Home

MSD Speed Controlled Pump Software - User Manual

image

Contents

1. amp DriveAdministrator 5 G392 170 Getrennt ros Cavitation protect The risk of cavitation can be detected to protect the system Datei Ansicht Bearbeiten Altives Gerat Extras Fenster Hilfe 2 D 6 2 A Lokaler Administrator 3 5 9 r Ta Zuriic Kommunikation verbinden Aktives Ger t x HeD Usb Integrator anti The integral part of the controller has an anti wind up A OE GD C rormntation ves de T0 s0 E e wind up functionality rd Summary jpet GG motor lalak Geber Ghz Regelung Bewegungsprofil aA Begrenzungen Qprsrortes j i Projekt ax 49 SCP Parameters G392 170 xx PES 3 z8 2 X Verbinden 4 S The controller is able to limit the pump speed and acceleration 3 2 M sainia i K 4 ji Automatische Suche z Nummer Name Beschreibung Type De ee in different ways It is also possible to define different limitations E EE SCP_Vemuchestand_V01 E Linearisation Linearisation parameters Liste von Subparametem Limitations 4 3 i A a a TCP IP 596 Predefined Parameter Settings Predefined parameter sets online changeable Liste von Subparametern for different working points e g depending on the sign of g Sud 1049412 Ga 1655 TestingPoints Debug Variable f r allgemeine Anwendung Liste von Subparametern 5 gt 3 Offline G392 170 1996 SCP Floating Point Variables SCP Integer Variables Liste von Subparametern acceleration and velocity x pi pai E 1997 SCP Integer Variables SCP Integer Variables Liste
2. software uses the brake output as a digital output For the use of the brake output parameter motor brake output X13 X20 needs to be set to 41 P 0125 in drive settings 1 O Configuration Motor brake output Attention Before activating the pump all relevant limitations and safety functions have to be parameterized Attention Parameterize and start the new SCP with care A wrong parameter can damage the SCP or the machine Pay attention to the sign of the parameters to prevent positive feedback All parameters are immediately active after changing ta I er ie a Default parameters Before the first start of the SCP software transition to the state operation enabled check over the predefined parameter set P 596 0 11 After switching on the SCP actual parameters will be copied from the first parameter set parameter set 0 MOOG Test Points Tests points were created to monitor the behavior of the SCP They can be shown on the digital oscilloscope in the DRIVEADMINISTATOR The following picture presents the main test points in the overall controller view The green numbers corresponds to the Sub ID of the parameter P 1655 and to the name of the test point 02 mand ooo Linearisation Q_feed_forward Proportional gain Speed_ Pressure 4 Integrator with 5 Y 06 07 na mang Command e a 05 2 5 08 Prasetection O Bo
3. 1 10 Output int no 0 100 100 yes Table 2 6 Linearization SCP Integer Parameters Stored in Flash Address Description Default lature P 1999 2 DD_OFF_Delay Delay time to switch DD the factors to 1 ms int yes 0 0 10000 yes P 1999 4 DD_Switching_OFF_Time Time to change the factor from DD to 1 ms int 0 0 10000 yes P 1999 6 X4_Cable_Break_Detection Activation of the cable break detection 0 0 3 P 1999 8 Switching_On_SCP_Controller 0 normal Position Controller 1 SCP Speed Controller with field bus Interface 3 SCP Speed Controller with analog interface Note A value change of this parameter will be active when power Stage is disabled Table 2 7 SCP Integer Parameters MOOG SPC Software User Manual Fi MOOG Predefined parameter sets SPC Software User Manual 12 Address Name Description Unit Type Scope Default REUL Stored in Flash P 596 0 00_Proportional_Gain Proportional gain factor 10000 int no 0 max max yes P 596 1 00 Derivative Gain Differentiator gain s 10000 int no 0 max max yes P 596 2 00 Derivative t Differentiator time ms 1000 int no 0 0 max yes P 596 3 00_Derivative_ _Gain_Pos Differentiator positive gain pressure loop s 10000 int no 10 max max yes P 596 4 00_Derivative_ _Gain_Neg Differentiator negative gain pressure loop s 10000 int no 10 max max yes P 596 5 00 _Derivative
