Home
        UQ-PyL User Manual version 1.1
         Contents
1.       bk  q    e   gt          UQ PyL User Manual   Version 1 1     Chen Wang  wangchen O mail bnu edu cn   Qingyun Duan  qyduan O bnu edu cn     Beijing Normal University    Beijing  China    Table of Contents      Ni aap ORNE RI RSA TORRE RSA 3  IE E E EE INANE A E PC CO PRO  E COR CCP EE TT o 3   1 2 Available UQ  PYL Weu E 3  121 Desen Ol s doc EE 3   1 252  Statistical ANa NS ai eoa ls 3     2 5  SOSTUVO SIS ee 3   M24 Surrogate heel ut                             3   1 2    AENA At EOD  da 4   1 3 Overview about functionality of the UQ PyL package                                    eeeeeeeeeeeeeeeeees 4   GN EE ge E 6  P MB uU EE                 6   22 Detailed Installation iba oe bete ince bete iacob eene 6  2 2   WiBdows PLOT ini 6   PANDA AMS A D DLL 14   2 2 5 MacOS Plat Or M EE 20   osi WT EE 25  o ALE TION ee E e AI E RI E RR ERR ERR RR ER 25   S XD OPPIDIS INVITI s ce AI a E IR UR RIR UR RE CR ene ern aene sere 26      Examples M RR O A eee eee 28     SO DOI a   NUNC Os MR c atte RD a A a a   N 28  TT  T Problem Ree EE 28   dE Desremor Experiment nea ee ee is 29   4 LS sta  istical ANa YSIS nds 33  SC EVI CO a a OD DOO 38   A LS SUPT OR Model ME aiia liciid 43   4 Eo  Parameter Cp EE EE 48   A SAC SMA Modeline                              52  2 2 RI Problen Dern ee 52   AD Desen OF EX POr  oue eni eite etie a a eh nea hie 58   2 2  S6 DSItEVIES AIDS TS ia ii o Nets irae 61   2 24 Surocate Mod   lN E oeronnia c                                   64   2 2 5 Paramete
2.      Choose Model File  D   UQ PyL UQ test_functions SAC  py Choose Model File    Stepi  Load parameter file and driver file  Desizn of Experiment Method    Choose DoE method  Morris One at    Time  Morries One At A Time MOAT  Configuration      Number of total sample points    dimension 1    Number of Trajectories    Number of Trajectories  20    Generate DoE Script    Execute DoE Script       Step2  Choose Design of Experiment method and generate results    Show Design of Experiment Result    Choose Result File  Choose Result File    Display Result       Step 1  Define parameter and model information   lt  gt  Choose    Design of Experiment    tab    lt   gt  Load parameter file    UQ PyL UQ test_functions params SAC txt    and model file       UQ PyL UQ test_functions SAC py     for SAC model  it s the model driver file  generated before      Step 2  Choose DoE method and run the results   lt  gt  Choose DoE method    Morris One at A Time  and set    Number of Trajectories       20     ze Click    Generate DoE Script    button and    Execute DoE Script    button to acquire  DOE results     UQ PyL gives the tabular and graphic results     58    i Figure 1    OO      Bv    Morris One at    Time Sampling    LO    a C  Python27 python exe          59    M Figure 1 Mb    T O O    gt   omm    Model Evaluation Results    Model Evaluation Results       di 50 100 150 200 250  Sample Number    This step can also 1mplemented using python script     Python script file  SAC DoE py     
3.     lt  gt  Click    Show Results    button to show statistical analysis results     UQ PyL gives the tabular and graphic results   E C  Windows system32 cmd exe      D NUQ PyL gt python  B  m UQ analyze  m moments  p D  UQ PyL UQ test_functions para  s Sobol G txt  I D  UQ PuL   sample output latin2 2015 85 18 22 12 46 txt  Y D  U   PuL  model output latin2 2015 85 18 22 12 46 txt  he minimum value of output is  6 60529446436  he maximum value of output is  2 599489  he mean value  first moment gt  is  8 9562312589  he variance value  second moment  is  8 350640944697  he standard deviation is  6 592149427676  he skewness value  third moment  is  MB 683569348M56  he kurtosis value  fourth moment  is  6 169158573535       36    Ww Figure 1 ez    00      GE 7    S   Hist Figure of Model Evaluation Results    3 5  3 0  23  2 0    ES    Number of Evaluations    1 0    