Home

SV9000 AF DRIVES - ElectricalManuals.net

image

Contents

1. Opt Au Scale Range 10 1000 Default 100 Display Speed Range 0 1 Default 0 O Calculated 1 Encoder SV9000 Fast Closed Loop Application Page 35 56 4 1 Acceleration Deceleration ramp 1 shape Ramp 1 Shape Range 0 10 s Default 0 0 4 2 Acceleration Deceleration ramp 2 shape Ramp 2 Shape Range 0 10 s Default 0 0 The start and end of acceleration and deceleration ramps can be smoothed with these parameters Setting value 0 gives a linear ramp shape which causes acceleration and i deceleration to act on changes in the reference signal with Board the time constant set by parameters 1 3 and 1 4 or e Hz gt 4 1 4 2 parameters 4 3 and 4 4 a t Setting a value 0 1 to 10 seconds for 4 1 4 2 causes linear acceleration deceleration to adopt an S shape Parameter Figure 6 20 S Shaped 1 3 and 1 4 4 3 and 4 4 determines the time constant of Acceleration Deceleration acceleration deceleration in the middle of the curve See Figure 6 20 4 3 Acceleration time 2 Accel Time 2 Range 0 1 3000 s Default 10 0 s 4 4 Deceleration time 2 Decel Time 2 Range 0 1 3000 s Default 10 0 s These values correspond to the time required for the output frequency to accelerate from the set minimum frequency parameter 1 1 to the set maximum frequency parameter 1 2 These times give the possibility to set two different acceleration deceleration time sets
2. Motor Speed 0 to maximum speed Motor Current 0 to 2 0 x Insv Motor Torque 0 to 2 x Tysv Motor Power 0 to 2 x Pysv Motor Voltage 0 to 100 x Vian DC Bus Voltage 0 to1000 V N O GI R WO N m Analog output filter time Tut Filter Time Range 0 01 10 s Default 1 00 Filters the analog output signal See Figure 6 13 Analog output invertsion Tut Invert Range 0 1 Default 0 Inverts analog the analog output signal maximum output Signal minimum set value minimum output signal maximum set value Analog output minimum lout Minimum Range 0 1 Default 0 Defines the signal minimum to either 0 MA or 4 mA living zero See Figure 6 15 Par 3 4 1 1 74 4 mA Par 3 4 0 A Unfiltered signal 100 Filtered signal 63 SV9000 t s Par 3 2 lt ____ UD012K16 Figure 6 13 Analog Output Filtering Analogue output current Param 3 5 50 Sa Param 3 5 1 100 Param 3 5 Selected para 3 1 200 signal max value gt 0 0 5 1 0 UD012K17 Figure 6 14 Analog Output Invert Analogue output t Param 3 5 Param 3 5 kad 200 100 20 MA si Mad 12 MA 7 set oa ee Param 3 5 P DA 10 MA mat 5700 2 ERTE a En 50 m od sens Pad BER Max value of signal seletted by param 3 1 0 mA 0 0 5 1 0 UD012K18 Figure 6 15 Anal
3. 1 1 Nominal so O 30 500 Hz 1H Time from fmin 1 1 to fmax 1 2 Time from fmax 1 2 to fmin 1 1 V 6 Vin joystick control 7 lin joystick control 8 Signal from internal motor pot 9 Signal from internal motor pot reset if unit is stopped 10 Signal from internal motor potentiometer is stored in memory if power is removed 11 Min Vin lin 12 Max Vin lin 13 Panel reference r1 14 Max Frequency 15 Vin lin Reference Selection Output current limit A of the unit po la gt lo I lt gt NO lt gt 5 RI l lt 5 57 OI lt gt 5 0 Linear 1 0 1 Squared 2 Programmable V f ratio i N 1 8 of the motor 1 12 Nominal speed ea lid of the motor 300 20000 rpm 1rpm 1765 rpm n on the rating plate of the motor Nominal current ea Br ihe motor 2 5 X Insvo on the rating plate of the motor Voltage code 8 Po Voltage code 11 380 440 1 14 Supply voltage Voltage code 16 380 500 525690 Voltage code19 Vn on the rating plate of the motor Visibility of parameters 1 0 All parameter groups visible 1 Only group 1 visible Disables parameter changes 1 16 Parameter value lock 0 1 1 Parameter conceal 0 Changes enabled 1 Changes disabled Notes ea Parameter value can be changed only when the frequency converter is stopped 1 If 1 2 gt motor synchronising speed chec
4. Stop mode after fault according to parameter 4 7 3 Fault Coast Stop mode after fault always by coasting A warning or a fault action and message is generated from the external fault signal in the digital input DIA3 The information can also be programmed into digital output DO1 and relay outputs RO1 and RO2 Phase supervision of the motor Phase Supervisn Range 0 2 Default 2 0 No Action No response 2 Fault Fault Phase supervision of the motor ensures that the motor phases have an approximately equal current Earth fault protection Ground Fault Range 0 2 Default 2 0 No Action No response 2 Fault Fault Earth fault protection ensures that the sum of the motor phase currents is zero The overcurrent protection is always working and protects the frequency converter from earth faults with high currents SV9000 Fast Closed Loop Application Page 43 56 Parameters 7 5 7 9 Motor thermal protection General Motor thermal protection is used to help protect the motor from overheating The drive is capable of supplying higher than nominal current to the motor If the load requires high current there is a risk that the motor will be thermally overloaded This is true especially at low frequencies At low frequencies the cooling effect of the motor is reduced as is the capacity of the motor If the motor is equipped with an external fan the load reduction on low s
5. 10 1 Fieldbus control L Joystick control Multi step Speeds o 7 Internal oystick 41 freguency control Pl inputsl l reference are pro 2 cae oe T Bar 64 or this LL O Vin liq function i Motor control mode eli ee SN Motor control mode in 7 Vin Torque a gt Vin x lin i control min Vin lin max Vin lin 2229 DIA3 par 2 2 10 Torgue reference ja Torque O i reference Down Meter l i reference o scaling I i i Par 9 1 Torgue terranes Jog speed ee selection selection _ __ __ _ i programmable Internal P Start Stop Start FWD Programm Fieldbus Internal Start Stop 7 p reverse DIA2 Start REV land Reverse oj 3 5 FE i i _ __ Fieldbus ki signal logic E s fault reset DIAS Fault reset 7 programmable External fault programmable a Accel deceler time select programmable control line MP2BLOCK signal line Figure 1 2 Closed Loop Application Control Signal Logic Switch positions correspond to factory settings SV9000 Fast Closed Loop Application Page 3 56 1 3 Parameter Group 0 Number Parameter Range Step Default Customer Description re 0 Fast Closed Loop loaded special Application application selection En FB Closed Loop Application Loading ready Select loading
6. 7 Cutler Hammer Page ii Fast Closed Loop Application SV9000 Page iii Fast Closed Loop Application SV9000 Fast Closed Loop Application Contents 1 Page iv Fast Closed Loop Application SV9000 die E OT a eee pe ee I ee PET SV9000 Fast Closed Loop Application Page 1 56 1 General The Fast Closed Loop Application provides parameters for torque control and fieldbus communication with both open loop control and closed loop control algorithms Closed loop control modes can be used to improve performance near zero speed and improve static and dynamic speed and torque accuracy at higher speeds Closed loop control modes are based on full vector control With this control principle the phase currents are divided into a torque producing current component and a magnetizing current component which allows the three phase induction motor to be controlled like a traditional DC motor Fast Closed Loop Control includes 10ms resolution ramp times fast analog input with 1 ms update interval encoder input 1 1 Control I O Terminal Sigal Description E Reference output Voltage for potentiometer etc 2 Vint Analog Input KOE Frequency reference range 0 10 VDC programmable I O Ground Ground for reference and controls Analog input current Default setting not used programmable range 0 20 mA SS SS SS 16 24v Control voltage output Voltage for switches etc max 0 1 A er I O gr
7. Ref Superv Lim Range 0 2 Default 0 0 Not Used No supervision 1 Low Limit Low limit supervision 2 High Limit High limit supervision If the reference value goes under over the set limit parameter 3 16 this function generates a warning message via the digital output DO1 and or via the relay outputs RO or RO2 depending on parameter 3 6 3 8 settings The supervised reference is the currently active reference It can be source A or B reference depending on DIB6 input or the panel reference if panel is the active control source 3 16 Reference limit supervision value Ref Superv Value Range 0 fmax Default 0 Hz The frequency value supervised by parameter 3 15 Page 34 56 Fast Closed Loop Application SV9000 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 3 26 External brake closing delay Ext Brake OffDel Range 0 100 0 s Default 0 5 s External brake opening delay Ext Brake OnDel Range 0 100 0 s Default 1 5 s These parameters are used only with brake control The brake control signal can be programmed via the digital output DO1 and or via the relay outputs RO1 or RO2 depending on parameter 3 6 3 8 settings With these parameters timing of the external brake can be linked to the Start and Stop control signals see Figure 6 17 Refer also to parameters 3 35 3 39 If parameter 3 7 and 3 8 Relay output functions set