4. 96 12 Derivative_Observer_Gain Gain of observer input at differentiators float yes 0 10 10 no Table 2 2 Parameter Groups MOOG Attention Changes in the SCP Floating Point Variables wouldn t be saved To save the parameters please use the predefined parameter sets see below SPC Software User Manual 7 2 Software and Parameter description MOOG SPC Software User Manual 8 Test Points Address Name Description Unit Type Scope Default Range Stored in Flash P 1655 0 tst00_Pressure_Command Test point 00 float yes n a full range no P 1655 2 tst02_Q_Command_Compens Test point 02 float yes n a full range no P 1655 4 tst04_Integrator_Input Test point 04 float yes n a full range no P 1655 6 tst06_Pressure_Compens _Out Test point 06 float yes n a full range no P 1655 8 tst08_Speed_Command Test point 08 float yes n a full range no P 1655 10 tst10_Dual_Displace_p factor Test point 10 float yes n a full range no P 1655 12 tst12_ACC_Rate_limit_Active Test point 12 float yes n a full range no P 1655 14 tst14_Differerentiator_Ouput Test point 14 float yes n a full range no Table 2 3 Test Point SCP Floating Point Parameters Address Name Description Unit Type Scope Default Range Stored in Flash P 1998 0 DD_Q factor Dual displacement Q factor float yes 1 1 100 yes P 1998 2 Actual_Value_Path_Factor 0 1 Weighting two input paths yes Cable_Break_Threshold_ISA1 Cable break detection thres
5. Attention All parameters are immediately active after changing in the Moog DRIVEADMINISTRATOR Change the parameters with care if the control is active The following chapter provides the overview and description of the parameters SPC Software User Manual 6 2 3 Parameter List Description SCP Floating Point Variables Address Name Description Unit Type Scope Default Range Stored in Flash P 1996 0 Pressure_command Pressure command input float yes 3 0 0 100 no P 1996 1 Q_command_input Q command input float yes 0 100 100 no P 1996 2 Q_feed_forward_input Q feed forward input float yes 0 100 100 no P 1996 3 Proportional_Gain Proportional gain pressure loop float yes 0 1000 1000 no P 1996 4 Derivative_Gain Differentiator gain flow loop float yes 0 10 10 no P 1996 5 Derivative_t Differentiator time value flow loop ms float yes 0 0 10000000 no P 1996 6 Derivative_ _Gain_Pos Differentiator positive gain pressure loop float yes 0 01 max max no P 1996 7 Derivative_ _Gain_Neg Differentiator negative gain pressure loop float yes 0 01 max max no P 1996 8 Derivative_ _t Differentiator time value pressure loop ms float yes 2 0 10000000 no P 1996 9 _Gain Integrator gain 1 s float yes 10 10 10 no P 1996 10 P_Integrator_Feedback Integrator feedback gain float yes 0 10 10 no P 1996 11 Q_Command_Min_Static Minimum flow flow and pressure control float yes 100 100 100 no P 19
6. Controlled Pump SCP with pressure limiting controller Software The aim is to provide an introduction into the features of SCP and corresponding controller parameters The installation of the SCP hardware and setup of the drive as well as setup of the current and classical speed controller is not the subject of this User manual Versions This document relates to software version 60033 based on Firmware 123 50 87 from April 5 2013 The software version can be read using the DRIVEADMINISTRATOR viewing parameter P 0048 4 Referenced Documents Document No Document No English German Moog Servo Drive Application Manual CA65643 001 DRIVEADMINISTRATOR Manual CA79186 001 Moog Servo Drive Operation Manual CA65642 001 AIO Option Card Manual CB59508 001 CA65643 002 CA79186 002 CA65642 002 Abbreviations Full Name Radial Piston Pump Speed Controlled Pump Non Volatile Memory Flash Memory proportional integral derivative Abbreviation SPC Software User Manual 3 MOOG SPC Software User Manual 4 1 System description 1 2 Overall View of SCP Controller The main SCP controller structure is based on cascaded PID control principle There are two coupled controllers one for flow and one for pressure An anti wind up structure an observer and advanced protection features are also The SCP system includes a Radial Piston Pump a Servo Motor and a Servo Drive implemented controlling th
7. Integrator_Feedback factor 10000 8 DD_ON_OFF boolean 9 Q_Command_Min_Static factor 1 10 Actual_Value_Path boolean 11 Derivative_Observer_Gain factor 10000 Table 5 4 Predefined parameters These parameters are divided by the value in the column Multiplier during the copying process Binary parameter Possible Values 0 off 1 on Example To maintain a Proportional_Gain value of 1 234 you need to store 12340 as the predefined value This value is divided by the factor of 10000 during the switching process and 1 234 is maintained in the Proportional_Gain parameter SPC Software User Manual 20 Attention During switching on the SCP controller the actual parameters will be copied from the parameter set No 0 P 0596 0 P 0596 15 Changes in the SCP Floating Point Variables wouldn t be saved Switching between different parameter sets The active parameter set is chosen according to the parameter Predefined_Parameter_Switch P 1997 0 and the state of the digital inputs ISD03 ISDO6 If the bit coded sum is above 14 then parameter set 14 will be selected The switching mechanism is independent of the drive state power stage enabled disabled 1sD04 Chosen Parameter Set in case Predefined_Parameter_Switch is zero Low Low Low Low 0 Low Low Low High 1 Low Low High Low 2 Low Low High High 3 Low High Low Low 4 Low High Low High 5 Low High Hi
