria State Action File Event Elapsed time Before time Since time Low Water Mark Primary Policy Secondary Policy Verification Mail notification Output file Volume capacity Current utilization Volume lowwater mark Blocks to be reclaimed 28 OCT 190909 10 36 36 45 28 OCT 1999 11 26 21 09 Enabled Shelving Expiration date 180 00 00 00 lt none gt lt none gt 80 Space Time Working Set STWS Least Recently Used LRU lt none gt lt none gt 2271640 blocks 1818245 blocks 1817312 blocks 933 Executing primary policy definition DISKSUSERI1 date DISKSUSER1 date DISKSUSER1 DISKSUSER1 date SMITH WATCH_BATCH COM 5 28 OCT 1999 size SMITH LOCAL DB COM 1 28 OCT 1999 size SMITH PERSONAL LGP 1 SMITH REMOTE MEM 1 28 OCT 1999 size 462 219 D Total of 4 files ranked which will recover 951 blocks Volume lowwater mark can be reached 5 12 Managing HSM Catalogs When you install HSM for the first time all HSM shelving data is placed in the default catalog locat
365. is backup engine can be supported by SLS The paradigm substantially reduces the backup window because only the 512 byte header for each preshelved file is backed up the data is stored in the HSM subsystem The recommended paradigm for regular backups is e Aregular for example weekly monthly image backup Amore regular for example nightly incremental backup Two new qualifiers are provided to HSM BACKUP to implement this paradigm e NOPRESHELVED NOPRESHELVED backs up only the headers of preshelved files should be applied to image and incremental backup commands PRESHELVED the default backs up the data of preshelved files e NOSHELVED NOSHELVED backs up only the headers of shelved files should be applied to incremental backups only SHELVED causes a file fault and backs up the data of formerly shelved now unshelved files IMAGE backup always backs up only the headers of shelved files Managing the HSM Environment 5 30 Managing the HSM Environment 5 17 Consolidated Backup with HSM The following examples contain the recommended options for performing image and incremen tal backups using this paradigm Image BACKUP HSMSBACKUP IMAGE IGNORE INTERLOCK RECORD LOG NOPRESHELVED _S volume device saveset SAVESET Incremental BACKUP HSM BACKUP RECORD SINCE BACKUP NOPRESHELVED NOSHELVED LOG IGNORE INTER LOCK _ volume device saveset SAVESET Each of these commands backs up
366. isabled in the database User Action If necessary correct the setting and start the server again NODEEXISTS specified node already exists Explanation The specified node already exists and cannot be created User Action Use a set command to modify the node or create a new node with a different name NODENOPRIV node is not privileged to access database server Explanation A remote server access failed because the user making the DECnet connection is not MDMSS SERVER or the remote port number is not less than 1024 User Action Verify with DCL command SHOW PROCESS that the remote MDMS server is running under a username of MDMS SERVER and or verify that logical name MDMSS TCPIP SND PORTS on the remote server node specifies a port number range between 0 1023 NODENOTENA node not in database or not fully enabled Explanation The server was not allowed to start up because there is no such node object in the database or its node object in the database does not specify all network full names correctly MDMS Messages C 27 MDMS Messages User Action For a node running DECnet Phase IV the node name has to match logical name SYS NODE on that node For a node running DECnet Plus Phase V the node s DECNET PLUS FULLNAME has to match the logical name SYS NODE_FULLNAME on that node For a node running TCP IP the node s TCPIP FULLNAME has to match the full name combined from logical names INET HOST and INET DOMAIN N
367. isk Using the NOWAIT qualifier Using HSM 4 7 Using HSM 4 3 Finding Lost Data By using the NOWAIT qualifier HSM returns control of the user process in which the PRESHELVE or SHELVE command was entered The operation is then carried out in the context of the HSM system process 4 2 3 Unshelving Files You can cause a shelved file to be returned to primary storage through one of the following methods Enter a DCL command to read write extend or truncate a shelved file This causes a file fault that initiates an implicit HSM unshelving operation e Use the UNSHELVE command to explicitly unshelve a file This operation requires that you have read access to the file When you access the data of a shelved file through a file fault you will receive the follow ing message as the file is being routinely unshelved EDIT AARDVARKS TXT HSM I UNSHLVPRG unshelving file 1 DUAO MY_DIR AARDVARKS TXT Canceling an UNSHELVE Request To cancel an implicit unshelving of a file enter Ctrl Y This action immediately stops the opera tion and results in the file remaining at its status before you entered the command that caused the file to be unshelved To stop an explicit unshelving operation enter Ctrl Y The operation will complete on the file that is currently being unshelved All files that were unshelved before you entered the Ctrl Y will remain unshelved To cancel any remaining pending operations you must reenter the comm
368. isk on the node All cache disks must be VMScluster All drives must be visible to all shelf server nodes Define HSM CATALOG with same definition on all nodes Define HSsM MANAGER with same definitions on all nodes Search shelf handler audit log for last server startup Startup HSM on one or more defined server nodes IG Section 1 5 IG Section 1 5 7 8 Online Disk Problems You can enable HSM operations on any or all of your online disks in the cluster as long as those disks are served and accessible to all nodes in the VMScluster system HSM operations on purely local disks are not supported for HSM Version 2 2 The online disks must be mounted and accessible to all nodes in the cluster Any suitably privi leged user can perform HSM operations on system mounted disks Access to group mounted disks are subject to the same restrictions for HSM as normal operations Process mounted disks are ineligible for HSM operations HSM keeps a file open on all disks enabled for HSM operations this file must be closed if the disk needs to be dismounted for any reason To do this enter the following commands e SMU SET VOLUME DISABLE ALL to close the file on the disk e Ifthe disk is an HSM cache disk you also need to enter one of the following commands SMU SET CACHE DELETE to close the file following a cache flush this keeps the file open until the flush is complete but maintains full access to the flush may take many
369. istics as of 24 MAY 1991 10 11 31 Line SVA 0 Receive buffers 6 lt value to change Controller normal Protocol Ethernet Service timer 4000 Hardware address 08 00 2B 0D D0 5F Device buffer size 1498 4 Enter NCP gt define line sva 0 receive buffers 30 NCP gt exit Requirement For the changed parameters to take effect the node must be rebooted or DECnet must be shut down Remote Devices 14 5 Remote Devices 14 4 Monitoring and Tuning Network Performance 14 4 5 Changing Network Parameters for DECnet Plus Phase V The Network Control Language NCL is used to change DECnet Plus network parameters The transport parameters MAXIMUM RECEIVE BUFFERS MAXIMUM TRANSPORT CON NECTIONS and MAXIMUM WINDOYW can be adjusted by using NCL s SET OSI TRANS PORT command For example NCL SET OSI TRANSPORT MAXIMUM RECEIVE BUFFERS 4000 default value NCL SET OSI TRANSPORT MAXIMUM TRANSPORT CONNECTIONS 200 default value NCL SET OSI TRANSPORT MAXIMUM WINDOWS 20 default value To make the parameter change permanent add the NCL command s to the SYS MAN AGER NETS OSI TRANSPORT STARTUP NCL file Refer to the DENET Plus DEC net OSI Network Management manual for detailed information 14 4 6 Resource Considerations Changing the default values of line receive buffers and the pipeline quota to the values of 30 and 45000 consumes less than 140 pages of nonpaged dynamic memory In addition you may need to increa
370. it You must create volumes explicitly through the MDMS CREATE VOLUME command or implicitly through the inventory or load operations 12 1 2 2 Initializing a Volume Caution MDMS expects the internally initialized volume label on the physical medium will match the printed label Always initialize volumes so the recorded volume labels match the printed labels If the recorded volume label on the tape does not match the printed label on the cartridge MDMS operations will fail Use the MDMS initialize feature to make sure that MDMS recognizes volumes as initialized Unless you acquire preinitialized volumes you must explicitly initialize them MDMS before you can use them If your operations require you can initialize volumes that have just been released from allocation When you initialize a volume or create a volume object record for a preinitialized volume MDMS records the date in the initialized date attribute of the volume object record 12 1 2 3 Allocating a Volume Typically applications request the allocation of volumes Only in rare circumstances will you have to allocate a volume to a user other than ABS or HSM However if you use command pro cedures for customized operations that require the use of managed media you should be familiar with the options for volume allocation Refer to the ABS or HSM Command Reference Guide for more information on the MDMS ALLOCATE command Once an application allocates a volume MDMS allows r
371. ith the specified media type e Location Used with media type select a volume in the specified location e Jukebox Used with media type select a volume in the specified jukebox e Pool Select a volume in the specified pool e Like Volume Select a volume like the specified volume with the same media type pool and placement e Bind Volume Select a volume like the specified volume with the same media type pool and placement and bind the new volume to the specified volume in a volume set If you specify a volume count of more than one then that many volumes will be allocated and placed in a volume set If you also use the Bind Volume selection option the new volume set is bound to the specified volume set You can also specify that you wish to change certain attributes of the volume as follows e Format The record format used on the tape volume Options are ASCII BACKUP EBCDIC NONE RMUBACKUP e Record Size An integer e Block Factor An integer e Scratch Date The date when the volume s data becomes obsolete and the volume should be deallocated MDMS will automatically deallocate the volume at this time e Transition Time When the volume is deallocated the volume should go into the Transition State and remain in this state until the transition time expires after which it will go into the Free State If not specified the volume goes into the Free State immediately on deallocation 10 11 14Dea
372. ithout an operator reply Set automatic reply to enable this feature and clear to require an operator response Please note that some operations cannot be polled and always require an operator reply The OPCOM message itself clearly indicates if a reply is needed or automatic replies are enabled The device attribute is the OpenVMS device name for the drive In many cases you can set up the drive name to be the OpenVMS device name and this is the default when you create a drive However the drive name must be unique within the domain and since the domain can consist of multiple clusters there may be duplicate device names across the domain In this case you must use different drive names from the OpenVMS device names Also you can specify simple or descriptive drive names which are used for most commands and hide the OpenVMS device in the device name attribute Media Management 10 5 Media Management 10 3 Drives 10 3 4 Disabled By default drives are enabled meaning that they can be used by MDMS and its applications However you may wish to disable a drive from use because it may need repair or be used for some other application Set the disabled flag to disabled the drive and clear the flag to enable the drive 10 3 5 Drive Number If the drive is in a robotically controlled jukebox and the jukebox is controlled by MRD you must set the drive number to the relative drive number in the jukebox used by MRD Drives in jukeboxes are
373. iting policy definition policy name Explanation For SMU SET POLICY an unexpected error was encountered while adding or modifying a policy There may be an accompanying message that gives more information about any failure Please check the equivalence name of HHM MANAGER and redefine as needed Also verify that the policy file is accessible SMU I POLICY CREATED policy policy name created Explanation The policy was successfully created SMU I POLICY DELETED policy policy name deleted Explanation The policy was successfully deleted SMU W POLICY NF policy policy name was not found Explanation For SMU SET POLICY SMU SET SCHEDULE SMU SHOW POLICY or SMU RANK the policy was not found in the policy database Verify your configuration then retry the command SMU I POLICY UPDATED policy policy name updated Explanation The policy was successfully updated SMU E PLUS MODE ONLY feature is a plus mode feature see SET FACILITY MODE Explanation For SMU SET ARCHIVE or SMU SET DEVICE the use of this qualifier is for Plus mode only SMU W PREREQSW required prerequisite software Save Set Manager not found Explanation For SMU REPACK the Save Set Manager software was not found on the system or exists at a version below the minimum that is required Please check the docu mentation for this version of HSM and install the appropriate version of Save Set Manager SMU I PROCESSING processing input device device name Expl
374. its revision date is not changed by the shelve operation This precludes unnecessarily long incremental backup times when infrequently used files are shelved 5 8 2 2 Using Multiple HSM Archive Classes for Backup Safety of shelved data is ensured by establishing multiple archive classes per shelf Through the multiple archive classes duplicate copies of your data are automatically made when files are shelved HP recommends that one or more of these copies be stored in the same place as your system backups perhaps in a remote location and preferably in a vault Managing the HSM Environment 5 10 Managing the HSM Environment 5 9 Finding Lost User Data 5 8 2 3 Storing HSM Archive Classes Offsite The SMU CHECKPOINT command allows you to dismount the current tape used for shelving that is associated with a specific archive class In this way copies can be removed from the sys tem and separately stored for disaster recovery purposes The next shelve operation for the archive class will be applied to the next tape volume for the archive class 5 8 3 Backing Up Data Stored in an Online Cache Because an online cache is part of online storage it is backed up as part of your defined backup strategy If however you use the online cache as a staging area to a shelf there are some addi tional considerations for ensuring the information in the cache is backed up 5 8 3 1 Flushing the Cache When you flush the cache data that was stored in
375. ives in the specified jukebox were found Explanation When allocating a drive no drives in the specified jukebox were found User Action Check jukebox name and retry command NODRVSLOC no drives in the specified location were found Explanation When allocating a drives no drives in the specified location were found User Action Check location name and retry command NODRVSMED no drives with the specified media type were found Explanation When allocating a drive no drives with the specified media type were found User Action Check media type and retry command or specify the media type for more drives NODRVSNOD no drives on the specified node were found Explanation When allocating a drive no drives on the specified node were found User Action Check the node name and retry command NODRVSVOL no drives that can support the specified volume were found Explanation When allocating a drive no drives that could support the specified volume were found User Action Check the volume ID and retry command or check and adjust volume attributes to match a valid drive NODUNDEFINED referenced node s AZ undefined Explanation When creating or modifying a valid object the object s record contains a reference to a node name that does not exist One or more of the specified nodes may be undefined User Action Check spelling of the node names and retry or create the node objects in the database
376. ivities in the HSM Environment 6 3 Operator Activities in the HSM Environment 6 5 Working with Automated Loaders for HSM Plus Mode 6 5 Working with Automated Loaders for HSM Plus Mode If HSM needs to use a volume or a volume contained in a magazine that is not currently imported into the loader there is a series of OPCOM requests and actions that need to occur for HSM to continue without failing 6 5 1 Providing the Correct Magazine The following series of operator actions and replies occur when HSM needs to use a volume contained in a magazine that is not imported into a loader 1 HSM issues an OPCOM request asking for the volume to be loaded into the jukebox 9525252555555 OPCOM 08 Jan 2003 15 28 59 72 5555555 5 Request 65514 from user HSMSSERVER on SLOPER Please import volume AEL008 or its associated magazine into jukebox contain ing drive _SLOPERSMKA500 2 The operator then tells MDMS to export the magazine currently in the loader STORAGE EXPORT MAGAZINE MAG002 3 MDMS then issues a message requesting that the magazine currently imported be removed from the jukebox and performs the logical export S S S SS S S S S OPCOM 08 Jan 2003 15 30 15 76 S Message from user SLS on SLOPER Remove Magazine MAG002 from Tape Jukebox JUKEBOX1 SLS S MAGVOLEXP magazine volume AEL001 exported from tape jukebox SLS S MAGVOLEXP magazine volume AEL002 exported from tape jukebox SLS S MAGVOLEXP magazine volume AE
377. k 5 1 Restoring Volumes 5 31 shutting down the shelf handler 5 38 system files and disks 5 5 Using OpenVMS BACKUP 5 9 using SMU LOCATE 5 11 Maximum capacity 5 14 MDMS entering appropriate information 5 38 Modify file headers 1 4 Multiple archive classes 5 10 N NFS 5 1 access 5 6 file faults 5 6 Logical Names 5 8 O Operating efficiency 5 15 P PATHWORKS 5 1 access 5 6 5 8 file faults 5 7 logical names 5 8 Performance Impeded 5 19 Policy audit log 5 34 concepts 5 14 creating 5 15 error logs 5 23 high water mark 5 16 implementing a balance 5 16 low water mark 5 18 maximum capacity 5 14 model 5 15 5 16 ranking execution 5 20 reactive 5 18 shelving process 5 15 situations 5 16 volume occupancy 5 16 R Recovering boot up files 5 13 critical files 5 5 HSM catalogs 5 12 HSM database 5 12 user data 5 12 Reinitializing log files 5 34 Renaming Disks 5 3 Repack archive class 5 23 archive classes 5 23 Repair catalog 5 27 Replacing archive classes 5 1 lost or damaged shelf volume 5 1 replacing a lost damaged shelf volume 5 25 Restoring disks and files 5 29 volumes 5 31 Restoring files to a different new disk 5 4 S Shelf handler audit log 5 35 error log 5 35 restart 5 38 shutdown 5 38 Shelved files access control lists 5 8 copying 5 1 Shelving catalog 5 11 disable 5 38 goal not reached 5 17 maintaining policies 5 13 Site disaster 5 26 SLS SBK files 5 29 set up 5 29 SMU CHECKPOINT command 5 11 5 39
378. k spelling of the magazine name and retry or create the magazine object in the database MBLISEXIT mailbox listener exited Explanation The mailbox listener has exited due to an internal error condition The mailbox listener is the server s routine to receive local user requests through mailbox MDMS MAILBOX User Action The mailbox listener should be automatically restarted Provide copies of the MDMS command issued the database files and the server s logfile for further analysis MBLISRUN listening on mailbox AZ logical AZ MDMS Messages C 24 MDMS Messages Explanation The server has successfully started the mailbox listener MDMS commands can now be entered on this node User Action None MEDIATYPEEXISTS specified media type already exists Explanation The specified media type already exists and cannot be created User Action Use a set command to modify the media type or create a new media type with a different name MEDUNDEFINED referenced media type s AZ undefined Explanation When creating or modifying a valid object the object s record contains a reference to a media type that does not exist One or more of the specified media types may be undefined User Action Check spelling of the media types and retry or create the media type objects in the database MOVEINCOMPL move is incomplete Explanation When moving volumes into and out of a jukebox some of the volumes were not moved U
379. know that HSM is on the system e Certain qualifiers on the OpenVMS DIRECTORY command indicate the shelved status of files e File access to certain files takes longer than expected You see very few volume full or quota exceeded errors e You see messages that refer to shelving or unshelving 4 1 1 Identifying Shelved Data using the DIRECTORY Command As described in Chapter 1 HSM shelves file data but retains the file header information in online storage You can use the DCL DIRECTORY command with specific qualifiers to determine if a file is shelved To find out which if any files have been shelved use one of the following qualifiers on the DCL DIRECTORY command e FULL e SHELVED STATE e SIZE ALL Using HSM 4 1 Using HSM 4 1 What the User Sees in an HSM Environment 4 1 1 1 DIRECTORY FULL The DIRECTORY FULL command lists all available information about a file as contained in the file header Example DIR FULL Directory SYSSSYSDEVICE COLORADO CONFIG LOG TXT 1 File ID 3346 2 0 Size 56 0 Owner COLORADO Created 08 Jan 2003 12 04 56 85 Revised 08 Jan 2003 14 24 01 41 7 Expires None specified Backup No backup recorded Effective None specified Recording None specified File organization Sequential Shelved state Shelved File attributes Allocation 0 Extend 0 Global buffer count 0 Version limit 3 Record format Variable length maximum 137 bytes Record attribut
380. l be conflicts during the conversion Instead of stopping the conversion program and asking you about each conflict the conversion program generates the following file during each conversion MDMS MDMS LOAD_DB_CONFLICTS_nodename COM Where nodename is the name of the node you ran the conversion on This file is not meant to be executed it is there for you to look at and see what commands executed and caused a change in the database This change is flagged because there was already an object in the database or this command changed an attribute of the object An example could be that you had two media types of the same name but one specified compressed and one other specified non compressed This would cause a conflict MDMS V4 does not allow two media types with the same name but different attributes What you see in the conflict file would be the command that tried to create the same media type You will have to create a new media type Table D 1 shows the symbols in TAPESTART COM file and what conflicts they may cause At the completion of the conversion of the database files you will see a message that notes the objects that where in an object but not defined in the database For example the conversion program found a pool in a volume record that was not a pool object Table D 1 Symbols in TAPESTART COM TAPESTART COM MDMS V4 Attribute or E Symbol Object Possible conflict ALLOCSCRATCH If defined adds the If the ALLOCSCRATCH s
381. l be used for the transmitter window The DECnet Plus defaults MAXIMUM TRANSPORT CONNECTIONS 200 and MAXI MUM RECEIVE BUFFERS 4000 produce a MAXIMUM WINDOW of 20 Decreasing MAXIMUM TRANSPORT CONNECTIONS with a corresponding increase of MAXIMUM WINDO may improve RDF performance but also may negatively impact other applications run ning on the system 14 4 3 Changing Network Parameters This section describes how to change the network parameters for DECnet Phase IV and DECnet PLUS Remote Devices 14 4 Remote Devices 14 4 Monitoring and Tuning Network Performance 14 4 4 Changing Network Parameters for DECnet Phase IV The pipeline quota is an NCP executor parameter The line receive buffers setting is an NCP line parameter The following procedure shows how to display and change these parameters in the permanent DECnet database These changes should be made on each node of the network Table 14 1 How to Change Network Parameters Step Action 1 Enter run sys system NCP NCP gt show executor characteristics Result Node Permanent Characteristics as of 24 MAY 1991 10 10 58 Executor node 20 1 DENVER Management version V4 1 0 Pipeline quota 10000 2 Enter NCP gt define executor pipeline quota 45000 NCP gt show known lines Result Known line Volatile Summary as of 24 MAY 1991 10 11 13 Line State SVA 0 on 3 Enter NCP gt show line sva 0 characteristics Result Line Permanent Character
382. l device name and an RDF characteristic name Example Device 1 MIAO MIAO Check this file to make sure that all RDF characteristic names are unique to this node Remote Devices 14 1 Remote Devices 14 3 Using RDF with MDMS 14 3Using RDF with MDMS The following sections describe how to use RDF with MDMS 14 3 1 Starting Up and Shutting Down RDF Software Starting up RDF software RDF software is automatically started up along with then MDMS software when you enter the following command QSYSSSTARTUP MDMSS STARTUP Shutting down RDF software To shut down the RDF software enter the following command SYSSSTARTUP MDMS SHUTDOWN 14 3 2 The RDSHOW Procedure Required privileges The following privileges are required to execute the RDSHOW procedure NETMBX TMP MBX In addition the following privileges are required to show information on remote devices allo cated by other processes SYSPRV WORLD 14 3 3 Command Overview You can run the RDSHOW procedure any time after the MDMS software has been started RDF software is automatically started at this time Use the following procedures QTTI RDEV RDSHOW CLIENT TTI_RDEV RDSHOW SERVER node name QTTI_RDEV RDSHOW DEVICES node name is the node name of any node on which the RDF server software is running 14 3 4 Showing Your Allocated Remote Devices To show remote devices that you have allocated enter the following command from the RDF client node
383. laces any pre existing list Consider the following examples MDMS CREATE GROUP COLORADO NODES DENVER SPRINGS PUEBLO The group Colorado contains nodes Denver Springs and Pueblo MDMS SET GROUP COLORADO NODE ASPEN The group Colorado now contains nodes Denver Springs Pueblo and Aspen With no list quali fier specified ADD is applied by default MDMS SET GROUP COLORADO NODE ASPEN REPLACE The group Colorado now contains only node Aspen All MDMS objects now accept the INHERIT qualifier on Create This allows you to create new objects and inherit most attributes of an existing object This provides an easy way to clone objects then apply the any differences in individual commands It saves the effort of typing in all the attributes once a prototype has been established In general only non protected fields of objects can be inherited In addition the object list capability allows you to clone multiple objects in a single command For example MDMS CREATE DRIVE DRIVE 2 DRIVE 3 DRIVE 4 INHERIT DRIVE 1 This command creates three drives and applies all non protected attributes of DRIVE 1 to the three new drives 9 2 5 Symbols MDMS now supports symbols on all objects which command procedures can read and process To use symbols enter a Show command for a single object symbols are not supported for object lists The symbols are generally in the format MDMS INQ qualifier where qualifier is almost always the associated
384. lass name and a popup menu appears Click on Cre ate to display a create screen for that class e From the task view expand the Create task and click on one of the class names that appear e From the task view right click on the create task and a popup menu appears Click on the appropriate class name Once a create screen appears except for catalogs you are prompted for two pieces of informa tion A name for the new object or objects e An inherit object Basic MDMS Operations 9 8 Basic MDMS Operations 9 4 Graphical User Interface The domain and object views allow creation of only one object at a time whereas the task view allows a comma separated list of new objects and also ranges in the case of volumes Depend ing on the view enter the name or names of the new objects you wish to create The inherit object allows you to copy most of the attributes from the inherit object to the object being created If you wish to specify an inherit object use the combo box to select the existing inherit object This must be the same type of object except in the case of restores in which case you can inherit from either a restore or a save object After clicking create the new object attribute and operations screens appear which you can then modify to your liking In the task view this screen modifies all the newly created objects Figure 9 3 Drive Create Screen za Basic MDMS Operations 9 9 Basic MDMS Oper
385. lasses Archive list HSMSARCHIVEO1 i Restore list HSMSARCHIVEO1 i Split Merge state COPY Alternate Catalog DISKSUSER1 HSM for a volume ULT_SHELF Shelving is enabled water mark detection is disabled Occu k quota exceeded detection is disabled 254 32 8 28 44 HSMSDEFAULT_OCCUPANCY og for a shelf ving and Unshelving CATALOG HSMSCAT1 SYS 746 26 700 91 1 T d d CATALOG HSM CAT2 SYS You may notice that the catalogs change positions during the split merge between While a split merge is in progress certain HSM operations may proceed normally some HSM operations are suspended while certain others are rejected Suspending an operation means that the operation is queued until the split merge is completed while rejection means that the command must be re entered at a later time The following table indicates the disposition of requests during a split merge Managing the HSM Environment 5 22 Managing the HSM Environment 5 13 Repacking Archive Classes Table 5 4 HSM Request Disposition During a Split Merge Operation Operation Disposition Pre shelve to cache Processed Pre shelve to tape Suspended Unshelve from cache Processed Unshelve from tape Processed Unpreshelve Processed Cache flush to tape Suspended Compatible split merge Processed Incompatible split merge Rejected Repack archive class Suspended All other requests Processed HSM initiates split merge operations in t
386. ld be placed in SYSSSTARTUP HSM LOGICALS COM Managing the HSM Environment 5 6 Managing the HSM Environment 5 6 DFS NFS and PATHWORKS Access Support For NFS served files file events device full and user quota exceeded occur normally with the triggering process being the NFSSSERVER process The quota exceeded event occurs normally because any files extended by the client are charged to the client s proxy not NFS SERVER If the new logical is defined for the NFSSSERVER the fault will occur on OPEN and will appear transparent to the client with the possible exception of messages as follows cat usr bubble shelve test txt 2 NFS2 server bubble not responding still trying NFS2 server bubble ok The first message appears when the open doesn t complete immediately The second message ok occurs when the open completes The file contents in the above example are then dis played Typing Ctrl C during the file fault returns the user to the shell Since the NFS server does not issue an IO CANCEL against the faulting I O the file fault is not canceled and the file will be unshelved eventually Itis not possible to determine whether a given file is shelved from the NFS client Further like DFS devices the SHELVE and UNSHELVE commands are not available to NFS clients 5 6 3 PATHWORKS Normal attempts to access a shelved file from a PATHWORKS client initiate a file fault on the server node If the file is unshelved quickly enough
387. le shelved and preshelved files e Optionally adding qualifiers to manual system backups e Optionally adding qualifiers to user backups You set up SLS to use HSM BACKUP by defining the following logical name DEFINE TABLE LNM SLS VALUES SLS HSM BACKUP 1 Depending on the type of backups or restores you are performing you may want to include the new NO SHELVED and NO PRESHELVED qualifiers as described in Section 5 17 3 in the following cases e In the SBK files for regular system backups e In the Manual System Backup screen from the SLSOPER menu for special system back ups e In the QUALIFIERS qualifier in the STORAGE SAVE command This paradigm is not yet supported for Archive Backup System ABS 5 17 2 Preshelving Files The key to this paradigm is preshelving most files on the system From HSM V2 0 preshelved files have a unique state and are flagged as preshelved in the file header Since the data of a preshelved file remains online the file can be modified at any time If a preshelved file is modi fied extended or truncated a new HSM function changes the file from preshelved to unshelved Also in V2 0 and later the eligibility for preshelving files is the same as shelved file and the following types of files cannot be preshelved e Open files e Directory files Files beginning with HSM e Files marked NOSHELVABLE e Files marked NOMOVE e Files on disks with shelving disabled e Bad files Managing the H
388. le space on the disk is fragmented the unshelve operation fails To avoid this problem you should specify that files marked contiguous are ineligible for shelving By default files marked contiguous are not shelv able Placed Files Placed files are assigned specific logical block numbers on the disk volume when created When such a file is shelved and later restored it is virtually guaranteed that they cannot be restored to the originally assigned logical blocks If the file must be assigned to the assigned logical blocks it should not be shelved One way of disabling such shelving is to disable shelving on all placed files on the volume Another way is to mark the file as not shelvable using an OpenVMS com mand By default HSM allows shelving on placed files To prevent this behavior you need to specifi cally disable shelving of placed files for the volume 2 8 Cache Usage The cache is storage comprised of one or more online disk storage devices or magneto optical devices You can use cache volumes for one of two purposes e Asatemporary online staging area to speed shelving operations A cache used for this pur poseissetup with a limited block size and a regular flush interval Shelving operations are directed initially to the cache and complete in a similar amount of time as a normal file copy At a later time the cache is flushed to the archive classes defined for nearline or offline storage and files in the cache are deleted
389. le that no longer exists Please see the SHP error log for more information SSHELVE W NOSUCHPOLICY no such policy found Explanation This warning message alerts you that the policy you are specifying cannot be found There may be an accompanying message that gives more information about the fail ure Please check the PEP and SHP error logs form more information SSHELVE W NOSUCHREQ no such request found Explanation The CANCEL qualifier was used to cancel a request that has already been completed by the shelf handler SSHELVE E NOTSHELVED file filename was not shelved Explanation This error message informs you that the file was not shelved This could be due to an error during the shelving process or for a restore request the file wasn t shelved Please see the SHP error log for more information SSHELVE W OPINCOM shelving operation incomplete for file filename HSM Error Messages A 13 HSM Error Messages A 2 Shelf Handler Messages Explanation The shelving operation was unable to complete due to an error Please see the SHP error log for more information SSHELVE S QUEUED file filename queued for shelving Explanation When the NOWAIT LOG qualifiers are used this message indicates that your request has been queued for processing SSHELVE E RSPCOMM response communications error Explanation SMU encountered an unexpected error while trying to read a response from the shelf handler There may be an accompanying message
390. le the operator interface enter the following com mand REPLY ENABLE CENTRAL TAPES 5 S S SS S S S S OPCOM 08 Jan 2003 14 25 46 05 5555 Operator _SYSOO1 RTA2 has been enabled username SYSTEM S S SSSSSS S OPCOM 08 Jan 2003 14 25 46 06 5353353555333 Operator status for operator _SYSOO1SRTA2 CENTRAL TAPES 6 2 Loading and Unloading Single Tapes for HSM Basic Mode When an HSM operation is directed at a nonmagazine loader tape drive the operator is responsi ble for loading and unloading tapes on the drive The following messages apply to nonmagazine loader tape drives Operator Activities in the HSM Environment 6 1 Operator Activities in the HSM Environment 6 2 Loading and Unloading Single Tapes for HSM Basic Mode 6 2 1 Load Volume No Reply Needed SLDS OPCOM 28 0CT 13 52 47 09 3 3 Message from user HSMSSERVER on MYNODE Please mount volume HSZ001 in device _ no reply needed This request issued by HSM requests that you load a specific volume label into the specified drive Do not issue a REPLY to this message 6 2 2 Load Volume S S S SS SS S S S OPCOM 28 OCT 13 52 48 04 ICI Request 2324 from user HSMSSERVER on MYNODE Please mount volume HSZ001 in device _ OTHERNODE This request issued by the OpenVMS mount command requests that you load a specific volume label into the specified drive Do one of the following e If the volume exists load the requested volume into the drive e
