Home

Application Note AN018

image

Contents

1. because no bit decision is done in the chip If you are going to use the UART mode make sure that the UART does proper oversampling and that it can handle the jitter the RF communication introduces In Manchester mode each bit is sampled 12 times That is each baud chip is sampled 6 times If you use Manchester mode the jitter will still be 17 4 us The NRZ and Manchester modes have the advantage that the data clock DCLK is available and that bit synchronisation and data decision is done on chip you have paid for this feature so why not use it Using synchronous NRZ or Manchester mode will always give you a robust signal interface with a synchronous clock Set up one CC1000 as a transmitter Check the output power and the output frequency set FSEP 0 to find the carrier Tune the output frequency if required The output frequency should be 150 kHz above or below the LO frequency in Rx mode as measured above When the results from the above measurements are satisfactory you can use two CC1000 to set up an RF link through air or coax and attenuators 7 RF Link In your final system when using the Synchronous Manchester or the Synchronous NRZ mode the DCLK pin on the CC1000 should be connected to an input pin that can generate an interrupt in the MCU DIO should be connected to a bi directional I O pin In Tx mode the interrupt should be triggered on the falling edge of DCLK When the interrupt occurs write the next bit to be
2. generator must be 150 kHz below the receiver LO frequency if high side LO is used Conversely 150 kHz above the receiver LO frequency if low side LO is used Use FSK modulation with appropriate deviation and modulation rate If you do not have the equipment to send FSK modulation you can use an RF generator with FM modulation and use an external function generator to modulate the signal with a square wave If you are in NRZ or UART mode the modulating signal should be equal to bitrate 2 baudrate 2 when sending alternating O s and 1 s If you are in Manchester mode the modulating frequency should be equal to bitrate 2 baudrate 4 when sending alternating O s and 1 s j SWRA073 Page 3 of 11 TEXAS INSTRUMENTS Chipcon Products Application Note MOIS from Texas Instruments If you are in receive and your transmitter is off you only receive noise Hence the demodulator will demodulate noise and this is what you see on the DCLK pin in UART mode or DIO pin in NRZ Manchester mode In synchronous NRZ mode and UART mode each bit is sampled 6 times As an example if you program 9 6 kBaud each bit is 104 2 us The jitter can then be 17 4 us 104 6 If the clocks are drifting or the signal is noisy then the bit synchronizer will keep on synchronising to track the signal and the DCLK will shift 17 4us for each time a resynchronisation is done In UART mode you can see the un synchronous data has this jitter or even spikes due to noise
3. have one of these values you go on to the next step 2 Declare a tentative preamble detected set a flag or something and continue shifting in data If you re in NRZ mode lock the averaging filter now Compare the data to your SOF start of frame a unique ID which is sent at the start of your data stream if you find this go to the next step If not compare it to OxAA and 0x55 If it isn t equal to one of these you have an error You may want to tolerate a few errors here but if you get several give up and go back to step 1 3 OK you ve found your SOF Depending on the application you may want to add another byte of SOF if you have problems with noise showing up as data If you do this compare the data to your second byte of SOF go back to 1 if it does not match 4 Done You now know you are receiving valid data If your data packets are of variable size you can either add a size field in the packet header or have a specific end of packet marker Just make sure to handle it gracefully if this info should be subject to bit errors A CRC checksum at the end of the packet is a good idea you can then discard or retransmit the data according to the needs of your application If you are in the Manchester mode you ll probably want to include the Manchester Violation bit as well to the above procedure if you get a violation you can count it as an error The Manchester violation signal available at CHP_OUT if you set the LOCK regist
4. orientation the KOA part has a thick yellow marking on one side which can be used to indicate orientation The second thing you should try is to step through different values for the decoupling capacitors decoupling is especially important for the LNA pin 5 and VCO pin 9 power pins The LO signal can couple to the antenna output in two ways either through the PCB wires from the power supply or through radiation from the VCO inductor to other components or PCB routes Better decoupling may be necessary to prevent the signal from coupling via the power supply We have developed the CC1000PP layout with LO leakage very much in mind Have a look at this layout to see a good PCB layout for low LO leakage As a general advice keep the VCO inductor as close as possible to the chip with symmetrical connections to the pins Also make sure you have good decoupling of the VCC See also Application Note AN002 LO emission for more details j SWRA073 Page 6 of 11 TEXAS INSTRUMENTS Chipcon Products Application Note MOIS from Texas Instruments Instrumentation It is not_possible to do RF development or RF module design without proper RF instrumentation The minimum RF instrumentation required is e Spectrum Analyser SA covering up to 3 times the RF frequency used 3 harmonic e RF signal generator with FSK modulation capability e Network analyser would also be necessary if RF filter optimisation input output matching and ante