8. MOOG Programmable Multi Axis servo Drive System Speed Controlled Pump With Pressure Limiting Controller Software User Manual MOOG SCP Software User Manual Id no CB90332 001 Rev 1 0 Date 07 2014 The English version is the original of this specification SPC Software User Manual 2 Technical alterations reserved The contents of our documentation have been compiled with greatest care and in compliance with our present status of information Nevertheless we would like to point that this document cannot always be updated parallel to the technical further development of our products Information and specifications may be changed at any time For information on the latest version please refer to drives support moog com Table of Contents 1 System description eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 4 1 1 A ToT nord t0Cel U Oene EEE AT EET T E 4 1 2 Overall View of SCP Controller ccccecceeseceseeeeceeeeeeeeeeeceeeneeeneeeeeeeeaeeeeeees 4 2 Software and Parameter description cee 5 2 1 Mii Ge UN OT cago neste EEEE ET EERE E E E E E A 5 2 2 Software Over vie Weisser isn enn eE RENE ana ae ARES 6 2 3 Parameter List Description se scssceccriscccsevicescsssecuseevcesnsecscatevscocd ussensubezesostieviess 7 4 Basic controller setup sicesisniisendsmsnsenineriseninmnseninennies 13 4 1 Preparation for Setup ssssssssssesssssesssssessssssssssssesssssesssssecesssssessssesessecesseese
9. Manual 5 6 Cable Break Detection The cable break detection will generate an error if the signal of one of the analog inputs is outside of an allowed range This detection is only active if the power stage of the Moog Servo Drive is enabled Fj Note The SCP cable break detection is designed for Inputs at the front connector X4 and for voltage inputs only For analog current inputs 0 20 mA 4 20 mA use the build in cable break detection mechanism Please refer the AIO Option Card Manual for details In this case set the parameter Cable_Break_Detection P 1999 6 to zero no detection Q The cable break detection can be activated using parameter Cable_Break_Detection P 1999 6 The following values are possible Parameter Value Function P 1999 6 0 no detection Function is not activated P 1999 6 1 ANALOG IN 0 Function is activated only for first analog input P 1999 6 2 Analog In 1 Function is activated only for second analog input P 1999 6 1 Analog In 0 Function is activated for both analog inputs Table 5 7 Cable break detection If the cable break detection is enabled and the value of the analog input after internal scaling is in the area of the cable break threshold value an error will be generated Cable break detected at analog input 1 Error 52 03 Cable break detected at analog input 2 Error 52 04 The threshold for a failure reaction can be set up using the parameters Cable_Break_Threshol
10. _ t Differentiator time pressure loop ms 1000 int no 2000 0 max yes P 596 6 00_ Gain Integrator 1 s 10000 int no 10 max max yes P 596 7 00 _P_Integrator_Feedback Integrator feedback gain factor 10000 int no 0 max max yes P 596 8 00 DD ON OFF ON dual displacement factors active List int no off 0 1 yes P 596 9 00 Q Command_Min_Static Minimum flow p and Q ctrl int no 100 100 100 yes P 596 10 00_Actual_value_Path_Switch Channel of the actual value 0 1 int no path 0 0 1 yes P 596 11 00_Derivativ_Observer_Gain Gain of observer input at differentiators 1 10000 int no 0 100000 100000 yes Table 2 8 Predefined parameter sets Parameter Set No Parameter No 0 P 0596 0 P0596 15 1 P 0596 16 P0596 31 2 P 0596 32 P0596 47 3 P 0596 48 P0596 63 14 P 0596 224 P 0596 239 Table 2 9 Parameter set numbers f Note Value range of predefined parameter sets will not be checked by ff DRIVEADMINISTRATOR 4 Basic controller setup 4 1 Preparation for Setup Note Before starting with the SCP controller the hardware the current control and the speed control of the motor has to be set up To run the MSD without SCP controller please refer to the Moog Servo Drive Operation Manual Note It is possible to switch between SCP controller and standard speed controller by parameter Switching _On_SCP_controller P 1999 8 Attention The dual displacement part of the