8. to starting friction e g in Conveyors NOTE In high torque low speed applications it is likely the motor will overheat Warning Ifthe motor has to run a prolonged time under these conditions special attention must be paid to cooling the motor Use external cooling for the motor if the temperature tends to rise too high Nominal voltage of the motor Motor Nom Voltg Range 180 690 Default 230 V 400 V 500 V or 690 V Find this value V on the rating plate of the motor This parameter sets the voltage at the field weakening point parameter 6 4 to 100 x Vamotor Nominal frequency of the motor Motor Nom Freq Range 30 500 Hz Default 60 Hz Find this value f on the rating plate of the motor This parameter sets the field weakening point parameter 6 3 to the same value Nominal speed of the motor Motor Nom Speed Range 300 20000 rpm Default 1765 rpm Find this value n on the rating plate of the motor Nominal current of the motor Motor Nom Currnt Range 2 5 x I svs Default 1 sv9 Find this value I on the rating plate of the motor Supply voltage Supply Voltage Range 180 250V 380 440V 380 500V or 525 690V Default 230 380 480 or 575 V Set the parameter value according to the nominal voltage of the supply Values are predefined for voltage codes 8 11 16 and 19 Parameter conceal Param Conceal Range 0 1 Default 0 Defin
9. 0 2 Default 0 0 Not Used No supervision 1 Low Limit Low limit supervision 2 High Limit High limit supervision If the output frequency goes under over the set limit parameters 3 10 and 3 12 this function generates a warning message via the digital output DO1 and via the relay output RO1 or RO2 depending on the settings of parameters 3 6 to 3 8 Par 3 10 3 10 Output frequency limit 1 supervision value Freq Supv Val 1 Range Default 0 fmax par 1 2 uD012K19 t gt Example 21 RO11 7 21 RO1 7 3 12 Output freguency limit 2 supervision value Freg Supv Val 2 Range BIRO Default 0 fmax par 1 2 The frequency value supervised by parameters 3 9 and 3 11 Figure 6 16 Output Frequency See Figure 6 16 Supervision 3 13 Torque limit supervision function Torque Supv Lim Range Default 0 Not Used No supervision 1 Low Limit Low limit supervision 2 High Limit High limit supervision If the calculated torque value goes under over the set limit parameter 3 14 this function generates a warning message via the digital output DO1and or via the relay outputs RO or RO2 depending on parameter 3 6 3 8 settings 3 14 Torque limit supervision value Torque Supv Val Range 0 200 x Tasv Default 100 The calculated torque value supervised by parameter 3 13 3 15 Reference limit supervision function
10. 10 3 Acc Dec Ramp Rdy Reducing acceleration and deceleration times The acceleration and deceleration times can be reduced with the free analog input signal according to the following formula Reduced time set acc dec time parameter 1 3 1 4 4 3 4 4 divided by factor R from figure 6 11 4 Torque Suprv Scl Reducing torque supervision limit The set torque supervision limit can be reduced with the free analog input signal between 0 and set supervision limit parameter 3 14 see Figure 6 12 A Torque limit 100 I Par 1 7 DC braking current Analogue input a Signal range 10V ka 20 mA UD012K61 4mA m 0 15x I Free analogue ELAN Custom 19 X InFU input gt 0 Signal range UD012K58 Figure 6 9 Reducing Maximum Motor Current Figure 6 10 Reducing DC Brake Current Torgue limit Free analogue Free analogue input input igbai 0 Signal range UD012K60 Signal range UD012K59 Figure 6 11 Reducing Acceleration and Figure 6 12 Reducing Torgue Deceleration Times Supervision Limit Page 30 56 Fast Closed Loop Application 2 22 3 1 3 2 3 3 3 4 Motor potentiometer ramp time Mot Pot Ramp Tim Range 0 1 2000 0 Hz s Default 10 0 Hz s Defines how fast the electronic motor potentiometer value changes Analog output function Tut content Range 0 7 Default 1 0 Not Used Scale 100 Motor Freq 0 to fmax
11. If different values for the field weakening point and the maximum output voltage are reguired change these parameters after setting parameters 1 10 and 1 11 U V Default Nominal Field weakeni voltage of the motor lela weakening point Par 6 6 Def 10 l l I Default Nominal frequency of the motor 12 Par 6 7 Def 1 3 Hz Figure 6 25 Programmable V Hz Curve SV9000 6 5 6 6 6 7 6 8 6 9 Fast Closed Loop Application Page 41 56 IMPORTANT The following parameters have no effect in closed loop fieldbus control Unless parameter 6 1 Motor Control Mode is set to 0 1 or 2 parameters 6 5 6 9 will have no effect If parameter 6 1 is set to either 3 or 4 the motor control mode is a closed loop control type and these parameters will be ignored V Hz curve mid point frequency V Hz Mid Freq Range 0 500 Hz Default 0 Hz If the programmable V Hz curve has been selected with parameter 1 8 this parameter defines the middle point frequency of the curve See figure 6 25 V Hz curve mid point voltage V Hz Mid Voltg Range 0 123 20 Default 0 00 If the programmable V Hz curve has been selected with parameter 1 8 this parameter defines the middle point voltage of the curve See figure 6 25 Output voltage at zero frequency Zero Freq Voltg Range 0 40 Default 0 00 If the programmable V
12. Load default setting Read up parameters to user s set Download user s set parameters Upload parameters to the panel possible with alpha numerical and graphical panel Download parameters from the panel possible only with alpha numerical or graphical panel Table 1 1 Parameter Group O 1 3 1 Application selection With system software sm00099j or later the Closed Loop Application has been integrated to the unit as application 1 The closed loop application is loaded separately from the system software and will appear on the menu as application 0 CL 1 3 2 Parameter loading See User s Manual Chapter 11 1 3 3 Language With this parameter the language of the graphical panel can be selected Page 4 56 Fast Closed Loop Application SV9000 SV9000 Fast Closed Loop Application Page 5 56 2 Closed Loop Commissioning 2 1 Sequence of actions Auto tuning requires that the motor is not loaded If it is not possible to disconnect the load or run with a light load parameters P10 2 10 3 10 4 and 10 5 must be set manually 1 Check very carefully the encoder connections and encoder supply voltages Check the brake resistor connection 2 Do all normal commissioning phases 1 10 in openloop see Cutler Hammer SV9000 User manual chapter 8 2 3 Set the displayed rom to ENCODER RPM P3 26 1 Run the motor in openloop with different frequencies Check that the displayed RPM equals to the assumed RPM Negativ
13. PT I OM re Trip area i 105 a A E A i fo E a Trip warning 7 Og par 7 5 I I A A A 2 Ne H SHE i Time constant TJ ij Motor temperature I I7 x 1 e YT Time Changed with motor size and adjusted with parameter 7 8 UMCH7_92 Figure 6 27 Calculating Motor Temperature Page 46 56 Fast Closed Loop Application SV9000 Parameters 7 10 7 13 Stall Protection General Motor stall protection protects the motor from short duration overload situations such as a stalled shaft The reaction time of stall protection can be set shorter than with motor thermal protection The stall state is defined with two parameters parameter 7 11 stall current limit and parameter 7 13 stall frequency limit If the stall current is higher than the limit and output frequency is lower than the limit the stall state is true The stall state is not based on real indication of the shaft rotation Stall protection is a type of overcurrent protection 7 10 Stall protection Stall Protection Range 0 2 Default 1 0 No Action No response 1 Warning Warning 2 Fault Fault Fault and warning will display the same message code If fault is set on the drive stop and activate the fault stage Par 7 11 Stall area Setting the parameter to 0 will deactivate the protection and will reset the stall time counter to zero 7 11 Stall current limit Par 7 13 umc
14. acceleration deceleration time 45 Tacceieraiontme2 ors ors oo 4 4 Deceleration time 2 0 1 3000 s 0 1s 10 0 s 0 No brake chopper not in use Brake chopper 0 2 1 1 Yes brake chopper in use 2 Yes External external brake chopper i 0 Ramping 0 Coasting 4 8 DC braking current VSO ag l sxis Insv A DC braking time at Stop 0 250 0 s 0 DC brake is off at Stop 4 10 Execute frequency of DC 04 4082 01Hz 1 5Hz brake during ramp stop 4 11 0 1 0 0 DC brake time at Start 0 0 25 0 s 1s 0 DC brake is off at Start Os A min fmax Multi step speed reference 1 1 1 1 2 0 1Hz 10 0 Hz i A min fmax Multi step speed reference 2 1 1 1 2 15 0 Hz ii 5 ints DSE A Sita ewe oo Note ea Parameter value can be changed only when the frequency converter is stopped Page 14 56 Fast Closed Loop Application SV9000 Group 5 Prohibit freguency parameters Code Parameter Range Step Default Custom Description Page 5 4 Prohibit frequency range 1 OF 0 1 Hz 0 Hz low limit 52 Prohibit frequency range 1 O fna 0 1 Hz high limit 53 Prohibit frequency range 2 OF 0 1 Hz low limit f f f 0 Prohibit range 1 is off on 0 Prohibit range 2 is off Ki 0 Prohibit range 3 is off E 55 Prohibit frequency range 3 a 0 1 Hz low limit 56 Prohibit frequency range 3 Ot 0 1 Hz high limit Group 6 Motor control parameters 1 2 es 54 Prohi
15. based on the motor nameplate data given in parameters 1 12 and 1 13 If either parameter is changed parameter 7 8 is automatically restored to the default value If the motor s te time is known given by the motor manufacturer the time constant parameter could be set based on tg time As a rule of thumb the motor thermal time constant in minutes should equal 2 x tg where tg in seconds is the time a motor can safely operate at six times the rated current If the drive is at the stop stage the time constant is internally increased to three times parameter 7 8 s value The cooling calculation for the stop stage is based on convection and the time constant Is increased SV9000 7 9 Fast Closed Loop Application Page 45 56 Motor thermal protection breakpoint frequency MTP fnom Range 10 500 Hz Default 35 Hz This is the breakpoint of thermal current curve When the motor frequency is above this point the thermal capacity of the motor is assumed to be constant See Figure 6 27 The default value is based on the motor s nameplate data parameter 1 11 For a 50 Hz motor the default breakpoint frequency is 35 Hz and for a 60 Hz motor the default breakpoint frequency is 42 Hz In general the breakpoint frequency typically is 70 of the frequency at field weakening point parameter 6 3 Changing either parameter 1 11 or 6 3 will automatically restore parameter 7 9 to its default value Motor temperature