0 5       0 0 0 5 10 15 2 0 2 5 3 0  Model Evaluation Value    This step can also implemented using python script     Python script file  Sobol_G_UA py       Optional   turn off bytecode   pyc files   import sys    sys dont write bytecode   True    from UQ DoE import lhs   from UQ analyze import     from UQ test functions import Sobol G   from UQ util import scale samples general  read param file  discrepancy  import numpy as np    import random as rd      Set random seed  does not affect quasi random Sobol sampling   seed   1  np  random  seed  seed     rd seed  seed       Read the parameter range file and generat
4.    0 33333333    66666667  1  a 00      from UQ RSmodel import gp  SVR  DI  kiN  BayesianRidge Y   9 OrdinaryLeastSquares  LAR  Lasso  Ridge  SGD  RF pf dict 3   num vars   8     names       x1    x2    x3    x4    R  I   x6    x7    x8     boun      10 from UQ optimizetion import SCE  ASMO   11 from UQ test functions import Sobol G  SAC s  m 1 1    12 from UQ util import scale samples general  read param file  discrepancy  13 import numpy as np  14 import random as rd             15   16 4 Exa   18   19       20 seed   1   21 np random  seed  seed    22 rd  seed  seed    23   24   j i   25 param file      UQ test functions params Sobol_G txt    WS   read parem file param file  Spyder 2 2 5 internal shell on Python 2 7 6 32bits  Windows    scht  gt  gt  gt  D  UQ PyL UQ optimization SCE py 79  SyntaxWarning  name  functn  is assigned to before  E global declaration   A E global functn   A yl D  UQ PyL UQ optimization SCE py 131  SyntaxWarning  name  functn  is assigned to before global  B declaration   E d       global functn    Mn        i     TNS  E   Parameter Mu Sigma Mu Star Mu Star Conf  34 param values   morris oat sample 10  pf  num vars    num levels   4  grid jump  gt  2  x1  0 706156 2 641627 2 640762 0 445780    mti x2 0 127724 1 719118 1 542336 0 482545          S6 4 param values   symmetric LH sample S00  pf  nus x3  0 039390 0 588605 0 542817 0 148633   A gie x4  0 118547 0 313918 0 295576 0 098900  para xS 0 001200 0 025919 0 024397 0 005641   em x6  0 002367 
5.    Show Optimization Results     z  Choose Optimization method and show results    Step 2  Choose parameter optimization method and show results   lt   gt  Choose parameter optimization method  like    Shuffled Complex Evolution     lt  gt  Click    Show Results  button to show parameter optimization results     UQ PyL gives the tabular and graphic results     BESTF  6 666600   BESTA       6 49999998 08 53656488 0 34085105 08 56424082 6 49618645 6 61533234  8 57451195 M 76638417 1   WORSTF  6 666614   WORST        B 50000747 0 53512092 M 34217853 M 5639931 8 48957986 6 61521699  8 57198135 M 76636876 1    Evolution Loop  24   Trial     1288  BESTF  6 666006  BESTS       6 49999999 M 53686945 M 3412157    56432256 CHE K   A M 61545587  8 57439776  8 76657372 1   WORSTF  6 666004   WORST        6 50000185 0 53602233 0 34065989 M 5641151 8 49009352 0 61518117  8 57425417    8 76617901 1    THE POPULATION HAS CONUERGED TO f   PRESPECIFIED SMALL PARAMETER SPACE  SEARCH WAS STOPPED AT TRIAL NUMBER  1288   NORMALIZED GEOMETRIC RANGE   8 00070    THE BEST POINT HAS IMPROVED IN LAST 18 LOOPS BV 251 225761    Plu At Lie cx  MRE Mis       50    OO SH    oo     SBE       This step can also implemented using python script     Python script file  Sobol G Optimization py     Optional   turn off bytecode   pyc files   import sys   sys dont write bytecode   True    import shutil    51    from UQ optimization import SCE  ASMO  DDS  PSO  from UQ util import scale samples general  read param fil