391. leeleeeee eens 2 21 2 9 2 3 High Water Mark Trigger o ooooooooooooorrr II 2 22 2 9 2 4 Volume Ful Tneper sock EINER We eee EUR SAN MIR EEUU Sees 2 22 2 9 3 File Selection rta S es A neces Ea 2 22 2 9 4 Policy Goal 42e A e c et ec e ceu x cus ur ET eet 2 24 2 9 5 Make Space Requests and Policy 0 0 eee cece ete eee eens 2 24 2 10 Schedule 4 5 e eet ee tee efe eee secet ed e tee lee dese st 2 25 2 10 1 Online Volumes 6 ue eR REN ARRESTED UR HERREN SH AUR De EAR DR e y See 2 25 2 10 2 Execution Timing and Interval ooo ooococoocororr I 2 25 2 10 3 ServerNode bee e DT ERR CREER LU REDE EE ee Ses 2 25 2 11 HSM System Files and Logical Names ooo ooccoocococor ccc eens 2 26 2 11 11 SHSMSMANAGER eh IERI RARO we ee ok AA A 2 26 2 11 27 HSMSEOG mios Cete eb re A ing b Aot end A C waa 2 27 2 113 HSMSREPACK ci A A STR S 2 27 3 Customizing the HSM Environment 3 1 Configuring a Customized HSM Environment eseeeeee ee 3 1 3 1 1 Customizing the HSM Facility ooooocoocoocrrcr I n eee 3 1 3 1 2 Creating Shelf Definitions 0 AA AAA ee IA REM SE 3 1 3 1 3 Enabling and Disabling a Shelf Definition 0 0 00 eee eee eee 3 2 3 1 4 Modifying Archive Classes csse Rue eb ERUEREDRLPSUUPEREPRT SRI ghee ay PEG UPS 3 2 3 1 5 Creating Device Definitions ss syss iwon a e n 3 3 3 1 6 Modifying Device Definitions oooocococoocor t 3 3 3 1 7 Enabling and Disabling a Volume Definition 0 00
392. lementation If however you do not have an existing strategy defined you will need to define one You need to consider the following things e What data needs to be saved e How often does that data need to be saved e Where does the data need to be stored when saved 5 8 1 2 Using OpenVMS BACKUP to Save the Files The OpenVMS BACKUP utility provides two major methods of backing up your files image backup also called full backup and incremental backup The image backup saves all files on a disk into a save set The incremental backup saves only those files that have been created or modified since the last image or incremental backup Managing the HSM Environment 5 9 Managing the HSM Environment 5 8 Using Backup Strategies with HSM 5 8 1 3 Maintaining a Manual Copy of the Files If you do not want to use a general backup strategy or product to back up your critical HSM files or if you just want an additional way to ensure they are safe you can always create manual cop ies of the files Just use the OpenVMS COPY command to copy the files to another location probably on another disk If you do this HP recommends you develop an automated procedure to do this on a regular basis 5 8 2 Backing Up Shelved Data Once data is shelved there are several mechanisms you can use to ensure there is a backup copy of that data e Use multiple archive classes for each shelf e Move archive classes to offsite locations e Use OpenVMS BACKUP to
393. lems with policies should first be examined by reading the following files HSM LOG HSM PEP AUDIT LOG Policy audit log e HSM LOG HSM PEP ERROR LOG Policy error log In addition details on specific policy runs can be found in the output file specified with SMU SET POLICY OUTPUT Because policy runs usually involve shelving operations please see also Section 7 14 if the shelving operations of the policy fail rather than the policy itself Table 7 16 shows problems that can occur with policy execution Table 7 16 Policy Problems Problem Solution Reference No policies will run policy pro SMU STARTUP HSM Command Reference cess not started Guide Preventative policy defined but SMU SET SCHEDULE HSM Command Reference never runs Policies shelve recently accessed files Reactive policy runs on system disk Policy runs on wrong node Selection based on read access does not work Policy does not reach low water mark Files are shelved unshelved too often Nightly backups too long unshelving occurs Unintended mass shelving on volume SMU SET POLICY ELAPSED SMU SET VOLUME DIS ABLE OCC HIGH QUOTA SET POLICY SERVER node SET VOLUME RETENTION Selection criteria too narrow broaden criteria Policy criteria not optimal rede fine criteria Policy shelves files that have been modified during backup interval redefine policy See Section 7 5 Guide HSM Command Reference Guide HSM Co
394. les on all nodes It is also vital that the files contained within HSM CATALOG and HSM MANAGER are given the highest safety protec tion available including e Shadowing the devices e Backing up the HSM system files regularly Specifically the HSM catalog must be given the highest priority An unrecoverable loss of the catalog will usually mean that you have lost access to all shelved file data unless you have kept logs of locations of the data by regular SMU LOCATE commands and stored them away Other restrictions include e Do not redefine any of these logical names while HSM is running You can move the files and redefine the logical names while HSM is shut down however e Do not delete any of these files while HSM is running You can delete the recovery logs HSMS SHP REQUEST SYS while HSM is shut down if you do not wish recovery to occur after startup HSM automatically recreates the recovery logs on startup if they do not exist Do not rename any of these files You can however rename the directories while HSM is shut down but never Solving Problems with HSM 7 22 the file names Solving Problems with HSM 7 17 HSM Limitations e If these files are deleted or otherwise unavailable you should shut down HSM recover the files from a BACKUP copy and restart HSM Please note that any changes to the files since the last BACKUP interval will be lost e Ifthe HSM catalog has to be recovered the access informa
395. lid absolute time Explanation The item list contained an invalid absolute date and time Time cannot be earlier than 1 Jan 1970 00 00 00 and cannot be greater than 7 Feb 2106 06 28 15 User Action Check that the time is between these two times INVALIDRANGE invalid volume ID or invalid range specified Explanation The specified volume ID volume range slot range or space range is invalid MDMS Messages C 15 MDMS Messages User Action A volume ID may contain up to 6 characters A volume range may contain up to 1000 volume IDs where the first 3 characters must be alphabetic and the last 3 may be alphanumeric Only the numeric portions may vary in the range Examples are ABCO00 ABC999 or ABCDOI ABCD99 A slot range can contain up to 1000 slots and must be numeric Also all slots in the range must be less than the slot count for the jukebox or magazine Example 0 255 for a slot count of 256 A space range can contain up to1000 spaces where the first and last spaces must have the same number of characters Spaces must be within the range defined for the location Examples 000 999 or Space Al Space C9 INVCONSOLVAL invalid value for consolidation savesets or volumes Explanation You specified an invalid value for consolidation savesets or volumes User Action Use a value in the range 0 to maximum integer INVDBSVRLIS invalid database server search list Explanation The logical name MDMS DATABASE SERVERS co
396. line or offline tape devices in an HSM environment Magazine Loader Problems for HSM Basic Mode Problems associated with the various magazine loaders supported by HSM Basic mode which may be dependent on the bus architecture to which they are connected Robotic Device Problems for HSM Plus Mode Problems associated with the various robot ically controlled devices supported by HSM Plus mode which may be dependent on the bus architecture to which they are connected Solving Problems with HSM 7 1 Solving Problems with HSM 7 2 Troubleshooting Tools Shelving Problems Problems associated with the shelving and preshelving operations in general Unshelving Problems Problems associated with the unshelving and file fault operations in general Policy Problems Problems associated with preventative and reactive policy execution and policy tuning HSM System File Problems Problems associated with the loss and corruptions of the sys tem files that HSM uses for its operation HSM Limitations Some limitations to the extent that HSM can be used on online volumes and recovery actions if these limits are reached The sections describing problems are in the following format Problem category A problem category from the above list Some problems may appear in several categories Read the above list to help determine the category of the problem you are experiencing Each problem category begins by describing the proper usage or configurati
397. llocate Volume MDMS normally deallocates volumes when their scratch date expires However you can deallo cate volumes manually in order to free them up earlier than planned You can deallocate your own volumes or with the appropriate rights deallocate volumes allocated to other users If the volume is in a volume set the volume is also unbound from the volume set The following options are available when you deallocate a volume e Deallocation State You can specify if the volume goes into the transition state or the free state on deallocation The transition state disallows allocation until the transition time expires You should make sure a transition time is specified otherwise the domain default transition time is used If you select the free state the volume immediately goes into the free state Media Management 10 25 Media Management 10 11 Volumes e Transition Time If the deallocation state is set to Transition this is the length of time the volume remains in the transition state If not specified the volume s existing transition time is used or the domain default transition time is used e User Name If the volume is allocated to a user other than yourself you must specify that user name for the deallocation to occur You need MDMS DEALLOCATE ALL for this option Deallocate Volume Set If the volume is in a volume set the entire volume set is deallo cated by default You can avoid this by deallocating only the s
398. llocate the Basic mode volumes for HSM use STORAGE ALLOCATE TK85K VOLUME HS0001 USER HSM SERVER STORAGE ALLOCATE TK85K VOLUME HS0002 USER HSM SERVER STORAGE ALLOCATE TK85K VOLUME HS0003 USER HSMSSERVER STORAGE ALLOCATE TK85K VOLUME HS0004 USER HSM SERVER STORAGE ALLOCATE TK85K VOLUME HS1001 USER HSM SERVER STORAGE ALLOCATE TK85K VOLUME HS1002 USER HSM SERVER STORAGE ALLOCATE TK85K VOLUME HS1003 USER HSM SERVER STORAGE ALLOCATE TK85K VOLUME HS1004 USER HSM SERVER Create a volume set for each archive class all but the first volume in an archive class MUST BE APPENDED to the first volume in the archive class Also the given user name must be correct NOTE THE ORDER OF COMMANDS THIS IS SIGNIFICANT TO GET THE CORRECT PROGRESSION OF VOLUMES IN THE ORDER HSx001 HSx002 HSx003 HSx004 STORAGE APPEND HS0001 VOLUME HS0004 USER HSMSSERVER STORAGE APPEND HS0001 VOLUME HS0003 USER HSMSSERVER STORAGE APPEND HS0001 VOLUME HS0002 USER HSMSSERVER STORAGE APPEND HS1001 VOLUME HS1004 USER HSMSSERVER STORAGE APPEND HS1001 VOLUME HS1003 USER HSM SERVER STORAGE APPEND HS1001 VOLUME HS1002 USER HSMSSERVER Define new volumes for the archive classes to use in Plus mode at least two per archive class STORAGE ADD VOLUME DEC001 MEDIA_TYPE TK85K POOL TK85K_POOL STORAGE ADD VOLUME DECO02 MEDIA TYPE TK85K POOL TK85K POOL STORAGE ADD VOLUME DECO03 MEDIA TYPE TK85K PO
399. location object records include a suitable descrip tion of the actual locations You can optionally specify hierarchical locations and or a range of spaces if you want to manage volumes by actual space locations You can define as many different locations as your management plan requires Once you have object records that describe the locations choose those that will be the domain defaults defined as attributes of the domain object record The default locations will be used when you create volumes or magazines and do not specify onsite and or offsite location names You can define only one onsite location and one offsite location as the domain default at any one time 12 4 2 Sequence of Volume Rotation Events Manage the volume rotation schedule with the values of the offsite and onsite attributes of the volumes or magazines you manage You set these values In addition to setting these attribute values you must check the schedule periodically to select and move the volumes or magazines MDMS Management Operations 12 13 MDMS Management Operations 12 4 Rotating Volumes from Site to Site Table 12 6 shows the sequence of volume rotation events and identifies the commands and GUI actions you issue Table 12 6 Sequence of Volume Rotation Events Stage Action 1 Set the volume object record onsite and offsite attributes e Typically once ABS has allocated a volume you will remove it until it is about to reach the s
400. lumes with drives capable of loading them by providing the logical media type object The media type object record includes attributes whose values describe the attributes of a type of volume The domain object record names the default media types that any volume object record will take if none is specified Create a media type object record to describe each type of volume Drive object records include an attribute list of media types the drive can load read and write Volume object records for uninitialized volumes include a list of candidate media types Volume object records for initialized volumes include a single attribute value that names a media type To allocate a drive for a volume the volume s media type must be listed in the drive object record s media type field or its read only media type field for read only operations MDMS Management Operations 12 4 MDMS Management Operations 12 1 Managing Volumes 12 1 4 Magazines for Volumes Use magazines when your operations allow you to move and manage groups of volumes for sin gle users Create a magazine object record then move volumes into the magazine or similar car rier with MDMS AII the volumes can now be moved between locations and jukeboxes by moving the magazine to which they belong Figure 12 2 Magazines E E 7 slot TZ887 magazine 11 slot TL820 bin pack CXO6749A The jukeboxes
401. m the pool Set the default users list to include all users by node or group name for whom the pool will be the default pool Unless another pool is specified during allocation volumes will be allocated from the default pool for users in the default users list Because volume pools are characterized in part by node or group names anytime you add or remove nodes or groups you must review and adjust the volume pool attributes as necessary 12 3 4 2 Adding Volumes to a Volume Pool After you create a volume pool object record you can associate managed volumes with it Select the range of volumes you want to associate with the pool and set the pool attribute of the vol umes to the name of the pool This can be done during creation or at any time the volume is under MDMS management 12 3 4 3 Removing Volumes from a Volume Pool There are three ways to remove volumes from a volume pool e You can delete the volume object records e You can set the pool attribute of selected volume object records to a different volume pool name e You can negate the pool attribute of selected volume object records 12 3 4 4 Changing User Access to a Volume Pool To change access to volume pools modify the membership of the authorized users list attribute If you are using the command line to change user access to volume pools use the ADD and REMOVE command qualifiers to modify the current list contents Use the NOAUTHORIZED USERS qualifier to erase the
402. m the volume database Please check the equivalence name of HSNM MANAGER and redefine as needed Also verify that the volume file is accessible and that all needed vol umes have been defined with SMU SET VOLUME HSM E VOLDEF NF volume definition volumedef was not found Explanation The policy execution process was unable to locate this volume or the default volume definition in the volume database Please verify that needed volumes have been defined with SMU SET VOLUME Also the HSsM DEFAULT VOLUME entry should never be deleted HSM E VOLNOTLOADED off line volume s could not be loaded Explanation An error occurred trying to load or mount a specific volume for a shelving operation Please refer to the error log for more information fix and retry HSM E VOLUME NF volume volumename was not found Explanation For a REPACK operation this tape volume or a member of the volume set containing this volume was not found in the MDMS volume database In plus mode all source tape volumes for REPACK must exist in the MDMS volume database The following messages are displayed by the utilities that support explicit SHELVE PRESHELVE and UNSHELVE commands Although only the SHELVE command mes sages are listed here there are similar messages for the PRESHELVE and UNSHELVE commands SSHELVE F BADSEARCH shelve search confused Explanation This failure message alerts you that the shelving operation got confused while searching for the files
403. mand to modify the object or create a new object with a different name OBJNOTEXIST referenced object AZ does not exist Explanation When attempting to allocate a drive or volume you specified a selection object that does not exist User Action Check spelling of selection criteria objects and retry or create the object in the database OBJREFZERO dereferenced object with zero count Explanation The MDMS server software detected an internal inconsistency This is an internal error User Action Provide copies of the MDMS command issued the database files and the server s logfile for fur ther analysis MDMS Messages C 39 MDMS Messages PARTIALSUCCESS some volumes in range were not processed Explanation On a command using a volume range some of the volumes in the range were not processed User Action Verify the state of all objects in the range and issue corrective commands if necessary POLUNDEFINED referenced pool AZ undefined Explanation When creating or modifying a valid object the object s record contains a reference to a pool name that does not exist User Action Check spelling of the pool name and retry or create the pool object in the database POOLEXISTS specified pool already exists Explanation The specified pool already exists and cannot be be created User Action Use a set command to modify the pool or create a new pool with a different name PROFERROR profile sp
404. mand without specifying the default volume SMU E UNDEL SHELFREF shelf referenced by volume must match HSMSDEFAULT VOLUME Explanation For SMU SET VOLUME DELETE the delete cannot take place until the shelf for the volume is changed to be the same as the one assigned to HSMS DEFAULT VOLUME Use SMU SET VOLUME to change the shelf and retry the command SMU F UPDATERR fatal error encountered updating database database name HSM Error Messages A 30 HSM Error Messages A 3 Shelf Management Utility Messages Explanation An unexpected error was encountered while updating one of the SMU data base files or the catalog There may be an accompanying message that gives more informa tion about any failure Please check the equivalence names of HSsM MANAGER and HSM CATALOG and redefine as needed Also verify that the catalog and database files are accessible SMU W UNKSTATUS shelf handler returned unknown status Explanation The shelf handler process returned an unknown status for the request There may be more information in the SHP error log SMU E VOL DELERR error deleting volume definition volume name Explanation For SMU SET VOLUME DELETE a request was made to delete a volume that does not exist in the database Verify your configuration and re enter the command SMU E VOL DISPERR error displaying volume volume name Explanation For SMU SHOW VOLUME an error was encountered while trying to read the volume information fr
405. me then click on the Load tab The load tab is called an operations tab and they all follows the same basic concepts You enter options concerning the operation for example operator assistance then press the appropriate operation button on the bottom left of the screen This button is always labelled with the appro priate operation for example Load MDMS has the capability of performing long running operations synchronously or asynchro nously However in MDMSView long running operations are always submitted asynchro nously and control is returned to the user Asynchronous operations show a dialog box that states that the operation has been queued for processing but has not yet completed If you perform an operation that does not result in the dialog box then you can safely assume it has been com pleted synchronously If you receive a queued dialog box it does not necessarily mean that the operation was fully validated If you want to check on the status of the operation use the Request View to monitor the request s progress Figure 9 5 Load Volume Screen with Queued Dialog Box ES Load Yolume Ea A Load V1 request was successfully queued Use the REQUEST VIEW to monitor progress 9 4 10 Showing Current Operations The Request View provides a monitoring capability for all current MDMS operations You can display all current requests by clicking on Show Requests this results in a table of requests being displa
406. me found Explanation The policy execution process was unable to locate the distribution list to be used for mail notification or requested a file to be shelved that no longer exists HSM E NOSUCH REQUEST no such request found Explanation The CANCEL qualifier was used to cancel a request that has already been completed by the shelf handler SHSM E NORESTARC no restore archive classes defined for shelf Explanation This is a common error meaning that no restore archive classes are defined for the shelf Use SMU SHOW SHELF to make sure that the archive list and restore archive lists are compatible and add the restore archive list as needed using SMU SET SHELF RESTORE lt list In most cases the archive and restore lists should be the same SHSM I NOTSHELVED file filename was not shelved Explanation An UNSHELVE ONLINE request was issued for a file that was not shelved No action is required HSM E NOUIC QUOTA no quota for user username found HSM Error Messages A 6 HSM Error Messages A 2 Shelf Handler Messages Explanation The policy execution process found no disk quota defined for this user or quotas are not enabled for the disk The policy execution process will assume that the low water mark has been reached by default HSM E NOVOLAVAIL new volume could not be allocated Explanation In Basic Mode this means you have exhausted the number of volumes allowed for the archive class define a new archive class In Plus
407. mes from the magazine will occupy Media Management 10 15 Media Management 10 8 Media Types e Offsite location You wish to move the magazine to an offsite location for safety in case of a disaster Specify an offsite location name If you wish to force a scheduled move you can select Scheduled In most cases the destina tion is predefined so you don t need to specify it However you can specify an alternative desti nation for the scheduled move if you wish by specifying a destination as outlined above Finally you can specify if you need operator assistance This is recommended with Move Mag azine as magazines cannot be moved without human intervention Only if you plan to do the physical move yourself or you manually let someone know would you disable operator assis tance 10 8 Media Types MDMS uses media type objects to hold information about the type of media that volumes and drives can support MDMS uses media type as a major selection criterion for allocating volumes and drives and volumes can only be loaded into drives with compatible media types Media types contain four attributes as defined in the following sections 10 8 1 Capacity The capacity attribute indicates the capacity of the media in MB This field is not used by ABS or HSM but is used by the obsolete product Sequential Media Filesystem SMF 10 8 2 Compaction This important field indicates whether you wish the tape to be written wit
408. message can also occur if no terminals are enabled for the relevant OPCOM classes on the node User Action Either nothing or enable an OPCOM terminal contact the operator and retry ACCCTRLONLY updated access control only Explanation You entered a SET command and you only had CONTROL access to the object so only the access control information if any was updated User Action If this is what was intended no action is needed If you wish to update other fields in the object you require SET access control See your administrator ACCVIO access violation Explanation The MDMS software caused an access violation This is an internal error User Action Provide copies of the MDMS command issued the database files and the server s logfile for fur ther analysis ALLOCDRIVE drive AD allocated Explanation The named drive was successfully allocated User Action None ALLOCDRIVEDEV drive AD allocated as device AD Explanation The named drive was successfully allocated and the drive may be accessed with DCL com mands using the device name shown User Action None MDMS Messages C 1 MDMS Messages ALLOCVOLUME volume AD allocated Explanation The named volume was successfully allocated User Action None ALTSUCCESS alternative success Explanation The request was successful but extended status contains information User Action Examine the extended status and retry command as nee
409. messages to move the volumes to either the onsite or offsite location If you do not wish to have MDMS move volumes automatically either remove the onsite and offsite dates from the volume or disable the scheduled Move Volumes activity by assigning a zero time to its schedule object MDMS MOVE VOLUMES 10 11 3History Dates 10 11 4State The history dates are maintained by MDMS but are for information purposes only MDMS does not use these dates to perform any operations The following history dates are maintained e Creation Date The date the volume was created in the database This field is protected and maintained by MDMS and should not normally be manually changed e nitialize Date The date the volume was last initialized This field is protected and main tained by MDMS and should not normally be manually changed e Freed Date This is the date the volume was last freed either directly on deallocation or upon expiration of the transition time This field is protected and maintained by MDMS and should not normally be manually changed e Last Access Date The date the volume was last loaded and presumably accessed This field is protected and maintained by MDMS and should not normally be manually changed e Cleaned Date If the volume is a cleaning volume MDMS updates the cleaned date to reflect the date that the volume was last used for cleaning Otherwise it is set to the creation date e Purchase Date The date
410. minutes to complete SMU SET CACHE DISABLE to close the file immediately access to shelved file data in the cache is not possible while the disk is dismounted shelved file data Solving Problems with HSM 7 13 Solving Problems with HSM 7 9 Cache Problems Table 7 9 shows problems that can occur with online disks Note In the reference column of this table IG refers to the HSM Installation Guide When IG is not mentioned assume that the reference is to this HSM Guide to Operations Manual Table 7 9 Online Disk Problems Problem Solution Reference HSM operation is disabled on SMU SET VOLUME ENABLE opera HSM Command Ref volume tion erence Guide Volume does not exist in SMU Use attributes of HSM Command Ref database HSM DEFAULT VOLUME erence Guide Unintended mass shelving S MU SET VOLUME DIS Section 7 5 started on volume ABLE SHELVE Cannot unshelve to local vol HSM Command Reference Guide ume Use SMU LOCATE and retrieve the data manually Volume cannot be dismounted SMU SET VOLUME DISABLE ALL HSM Command Ref open file Cache volume cannot be dis mounted open file Device full on unshelve Exceeded quota on unshelve Run out of file headers No HSM operations run vol ume is mounted read only HSM operations hang write protect button pushed on disk SMU SET CACHE DISABLE Purge delete shelve some files or run HSM policy and retry Purge delete shelve some files of the same ow
411. mmand Reference Guide HSM Command Reference Guide Solving Problems with HSM 7 21 Solving Problems with HSM 7 16 HSM System File Problems Table 7 16 Policy Problems Problem Solution Reference Users exceed disk capacity or quota even when HS M policies turned on Too many small files shelved Reactive policy does not shelve enough files High water mark polling of 10 minutes is not frequent enough Need to change HSM configura tion before policy runs Policy does not shelve any files using expiration date Decrease low water and or high water mark Use STWS algorithm or script Decrease low water mark Decrease high water mark Define additional policy to run a script to change configuration and schedule before policy runs SET VOLUME HSM RETENTION 1 0 00 00 00 01 Installation amp Configuration Guide Chapter 6 7 16HSM System File Problems HSM uses several files for its own purposes and these files need to be carefully maintained These files include HSM CATALOG HSM CATALOG SYS the HSM catalog e HSMS MANAGER HSM SMU the SMU databases HSM MANAGER HSM SHP REQUEST SYS the recovery logs HSM MANAGER HSM SHP_DEVICE DAT the magazine loader database e HSM LOG LOG the startup event and activity logs It is imperative that the logical names associated with these files are defined on all nodes with the same definitions so that HSM uses the same fi
412. mmand lists the size of the files in the directory The allocated file size for a shelved file is O If you use SIZE ALL OpenVMS displays both the used and allo cated blocks for the files as shown in the example below If you use SIZE ALLOC Open VMS displays only the allocated file size for the files Example DIR SIZE ALL Directory DISKSMYDISK IAMUSER Al DAT l AA A 1 BAD LOGIN COM 1 BOINK EXE 1 BUILD DIR 1 Using HSM 4 4 1 0 5 0 6 0 10 0 4 24 Using HSM 4 1 What the User Sees in an HSM Environment CLUSTER END 031694 COM 1 2 0 CLUSTER TEST 030194 COM 2 1 0 CLUSTER TEST 030394 COM 1 1 0 CMA DIR 1 3 CODE DIR 1 21 54 COSI DIR 1 54 COSI_TEST DIR 1 8 9 Z6 DAT 1 0 Z7 DAT 1 0 Z8 DAT 1 0 Z9 DAT 1 0 Total of 153 files 42199 42339 blocks 4 1 2 Accessing Files You use the same DCL commands and application programs to access shelved files as you would online data files If you are working on a system that is running HSM you will notice some differences in file access time When shelving is occurring file access time may be tempo rarily lengthened while the shelving process completes When you access a currently shelved file through a read write extend or truncate operation it may take longer for that file to be accessed than you would expect You may see a message indi cating that unshelving is occurring Depending on the storage device being used to shelve and unshelve the data y
413. mmunication between the nodes and terminals whose operators can respond to it 12 2 1 3 Enable Terminals for Communication Make sure that the terminals are configured to receive OPCOM messages from those classes Use the OpenVMS REPLY ENABLE command to set the OPCOM class that corresponds to those set for the node or domain SREPLY ENABLE opcom class Where opcom class specifications are those chosen for MDMS communication MDMS Management Operations 12 6 MDMS Management Operations 12 2 Managing Operations 12 2 2 Activities Requiring Operator Support Several commands include an assist feature where you can either require or forego operator involvement Other MDMS features allow you to communicate with particular OPCOM classes making sure that specific operators get messages You can configure jukebox drives for auto matic loading and stand alone drives for operator supported loading See Table 12 3 for a list of operator communication features and your options for using them Table 12 3 Operator Management Features Use These Features To Manage These Operations Domain and node object records OPCOM classes attribute Use this attribute of the node and domain object records to iden tify the operator terminals to receive OPCOM messages The domain OPCOM classes apply if none are specified for any node Drive and jukebox object records automatic reply attribute Use this attribute to control w
414. n if the shelf data is in a cache with the NOHOLD qualifier the cache copy of the file and its associated catalog entry are immediately deleted If a file has been unpreshelved for any reason a subsequent shelve or preshelve operation will causea new copy of the data to be made An unpreshelved file is effectively identical to a file that has never been shelved Introduction to HSM 1 7 Introduction to HSM 1 8 File Headers and Access Security 1 8 File Headers and Access Security When a file is shelved a copy of its header is kept with the data and the original header remains in primary storage on the disk The header that remains in primary storage is the valid file header HSM maintains file access security even when the contents of the file are not present on the online disk volume because the online file header contains file owner protection flags and access control lists If you change the file protection or ownership while a file is shelved the user who shelved the file may not be allowed to unshelve it 1 9 HSM File State Diagram Figure 1 2 illustrates the various HSM states in which a file can reside the locations of the file s directory header and data and the operations that transition a file from one state to another Figure 1 2 Disk Shelf Disk Shelf Directory Directory Data Header Header Data Shelved State Preshelved State Disk Shelf Directory Data Header Data CXO 5428A MC
415. n object at the time of creation Opcom classes This attribute is defined as the Opcom class in the domain object when the node was created Make sure this is the Opcom class for this node Transports Make sure this is the transport you want The conversion pro gram has no way of knowing the transports you want so it takes the defaults POOL Description Make sure this is the description you want for this pool This attribute is not filled in during the conversion program Authorized users Make sure that the comma separated list contains all of the authorized users for the pool The users must be specified as NODE user Default users You need to set this attribute because conversion program does not set this attribute The users must be specified as node user VOLUME The conversion program fills in all needed attributes from the old record This is included so you will not think the volume object was forgotten Converting SLS MDMS V2 X to MDMS V4 D 8 Converting SLS MDMS V2 X to MDMS V4 D 3 Using SLS MDMS V2 x Clients With the MDMS V4 Database D 3 Using SLS MDMS V2 x Clients With the MDMS V4 Database This section describes how older versions of SLS MDMS can coexist with the new version of MDMS for the purpose of upgrading your MDMS domain You may have versions of ABS or HSM or SLS which are using SLS MDMS V2 and which cannot be upgraded or replaced immediately MDMS V4 pro
416. n a shelf SMU SET SHELF name DISABLE ALL Shelve requests on a shelf SMU SET SHELF name DISABLE SHELVE Unshelve requests on a shelf SMU SET SHELF name DISABLE UNSHELVE All requests on a volume SMU SET VOLUME name DISABLE ALL Shelve requests on a volume SMU SET VOLUME name DISABLE SHELVE Unshelve requests on a volume SMU SET VOLUME name DISABLE UNSHELVE Cache flushing SMU SET FACILITY DISABLE SHELVE Any request that is in operation may or may not complete However all pending requests are ter minated with an OPERATION DISABLED message Once a managed entity is disabled it must be reenabled for operations on that entity to resume 5 22 Converting from Basic Mode to Plus Mode Although you specify whether to install HSM Basic mode or HSM Plus mode during the instal lation process you can convert to HSM Plus mode after the installation if you choose To con vert to HSM Plus mode you need to do the following e Shut down the shelf handler e Disable the facility e Enter used tapes into MDMS volume database e Change to Plus mode e Restart the shelf handler e Ifyou intend to use the same archive classes for Plus mode you must CHECKPOINT the archive classes Enable the facility Managing the HSM Environment 5 37 Managing the HSM Environment 5 22 Converting from Basic Mode to Plus Mode Note Once you have shelved files in HSM Plus mode you cannot go back to HSM Basic mode The remainder of this section explains h