11. ailable for clock wise or counter clockwise rotation At this point a right sign is important The positive signal of the speed command test point 08 corresponds to the flow which leads to pressure increase in the hydraulic system If not change the sign of the parameter velocity gain P 1998 12 After setting the limits the main SCP parameters can be adjusted Parameter _ Gain P 1996 9 Integrator gain determines the dynamics of the controlled system Higher gain is desirable The system reaction will be faster However if it s too high oscillations will occur pressure demand value amplitude actual pressure time Fig 4 2 I Gain is to low pressure demand value amplitude actual pressure time Fig 4 3 I Gain is well parameterized MOOG pressure demand value amplitude actual pressure time Fig 4 4 l Gain is to high Parameter Derivative_ _t P 1996 8 The smaller this parameter is the better The differentiation runs faster and provides faster feedback However a faster differentiator has more noise in the output signal monitor the test point 15 Parameters Derivative_ _Gain_Pos _Neg P 1996 6 7 Attention System is sensitive to changes in this parameter Change the parameter with care Derivative_I_Gain is an amplification of the differentiator Generally this parameter is responsible for the stabilization of the integrator and for minimizing the overshoot Note that
12. alues Additional positive limit can be increased by using parameter _MAX_Offset However it is recommended to keep this parameters default value MOOG Rate limitation The parameters Speed_Rise_Rate_1 2 P 1998 10 11 defines the limit of the motor acceleration also called Rate Limitation Acceleration a Speed n Speed_Rise_Rate_2 active Speed_Rise_Rate_1 active Fig 5 3 Rate limitation quadrants In the quadrants Il III and IV the physical limit of the acceleration is given only due to the mechanical characteristic of the pump These quadrants are less critical On the other hand there is a risk of cavitation in the supply pipeline in the quadrant Because of this two Speed_Rise_Rates are given The rate limitation provides the limited speed command output Moreover it provides a signal to anti wind up function of the integrator so called ACC By using the test points 12 and 13 P 1655 12 13 ACC limitation can be monitored SPC Software User Manual 21 MOOG 5 5 Actual Value Path Depending on the state of P1999 8 different analog inputs are used P1999 8 value Input names Ports 1 Actual pressure input 1 MSD AIN 0 X4 SCP with Field Actual pressure input 2 MSD AIN 1 X4 bus Interface Other signals field bus Pressure command MSD AIN 0 X4 Flow command MSD AIN 1 X4 2 Actual pressure input 1 MSD AIN 2 Option 2 SCP with Analog f gt VO Interface Actual pressure inpu
13. ate the parameterization SPC Software User Manual 16 0 2 01 0 0 1 0 2 03 04 05 06 07 08 0 9 1 02 01 0 01 02 03 04 05 0 6 0 7 0 8 09 1 Zeit s Zeit s Fig 4 5 Example behavior without observer Derivative_Observer_Gain 0 Fig 4 6 l Example behavior with well parameterized observer A phase lag between the two signals is visible The two signals are in phase MOOG SPC Software User Manual 17 MOOG SPC Software User Manual 18 Parameter Name Value 5 Advanced Controller Features Srila z 1 Li F ti P 595 0 Linearisation_Number_Elements 6 i IneariZatlon P 595 1 Linearisation_Input_1 100 P 595 2 Linearisation_Input_2 60 The nonlinearity between speed and flow of the pump can be compensated The p 5053 T eien 5 a linearization will be active if the parameter Linearisation_Number_Elements is See JHE MONE mpu i greater than zero P 595 4 Linearisation_Input_4 20 P 595 5 Linearisation_Input_5 60 Setting up the parameters P 595 6 Linearisation_Input_6 100 Up to 10 values for each axis can be defined The number of used values needs to be P 595 11 Linearisation_Output_1 100 defined in parameter Linearisation_Number_Elements Set this parameter to zero to P 595 12 Linearisation_Output_2 80 switch the linearization off Between the values the output value is interpolated linear P 595 13 Linearisation_Output_3 40 In the following figure shows an example with 6 interpolation points In this
14. d_ISAO and Cable_Break_Threshold_ISA1 The scale of these parameters is so a value of 10 means 1 V for 0 10 V Voltage input MOOG maximum scaled value normal operating range lt SSNS MQW a i h cable break threshold value in this range a cable break will be detected T oO cable break threshold value normal operating range lt gy Si e i TS maximum scaled value Fig 5 5 Scaling of the cable break detection f Note The Failure reaction can be selected in parameter P 0030 Sub ID 52 This parameter value must not be ignored Setting 4 Servo Halt with Quick Stop or 5 Servo Halt with Quick Stop and protection against restart is recommended for the Speed Controlled Pump SPC Software User Manual 23 MOOG 5 7 Leakage Compensation The parameter Leakage_Compensation P 1998 14 has a dimension speed pressure The compensated Flow command will be calculated according to q_cmd_mod q_cmd Leakage_Compensation Pressure It means even if external flow command is set to zero some flow will be generated Assuming pressure is not equal to zero With the right parameterization this flow is equal to leakage SPC Software User Manual 24 5 8 Additional Options Depending on the requirements additional parameters as described below may be used to improve the system behavior However in most cases these parameters can be set to default values Address Name Descr