16. following a squared curve with the frequency in the area from 0 Hz to the field weakening point parameter 6 3 where nominal voltage is also supplied to the motor See Figure 5 2 The motor runs under magnetized below the field weakening point and produces less torque and electromechanical noise Squared V Hz ratio can be used in applications where the torque demand of the load is proportional to the square of the speed e g in centrifugal fans and pumps ULVI Un oli s ET The V Hz curve IS programmed by Par 6 4 Default Nominal Field weakening defining three points voltage of the motor point Parameters 6 3 6 6 The programmable V Hz curve is used when the other settings do not satisfy the needs of the application See Figure 5 3 Par 6 6 Def 10 Default Nominal Par 6 7 Teenie A Def 1 3 2 Hz Par 6 5 Par 6 3 UD012K08 Figure 5 3 Programmable V Hz Curve SV9000 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 Fast Closed Loop Application Page 21 56 V Hz optimization V Hz Optimize Range 0 1 Default 0 0 None V Hz optimization disabled 1 Automatic The voltage to the motor changes automatically which makes the motor torque produce sufficient torque to start and run at low frequencies The voltage boost increase depends on the motor type and power Automatic torque boost can be used in applications where starting torque is high due
17. for one application The active set can be selected with the programmable signal DIA3 of this application see parameter 2 2 Acceleration deceleration times can be reduced with an external free analog input signal See parameters 2 20 and 2 21 4 5 Brake chopper Brake Chopper Range 0 2 Default 0 0 No No brake chopper 1 Yes Brake chopper and brake resistor installed 2 Yes External External brake chopper When the frequency converter is decelerating the motor the inertia of the motor and the load are fed into the external brake resistor This enables the frequency converter to decelerate the load with the torque equal to that of acceleration if the brake resistor is selected correctly See separate brake resistor installation manual 4 6 Start function Start Function Range 0 1 Default 0 0 Ramping The frequency converter starts from 0 Hz and accelerates to the set reference frequency within the set acceleration time Load inertia or starting friction may cause prolonged acceleration times 1 Flying Start The frequency converter is able to start into running motor by applying a small torque to motor and searching for a frequency corresponding to the speed the motor is running at Searching starts from the maximum frequency towards the actual frequency until the correct value is detected Thereafter the output frequency will be accelerated decelerated to the set refer
18. must be noted that the speed controllers also must be stable in torque control mode This is because the maximum speed is limited with the speed controllers 2 2 Auto tuning Autotuning can be used to measure the magnetising current change the encoder direction and set the speed control parameters automatically The motor load should be low The control program controls the frequency so the motor should be disconnected from the process The gear and possible additional inertia should be present for proper speed control gain setting 1 Activate auto tuning by setting P10 8 1 and by starting the motor within 10 seconds Identification run should last few seconds and the motor will stop Identification corrects the encoder direction measures the magnetising current and determines suitable speed control parameter values These can be further adjusted for improved performance Autotuning can also be used to improve the open loop performance Page 6 56 Fast Closed Loop Application SV9000 SV9000 Fast Closed Loop Application Page 7 56 3 Group 1 Basic parameters 3 1 Group 1 Parameter Table 1 4 Deceleration time 1 0 1 3000 s 0 1s 3s Reference selection 0 15 IA Jogging speed frin fmax 1102 7777 Current limit 0 1 2 5 x hv V Hz ratio selection 1015 0 1 optimisation Voltage code 8 Nominal voltage Voltage code i 180 690 V Voltage code 16 of the motor Voltage code19 Vn on the rating plate of the motor
19. selected contact closed Acceleration deceleration time 2 selected Reverse contact open forward Can be used for reversing if contact closed reverse parameter 2 1 has value 3 JogSpeedSel contact closed jog speed selected for frequency reference FaultReset contact closed resets all faults Acc DecProhi operation prohibited contact closed stops acceleration or deceleration until the contact is opened DC brakeComm DC braking command contact closed In Stop mode the DC braking operates until the contact is opened see Figure 6 5 DC brake current is set with parameter 4 8 Fast Ref Off Turns off fast analog input and reverts to jog mode parameter 1 6 SV9000 Output frequency Param 4 10 7 DIA3 RUN STOP a DIA3 as DC brake command input and stop mode Ramp UD012K32 DIA3 RUN STOP b DIA3 as DC brake command input and stop mode Coasting UD012K32 Figure 6 5 DIA3 as DC brake Command Input a Stop Mode Ramp b Stop Mode Coasting SV9000 2 3 2 4 2 5 2 6 2 7 2 8 Fast Closed Loop Application Page 25 56 DIB4 function DIB4 Function Range 0 10 Default 6 Selections are the same as parameter 2 2 selections except 10 Multi Step Sel 1 contact closed active speed select 1 DIB5 function DIB5 Function Range 0 11 Default 1 Selections are th
20. terminal and panel references are speed references closed loop and the drive controls the motor speed regulation accuracy 0 01 4 Torque control The I O terminal and panel references are torque references closed loop and the drive controls the motor torque regulation accuracy 1 5 proper tuning required motor nameplate values Switching frequency Switching freq Range 1 16 kHz Default 10 3 6 kHz Motor noise can be minimized using a high switching frequency Increasing the switching frequency reduces the capacity of the frequency converter unit Before changing the frequency from the factory default 10 kHz 3 6 kHz from 30 kW upwards check the allowed capacity on the curve in Figure 5 2 3 in Chapter 5 2 of the User s Manual Field weakening point Field weakn pnt Range 30 500 Hz Default Par 1 11 Voltage at field weakening point Voltage at FWP Range 15 200 x Unmot Default 100 The field weakening point is the output freguency at which the output voltage reaches the set maximum value parameter 6 4 Above that freguency the output voltage remains at the set maximum value Below that freguency the output voltage depends on the setting of the V Hz curve parameters 1 8 1 9 6 5 6 6 and 6 7 See Figure 6 25 When the parameters 1 10 and 1 11 nominal voltage and nominal freguency of the motor are set parameters 6 3 and 6 4 are also set automatically to the corresponding values
21. 1 Yes ka 9 Fast Analog input 0 Off Source 4 Opt Vin 5 Opt se KER mn o o 300 300 1 100 100 No scaling 10000 Group 10 Fieldbus parameters code Parameter Range Step Dotat Custom Description Page maana e Js Motor magnetising 0 2000A OA current E Speed control i a gl a Not Used Pa maa rae 0 Ipi 0 FT SV9000 Fast Closed Loop Application Page 17 56 Page 18 56 Fast Closed Loop Application SV9000 5 Parameter Descriptions Group 1 1 1 1 2 1 3 1 4 1 5 Minimum freguency Min Frequency Range 0 120 500 Hz Default 0 Hz Maximum frequency Max Frequency Range 0 120 500 Hz Default 60 Hz Defines the upper and lower frequency limits for the frequency converter Parameters 1 1 and 1 2 have two frequency ranges 0 120 Hz with 0 01 Hz resolution or OQ S500Hz with 0 1 Hz resolution The initial frequency range for parameters 1 1 and 1 2 is O 120 Hz with a resolution of 0 01 Hz To use the second frequency range 0 500 Hz set parameter 1 2 120 Hz when the device is stopped RUN indicator not lit This also changes the resolution to 0 1 Hz To return to the initial frequency range set parameter 1 2 119 Hz when the device is stopped RUN indicator not lit Acceleration time 1 Accel Time 1 Range 0 1 3000 s Default 3 s Deceleration time 1 Decel Time 1 Range 0 1 3000 s Defau
22. 16 The underload curve is a squared curve set between zero frequency and the field weakening point Underload protection is not active below 5Hz the underload counter value is stopped See Figure 6 30 The torque values for setting the underload curve are set in a percentage relative to the nominal torque of the motor The motor name plate data parameter 1 13 the motor nominal current and the drive nominal current Ict are used to find the scaling ratio for the internal torque value If the value entered in parameter 1 3 is different than the motor s nominal current the accuracy of the torque calculation decreases 1 14 Underload protection Underload Protec Range 0 2 Default 0 0 No Action No response Par 7 15 1 Warning Warning 2 Fault Fault Fault and warning will display the same message code If fault is set active the drive will stop and activate the fault stage Par 7 16 Deactivating the protection by setting the parameter Underload to 0 will reset the underload time counter to zero 7 15 Underload protection field weakening area 3 load UP fnom Torque Range 10 0 150 5 Hz Fieldweakening UMCH7 15 x Tymotor Default 50 0 point par 6 3 This parameter gives the value for the minimum torque allowed when the output frequency is above the field weakening point Refer to figure 6 30 If parameter 1 13 is adjusted parameter 7 15 is automatically restore