6.    lhs sample 50  pf  num vars    criterion  center    res   discrepancy evaluate param values     print res      Samples are given in range  0  1  by default  Rescale them to your  parameter bounds   scale samples general  param values  pf  bounds       np savetxt   Input SobolX  txt   param values  delimiter    9      Run the  model  and save the output in a text file    This will happen offline for external models  Y   Sobol G predict param values     np savetxt  Output Sobol   txt   Y  delimiterz        4 1 3 Statistical Analysis  In this section  we do statistical analysis using UQ PyL     33    There are also three steps    1  Define parameter and model information    2  Do Design of Experiment or load Design of Experiment results   3  Choose statistical analysis method and show the results     Lj UQ PyL    Uncertainty Quantification Python Laboratory mim    Problem Definition   Design of Experiment   ncertainty Analysis Y Sensitivity Analysis   Surrogate Modelling Optimilah     Perform Design of Experiment    Load parameter file  D   UQ PyL UQ test_functions params Sobol_G  txt Choose Parameter File    Load Model File  D  UQ PyL UQ test functions Sobol G  py Choose Model File       Choose DoE method  Monte Carlo      Define parameter and model information  Number of Sample Points  50 T    Generate DoE Script    Execute DoE Script    Choose Analysis Method    Load parameter file  D  UQ PyL VQ test functions params Sobol G  txt Choose Parameter File   Load data file  inp
7.   8 58431708    8 58439443    THE BEST POINT HAS IMPROUED IN LAST 18 LOOPS BV    CONUERGENCY HAS ACHIEVED BASED ON OBJECTIVE FUNCTION    SEARCH WAS STOPPED AT TRIAL NUMBER   NORMALIZED GEOMETRIC RANGE   8 800133    766         THE BEST POINT HAS IMPROVED IN LAST 16 LOOPS BY    pim e    y  2       gt   E  q      q  E  m  ke   m  a  Kl  d  DN  T  E  ke  o       6    8    Evolution Loop    A 486680563    6 48866651    A  48674597    A  48579287    LESS THAN THE    0 075609     8 58179596    8 58128183    8 5815977    8 58188545    THRESHOLD 6 166666    CRITERIA          71    00   86imBdv    Trace of model value    Model value  o  Oo  N    Evolution Loop       Also  the result is different from run the same algorithm on the original Sobol    G  function model     4 4 Use Interactive UQ PyL Software    4 4 1 How to run interactive UQ PyL Software    In version 1 1  we have an interactive version of UQ PyL software  Double click the     PL      UQ PyL    Interactive          UQ PyL Interactive    icon you can enter the software  Also  you can  run      UQ PyL main_interactive pyw    file to enter into the interactive version of  UQ PyL software  Below is the main page of the software     72    x   python examplepy  UO Pyl Interactive Environment   GO RER    File Edit UQ PyL About    aw p    Key Type Size Value  import sys  sys dont write bytecode   True Y flo   90  array   0 92016797  0 93247791  1 17311737  0 65173187  0 64312815       om UQ DoE import monte carlo  normal  sobol 
8.   Choose Model File        Random Latin Hypercube       Center Latin Hypercube   C  Maximin Latin Hypercube   C  Center Maximin Latin Hypercube      Correlation Latin Hypercube    50       Choose DoE method and          Execute DoE Script      define number of sample points       Show Design of Experiment Result    Choose Result File     Display Result    Step 2  Choose DoE method    Choose Result File     lt  gt  Choose DoE method  like    Latin Hypercube     choose one specific Latin    Hypercube method  like    Center Latin Hypercube         lt  Set    Number of Sample Points     like  50     31    E UQ PyL    Uncertainty Quantification Python Laboratory   B    Problem Definition  Design of Experiment  Uncertainty Analysis   Sensitivity Analysis   Surrogate Modelling Optimilah     Load Model Information  Choose Parameter File   D  UQ PyL UQ test functions params Sobol G  txt Choose Parameter File    Choose Model File  D   UQ PyL UQ test functionz Sobol G  py Choose Model File    Design of Experiment Method  Choose DoE method  Latin Hypercube x  Latin Hypercube Configuration    Choose different Latin Hypercube method  C  Random Latin Hypercube   8  Center Latin Hypercube  C  Maximin Latin Hypercube      Center Maximin Latin Hypercube  O Correlation Latin Hypercube    Number of Sample Points  50 2    Generate DoE Script Generate and run the script       Execute DoE Script          Show Design of Experiment Result    Choose Result File  Choose Result File    Display Result   