15. e motor 1 1 Introduction This document does not describe the internal control loops for the motor like current control and speed control loop They are not part of this documentation see Moog Servo Drive Operation Manual Q_command Linearisation Q_feed_forward Proportional gain Speed_ Pressure Command ry Integrator with it 9 d Command ag limitations and gt o P Q Selection Boundaries vean in L a p Q comman 7 Ses proportional ga from the PLC Gain of Gain of Derivative Term Derivative Term Pressure Loop i actual d Pressure motor actual dt Observer speed pressure differentiator Actual pressure Servo Motor Radial Piston Pump i Fig 1 2 Overall View of SCP Controller Servo Drive F Note The observer represents a differentiator term It can be used in two _ ways depending on parameters The first way the observer works as a Fig 1 1 Moog Speed Controlled Fump System SCP us al D term It differentiates actual pressure The second one it can also work as a predictor to provide differentiated values without time The Software is developed to control pressure and flow of the SCP depending on set delay point working point and parameterization The main controller features are presented in the following table 2 Software and Parameter description Feature Tit
16. example P 595 14 Linearisation_Output_4 40 signals in a middle range 20 80 amplitude are weighted higher than signals P 595 15 Linearisation_Output_5 80 around 0 and 100 P 595 16 Linearisation_Output_6 100 Table 5 1 Example linearization parameters Fig 5 1 Look up table for linearization The linearization parameters for the example above need to be set up as following 5 2 Dual Displacement In case of using a dual displacement pump it is not necessary to adjust the controller separately for each displacement Instead the dual displacement function can be used It switches the controller between two adjustable gains All necessary parameters will be weighted by these gains automatically The gains are saved in the parameters Address Description P 1998 0 DD_Q factor Dual displacement Q factor P 1998 1 DD_p_ factor Dual displacement p factor Table 5 2 Dual displacement factors A time delay before switching to the respective controller parameter reflects the delay that is caused by the pumps step response time The time delay is shown in the following diagram DD_ON_Delay and DD_OFF_Delay The dual displacement part of the software uses the brake output as a digital output For the use of the brake output parameter Motor brake Output X13 X20 P 0125 in Drive settings I O Configuration Motor brake output needs to be set to 41 It is possible to set one of the digital outputs to the same
17. gh Low 6 Low High High High 7 High Low Low Low 8 High Low Low High 9 High Low High Low 10 High Low High High 11 High High Low Low 12 High High Low High 13 High High High Low 14 Table 5 5 Choosing of parameter set 5 4 Protect Features Cavitation protection The related parameters to the cavitation protection are Pressure_Cavitation_Limit P 1998 13 Cavitation_Minimum_Velocity P 1998 15 There is a risk of cavitation if the pressure in the system goes under a certain level Pressure_Cavitation_Limit P 1998 13 In such a situation cavitation protect will be active and the predefined minimum speed will be set The following example describes the functionality of cavitation protection there is a cavitation risk and the pump speed needs to be decrease fast The integrator in the pressure loop is on the lower limit and needs time to come up In this situation cavitation_limit will be active and overwrites the integrator output with the cavitation minimum velocity Cavitation_Minimum_Velocity P 1998 13 Integrator limits and anti wind up Anti wind up can limit the integrator for stability reasons I_MIN_max min _MAX_max min are the boundaries in which the limit can be set by the anti wind up The lower limitation is allowed in the boundaries between _MIN_max and I _MIN_min e g from 0 to 100 default values The upper limitation is between MAX_max and I_MAX_min e g from 100 to 0 default v