23. Enable DIA1 closed contact start open contact stop DIA2 closed contact start enabled open contact start disabled StartP StopP 3 wire connection pulse control DIA1 closed contact start pulse DIA2 closed contact stop pulse DIA3 can be programmed for reverse command See Figure 6 3 FWD Output Stop function If Start and Stop pulses are frequency par 4 7 simultaneous the Stop pulse coasting overrides the Start pulse x Pa REV 1 Oo DIA1 Start min 50 ms UD012K11 DIA2 2 T91 ae Stop Figure 6 3 Start Pulse Stop Pulse Pulse R S Enable DIA1 closed contact start stop pulse DIA2 closed contact start enabled FWD Output REV Figure 6 4 Start Stop Pulse Run Enable 5 Forw Mot up DIA1 closed contact start forward DIA2 closed contact references increases Page 24 56 Fast Closed Loop Application 2 2 DIA3 function DIA3 Function Range 0 10 Default 7 0 1 10 Not Used ExtFaulClose External fault closing contact fault is shown and motor is stopped when the input is active ExtFaulOpen External fault opening contact fault is shown and motor is stopped when the input is not active Run Enable contact open motor start disabled contact closed motor start enabled Acc DecTimSe contact open Acceleration deceleration time 1
24. Hz curve has been selected with the parameter 1 8 this parameter defines the zero frequency voltage of motor nominal voltage of the curve See figure 6 25 Overvoltage controller Overvolt Contr Range 0 2 Default 1 Undervoltage controller Undervolt Contr Range 0 1 Default 1 These parameters allow the over undervoltage controllers to be switched ON or OFF This may be useful in cases where the utility supply voltage varies more than 15 10 and the application requires a constant speed If the controllers are on they will change the motor speed in over undervoltage cases Overvoltage faster undervoltage slower Over undervoltage trips may occur when controllers are switched OFF Page 42 56 Fast Closed Loop Application SV9000 7 1 7 2 7 3 7 4 Response to the reference fault Reference Fault Range 0 3 Default 0 0 No Action No response 1 Warning Warning 2 Fault Stop mode after fault according to parameter 4 7 3 Fault Coast Stop mode after fault always by coasting A warning or a fault action and message is generated if 4 20 mA reference signal is used and the signal falls below 4 mA The information can also be programmed via digital output DO1 and via relay outputs RO1 and RO2 Response to external fault External Fault Range 0 3 Default 2 0 No Action No response 1 Warning Warning 2 Fault
25. ameter will be ignored Determines if braking is ON or OFF and the braking time of the DC brake when the motor is stopping The function of the DC brake depends on the stop function parameter 4 7 See Figure 6 21 0 DC brake is not used gt 0 DC brake is in use and its function depends on the Stop function parameter 4 7 and the time depends on the value of parameter 4 9 Stop function 0 coasting After the stop command the motor coasts to a stop without control of the freguency converter With DC injection the motor can be electrically stopped in the shortest possible time without using an optional external brake resistor The braking time is scaled according to the frequency when the DC braking starts If the freguency is 2 the nominal freguency of the motor parameter 1 11 the value of parameter 4 9 determines the braking time When the freguency is lt 10 of the nominal the braking time is 10 of the value of parameter 4 9 fout fout Output freguency p t 1xpar 4 9 t 0 1 x par 4 9 en R N UD012K21 STOP STOP Figure 6 21 DC Braking Time when Stop Coasting SV9000 4 10 4 11 Fast Closed Loop Application Page 37 56 Stop function 1 ramp After the Stop command the speed of the Luu A motor is reduced according to the deceleration parameters as fast as possible to a speed defined with parameter 4 10 where the DC braking starts Motor speed Output freguency The
26. ation needs a special option card with encoder inputs Brake resistor is usually also needed 10 1 Encoder P R Encoder P R Range 300 5000 Default 1024 The encoder pulse number is essential in the closed loop concept A wrong pulse number leads to a high torgue estimate even with no load Check the encoder P R on the encoder nameplate 10 2 Encoder direction Encoder dir Range 0 1 Default 0 0 Forward 0 Reverse 10 3 Motor magnetizing current Motor magn curr Range 0 2000 A Default 0 A The magnetizing current is the no load current of the motor It can be measured in an open loop with two thirds of the nominal frequency Normally the value is about one third of the nominal current Magnetizing current determines the no load voltage of the motor 10 4 Speed control P gain Speed control P Range 0 500 Default 30 10 5 Speed control I time Speed control Range 0 1000 Default 10 If the inertia is great the P gain can be increased Increasing the I time increases stability but decreases speed performance if set too high 10 6 0 Hz time start 0Hz time start Range 0 2 00 s Default 0 30 s 10 7 0 Hz time stop 0Hz time stop Range 0 2 00 s Default 1 00 s Closed loop start and stop zero speed times 10 8 Auto tuning Auto Tuning Range 0 1 Default 0 An automatic identification run is started by setting this paramet
27. ault 0 0 No No automatic restart after reference fault trip 1 Yes Automatic restart after analog current reference signal 4 20 mA returns to the normal level gt 4 MA Automatic restart after over undertemperature fault Temp Fault Reset Range 0 1 Default 0 0 No No automatic restart after temperature fault trip 1 Yes Automatic restart after heatsink temperature has returned to its normal level between 10 C 75 C 14 F 167 F SV9000 Fast Closed Loop Application Page 49 56 Group 9 Fast Analog input 9 1 Source 0 Off 4 Opt Vin 5 Opt Joystick 9 2 Gain Fast analog input reference gain 9 3 Bias Fast analog input reference bias 9 4 Offset Fast analog input offset in mV is used to adjust zero speed with zero voltage reference Page 50 56 Fast Closed Loop Application SV9000 Parameter group 10 Closed loop parameters Closed Loop Parameters The Closed Loop speed control mode parameter 6 1 3 can be used to improve the performance near zero speed and to improve the static speed accuracy with higher speeds Closed loop control modes are based on rotor flux oriented current vector control With this controlling principle the phase currents are divided into a torgue producing current portion and a magnetizing current portion Thus the sguirrel cage induction machine can be controlled in a fashion of a separately excited DC motor The closed loop oper
28. bit frequency range 2 0 fra 1 2 0 1 Hz 0 Hz high limit j Ja i Code Parameter Range Step Default Custom Description Page Se 6 3 Field weakening point 30 500 Hz Par 1 11 6 4 ea 6 5 7 0 Frequency control 1 Speed control open loop 2 Torque control open loop 3 Speed control closed loop 4 Torque control closed loop Depending on kW No effect in Closed Loop motor control mode No effect in Closed Loop motor control mode No effect in Closed Loop motor control mode 0 Off 1 On 2 Mode 2 No effect in Closed Loop motor control mode 0 Off 1 On No effect in Closed Loop motor control mode Switching freguency V Hz curve mid point 0 500 Hz frequency 0 123 20 0 01 0 00 V Hz curve mid point voltage EI o Voltage at field 15 200 x 1 100 weakening point Vnmot es ee voltage at zero ea 0 40 0 01 0 00 requency Overvoltage 0 2 4 1 controller A eee Note ea Parameter value can be changed only when the frequency converter is stopped SV9000 Fast Closed Loop Application Page 15 56 Group 7 Protections Code Parameter Range Step Default Custom Description Page 0 No Action 1 Warning 7 1 Response to reference fault 1 2 Fault stop according to par 4 7 3 Fault Coast stop by coasting 0 No Action 1 Warning F 7 2 Response to external fault 1 2 Fault stop according to par 4 7 3 Fault Coast stop by
29. braking time is defined with parameter 4 9 DC braking resistor is recommended for faster Par 4 10 F deceleration See Figure 6 22 If high inertia exists an external braking t Execute frequency of DC brake during ramp stop in closed loop this p Fl t Par 4 9 parameter has no effect AA Stop DC Brake f Range 0 1 10 Hz Default 1 5 Hz Note Unless parameter 6 1 Motor Control Figure 6 22 DC Braking Time when Mode is setto 0 1 or 2 this Stop Function Ramp parameter will have no effect on braking time If parameter 6 1 is set to either 3 or 4 the motor control mode is a closed loop control type and this parameter will be ignored See Figure 6 22 gt DC brake time at start in closed loop this parameter has no effect Start DC Brake f Range 0 0 25 0 s Default 0 0 s Note Unless parameter 6 1 Motor Control Mode is set to 0 1 or 2 this parameter will have no effect on braking time If parameter 6 1 is set to either 3 or 4 the motor control mode is a closed loop control type and this parameter will be ignored 0 DC brake is not used gt 0 DC brake is activated when the start command is given and this parameter defines the time before the brake is released After the brake is released the output frequency increases according to the set start function parameter 4 6 and acceleration parameters 1 3 4 1 or 4 2 4 3 see Figure 6 23 Output fre