5. C Pico Products from Texas Instruments AOIB Application Note ANOIS CC1000 Debugging Hints and Troubleshooting Keywords CC1000 Calibration VCO tuning VCO tuning range RF Link Locking averaging filter Introduction CC1000 and the corresponding CC1000 Development Kit makes it very easy to evaluate the performance of the CC1000 chip and in a short time designers can develop their own RF modules based on this reference design The SmartRF Studio software package provides the flexibility needed to automatically generate configuration data used by the microcontroller This application note gives some general debugging and troubleshooting hints for CC1000 Procedures for detecting packets in receive mode are also included i SWRA073 TEXAS INSTRUMENTS By S Hellan e Procedure for detecting packets in receive mode e Testing and verifying transceiver designs This application note is just a quick reference guide to the most common pitfalls It is by no means a substitute for the data sheet and the more in depth application notes found on our web site There is also a FAQ data base on our web site The application note also includes a step by step testing procedure Chipcon is a supplier of RFICs for all kinds of short range communication devices Chipcon has a worldwide distribution network Page 1 of 11 Chipcon Products Application Note MOIS from Texas Instruments Hints 1 Always perfo
6. can be seen in the Status bar of the Normal view lt is also available in the data sheet 3 Crystal oscillator The crystal oscillator operation can be verified very simply using an oscilloscope However the actual frequency must be measured when testing the transmitter frequency because the oscilloscope probe would load the crystal and de tune it during the test The peak to peak voltage should be 400 600 mVpp 4 RF frequency This test measures the accurate RF frequency and hence the crystal frequency Set the device to TX mode NRZ mode and the frequency separation to 0 Hz Measure with a spectrum analyser at the antenna output If the measured frequency is off by a few kHz then the load capacitance for the crystal must be changed If it is far from the expected frequency most likely the VCO tuning range is wrong or calibration has not been done correctly 5 VCO tuning range The VCO tuning range is measured by forcing the tuning voltage to min max by programming a very low high frequency It is important to have a correct large enough tuning range in order to cover the desired frequency for all expected component tolerances Changing the VCO inductor value will change the tuning range 6 Phase noise The phase noise depends on the loop filter bandwidth but should typically be 85 dBc Hz When measuring the noise using a spectrum analyser the measurement must be corrected for the resolution bandwidth Using 1 kHz resolution band
7. data base General Application Notes AN_001_SRD_Regulations AN_002_LO_ emission AN_007_ Manufacturers AN_021_Voltage_Level_Conversion CC1000 specific Application Notes AN_009_CC1000_MCU_ Interfacing AN_011_Programming_the_CC1000_frequency_for_best_sensitivity AN_015_RF_Modem_Reference_Design AN_016_CC1000_CC1050_On_Off_Keying AN_019_Crystal_Oscillator_Issues_CC1000_CC1010 AN_020_Remote_Keyless_Entry_Reference_Design j SWRA073 Page 10 of 11 TEXAS INSTRUMENTS Chipcon Products Application Note MOI from Texas Instruments This application note is written by the staff of Chipcon to the courtesy of our customers Chipcon is a world wide supplier of RFICs For further information on the products from Chipcon please contact us or visit our web site An updated list of distributors is also available at our web site Contact Information Address Chipcon AS Gaustadall en 21 N 0349 Oslo NORWAY Telephone 47 22 95 85 44 Fax f 47 22 95 85 46 E mail wireless chipcon com information about RF IC products support chipcon com support on our standard products Web site http Awww chipcon com Chipcon 2003 Disclaimer Chipcon AS believes the furnished information is correct and accurate at the time of this printing However Chipcon AS reserves the right to make changes to this application note without notice Chipcon AS does not assume any responsibility for the use of the described information Pleas
8. e refer to Chipcon s web site for the latest update SmartRF is a registered trademark of Chipcon AS All other trademarks or registered trademarks are the sole property of their respective owners SWRAO73 Page 11 of 11 TEXAS INSTRUMENTS