9.   Optional   turn off bytecode   pyc files   import sys    sys dont write bytecode   True    from UQ DoE import morris oat   from UQ test functions import SAC   from UQ util import scale samples general  read param file  discrepancy  import numpy as np    import random as rd      Set random seed  does not affect quasi random Sobol sampling   seed   1  np  random  seed  seed     rd seed  seed       Read the parameter range file and generate samples  param file      UQ test functions params SAC txt     pf read param file param file       Generate samples  choose method here     param values   morris oat sample 20  pf  num vars    num levels   10     60    grid jump   5       Samples are given in range  0  1  by default  Rescale them to your  parameter bounds   scale samples general  param values  pf  bounds       np savetxt  Input Sobol   txt   param values  delimiterz          Run the  model  and save the output in a text file    This will happen offline for external models   Y   SAC predict  param values   np savetxt   Output Sobol   txt   Y  delimiter         4 2 3 Sensitivity Analysis    Then  we do sensitivity analysis for 13 parameters of SAC SMA model     E UQ PyL    Uncertainty Quantification Python Laboratory   E    ADOUT      Definition   Design of Experiment   Uncertainty Analysis  Sensitivity Analysis   Surrogate Modelling   Optimization L  I    Perform Design of Experiment             Load parameter file  D  UQ PyL UQ test functions params SAC  txt       Choose Par
10.   analysis     Init     DY     main  py   confidence py   correlations py   delta py   dgsm py   extended fast py   hypothesis py     H  HE HE     H  GR dB zb ok                    HE          4      Ensure all needed files are loaded  For GUI uses   Box behnken design  Central composite design   FAST sensitivity analysis design  Faure design   Factorial design   DGSM sensitivity analysis design  Factorial design   Full Factorial design   Good Lattic Point design   Halton Quasi Monte Carlo design  Hammersley Quasi Monte Carlo design  Latin Hypercube design   Monte Carlo design   Morris One at A Time design  Plackett Burman design   Sobol  sensitivity analysis design  Sobol  Quasi Monte Carlo design    Symmetric Latin Hypercube design    Ensure all needed files are loaded  For GUI uses   Confidence Interval   Correlation analysis   Delta sensitivity analysis   DGSM sensitivity analysis   FAST sensitivity analysis    Hypothesis Test    32  29  34  33    36  dd  So  39  40  41  42  43  44  45  46  4     48    49  50  9  52  Do  54  99  56  Sl  58  p  60  61    62  os  64  O5    66    moments   py   mOPrrisspy   sobol analyze py   sobol svm py  analysis  RSmodel    LARES    Oy     main  py   BayesianRidge py   Rer   ElasticNet py   gP  Py   kNN py   LAR py   Lars py   Lasso py   MARS py   OrdinaryLeastSquares py  regression   RE spy   Ridge py   col spy   SVR py  optimization     Anit   Py     main   py   ASMO py   DDS  ei   MCMC   PY   POO  DY   SA py   SE  py  optimization  uti
11.   choose  Parameter Distribution     Step 2  Click    Add    button to save this parameter information to table widget    Step 3  Enter every parameter s information  click    Save to Parameter File  button   choose the save path    UQ PyL UQ test functions params Sobol G txt      E UQ PyL    Uncertainty Quantification Python Laboratory e B    Problem Definition Design of Experiment   Uncertainty Analysis   Sensitivity Analysis   Surrogate Modelling Optimi tad        Add Input Variables    Parameter Name      b um x3    Parameter Lower Bound  Choose parameter information  0  00  Input Variables Parameter Upper Bound    1 00  Parameter Distribution   Uni form             Driver Generator    