417. n be applied to either vision or non vision varieties With slot range only the specified slots are inventoried other slots are not 10 12 Media Management 10 6 Locations While inventorying jukeboxes MDMS can find volumes that are defined and in the jukebox that are not defined but are in the jukebox and that are defined but missing from the jukebox MDMS provides several options to handle undefined and missing volumes If you set the Create flag during an inventory MDMS will create a volume record for each undefined volume it finds in the jukebox You can specify in advance certain attributes to be applied to this volume record Inherit volume ID This is the most comprehensive option as it allows the new volume to inherit all non protected fields from the specified volume You normally use a volume known to be in the jukebox as the inherit volume ID e Media type Assign this media type to the volume If you use inherit and media type the specified media type overrides the inherit media type e Preinitialized If you set this flag the volume will be set to the free state and is immediately available for use If you clear this flag the volume will be set to the uninitialized state and needs to be initialized prior to use You should set or clear this flag depending on whether the volume is already physically initialized If you do not set the Create flag then MDMS will not create new volume records for unde f
418. n internal error condition or because the user has disabled the TCPIP transport for this node The TCP IP listener is the server s routine to receive requests via TCP IP User Action The TCP IP listener should be automatically restarted unless the TCPIP transport has been dis abled for this node Provide copies of the MDMS command issued the database files and the server s logfile for further analysis if the transport has not been disabled by the user TCPIPLISRUN listening on TCP IP node AZ port AZ Explanation The server has successfully started a TCP IP listener Requests can now be sent to the server via TCP IP MDMS Messages C 47 MDMS Messages User Action None TOOLARGE entry is too large Explanation Either entries cannot be added to a list of an MDMS object or existing entries cannot be renamed because the maximum list size would be exceeded User Action Remove other elements from list and try again TOOMANY too many objects generated Explanation You attempted to perform an operation that generated too many objects User Action There is a limit of 1000 objects that may be specified in any volume range slot range or space range Re enter command with a valid range TOOMANYSELECTS too many selections for a field use only one Explanation More than one selection was specified for a particular field User Action Specify only one field to select on TOOMANYSORTS too many sort quali
419. n tape oriented operations are suspended and queued to avoid conflicts However when HSM detects that a conflicting tape operation is pending the repack operation is suspended temporarily usually within 10 minutes to allow the other operations to proceed Therefore despite the duration of the repack operation other HSM operations will only suffer minor delays and the long duration of repack should not be a concern 5 14 Replacing and Creating Archive Classes HSM provides a mechanism for replacing and or creating new archive classes and populating associated shelf media with valid data You may wish to create a new archive class to provide additional data safety More likely though you may wish to create a new archive class to upgrade your tape hardware to new technology or move your shelved data to a new tape library Although HSM provides the reshelving function to accomplish this this is slow and involves intermediate disk transfers A much more efficient way is to use the REPACK function and specify a NEW ARCHIVE qualifier When performing a repack for this purpose you must not specify any volumes in the volume list and no threshold value It is important that all valid files are copied to the new archive class However the purging of obsolete files is still performed when creating a new archive class using repack The following example creates a new archive class SMU REPACK 1 TO ARCHIVE 3 NOTHRESHOLD This command creates a new
420. n the backup media will eventually be lost As such the easy way to enhance reliability of shelved file data is to make duplicate copies of the data by using multiple shelf copies 2 3 2 Defining Shelf Copies Shelf copies are defined using a concept called an archive class An archive class is a named entity that represents a single copy of shelf data Identical copies of the data are written to each archive class when a file is shelved For each shelf you can specify the archive classes to be used for shelf copies for all volumes associated with the shelf The minimum recommended number of copies archive classes for each shelf is two Archive classes are represented by both an archive name and an archive identifier Archive iden tifiers are used in Shelf Management Utility SMU commands for ease of use HSM Basic mode supports 36 archive classes named HSM ARCHIVEO1 to HSM ARCHIVE306 with asso ciated archive identifiers of 1 to 36 respectively HSM Plus mode supports up to 9999 archive classes named HSM ARCHIVEO1 through HSM ARCHIVE9999 with associated archive identifiers of 1 to 9999 2 3 2 1 Archive Lists and Restore Archive Lists For each shelf you must specify two lists of archive identifiers e The archive list representing the desired number of shelf copies Up to 10 archive identifi ers can be specified in this list e The restore archive list representing an ordered list of archive classes from which restore attempt
421. nalysis completely depending on when the conflict was detected Retry the com mand later SMU W PEP ALREADYSTARTED policy execution process already started Explanation A SMU START was issued when there was already a policy execution pro cess started No action is required SMU S PEP STARTED policy execution process started process id Explanation The policy execution process has been successfully started SMU E POL DELERR error deleting policy definition policy name Explanation For SMU SET POLICY a request was made to delete a policy that does not exist in the database Verify your configuration and re enter the command SMU E POL DISPERR error displaying policy policy name Explanation For SMU SHOW POLICY an error was encountered while trying to read the policy information There may be an accompanying message that gives more information about any failure SMU E POL READERR error reading policy definition policy name HSM Error Messages A 26 HSM Error Messages A 3 Shelf Management Utility Messages Explanation For SMU SET POLICY DELETE SMU SET SHELF or SMU SHOW POL ICY an unexpected error was encountered while trying to read the policy data for a delete or display operation There may be an accompanying message that gives more information about any failure Please check the equivalence name of HSM MANAGER and redefine as needed Also verify that the policy file is accessible SMU E POL WRITERR error wr
422. name listed in the message when the volume is unloaded Do not issue a REPLY to this message Operator Activities in the HSM Environment 6 2 Operator Activities in the HSM Environment 6 3 Responding to BACKUP Requests for HSM Basic Mode 6 2 5 Unload Label Request 5 S S SS SS S5 S OPCOM 30 MAY 14 25 46 05 555 55555ss Message from user HSMSSERVER on MYNODE Please place label HS0001 on volume unloaded from drive S1 MUAO This message is displayed when a tape volume initialized by HSM is unloaded from a drive This is a final reminder to place the requested physical label on the tape volume so that the vol ume can be located later Do not issue a REPLY to this message 6 3 Responding to BACKUP Requests for HSM Basic Mode In addition to HSM generated OPCOM requests OpenVMS BACKUP also issues OPCOM messages when handling continuation volumes for HSM Basic mode Please refer to the Open VMS Utilities Manual A Z for information relating to BACKUP requests 6 4 Working with Magazine Loaders for HSM Basic Mode HSM issues OPCOM messages to load and unload magazines into a magazine loader The fol lowing requests are issued 6 4 1 Load Magazine 5 225 5 5 OPCOM 30 MAY 14 25 46 05 2 2 Request 3 from user HSMSSERVER on MYNODE Please load magazine containing volume HS0001 into drive S1 MUAO This message requests that you load a specific magazine stacker into a magazine loader tape drive The magazine itself
423. nclude more files e Increase the low water mark value 5 11 2 3 Situation Frequent Reactive Shelving Requests Your reactive policy should be planned and implemented as a contingency As such shelving in response to reactive policy should occur infrequently The policy model in Figure 5 5 shows the policy that creates frequent requests for reactive policy Managing the HSM Environment 5 18 Managing the HSM Environment 5 11 Maintaining Shelving Policies Figure 5 5 1 SYSTEM INUSE 2 USED CAPACITY 3 AVAILABLE EXCEEDS HIGH CAPACITY WATER MARK INCREASED HIGH WATER MARK LOW WATER MARK Available Storage Capacity Below Low Water Mark Unused Capacity Total Available X Used Storage Capacity Within 2 Capacity Capacity Latitude CXO 4100A MC Resolution If your system experiences frequent reactive shelving requests you can take the following actions WHEN the Trigger Is THEN You Should High water mark reached Increase the high water mark value decrease the low water mark value or both User disk quota exceeded Decrease the low water mark 5 11 2 4 Situation Application and User Performance Impeded With HSM you design and implement policy that allows you to maintain available online capac ity and retain data on less expensive media The trade off with implementing HSM is that when shelved files are needed applications and users trying to access them must wait until th
424. nd This is especially useful for commands such as wildcard searches when you do not need to unshelve files to examine them for the matching string Introduction to HSM 1 6 Introduction to HSM 1 6 The Preshelving Process 1 5 3 The Results of Unshelving a File When a file is unshelved its data contents are moved into the location defined by its current directory entry in the online file header If you renamed the file header while the file was shelved the file will be unshelved into its new location or its new name After a file has been unshelved from nearline offline media the copy remains on the nearline offline media Once unshelved the file can be shelved again If the file has been modified a new shelf copy is made and the old copy is invalidated If a file has not been modified since it was shelved originally the previously shelved file copy remains valid and a new copy is not made 1 5 4 Handling Duplicate Requests to Unshelve a File Subsequent requests to unshelve a given file while the file is undergoing the unshelving process are treated as duplicate requests HSM signals that both requests have completed after the first request the one that initiated the unshelving process completes 1 6 The Preshelving Process The preshelving process is a variation of the shelving process It is similar to the shelving pro cess in that it copies the file s data to shelf storage It differs from the shelving process in that it allows
425. nd receive the same popup menu for the field From the menu there are the following options e Show To show the selected object e Create To create a new object e Reset To go back to the previously selected objects Basic MDMS Operations 9 10 Basic MDMS Operations 9 4 Graphical User Interface e Clear To clear the selection e Add and Remove list only To add and remove an object by name e List all list only lists all the objects If you select Show or Create you will go to an appropriate screen When you then complete your operation on that object you will come back to the original object 9 4 7 Deleting Objects You can delete objects from the Domain Object and Task Views To delete an object perform one of the following e Display the object as discussed in the previous section then click the Delete button at the bottom of the screen e Right click on the object name from the left screen then select Delete from the pop up menu e From the task view select the Delete task then select the object class then select the object names from the list on the delete screen A request to delete an object will always bring up a Delete dialog box for confirmation of the delete You can confirm OK or Cancel from here 9 4 8 Viewing Relationships Between Objects The Domain view provides a way to view the hierarchical structure of the MDMS domain The left side of the screen provides an object class object
426. nd the second is a destination object name The destination object name is not preceded by an object key word An example of a Move command is MDMS MOVE VOLUME TLZ234 TLZ JUKE SLOT 4 The Report verb which takes a variable number of arguments This verb uses the syntax of the old SLS Storage Report Volume command Since the Report verb does not operate on any specific object the first argument is always the keyword Volume and the other argu ment is a comma separated list of display and or selection attributes For example MDMS REPORT VOLUME VOLUME STATE ALLOCATED SCRATCH DATE PLACEMENT PLACNAME 9 2 2 Object Lists With this release of MDMS all of the following commands accept a list of objects so that you can operate on multiple objects in a single command CREATE DELETE SET SHOW If you specify an attribute in a CREATE or SET command and use an object list then that attribute value is applied to all objects in the list Basic MDMS Operations 9 2 Basic MDMS Operations 9 2 DCL Interface 9 2 3 Qualifier List 9 2 4 Inherit Certain qualifiers accept a list of attributes and the list can be applied in one of three ways using an appropriate qualifier e ADD The specified value or list is added to any pre existing list this is the default option if you do not specify a qualifier e REMOVE The specified value or list is removed from any pre existing list e REPLACE The specified value or list rep
427. nd the sequence in which they are configured 11 2 1 11 Attributes for MRD Jukeboxes Specify the number of slots for the jukebox Alternatively if the jukebox supports magazines specify the topology for the jukebox see Section 11 2 1 13 The robot attribute must contain the OpenVMS device name of the jukebox medium changer also known as the robotic device If the jukebox is accessed from nodes other than the one from which the command was entered you must specify nodes or groups in the NODE or GROUP attributes in the jukebox record Do not specify nodes or groups in the jukebox name or the robot attribute MDMS Configuration 11 16 MDMS Configuration 11 2 Configuring MDMS Drives Jukeboxes and Locations 11 2 1 12 Determining Jukebox State Caution Changing the value of the state attribute could cause MDMS or the applications using it to fail The jukebox object record state attribute shows the state of managed MDMS jukeboxes MDMS sets one of three values for this attribute Available In use and Unavailable 11 2 1 13 Magazines and Jukebox Topology If you decide that your operations benefit from the management of magazines groups of vol umes moved through your operation with a single name must set the jukebox object record to enable it Set the usage attribute to magazine and define the jukebox topology with the topology attribute See Figure 11 4 for a sample overview of how the 11 and 7 slot bin packs can be used
428. ne Journaling enabled None File protection System R Owner RWED Group World Total of 1 file 0 0 blocks 4 1 1 3 DIRECTORY FULL for Populated Indexed Files When you shelve a populated index file and do a DIRECTORY FULL on it afterwards the file size will look different afterwards In Example 4 2 you will notice that the file size went from 84 84 to 84 0 This is normal The displayed size of a populated indexed file appears normal in the directory listing Example 4 2 Shelve a Populated indexed file COPY HSMSCATALOG HSMSCATALOG SYS POPULATED INDEXED DAT DIRECTORY FULL POPULATED INDEXED DAT Directory DISKS USERI1 SHELVING FILES POPULATED INDEXED DAT 1 File ID 691 51007 0 Size 84 84 Owner SYSTEM Created 08 Jan 2003 14 30 47 15 Revised 08 Jan 2003 14 30 47 31 1 Expires None specified Backup No backup recorded Effective None specified Recording None specified File organization Indexed Prolog 3 Using 5 keys Shelved state Online File attributes Allocation 84 Extend 0 Maximum bucket size 2 Global buffer count 0 Version limit 3 Record format Variable length maximum 484 bytes longest 0 bytes Record attributes None RMS attributes None Journaling enabled None File protection System RWED Owner RWED Group RE World Access Cntrl List None Total of 1 file 84 84 blocks SHELVE POPULATED_INDEXED DAT 1 Using HSM 4 3 Using HSM 4 1 What the User Sees
429. ner as the shelved file or run HSM pol icy and retry There is an OpenVMS limit on the number of file headers available on a system For more information see Section 7 18 1 Mount volume read write for any opera tion even unshelving Disable the volume for all HSM operations if it is mounted read only Reset write protect button If you must write protect the disk the proper opera tions are disable all HSM operations on volume then mount the volume read only erence Guide HSM Command Ref erence Guide 7 9 Cache Problems The following problems are related to using an online cache Unless you use the BACKUP qualifier on the cache to create nearline offline shelf copies at shelving time your file data exists as a single copy on one of the defined cache devices until the cache is flushed To ensure that this single copy provides the same level of protection as your online data HP recommends the fol lowing e Configure your cache disk as a shadowed disk this crashes Solving Problems with HSM 7 14 eliminates problems due to disk head Solving Problems with HSM 7 10 Magneto Optical Device Problems Back up your cache disk regularly nightly is recommended Synchronize your nightly backups with cache flushing flush the caches first then perform nightly backups in this way the cache is usually empty Table 7 10 shows problems that can occur with cache operations Note In the reference column of this tabl
430. nfor mation about any failure SMU E ARCHID DISPERR error displaying archive id Explanation For SMU SHOW ARCHIVE an error was encountered while trying to read the archive information There may be an accompanying message that gives more informa tion about any failure SMU E ARCHID INCOMPAT device is an incompatible media type for this archive class Explanation For SMU SET DEVICE the media type of the archive class entered is not compatible with the media type of the device Verify your configuration and re enter the command with corrections SMU E ARCHID MANYPOOL archive id archive id has too many pools added limit is pool limit Explanation This error message alerts you that you have exceeded the pool limit for the archive Verify your configuration and possibly remove pools that are no longer needed then retry the command SMU W ARCHID NF archive class id class id not found Explanation The archive class id was not found in the archive database or an unexpected error was encountered while trying to read the volume database There may be an accompa nying message that gives more information about the failure Verify your configuration then retry the command SMU W ARCHID POOLNF archive class id class id pool pool id not found not removed Explanation For SMU SET ARCHIVE REMOVE POOL a pool was specified which is not in the pool list for the archive class Verify your configuration then retry the command SMU
431. nformation FAILCREATE failed to create AZ Explanation The reported file or object could not be created The next line contains additional information User Action Depends on the additional information FAILDEALLOCDRV failed to deallocate drive Explanation Failed to deallocate drive User Action The previous message is the error that caused the failure FAILDELETE failed to delete AZ Explanation The reported file or object could not be deleted The next line contains additional information User Action Depends on the additional information FAILEDMNTVOL failed to mount volume Explanation MDMS was unable to mount the volume User Action The error above this contains the error that cause the volume not to be mounted FAILICRES failed item code restrictions Explanation The command cannot be completed because there are conflicting item codes in the command This is an internal error User Action Provide copies of the MDMS command issued the database files and the server s logfile for fur ther analysis FAILINIEXTSTAT failed to initialize extended status buffer Explanation The API could not initialze the extended status buffer This is an internal error MDMS Messages C 11 MDMS Messages User Action Provide copies of the MDMS command issued the database files and the server s logfile for fur ther analysis FAILLOOKUP failed to lookup AZ Explanation The report
432. ng Problem Solution Reference Cannot determine what would Use SMU RANK HSM Command Reference be shelved Guide Do not know what s being Use SMU SHOW HSM Command Reference shelved REQUESTS FULL Guide Want to stop shelving on vol Use SMU SET VOLUME DIS ume ABLE SHELVE Solving Problems with HSM 7 9 Solving Problems with HSM 7 6 Shelving on System Disks Table 7 5 Accidentally Starting Mass Shelving Problem Solution Reference Want to stop all shelving Use SET FACILITY DIS ABLE SHELVE Want to recover all Use UNSHELVE shelved_files device 000000 Additional options exist to cancel shelving operations at other granularities See Table 5 6 Note that once a shelving policy has begun it is too late to simply disable the policy on the vol ume SHELVING must be disabled However it is a good idea to disable OCCUPANCY HIGHWATER MARK and EXCEEDED QUOTA on the volume in case a trigger initiates another mass shelving on the volume 7 6 Shelving on System Disks Warning HP strongly recommends that you do not enable shelving or any automatic shelving policies on system disks Although the installation procedure marks OpenVMS system files as unshelvable this could be enabled intentionally or unintentionally later The installation procedure does not protect lay ered product files from shelving You should define system disks separately from the HSMS DEFAULT volume and disable all HSM operations as
433. ng of files to those accessed before a certain date For example if you specify modification date and a before time of 01 Jan 1999 then only files that had been modified before 01 Jan 1999 will be eligible for shelving e Since time Specified as an absolute time this restricts shelving of files to those accessed after a certain date For example if you specify creation date and a since time of 30 Jun 1998 then only files that were created after 30 Jun 1998 are eligible for shelving Understanding HSM Concepts 2 23 Understanding HSM Concepts 2 9 Policy Specifying a relative elapsed time is mutually exclusive of defining absolute before and or since times The time fields apply to only the predefined STWS and LRU algorithms They do not apply to script files Script Files A script file is a user written command procedure that can be executed instead of the pre defined algorithms supplied with HSM When the script file is executed parameter P1 contains the name of the volume on which the policy was triggered This can be used to perform custom shelving operations on the specified volume When a script is defined the file selection criteria file exclusion criteria and goal defined for the policy are not applied The script file executes to com pletion exactly as written in all cases 2 9 4 Policy Goal The goal is the condition that causes the shelving process to stop There are two ways to reach the shelving goal e Shelve en
434. ng two error messages SYSTEM E DEVICEFUL device full allocation failure or SYSTEM E EXDISKQUOTA exceeded disk quota Because make space operations may take a significant amount of time and because you may prefer certain applications to issue an immediate error rather than wait for the request to com plete you can disable make space requests on a per policy per volume or per process basis Make Space Policy Make space requests start a policy execution for the volume The user process that requested the make space allocation is allowed to continue as soon as the amount of space allocation that was requested is satisfied However in anticipation of future make space requests the policy contin ues executing until a defined low water mark is reached Make space requests cannot free up space below the defined low water mark Understanding HSM Concepts 2 24 Understanding HSM Concepts 2 10 Schedule If the make space operation is triggered by a user disk quota exceeded condition the files are selected based on the owner of the file being created or extended rather than the user of the requesting process The cause of a make space request determines the scope of online disk storage that is involved with file selection as follows WHEN the make space request is initiated by THEN A high water mark reached or volume All files on the disk volume are potential candidates for the full event file selection process
435. nge User Action If you want to assign slots or spaces to volumes directly do not use the volset option NORECVPORTS no available receive port numbers for incoming connections Explanation The MDMS could not start the TCP IP listener because none of the receive ports specified with this nodes TCPIP FULLNAME are currently available MDMS Messages C 32 MDMS Messages User Action Use a suitable network utility to find a free range of TCP IP ports which can be used by the MDMS server Use the MDMS SET NODE command to specify the new range with the TCPIP FULLNAME then restart the server NOREMCONNECT unable to connect to remote node Explanation The server could not establish a connection to a remote node See the server s logfile for more information User Action Depends on information in the logfile NOREQUESTS no such requests currently exist Explanation No requests exist on the system User Action None NORESEFN not enough event flags Explanation The server ran out of event flags This is an internal error User Action Provide copies of the MDMS command issued the database files and the server s logfile for fur ther analysis Restart the server NORIGHTS no rights are shown Explanation When showing a domain the rights are not shown because you don t have privilege to see the rights User Action Nothing To see rights you need MDMS SHOW RIGHTS NOSCHEDULE schedule object
436. nning considerations e Do all disk volumes require the same or different file selection criteria e How many users are storing data How much data is being stored by each user e What is the purpose of the data stored on the defined disk volumes e How often are files created or extended e What are the sizes of the files created or extended e How would applications or users having to unshelve files be affected e How many files are temporary or are expected to be deleted shortly after they are created 3 2 4 Creating Policy Definitions Create policy definitions that specify the file selection criteria anticipated to be most useful Use the SMU to create a policy definition considering the capabilities offered IF you want to THEN Use Choose a file event and time frame BACKUP CREATED EXPIRED or MODIFIED and BEFORE ELAPSED or SINCE Implement file selection algorithms LRU STWS or PRIMARY POLICY and SECONDARY POLICY SCRIPT Confirm operations with the policy CONFIRM Use a log file to monitor operations with the LOG policy definition Specify preshelving instead of shelving opera PRESHELVE command tions Note that preshelving is only useful for preventive policies because preshelving does not free disk space Customizing the HSM Environment 3 6 Customizing the HSM Environment 3 2 Implementing Shelving Policies Prevent Inadvertent Application To prevent inadvertent application of a new
437. no pool was specified the volume must have no pool defined VOLNOTLOADED the volume is not loaded in a drive Explanation On an unload request the volume is not recorded as loaded in a drive User Action If the volume is not in a drive none If it is issue an unload drive command to unload it VOLONOTHDRV volume is currently in another drive Explanation When loading a volume the volume was found in another drive User Action Wait for the volume to be unloaded or unload the volume and retry VOLSALLOC AZ volumes were successfully allocated Explanation When attempting to allocate multiple volumes using the quantity option some but not all of the requested quantity of volumes were allocated User Action See accompanying message as to why not all volumes were allocated MDMS Messages C 52 MDMS Messages VOLSDRIVES one or more of the volumes are in drives or are moving Explanation One or more of the volumes in the move request are in drives and cannot be moved A show vol ume brief will identify which volumes are in drives User Action Unload the volume s in drives and retry or retry without specifying the volumes in drives VOLUMEEXISTS specified volume s already exist Explanation The specified volume or volumes already exist and cannot be be created User Action Use a set command to modify the volume s or create new volume s with different names VOLUNDEFINED referenc
438. ns accessibility and reliability of files in shelf storage and primary storage e Supports user initiated and system initiated data movement between primary storage and shelf storage e Provides caching to temporarily keep data in online storage and to decrease the impact of shelving on other operations Maintains access to file data within a suitable and definable time frame Minimizes the occurrence of volume full and user disk quota exceeded conditions Data managed by HSM resides in one of the following states e Online Located in primary storage preshelved unshelved and never shelved data e Shelved Located in shelf storage shelved data 1 2 1 File Headers and Location While a file is shelved the file s header information is maintained in primary storage When you display the header of a shelved file the allocated file size is shown as zero blocks indicating that the data contents are located in shelf storage The directory information and file headers for your shelved data are maintained in directories on your primary storage devices The data itself is located in shelf storage When access is requested for the shelved data HSM automatically returns it to primary storage Introduction to HSM Information on your files always can be found in your active directories even though the actual data resides in shelf storage 1 2 2 Controlling File Movement You can control shelving in the following ways e You can specify which
439. ns much of the information con tained in this chapter Help is offered in a tutorial form if you answer No to Have you used this procedure before In addition for each question asked you can enter to have help on that question displayed Furthermore if you type to a question not only will the help be dis played but in most cases a list of possible options is also displayed This procedure is also useful when adding additional resources to an existing MDMS configura tion To invoke this procedure enter MDMSSSYSTEM MDMSSCONF IGURE COM and just follow the questions and help A complete example of running the procedure is shown in Appendix A 10 2 Domain The MDMS domain encompasses all objects that are served by a single MDMS database and all users that utilize those objects A domain can range from a single OpenVMS cluster and its backup requirements to multi site configurations that may share resources over a wide area net work or through Fibre Channel connections An OpenVMS system running MDMS is consid ered a node within the MDMS domain and MDMS server processes within a domain can communicate with one another The MDMS domain object is created at initial installation and cannot be deleted Its main focus is to maintain domain wide attributes and defaults and these attributes are described in the fol lowing sections Media Management 10 1 Media Management 10 2 Domain 10 2 1 ABS Rights
440. nt to deny access to MUAO from RDF client nodes OMAHA and DENVER do the following 1 Edit TTI RDEV CONFIG MIAMI DAT 2 Find the device designation line for example DEVICE 1 MUAO 3 Atthe end of the device designation line add the DENY qualifier Edit TTI RDEV CONFIG MIAMI DAT DEVICE 1 MUAO MUAO TK50 DENY OMAHA DENVER DEVICE MSAO TU80 16700bpi OMAHA and DENVER RDF client nodes are denied access to device MUAO on the server node MIAMI 14 6 RDserver Inactivity Timer One of the features of RDF is the RDserver Inactivity Timer This feature gives system manag ers more control over rdallocated devices The purpose of the RDserver Inactivity Timer is to rddeallocate any rdallocated device if NO I O activity to the rdallocated device has occurred within a predetermined length of time When the RDserver Inactivity Timer expires the server process drops the link to the client node and deal locates the physical device on the server node On the client side the client process deallocates the RDEVn0 device The default value for the RDserver Inactivity Timer is 3 hours The RDserver Inactivity Timer default value can be manually set by defining a system wide log ical on the RDserver node prior to rdallocating on the rdclient node The logical name is RDEV_SERVER_INACTIVITY_TIMEOUT Remote Devices 14 10 Remote Devices 14 7 RDF Error Messages To manually set the timeout value DEFINE SYSTEM RDEV SERVER INACTIV
441. ntains invalid network node names or is not defined User Action Correct the node name s in the logical name MDMSS DATABASE SERVERS in file MDMS SYSTARTUP COM Redefine the logical name in the current system Then start the server INVDELSTATE object is in invalid state for delete Explanation The specified object cannot be deleted because its state indicates it is being used User Action Defer deletion until the object is no longer being used or otherwise change its state and retry INVDELTATIME invalid delta time Explanation The item list contained an invalid delta time User Action Check that the item list has a correct delta time INVDFULLNAM invalid DECnet fullname Explanation A node full name for a DECnet Plus Phase V node specification has an invalid syntax MDMS Messages C 16 MDMS Messages User Action Correct the node name and retry INVDRVCOUNT invalid value for drive count use 1 32 Explanation You specified an invalid value for drive count User Action Use a value in the range 1 32 INVEXTSTS invalid extended status item desc buffer Explanation The error cannot be reported in the extended status item descriptor This error can be caused by on of the following Not being able to read any one of the item descriptors in the item list Not being able to write to the buffer in the extended status item descriptor e Not being able to write to the return length in the ex
442. nto two parts A left screen containing tree nodes for navigation purposes The structure of the nodes are view specific but the general concept is that there is a level for object classes for example Jukebox or Drive and under the class is a list of relevant objects e g JUKE_1 DRIVE 1 You can expand or contract any node except for leaf nodes in a manner similar to Win dows explorer If you click on a class name the associated list of objects are displayed on the right side of the screen If you click on an object name the object s attributes and opera tions screens are displayed on the right e Aright screen which contains the object attributes request information or report that you wish to view When clicking a class name from the left side the objects in that class are dis played as icons on the right side You can double click on any object icon to bring up the object s attributes and operations screens In the request view you can refresh the whole request display or an individual request display by clicking the refresh button While resizing the MDMS view screens is not supported you can choose to view only the left or right screens by using the arrows at the top of the division between the left and right screens Clicking on the left arrow eliminates the left screen and clicking on the right arrow eliminates the right screen To restore the dual screens click on the opposite arrow Basic MDMS Operations 9 7 Basic