30. changed only when the freguency converter is stopped SV9000 Fast Closed Loop Application Page 11 56 Group 3 Output and supervision parameters Code Parameter Range Step Default Custom Description Page 0 Not used Scale 100 1 O P frequency O fmax 2 Motor speed O max speed 3 O P current 0 2 0 x Insv 4 Motor torgue 0 2 x Thsv 5 Motor power 0 2 x Prsv 6 Motor voltage O 100 xV im 7 DC link volt 0 1000 V i Analog output filter time 0 01 10 s 0 No Inversion SE 0 0mA 3 6 0 Not used 1 Ready 2 Run 3 Fault 4 Fault inverted 5 Overheat warning 6 External fault or warning 7 Reference fault or warning 8 Warning 9 Reversed 10 Jogging speed selected Digital output function 0 21 1 1 11 At speed ea 12 Motor regulator activated 13 Output frequency limit superv 1 14 Output frequency limit superv 2 15 Torque limit supervision 16 Reference limit supervision 17 External brake control 18 Control from I O terminals 19 Frequency converter temperature limit Supervision 20 Unrequested rotation direction 21 External brake control inverted 0 Not Used Output frequency limit 1 0 2 1 1 koi liit supervision function ews 2 High limit OO O Output frequency limit 1 fmax 0 1 Hz supervision value ham 1 2 Output frequency limit 2 p a supervision function 3 11 Output frequency limit 2 O fmax KIE a Torque limit supe
31. coasting 0 No Action 7 3 Phase supervision of motor 2 1 Warning 2 Fault 0 No Action 7 4 Earth fault protection 0 2 2 2 1 Warning 2 Fault 0 No action 7 5 Motor thermal protection 0 2 1 2 1 Warning 2 Fault Motor thermal protection 50 0 150 x r 7 i A 0 77 Motor thermal protection 5 0 150 x 1 0 45 0 zero frequency current I MOTOR 78 Motor thermal protection 0 5 300 0 0 5 min Default value is set according to time constant minutes motor nominal current Motor thermal protection 7 0 No Action 7 10 Stall protection 0 2 1 1 1 Warning f6 2 Fault 0 nMOTOR 0 No Action 7 14 Underload protection 0 2 1 0 1 Warning 2 Fault Underload protection field 10 0 150 x M A H o o 716 Underload protection zero 5 0 150 0 1 0 10 0 frequency load X TnMoToR a ee Underload time 2 0 600 0 s Page 16 56 Fast Closed Loop Application SV9000 Group 8 Autorestart parameters Code Parameter Range Step Default Custom Description Page an gemene AMINI i Automatic restart trial time Automatic restart start 0 Ramp function 1 Flying start Automatic restart after 0 No 8 4 i 0 1 1 _ undervoltage trip 1 Yes Automatic restart after 0 No 8 5 0 1 1 _ overvoltage trip 1 Yes Automatic restart after 0 No O 1 1 _ overcurrent trip 1 Yes Automatic restart after 0 No reference fault 1 Yes Automatic restart after over 0 No under temperature fault
32. d to the default value Figure 6 30 Minimum Load Setting Underload time counter Trip area Par 7 17 Trip warning par 7 14 7 16 Underload protection zero frequency load UP f0 Torque Range 5 0 150 0 x T MoToR Default 10 0 This parameter sets the minimum torque allowed with zero frequency Refer to figure 6 30 If parameter 1 13 is adjusted parameter 7 16 is automatically restored to the default value 7 17 Underload time limit UP Time Limit Range 2 0 600 0 s TA Default 20 0 s No underl This is the maximum allowed time for an underload state Figure 6 31 Underload Time Counting There is an internal counter to accumulate the underload time See Figure 6 31 If the underload counter value goes above the underload time limit the underload protection will cause a trip see parameter 7 14 If the drive is stopped the underload counter is reset to zero UMCH7 17 Time Page 48 56 Fast Closed Loop Application SV9000 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 Automatic restart number of tries Number of Tries Range 0 10 Default 0 Automatic restart trial time Trial Time Range 1 6000 s Default 30 s The automatic restart function restarts the freguency converter after the faults selected with parameters 8 4 8 8 The start function for automatic restart is selected with parameter 8 3 Parameter 8 1 determines how many a
33. e number to forward direction indicates wrong encoder direction This can be corrected by setting P10 2 1 Zero rpm indicates problems with encoder Check 4 Run the motor with about 2 3 of the nominal frequency with low load The motor current should be the magnetising current which is usually about one thrid of the nominal current Check the displayed torque to insure that load is low If there is friction the measured current can be higher than the magnetising current 5 Activate the brake chopper and set the closed loop control mode P6 1 3 set first soeed control gain to low value 20 and integral time to at least 30 Set motor magnetising current to one third of the motor nominal current or to the measured no load current 6 Puta zero speed reference and start If fault F32 appears reverse the encoder direction P10 2 Fault F31 indicates problems with encoder Run with about 2 3 of the nominal frequency with low load Adjust the motor magnetising current to achieve about 2 3 of the motor nominal voltage 7 Increase the load If the motor voltage changes lot adjust the motor nominal speed P1 12 8 Increase the speed control gain and decrease the integral time for tighter control It must be noted that the speed controllers have to be stable also in torque control mode This is because the maximum speed is limited with speed controllers 9 Increase the speed control gain and decrease the integral time for tighter control It
34. e same as parameter 2 2 selections except 10 Multi Step Sel 2 contact closed active speed select 2 11 Mot Pot UP contact closed reference decreases until contact is UP opened DIB6 function DIB6 Function Range 0 11 Default 4 Selections are the same as parameter 2 2 selections except 10 Multi Step Sel 3 contact closed active speed select 3 11 Mot Pot DOWN contact closed reference decreases until contact is opened Vin signal range Vin Signal Range Range 0 2 Default 0 0 0 10 V Signal range from 0 to 10 V 1 Custom Range Custom setting range from custom minimum parameter 2 7 to custom maximum parameter 2 8 2 10 10 V Signal range from 10 to 10 V can be used only with Joystick control Vin custom minimum setting Vin Custom Min Range 0 100 Default 0 00 Vin custom maximum setting Vin Custom Max Range 0 100 Default 100 With these parameters Vin can be set for any input signal span within 0 10 V Minimum setting Set the Vin signal to its minimum level select parameter 2 7 press the Enter button Maximum setting Set the Vin signal to its maximum level select parameter 2 8 press the Enter button Note These parameters can only be set with this procedure not with the Browser buttons Page 26 56 Fast Closed Loop Application SV9000 2 9 Vin signal inversion m Vin Invert Ra
35. ence value according to the set acceleration deceleration parameters Use the flying start function if the motor is coasting when the start command is given With the flying start it is possible to ride through short power interruptions Page 36 56 Fast Closed Loop Application SV9000 4 7 4 8 4 9 Stop function O 1 Range 0 1 Default 0 0 Coasting The motor coasts to a halt without any control from the frequency converter after the Stop command 1 Ramping After the Stop command the speed of the motor is decelerated according to the set deceleration parameters If the regenerated energy is high it may be necessary to use an external braking resistor for faster deceleration DC braking current DC Brake Current Range 0 15 1 5 x Insv A Default 0 5 x Insv Defines the current injected into the motor during DC braking In closed loop this parameter defines the magnetizing current injected into the motor at a start This is ofimportance if the value of parameter 4 8 is higher than the motor magnetizing current parameter 11 3 DC braking time at stop in closed loop this parameter has no effect Stop DC Brake t Range 0 250 0 s Default 0 s Note Unless parameter 6 1 Motor Control Mode is set to 0 1 or 2 this parameter will have no effect on braking time If parameter 6 1 is set to either 3 or 4 the motor control mode is a closed loop control type and this par
36. er to 1 while the drive is stopped then sending a run command to the drive within 10 seconds Note The motor must be disconnected from the load during the identification run The identification control program automatically sets the following parameters e Parameter 11 2 Encoder direction e Parameter 11 3 Motor magnetizing current e Parameter 11 4 Speed control gain e Parameter 11 5 Speed control integration time SV9000 Fast Closed Loop Application Page 51 56 These parameters can be further adjusted after the identification run 10 9 Current control P gain These parameter can be use to improve current control stability with special motors 10 10 Encoder filter time This parameter can be used to eliminate noise due to high frequency encoder feedback If the value is O Automatic the filtering time is automatically calculated from speed control gain Too high filter time value reduces speed control stability Preferred range 0 5ms 10 11 Ref filt time Default 5 ms Filtering the internal reference reduces speed noise Page 52 56 Fast Closed Loop Application SV9000 7 Fault codes The Closed Loop fieldbus application has four special error codes brake resistor not installed Check brake resistor brake resistor broken If resistor is OK the chopper might be Brake chopper ory ann brake chopper broken broken Check the installation Reading of the option board has failed if installation is correct contact your distributo
37. es which parameter groups are visible 0 All Visible all parameter groups are visible 1 Group1Visibl only group 1 is visible Parameter value lock Parameter Lock Range 0 1 Default 0 Determines the access to parameter value changes 0 ChangeEnable parameter value changes enabled 1 ChangeDisabl parameter value changes disabled Page 22 56 Fast Closed Loop Application SV9000 6 Parameter Descriptions Groups 2 12 2 1 Start Stop logic selection Start Stop Logic Range 0 5 Default 0 0 Fwd Rev DIA1 closed contact start forward DIA2 closed contact start reverse See Figure 6 1 1 The first selected direction has the highest priority S When DIA1 contact opens the direction of rotation starts to change If Start forward DIA1 and Start reverse DIA2 signals are active simultaneously the Start forward signal DIA1 has priority FWD Output Stop function frequency par 4 7 coasting REV DIA1 DIA2 oO UD012K09 G Figure 6 1 Start Forward Start Reverse 1 Start Rev DIAT closed contact start open contact stop DIA2 closed contact reverse open contact forward See Figure 6 2 FWD Output Stop function frequency par 4 7 coasting REV DIA DIA2 SS m a UD012K10 Figure 6 2 Start Stop Reverse SV9000 Fast Closed Loop Application Page 23 56 Start