9. easured at the antenna output when the transceiver is in receive mode The LO frequency will be 150 kHz above or below the RF carrier frequency depending on whether low side or high side LO injection is used programmable from SmartRF Studio 11 Sensitivity Assuming you do not have a Bit Error Tester the sensitivity is measured using a signal generator with FSK modulation at the specified frequency and deviation If you do not have the equipment to send FSK modulation you can use an RF generator with FM modulation and use an external function generator to modulate the signal with a square wave see page 3 The Rx DIO signal and the modulating signal are monitored using an oscilloscope A bit error rate BER of 10 can then be determined visually The expected sensitivity for different data rates frequency separations and current settings are shown in the CC1000 data sheet Any loss in the front end filter must be taken into account Less than expected sensitivity can be due to mismatch at the LNA input excess loss in the front end filter or frequency offset between transmitter and receiver 12 Still problems Contact your local distributor or Chipcon directly if you still need help on your RF circuit design Fill in the test table above as carefully as possible and send to us for further advice For more detailed information Read the information on our web site There are several detailed application notes available as well as a FAQ
10. er correctly is updated each bit just as the DIO pin the threshold for declaring a violation can be set in the MODEM1 register The Manchester violation flag is an additional piece of information to use in the procedure and does not replace it The procedure above is applicable to an application where you are in receiving mode looking for data all the time If you are doing polling awakening at intervals to see if there is any data you should limit the time you spend in step 1 going back to sleep if you don t find a preamble after a suitable amount of time j SWRA073 Page 5 of 11 TEXAS INSTRUMENTS Chipcon Products Application Note MOIS from Texas Instruments 10 Procedure for detecting packets in UART mode There are some issues regarding detection of preamble locking of averaging filter and byte synchronisation you need to consider 1 Search for the preamble Searching for OxAA and 0x55 most easily does this Once you have one of these values you go on to the next step 2 Manually lock the averaging filter 3 Byte alignment See http Awww piclist com techref microchip ammermansync htm for more information on this Disregard the constraint comment regarding the maximum number of consecutive O s and 1 s In CC1000 there is no constraint with respect to the link being moderately balanced because you have locked the averaging filter in 1 above the preamble must be dc balanced 4 Depending on the application you may
11. ght need 4 8 bits to detect a valid preamble j SWRA073 Page 4 of 11 TEXAS INSTRUMENTS Chipcon Products Application Note MOIS from Texas Instruments If manual lock is selected Make sure you manually lock the averaging filter the first time you are in Rx in order for the decision level to be saved Although the averaging filter keeps the threshold value after power down it might be a good idea to manually lock the filter every time you receive data unless there is a good reason for not doing so If you decide to manually lock the filter the first time you enter Rx there is no need to send a long dc balanced preamble when you re enter Rx mode You only need to send a short preamble for synchronisation when you enter Rx from Tx or PD in this case If automatic lock is selected You have to send a preamble each time you enter to Rx mode This is to set the averaging filter correctly Note that the automatic lock is not intelligent i e it does not detect valid data in any way Finally in CC1000 there is no constraint with respect to the RF link having to be even moderately balanced which some receivers require After you have locked the averaging filter you can send any number of consecutive 0 s or 1 s 9 Procedure for detecting packets in NRZ Manchester mode 1 Search for the preamble This is most easily done by simply shifting the data into a shift register and then comparing the register to OxAA and 0x55 Once you
12. nna tuning must be done Module testing Below is a list of important RF parameters to verify once a new design is done However the list should not be considered as complete but advisory Also additional testing must be done to comply for type approval This list is also useful if you require help from Chipcon s support team Fill in the table and include it with your e mail to support chipcon com j SWRA073 Page 7 of 11 TEXAS INSTRUMENTS C Chipcon Products from Texas Instruments Step by Step Testing Procedure Application Note ANOIS DEVICE NUMBER Test Value Unit Condition 1 Voltage Supply Supply voltage V Measure across device supply pins 2 Current consumption RX mode mA TX mode mA at PA output power programmed __ dBm PD mode uA Xtal oscillator is on off 3 Crystal oscillator Crystal frequency MHz Measure approximate frequency using an oscilloscope Oscillator voltage mVpp Measure at peak to peak voltage at XOSC_Q1 pin 4 RF frequency RF frequency MHz at RF frequency programmed ___ MHz Set device to TX mode NRZ mode Frequency separation 0 Hz Calibrate SA SPAN 100 kHz RBW 1 kHz VBW Auto 5 VCO tuning range VCO min frequency MHz Set device to TX mode Measure with a spectrum analyser at antenna output Configure VCO max frequency MHz the chip to a very low high frequency as explained on