18. hold The percentage value is based on 10 V 20 mA For details how to set up the 4 20 mA input please refer to P 1998 4 Moog Servo Drive Operation Manual float yes 0 0 10 yes P 1998 6 _MAX_min Integrator limitation float yes O 1000 1000 yes P 1998 8 _MIN_min Integrator limitation float yes 100 1000 1000 yes P 1998 10 Speed_Rise_Rate_1 Maximum change of motor speed command s float yes 5000 1 10 yes P 1998 12 Velocity_Gain Motor velocity gain scaling RPM per float yes O 100 100 yes Leakage Compensation speed P 1998 14 Q cmd mod Q cmd pressure leakage comp pressure float yes 0 0 1000 yes Table 2 4 SCP Floating Point Parameters MOOG SPC Software User Manu 2 Software and Parameter description MOOG SPC Software User Manual SCP Integer Variables Address Description Unit Type Scope Default Range Stored in Flash P 1997 0 Predefined_Parameter_Switch Switching between predefined parameter data sets i yes SetO 0 0 14 65 ta tala 1 A 6 8 7 6 8 48 2 40 P 1997 3 DD_ON_OFF Dual displacement factors active list int yes off 0 1 no Table 2 5 SCP Integer Variables Linearization Address Description Description Unit Type Scope Default Range Stored in Flash Number of Linearisation_Number_Elements Number of elements Linearisation_Number_Elements Elements Look up table P 595 11 20 Linearisation_Output_1 10 Look up table output Linearisation_Output_
19. in Integrator limitation P 1996 9 _Gain Integrator gain P 1998 7 _ MAX_max Integrator limitation P 1996 8 eee Time value of differentiator in P 1998 8 MIN_min Integrator limitation observer P 1998 9 _MIN_max Integrator limitation eat Gain of derivative term in 7 3 h P 1996 6 7 a cee pressure control for positive and P 1998 10 Speed_Rise_Rate_1 enna angeo a negative signal direction bisaa SP90 Samman P 1996 12 Derivativ_Observer_Gain Observer gain P 1998 11 Speed Rise Rate 2 Maximum change of Table 4 2 Main parameters motor speed command P 1998 13 Pressure_Cavitation_Limit Pressure cavitation limit The following chapters describe the effect of the parameters P 1998 15 Cavitation_Minimum_Velocity Minimum velocity cavitation Table 4 1 Limits in the SCP controller Motor setup for speed control loop has to be done according to the Moog Servo Drive Operation Manual The Motor must be able to run in a speed control loop If this is not given disconnect the pump from the motor and start the motor commissioning without fi Note To monitor the system behavior please make use of test points P 1655 connection to the pump After reattaching the pump to the motor adjust the pressure relief valve in the hydraulic system to the lowest possible setting to avoid system damage Parameter Velocity_Gain P 1998 12 Velocity proportional gain calculates the percentage of revolution per minute RPM There are pumps av
20. iption P 1996 3 Proportional_Gain Proportional gain P 1996 4 Derivative_Gain Differentiator gain flow loop P 1996 5 Derivative _t Differentiator time value flow loop P 1996 10 P_Integrator_Feedback Integrator feedback gain P 1996 11 Q Command_Min_Static Minimal flow p and Q control Table 5 8 Additional options Proportional_Gain This parameter describes the proportional gain in case of PI Pressure control see Fig 1 2 Derivative_Gain and Derivative_t are the parameters of the d term in the flow control loop These parameters can improve the behavior of the flow controller Integrator behavior can be improved by internally using the additional feedback The feedback gain can be adjusted by using the parameter P_Integrator_Feedback Q_Command_Min_Static set the minimal limit of the pump flow Be careful with the sign of this parameter TAKE A CLOSER LOOK Moog solutions are only a click away Visit our worldwide Web site for more information and the Moog facility nearest you MOOG Moog GmbH Hanns Klemm StraBe 28 D 71034 B blingen Telefon 49 7031 622 0 Telefax 49 7031 622 100 www moog com industrial drives support moog com Moog is a registered trademark of Moog Inc and its subsidiaries All quoted trademarks are property of Moog Inc and its subsidiaries All rights reserved 2015 Moog GmbH Technical alterations reserved The contents of our documentation have been compiled with grea
21. it s possible to change the amplification for positive and negative pressure changing direction separately However in most cases they are the same SPC Software User Manual 15 MOOG Parameter Derivative_Observer_Gain P 1996 12 The differentiator receives a delayed signal because of piping and sensor delays Thus the stability margin is reduced An observer can be used to overcome this issue On the Derivative_Observer_Gain the motor speed is additionally included in the differentiation of the pressure to eliminate the delays caused by hydraulic capacities e Derivative_Observer_Gain 0 Observer works as a differentiator The actual pressure will be differentiated e Derivative_Observer_Gain gt 0 The observer function prediction is turned on The pressure derivative is additionally formed even with the actual speed Dead time is eliminated and the integrator gain can be further increased System can be made even faster To set the Derivative_Observer_Gain the phase of the actual speed should be compared with the output of the differentiator It is easy to do since both signals are given in percentage The aim is that the two signals are in phase with each other The margin of stability is dominated by the phase lag between the two signals Therefore the phase lag must be minimized Attention Correct sign of parameter P1996 12 is important for stability compare with the sign of P1998 12 The following examples illustr