443. numbered from 0 to n according to the SCSI addresses of the drives Refer to the jukebox documentation on how to specify the relative drive number 10 3 6 Groups The groups attribute contains a list of groups containing nodes that have direct access to the drive Direct access includes direct SCSI access access via a controller such as an HSJ70 access via TMSCP and access via Fibre Channel You can specify as many groups as you wish in addition to nodes that may not be in a group 10 3 7 Jukebox If the drive is in a jukebox you must specify which jukebox using the jukebox attribute Enter a valid jukebox name from an MDMS defined jukebox If there is no jukebox MDMS treats the drive as a standalone drive or as a stacker 10 3 8 Media Types A drive must support one or more media types in order for volumes to be used on the drive In the media type attribute specify one or more MDMS defined media types that this drive can both read and write If you wish you can restrict the media types to a subset that you wish this drive to handle and not all the media types it could physically handle In this way you can restrict the drive s usage somewhat 10 3 9 Nodes The nodes attribute contains a list of nodes that have direct access to the drive Direct access includes direct SCSI access access via a controller such as an HSJ70 access via TMSCP and access via Fibre Channel You can specify as many nodes as you wish in addition to groups
444. nversion steps performed especially SM NECT NOADAPTER On Alpha sys tems S YSMAN IO CONNECT HSAO NOADAPTER Define HSM CATALOG Section 2 11 HSM MANAGER and HSM LOG Use DEFINE S YSTEM Section 2 11 Use SYSMAN to define Section 2 11 Check and redefine HSM CATA Section 2 11 LOG HSM MANAGER and HSM LOG Remove version limits from Section 2 11 HSM LOG directory Nothing Increase quotas IG Section1 2 4 Check and change HSM SERVER IG Section 1 2 1 account V Delete some files or redirect to another disk Delete HSMS SHP REQUEST SYS and restart Delete HSM LOG HSM SMU recreate databases and restart run SMU or HSM STARTUP COM Recover catalog from BACKUP copy Section 5 10 2 and restart Complete installation IG Section 1 3 SMU SET FACILITY Section 5 22 MODE PLUS Solving Problems with HSM 7 7 Solving Problems with HSM 7 4 HSM Startup Problems 7 4 3 Policy Execution Process Does Not Start Up If the shelf handler successfully starts up but the policy execution process does not examine Table 7 3 and the following files for more information HSM LOG SHELF PEP LOG Policy execution startup log e HSM LOG PEP ERROR LOG Policy execution error log Note In the reference column of a this table IG refers to the HSM Installation Guide When IG is not mentioned assume that the reference is to this HSM Guide to Operations Manual Table 7 3 Policy Execution Process Does Not Start Up Problem
445. nvironment However as long as the catalog is available user data can be recovered Although the critical level of files in HS M MANAGERR is not as high as HSM CAT ALOG the same protection mechanisms are recommended if possible At a minimum a backup of the current SMU database should always be available The size of the files in HSM MAN AGER is relatively fixed but depends on the number of nodes in the cluster You should allocate 5000 blocks plus 2049 blocks for each node in the cluster Understanding HSM Concepts 2 26 Understanding HSM Concepts 2 11 HSM System Files and Logical Names 2 11 2 HSM LOG HSM uses the HSM LOG location for storing event logs These logs are written during HSM operation but their content is designed for the use of the system administrator to monitor HSM activity As such their existence is not critical The size of the event log files can grow rather large if not maintained However once the logs have been analyzed by the system administrator they can be RESET and then deleted Note The directory specified by HSM LOG should have no version limit for files Failure to do this could result in HSM not starting up on some nodes 2 11 3 HSM REPACK HSM uses the optional HSM REPACK logical name to point to a staging area used while repacking archive classes If the logical name is not defined the repack function uses HSM MANAGER instead Repack needs a staging area in order to repack files into multi file
446. o reset FID to 15 1 0 WARNING Repair may affect the wrong file with caution N Y File entry repaired 1 repairs made Invalid HSM metadata found for File 16 1 0 S1SDKB500 ANALYZE_TEST Q4_RESULTS TXT 1 No catalog entry found file not repairable Invalid HSM metadata found for File 17 1 0 SISDKB500 ANALYZE TEST ANALYSIS DAT l1 Repair by adding HSM metadata for file 17 1 0 Y File entry repaired 1 repairs made File 18 1 0 SISDKB500 ANALYZE TEST RECIPE MEM 1 Revision date mismatch Current 9 JUL 1999 18 29 09 96 Catalog 10 JUL 1999 17 37 52 33 Repair by deleting HSM metadata for file 18 1 0 Y Y File entry repaired 1 repairs made File 19 1 0 S 1SDKB500 ANALYZE_TEST MAIL SAV 1 Stored in catalog as FID 19 1 0 BOGUSSDEVICE1 ANALYZE_TEST MAIL SAV 1 Repair catalog entry to reset volume to _ LX X File entry repaired 1 repairs made SMU completed scan for shelved files on disk volume SMU I ERRORS 6 error s detected 4 error s repaired 3 Example of ANALYZE REPAIR CONFIRM OUTPUT SMU ANALYZE REPAIR CONFIRM OUTPUT ANALYZE OUT DKB500 File 14 1 0 S1 DKB500 ANALYZE_TEST STATUS RPT 1 Stored in catalog as FID 13 1 0 BOGUSSDEVICE1 ANALYZE_TEST STATUS RPT 1 Repair catalog entry to reset volume FID to _ 14 1 0 Y Y File entry repaired 1 repairs made Invalid HSM metadata found for File 15 1 0 S1SDKB500 ANALYZE_TEST LOGI
447. ob Name Sample Configuration of MDMS B 7 Sample Configuration of MDMS B 1 Configuration Order State Avail State Previous Vol Next Vol Format Protection Purchase Creation Init Allocation Scratch Deallocation Trans Time Freed Last Access create 56 volumes for UNINITIALIZED UNINITIALIZED NONE S RW O RW G RW W 08 Jan 2003 08 19 00 08 Jan 2003 08 19 00 08 Jan 2003 08 19 00 NON NONE NON H 00 00 00 NON NON Ed pd B p HSM Last Cleaned Magazine Jukebox TL826 JUKE Slot 0 Drive Offsite Loc ANDYS STORAGE Offsite Date NONE Onsite Loc BLD1 COMPUTER ROOM Space Onsite Date NONE Brand 08 Jan 2003 08 19 00 Times Cleaned 0 Rec Length 0 Block Factor 0 MDMS CREATE VOLUME DESCRIPTION Volumes for HSM Username Owner UIC NONE Account Job Name Magazine Jukebox SIot TL826 JUKE 120 Drive Offsite Loc Offsite Date Onsite Loc ANDYS STORAGE NONE BLD1 COMPUTER ROOM Space Onsite Date NONE Brand Last Cleaned 08 Jan 2003 08 22 16 Times Cleaned 0 Rec Length 0 Block Factor 0 JUKEBOX TL826_JUKE POOL HSM SLOTS 120 175 VISION MDMS SHOW VOL BEB120 Volume BEB120 Description Volumes for HSM Placement ONSITE BLD1 COMPUTER ROOM Media Types TK88K Pool HSM Error Count 0 Mount Count 0 State UNINITIALIZED Avail State UNINITIALIZED Previous Vol Nex
448. ocess for unshelving a file Table 1 3 Process for Unshelving a File Stage Event 1 The user specifically requests a file to be unshelved or attempts to access a shelved file through a read write extend or truncate operation which causes a file fault Opening a file does not generate a file fault except for RMS indexed files or files accessed through NFS or PATHWORKS 2 When a file fault occurs HSM sends an informational message to notify the user that the file access may take longer than expected because the file must be unshelved 3 HSM searches its catalog to find where the shelved data is located The first file copy it accesses for unshelving is the one listed in the restore archive list for the shelf 4 The file is restored to primary storage as an unattended operation if the shelf resides on a nearline storage device If the shelf is offline operator intervention may be required 5 The user process that requested access to the file waits for the file to be unshelved If the file cannot be unshelved for any reason an erroris returned to the requester 1 5 2 Process Default Unshelving Action For each user process you can specify a default unshelving action that controls implicit unshelv ing initiated by DCL commands and applications By default access to a shelved file causes a file fault However you can specify instead that an error be returned on such access by issuing a SET PROCESS NOAUTO UNSHELVE comma
449. odes which access it e node and domain object records MDMS Configuration 11 1 MDMS Configuration 11 1 The MDMS Management Domain Figure 11 1 The MDMS Domain CAMPUS MANAGEMENT Domain FIRST FLOOR TL896 1 JUKE Location Jukebox Operators BDT002 BDTOO3 BDT004 Node Node Node BMRO10 Node Node SECOND FLOOR TL896 2 JUKE Jukebox Location BTMOO6 BTM007 Node Node Network e Se O ias BTCOO2 BTCOO1 MDMS Backup Server Database server node node CXO6746A Understanding MDMS configuration concepts is necessary to configure a reliable and available service 11 1 1 The MDMS Database The MDMS database is a collection of OpenVMS RMS files that store the records describing the objects you manage lists the files that make up the MDMS database Table 11 1 MDMS Database Files and Their Contents Database File Object Records MDMS DOMAIN_DB DAT The only Domain object record MDMS DRIVE_DB DAT All Drive object records MDMS GROUP_DB DAT All Group object records MDMS JUKEBOX_DB DAT All Jukebox object records MDMS LOCATION_DB DAT All Location object records MDMS MAGAZINE_DB DAT All Magazine object records MDMS MEDIA_DB DAT All Media Type object records MDMS NODE_DB DAT All Node object records MDMS POOL_DB DAT All Pool object records MDMS VOLUME_DB DAT All Volume obj
450. of an archive class such as density or media type that has been used for shelving SMU E CANT SET REMOTE local device cannot be set to remote Explanation For SMU SET DEVICE the REMOTE qualifier is not valid for use with an existing local device SMU E CAT CREATERR error creating catalog catalog name Explanation An error was encountered while trying to create the catalog There may be an accompanying message that gives more information about any failure Please check the equivalence name of HSM CATALOG and redefine as needed Also verify that the device and directory are accessible SMU E CAT SYNTAXERR catalog file syntax error catalog name Explanation For SMU SET SHELF CATALOG a catalog file syntax error was encoun tered Verify the format of the catalog filename and retry the command SMU F CATOPENERR error opening catalog catalog name HSM Error Messages A 17 HSM Error Messages A 3 Shelf Management Utility Messages Explanation For SMU ANALYZE an unexpected error was encountered opening the associated catalog for the device There may be an accompanying message that gives more information about any failure SMU ANALYZE will stop processing the current device SMU F CATREADER error reading catalog catalog name Explanation For SMU ANALYZE the catalog associated with this device was not found or there was an unexpected error reading from the catalog There may be an accompanying message that gives more informat
451. olume of some type including DFS mounted and NFS mounted volumes SHSM F INITFAILED shelf initialization failed Explanation There was a problem starting the shelf handler process Please refer to the error log for more details correct problem and retry HSM F INSPRIV insufficient privilege for HSM operation Explanation The HSM SERVER account does not contain sufficient privileges to run HSM Although this is configured properly during installation it could be changed later Please refer to the SMU STARTUP command in the Guide to Operations to set the appropri ate privileges for this account HSM E MAILSND error sending to distribution maillist Explanation The policy execution process encountered an error sending mail to this distri bution list or user If a distribution list was specified for the policy verify that the distribu tion file exists and is accessible HSM E MANRECOVER unable to access filename in shelf manual recovery required HSM Error Messages A 5 HSM Error Messages A 2 Shelf Handler Messages Explanation A problem was encountered trying to unshelve a file Please refer to the error log for more details If the problem cannot be recovered for example a deleted online file use SMU LOCATE FULL and OpenVMS BACKUP to restore the file from the shelf SHSM E NOARCHIVE no archive classes defined for shelf Explanation An attempt to preshelve or shelve a file failed because no archive classes were
452. olume you can choose whether to unbind the entire volume set or break the vol ume set at the point of the unbind You can also unbind on behalf of the allocated user There are only two options for unbind e User Name If this volume is allocated to a different user than yourself you must specify that user name This requires the MDMS_UNBIND_ALL right e Unbind Volume Set Set this flag if you wish to unbind the entire volume set that is none of the volumes will be in a volume set anymore Clear the flag if you wish to unbind at the point of the current volume that is the volumes before and the volumes after will remain in two separate volume sets Media Management 10 26 Media Management 10 11 Volumes 10 11 17Load Volume MDMS supports two ways to load volumes into drives e Load Drive This loads a scratch volume into a drive via operator intervention or by stacker operation As such this option is only for standalone and stacker controlled drives e Load Volume This loads a specific volume into a drive and can apply to all types of drive This section discusses the load volume option The load drive option is discussed under drives When loading a specific volume you normally need to specify the drive in which to load the vol ume unless a drive has been specifically allocated for a volume via DCL only Select a drive with a compatible media type for the volume If you are loading a volume into a jukebox drive an
453. olumes into your location If you have to retrieve magazines and or volumes from a jukebox then move those volumes and or magazines out of the jukebox Move them to an onsite location from which they will be shipped offsite MDMS MOVE VOLUME SCHEDULE OFFSITE location Or SMDMS MOVE MAGAZINE SCHEDULE OFFSITE location MDMS High Level Tasks 13 6 MDMS High Level Tasks 13 4 Servicing Jukeboxes Used for Backup Operations Table 13 3 Rotating Volumes Between Sites Step Action 4 As the volumes are picked up for transportation or when otherwise convenient update the volume and or magazine records in the database Specify the offsite location name in this com mand MDMS MOVE VOLUME SCHEDULE OFFSITE location Or SMDMS MOVE MAGAZINE SCHEDULE OFFSITE location With MDMS move the volumes and or magazines to the onsite location MDMS MOVE VOLUME SCHEDULE ONSITE location Or SMDMS MOVE MAGAZINE SCHEDULE ONSITE location Prepare spaces for the incoming volumes and magazines This can be accomplished by mov ing volumes and magazines into jukeboxes or placing them in other locations to support oper ations 13 4 Servicing Jukeboxes Used for Backup Operations This procedure describes the steps you take to move allocated volumes from a jukebox and replace them with scratch volumes This procedure is aimed at supporting backup operations not operations that involve the use of managed media fo
454. om the database There may be an accompanying message that gives more information about any failure Please check the equivalence name of HSM MANAGER and redefine as needed Also verify that the volume file is accessible SMU E VOL NOTUPDATED volume definition volume name was not updated Explanation For SMU SET VOLUME this is a general message indicating that the update was not performed This is usually because the specified shelf doesn t exist or a split merge was in progress There may be an accompanying message that gives more information about any failure Please check the equivalence name of HSsM MANAGER and redefine as needed Also verify that the volume file is accessible SMU E VOL READERR error reading volume definition volume name Explanation An error was encountered while trying to read the volume information for SMU SET VOLUME SMU SHOW VOLUME or SMU LOCATE There may be an accompanying message that gives more information about any failure Please check the equivalence name of HSsM MANAGER and redefine as needed Also verify that the vol ume file is accessible SMU E VOL SMIP volume split merge in progress on volume volume name Explanation For SMU SET VOLUME DELETE a delete was requested on a volume while a split merge is in progress on this volume or the default volume Retry the command later SMU E VOL WRITERR error writing volume definition volume definition Explanation For SMU SET VOLUME an error was enc
455. omagazine 10 5 18Inventory Jukebox Media Management MDMS provides the capability to inventory jukeboxes and discover volumes in them and optionally create volumes in the MDMS database to match what was discovered With this fea ture you can simply place new volumes in the jukebox and let MDMS create the associated vol ume records with attributes that you can specify There are two types of inventory e Inventory using a vision system which polls the jukebox s firmware to locate volumes this option is available for most larger library and silo type jukeboxes and this operation takes only a few seconds to a few minutes depending on the size of the jukebox e Physical inventory which actually loads volumes into drives to read volume labels This is the only kind of inventory available for small loader type jukeboxes that lack a vision sys tem This option is also available for larger jukeboxes but is not recommended as it takes a considerable amount of time You can inventory whole jukeboxes or specify a volume range or slot range as follows e Volume range is supported for DCSC controlled jukeboxes and MRD based jukeboxes that have a vision system Specify a range of volumes such as ABCO01 ABCO24 Up to 1000 volumes can be specified in a single range When specifying a volume range only those volumes are inventoried other volumes in the jukebox are not e Slot range is available only for MRD controlled jukeboxes and ca
456. on on MDMS Management Operations Chapter 13 Contains information on MDMS Tasks Chapter 14 Contains information on Remote Device Facility Appendix A Lists HSM specific status messages and error messages Appendix B Gives a Sample Configuration of MDMS Appendix C Lists MDMS specific status messages and error messages Appendix D Converting SLS MDMS V2 x to MDMS V4 Related Documents xvi The following documents are related to this documentation set or are mentioned in this manual The lower case x in the part number indicates a variable revision letter Document Order No HSM for OpenVMS Installation and Configuration Guide AA QUJIx TE HSM for OpenVMS Guide to Operations AA PWQ3x TE HSM for OpenVMS Command Reference Guide AA R8EXx TE HSM for OpenVMS Software Product Description AE PWNTx TE HSM Hard Copy Documentation Kit Consists of the above HSM docu QA ONXAA GZ ments and a cover letter OpenVMS System Management Utilities Reference Manual A L AA PV5Px TK OpenVMS DCL Dictionary A M AA PV5Kx TK OpenVMS DCL Dictionary N Z AA PV5Lx TK OpenVMS License Management Utility Manual AA PVXUx TK OpenVMS User s Manual AA PV5Jx TK Related Products The following related products are mentioned in this documentation Product Description HSM MDMS SMF SLS HSM refers to Hierarchical Storage Management for OpenVMS software MDMS refers to Media Device and Management Servi
457. on that can avoid the problem in the first place In many instances reading this section is enough to resolve the problem A table of specific problems in the following format Problem A description of symptoms and possible problems within the category Solution The solution is usually a specific solution to fix the specific problem assuming that it is a problem For example the solution to the problem of not being able to shelve contiguous files is SMU SET VOLUME CONTIGUOUS However before issuing this command you should evaluate the advantages and disadvan tages of shelving contiguous files Reference A pointer to the section of the document that you should read for more details on the pro posed solution HP recommends reading this chapter even if you have not experienced any problems It can alert you to potential problems to avoid when setting up and using HSM 7 2 Troubleshooting Tools HSM provides several tools and utilities to help troubleshoot problems and resolve them as they occur This section summarizes each tool and its purpose in troubleshooting 7 2 1 Startup Logs Two components of HSM have startup logs which record the startup procedure and any failures for the shelf handler process and the policy execution process HSM LOG HSM SHELF_HANDLER LOG Shelf handler process startup log HSM LOG HSM SHELF_PEP LOG Policy execution process startup log Solving Problems with HSM 7 2 Solving Problems with HS
458. only the headers of shelved and preshelved files and they are copied to the backup saveset in the shelved state The online state remains unchanged 5 17 4 Restoring Volumes If there becomes a need to restore a disk volume because it has become damaged the normal res toration process is follows namely e Restore the last image backup e Use BACKUP INCREMENTAL to restore incremental BACKUP in reverse chronological order After applying the image and incremental backups you have restored all the metadata and direc tory structure for the volume and also have restored most of the files to the shelved state that is all files that were preshelved and shelved during the backup are restored to the shelved state You can use either H3M BACKUP or normal OpenVMS Backup for the restore process Before making the volume available to users it is necessary to repair the HSM catalog since the file identifiers FIDs of shelved and preshelved files may have changed You can repair them with the following command which will take several minutes to run SMU ANALYZE REPAIR volume Note that this operation completes successfully if you restore the files to the same volume device name or to a different device Once this command completes the disk volume is ready for use Note however that most files are still shelved If you wish to avoid file faults on first file access on recently accessed files you may want to initiate an unshelve procedu
459. onvert from MDMS Version 3 to a V2 X Volume Database Step 5 Remove the call to MDMS STARTUP COM from your SYSTARTUP VMS COM Step 6 Make sure a call to SLS STARTUP COM is included in your SYSTARTUP VMS COM Step 7 Start up SLS MDMS V2 and all applications using it D 3 4 Restrictions During the rolling upgrade period the following restrictions apply e Only the first media type of a volume object can be used by a SLS MDMS V2 client Node names must be exactly the nodes DECnet Phase IV names e Some functions of old V2 utilities will not work All updates to pools slots magazines and volumes should be preformed on a MDMS V4 node D 4 Convert from MDMS Version 3 to a V2 X Volume Database This section describes how to convert the MDMS V4 volume database back to a SLS MDMS V2 X volume database If for some reason you need to convert back to SLS MDMS V2 X a conversion command procedure is provided This conversion procedure does not convert anything other than the volume database If you have added new objects you will have to add these to TAPESTART COM or to the following SLS MDMS V2 X database files e database authorization file VALIDATE DAT e Pool Authorization file POOLAUTH DAT e Slot Definition file SLOTMAST DAT Volume Database file TAPEMAST DAT e Magazine Database file SLS MAGAZINE MASTER FILE DAT To execute the conversion command procedure type in the following command GMDMS SYSTEM MDMS CONVERT V
460. ook and Feel or View Win dows look and feel Changing the look and feel requires a new login so it s a good idea to change this before logging in The value is saved in the MDMSView initialization file and is used on all subsequent invoca tions from this location Basic MDMS Operations 9 5 Basic MDMS Operations 9 4 Graphical User Interface 9 4 3 Logging In Once MDMSView is started and the look and feel is set you need to log into an OpenVMS sys tem even if you are running on an OpenVMS system already You can log into any OpenVMS node in the MDMS domain as long as it supports TCP IP communication Logging in requires three fields as follows e Node name TCP IP name address or node name alias indicating the OpenVMS node that you wish to log into This node must be running MDMS e User name A valid OpenVMS user name on the selected node e Password The password associated with the user account on the selected node If there is a login failure for any reason the node name and user name are retained for subse quent retries but the password must always be re entered After a successful login the login screen disappears and the MDMS View splash screen is dis played Figure 9 1 MDMSView Main Screen ES MDMSView Bm x File View Connection Server Help Thu Mar 28 2002 11 07 43 AM MOMSView Calendar Domain Events Fle VETES objects Pertarmanes Reports Requests Tasks Tour vesc MEDIA DEVICE ND MA
461. operations that you can perform on volumes 10 11 1Allocation Fields Account Username UIC and Job The account username and UIC fields are filled in automatically when a volume is allocated and reflect the calling user or specified user during the allocate The username is a valid Open VMS username on the client system performing the allocate and the account and UIC is from the user s entry in the system Authorization UAF file These fields are normally maintained by MDMS and are protected fields You should not modify these fields unless the volume is deallocated MDMS maintains the Account Username and UIC in the volume even after the volume is deallocated so that you can retain the volume back to the allocated state in case of accidental deallocation The job name field is not used by ABS HSM or MDMS 10 11 2Allocation and Movement Dates There are several dates that maintain or control allocation and movement dates for volumes These are as follows e Allocation Date This is the date that the volume was last allocated using the Allocate Vol ume function This field is protected and maintained by MDMS and should not normally be manually changed e Scratch date This is the date the volume is due to be deallocated MDMS will automati cally deallocate the volume on the scratch date but you can manually deallocate the volume before the scratch date as needed e Deallocation Date This is the date the volume i
462. option should be sufficient for most sites as the schedule object supports many custom scheduling options e External This option uses MDMS schedule objects and OpenVMS batch queue but the scheduling is submitted through a command procedure You can use this option if you have a need to modify the command procedure to perform site specific operations e Scheduler This option uses an external scheduler product via command procedures ABS supplies a template scheduler command procedure that you can modify to access your own scheduler product You can also use this option to invoke the pre V3 0 ABS DECScheduler V2 1B as long as you have a license for that product MDMS initiated scheduled operations such as MDMS MOVE VOLUMES always use the internal MDMS scheduler 10 2 17Scratch Time The domain default scratch time is the default scratch time applied to new volumes when they are created Scratch time indicates how long a volume is to remain allocated that is how long its data is valid and needs to be kept You can override the domain volume scratch time when you create modify or allocate individual volumes For HSM volumes the scratch time should be set to zero unlimited since HSM data remains valid until a volume is repacked 10 2 18SYSPRV MDMS uses user account rights as one mechanism for security within the domain MDMS allows you to control whether the OpenVMS privilege SYSPRV can map to the ultimate MDMS right MDMS_ALL_RIGHTS
463. or SMU SET SCHEDULE a wildcard character was detected in the policy name parameter Wildcards are not allowed Re enter the command with the correct syntax Please see HELP or the reference documentation for more informa tion about the command SMU E INVQUAL invalid qualifier or qualifier value qualifier Explanation An invalid qualifier or associated value was detected in the command There will be an accompanying message to indicate which qualifier is in violation Re enter the command with corrected syntax Please see HELP or the reference documentation for more information about the command SMU W INVREQUEST invalid shelf handler request HSM Error Messages A 22 HSM Error Messages A 3 Shelf Management Utility Messages Explanation The shelf handler has received an invalid request from SMU There may be more information about the failure in the SHP error log If this problem cannot be corrected please report it to HP SMU E INVVOLNAME invalid volume name volume name Explanation For SMU SET ARCHIVE LABEL in Basic mode the volume name entered does not conform to the Basic mode volume label convention Please see the documentation for a description of the correct format and re try the command SMU E JOBEXECUTING job job executing on server prevents requested operation Explanation For SMU SET SCHEDULE an update request was made for a job that is cur rently executing No changes were made Re enter the command once the
464. or a deadlock during boot operations may result when these files are accessed You can disable shelving on system disks with the following command SMU gt SET VOLUME DISABLE ALL SYS SYSDEVICE If shelving is allowed on system disks care should be taken to avoid shelving system critical files by using SET FILE NOSHELVABLE for each system file The HSM installation process will perform this operation on OpenVMS system files but not on layered product files Certain files on the system disk have the NOSHELVABLE flag set by default These flags should not be reset Managing the HSM Environment 5 5 Managing the HSM Environment 5 6 DFS NFS and PATHWORKS Access Support 5 5 3 Files Not Shelved HSM does not shelve or preshelve the following files e Directory files e Open files e Deleted and corrupted files e Empty files Files whose names begin with HSM e Files with defined logical block placements optional e Files marked by the SET FILE NOMOVE command e Files marked by the SET FILE NOSHELVABLE command e Files on volumes marked by the SMU SET VOLUME volume name DISABLE SHELVE command e Contiguous files optional see Section 5 7 2 Files that are larger than 45 percent of the total online volume capacity 5 6 DFS NFS and PATHWORKS Access Support HSM Version 3 0A supports access to shelved files from client systems where access is through DFS NFS and PATHWORKS At installation HSM sets up such access by default Howe
465. or all volume management operations The values you assign to these attributes will in part dictate how your volume service will function lists brief descriptions of these attributes MDMS Configuration 11 12 MDMS Configuration 11 1 The MDMS Management Domain Table 11 7 Default Volume Management Parameters Attribute Meaning Offsite Location MDMS uses this location for the volume and magazine offsite location unless another location is specified Onsite Location MDMS uses this location for the volume and magazine onsite location unless another location is specified Maximum Scratch Time This is the maximum amount of time that can be set as the scratch time on any volume in the domain Mail Users A list of e mail address for users or accounts to be notified when volumes are deallocated Any email address on this list must be in syntax that the OpenVMS Mail Utility can process Deallocate State Specifies whether a volume is immediately freed upon reaching the deallocation date or if the volume is put into a transition state for temporary protection before being set free Transition Time The amount of time a volume stays in the transition state Scratch Time MDMS uses the time span specified here to set the default scratch date when MDMS allocates a volume Protection The default protection for volumes allocated to ABS and MDMS The format is the standard OpenVMS fil
466. or status of the pool in MDMSView changes to yellow if the number of free volumes falls below the threshold and to red if there are no free volumes in the pool If you wish to disable threshold OPCOM messages and color status set the threshold value to 0 10 11 Volumes A volume is a physical piece of tape media that contains or will contain data written by MDMS applications ABS or HSM or user applications Volumes have many attributes concerning their placement allocation status life cycle dates protection attributes and many other things Volume records can be created manually with a Create Volume operation or automatically be MDMS with Inventory Jukebox and Load Drive operations The MDMS CONFIGURE command procedure can also be used to create volumes Once a volume is created it acquires a state This state determines how the volume may be used at any time and to an extent where the volume should be placed The following figure illustrates the life cycle of volumes and the following table indicates how a volume transitions from one state to another Media Management 10 18 Figure 10 1 Volume State Create l Unitialized Allocate Deallocate Release Available Unavailable Allocated Unavailable Media Management 10 11 Volumes Deallocate Transition CXO6756A Each row describes an operation with current and new volume states commands and GUI actions that cause volumes
467. orrect DRVNOTDEALLOC drive was not deallocated Explanation MDMS could not deallocate a drive User Action Either the drive was not allocated or there was a system error deallocating the drive Check the log file DRVNOTFOUND drive not found on system Explanation The specified drive cannot be found on the system User Action Check that the OpenVMS device name node names and or group names are correct for the drive Verify MDMS is running on a remote node Re enter command when corrected DRVNOTSPEC drive not specified or allocated to volume Explanation When loading a volume a drive was not specified and no drive has been allocated to the volume User Action Retry the operation and specify a drive name DRVREMOTE drive is remote Explanation The specified drive is remote on a node where it is defined to be local User Action Check that the OpenVMS device name node names and or group names are correct for the drive Verify MDMS is running on a remote node Re enter command when corrected DRVSINUSE all drives are currently in use Explanation All of the drives matching the selection criteria are currently in use User Action Wait for a drive to free up and re enter command MDMS Messages C 8 MDMS Messages DRVUNDEFINED referenced drive AZ undefined Explanation When creating or modifying a valid object the object s record contains a reference to a drive name that does not exist
468. ou associate individual volume entities see Section 2 7 with the shelf You can associate a particular volume with exactly one shelf If you do not define volumes explicitly all volumes implicitly use the default shelf 2 3 1 Using Multiple Shelf Copies This section explains why you need multiple shelf copies and how to define them One of the most important decisions that you need to make concerns the number of copies of shelved file data that you need for data safety purposes Understanding HSM Concepts 2 5 Understanding HSM Concepts 2 3 The Shelf Shelved data is not normally backed up in the normal backup regimen because the OpenVMS BACKUP utility and layered products like Storage Library System software that use BACKUP work in the following way e An image backup saves only the headers of shelved files e An incremental backup does save the entire file but the files that are selected for backup are those that have been recently modified and are not the files that usually are shelved In other words after a file is shelved it is likely that its data will not be backed up again A typi cal backup strategy recycles the backup tapes when a certain number of more recent copies have been made This cycle may be anywhere from a few days to several years However there eventually will come a time when all of the backup tapes contain only the head ers of shelved files Unless the tapes are never recycled the shelved file data o
469. ou may experi ence a large or small increase in the access time Table 4 1shows how various storage devices relate to file access time in an HSM environment Table 4 1 Typical File Access Time by Storage Device Storage Device Typical Access Time HSM cache Approximately two times the normal access time for online storage Magneto optical jukebox Within 30 seconds Nearline robotic tape Less than 5 minutesdevice Offline device using human retrieval May range from minutes to several days These access times depend on the type of storage device used rather than on the working time of HSM In other words if you already use various storage devices to access your data using HSM will not significantly increase your access time 4 1 3 Decreasing Volume Full and Disk Quota Exceeded Errors Well defined shelving policies will decrease the number of volume full and user disk quota exceeded conditions on your system However if the volume should become full or if you exceed your OpenVMS defined disk quota HSM may shelve files according to policies defined by the storage administrator Using HSM 4 5 Using HSM 4 2 Controlling Shelving and Unshelving 4 1 4 Viewing Messages When you access a currently shelved file through a read write extend or truncate operation you might see a message like this HSM I UNSHLVPRG unshelving file 1 DUA0 MY DIR AARDVARKS TXT If you attempt to create or extend a file and there is not enoug