13. page 2 SA SPAN 200 MHz RBW Auto VBW Auto 6 Phase noise Phase noise at 100 kHz dBc Hz SPAN 200 kHz RBW 1 kHz VBW 10 Hz offset 7 Modulation Peak to peak deviation kHz Measure the distance between the two tops in the spectrum SPAN 500 kHz RBW 3 kHz VBW 1 kHz Modulation response kHz Use Spectrum Analyser FM demodulator option frequency versus time Measure frequency separation Make plot 8 TX output power at PA output power programmed __ dBm PA_POW Output power dBm SPAN 1 MHz RBW 10 kHz VBW 1 kHz 9 Harmonics 2 harmonic SPAN 1 MHz RBW 10 kHz VBW 1 kHz 3 harmonic 10 LO leakage Frequency Shall be 150 kHz above below the carrier frequency measured above SPAN 1 MHz RBW 10 kHz VBW 1 kHz LO leakage dBm SPAN 1 MHz RBW 10 kHz VBW 1 kHz 11 Receiver sensitivity Sensitivity dBm Use signal generator set up with correct modulation frequency and deviation View DIO and DCLK signal using an oscilloscope Adjust level until BER 10 SWRA073 Page 8 of 11 2 TEXAS INSTRUMENTS Chipcon Products Application Mote MOIS from Texas Instruments Notes to the tests 1 Supply voltage The supply voltage should be in the range 2 1 3 6 V Operation is not guaranteed outside this range If measured voltage is less than expected it could be a current limiter in the power supply causing the problem 2 Current consumption The typical current consumption for the different modes are calculated by SmartRF Studio and
14. ramming is wrong or the VCO inductor is wrong 3 VCO tuning range CC1000EB 434 should cover the frequency range from approximately 433 MHz 10 CC1000EB 868 should cover the frequency range from approximately 868 MHz 12 5 If you have made your own PCB layout the VCO tuning range might be changed Check the VCO tuning range as follows Set the frequency to a low value TEST5 3F hex TEST3 10 hex Measure the output frequency Similarly set the frequency to a high value TEST5 30 hex TEST3 17 hex Measure the output frequency Based on these measurements you can check whether the VCO tuning range is OK Is your desired channel within this VCO tuning range and is the channel centered satisfactorily If not you will have to change the VCO inductor 4 Check the current consumption Approximately 25 4 mA in Tx max power and 7 7 mA in Rx See CC1000 data sheet for more details You will also get values from Smart RF Studio j SWRA073 Page 2 of 11 TEXAS INSTRUMENTS C Pico Products from Texas Instruments Application Note ANOIS 5 Is your configuration correct One way to simplify the HW debugging Use SmartRF Studio and connect the control lines PDATA PCLOCK and PALE from the CC1000EB over to your own testboard Then you will know that the software register values are OK and the calibration procedure is correct The SmartRF Studio operates through the PC parallel port The PC parallel port operates at 5 V so a voltage t
15. ranslator is needed between the PC and the RF module The table below gives the pin numbering for the 25 pin PC parallel port connector PC parallel port pin number Signal CC1000 4 PDATA IN 3 PCLK 5 PALE 11 PDATA OUT 13 CHP_OUT LOCk this pin is optional 2 5V to supply translator 18 26 GND The PDATA line is split in two as the PC parallel port pin is not bi directional An alternative to building a 5 to 3 Volt translator is to use the one on the Evaluation Board The control signals 3 V can be found at the board as given in the table below Signal CC1000 Evaluation Board connection PDATA U3 8 PCLK U3 4 PALE U3 12 CHP_OUT LOCk TESTPIN TP2 this pin is optional 5V to supply translator C26 GND Groundplane Note The Ampere meter short circuit at the voltage supply connector must be removed in order to disconnect the power supply for the on board transceiver and thus avoid interference from that device Please refer to the Evaluation Board schematics and layout for further details The schematic and layout are found in the Development Kit User Manual 6 It is always a good idea to test the Rx and Tx parts separately before setting up an RF link Set up one CC1000 as a receiver Measure the LO leakage at the antenna Tune the output frequency if required Connect an RF generator to the antenna input to give an ideal RF signal The frequency of the RF