38. he reference fault parameter 7 2 is active when the 4 20 mA range is used and the reference signal is lost the AN drive will stop and generate a reference fault If a custom or 0 20 MA signal range is used and the control signal is lost the drive will run at the maximum reverse speed Note When joystick control is used the direction of control is generated from the joystick reference signal See Figure 5 1 The analog input scaling parameters 2 16 2 19 are not used when joystick control is used Fout Fmin par 1 2 TPO TTT 77 A Fmin par 1 1 Fmin par 1 1 hysteresis 2 0 2 V Fmax par 1 2 Fmax par 1 2 UD012K50 UD012K51 If the minimum frequency parameter 1 1 gt 0 then hysteresis is 2 at reversing point Figure 5 1 Joystick Control Vp Signal 10 V 10 V OF lin Signal O 20 mA 8 Reference value is changed with digital input signals DIA4 and DIAS DIA3 closed freguency reference increases DIA4 closed freguency reference decreases The speed ofthe reference change can be set with the parameter 2 20 9 Same as setting 8 above but the reference value is set to the minimum frequency parameter 1 1 each time the freguency converter is stopped Page 20 56 Fast Closed Loop Application SV9000 1 6 1 7 1 8 Def 5 Hz 2 Programmable V Hz curve 10 Same as setting 8 above but the reference value is stored in memory when p
39. it Range 2 Low Lim Range 0 f max par 1 2 Default 0 Hz Prohibit freguency range 2 high limit Range 2 High Lim Range 0 fmax par 1 2 Default 0 Hz Prohibit freguency range 3 low limit Range 3 Low Lim Range 0 fmax par 1 2 Default 0 Hz Prohibit freguency range 3 high limit Range 3 High Lim Range 0 fmax par 1 2 Default 0 Hz In some systems it may be necessary to avoid certain freguencies because of mechanical resonance problems With these parameters it is possible to set limits for three skip frequency regions Output frequency Hz Reference Hz UD012K33 Figure 6 24 Example of Prohibit Frequency Area Setting Page 40 56 Fast Closed Loop Application SV9000 6 1 6 2 6 3 6 4 Motor control mode Control Mode Range 0 4 Default 0 0 Freq Control The I O terminal and panel references are frequency references and the freguency converter controls the output freguency output freguency resolution 0 01 Hz 1 Speed control The I O terminal and panel references are speed references and the freguency converter controls the motor speed regulation accuracy 0 5 2 Torque control The I O terminal and panel references are torque references and the frequency converter controls the motor torque regulation accuracy 3 proper tuning required motor nameplate values V Hz setting 3 Speed control The I O
40. k suitability for motor and drive system Page 8 56 Fast Closed Loop Application SV9000 SV9000 Fast Closed Loop Application Page 9 56 4 Groups 2 12 Special parameters 4 1 Groups 2 12 Parameter Tables Group 2 Input Signal Parameters 24 Start Stop logic 0 5 selection DIA3 function M DIB4 function 2 3 terminal 14 0 10 1 6 0 Start forward 1 Start Stop 2 Start Stop 3 Start pulse 4 Start stop pulse 5 Forw Motpotup Start reverse Reverse Run enable Stop pulse Run enable 0 Not used 1 External fault closing contact 2 External fault opening contact 3 Run enable 4 Accel decel time selection 5 Reverse 6 Jog speed 7 Fault reset 8 Accel decel operation prohibit 9 DC braking command 10 Torque control 0 Not used 1 External fault closing contact 2 External fault opening contact 3 Run enable 4 Accel decel time selection 5 Reverse 6 Jog speed 7 Fault reset 8 Accel decel operation prohibit 9 DC braking command 0 Not used 1 External fault closing contact 2 External fault opening contact 3 Run enable 4 Accel decel time selection DIB5 function 5 Reverse terminal 15 6 Jog speed 5 10 Multi step speed select 1 7 Fault reset 8 Accel decel operation prohibit 9 DC braking command 10 Multi step speed select 2 11 Motorised pot speed up 0 Not used 1 External fault closing co
41. l products to industrial automation Cutler Hammer utilizes advanced product development world class manufacturing and offers global engineering services and support For more information on Cutler Hammer products call 1 800 525 2000 or 1 616 982 1059 for engineering services call 1 800 498 2678 or visit our web site at www cutlerhammer eaton com For Cutler Hammer Adjustable Freguency Drives technical information and support please call 1 800 322 4986 Gutler Hammer Publication No TD04004004E August 2002 Copyright Cutler Hammer Inc 2002 All Rights Reserved
42. lt 3 s These limits correspond to the time reguired for the output freguency to accelerate from the set minimum frequency fmin parameter 1 1 to the set maximum frequency fmax parameter 1 2 Reference selection Ref Selection 1 Range 0 15 Default 0 0 Analog voltage reference from terminals 2 3 e g potentiometer 1 Analog current reference from terminals 4 5 e g transducer 2 Reference is obtained by adding the voltage input Vi terminal 2 value to the current input li terminal 4 value 3 Reference is obtained by subtracting the voltage input Vin terminal 2 value from the current input lin terminal 4 value 4 Reference is obtained by subtracting the current input lin terminal 4 value from the voltage input Vi terminal 2 value 5 Reference is obtained by multiplying the voltage input Vi terminal 2 value and the current input lin terminal 4 value SV9000 Fast Closed Loop Application Page 19 56 6 Joystick control from the voltage input Vin Signal range Max reverse speed Direction change Max forward speed OV Par 2 7 x 10 V In the middle of custom range Par 2 8 x 10 V Warning Use the 10 to 10 V signal range only If a custom or 0 10 V signal range is used and the reference signal is lost the drive starts to run at the maximum AN reverse speed 7 Joystick control from the current input lin Warning Use the 4 20 mA signal range only If t
43. nge 0 1 Default 0 M Unfiltered signal 0 No Inversion no inversion of analog Vin Signal 100 1 Inverted inversion of analog Vi signal Filtered signal 2 10 Vin signal filter time Vin Filter Time Range 0 10 s Default 0 1 s Filters out disturbances from the incoming analog Vin Signal 63 t s Long filtering time makes regulation response paat slower See Figure 6 6 4 UD012K37 2 11 Analog input I signal range M lin Signal Range Range 0 2 Default 0 Figure 6 6 Vin Signal Filtering 0 0 20 mA Input signal range of 0 to 20 mA 4 20 mA Input signal range of 4 to 20 mA 1 2 Custom Range Custom input signal span defined by parameters 2 13 and 2 13 2 12 Analog input l custom setting minimum lin Custom Min Range 0 100 Default 0 00 2 13 Analog input l custom setting maximum lin Custom Max Range 0 100 Default 100 With these parameters the scaling of the input current signal lin range can be set between 0 20 M Minimum setting Select parameter 2 12 set the lin signal to its minimum level then press the Enter button Maximum setting Select parameter 2 13 set the lin signal to its maximum level then press the Enter button Note These parameters can only be set with this procedure not with the Browser buttons 2 14 Analog input li inversion lin Invert Range 0 1 Defaul
44. nput 30 g 100 140 input 0 2 0 BO 50 0 M 0 300 M 2 Um 4 8 8 16 8 20 0 mA 4 500 mA SE sen Figure 6 8 Examples of the Scaling of Vi and li Inputs Page 28 56 2 20 Fast Closed Loop Application SV9000 Free analog input signal Free Analog Sign Range 0 4 Default 0 Selection of input signal for free analog input an input not used for reference signal 0 R N m Not Used Voltage Input Voltage signal Vi Current Input Current signal lin AIN1 1 O expand Voltage signal A from terminals 202 203 of I O Expander AIN2 I O expand Analog signal Ainz from terminal 204 205 of I O Expander current signal SV9IOC100 voltage signal SV9IOC102 FB signal the signal comes through the fieldbus board and depends on the option board used SV9000 Fast Closed Loop Application Page 29 56 2 21 Free analog input signal function Free Analog Func Range 0 4 Default 0 This parameter sets the function of the free analog input 0 Not Used Function is not used 1 I lim Scaling Reducing motor current limit This signal will adjust the maximum motor current between 0 and parameter maximum limit set with parameter 1 7 See Figure 6 9 2 DC curr Scaling Reducing DC brake current The DC braking current can be reduced with the free analog input signal between 0 15 x I sy and current set with parameter 4 8 See Figure 6
45. ntact 2 External fault opening contact 3 Run enable 4 Accel decel time selection 5 Reverse 6 Jog speed 7 Fault reset 8 Accel decel operation prohibit 9 DC braking command 10 Multi step speed select 3 11 Motorised pot speed down DIB6 function terminal 16 0 0 10 V 1 Custom setting range 10 10 V can only be used with joystick control Vin Signal range lt gt O 7 t O 3 Z OD 5 e gt J T JA O B os a oS O D S e 2 7 Page 10 56 Fast Closed Loop Application SV9000 e A a 0 Not inverted e a a tis t 0 0 20 mA lin signal range 0 2 1 1 4 20 mA 2 Custom setting range A 8 E 2 13 lin custom setting max 0 100 0 01 100 0 lin signal inversion 0 Notinverted in SIG 1 Inverted lin signal filter time 0 No filtering Vin maximum scaling STK t 100 no maximum scaling p7 lin maximum scaling ESA oo mo 100 no maximum scaling Not used in analog voltage input lin analog current input n1 option board in2 Option board FB Signal WN Hou oi ou ou ul lt PP Free analog input 0 5 1 signal selection 5 0 No function Free analog het 1 Reduces current limit par 1 7 finaler g Input O 4 1 2 Reduces DC braking current 3 Reduces acc and dec times 4 Reduces torque superv limit Motorised potentiometer 0 1 Note ar07 Parameter value can be