470. ough files to recover the specified percentage of the disk volume as defined by the low water mark Recovering sufficient space to reach the low water mark 1s adequate to continue using the disk volume e Shelve all files that meet the policy but do not reach the specified percentage of recovered capacity This condition could indicate your file selection criteria is not broad enough The low water mark is checked at the completion of but not during a script execution The sec ondary policy is run if the primary policy did not reach the low water mark 2 9 5 Make Space Requests and Policy Make Space Requests When an application or user creates or extends a file the operation may not complete because the disk volume is full or the user has exceeded his disk quota If shelving is enabled on the vol ume this situation generates a make space request to HSM to free up enough disk space to sat isfy the request If responding to make space requests is enabled HSM executes the defined policy for the volume and shelves enough files to free up the requested space While shelving files HSM sends an informational message to notify the user that the file access may take much longer than usual due to the shelving activity After the requested disk space is made available the create or extend operation continues normally If for any reason the make space operation fails the user s original request to create or extend a file fails with one of the followi
471. ould be defined identically on all nodes in the VMScluster environment These logical name assignments or lack thereof take effect immediately without the need to restart HSM 5 7 Ensuring Data Safety with HSM This section explains specific considerations about keeping shelved data safe 5 7 1 Access Control Lists for Shelved Files Access control lists ACLs for shelved files should not be deleted In particular the following commands should not be entered for shelved or preshelved files SET ACL DELETE ALL SET FILE ACL DELETE ALL Managing the HSM Environment 5 8 Managing the HSM Environment 5 8 Using Backup Strategies with HSM If the ACLs for shelved files are deleted data is usually recovered automatically because a full catalog scan is performed This causes a degradation of HSM performance If the catalog scan fails the data usually can be recovered manually using the SMU LOCATE command You may modify or delete ACE entries not used by HSM for example file protection ACEs 5 7 2 Handling Contiguous and Placed Files By default HSM does not shelve files marked contiguous files that must occupy sequential blocks of disk space If these files are shelved HSM will not unshelve them to noncontiguous disk space If HSM cannot unshelve the file to contiguous space it aborts the operation and dis plays an error message When this happens defragment the disk to restore contiguous space and retry the operation Placed fil
472. ound There will be an accompanying message that give more infor mation about the failure The file may have to be restored from a previous backup or the HSM distribution SMU W HSMCOMM shelf handler communications failure Explanation An error was encountered while trying to establish communications with the shelf handler There may be an accompanying message that give more information about any failure Verify that the shelf handler is running and startup with SMU START if needed SMU W HSMMESSAGE corrupt response message detected Explanation A message returned from the shelf handler contained too many FAO parame ters or an error was encountered formatting the message for display Please report this prob lem to HP SMU F INDOPENERR error opening INDEXF SYS on device name Explanation For SMU ANALYZE an unexpected error was encountered opening INDEXE SYS for the device There may be an accompanying message that gives more information about any failure SMU ANALYZE will stop processing this device SMU F INITFAILED fatal error encountered during initialization Explanation The shelf management utility failed to initialize SMU F INREADERR error reading INDEXF SYS on device name Explanation For SMU ANALYZE an unexpected error was encountered while reading INDEXE SYS for the device There may be an accompanying message that gives more information about any failure SMU ANALYZE will stop processing this device SMU F I
473. ountered while trying to access the split merge lock or an unexpected error was encountered while trying to add or update a volume definition There may be an accompanying message that gives more information about any failure Please check the equivalence name of HSM MANAGER and redefine as needed Also verify that the volume file is accessible SMU I VOLUME CREATED volume volume name created Explanation The volume was successfully created SMU I VOLUME DELETED volume volume name deleted HSM Error Messages A 31 HSM Error Messages A 3 Shelf Management Utility Messages Explanation The volume was successfully deleted SMU W VOLUME NF volume volume name was not found Explanation For SMU SET SCHEDULE or SMU RANK there was an error getting infor mation about the online volume For SMU SET VOLUME DELETE or SMU SHOW VOL UME a request we made for a volume that was not found in the volume database There may be an accompanying message that gives more information about any failure Verify that the online volumes exist and are available Check your configuration and retry the com mand SMU I VOLUME UPDATED volume volume name updated Explanation The volume was successfully updated SMU F WRITERR fatal error encountered writing database database name Explanation An unexpected error was encountered while adding an entry to one of the SMU database files or the catalog There may be an accompanying message that gives more
474. ow to perform the conversion tasks in detail and pro vides recommendations that should make the transition easier 5 22 1 Shutting Down the Shelf Handler To shut down the shelf handler you use the SMU SHUTDOWN command This commands shuts down and disables HSM in an orderly manner To use this command you must have SYSPRV TMPMBX and WORLD privileges If you do not shut down the shelf handler before you convert to Plus mode the database could become corrupted and files may become ineligible for unshelving Also note that the mode change does not have effect until you restart HSM 5 22 2 Disabling the Shelving Facility To disable the facility across the cluster you use the SMU SET FACILITY command You also use this same command but with different qualifiers to reenable the facility after the upgrade is completed Disabling the facility prevents people from attempting to shelve or unshelve files while the conversion is in progress SMU SET FACILITY DISABLE ALL 5 22 3 Entering Information for MDMS To enable HSM Plus mode to access the appropriate information you need to make MDMS aware of tape volumes that already have been used For new shelving you can use volumes already in the MDMS database For volumes that have already been used for HSM Basic mode you need to allocate those vol umes for unshelving purposes to HSM bearing in mind the specific volume names used for HSM Basic mode Because you need to use these volumes a
475. own You need MDMS SHOW ALL privilege to see all volumes INSSVRPRV insufficient server privileges MDMS Messages C 14 MDMS Messages Explanation The MDMS server is running with insufficient privileges to perform system functions User Action Refer to the Installation Guide to determine the required privileges Contact your system admin istrator to add these privileges in the MDMSSSERVER account INTBUFOVR internal buffer overflow Explanation The MDMS software detected an internal buffer overflow This an internal error User Action Provide copies of the MDMS command issued the database files and the server s logfile for fur ther analysis Restart the server INTINVMSG internal invalid message Explanation An invalid message was received by a server This could be due to a network problem or a remote non MDMS process sending messages in error or an internal error User Action If the problem persists and no non MDMS process can be identified then provide copies of the MDMS command issued the database files and the server s logfile for further analysis INTSCHEDULE cannot modify or delete internal schedule Explanation You attempted to modify or delete a schedule object that was internally generated for a save or restore request This is not allowed User Action Modify or delete the associated save or restore request instead and the schedule will be updated accordingly INVABSTIME inva
476. ows e Inherit volume ID This is the most comprehensive option as it allows the new volume to inherit all non protected fields from the specified volume e Media type Assign this media type to the volume If you use inherit and media type the specified media type overrides the inherit media type e Pool Assign this volume to the specified pool If you use inherit and pool the specified pool overrides the inherit pool When issuing the load drive request you can specify whether the load is for read write almost always the case or read only and whether operator assistance is required You can also specify an alternative message for the operator This is included in the OPCOM message instead of the normal MDMS operator message Use of an alternative message is not recommended When initiating a load from the DCL you can choose a synchronous operation default or an asynchronous operation using the NOWAIT qualifier From MDMS View a load is always asynchronous so that you can continue performing other tasks 10 3 17Unload Drive Unlike the load drive operation the unload drive can be applied to any type of drive at any time What it does is simply unload the current volume in the drive and so you can use this when you don t know which volume is in the drive Alternatively you can use the unload volume opera tion if you know the volume ID in the drive The only option for unload drive is to request operator assistance if need
477. ox SLS S VOLIMP volume AWX001 imported into tape jukebox At this point the necessary volume is in the jukebox The operator must then reply to the OPCOM message requesting that the volume be placed into the jukebox REPLY TO 65514 15 31 17 45 request 65514 was completed by operator _SLOPERSFTA6 6 6 Other MDMS Messages OPCOM messages are provided in Plus mode when an attempt to select a drive for HSM opera tions fails An example of the messages follows SSSSSSSS S S OPCOM 08 Jan 2003 12 01 23 2535555555555 from user HSMSSERVER on SYS001 error selecting a drive for volume DEC100 retrying 55 5555555 OPCOM 08 Jan 2003 12 01 24 2222 55 rom user HSMSSERVER on SYS001bad density specified for given media X 0 10 10 w Q o Hh Two messages are written as a pair the first message is a constant message from HSM identify ing the problem volume The second message is the MDMS SLS error code received from the call Please note HSM does not consider a select failure as fatal and retries the operation indefi nitely Please examine the OPCOM messages and correct the MDMS SLS problem refer to the Media Device and Management Services Guide to Operations for help in determining the prob lem You can also use the command HELP STORAGE MESSAGE command for more infor mation on specific MDMS SLS messages for SLS MDMS Versions prior to V2 6 After the correction HSM will proceed to process the requests normally The OPCOM m
478. planation An SMU START command was issued while a shelf handler was already active on the node Either no action is required or SHUTDOWN the current shelf handler and retry the START HSM E EXCEEDED The licensed product has exceeded current license limits Explanation On an attempt to shelve a file you have exceeded the capacity defined in your HSM license You can either purchase a license upgrade delete some shelved files or do no more shelving However all other operations are unaffected and will succeed SHSM E EXDISKQUOTA unshelve operation exceeds disk quota Explanation An attempt to unshelve or access a shelved file fails because the unshelve would exceed the file owner s disk quota You can define a policy to shelve other files to be initiated on this condition Otherwise you should shelve delete other files to free sufficient capacity to allow this unshelve to proceed SHSM I EXIT HSM shelving facility terminated on node nodename Explanation This audit log message indicates that the HSM shelf handler terminated on the named node In the case of a fatal error the shelf handler is normally restarted In the case of an SMU SHUTDOWN it must be manually restarted HSM E FILERROR file filename access error Explanation HSM was unable to access or read the specified file from the online system This is written to the error log This usually means that the file is opened by another user including HSM on another node but
479. ple MDMS Configurations oooooorrr I n 11 21 MDMS Management Operations 12 1 Managing Volumes cole RR UR RE Ad Ned cb 12 1 12 3 4 Vol me Tate Cycle iioc a ae dct 12 1 12 1 2 Volume States by Manual and Automatic Operations o oooocoooococco cor 12 2 12 1 2 1 Creating Volume Object Records oo oooooooocococor e 12 3 12 1 2 2 Initiahzing Volume ti A E uite qM INR 12 3 12 1 2 3 Allocating a Volume 5 ie A OS FER orl tale oe Re RINGS 12 3 12 1 2 4 Holding Volume ilem e emt e et re RR fee e cte 12 4 12 1 2 5 Freeing a Volumes E A ERE EAE Oa eed eee ea eee ee ELLE 12 4 12 1 2 6 Making a Volume Unavailable sseeeeeeeeee eens 12 4 13 14 12 1 3 Matching Volumes with Drives cess cerota erenn a Ie 12 4 12 1 4 Magazines for Volumes o 12 5 12 1 5 Symbols for Volume Attributes 0 0 I I 12 5 12 2 Managing Operations sr Rer A e MRAT De te ee ee Dus 12 6 12 2 1 Setting Up Operator Communication 0 2 0 0 eee ccc eens 12 6 12 2 1 1 Set OPCOM Classes by Node o ooccccccoco ee 12 6 12 2 1 2 Identify Operator Terminals o oo ooo ooooooococor II 12 6 12 2 1 3 Enable Terminals for Communication 0 0 0 re 12 6 12 2 3 Activities Requiring Operator Support 2 20 cee tenes 12 7 12 3 Serving Clients of Managed Media 0 0 eee cece eens 12 8 12 3 1 Maintaining a Supply of Volumes 0 0 e 12 8 12 3 1 1 Preparing Managed Volumes 00 0 cc eee c
480. policy audit log 5 35 shelf handler audit log 5 36 shelf handler error log 5 34 Logical Names for NFS 5 8 for PATHWORKS 5 8 Low water mark 5 15 Managing HSM environment access control lists 5 8 Backing up critical files 5 9 backing up critical files 5 9 backing up online cache 5 9 backup strategies 5 1 cache flushing 5 37 cache usage 5 1 canceling policy requests 5 37 catalog analysis and repair 5 1 catalogs 5 4 consolidated backup 5 28 contiguous and placed files 5 9 converting from Basic mode to Plus mode 5 37 copying shelved files 5 1 critical HSM product files 5 4 disable shelving 5 5 dismounting disks 5 1 enable facility for shelving unshelving 5 39 ensuring data safety 5 1 entering MDMS information 5 38 extending the index file 5 33 files never shelved preshelved 5 6 finding lost user data 5 11 image backup 5 12 incremental backup 5 12 Maintaining file headers limit 5 33 maintaining shelving policies 5 13 multiple archive classes 5 10 nightly backups 5 30 offsite storage 5 12 OpenVMS BACKUP 5 13 protecting system files from shelving 5 1 5 4 ranking policy execution 5 20 recommendations 5 32 recover boot up files 5 13 recovering data from a lost shelved file 5 12 recovering the HSM UID files 5 12 renaming disks 5 1 repacking archive classes 5 23 replacing a lost or damaged shelf volume 5 25 Restarting the Shelf Handler 5 38 restore individual files 5 31 restoring critical files 5 5 restoring files to another dis
481. policy definition disable all operations with the DISABLE qualifier 3 2 5 Using Expiration Dates If you plan on using a files expiration date as an event for file selection you must make sure the OpenVMS file system is processing them Follow the procedure in Table 3 1 to establish file expiration dates for the files on the disk volumes Verifying Privileges You must be allowed to enable the system privilege SYSPRV or have write access to the disk volume index file to perform this procedure Setting File Expiration Dates To set file expiration dates follow the procedure in Table 3 1 For more information about the OpenVMS command SET VOLUME RETENTION see the OpenVMS DCL Dictionary Table 3 1 Procedure for Setting File Expiration Dates Step Action 1 Enable the system privilege for your process SET PROCESS PRIVILEGE SYSPRV 2 Enable retention times for each disk volume on your system SET VOLUME RETEN TION min max For min and max specify the minimum and maximum period of time you want the files retained on the disk using delta time values If you enter only one value the system uses that value for the minimum retention period and calculates the maxi mum retention period as either twice the minimum or as the minimum plus 7 days whichever is less Once you set volume retention on a volume and define a policy using expiration date as a file selection criteria the expiration dates on files on the volume must b
482. polled and always require an operator reply The OPCOM message itself clearly indicates if a reply is needed or automatic replies are enabled Media Management 10 9 Media Management 10 5 Jukeboxes 10 5 4 Cap Size For DCSC controlled jukeboxes equipped with Cartridge Access Points CAPs this attribute specifies the number of cells for each CAP The first number is the size for CAP 0 the second for CAP 1 and so on If a size is not specified a default value of 40 is used Specifying a cap size optimizes the movement of volumes to and from the jukebox by filling the CAP to capacity for each move operation 10 5 5 Control The control attribute determines the software subsystem that performs robotic actions in the jukebox The control may be one of the following MRD Media Robot Device The default control uses SCSI commands to control the robot in the jukebox When you specify MRD you should also specify slot count robot device name and a flag as to whether the jukebox supports magazines e DCSC Digital Cartridge Server Component MDMS uses the DCSC subsystem to control the device When you specify DCSC you should also specify library ID ACS ID LSM ID and CAP sizes DCSC is used for certain large silo devices only 10 5 6 Disabled By default jukeboxes are enabled meaning that they can be used by MDMS and its applica tions However you may wish to disable a jukebox from use because it may need repair or be used fo
483. ported into tape jukebox SLS S MAGVOLIMP magazine volume AEL013 imported into tape jukebox SLS S MAGVOLIMP magazine volume AEL014 imported into tape jukebox Operator Activities in the HSM Environment 6 4 9 Operator Activities in the HSM Environment 6 6 Other MDMS Messages At this point the necessary volume is in the jukebox The operator must then reply to the original OPCOM message requesting that the volume be placed into the jukebox REPLY TO 65514 15 31 17 45 request 65514 was completed by operator _SLOPERSFTA6 6 5 2 Providing the Correct Volume for a TL820 The following series of operator actions and replies occur when HSM needs to use a volume that is not imported into a TL820 or similar device 1 HSM issues an OPCOM request asking for the volume to be loaded into the jukebox SSSSSS5SS S S OPCOM 08 Jan 2003 15 28 59 72 S S S S Request 65514 from user HSMSSERVER on SLOPER Please import volume AWX001 or its associated magazine into jukebox contain ing drive SLOPERSMKA500 The operator then issues the STORAGE IMPORT command When the green light on the TL820 import goes on and an OPCOM message is issued requesting the load the volume can be inserted into the import The command must be issued first since MDMS controls access to the port door The volume is physically inserted when MDMS asks for it STORAGE IMPORT CARTRIDGE AWX001 JUKEBOX1 MDMS then logically imports the volume into the jukeb
484. preshelving disabled You should not preshelve any HSM internal files otherwise unshelving may not be possible after a restore 5 18Determining Cache Usage If you wish to see how many files and blocks are being used for a cache device you can enter a DIRECTORY command for the cache directory For each cache device defined using SMU the cache directory is located at device HSsM CACHE To determine usage enter a command as shown in the following example DIRECTORY GRAND SIZE ALL 1 DKA100 HSM CACHE Grand total of 1 directory 221 files 9021 9021 blocks 5 19 Maintaining File Headers Because HSM keeps file headers in online storage while moving the file data to shelf storage you need to consider your system limits for the number of file headers that can be on a given vol ume If you exceed the allowable number of file headers on a given volume users may see INDEXFILEFULL and HEADERFULL errors when creating files To prevent this problem you need to understand how OpenVMS limits the number of file headers on your disk and how you can control this information 5 19 1 Determining File Header Limit OpenVMS limits the number of file headers you can have on a volume by calculating a value for MAXIMUM FILES using the following equation MAXIMUM FILES maxblock cluster factor 1 Where maxblock is the value for total blocks from SHOW DEVICE FULL and cluster factor must be between Min value maxblock 255 4096 or
485. prints an OPCOM message to the operator and will not use the magazine Robot Name Basic Mode only When defining a device as a magazine loader it is necessary to specify a robot name to be asso ciated with the device The robot name depends on the controller to which the tape device is con nected as follows e Adirectly connected SCSI device such a device will have a name in the format alloc MKxnn0 The associated robot name is alloc GKxnn1 or alloc MKxnn1 For example for device 1 MKB100 the associated robot name is 1 GKB101 or 1 MKB101 e A directly connected DSA device such as a TF867 in this case the robot name is identical to the device name but must still be specified A device connected to an MSCP controller such as an HSC HSJ or HSD in this case the robot name is the name of the controller s command disk An example might be 1 DUAS12 The robot name should include the allocation class if there is one Note Upgrading from HSM V1 x If you are upgrading from HSM V1 x please note that the robot name replaces the HSM device namelogical defined for MSCP controllers The robot name must be specified for all Basic mode magazine loaders after installing this version before robotic operations will occur This applies to devices connected to all types of control ler 2 6 5 Compatible Media for HSM Basic Mode HSM Basic mode makes a first level attempt to ensure that tape device configurations and load
486. protected field managed by MDMS You should not change drive unless error recovery is needed Jukebox The name of the jukebox containing the volume The jukebox is a protected field managed by MDMS You should not change jukebox unless error recovery is needed The slot field indicates the jukebox slot the volume is in and is filled in even if the volume is actually in a drive Magazine The name of the magazine containing the volume The magazine is a protected field managed by MDMS You should not change placement unless error recovery is needed The slot field indicates the magazine slot the volume is in this may or may not be the same as the jukebox slot When the volume is in a magazine its onsite and offsite loca tion and date fields are invalid as the magazine s onsite and offsite location and dates are used instead Offsite Location The designated offsite location for the volume not valid if the volume is in a magazine Onsite Location The designated onsite location for the volume not valid if the volume is in a magazine The Space field indicates which space in the onsite location the volume is in or would be in if the placement is onsite 10 11 9Formats Brand Format Block Factor Record Size The format fields are not used by ABS HSM or MDMS but can be used to document certain characteristics of the volume and its data format The fields are as follows Brand The manufacturer of the volume string Format
487. provides enough online disk space to satisfy the request This trigger uses the occupancy policies defined for the volume The shelving policy implemented with the volume full trigger shelves any files on the disk volume that meet the defined file selection criteria 2 9 3 File Selection Criteria The file selection criteria determine the best files to be shelved in response to the need for shelv ing You define the file selection criteria depending on your need to create and access data Examples of file selection criteria include e Least recently used LRU Files are moved to shelf storage based on the time that has elapsed since they were accessed created modified or backed up e Space time working set STWS Files are moved to shelf storage based on an algorithm that takes into account the file s size and the defined LRU criteria e By running a script The file is shelved during execution of a user defined OpenVMS com mand procedure Selecting Files Based on Time The first consideration for defining file selection criteria involves selecting files that have been accessed or that have expired within a certain time frame There are four file dates from which to choose e Expiration default e Creation e Modification e Backup OpenVMS does not support a last access date as such However you can set up policies using an effective last access date by e Setting volume retention time on each volume e Using the expiration d
488. ptor is in error The previous message gives gives the error Included is the index of the item descriptor in the item list User Action Refer to the index number and the previous message to indicate the error and which item descriptor is in error INVITLILENGTH invalid item list buffer length Explanation The item list buffer length is zero The item list buffer length cannot be zero for any item code User Action Refer to the API specification to find an item code that would be used in place of an item code that has a zero buffer length INVMAXSAVES invalid value for maximum saves use 1 36 Explanation You specified an invalid value for maximum saves User Action Use a value in the range 1 36 INVMEDIATYPE media type is invalid or not supported by volume Explanation The specified volume supports multiple media types where a single media type is required or the volume does not support the specified media type User Action Re enter the command specifying a single media type that is already supported by the volume INVMSG invalid message via AZ Explanation An invalid message was received MDMS software This could be due to a network problem or a non MDMS process sending messages in error or an internal error MDMS Messages C 18 MDMS Messages User Action If the problem persists and no non MDMS process can be identified then provide copies of the MDMS command issued the database files and
489. r Confirm operations with the schedule CONFIRM Specify the time that the schedule should be first INTERVAL and AFTER implemented and the interval thereafter at which the policy will be applied to the volume 3 2 7 Enabling Preventive Policy Enable preventive policy on the system by enabling and disabling operations as follows Definition Enable or Disable Qualifiers Volume ENABLE SHELVING UNSHELVING DIS ABLE HIGHWATER_MARK OCCU PANCY QUOTA Policy ENABLE Shelf ENABLE ALL Customizing the HSM Environment 3 8 4 Using HSM This chapter contains information about what a user not the storage administrator or operator sees in an HSM environment and explains HSM functions the user can control It includes the following topics A general description of the user s HSM environment e Control of file shelving and unshelving 4 1 What the User Sees in an HSM Environment If the storage administrator has defined policies that control file shelving and unshelving you as a typical user may not be aware that HSM is on the system Shelving and unshelving files may be almost transparent to you Or you may work in an environment where the storage administra tor lets you do more of your own data management in which case you will know HSM is installed Whether or not you know HSM is on your system there are some things you will see that let you know just what is going on There are a few specific ways you will
490. r hierarchical storage management Figure 13 3 Magazine Placement X Offsite Onsite location location Move Move Jukebox CXO6752A MDMS High Level Tasks 13 7 MDMS High Level Tasks 13 4 Servicing Jukeboxes Used for Backup Operations Note This procedure supports backup operations Do not remove volumes allocated to HSM unless a response to a load request can be tolerated when moving the volume to the jukebox Table 13 4 Servicing Jukeboxes Step Action 1 Report on the volumes to remove from the jukebox SMDMS REPORT VOLUME ALLOCATED USER ABS If you manage the jukebox on a volume basis perform this step with each volume otherwise proceed with Step 3 with instructions for magazine management SMDMS MOVE VOLUME volume_id location Identify the magazines to which the volumes belong then move the magazines from the juke box MDMS SHOW VOLUME MAGAZINE volume id then SMDMS MOVE MAGAZINE magazine name location name If you manage the jukebox on a volume basis perform this step otherwise proceed with Step 5 for magazine management SMDMS MOVE MAGAZINE magazine name location Move free volumes to the magazine and move the magazine to the jukebox SMDMS MOVE VOLUME volume id magazine name then SMDMS MOVE MAGAZINE magazine name jukebox name MDMS High Level Tasks 13 8 14 Remote Devices This chapter explains how to configure and man
491. r some other application Set the disabled flag to disabled the jukebox and clear the flag to enable the jukebox 10 5 7 Groups The groups attribute contains a list of groups containing nodes that have direct access to the jukebox Direct access includes direct SCSI access access via a controller such as an HSJ70 and access via Fibre Channel TMSCP access is not supported for jukeboxes You can specify as many groups as you wish in addition to nodes that may not be in a group 10 5 8 Library ID For DCSC controlled jukeboxes the Library identifier specifies the library that this jukebox is in Each MDMS jukebox maps to one Library Storage Module LSM and requires the specifi cation of the Library ACS and LSM identifiers 10 5 9 Location The location attribute specifies the physical location of the jukebox Location can be used as a selection criterion for selecting volumes and drives Specify an MDMS defined location for the jukebox This location may be the same as or different from the onsite location that volumes are stored in when not in a jukebox If different moves from the jukebox to the onsite location and vice versa will be done in two phases jukebox to jukebox location then jukebox location to onsite location and vice versa 10 5 10LSM ID For DCSC controlled jukeboxes the Library Storage Module LSM identifier specifies the LSM that comprises this jukebox Each MDMS jukebox maps to one Library Storage Module LSM
492. r use until the scratch date is reached or unless the vol ume is manually deallocated When allocating a volume you may specify the user for which you are allocating the volume for example ABS If you do not specify a user then you as the calling user are placed in the allocation fields Also during allocation you can change the following fields in the MDMS database to reflect the format to be used on the tape e Format The record format used on the tape volume Options are ASCII BACKUP EBCDIC NONE RMUBACKUP e Record Size An integer e Block Factor An integer e Scratch Date The date when the volume s data becomes obsolete and the volume should be deallocated MDMS will automatically deallocate the volume at this time e Transition Time When the volume is deallocated the volume should go into the Transition State and remain in this state until the transition time expires after which it will go into the Free State If not specified the volume goes into the Free State immediately on deallocation Media Management 10 24 Media Management 10 11 Volumes 10 11 13Allocate Volume s by Selection Criteria Instead of allocating a volume by name you can specify selection criteria to be used for MDMS to select a free volume for you and allocate it You can also allocate a volume set by specifying a count of volumes to allocate The allocation selection criteria include Media Type Select a volume w
493. ration to update the contents of a jukebox whenever you know or have rea son to suspect the contents of a jukebox have changed without MDMS involvement Note Changing the contents of a jukebox without using MDMS move or inventory features and not updating the MDMS database will cause subsequent operations to fail Always use the MDMS INVENTORY operation to make sure the MDMS database accurately reflects the contents of the jukebox whenever you know or have reason to suspect the contents of a jukebox has changed Inventory for Update When you need to update the database in response to unknown changes in the contents of the jukebox use the inventory operation against the entire jukebox If you know the range of slots subject to change then constrain the inventory operation to just those slots If you inventory a jukebox that does not have a vision system MDMS loads and mounts each volume to read the volume s recorded label Note Running an inventory on alarge number of slots without a vision system can take from tens of minutes to several hours When you inventory a subset of slots in the jukebox use the option to ignore missing volumes If you need to manually adjust the MDMS database to reflect the contents of jukebox use the nophysical option for the MDMS move operation This allows you to perform a logical move for to update the MDMS database Inventory to Create Volume Object Records If you manage a jukebox you can use
494. rchive class is not checkpointed after the operation the replacement volume becomes the current shelving volume for the archive class and will be filled up This function cannot be performed if only one archive class is specified for the shelf which is not recommended for this very reason If you have a site disaster and most or all of the media for an archive class are damaged then you should create a new archive class as described in the previous section rather than recover each volume individually 5 16 Catalog Analysis and Repair The ANALYZE REPAIR utility is used to align the contents of the HSM catalog s with a disk that has been backed up and later restored or has been renamed It is also useful to run this util ity if you suspect that any other discrepancies between the online disk state and the HSM cata log s may have occurred SMU ANALYZE will scan all files on a disk looking for shelved and preshelved files When a file is found that is of interest its HSM metadata file header and ACE information is compared against entries in the HSM catalog s and any discrepancies are reported If the REPAIR quali fier is used the discrepancy can be repaired If CONFIRM is not used with REPAIR then the default repair action will be applied Example of the ANALYZE Command With No REPAIR SMU ANALYZE DKB500 SMU I PROCESSING processing input device DKB500 SMU I scanning for shelved files on disk volume 1 DKB500 File
495. rchive class media type device relationship for three archive classes and the associated TA90 and TK50 tape devices As shown in the figure the two TA90 devices can each archive data belonging to their common archive classes but the TK50 device can only operate with a single archive class Figure 2 3 ARCHIVE CLASSES AND MEDIA TYPES DEVICES HSM ARCHIVE01 TA90 HSM ARCHIVE02 TK50 HSM ARCHIVEOS TA90 CXO 4267A MC Ideally an HSM configuration uses identical media types for all archive classes allowing the maximum sharing of devices because each device could support all archive classes However this is not always possible or desirable For example you may want to define a primary archive class that uses a robot controlled nearline device and some secondary archive classes that use human operated 9 track magnetic tape devices Understanding HSM Concepts 2 12 Understanding HSM Concepts 2 6 Device Associating Devices with Archive Classes When selecting the devices associated with an archive class you should consider such aspects as e Device speed e Automatic or human intervention for loading and unloading e Device cost A robot controlled nearline device is recommended for primary archive classes because users will be able to access shelved files without human intervention on a 24 hour basis The need for such devices is less on secondary archive classes especially if an online cache is used see Section 2 8