16. rm calibration CC1000 must be in LOCK both in Rx and Tx Read back contents of register LOCK 0 after calibration or monitor the CHP_OUT LOCK pin Remember to set the LOCK_SELECT 3 0 to 0001 in the latter case The calibration values are stored separately for each frequency register when single calibration is used Therefore in a single channel application it is sufficient to calibrate once in Rx and once in Tx when the system is powered up Once this is done the system can change between Rx and Tx by writing to the MAIN and CURRENT registers and no recalibration needs to be performed unless one of the recalibration requirements stated in the data sheet occur If you use the CC1000 Development Kit and SmartRF Studio press Reset Update and finally Calibrate in the SmartRF Studio Normal View to perform calibration 2 Calibration ALARM_L and ALARM_H The correct VCO capacitor array digital varactor is found during calibration The charge pump current is adjusted to give the correct loop filter bandwidth If the VCO is not able to tune to the correct frequency the tuning voltage will end up at 0 V or at VCC 3 V This will be indicated by ALARM_L too close to ground or ALARM_H too close to the VCC Note that the PLL can in some cases lock to the desired frequency even if the ALARM bit is set If the ALARM bit is set there could be several causes The crystal or its programming is wrong the frequency prog
17. transmitted to the I O pin The data is clocked into CC1000 at the rising edge of DCLK In Rx mode the interrupt should be triggered on the rising edge of DCLK When the interrupt occurs read the data from the I O pin When setting up the RF link using 2 CC1000 you must ideally use DCLK to synchronise the data DIO into the transmitter If not CC 1000 tries to synchronise the data input to its internal clock If there is a mismatch between the internal clock and DIO there might be bit errors Note that data transferred to from the MCU is always NRZ coded regardless of whether Synchronous NRZ or Synchronous Manchester mode is selected The mode setting only affects the signal modulated onto the RF carrier The Manchester encoding decoding is done internally by the CC1000 8 Locking the averaging filter The preamble is used to set up the correct decision level for the internal bit slicer averaging filter The bit synchronizer will synchronize as long as you are in Rx That is both during the preamble and data Synchronization is handled internally At the minimum it takes 11 bauds to fill the averaging filter In addition 3 bits are required for synchronization compare Manual Lock for NRZ and UART mode in Table 3 page 17 in the data sheet This corresponds to SETTLING 1 0 in register MODEM1 being 00 Using a different value for SETTLING 1 0 gives improved sensitivity not much at the expense of a longer preamble In addition you mi
18. want to add another byte of SOF if you have problems with noise showing up as data If you do this compare the data to your byte of SOF go back to 1 if it does not match 5 Done You now know you are receiving valid data If your data packets are of variable size you can either add a size field in the packet header or have a specific end of packet marker Just make sure to handle it gracefully if this info should be subject to bit errors A CRC checksum at the end of the packet is a good idea you can then discard or retransmit the data according to the needs of your application The procedure above is applicable to an application where you are in receive mode looking for data all the time If you are doing polling awakening at intervals to see if there is any data you should limit the time you spend in step 1 going back to sleep if you don t find a preamble after a suitable amount of time Since only raw data is provided in UART mode synchronization or decoding must be done by the UART Make sure that the UART does proper oversampling and that it can handle the jitter the RF communication introduces 11 LO leakage The most important issue in reducing LO leakage is VCO inductor type and placement Among all the inductors we have tried we strongly recommend using the KOA part listed in the data sheet or a similar spiral thin film inductor as this provides the best LO performance Please note that LO leakage can be dependent on inductor
19. width the measurement must be corrected with 30 dBHz 10log 1000 That means if you are measuring the noise 100 kHz away from the carrier to be 55 dBc using 1 kHz resolution bandwidth the phase noise is 55 30 85 dBc Hz at 100 kHz offset 7 Modulation Looking at the modulation spectrum can help to discover any problems with the loop bandwidth The peak to peak deviation should be close to the specified frequency separation An excessive deviation could be due to low phase gain margin in the PLL leading to peaking in the closed loop response If this is the case the calibration and the TESTO TEST2 and TEST4 registers should be investigated Looking at the modulation response using an FM demodulator can also tell a lot about the loop response 8 TX output power The output power should be close to the specified output power but taking the harmonic filter loss into account The insertion loss of a low pass LC filter is typically 1 5 2 dB If the output power is too low the LC filter should be checked The filter is very sensitive to layout paracitics 9 Harmonics The transmitter harmonics should be attenuated sufficiently by the LC low pass filter Some spectrum analysers provide automatic measurement of harmonics presenting the result as a list for convenience j SWRA073 Page 9 of 11 TEXAS INSTRUMENTS Chipcon Products Application Note MOI from Texas Instruments 10 LO leakage The LO leakage is m

Download Pdf Manuals

image

Related Search

Related Contents

Copyright © All rights reserved.
Failed to retrieve file