46. og Output Scale SV9000 Fast Closed Loop Application Page 31 56 3 5 Analog output scale Tut Scale Range 10 1000 Default 100 Scaling factor for analog output See Figure 6 15 Signal Max value of the signal Output frequency Max frequency par 1 2 Motor speed Max speed n Xfma fn Output current 2 X Insv Motor torque Motor power Motor voltage DC link voltage Vin signal In Signal Page 32 56 Fast Closed Loop Application SV9000 3 6 3 7 3 8 Digital output function DO1 Content Range 0 22 Default 1 Relay output 1 function RO1 Content Range 0 22 Default 2 Relay output 2 function RO2 Content Range 0 22 Default 3 Setting value Signal content 0 Not used Out of operation Setting value Digital output DO1 sinks the current and programmable relay RO1 RO2 is activated when 1 Ready The frequency converter is ready to operate The frequency converter operates motor is running A fault trip has occurred 4 Fault inverted A fault trip has not occurred 5 Drive overheat warning The heat sink temperature exceeds 70 C 158 F 6 External fault or warning Fault or warning depending on parameter 7 2 5 Drive overheat warning 6 External fault or warning if analog reference is 4 20 mA and signal is lt 4mA 11 At speed The output frequency has reached the set reference 12 Motor regulator activated Overvoltage or overcurrent
47. one determines the maximum output current of the drive Motor thermal protection zero frequency current MTP f0 Current Range 5 0 150 xX I motor Default 45 0 This parameter sets the value for thermal current at zero frequency Refer to figure 6 26 The default value is set assuming that there is no external fan cooling the motor If an external fan is used this parameter can be set to 90 or even higher The value is set as a percentage of the motor name plate data parameter 1 13 motor nominal current not the drive s nominal output current Motor nominal current is the current that the motor can stand in direct on line use without being overheated If parameter 1 13 is changed parameter 7 7 is automatically restored to the default value Setting this parameter or parameter 1 13 does not affect to the maximum output current of the drive Parameter 1 7 alone determines the maximum output current of the drive Motor thermal protection time constant MTP Motor T Range 0 5 300 0 min Default relative to motor nominal current This is the thermal time constant of the motor The larger the motor the longer the time constant will be The time constant is the time within which the calculated thermal stage has reached 63 of its final value The motor thermal time is specific for the motor design and it varies between different motor manufacturers The default value for the time constant is calculated
48. ot protect the motor if a blocked air intake grill reduces airflow to the motor 7 5 Motor thermal protection Motor Therm Prot Range 0 2 Default 2 0 No Action No response 1 Warning Warning 2 Fault Fault Fault and warning will display the same message code If fault is selected the drive will stop and activate the fault stage Deactivating the protection setting this parameter to 0 will reset the thermal stage of the motor to 0 Page 44 56 Fast Closed Loop Application SV9000 7 6 7 7 7 8 Motor thermal protection break point current MTP fnom Current Range 50 0 150 x MOTOR Default 100 0 Current This parameter sets the value for thermal OA 7 current at freguencies above the breakpoint on the thermal current curve See Figure 6 26 fae Overload area The value is set in a percentage that is relative INmotor to the name plate data of the motor parameter 1 13 nominal current of the motor not to the drive s nominal output current T The motor s nominal current is the current that the motor can withstand in direct on line use without being overheated If parameter 1 13 is adjusted parameter 7 6 is 35 Hz UMCH7 91 automatically restored to the default value Figure 6 26 Example of Prohibit Setting this parameter 7 6 or parameter 1 13 does Frequency Area Setting not affect the maximum output current of the drive Parameter 1 7 al
49. ound Ground for reference and controls 0 v DIA 1 Start forward Contact closed start forward programmable E ii ij DIA 2 Start reverse Contact closed start reverse PE programmable Contact open no action Peuibiesch programmarle Contact closed fault reset os Common for DIA 1 DIA 3 Connect ot GND or 24V Control voltage output Voltage for switches see 6 m I O ground Ground for reference and controls a 14 DIB4 Jogging speed select Contact open no action programmable Contact closed jogging speed ME ii a eee 45 DIB5 External fault Contact open no fault programmable Contact closed fault E i MEN NE 16 DIB6 Acceleration deceleration Contact open par 1 3 1 4 in use time select programmable Contact closed par 4 3 4 4 in use T Common for DIB4 DIB6 Connect to GND or 24V Ouput frequency Programmable par 3 1 oe Analog output Range 0 20 mA R_ max 5000 KA AAA Digital output Programmable par 3 6 af 20 DO1 READY Open collector I lt 50mA Us48 VDC RO RUN R REAY ER Programmable par 3 7 a yf Relay output 2 FAULT Programmable par 3 8 Figure 1 1 Default I O Configuration and Connection Closed Loop Application Example Page 2 56 Fast Closed Loop Application SV9000 1 2 Control Signal Logic Figure 1 2 presents the logic of the I O control signals and push button signals from the panel PARAMETERS 1 5 Reference selection 1 6 Jogging speed ref
50. ower is removed Note When the value of parameter 1 5 is set to 8 9 or 10 the values of parameters 2 4 DIB5 and 2 5 DIB6 are automatically set to 11 motorized potentiometer speed up down 11 Reference value is the smaller of signals Vin and lin 12 Reference value is the larger of signals Vin and lin 13 Panel reference r1 is the frequency reference 14 Reference value is the maximum frequency 15 Reference value is Vi or lin based on parameter 2 3 Jog speed reference Jog Speed Ref Range fmin fmax Default 5 Hz Parameter value defines the jog speed selected with the digital input Current limit Current Limit Range 0 1 2 5 x Insvo Default 1 5 x 1 sv9 This parameter determines the maximum motor current from the freguency converter To avoid motor overload set this parameter according to the rated current of the motor V Hz ratio selection TW V Hz Ratio Range 0 2 Default 0 vn 0 Linear V Hz ratio The voltage of the motor changes linearly with the freguency in the constant flux area from 0 Hz to the field weakening point parameter 6 3 where the nominal voltage is also supplied to the Motor See figure 5 2 A linear V Hz ratio should be used in constant torque applications This default setting should be used if there is no special need for another setting Figure 5 2 Linear and Squared V Hz Curves 1 Squared V Hz ratio The voltage of the motor changes
51. peeds is small Motor thermal protection is based on a calculated model and uses the output current of the drive to determine the load on the motor When power to the drive is turned on the calculated model uses the heatsink temperature to determine the initial thermal stage for the motor The calculated model assumes that the ambient temperature of the motor is 40 C 104 F Motor thermal protection can be adjusted by setting the parameters The thermal current ly specifies the load current above which the motor is overloaded This current limit is a function of the output frequency The curve for I is set with parameters 7 6 7 7 and 7 9 See Figure 6 26 Parameters default values are taken from the motor name plate data With the output current at I the thermal stage will reach the nominal value 100 The thermal stage changes by the square of the current With output current at 75 of I the thermal stage will reach 56 value and with output current at 120 of I the thermal stage would reach 144 value The function will trip the device parameter 7 5 if the thermal stage reaches a value of 105 The speed of change in thermal stage is determined with the time constant parameter 7 8 The bigger the motor the longer it takes to reach the final temperature The thermal stage of the motor can be monitored through the display Refer to the table for monitoring items User s Manual table 7 3 1 CAUTION The calculated model does n
52. quency Par 4 11 RUN STOP UD012K22 Figure 6 23 DC Braking at Start Page 38 56 4 12 4 13 4 14 4 15 4 16 4 17 4 18 Multi step speed reference 1 Multi Step 1 Range fmin fmax par Multi step speed reference 2 Multi Step 2 Range fmin fmax par Multi step speed reference 3 Multi Step 3 Range fmin fmax par Multi step speed reference 4 Multi Step 4 Range finin fmax par Multi step speed reference 5 Multi Step 5 Range fmin fmax par Multi step speed reference 6 Multi Step 6 Range fmin fmax par Multi step speed reference 7 Fast Closed Loop Application 1 1 par 1 1 par 1 1 par 1 1 par 1 1 par 1 1 par 1 2 Default 1 2 Default 1 2 Default 1 2 Default 1 2 Default 1 2 Default Multi Step 7 Range fmin fmax par 1 1 par 1 2 Default Parameter value defines the Multi Step speeds selected with the digital inputs 10 0 Hz 15 0 Hz 20 0 Hz 25 0 Hz 30 0 Hz 40 0 Hz 50 0 Hz SV9000 SV9000 5 1 5 2 5 3 5 4 5 5 5 6 Fast Closed Loop Application Page 39 56 Prohibit frequency range 1 low limit Range 1 Low Lim Range 0 f4x par 1 2 Default 0 Hz Prohibit frequency range 1 high limit Range 1 High Lim Range 0 f ax par 1 2 Default 0 Hz Prohibit freguency range 2 low lim