496. re such as the following UNSHELVE volume 000000 SINCE 10 OCT 1999 EXPIRED This command unshelves all files that have been accessed since 10 OCT 1999 assuming you have enabled volume retention as recommended The use of this command is optional 5 17 5 Restoring Files You restore individual files by locating the volume that has the latest or desired copy of the file and restoring the file in the usual way If however the file is restored in the shelved state you should run the SMU ANALYZE REPAIR command to reset its file identifier in the catalog Managing the HSM Environment 5 31 Managing the HSM Environment 5 18 Determining Cache Usage 5 17 6 Repacking Since you are using HSM as the repository of virtually all files on your system the number of HSM media is liable to become very large In order to keep this under control it is recommended that you repack your archive classes regularly Once every three six months is recommended in such an environment See section 7 14 for information on repacking archive classes 5 17 7 Other Recommendations You should not use consolidated backup with HSM on system disks Preshelving files on system disks and having them restored in the shelved state will likely result in an inability to reboot your system This is highly unrecommended Also you should define multiple shelves and multiple catalogs for this environment The cata logs should be stored on shadowed disks with
497. reason HSM adds further information as to the root cause of the error This is a new OpenVMS message for HSM A 2 Shelf Handler Messages This section defines all status and error messages that are produced by or on behalf of HSM together with the cause and suggested user actions when appropriate The HSM Shelf Handler Process SHP performs all preshelving shelving unshelving and unpreshelving operations for HSM The following status and error messages are generated by the shelf handler process and are either returned to the end user or to the shelf handler audit and error logs All shelf handler messages use the message prefix of HSM HSM W ALLOCFAILED failed to load allocate mount drive drivename HSM Error Messages A 1 HSM Error Messages A 2 Shelf Handler Messages Explanation An error occurred trying to ready the specified drive for operations The causes could be that the drive is not configured in SMU or MDMS or that the drive has another volume mounted or is otherwise unavailable Please check the SHP error log and the status of the drive HSM I ALRPRESHELVED file filename was already preshelved Explanation A preshelve request was issued for a file that was already preshelved or shelved No action is required SHSM I ALRSHELVED file filename was already shelved Explanation A SHELVE NOONLINE request was issued for a file that was already shelved and no reshelving is required No action is required HSM F BUGCHE
498. res At this point the volume re enters the free state e Unavailable This state is used by MDMS if it detects a problem with the volume For example if MDMS cannot read the label on this volume during a load it puts it in the unavailable state MDMS remembers the previous state the Available State so that when it comes out of the unavailable state it goes back to its previous state A picture showing the normal state transitions is provided at the top of the volumes section While changing the state directly is not recommended there are several options for changing state that are supported e Available This changes the state from the unavailable state to the volume s previous state e Unavailable This changes the current state to unavailable and remembers the volume s previous state The volume cannot be used in this state You should set this if you believe the volume is corrupted or broken and cannot be used e Release If the volume is in the Transition State and you have verified that its data has expired you can Release it to the free state immediately e Retain If the volume is in the Transition State and you have verify that its data has NOT expired and is still useful you can Retain the volume back to the allocated state The existing allocated user UIC and account are maintained If the volume was in a volume set the volume set is re created Preinitialize If you know that the volume is alread
499. ricting operations sometimes leads to conflicts between HSM and MDMS When you are using multiple devices in Basic mode you can optimize operations by specifying that only shelving or only unshelving is enabled on the device This will effectively guide those operations to the enabled device rather than allowing many load unload operations as the requests come in For example if you are using two devices you might specify that one is used for shelving and the other is used for unshelving A special override allows unshelving on a shelving device if the currently mounted media contains the requested file which is common if the file is unshelved shortly after it is shelved If you specify only a single device for HSM it must support both operations for correct usage Media Type Compatibility When setting up a device for HSM use you define a media type by relating the device to one or more archive classes whose media type and density are compatible with the device This does not mean that shelving devices have to be identical for any archive class For example a TK50 device might be specified for shelving and a TK70 device be specified for unshelving This is valid because a TK70 can read a TK50 written cartridge but not vice versa However if you do use compatible but not identical media types you must control the opera tions on the devices so the tapes are always written in a compatible format The media must be written in the format read
500. rights to from the user rights as you wish A drive is a physical resource that can read and write data to tape volumes Drives can be standa lone requiring operator intervention for loading and unloading in a stacker configuration that allows limited automatic sequential loading of volumes or in a jukebox which provides full ran dom access automatic loading Drives are named in MDMS using a unique name across the domain it may or may not be the same as the OpenVMS device name as these may not be unique across the domain The following sections describe the attributes of a drive The access attribute controls whether the drive may be used from local access remote access or both Local access includes direct SCSI access access via a controller such as the HSJ70 access via TMSCP or access via Fibre Channel and does not require use of the Remote Device Facility RDF Remote access is via a DECnet network requiring RDF You can set the access to one of the following e All Allows both local and remote access default Local Allows only local access as defined above e Remote Allows only remote access using RDF 10 3 2 Automatic Reply 10 3 3 Device Automatic reply is the capability of polling hardware to determine if an operator assist action has completed For example if MDMS requests that an operator load a volume into a drive MDMS can poll the drive to see if the volume was loaded and if so complete the OPCOM request w
501. rives Jukeboxes and Locations To use this feature set the automatic reply attribute to the affirmative When this attribute is set to the negative which is the default an operator must acknowledge each OPCOM request for the drive or jukebox before the request is completed 11 2 2 2 Creating a Remote Drive and Jukebox Connection If you need to make backup copies to a drive in a remote location using the network then you must install the Remote Device Facility software RDF The RDF software must then be config ured to work with MDMS See Table 11 9 for a description of the actions you need to take to configure RDF software Table 11 9 Actions for Configuring Remote Drives Stage Action 1 Install the appropriate RDF component on the node e Install the RDF Server software on all nodes that are connected to the tape drives used for remote operations e Install the RDF Client software on all nodes that initiate remote operations to those tape drives 2 For each tape drive served with RDF Server software make sure there is a drive object record in the MDMS that describes it Take note of each node connected to the drive even if the drive object record includes a group definition instead of a node 3 On each node connected to the tape drive edit the file TTI RDEV CONFIG node DAT so that all tape drives are represented The syntax for representing tape drives is given in the file 11 2 2 3 How
502. rol the following e Shelf copies e Shelving operations e Shelf catalog e Delete save time e Number of updates to retain You can define any number of shelves but any specific online disk volume can be associated with only one shelf The Default Shelf HSM DEFAULT SHELF HSM provides a default shelf named HSsM DEFAULT SHELF to which all volumes are asso ciated if no other associations are defined If your data reliability requirements are the same across all disk volumes you can simply use the default shelf and specify the desired number of copies to use on that shelf All volumes acquire the data reliability specified by the default shelf If your data reliability requirements differ from volume to volume you can define multiple shelves each of which can contain different numbers of copies for data reliability purposes You can then relate each volume to the shelf that has the appropriate number of copies HP recommends that you specify at least two copies for each volume If you have a very large number of online disk volumes HP recommends that you define multi ple shelves each with a separate catalog This prevents any particular catalog from becoming so large that catalog access performance degrades HP recommends that you associate between 10 and 50 online disk volumes with each shelf depending on the amount of shelving you plan to do The shelf entity does not define the volumes associated with the shelf Instead y
503. rom the shelf handler The accompanying message will give more information about the failure SMU W SHP ALREADYSTARTED shelf handler already started Explanation A SMU START was issued when there was already a shelf handler process started No action is required SMU S SHP STARTED shelf handler process started process id Explanation The shelf handler process has been successfully started SMU E SHUTERR error shutting down database database name HSM Error Messages A 29 HSM Error Messages A 3 Shelf Management Utility Messages Explanation For SMUEXIT an error was encountered while trying to close the database There may be an accompanying message that gives more information about any failure Please check the equivalence name of HSM MANAGER and redefine as needed Also ver ify that the database file is accessible SMU F SMLOCKERR error locking SPLIT MERGE lock Explanation For SMU SET SHELF or SMU SET VOLUME an unexpected error was encountered while trying to acquire the split merge lock SMU F SNF policy execution server not found Explanation For SMU SET SCHEDULE the queue was not found on the policy server There will be accompanying messages that give more information about the queue involved and the failure Verify that the queue exists SMU I STARTSCAN scanning for shelved files on disk volume device name Explanation SMU ANALYZE is currently processing the device SMU W STARTQ error encountered attempt
504. rovides an effec tive way to equalize the usage across all your disk volumes e Schedule the cache flush so that it happens when your nearline and offline devices are idle HSM optimizes all operations during the cache flush to minimize tape loading and position ing By using a cache effectively you are using HSM in the most efficient way and providing the best overall service to the system users 2 8 5 Using Magneto Optical Devices 2 9 Policy Magneto optical MO devices make an ideal repository for shelved file data because their cost is significantly lower than magnetic disks but their response time is good HSM supports mag neto optical as cache devices only they cannot be defined like tape devices to support archive classes To configure a magneto optical device you should define a label and mount the volume as a normal Files 11 disk The volume label should not be an HSM label in the HSxxxx format but should be of the system administrator s choosing If you are using a magneto optical robot loader with multiple platters each platter that you want HSM to use should e Besystem mounted as a Files 11 device with a specific device name e Be defined in an SMU SET CACHE command You can define the magneto optical devices as either a cache staging area or as a permanent shelf for fast response time using the BACKUP attribute of the SET CACHE command For more information and an example see the SMU SET CACHE command in HSM
505. rs Eventlogging Activity logging Converting from Basic mode to Plus mode Managing the HSM Environment 5 1 Managing the HSM Environment 5 1 Dismounting Disks 5 1 Dismounting Disks When HSM performs shelving operations on online disk volumes it opens a file on each disk This file can remain open for extended periods of time If you need to dismount a disk that sup ports HSM operations you may need to disable the HSM operations before the dismount can take place For normal online volumes that HSM has accessed disable all HSM operations on the disk SMU SET VOLUME device name DISABLE ALL In addition if the disk has been defined as an HSM cache device delete the cache definition or disable the cache SMU SET CACHE device name DELETE Because the cache disk contains files necessary to support HSM the disk cannot be dismounted until all the cache files are flushed to the nearline offline archive classes Deleting the cache ini tiates a cache flush which may take from minutes to hours to complete If you need to dismount the disk immediately for any reason without initiating a cache flush you should disable the cache instead using the following command SMU SET CACHE cache name DISABLE Note that if you dismount a cache disk users will not be able to access shelved file data that remains in the cache You should not dismount the disks referenced by the logical names HSM CATALOG HSM MANAGER or HSM LOG
506. rs for the pool as a comma separated list of users Each user should be specified as node username or group username where both the node group and username portions can contain wildcard characters To authorize everyone you can specify To authorize everyone on a node you can specify nodename Everyone in the authorized user list is allowed to allocate volumes in the pool Other users require MDMS ALL RIGHTS or MDMS ALLOCATE ALL rights 10 10 2Default Users Default users are authorized like the authorized users but in addition are assigned this pool as their default pool In this case if they attempt to allocate a volume and don t specify a pool they will allocate a volume from this pool A particular user need only appear in one list they do not need to be listed in both lists to be an authorized user to their default pool 10 10 3Threshold Pools are useful for dividing volumes between groups or organizations but they are only useful is there are free volumes in the pool MDMS provides the capability of monitoring the number of free volumes in a pool A free volume is one that is available for allocation and writing new data Many users would like to maintain a minimum number of free volumes in a pool to handle tape writing needs for some period of time You can specify a threshold value of free volumes below which an OPCOM message is issued that asks an operator add some more free volumes to the pool In addition the col
507. rver server name Explanation The scheduled policy was successfully deleted SMU E SCHED DELERR error deleting policy definition policy name for volume volume name Explanation For SMU SET SCHEDULE DELETE an error was encountered while trying to delete the scheduled event There may be an accompanying message that gives more information about any failure SMU W SCHED NF schedule schedule name for volume volume name on server Server name was not found Explanation For SMU SET SCHEDULE the scheduled event for the volume was not found in the database There may be an accompanying message that gives more information about any failure Verify your configuration then retry the command SMU E SCHED WRITERR error writing scheduled definition for volume volume name Explanation For SMU SET SCHEDULE LOG an unexpected error was encountered while adding a schedule definition for the volume There may be an accompanying message that gives more information about any failure SMU I SCHED UPDATED scheduled policy policy name for volume volume name was updated on server server name Explanation The scheduled policy was successfully updated SMU W SCHEDUPDERR unable to update schedule information Explanation For SMU SET SCHEDULE an error was encountered while trying to modify the scheduled policy attributes There may be an accompanying message that gives more information about any failure SMU I SHELF CREATED shelf shelf name cr
508. rvers 11 7 11 1 3 2 MDMSS LOGFILE LOCATION ssseseseeeee e e ere 11 8 11 1 33 MDMS Shut Down and Start Up 0 cece eens 11 8 11 1 4 Managing an MDMS Node 0 0 ee cece re 11 9 11 1 4 1 Defining a Node s Network Connection 0 0 00 cece eee eee 11 9 11 1 4 2 Defining How the Node Functions in the Domain lsleleele eese 11 9 11 1 4 3 Enabling Interprocess Communication 00 0c e 11 10 11 1 4 4 Describing the Node esee CAS MAR ARG tete e ed rep 11 10 11 1 4 5 Communicating with Operators o ooooococoocrcro I enna 11 10 11 1 5 Managing Groups of MDMS Nodes sees 11 10 11 1 6 Managing the MDMS Domain 0 0 0 Ih 11 11 11 1 6 1 Domain Configuration Parameters s 0 0 eee e 11 12 11 1 6 2 Domain Options for Controlling Rights to Use MDMS 0 000000 eee ee 11 12 11 1 6 3 Domain Default Volume Management Parameters ooocoococoococo cono 11 12 11 1 7 MDMS Domain Configuration Issues leeleeee eh 11 13 11 1 7 1 Adding a Node to an Existing Configuration 0 0 0 0 eee cece eee 11 13 11 1 7 2 Removing a node from an existing configuration 0 0 0 cece eee eee eee ee 11 14 11 2 Configuring MDMS Drives Jukeboxes and Locations 0oooooocooccoococoro rr 11 14 11 2 4 Configuring MDMS Drives o ooo oooocor e I Ih 11 14 11 2 1 1 How to Describe an MDMS Drive ooooocoococcccoc I 11 14 11 2 1 2 How to Con
509. s Success System request from node SYS002 process 40201C31 user SMITH Unpreshelve file DISKSMYNODE SMITH TESTJLM DAT Example of a Policy Audit Log Entry 6648 20 OCT 1999 18 33 03 31 20 OCT 18 33 04 16 status Success Reset PEp logs request from node MYNODE PID 20200687 user BAILEY 6649 20 OCT 1999 18 36 40 36 22 SEP 17 23 04 16 status Success Scheduled request from node MYNODE PID 20200687 user SYSTEM Reactive execution on volume 1 DKA100 Using policy definition HSMSDEFAULT OCCUPANCY Volume capacity is 5841360 blocks Current utilization is 5286012 blocks Lowwater mark is 90 or 5257224 blocks used Primary policy definition Space Time Working Set STWS was executed Secondary policy definition Least Recently Used LRU was not executed A total of 1454 requests for 28867 blocks were successfully sent To reach the lowwater mark 0 blocks must be reclaimed 6650 20 OCT 1999 19 25 04 10 22 SEP 18 36 47 42 status Success Exceeded quota request from node MYNODE PID 20200687 user SYSTEM Reactive execution on volume 1 DKA200 Using policy definition HSMSDEFAULT QUOTA Quota capacity is 194865 blocks Current utilization is 203416 blocks Lowwater mark for UIC 107 34 is 80 or 155892 blocks used Primary policy definition Space Time Working Set STWS was executed Secondary policy definition Least Recently Used LRU was not executed A total of 2051 requests for 48042 blocks were successfully sent To reach th
510. s read only volumes you may want to create a special volume pool for all the old HSM Basic mode volumes For more information on preparing HSM to work with MDMS see the Getting Started with HSM Chapter of the HSM Installation and Configuration Guide 5 22 4 Changing from Basic Mode to Plus Mode To change from HSM Basic mode to HSM Plus mode without reinstalling the HSM software you need to change information about the facility and restart the shelf handler Because HSM Version 3 0A converts existing HSM information upon installation you do not need to do any additional conversion for HSM Plus mode to operate To change from HSM Basic mode to HSM Plus mode use the following command SMU SET FACILITY MODE PLUS 5 22 5 Restarting the Shelf Handler Once you have made all the HSM Basic mode volumes known to MDMS and have reset the facility to HSM Plus mode you are ready to restart HSM To restart HSM use the SMU STAR TUP command Managing the HSM Environment 5 38 Managing the HSM Environment 5 22 Converting from Basic Mode to Plus Mode 5 22 6 Using the Same Archive Classes If you intend to use the same archive classes for HSM Plus mode as you used for HSM Basic mode you need to be very careful about the information that has been stored in those archive classes so far To protect this information and enable HSM to use the same archive classes you need to checkpoint the existing archive classes before you enable the facility
511. s 2 13 2 6 5 Compatible Media for HSM Basic Mode 0 0 0 eee eh 2 14 2 6 6 Automated Loaders and HSM Plus Mode sssseseeeeee eens 2 15 2 77 NOME AT at BR aos Be en Oke bee eek A Paes ee ei ee 2 15 2 7 1 ena M 2 15 2122 Shelving Operations iussit nar ii 2 16 2 7 3 NVol ume Poli6y it Rede e ue t Red Ue ot ae ente 2 16 2 7 4 High Water Mark sosen orinda y o eRe AREE ER E SORRY ug REY 2 16 2 7 5 Files Excluded from Shelving o ooooooococooror e 2 16 2 8 Cache Usage util ri PL eie EL Sgt sere ee dy 2 17 2 8 1 Advantages and Disadvantages of Using a Cache 0 0 0 cee eee eee 2 17 2 8 2 Cache Flushing A A A AA EE 2 17 2 8 3 Cache Attributes si A cas 2 18 2 8 3 1 Timing of Shelf Copies economic pra ERE dio ia 2 18 2 8 3 2 Cache Block SIZE i o Rn RO e RE rd edendi dee 2 18 2 8 3 3 High Water Marks ae dois RE A IA V ee ASA 2 18 2 8 3 4 Cache Plush Interval 2c o oii ls 2 18 2 8 3 5 Cache Plush Delay coordine teh a PRISES 2 18 2 8 3 6 Delete and Modify File Acti0N o ooooooocooccocor cece eens 2 19 2 8 4 Optimizing Cache Usage di IAE A ee eee Sa eS 2 19 2 8 5 Using Magneto Optical Devices o ooooooooocoorocrr I eee 2 19 2 9 PohCyc AA 2 19 2 9 1 HSM Policy Options eb hU heu aeree e rere erede ede teh 2 20 2 9 2 Tigger Events aii RS oe ee ie eee eee ee ed 2 20 2 9 2 1 scheduled Trpger o co eo decries Gar eens eres iter NER EN EOS siet ho ge 2 21 2 9 2 2 User Disk Quota Exceeded Trigger lls
512. s VAX Alpha VAX Alpha Common media and device management with No Yes through MDMS other HP storage products Support for Digital Linear Tape DLT maga Yes Yes zine loaders as robotically controlled devices Support for TL81x TL82x No Yes Maximum number of archive classes 36 9999 Requires specific HSM volume names Yes No Provides support for remote devices No Yes Uses a single integrated interface for configu Yes No ration and use All other functions including HSM policies and cache are provided in both modes 1 14 Media Types for HSM Basic Mode HSM Basic mode automatically determines the media type based on the specific device s you define for use Table 1 6 shows how media types map to devices for HSM Basic mode Check the HSM Software Product Description SPD 46 38 xx for the latest list of supported devices Table 1 6 Media Type to Device Map Device Type Media Type Magazine Loader TA78 9 Track Magtape No TA79 9 Track Magtape No Introduction to HSM 1 12 Introduction to HSM 1 14 Media Types for HSM Basic Mode Table 1 6 Media Type to Device Map Device Type Media Type Magazine Loader TA81 9 Track Magtape No TA85 CompacTape III No TA857 CompacTape III Yes TA86 CompacTape III No TA867 CompacTape III Yes TA90 3480 Cartridge No TA90E 3480 Cartridge No TA91 3480 Cartridge No TAD85 CompacTape III No TAPE9 9 Track Magtape No TE16 9 Track Magtape No TF70 CompacTape II No TF85 CompacTape I
513. s actually deallocated The volume may go into either the transition state or the free state depending on whether there is a transition time on the volume This field is protected and maintained by MDMS and should not nor mally be manually changed e Onsite Date This is the date the volume is due to be moved onsite from an offsite location If this date is specified MDMS automatically generates a Move Volume operation to move the volume onsite Clear this field if you do not wish MDMS to automatically move the volume onsite Media Management 10 20 Media Management 10 11 Volumes e Offsite Date This is the date the volume is due to be moved offsite If this date is specified MDMS automatically generates a Move Volume operation to move the volume offsite Clear this field if you do not wish MDMS to automatically move the volume offsite Transition Time The transition time indicates that the volume is to enter the transition state when it is deallocated and remain in this state until the transition time has expired In the transition state the volume cannot be allocated for use When the transition time expires the volume enters the free state and may be re used If an offsite and or onsite date is specified MDMS initiates the movement of the volumes at some point on the scheduled date automatically This is performed by the Move Volumes scheduled operation which by default runs at 1 00 am each day Operators will see OPCOM
514. s are made Up to 36 archive identifiers can be specified in this list The archive and restore archive lists are defined using the SMU SET SHELF command with the ARCHIVE and RESTORE qualifiers See HSM Command Reference Guide for a complete description of the shelf management utility and its commands Restore archive classes are used for unshelving files in the order specified in the restore archive list The first attempt to restore a file s data is made from the first archive class specified in the restore list If this fails an attempt is made from the next archive class and so on Although only 10 archive classes are supported for shelf copies up to 36 are supported for restore because the restore list must contain a complete list of all archive classes that have ever been used for shelv ing on the shelf This enables files to be restored not only from the current list of shelf archive classes but also from all previously defined shelf archive classes In this way you can add or change archive classes for a shelf by Understanding HSM Concepts 2 6 Understanding HSM Concepts 2 3 The Shelf Changing the archive classes in the archive list which affects subsequent shelving operations only Adding new archive classes to the restore list while keeping the existing definitions in place so that files shelved under those definitions still can be restored Archive classes also are related to media types and devices as discussed in Section
515. s not have a node name as part of it Nodes Make sure this list of nodes contains the nodes that can reach this drive Disabled The conversion program enables all drives If you want this drive disabled then set this attribute to YES Shared The conversion program sets this attribute to NO NO means that MDMS does not have to compete with other applications for this device If MDMS is supposed to share this device with other applications set this attribute to YES State Make sure this drive is in the right state If the drive is not in the right state you can set this attribute to the right state or issue the following command MDMS SET DRIVE drive CHECK Automatic reply The conversion program sets this attribute from the QUICK LOAD symbol Make sure this is the way you want the drive to react RW mediatypes The conversion program added media types to this drive as it found them Make sure these are the correct read write media types for this drive RO Media There are no read only media types in SLS MDMS V2 x so Types none is added to the drives during conversion You may want to add some read only media types to the drive object Access The conversion program has no way of knowing what the access should be therefore it sets the access attribute to ALL Make sure this is the access you want for this drive Jukebox Make sure this is the jukebox that this drive is in
516. s used User Action Re enter the command with valid values MDMS Messages C 20 MDMS Messages INVSCHEDPARAM inavlid scheduling parameter defined Explanation An invalid parameter was entered for a scheduling option User Action Report the incident to HP INVSELECT invalid selection criteria Explanation The selection criteria specified on an allocate command are invalid User Action Check the command with the documentation and re enter with a valid combination of selection criteria INVSLOT invalid slot or slot range specified Explanation The slot or slot range specified when moving volumes into a magazine or jukebox was invalid or the specified slots were already occupied User Action Specify valid empty slots and re enter INVSLOTRANGE invalid slot range Explanation The slot range was invalid It must be of the form 1 100 1 100 200 300 400 The only characters allowed are comma dash and numbers 0 9 User Action Check that you are using the correct form INVSPACE invalid space or space range specified Explanation The space or space range specified when moving volumes into a location was invalid User Action Specify valid spaces already defined for the location or specify a space range for the location INVSRCDEST invalid source or destination for move Explanation Either the source or destination of a move operation was invalid does not exist MDMS Messages C
517. s was present in the command Re enter the command and specify a cache device or list of devices SMU E NODEFINLIST the default device may not be in a device list Explanation For SMU SET DEVICE the default device may not be specified in the com mand Re enter the command without using the default device SMU E NODEVICELIST no device name or list of devices found HSM Error Messages A 23 HSM Error Messages A 3 Shelf Management Utility Messages Explanation For SMU SET DEVICE no device name or list of names was present in the command Re enter the command and specify a device or list of devices SMU W NOENTFND no database entries found for string Explanation An unexpected error was encountered while trying to read from a SMU data base The message will contain the database involved There may be an accompanying mes sage that gives more information about any failure Please check the equivalence name of HSM MANAGER and redefine as needed Also verify that the database files are accessi ble SMU E NOFILEATTR error reading file attributes for file ID file id Explanation For SMU ANALYZE an unexpected error was encountered while reading the file attributes There may be an accompanying message that gives more information about any failure SMU ANALYZE will stop processing this file SMU W NOFILES no files found Explanation For SMU LOCATE no files were found that matched the search criteria or the catalog is empty SM
518. sage that you must explicitly unshelve the file The default is that all shelved files can be implicitly unshelved by HSM Check with your system manager to determine if the defaults have been changed for your instal lation Using HSM 4 9 9 Managing the HSM Environment This chapter provides information on managing and maintaining your systems in an HSM envi ronment Storage administrators will find this information especially useful This chapter is divided into two main parts 1 Normal system management operations that require some changes due to the presence of HSM It is important that these procedures be following to maintain correct system opera tion and data integrity in an HSM environment Such operations include Dismounting disks Copying shelved files Renaming disks Restoring files to another disk 2 System management operations that are required to support HSM These operations include Protecting system files from shelving DFS NFS and PATHWORKS access support Ensuring data safety with HSM Using backup strategies with HSM Recovering lost user data Disaster recovery Maintaining shelving policies Managing HSM catalogs Repacking archives and shelf volumes Replacing and creating archive classes A Replacing a lost or damaged shelf volume Catalog analysis and repair Consolidated backup with HSM Determining cache usage Maintaining file heade
519. se locations the jukebox name and the place ment to determine where a jukebox is at a certain time Both onsite and offsite locations should be MDMS defined location objects Together with the offsite and onsite locations you can associate an offsite and onsite date These dates represent the date the magazine is due to be moved offsite or onsite respectively Typically magazines are moved offsite while their volumes data is still valid and needs to be protected in a secure location When the volumes data expires the magazine should be scheduled to be brought onsite so that the newly freed volumes can be used for other purposes If an offsite and or onsite date is specified MDMS initiates the movement of the magazines at some point on the scheduled date automatically This is performed by the Move Magazine scheduled operation which by default runs at 1 00 am each day Operators will see OPCOM messages to move the magazines to either the onsite or offsite location If you do not wish to have MDMS move magazines automatically either remove the onsite and offsite dates from the magazine or disable the scheduled Move Magazine activity by assign ing a zero time to its schedule object MDMSS MOVE MAGAZINES 10 7 3 Slot Count 10 7 4 Spaces The slot count specifies how many slots are in the magazine Unlike jukeboxes this value is required to make magazines work properly While in an onsite location the magazine can occupy
520. se on each online volume you designate as a cache or you can use the entire volume for the cache 1 10 5 Flushing Cache Flushing the cache is the process used to reclaim cache space Any of the following events can start the cache flushing process e The used cache capacity meets or exceeds the defined high water mark for the cache vol ume e The cache disk experiences a volume full event A periodic cache flush trigger event occurs Depending on how you defined the cache the following events occur when the cache is flushed WHEN THEN The BACKUP qualifier is used for The files on the cache disk are deleted because the cache they have already been copied to shelf storage The NOBACKUP qualifier is used for The files on the cache disk are copied to the near the cache line offline media used for shelf storage and are then deleted 1 11 HSM Catalogs HSM catalogs contain the information HSM needs to locate and unshelve all shelved files There is one default catalog used for maintaining global HSM information and a number of shelf cat alogs that are related to specific shelves and volumes If an HSM catalog suffers an unrecover able loss the associated shelved data may be lost For this reason HSM catalogs are an essential part of the HSM environment For information on setting up shelf catalogs see Section 2 3 4 For information on protecting HSM catalogs from loss or corruption see Section
521. se the number of large request packets LRPs and raise the default value of NETACP BYTLM Large request packets LRPs are used by DECnet to send and receive messages The number of LRPs is governed by the SYSGEN parameters LRPCOUNT and LRPCOUNTV Recommendation A minimum of 30 free LRPs is recommended during peak times Show these parameters and the number of free LRPs by entering the following DCL command SHOW MEMORY POOL FULL Result System Memory Resources on 24 JUN 1991 08 13 57 66 Large Packet LRP Lookaside List Packets Bytes Current Total Size 36 59328 Initial Size LRPCOUNT 25 41200 Maximum Size LRPCOUNTV 200 329600 Free Space 20 32960 In the LRP lookaside list this system has e Current Total Size of 36 The SYSGEN parameter LRPCOUNT LRP Count has been set to 25 The Current Size is not the same as the Initial Size This means that OpenVMS software has to allocate more LRPs This causes system performance degradation while OpenVMS is expanding the LRP lookaside list The LRPCOUNT should have been raised to at least 36 so OpenVMS does not have to allocate more LRPs Remote Devices 14 6 Remote Devices 14 4 Monitoring and Tuning Network Performance Recommendation Raise the LRPCOUNT parameter to a minimum of 50 Because the LRPCOUNT parameter is set to only 25 the LRPCOUNT parameter is raised on this system even if the current size was also 25 e Free Space is 20 This is below the recommended fr