22. le Description fem ees Feed forward A Flow feed forward is implemented Linearization Dual flow The nonlinearity between speed and flow of the pump can be compensated A pump with dual displacement can be used Leakage compensation The leakage of the pump can be compensated directly in the controller Actual value input The input channel for the actual values is selectable Possibilities for combining and filtering of the inputs are implemented Cable break detection A break of the cables will be detected Table 1 1 Main Software Features MOOG Installation The SCP software is a fully integrated part of the MSD firmware and comes along with its own DRIVEADMINISTRATOR View The new firmware can be installed like any other MSD firmware Please note that all parameters so e g the motor parameters are set to default values during the installation If the actual parameter setting should be kept it needs to be saved before the firmware upgrade For a detailed description how to upgrade the drive firmware please refer to Moog Servo Drive Operation Manual It is highly recommended to install a new DRIVEADMINISTRATOR View before working with the SCP software After installation the DRIVEADMINISTRATOR will be upgraded with a new entry in the project tree All SCP parameters are grouped under this entry Fig 2 1 DRIVEADMINISTRATOR View
23. ssed 13 4 2 Main Parameters es sccscsvs dav cavnstaxdeevs covscontioedcevasecanenstes senvsdacsxaredes lesvicexceosscesdegetes 14 5 Advanced Controller Features ceeeeeeees 18 5 1 TMG ALI ZAG ONE veesins dccocseesueceeeedesesetss tapienadesed cuadeseneoetesstenenutecevedenctenedeneeoveseveteses 18 5 2 Dual Displacements i 55 cc ccsesosceaceteccsssetssccestsacses roine nsii e iier iaeei Eiaa 19 5 3 Parameter Switching Function 5 4 Protect Peate Snan n E TE ARNT RR ER WITS 5 5 Actual Value Paths c ccs ncinpeceodscgucencdenesepescheueytgendsensecgdcnuicessentsenesepsicbuaeytgenesen 22 5 6 Cable Break Detect On wis jiiccsecjeccans seccdegatercgecedecetegadenednk KE R EEA REE 23 5 7 Leakage Compensation cccccsesecccsscsssseescsesssesesecsessesesessesseeessessesseeeeene 24 5 8 Additional OpuOnss isiciecscsicsecccosssasecaseseschaserescstsasescsasusencoasesesdsacesenesivetesese ees 24 MOOG Audience This document does not replace the MSD Servo Drive Operation Manual Please be sure to observe the information contained in the For your safety Intended use and Responsibility sections of the Operation Manual ID no CA65642 001 For information on installation setup and commissioning and details of the warranted technical characteristics of the MSD Servo Drive series refer to the additional documentation Operation Manual User Manual etc This document provides information about The Speed
24. t 2 MSD AIN 3 Option 2 Pressure feedback MSD AOUT 2 Option 2 Motor speed Table 5 6 Actual value path MSD AOUT 3 Option 2 Cable break detection is available for analog inputs For Voltage inputs 10 V this cable break detection is described in chapter Cable Break Detection For current inputs 0 20 mA 4 20 mA a standard MSD Servo Drive function will be used please refer the AIO Option Card Manual In case actual values are connected to X4 actual value path has the following structure SPC Software User Manual 22 Act ri t aea nae i _ Scaling P1999 0 Offset Filter_ i r_pressure_ actual Act i pressure Schling i Offset Filter_ nee See OP a Sil e P1999 7 Fig 5 4 Structure of actual value path Gain and offset of analog inputs can be set in parameters P 0428 and P 0429 A gain of 1 in P0428 will result in a pressure value of 100 if 10 V are applied at analog input 1 New values are accepted after disabling enabling the drive Low pass filter time can be set in MSD parameters P 0405 and P 0406 using the Moog DRIVEADMINISTRATOR New values are accepted after disabling enabling the drive In case actual values are connected to optional I O card identical structure will be used However the parameters to adjust gain offset and filter are different In this case please refer to AIO Option Card