53. r Option board identification Encoder broken missing F31 Encoder pulse missing Cable broken Check encoder cable and board Defective board kl ts Encoder channels set wrongly Switch the channels See parameter 11 2 Table 9 1 Closed Loop Fieldbus Faults 8 Monitoring data cod sigainame m peseme o O a Motorspeed mm Calculated motorspeed SSS e moran a messer Motor torque Calculated actual ewe torque of the unit a S ve Motorvottage v Caleulated motorvotage 0000 w peimkvotege v Measured DC inkvotlage ve tempera 6 heaton ve periradey counter 0065 Operatrg dp can roteres Operating hours trip counter Operating hours can be reset with programmable button 3 Voltage of terminal Vin term 2 Current of terminals lin and lin and term 2 V16 Digital input B status See Page 1 vir Distal and relay outputstaus seep OoOO we Controlproaram Version number ofthe contrlsofware DD full days dd decimal part of day HH full hours hh decimal part of hour Table 10 1 Monitoring Items SV9000 Fast Closed Loop Application Page 53 56 Notes Page 54 56 Fast Closed Loop Application SV9000 Notes SV9000 Fast Closed Loop Application Page 55 56 Notes Page 56 56 Fast Closed Loop Application SV9000 Cutler Hammer a part of Eaton Corporation is a worldwide leader providing customer driven solutions From power distribution and electrical contro
54. regulator was activated 13 Output frequency The output frequency goes outside the set supervision Low limit High limit supervision 1 parameters 3 9 and 3 10 14 Output frequency The output frequency goes outside the set supervision Low limit High limit supervision 2 parameters 3 11 and 3 12 15 Torque limit supervision The motor torque goes outside the set supervision Low limit High limit parameters 3 13 and 3 14 16 Reference limit The reference goes outside the set supervision Low limit High limit supervision parameters 3 15 and 3 16 17 External brake control External brake ON OFF control with programmable delay parameters 3 17 and 3 18 18 Control from I O terminals External control mode selected with programmable push button 2 19 Frequency converter Temperature on frequency converter goes outside the set supervision limits temperature limit parameters 3 19 and 3 20 supervision 20 Unrequested rotation Rotation direction of the motor shaft is different from the requested one direction 21 External brake control External brake ON OFF control parameters 3 17 and 3 18 output active inverted when brake control is OFF Table 6 2 Output Signals via DO1 and Output Relays RO1 and RO2 SV9000 Fast Closed Loop Application Page 33 56 3 9 Output frequency limit 1 supervision function Freq Supv Lim 1 Range 0 2 Default 0 3 11 Output frequency limit 2 supervision function Freq Supv Lim 2 Range
55. rvision 0 Not Used 3 13 function 0 2 1 0 1 Low limit 2 High limit Torque limit supervision a j a a X x Tey EH kli ye i a 0 Not Used a Sr OA HEER k s 1 1 Low limit p 2 High limit Reference limit E 30001 E foa o fo 1 Page 12 56 Fast Closed Loop Application SV9000 code Parameter Range Step Defaut Custom veseripton Page delay BABEN ee a ale 0 100 0s 0 15 15s delay Frequency converter 0 Not Used temperature limit 1 Low limit supervision function 2 High limit Frequency converter r o o 3 20 temperature limit value 10 75 C 1C A U ie Q D IS IR IS E 3 21 t paard ope 1 3 See parameter 3 1 analog output content 3 22 VO expander board opt 001 105 0 01 1 00 analog output filter time 3 23 O expander board opt 0 1 1 See parameter 3 3 analog output inversion analog output minimum 395 Oe ane poston 10 1000 1 100 See parameter 3 5 analog output scale 0 Calculated RPM RE E E Note szo Parameter value can be changed only when the frequency converter is stopped SV9000 Fast Closed Loop Application Page 13 56 Group 4 Drive control parameters Code Parameter Range Step Default Custom Description Page Acceleration deceleration 0 Linear ramp 1 shape o oos ots oos 00 gt 0 S curve acceleration deceleration time R Acceleration deceleration 0 Linear ramp 2 shape oos ors oos 00 gt 0 S curve
56. t 0 0 No Inversion no inversion of lin input 1 Inverted inversion of lin input SV9000 2 15 2 16 2 17 2 18 2 19 100 Fast Closed Loop Application Page 27 56 Analog input l filter time ln Filter Time Range 0 10 s Default 0 1 s Filters out disturbances from the incoming analog lin signal Long filtering time makes regulation response slower See Figure 6 7 Unfiltered signal Filtered signal 63 UD012K40 Figure 6 7 Analog Input lin Filter Time Vin signal minimum scaling Vin Scale Min Range 320 00 320 00 Default 0 01 Sets the minimum scaling point for Vi signal See Figure 6 8 Vin Signal maximum scaling Vin Scale Max Range 320 00 320 00 Default 0 01 Sets the maximum scaling point for Vin signal See Figure 6 8 lin Signal minimum scaling lin Scale Min Range 320 00 320 00 Default 0 01 Sets the minimum scaling point for lin signal See Figure 6 8 lin Signal maximum scaling lin Scale Max Range 320 00 320 00 Default 0 01 Sets the maximum scaling point for lin signal See Figure 6 8 A A Scaled Scaled input signal input signal So SS Se ae KASSE 100 54 a kd 7 76 5 Par 2 18 30 15 3 mA 2809 Par 2 19 80 Par 2 18 30 Par 2 19 140 17 7 3 5 mA Analog pre Analog 100 i
57. ting values are 17 or 21 parameter 3 17 and 3 18 are in use Freguency converter temperature Analogue i PE output limit supervision function current Param 3 5 Temp Limit Supv Range 0 2 ALDE Se ee ee ey TF Default 0 0 Not Used No supervision 1 Low Limit Low limit supervision here 30 6mA 2 High Limit High limit supervision 5 3 26 25 5 mA If the temperature of the frequency ER converter goes under over the set limit parameter 3 20 this function generates a warning message via the digital output 0 mA DO1 and or via the relay outputs RO1 or 0 0 5 1 RO2 depending on parameter 3 6 3 8 settings Figure 6 17 Analog Output Offset Maximum value of selected signal ao offse fh3 Frequency converter temperature limit value Temp Supv Value Range 70 75 C Default 40 C The temperature value to be supervised by parameter 3 19 I O expander board opt analog output content Opt Asu Content Range 0 9 Default 3 Refer to Parameter 3 8 for option definintions I O expander board opt analog output filter time Opt Aout Filter T Range 0 01 10 s Default 1 00 I O expander board opt analog output inversion Opt Au Invert Range 0 1 Default 0 I O expander board opt analog output minimum Opt Aout Minimum Range 0 1 Default 0 I O expander board opt analog output scale
58. utomatic restarts can be made during the trial time set by parameter 8 2 The time count starts from the first auto restart If the number of restart attempts does not exceed the value of parameter 8 1 during the trial time the count is cleared after the time has elapsed The next fault restarts counting the number of restart attempts Automatic restart start function Start Function Range 0 1 Default 0 The parameter defines the start mode 0 Ramping Start with ramp 1 Flying Start Flying start see parameter 4 6 Automatic restart after undervoltage trip Undervolt Reset Range 0 1 Default 0 0 No No automatic restart after undervoltage fault trip 1 Yes Automatic restart after undervoltage fault condition returns to normal condition DC link voltage returns to the normal level Automatic restart after overvoltage trip Overvolt Reset Range 0 1 Default 0 0 No No automatic restart after overvoltage fault trip 1 Yes Automatic restart after overvoltage fault condition returns to the normal condition DC link voltage returns to the normal level Automatic restart after overcurrent trip Overcurrent Rst Range 0 1 Default 0 0 No No automatic restart after overcurrent fault trip 1 Yes Automatic restart after overcurrent faults Automatic restart after reference fault Ref Fault Reset Range 0 1 Def
59. uy 1 Stall anent Range 10 0 200 x I motor Figure 6 28 Setting the Stall Default 130 0 Characteristics In a stall stage the current must be above this limit See Figure 6 28 The value is set as a percentage of the motor nameplate data parameter 1 13 motor nominal current If parameter 1 13 is adjusted parameter 7 11 is automatically restored to the default value 7 12 Stall time Stall Time Lim Range 2 0 120 s Default 15 0 s This is the maximum allowed time for a stall stage There is an internal counter to count the Stall time See Figure 6 29 If the stall time counter value goes above the stall time limit stall protection will cause a trip See parameter 7 10 Stall time counter Trip area Par 7 12 Trip warning par 7 10 7 13 Maximum stall frequency Stall Freq Lim Range 1 fmax Default 25 Hz In a stall state the output frequency must be ee smaller than this limit See Figure 6 28 UMCH7_12 Fiqure 6 29 Stall Time Counting SV9000 Fast Closed Loop Application Page 47 56 Parameters 7 14 7 17 Underload protection General The purpose of motor underload protection is to ensure that there is a load on the motor when the drive is running If the motor loses its load there may be a problem in the process e g a broken belt or a dry pump Motor underload protection can be adjusted by setting the underload curve with parameters 7 15 and 7

Download Pdf Manuals

image

Related Search

Related Contents

Epson Stylus Pro 4000-C8  JTCー542 逆タ ップセッ ト取扱説明書  ATOM PLUS ATOM PLUS  GUÍA PARA EL DISEÑO Y CONSTRUCCIÓN DE    HP P6000 User's Manual  Equipment Specifications - Technical Diagnostic Services  Mode d`emploi court  

Copyright © All rights reserved.
Failed to retrieve file