522. sed to con trol them MDMS supports both the Media Robot Device MRD subsystem for SCSI controlled robots and the Digital Cartridge Server Component DCSC subsystem for certain silos The next sections describe the jukebox attributes The access attribute controls whether the jukebox may be used from local access remote access or both Local access includes direct SCSI access access via a controller such as the HSJ70 or access via Fibre Channel and does not require use of the Remote Device Facility RDF Remote access is via a DECnet network requiring RDF You can set the access to one of the fol lowing All Allows both local and remote access default Local Allows only local access as defined above e Remote Allows only remote access using RDF For DCSC controlled jukeboxes the ACS identifier specifies the Automated Cartridge System Identifier Each MDMS jukebox maps to one Library Storage Module LSM and requires the specification of the Library ACS and LSM identifiers 10 5 3 Automatic Reply Automatic reply is a capability of polling hardware to determine if an operator assist action has completed For example if MDMS requests that an operator move a volume into a port MDMS can poll the port to see if the volume is there and if so complete the OPCOM request without an operator reply Set automatic reply to enable this feature and clear to require an operator response Please note that some operations cannot be
523. ser Action Check that there are enough empty slots in the jukebox when moving in and retry On a move out examine the cause of the failure and retry MRDERROR error accessing jukebox with MRD Explanation MDMS encountered an error when performing a jukebox operation An accompanying message gives more detail User Action Examine the accompanying message and perform corrective actions to the hardware the volume or the database and optionally retry the operation MRDMSG IAZ Explanation This is a more detailed MRD error message which accompanies MRDERROR User Action Check the MRU error message file MDMS Messages C 25 MDMS Messages NOACCESS no user access to object for operation Explanation You attempted to perform an operation on an object for which you have no access User Action You need an authorized user to add you to the access control list otherwise you cannot perform the requested operation NOBINDSELF volume is already in volume set Explanation You cannot bind this volume into this volume set because it already a member of the volume set User Action Use another volume NOCHANGES no attributes were changed in the database Explanation Your set command did not change any attributes in the database because the attributes you entered were already set to those values User Action Double check your command and re enter if necessary Otherwise the database is already set to
524. specified on the command line No HSM action took place SSHELVE I ALRSHELVED file filename was previously shelved Explanation A shelve request was issued for a file that is already shelved No action is required SSHELVE W CANCELLED shelving operation on file filename canceled Explanation The shelving request has been canceled due to a specific cancel request a request that conflicts with another user or a failure of a multi operation request In the last case please check the SHP error log for more information SSHELVE F CLI fatal error detected parsing command line Explanation This failure messages alerts you that a fatal error was encountered while pars ing the command line Verify the command syntax fix and retry SHELVE F CLI BY OWNER value shelf value invalid for BY OWNER qualifier Explanation This failure message alerts you that you entered an invalid value for the BY OWNER qualifier on the command line Verify that UIC syntax and that it exists SSHELVE F CLI_INVTIM invalid absolute time use DD MMM YYYY HH SS CC for mat HSM Error Messages A 11 HSM Error Messages A 2 Shelf Handler Messages Explanation This failure message alerts you that you entered an invalid time value on the command line Verify the time value and make sure it conforms to the DD MMM YY YY HH SS CC format use of TODAY TOMORROW and YESTERDAY are also valid SSHELVE E DISCLASS command class has been automatically disabled Explanation
525. spelling of the selection names and retry or create the selection objects in the database SETLOCALEFAIL an error occurred when accessing locale information Explanation When executing the SETLOCALE function an error occurred MDMS Messages C 44 MDMS Messages User Action A user should not see this error SETPROTECTED protected field s set verify consistency Explanation You have directly set a protected field with this command Normally these fields are maintained by MDMS This has the potential to make the database inconsistent and cause other operations to fail User Action Do a SHOW FULL on the object s you have just modified and verify that your modifications leave the object s in a consistent state SLSDBINUSE SLS DB network object in use Explanation The MDMS server could not be started because it could not declare the network task SLS DB The network task SLS DB is already in use User Action Check the server s logfile for more information Check the logical MDMSSSUPPORT PRE V3 in the system table If this is TRUE and the SLS TAPMGRDB process is running the server cannot be started Shut down the SLS TAPMGRDB process by shutting down SLS Restart MDMSV3 0 server and then restart SLS SNDMAILFAIL send mail failed see log file for more explanation Explanation While sending mail during the scheduled activities a call to the mail utility failed User Action Check the log file for the fail
526. sts and describes the MDMS objects Table 8 1 MDMS Object Records and What they Manage This Object Record Meets the Need to Domain Manage domain wide operating parameters MDMS creates this object record automatically Node Describe a node in the MDMS domain It defines the node s network names You cannot operate MDMS without Node object records Group Group node object records Groups are a convenient shortcut to specify a list of nodes What is MDMS 8 1 What is MDMS 8 2 MDMS Interfaces Table 8 1 MDMS Object Records and What they Manage This Object Record Meets the Need to Location Describe a location in your environment A location can be the name of a building a room or a facility Request Handle all MDMS operations initiated by a user or an application Drive Describe an OpenVMS drive to MDMS Jukebox Describe a tape loader or tape library to MDMS Magazine Describe a tape magazine to MDMS The use of magazine objects is optional even if magazines are used in reality Media Type Describe the different media types represented by volumes Pool Describe a group of volumes Pools control which user has access to vol umes in group Volume Describe an individual magnetic tape medium MDMS tries to reflect the true states of objects in the database MDMS requests by users may cause a change in the state of objects For some objects MDMS
527. sufficient e The OpenVMS help library is currently in use e The product license has not been registered and loaded e HSM is currently running on at least one node in the cluster For descriptions of the error messages generated by these conditions see the OpenVMS docu mentation on system messages recovery procedures and VMS software installation If you are notified that any of these conditions exist you should take the appropriate action as described in the message For information on installation requirements see Chapter 1 of the HSM Installation Guide Solving Problems with HSM 7 5 Solving Problems with HSM 7 4 HSM Startup Problems 7 4 HSM Startup Problems This section describes problems that can occur while starting up HSM 7 4 1 SMU Does Not Run If you cannot run the Shelf Management Utility SMU examine Table 7 1 for more informa tion Note In the reference column of a this table IG refers to the HSM Installation Guide When IG is not mentioned assume that the reference is to this HSM Guide to Operations Manual Table 7 1 SMU Does Not Run Problem Solution Reference HSM license not installed DECthreads images not Install the HSM License Install DECthreads images IG Section 1 1 3 IG Section 1 1 4 installed HSM logical names not defined Define HSsM CATALOG Section 2 11 HSM MANAGER and HSM LOG Installation not complete Complete installation IG Section 1 3 Insufficient privile
528. sult in a successful open after a delay and retries At this point the file fault on the server node is under way and cannot be canceled The affect of the access on the PC environment varies according to the PC operating system For windows 3 1 and DOS the computer waits until the file is unshelved For Windows NT and Windows 95 only the windows application itself waits Managing the HSM Environment 5 7 Managing the HSM Environment 5 7 Ensuring Data Safety with HSM File events device full and user quota exceeded occur normally with the triggering process being the PATHWORKS server process The quota exceeded event occurs normally because any files extended by the client are charged to the client s proxy not the PATHWORKS server It is not possible from a PATHWORKS client to determine whether a file is shelved In addition there is no way to shelve or unshelve files explicitly via shelve or unshelve commands There is also no way to cancel a file fault once it has been initiated Most PC applications are designed to handle file sharing conflicts Thus when HSM detects the PATHWORKS server has made an access request it can initiate unshelving action but return file busy The typical PC application will continue to retry the original open or prompt the user to retry or cancel Once the file is unshelved the next OPEN succeeds without shelving interaction 5 6 4 Logical Names for NFS and PATHWORKS Access As just discussed
529. supported way to move volumes from one place to another is to use the Move Volume operation You can move volumes on demand by issuing this operation or you can let MDMS automatically move volumes according to pre defined onsite or offsite dates this is called a scheduled move You can also force an early scheduled move if you want it to occur before the time that MDMS would initiate the move Moving volumes into jukeboxes or magazines must always be performed manually When intiating a Move Volume you can choose a destination for the volume if the move is not a scheduled move The destination can be one of four types of places e Jukebox You wish to move the volume into a jukebox you would then specify the jukebox name You can also specify slot this is required for small loader jukeboxes unless you per form an inventory afterwards For vision equipped jukeboxes MDMS can determine an appropriate slot for the volume automatically e Onsite location You wish to move the volume to a location that is onsite to the computer hardware that normally uses it You would then specify the onsite location name and optionally a space that the volume will occupy Media Management 10 27 Media Management 10 11 Volumes e Offsite location You wish to move the volume to an offsite location for safety in case of a disaster Specify an offsite location name Magazine You wish to move the volume into a magazine and specify a magazine slot
530. t Vol Format NONE Protection S RW O RW G RW W Purchase 08 Jan 2003 08 22 16 Creation 08 Jan 2003 08 22 16 Init 08 Jan 2003 08 22 16 Allocation NONE Scratch NONE Deallocation NONE Trans Time 14 00 00 00 Freed NONE Last Access NONE initialize all of the volumes MDMS INITIALIZE VOLUME JUKEBOX TL826 JUKE SLOTS 0 175 MDMS SHOW VOL BEB000 Volume Description Placement Media Types Pool Count Count State State Previous Vol Next Vol Format Protection Purchase Creation Init Allocation Error Mount Avail BEBOOO Volumes for ABS ONSITE BLD1_COMPUTER_ROOM TK88K A BS 0 0 FREE FREE NONE S RW O RW G RW W 08 Jan 2003 08 19 00 08 Jan 2003 08 19 00 08 Jan 2003 08 19 00 NONE Scratch NONE Sample Configuration of MDMS B 8 Username Owner UIC Account Job Name Magazine Jukebox Slot Drive Offsite Loc Offsite Date Onsite Loc NONE TL826 JUKE 0 ANDYS STORAGE NONE BLD1 COMPUTER ROOM Space Onsite Date Brand 08 Jan 2003 08 19 00 Last Cleaned NONE Sample Configuration of MDMS B 1 Configuration Order Deallocation NONE Times Cleaned 0 Trans Time 14 00 00 00 Rec Length 0 Freed NONE Block Factor 0 Last Access NONE Sample Configuration of MDMS B 9 C MDMS Messages ABORT request aborted by operator Explanation The request issued an OPCOM message that has been aborted by an operator This
531. t have to accept all the attribute values of the selected object record You can override any particular attribute value by including the attribute assignment in the command or GUI operation For CLI users use the attribute s qualifier with the MDMS CREATE command For GUI users set the attribute values you want Not all attributes can be inherited Some object record attributes are protected and contain values that apply only to the specific object the record represents Check the command reference information to identify object record attributes that can be inherited 9 6 3 Referring to Non Existent Objects MDMS allows you to specify object record names as attribute values before you create the records For example the drive object record has a media types attribute You can enter media type object record names into that attribute when you create the drive object before you create the media type object records Basic MDMS Operations 9 22 Basic MDMS Operations 9 6 Creating Modifying and Deleting Object Records 9 6 4 Rights for Creating Objects The low level rights that enable a user to create objects are MDMS CREATE ALL create any MDMS object record and MDMS CREATE POOL create volumes in a pool authorized to the user 9 6 5 Modifying Object Records Whenever your configuration changes you will modify object records in the MDMS database When you identify an object that needs to be changed you must specify the object record as it
532. t of users defined in the mail users attributes You should enter a list of users in the format node username Every user in the list will receive the deallocate volume mail messages Media Management 10 2 Media Management 10 2 Domain 10 2 7 Maximum Scratch Time The maximum scratch time is the maximum scratch time that can be applied to any volume when it is allocated The scratch time is the period of time that you wish the volume to stay allocated because its data is still valid The maximum scratch time imposes a maximum limit and over rides the volume s scratch time if it exceeds the maximum For HSM the maximum scratch time should be set to zero unlimited as HSM volumes data remains valid until it is repacked For ABS uses this value should be set to the longest period of time you wish to retain any volume 10 2 8 Media Type The domain media type attribute is the media type that is applied to new volumes and drives by default when they are created In a simple configuration you may only have a single media type so specifying it in the domain allows you to not have to specify it when creating individual drives and volumes It may also be applied as a default to ABS archives You may always over ride the domain default media type with a specific media type when you create or modify drives and volumes 10 2 9 Offsite Location The domain offsite location attribute is applied by default to the offsite location field of new vol
533. t taken place on the disk SMU ANALYZE will stop processing this device set Or during a repair no HSMSUID SYS file could be found and the repair is incomplete SMU E NOVOLLIST no volume name or list of volumes found Explanation For SMU SET VOIUME no volume name or list of names was present in the command Re enter the command and specify a volume name or list of volumes SMU E OFLUPDERR error updating offline information no repair SMU E OFLUPDERR error updating offline information repair incomplete Explanation For SMU ANALYZE an unexpected error was encountered while writing the HSM metadata to the file and either no repair will be made or a partial repair has been made and a new catalog entry exists There may be an accompanying message that gives more information about any failure SMU F OPENERR error opening storage entity Explanation For any SMU command that uses the OUTPUT qualifier there was an error opening the specified output file For SMU SET SCHEDULE there was an error opening the policy execution command file Or there was an unexpected error opening one of the SMU database files There may be an accompanying message that gives more information about any failure SMU E OPERCONF requested operation conflicts with current activity Explanation The requested SMU ANALYZE operation is in conflict with an active Split Merge operation on the device SMU ANALYZE will stop processing this device or stop the a
534. taken as the default All of the rights are taken as default also set up defaults in the domain record MDMS SET DOMAIN DESCRIPTION Smiths Accounting Domain domain name MEDIA TYPE TK88K default media type OFFSITE LOCATION ANDYS STORAGE default offsite location ONSITE LOCATION BLD1 COMPUTER ROOM default onsite location PROTECTION S RW O RW G RW W default protection for volumes MDMS SHOW DOMAIN FULL Description Smiths Accounting Domain XY Xr Xr or Sample Configuration of MDMS B 2 Mail Offsite Location Onsite Location Def Media Type Deallocate State Opcom Class Priority Request ID Protection DB Server Node DB Server Date Max Scratch Time Scratch Time Transition Time Network Timeout ABS Rights SYSPRIV Rights Application Rights Default Rights Operator Rights User Rights SYSTEM ANDYS STORAGE BLD1 COMPUTER ROOM TK88K TRANSITION TAPES 1536 2576 S RW O RW G RW W SPIELN 08 Jan 2003 08 18 20 NONE 365 00 00 00 14 00 00 00 0 00 02 00 NO ES DMS ASSIST DMS LOAD SCRATCH DMS ALLOCATE OWN DMS ALLOCATE POOL DMS BIN DMS CANCEL OWN DMS CREATE POOL DMS DEALLOCATE OWN DMS DELETE POOL DMS LOAD OWN DMS MOVE OWN DMS SET OWN DMS SHOW OWN DMS SHOW POOL DMS UNBIND OWN DMS UNLOAD OWN E oXEGXEGEGXEGX X oXS X oX X Xm Xo XoX ox on DMS ALLOCATE DMS ASSIST DMS B DMS_ DMS_DEALLOCATE_ALL DMS_ DMS_ DMS DMS DMS SHOW ALL DMS SHO
535. tended status item descriptor Not being able to initialize the extended status buffer User Action Check for any of the errors stated above in your program and fix the error INVFREQUENCY invalid frequency for domain scheduler type Explanation You specified an invalid save or restore frequency the scheduler type specified in the domain Invalid combinations include CUSTOM with NONE DECSCHEDULER SCHEDULER or LOCAL EXPLICIT with NONE INTERNAL EXTERNAL or SINGLE User Action Specify a valid frequency for the scheduler type specified in the domain INVINITOPT invalid initialize options specified Explanation You attempted initialize volumes in a jukebox by specifying a slot range and the jukebox is not a vision equipped MRD controlled jukebox User Action Specify a volume range instead of a slot range to initialize volumes in a DCSC jukebox or an MRD jukebox without a vision system INVITCODE invalid item code for this function MDMS Messages C 17 MDMS Messages Explanation The item list had an invalid item code The problem could be one of the following tem codes do not meet the restrictions for that function e Anitem code cannot be used in this function User Action Refer to the API specification to find out which item codes are restricted for each function and which item codes are allowed for each function INVITDESC invalid item descriptor index UL Explanation The item descri
536. the description attribute where you can enter an open text description of the MDMS domain Additional domain object attributes define configuration parameters access rights options and default volume man agement parameters See Figure 11 1 MDMS Configuration 11 11 MDMS Configuration 11 1 The MDMS Management Domain 11 1 6 1 Domain Configuration Parameters Operator Communications for the Domain Include all operator classes to which OPCOM messages should go as a comma separated list value of the OPCOM classes attribute MDMS uses the domain OPCOM classes when nodes do not have their classes defined For more information about operator communication see Section 12 2 Resetting the Request Identifier Sequence If you want to change the request identifier for the next request use the request id attribute 11 1 6 2 Domain Options for Controlling Rights to Use MDMS This section briefly describes the attributes of the domain object record that implement rights controls for MDMS users Refer to Appendix on MDMS Rights and Privileges for the descrip tion of the MDMS rights implementation ABS Users If you use MDMS to support ABS you can set the ABS rights attribute to allow any user with any ABS right to perform certain actions with MDMS This feature provides a short cut to man aging rights by enabling ABS users and managers access to just the features they need Negating this attribute means users with any ABS rights have no additional MD
537. the file being unavailable Please check the SHP error log for more information on the failure SHSM W SHLVOPINCOM shelving operation incomplete for file filename Explanation HSM could not complete the shelving operation for this file during policy execution Please check the SHP error log for more information on the failure SHSM I SHLVPRG shelving files to free disk space Explanation This message occurs if a user request results in a DEVICEFULL or EXDISK QUOTA error and the file system is requesting HSM to free space for the request This message is printed to indicate a possible delay in processing the user request HSM S SHUTDOWN HSM shelving facility shutdown on node nodename Explanation In the audit log this message shows that HSM was shut down with an SMU SHUTDOWN command It is not automatically restarted HSM E SPLITMERGSERR error during shelf split merge catalog not changed Explanation HSM encountered an error during shelf split merge The catalog was not changed Please check the SHP error log for more information on the failure HSM S STARTED shelving facility started on node nodename Explanation In the audit log and startup log this message indicates that the shelf handler process was successfully started No action is required HSM F STSACCESSFAIL error accessing status log files Explanation HSM encountered and error while accessing the log files This could be caused by a device full condition Please check
538. the group objects in the database ILLEGALOP illegal move operation Explanation You attempted to move a volume within a DCSC jukebox and this is not supported User Action None INCOMFREQ incompatible frequency for AZ AZ Explanation After changing the domain scheduler type MDMS has detemined that this save or restore request has a frequency that is incompatible with the new scheduler type The frequencies that are not valid for the given scheduler types are INTERNAL and EXTERNAL Explicit e DECSCHEDULER and SCHEDULER Custom User Action Modify the frequency to a valid one for this scheduler type INCOMPATMED volume s media type incompatible with the drive Explanation The media type for the volume is incompatible with the media type s for the drive on a load operation User Action Verify that the volume can be physically loaded and used in the specified drive If not select another drive If so then add the volume s media type to the drive or otherwise aligned the media types of the volume and the drive INCOMPATOPT incompatible options specified Explanation You entered a command with incompatible options User Action Examine the command documentation and re enter with allowed combinations of options INCOMPATTR attributes incompatible with archive type MDMS Messages C 13 MDMS Messages Explanation You attempted to create or set an attribute which is incompatible with the ar
539. the inventory operation to add volumes to MDMS man agement The inventory operation includes the create preinitialized media types and inherit qualifiers to support such operations Take the steps in Table 12 5 to use a vision jukebox to create volume object records Table 12 5 How to Create Volume Object Records with INVENTORY Step Action 1 If you plan to open the jukebox for this operation disable the jukebox and all drives inside it 2 Empty as many slots as necessary to accommodate the volumes If you cannot open the jukebox use the MDMS MOVE command to keep the MDMS database synchronized with the actual location of volumes removed If you open the jukebox and manually remove managed volumes place the volumes in the location specified by the volumes onsite location 3 Place labelled volumes in the open jukebox slots If you cannot open the jukebox to expose the slots use the Media Robot Utility software or front panel controls to move volumes to the slots MDMS Management Operations 12 10 MDMS Management Operations 12 3 Serving Clients of Managed Media Table 12 5 How to Create Volume Object Records with INVENTORY Step Action 4 Perform the MDMS inventory operation Use the create option to signal MDMS to create volume object records If volumes are initialized specify the preinitialized option and a single media type name for the media types attribute otherwise
540. the node is part of a DECnet Plus Phase V network the DECnet Plus full name must be supplied as an attribute to the node object using the DECNET PLUS FULLNAME Qual ifier or GUI equivalent 3 Ifthe node is part of an Internet or Intranet using TCP IP the TCP IP full name must be supplied as an attribute to the node object using the TCPIP_FULLNAME Qualifier or GUI equivalent 4 Depending on which network or networks are available or should be used the node s trans port attribute has to be set to either DECNET TCPIP or both When an MDMS server starts up it only has its network node name s to identify itself in the MDMS database Therefore if a node has a network node name but it is not defined in the node object records of the database this node will be rejected as not being fully enabled For example a node has a TCP IP name and TCP IP is running but the node object record shows the TCP IP full name as blank There is one situation where an MDMS server is allowed to function even if it does not have a node object record defined or the node object record does not list all network names This is in the case of the node being an MDMS database server Without this exception no node entries can be created in the database As long as a database server is not fully enabled in the database it will not start any network listeners 11 1 4 2 Defining How the Node Functions in the Domain This section describes how to designate an MDMS node
541. the number of slots in the jukebox becomes the number of slots in the magazine e In larger TL820 type jukeboxes the magazine can be placed in many different places If you have associated a topology with the jukebox you can place the magazine in a Posi tion specified by a tower face and level specification This is easier to physically locate in such jukeboxes than the alternative which is a start slot designation OPCOM messages for Move Magazine operations will state either position or start slot depending on whether a topology was specified All three fields are protected and normally managed by MDMS when a Move Magazine oper ation occurs Only manipulate these fields if an error occurs and you need to recover the data base to a consistent state Media Management 10 14 Media Management 10 7 Magazines 10 7 2 Onsite and Offsite Locations and Dates When not in a jukebox a magazine may be either in an onsite or offsite location An onsite loca tion is one where the magazine can be quickly accessed and moved into a jukebox which is also onsite An offsite location is meant to be a secure location in the case of disaster recovery and generally does not have local access to a jukebox However nothing in MDMS precludes the possibility of offsite locations having their own jukeboxes Each magazine should have an onsite and offsite location defined so that operators know where the magazine is physically located They use the
542. the online system you should use the old name current at the time of shelving to locate it e You also can identify a file by file identifier FID which together with a device name uniquely identify a file regardless of any renaming that may have been done after shelv ing e Ifyou do not specify a device and or directory in the SMU LOCATE command it uses a default of 000000 5 When you retrieve information using SMU LOCATE several instances or groups of stored loca tions may be displayed These reflect the locations of the file when it was shelved at various stages of its life You should carefully review the shelving time and revision time of the file to determine which if any is the appropriate copy to restore Managing the HSM Environment 5 1 1 Managing the HSM Environment 5 10 Disaster Recovery Recovering Data from a Lost Shelved File Although HSM tries to restore data from all known locations automatically even when some of the file s metadata is missing there may be occasions when this fails In these situations you should use SMU LOCATE to locate the file s data then attempt to restore the data through BACKUP from tape or COPY from cache If the user is certain file data was shelved but is unable to simply retrieve that data through either an implicit or explicit unshelving operation use the following procedure to find and retrieve the missing data l 2 3 Use SMU LOCATE to search the shel
543. the volume This is because the initialize instantiates the density and compaction attributes of the media type when writing to the volume e Operator Assistance Recommended if a problem occurs during loading unloading during the initialization e Overwrite If set this indicates that you wish the volume label to be written regardless of the label currently on the tape If clear the initialize will not take place if there is a different label on the tape Media Management 10 28 11 MDMS Configuration The Installation Guide provides information about establishing the MDMS domain configura tion The information in this chapter goes beyond the initial configuration of MDMS explaining concepts in more detail than the product installation and configuration guide This chapter also includes procedures related to changing an existing MDMS configuration The major sections in this chapter focus on the MDMS domain and its components and the devices that MDMS manages A sample configuration for MDMS is shown in Appendix B 11 1 The MDMS Management Domain To manage drives and volumes you must first configure the scope of the MDMS management domain This includes placing the database in the best location to assure availability installing and configuring the MDMS process on nodes that serve ABS V3 or HSM V3 and defining node and domain object record attributes The MDMS Domain is defined by e the MDMS database e start up files on the n
544. thin an MDMS domain only one server will be serving the database to other MDMS servers This node is desig nated as the MDMS Database Server while the others become MDMS clients Of the servers listed as database servers the first one to start up tries to open the database If that node can suc cessfully open the database it is established as the database server Other MDMS servers will then forward user requests to the node that has just become the database server Subsequently if the database server fails because of a hardware failure or a software induced shut down the clients compete among themselves to become the database server Whichever cli ent is the first to successfully open the database becomes the new database server The other cli ents will then forward user requests to the new database server User requests issued on the node which is the database server will be processed on that node immediately 11 1 2 2 The MDMS Account During installation you create the MDMS user account as shown in Example 11 1 This account is used by MDMS for every operation it performs Example 11 1 MDMS User Account Username MDMS SERVER Owner SYSTEM MANAGER Account SYSTEM UIC 1 4 SYSTEM CLI DCL Tables Default SYSSSYSROOT SYSMGR LGICMD SYSSLOGIN LOGIN Flags DisForce_Pwd_Change DisPwdHis Primary days Mon Tue Wed Thu Fri Sat Sun Secondary days No access restrictions Expiration none Pwdminimum 14 Lo
545. this mes sage is displayed in an OPCOM message you will need another free drive to perform the initial ization The volume has been unloaded MDMS Messages C 54 D Converting SLS MDMS V2 X to MDMS V4 D 1 Converting SLS MDMS V2 X Symbols and Database This section describes how to convert the SLS MDMS V2 X symbols and database to Media Device and Management Services Version 4 MDMS The conversion is automated as much as possible however you will need to make some corrections or add attributes to the objects that were not present in SLS MDMS V2 X Before doing the conversion you should read Chapter 11 MDMS Configuration in this Guide to Operations to become familiar with configuration requirements All phases of the conversion process should be done on the first database node on which you installed MDMS V4 During this process you will go through all phases of the conversion 1 Convert the symbols in SYS STARTUP TAPESTART COM into the following objects e Locations e Domain e Nodes Media types e Jukeboxes e Drives 2 Convert the database authorization file VALIDATE DAT into node objects e Convert the rest of the database files e Pool Authorization file POOLAUTH DAT e Slot Definition file SLOTMAST DAT Volume Database file TAPEMAST DAT e Magazine Database file SLS SMAGAZINE MASTER FILE DAT When you install on any other node that does not use the same TAPESTART COM as the database node you only do
546. though this is much slower 5 10 2 Recovering Critical HSM Files If you lose any of the following HSM data you must recover it before HSM will function cor rectly HSM database HSM catalogs HSMSUID files Managing the HSM Environment 5 12 Managing the HSM Environment 5 11 Maintaining Shelving Policies Recovering Critical Files If any or all of the critical HSM product files are deleted and you have backed up this informa tion through a mechanism such as the OpenVMS BACKUP utility you should restore them from the latest backup sets including incremental backups as soon as possible Then you should restart HSM Note You may lose data shelved since the last image or incremental backup Recovering the HSM Database Although you could reinstall the HSM database from your installation kit this procedure would lose all the current information in your HSM database Because this is policy data you can re create it easily Recovering the HSM Catalogs The HSM catalogs are essential to recovering shelved data If you do not use BACKUP to create a backup of the catalogs you could backup the catalogs by making copies of the catalog files and storing them in a safe location Then once you have restored any other pieces of the HSM sys tem you can copy the catalog files back over into the proper locations for HSM to use it These locations are defined by the logical name HSM CATALOG for the default catalog and the loca tions
547. tic Loader Proble Table 7 13 Loader Problems ms Problem Solution Reference Tape requests hang Tape inventories are taken too often Basic mode Robot tape device not handled as robot in Basic Mode Robot tape device not handled as robot name in Plus Mode SCSI robot device cannot be used when connected to SCSI bus Loading does not work on DLT loaders Load fault on magazine loader HSM loses status takes inven tory of drive magazine because of manual loading HSM does not unload volume after operations on shared device Basic mode Cannot use loader because HSM is using it Other problems Ensure robot name is defined and connected to the appropri ate driver Do not switch volumes in magazines the wrong maga zine or switch volumes between magazines Check that robot name is defined Basic Mode in SMU device only Robot Name defini tion Check that robot is defined cor rectly in MDMS TAPE START COM Connect robot name to GKDRIVER Ensure key position is in locked or system command position key or square symbol Reset the loader insert maga zine with no volume in drive HSM will continue Do not manually change maga zines or load other volumes until HSM has completed oper ations and dismounted the vol ume in the drive issue SHOW DEVICE HSM dismounts the volume but the unloading must be done manually or under control of another application SMU SET DEVICE D