25. test care and in compliance with our present status of information Nevertheless we would like to point that this document cannot always be updated parallel to the technical further development of our products Information and specifications may be changed at any time For information on the latest version please refer to drives support moog com Id no CB90332 001 Rev 1 0 Date 04 2015 Applicable as from firmware version The English version is the original of this specification
26. undaries Velocity M4 7 Y a proportional gain 00 a A anti wind up A 08 Gain of Gain of Derivative Term Derivative Term Pressure Loop Flow Loop ae motor i 14 ctual 4 Pressure speed 76 15 a dt Observer pressure 09 differentiator Actual pressure 03 Fig 4 1 SCP Controller test points Start up preparations P Note To adjust the input channel of the actual value please refer to the gt chapter 5 5 Actual Value Path f Note To prove the controller calculation without active motor movement e g to check the communication with sensors and controller set the parameter P 1998 12 to zero SPC Software User Manual 13 MOOG Before starting up the SCP necessary limits have to be set The following table summarizes all limits in the SCP controller The descriptions of these limits can be found in respective chapters 4 2 Main Parameters SPC Software User Manual 14 In most cases it is enough to setup only the main parameters to achieve a good Address Name Description control performance From the control point of view the main parameters are P 1996 11 Q_ Command_Min_Static Minimum Flow p and Q control Parameter N D inti P 1998 3 Cable_Break_Threshold_ISAO Cable break detection threshold Number chine escription P 1998 4 Cable_Break_Threshold_ISA1 Cable break detection threshold P 1998 12 Velocity_Gain Velocity proportional gain P 1998 6 _MAX_m
27. value 41 to monitor the output Digital output has to be adjusted according to the necessary output logic The logic can be chosen using the parameter DD_Digital_Output_Logic A new Value in this parameter will affect the output value after switching the dual displacement Value using parameter DD_ON_OFF P 1997 3 Parameter Value Function DD_ON_OFF 0 1 ANALOG IN 0 Normal logic digital output is switched on when dual displacement is switched on Digital output disabled 2 Negative logic digital output is switched off when dual displacement is switched on Table 5 3 Digital output logic MOOG DD_ON_OFF DD_Q_factor 1 DD_p_factor 1 DD_OFF_Delay DD_Switching_OFF_Time DD_ON_Delay DD_Switching_ON_Time Fig 5 2 Dual displacement SPC Software User Manual 19 MOOG 5 3 Parameter Switching Function The SCP firmware can handle 15 different predefined parameter sets These parameter sets are saved in the drive parameter P 0596 Sub ID 0 239 Using parameter Predefined_Parameter_Switch a switching process will be started 11 different parameters are defined Parameter Name Multiplier Number 0 Proportional_Gain factor 10000 1 Derivative_Gain factor 10000 2 Derivative_t factor 1000 3 Derivative_ _Gain_Pos factor 10000 4 Derivative_ _Gain_Neg factor 10000 5 Derivative _l_t factor 1000 6 _Gain factor 10000 I P_
28. von Subparametem Ge 1998 SCP Floating Point Parameters SCP Integer Parameters Liste von Subparametern Ga 1999 SCP Integer Parameters SCP Integer Parameters Liste von Subparametern There are 15 parameter sets available in the controller The ads Parameter set Motor att controller can switch between them in real time to fulfill the gig Geber switching i Roinn 7 actual needs of the process Fertig MOOG SPC Software User Manual 5 MOOG 2 2 Software Overview All calculations in the SCP controller are in percentage The output of the SCP controller is a velocity set point to the motor controller Therefore the motor controller for current and speed should be set up before tuning the SCP controller see Moog Servo Drive Operation Manual The SCP parameters are grouped in several groups Every group has several Sub IDs There is no graphical input mask for SCP parameters The following table summarizes the parameter groups Group ID Name Description P 595 Linearization Linearization parameters Predefined Parameter Predefined parameter sets P 596 Setti ettings online changeable P 1655 Test Points General purpose debug variables SCP Floating Point s P 1996 Verieles SCP Integer Variables P 1997 SCP Integer Variables SCP Integer Variables SCP Floating Point P 1998 A aae SCP Integer Parameters SCP Integer P 1999 Parameters SCP Integer Parameters Table 2 1 Parameter Groups

Download Pdf Manuals

image

Related Search

Related Contents

User`s Manual Snap & Surprise Camera  Historic Mantels CJ14001 Installation Guide  “OUTLINE BUTTERFLY / MANTAS LINE ARRAY” USER MANUAL  R&S FSH Quick Start Guide    

Copyright © All rights reserved.
DMCA: DMCA_mwitty#outlook.com.