548. tion to files shelved since the last BACKUP copy will be lost Refer to Section 5 10 for more details about how to recover HSM system files 7 17 HSM Limitations At the current time there are a few limitations to HSM operations of which you should be aware These limitations are not necessarily the fault of HSM but are instead reliant upon OpenVMS behaviors Number of file headers available for an online disk volume Behavior of Ctrl Y when a file fault occurs on an executable file e Behavior of SET PROCESS NOAUTO UNSHELVE across a network 7 17 1 OpenVMS Limit on File Headers OpenVMS limits the number of file headers available for an online disk volume based on how the disk is initialized As a result as you shelve data and do not clean up your online disk you could eventually exceed the number of file headers available To prevent this problem make sure you delete file headers as appropriate What this means is when you no longer need a file do not leave it shelved with the file header on disk Use another strategy to archive the file just in case you need it someday Then delete the file from the disk If you experience either IDXFILEFULL or HEADERFULL errors while trying to create files you have exceeded the file header limit defined on your system If you installed HSM on an existing system and have not specifically initialized your volumes for HSM use you may not have planned for the additional number of files in INDEXESY
549. to 45 000 allowing 30 packets to be sent before a packet is acknowledged in an Ethernet network However performance improvements have not been verified for values higher than 23 000 It is important to know that increasing the value of PIPELINE QUOTA improves the performance of RDF but may negatively impact perfor mance of other applications running concurrently with RDF Line receive buffers Similar to the pipeline quota line receive buffers are used to receive data at a constant rate Default The default setting for the number of line receive buffers is 6 Recommendation The number of line receive buffers can be increased to 30 allowing 30 packets to be received at a time However performance improvements have not been verified for values greater than 15 and as stated above tuning changes may improve RDF performance while negatively impacting other applications running on the system 14 4 2 DECnet Plus Phase V As stated in DECnet Plus Phase V DECnet OSI V6 1 Release Notes a pipeline quota is not used directly Users may influence packet transmission rates by adjusting the values for the transport s characteristics MAXIMUM TRANSPORT CONNECTIONS MAXIMUM RECEIVE BUFFERS and MAXIMUM WINDOW The value for the transmit quota is deter mined by MAXIMUM RECEIVE BUFFERS divided by Actual TRANSPORT CONNEC TIONS This will be used for the transmit window unless MAXIMUM WINDOW is less than this quota In that case MAXIMUM WINDOW wil
550. to change states and if applicable the volume attributes that MDMS uses to cause volumes to change states Descriptions following the table explain important aspects of each operation Table 10 1 MDMS Volume State Transitions Current State Transition to New State New State Blank MDMS CREATE VOLUME Volume Create UNINTIALIZED Blank MDMS CREATE VOLUME PREINIT FREE UNINITIALIZED MDMS INITIALIZE VOLUME Volume Initialize FREE FREE MDMS INITIALIZE VOLUME Volume Initialize FREE FREE MDMS ALLOCATE VOLUME Volume Allocate ALLOCATED ALLOCATED MDMS DEALLOCATE VOLUME Volume Deallocate or automatically on the volume scratch date TRANSITION ALLOCATED MDMS DEALLOCATE VOLUME Volume Deallocate or automatically on the volume scratch date FREE Media Management 10 19 Media Management 10 11 Volumes Table 10 1 MDMS Volume State Transitions Current State Transition to New State New State TRANSITION MDMS SET VOLUME RELEASE FREE Volume Release or automatically on the volume transition time Any State MDMS SET VOLUME UNAVAILABLE UNINITIALIZED Volume Unavailable UNINITIALIZED MDMS SET VOLUME AVAILABLE Previous State Volume Available UNINITIALIZED MDMS DELETE VOLUME BLANK Volume Delete FREE MDMS DELETE VOLUME BLANK Volume Delete The following sections describes all the volume attributes in detail followed by
551. to install MDMSView and Java on OpenVMS systems Once the installation is complete the following commands are required to activate the GUI SYS STARTUP JAVA SETUP COM SET DISPLAY CREATE NODE nodename TRANSPORT TCPIP MDMS INTERFACE GUI where nodename is the TCP IP node name of the system on which the MDMS View display is to appear Although the GUI itself must run on an Alpha System V7 2 1 and higher using Java 1 2 or higher the MDMSView display can be redirected to any OpenVMS system including VAX systems and those running OpenVMS versions less than V7 2 1 9 4 1 2 Windows Systems A SETUP EXE package is also installed on OpenVMS systems for use on Microsoft Windows R PCs This file may then be transported to any Microsoft Windows PC and executed The SETUP EXE will install MDMS View at a default location of CAMDMSView although alterna tive locations are possible Once the PC installation is complete you can execute MDMS View by clicking on the mdmsview bat file in that directory 9 4 2 Look and Feel Once MDMS View is started it will come up with the default look and feel for the system For OpenVMS systems this is the Java Metal look and feel For Windows systems this is the Win dows look and feel You can adjust the look and feel to your taste by using the View menu as fol lows e OpenVMS systems View gt Java Look and Feel or View gt Motif Look and Feel e Windows systems View gt Java Look and Feel View gt Motif L
552. to one of two states The transition state is an interim state that the volume goes into after deallocation but it is not eligi ble to be used again until a period of time called the transition time expires This is a safety fea ture that allows you to examine whether the data has legitimately expired and if not to retain the volume put back to the allocated state If you do not wish this feature you can disable the tran sition state and allow volume to return directly to the free state where it is eligible for immediate allocation and initialization for new data The domain deallocate state is applied to all volumes that are automatically deallocated by MDMS When manually deallocating volumes you can override the domain deallocate state with a state on the deallocate operation itself 10 2 5 Default Rights The MDMS default rights attribute maps a set of MDMS low level rights to all users in the domain This allows you to give all users a limited set of rights to access MDMS objects and per form operations without having to expressly modify their accounts Be aware that default rights are applied to all users on all nodes in the domain so granting such rights should be carefully reviewed By default MDMS maps no rights to the default rights 10 2 6 Mail Users When MDMS deallocates volumes based on their scratch date an operation that is performed once per day it sends a mail message indicating which volumes were deallocated to the se
553. to perform the same recovery operations as for renaming disks namely Ensure the new disk name is served by the same shelf as the original disk e Restore the files e Run SMU ANALYZE REPAIR to correct the HSM catalog information for the new disk See Section 5 3 for complete details 5 5 Protecting System Files from Shelving There are certain critical files that you must not delete or shelve if you are using HSM These files include e Critical HSM product files e OpenVMS operating system files on the system disk e Other files that HSM will not shelve Considerations regarding the handling of these files are discussed in this section 5 5 1 Critical HSM Product Files The HSM product files listed in Table 5 1 must not be deleted or shelved During installation these files are protected from deletion and marked NOSHELVABLE but care must be taken to prevent inadvertent deletion or shelving HP strongly recommends that the disks on which these files reside be shadowed and backed up on a regular basis both image and incremental 1 Managing the HSM Environment 5 4 Managing the HSM Environment 5 5 Protecting System Files from Shelving Table 5 1 Critical HSM Files Files Remarks HSMS CATALOG Required HSM default catalog file HSM MANAGER Required HSM database files 000000 HSMS UID S YS Contains the volume UID structure Note that HSM UID SYS is not created until the first use of HSM after installation Ther
554. to your request Remote Devices 14 11 A HSM Error Messages This section defines all status and error messages that are produced by or on behalf of HSM together with the cause and suggested user actions when appropriate A 1 OpenVMS Messages The following messages are generated by OpenVMS and returned to the user who is initiat ing a function SSYSTEM E DEVICEFULL device full allocation failure Explanation An attempt to create or extend a file failed because it would exceed the device capacity and any attempts to free disk space failed or did not free up the required space Files should be deleted from the disk to free up space This is an existing OpenVMS mes sage SYSTEM E EXDISKQUOTA exceeded disk quota Explanation An attempt to create or extend a file failed because it would exceed the user disk quota plus overdraft and any attempts to free disk space failed or did not free up the required space The user should either reduce the number of online files or request addi tional disk quota This is an existing OpenVMS message SYSTEM E SHELVED file is shelved Explanation An attempt to access a currently shelved file has failed because unshelving of the file is disallowed This is a new OpenVMS message for HSM SYSTEM E SHELFERROR access to shelved file failed Explanation An attempt to access read write extend truncate a file failed because the file was shelved and HSM could not unshelve it for some
555. tribute as a selection criterion click on the attribute then click on Use for Selection This will enable a field below either a text field or combo box to allow you to enter a selection You may display any number of fields and use any number of selection criteria to customize the report When your selections are ready you can generate the report by clicking on Generate You can see the resultant report in the Report Results tab Basic MDMS Operations 9 14 Basic MDMS Operations 9 4 Graphical User Interface If you wish to save this report enter a report title in the text field at the bottom of the screen and click on save The report is saved to the following locations e OpenVMS Systems sys common mdms gui vms Report year month day hour minut second txt Windows Systems CMMDMSViewWeport year month day hour minute second txt For example a report file name is Report 2001 12 17 8 35 17 txt Once the results screen is displayed you can sort the report using any field by clicking on the field s header You can reverse sort the same field by clicking on the field header again Figure 9 7 Report View Selection Criteria Example YES YES YES YES YES YES M Display this neid USE tor selection Basic MDMS Operations 9 15 Basic MDMS Operations 9 4 Graphical User Interface Figure 9 8 Report View Results Screen Format Report Report Results Volume Report VollD MediaType
556. trol Access to an MDMS Drive sseseele e 11 15 11 2 1 3 How to Configure an MDMS Drive for Operations 0 0 0 eee eee eee 11 15 11 2 1 4 Determining Drive State cic eile EDO RE tee URS DATE ee 11 15 11 2 1 5 Adding and Removing Managed Drives 00 0c ee 11 15 11 2 1 6 Configuring MDMS Jukeboxes 0 0 0 eee I eae 11 16 11 2 1 7 How to Describe an MDMS Jukebox 0 0 0 cece eee 11 16 11 2 1 8 How to Control Access to an MDMS Jukebox 0 0 00 cece eee eh 11 16 11 2 1 9 How to Configure an MDMS Jukebox for Operations 0 0 00 0b eee ee 11 16 11 2 1 10 Attribute for DCSC Jukeboxes isseseseeeeee III 11 16 11 2 1 11 Attributes for MRD Jukeboxes sseseeeeee II 11 16 11 2 1 12 Determining Jukebox State ooo cocococcoococoor eh 11 17 11 2 1 13 Magazines and Jukebox Topology ssseeeeeeeee eee nee 11 17 11 2 2 Summary of Drive and Jukebox Issues 11 18 11 2 2 1 Enabling MDMS to Automatically Respond to Drive and Jukebox Requests 11 18 11 2 22 Creating a Remote Drive and Jukebox Connection sleleeeeeee eee eee 11 19 11 2 23 How to Add a Drive to a Managed Jukebox 0 eee eee 11 19 11 2 2 4 Temporarily Taking a Managed Device From Service 0 0 0 0 eee eee ess 11 19 11 2 2 5 Changing the Names of Managed Devices eee 11 19 11 2 3 Locations for Volume Storage o ooooococorrrr eh 11 20 11 3 Sam
557. troubleshoot a problem e To see what files are being shelved during a policy run e To determine if an emergency termination of requests is necessary To this end HSM provides an SMU SHOW REQUESTS command that indicates the number of requests currently being processed In addition detailed information about requests can be dumped to an activity log on a SHOW REQUESTS FULL command The activity log is named HSM LOG HSM SHP_ACTIVITY LOG A new version of the file is created for each SHOW REQUESTS FULL command The format of the activity log is similar to the shelf handler audit log except that additional flags are dis played indicating the current state of the request In contrast to the event logs which have clusterwide scope the activity log is a node specific log that reflects only the operations in progress on the requesting node To accurately see activity on the entire cluster you need to perform the SMU SHOW REQUESTS FULL on every node in the cluster The following is an example of the activity log display HSM Activity Log for Node MYNODE at 20 OCT 1999 16 37 06 67 1 20 OCT 1999 16 35 58 68 Request in progess Status Null status System request from node MYNODE process 20200B24 user BAILEY FileID Original Validated Free space of 100 blocks for user BAILEY on volume 1 DKA100 2 20 OCT 1999 16 35 15 46 Request in progess Status Null status System request from node MYNODE process 20200B24 user BAILEY File
558. tting the enabled attribute 11 2 1 4 Determining Drive State Caution Changing the value of the state attribute could cause MDMS or the applications using it to fail The drive object record state attribute shows the state of managed MDMS drives MDMS sets one of four values for this attribute Empty Full Loading or Unloading 11 2 1 5 Adding and Removing Managed Drives The procedure described in describes how to add a drive to the MDMS domain The procedure described in describes how to remove a drive from the MDMS domain MDMS Configuration 11 15 MDMS Configuration 11 2 Configuring MDMS Drives Jukeboxes and Locations 11 2 1 6 Configuring MDMS Jukeboxes MDMS manages Media Robot Driver MRD controlled jukeboxes and DCSC controlled juke boxes MRD is a software that controls SCSI 2 compliant medium changers DCSC is software that controls large jukeboxes manufactured by StorageTek Inc This section first describes the MDMS attributes used for describing all jukeboxes by function Subsequent descriptions explain attributes that characterize MRD jukeboxes and DCSC jukeboxes respectively 11 2 1 7 How to Describe an MDMS Jukebox Assign unique names to jukeboxes you manage in the MDMS domain When you create the jukebox object record supply a name that describes the jukebox Set the control attribute to MRD if the jukebox operates under MRD control Otherwise set the control to DCSC Use the description attribute to stor
559. ugh Media Device and Management Services for OpenVMS MDMS including robotically controlled devices like TL820s Interaction requires a combination of SMU commands STORAGE commands and forms driven menus Note Once you change the facility to operate in Plus mode and preshelve or shelve a file which means you have written to a catalog you cannot go back to operating in Basic mode Understanding HSM Concepts 2 2 Understanding HSM Concepts 2 2 The HSM Facility Considerations for Choosing HSM Operating Mode When deciding whether to operate in Basic or Plus mode consider the following e Ifyou are using other storage management products that use MDMS or SLS use HSM Plus mode You then have one interface for media and device management across the storage management products e Ifyou require support for large automated tape libraries such as the TL820 use HSM Plus mode e Ifyou do not require additional device support and are not using other products that use MDMS functionality use HSM Basic mode e If you are using only magneto optical devices and no tape devices use Basic Mode 2 2 2 HSM Operations You can specify whether shelving or unshelving operations are enabled across the cluster as a whole This includes operations initiated as a result of policy triggers cache flush operations and manually initiated HSM commands The shelving parameter controls shelving preshelving and cache flush operations The unshelv in
560. uired that your operations staff be involved with moving volumes or loading volumes in drives When MDMS cannot conduct an automatic operation it sends a message through the OpenVMS OPCOM system to an operator terminal to request assistance Understanding this information will help you set up effective and efficient operations with MDMS 12 2 1 Setting Up Operator Communication This section describes how to set up operator communication between MDMS and the Open VMS OPCOM facility Follow the steps in Table 12 2 to set up operator communication Table 12 2 Setting Up Operator Communication Step Action 1 Check or set OPCOM classes for each MDMS node 2 Identify the operator terminals nearest to MDMS locations drives and jukeboxes 3 Enable the operator terminals to receive communication through the OPCOM classes set 12 2 1 1 Set OPCOM Classes by Node Set the domain object record OPCOM attribute with the default OPCOM classes for any node in the MDMS management domain Each MDMS node has a corresponding node object record An attribute of the node object record is a list of OPCOM classes through which operator communication takes place Choose one or more OPCOM classes for operator communication to support operations with this node 12 2 1 2 Identify Operator Terminals Identify the operator terminals closest to MDMS locations drives and jukeboxes In that way you can direct the operational co
561. unted FOREIGN e Any disk that is a physical member of a shadow set stripeset or RAIDset access to the vir tual device however is supported e Any device that is not flagged as a disk device in OpenVMS system calls In addition HSM does not support shelving and unshelving of local disks that are not connected to a shelf server If you want to use shelving and unshelving with local disks HP recommends you make the local disks accessible to the cluster using MSCP protocols 1 17 HSM Support for Remote Operations HSM provides limited support for remote operations For HSM Version 3 2A this support includes e Accessing shelved files on disks that are DFS NFS or PATHWORKS served via applica tions or DCL commands See Section 5 5 3 However you cannot issue explicit shelving commands on served disks this can only be done on the cluster on which the disks reside e Accessing shelved files from remote nodes using DCL or applications routed through DEC net FAL For example a remote DCL command to TYPE a shelved file causes a file fault on the local system e Requesting a directory of shelved files from a remote node although not all information is displayed Generating make space requests and user disk quota exceeded events on an HSM supported cluster based on a file create or extend command issued from a remote node HSM does not support the following kinds of remote operations Remote PRESHELVE SHELVE UNPRESHELVE or
562. up enough disk space to satisfy the request If responding to make space requests is enabled HSM executes the defined policy for the volume and shelves enough files to free up the requested space While shelving files HSM sends an informational message to notify the user that the file access may take much longer than usual due to the shelving activity File Selection Table 1 2 lists the stages of file selection for implicit shelving Table 1 2 Process for Selecting Files According to Policy Stage Event 1 HSM creates an ordered file selection list with the name and the number of allocated blocks for each file on the disk that meets the file selection crite ria This file selection list is based on the primary occupancy or quota pol icy defined for the online volume 2 The amount of space to be recovered is calculated based upon the volume s low water mark 3 HSM then shelves eligible files on the file selection list until either the low water mark is reached or the list is exhausted and execution goes to step 4 Because a volume s usage is dynamic the low water mark is checked after each successful shelve operation and is adjusted accordingly If the low water mark is met policy execution completes successfully and is termi nated 4 If the primary policy does not recover sufficient disk volume space the vol ume is rescanned using the secondary policy to build a secondary policy candidate list and execution returns to step
563. ure code from the mail utility SOMESUCCESS some objects in list were not processed Explanation The request was partially successful but some of the objects were not processed as shown in the extended status User Action Examine the extended status and retry command as needed SPAWNCMDBUFOVR spawn command buffer overflow Explanation During the mount of a volume the spawned mount command was too long for the buffer This is an internal error MDMS Messages C 45 MDMS Messages User Action Provide copies of the MDMS command issued the database files and the server s logfile for fur ther analysis SVRBUGCHECK internal inconsistency in SERVER Explanation The MDMS server software MDMS SERVER EXE detected an inconsistency This is an internal error User Action Provide copies of the MDMS command issued the database files and the server s logfile for fur ther analysis Restart the server SVRDISCON server disconnected Explanation The server disconnected from the request because of a server problem or a network problem User Action Check the server s logfile and file SYSSMANAGER MDMSS SERVER LOG for more informa tion Provide copies of the MDMS command issued the database files and the server s logfile for further analysis SVREXIT server exited Explanation Server exited Check the server logfile for more information User Action Depends on information in the logfile SVRL
564. ve only has to be compatible for read only media types as the desired operation will only read from the drive 10 3 15Deallocate Drive DCL Only If you allocated a drive using the DCL Allocate Drive command you should deallocate the drive when you are finished using it otherwise the drive will remain allocated until your process exits Simply issue a deallocate drive and specify the drive name or the logical name obtained from the define option in Allocate Drive 10 3 16Load Drive MDMS supports two ways to load volumes into drives e Load Drive This loads a scratch volume into a drive via operator intervention or by stacker operation As such this option is only for standalone and stacker controlled drives e Load Volume This loads a specific volume into a drive and can apply to all types of drive This section discusses the load drive option The load volume option is discussed under volumes The Load Drive operation requests either that a scratch volume in the free state be loaded into the drive or the next volume in the stacker is loaded into the drive In either case the vol ume ID of the volume is not known until the load completes and MDMS reads the magnetic tape label to determine the volume The loaded volumes may or may not already be defined in the MDMS database You can choose to create volume records by setting the Create flag and optionally providing attributes to apply to the volume as foll
565. ver you may want to review this access and change it as needed because it can potentially affect all accesses 5 6 1 DFS Access File faulting and therefore file events work as expected with the exception of Ctrl Y Typing Ctrl Y during a file fault has no effect The client process waits until the file fault completes and the file fault is not canceled In addition with DFS one can determine the shelved state of a file just as if the disk were local i e DIRECTORY SHELVED and DIRECTORY SELECT both work correctly The SHELVE and UNSHELVE commands do not work on files on DFS served devices The commands do work on the cluster that has local access to the devices however 5 6 2 NFS Access The normal default faulting mechanism fault on data access does not work for NFS served files The behavior is as if the file is a zero block sequential file Performing cat for example or similar commands results in no output However at installation time HSM Version 3 0A enables such access by defining a logical name that causes file faults on an OPEN of a file by the NFS server process By default the fol lowing logical name is defined DEFINE SYSTEM HSM FAULT ON OPEN NFSSSERVER This definition supports access to NFS served files upon an OPEN of a file If you do not want NFS access to shelved files simply de assign the logical name as follows DEASSIGN SYSTEM HSM FAULT ON OPEN For a permanent change this command shou
566. vide an optimal computational envi ronment Two types of logging are supported e Audit logging which logs every visible operation in the system its source and its status e Error logging which logs unexpected errorsin HSM operation with complete details of the requested operation and the error Event logging is supported by both the shelf handler process and the policy execution process You can use the shelf handler log to obtain a complete summary of all shelving operations initi ated on the cluster You can use the policy log to obtain information relating to all policies run on the system Logging may be enabled or disabled at your discretion with one or more of the following selec tions AUDIT ERROR and EXCEPTION Managing the HSM Environment 5 33 Managing the HSM Environment 5 20 Event Logging 5 20 1 Accessing the Logs The event logs are human readable and can be displayed with the TYPE command while HSM is in operation Access to the logs require SYSPRV READALL or BYPASS privileges Table 5 5 lists their locations Table 5 5 HSM Event Logging Description Location Shelf Handler Audit Log HSM LOG HSM SHP AUDIT LOG Shelf Handler Error Log HSM LOG HSM SHP ERROR LOG Policy Audit Log HSM LOG HSM PEP_AUDIT LOG Policy Error Log HSM LOG HSM PEP_ERROR LOG You can read the event logs at any time during HSM operation using a TYPE command a SEARCH command or other OpenVMS read_only tools You also can o
567. vides limited support for older SLS MDMS clients to make upgrading your MDMS domain to the new version as smooth as possible This limited support allows rolling upgrade of all SLS MDMS V2 nodes to MDMS V4 Also ABS and HSM version 3 0 and later have been modified to support either SLS MDMS V2 or MDMS V2 to make it easy to switch over to the new MDMS The upgrade procedure has been completed as soon as all nodes in your domain are running the new MDMS V4 version exclusively D 3 1 Limited Support for SLS MDMS V2 during Rolling Upgrade The major difference between SLS MDMS V2 and MDMS V4 is the way information about objects and configuration is stored To support the old version the new server can be set up to accept requests for DECnet object SLS DB which was serving the database before Any database request sent to SLS DB will be executed and data returned compatible with old database client requests This allows SLS MDMS V2 database clients to still send their database requests to the new server without any change The SLS DB function in the new MDMS serves and shares information for the following objects to a V2 database client e Volume information previously stored in TAPEMAST DAT e Pool information previously stored in POOLMAST DAT Magazine information previously stored in MAGAZINE DAT e Object information not shared between the old and new MDMS e Drive information previously stored in TAPESTART COM e Jukebox information pr
568. ving catalog for the location of the shelved data Try to unshelve the data perhaps using UNSHELVE OVERRIDE If this fails use BACKUP to restore the data from nearline or offline media or use the COPY command to restore the data from an online cache 5 10Disaster Recovery HSM provides tools that allow you to prevent loss of HSM data This section describes various ways you can use these tools 5 10 1 Recovering Data Shelved Through HSM If you have a site disaster in which your onsite data is unavailable you may be able to recover that data from BACKUP files and tapes dismounted using the SMU CHECKPOINT command Once onsite the following sequence is recommended 1 Using the OpenVMS BACKUP utility restore your files from the most recent image backup Then also using the OpenVMS BACKUP utility restore any since that image backup For any additional data you shelved and moved offsite through SMU CHECKPOINT use the media with your archive classes from the offsite storage location as your shelf media Finally in case another disaster occurs you should recreate the offsite archive class or selected volumes by using SMU REPACK and the FROM_ARCHIVE qualifier This allows you to either keep the formerly offsite volume onsite and take the new volumes off site or keep the new volumes onsite and remove the original offsite volumes back offsite Alternatively you could use the SHELVE SELECT NOONLINE command to reshelve files al
569. y initialized and the volume is in the Uninitialized state this changes it to the Free state It does not change the state if the volume is in any other state 10 11 5Media Types 10 11 6Pool A volume s media types define the type of media for the volume and what potential compaction or density options the volume can support As such before a volume is initialized it can poten tially support many media types However once a volume is initialized MDMS uses the density and compaction attributes from a media type to physically write the tape As such a volume should only support one media type at and after the first initialization If the volume is in the Uninitialized state select one or more MDMS defined media types for the volume If the volume is in any other state select a single media type If no media type is speci fied the domain default media type is used A pool contains a collection of volumes that can be used by a set of authorized users To insert a volume into a pool simply specify a pool name in the volume s pool field If not defined the volume is placed in the scratch pool and it can be allocated by any user If the volume is in the free state the number of free volumes in the pool is incremented 10 11 7Previous and Next Volumes These read only fields indicate if a volume is in a volume set and what the previous and next volumes are in the set relative to this volume A volume set is created when a tape write
570. yed This includes all current requests and some recently completed requests You can also expand the requests on the left side of the screen and click on a specific request for detailed information about the request Or you can right click on the request number on the left screen and select Show If you feel that a request is not working correctly or for any reason you wish to delete the request you can click on delete from the detailed request screen or select a request number on the left screen right click and select delete from the popup menu As with other deletes a dialog box will appear to confirm the delete of the request Basic MDMS Operations 9 13 Basic MDMS Operations 9 4 Graphical User Interface Figure 9 6 Show Requests Screen 07 Jan 2002 15 30 14 SHOW ARCHIVE A1 Completed 07 Jan 2002 12 18 25 SHOW DOMAIN Completed 9 4 11 Reporting on Volumes The Report View provides the capability of generating custom reports on volumes With this view you can choose attributes that can be displayed and or used as selection criteria for vol umes To select an attribute for display simply click on the attribute and then press the right arrow but ton to move it to the display screen The attributes are displayed in the report in the order selected If you change your mind or wish to re order the attributes select an attribute on the dis play screen and press the left arrow button to deselect it If you wish to use an at
571. ying message will indi cate what value is in error Re enter the command with a corrected value SSMU E INVALOSIZE invalid qualifier size qualifier size Explanation A qualifier value entered in the command exceeds it s valid range or size The maximum value will be displayed for reference The accompanying message will indicate which qualifier is in error either by displaying the qualifier name or the value itself Re enter the command with a corrected qualifier value SMU E INVCONFIG invalid tape drive configuration for repack request volume name Explanation For SMU REPACK there is an invalid tape drive configuration One possible cause is that there are not enough tape drives REPACK must use two A second possibility is that there are no devices associated with the archive classes specified in the command SMU W INVNAME invalid volume name volume name Explanation For SMU RANK a wildcard character was detected in the volume name parameter Wildcards are not allowed SMU E INVPARAM parameter or value for parameter parameter or parameter value is invalid Explanation An invalid parameter or parameter value was detected in the command There will be an accompanying message to indicate which parameter is in violation Re enter the command with corrected syntax Please see HELP or the reference documentation for more information about the command SMU E INVPOLNAME invalid policy name policy name Explanation For SMU RANK
572. ymbol is dif SCRATCH TIME ferent in different TAPESTART COM attribute to the domain object files a line is added to the conflict file Converting SLS MDMS V2 X to MDMS V4 D 2 Converting SLS MDMS V2 X to MDMS V4 Table D 1 Symbols in TAPESTART COM D 1 Converting SLS MDMS V2 X Symbols and Database DB NODES If defined creates a node object for the nodes in the DB NODES list A conflict can be generated if the node exists and an attribute changed with a different TAPESTART COM file Every drive and jukebox definition in the TAP ESTART COM can cause a node to be created with a NODATABASE SERVER qualifier A DB node will change the attribute to database server this can cause a line to be added to the conflict file DCSC n NODES If defined creates a node object and adds the node attribute to the DCSC jukebox All adds of nodes to jukeboxes cause a line to be added to the conflict file DCSC DRIVES If defined creates a drive object for DCSC If an attribute is different when adding attributes a line is added to the conflict file each MTYPE x DENS x If defined adds the density or A line is added to the conflict file if the compaction attribute to a media DENS x is different type If the value is COMP or NOCOMP then the compaction attribute is define YES or NO If the density is anything other than COMP or NOCOMP then the value is placed in the density
573. zines then delete the mag azines SMDMS DELETE MAGAZINE magazine name 10 Delete the volumes SMDMS DELETE VOLUME volume id 13 3 Rotating Volumes Between Sites This procedure describes how to gather and rotate volumes from the onsite location to an offsite location Use this procedure in accordance with your data center site rotation schedule to move backup copies of data or data destined for archival to an offsite location Additionally this pro cedure processes volumes from the offsite location into the onsite location MDMS High Level Tasks 13 5 MDMS High Level Tasks 13 3 Rotating Volumes Between Sites Figure 13 2 Volume Rotation goa m Offsite Onsite Offsite location location location Move A M vt Lu Move Move VS A Y y Move AN LU Y IO v P 4 YA I I A A 4 J Load and Unload Magazine as os A E os c es E es E a Jukebox Move CXO6753A Table 13 3 Rotating Volumes Between Sites Step Action l Prepare a report listing the offsite volumes or magazines due for rotation to your onsite loca tion MDMS REPORT VOLUME SCHEDULE ONSITE Or SMDMS SHOW MAGAZINE SCHEDULE ONSITE Provide this information to the people responsible for shuttling volumes and magazines Identify the volumes and or magazines to move offsite MDMS SHOW VOLUME SCHEDULE OFFSITE Or SMDMS SHOW MAGAZINE SCHEDULE OFFSITE Gather the v

Download Pdf Manuals

image

Related Search

Related Contents

BAFLE MARCA LANEY FAVOR DE LEER GUIA  Massive Led outdoor Pedestal/post 16710/93/10  Introduction - Honda Owners  Télécharger - L3 Médical  USER MANUAL  Carel Application program for pCO1, pCO2, pCO3 Standard Chiller  Safety Controller Ethernet Interface Module User`s Manual (Hardware)  

Copyright © All rights reserved.
Failed to retrieve file