Show input variables       Parameter Name Parameter Lower Bound Parameter Upper Bound Parameter Distribution E  1  x1 0 00 1 00 Uniform  2  x2 0 00 1 00 Uniform  3 x3 0 00 1 00 Uniform    v    Save to Parameter File    Click to save parameter file             4 1 2 Design of Experiment  After problem definition  we do Design of Experiment  the experiment has three    29    steps    1  Detine parameter and model information   2  Choose Design of Experiment method   3  Generate script and run the script     Lj UQ PyL    Uncertainty Quantification Python Laboratory   A    Problem Definition   Design of Experiment   Uncertainty Analysis   Sensitivity Analysis   Surrogate Modelling Optimi Lah    Load Model Information    Choose Parameter File  0   UQ PyL UQ test_functions params Sobol_G  txt Cho
12.   command prompt  Learn More          No    Later on  if you want to make Canopy Python the default  you can do so from the  preferences dialog  Warning   If you plan to manually specify the full path to  Canopy Python  you must specify Canopy s  User  Python  rather than the Canopy  installation Python  Learn Mare    Start using Canopy       Choose    Yes     then click    Start using Canopy        17    File Edit Tools Window Help         ENTHOUGHT Hi  welcome to Canopy   CANOPY Log in to your Enthought account or create one     Package Manager Doc Browser    Training on Demand    Recent files    Restore previous session  7    No recent files   Open an existing file      Version  1 5 5 3123  Checking for updates          In    Package Manager    section  you can check what packages in your Python library  now    Actually  you can check your python installation in your python installation path  All  files are in    YourPythonPath User      for me is   home quanjp swets software Python User    The python executable file is in   YourPythonPath User bin  and all the packages are installed in   YourPythonPath User lib python2 7 site packages       Step 3  Test your Python installation  If you have multiple python environment  please specific one  Usually  modify    18    your  bashrc file can do it   Add two sentence into your  bashrc file     export PY THON  home quanjp swets software Python User bin  export PATH  PATH  PYTHON     Then enter command  source  bashrc  to make you
13.  3 sys dont write bytecode   True Y flo   90  array   0 92016797  0 93247791  1 17311737  0 65173187  0 64312815       4  5 from UQ DoE import monte carlo  normal  sobol  lhs  box behnken  central composite  fast sampler    pe str 1    UQ test functions params Sobol G txt  6 ff2n  finite diff  frac fact  full fact  morris oat  plackett burman  saltelli  symmetric LH  7 from UQ analyze import   p   flom  90    array      66666667  O    0 33333333    66666667  1  NE   amp  from UQ RSmodel import gp  SVR  DI  kNN  BayesianRidge      OrdinaryLeastSquares  LAR  Lasso  Ridge  SGD  RF pf dit 3   num vars   8     names       x1    x2    x3    x4    x5    x6    x7    x8      boun        10 from UQ optimizetion import SCE  ASMO   11 from UQ test functions import Sobol G  SAC   12 from UQ util import scale samples general  read param file  discrepancy  13 import numpy as np   14 import random as rd   15             16 4 Example  Ru bol  Morri r FAST 2 te  18   19   r     20 seed   1   21 np random  seed  seed    22 rd seed seed    23   24   t   t ge f   t E   25 param file      UQ test functions params Sobol_G txt    26 pf   read param file param file  Spyder 2 2 5 internal shell on Python 2 7 6 32bits  Windows         gt  gt  gt  D  UQ PyL UQ optimization SCE py 79  SyntaxWarning  name  functn  is assigned to before      global declaration   29   pa alus  amp  carl ample pf ur ar global functn   A d     ef     Dz   UQ PyL UQ oprimization SCE py 131  SyntaxWarning  name  functn  is assi
14.  Inc  build 5658   LLVM build 2335 6   on darwin  Type  help    copyright    credits  or  license  for more information       gt   gt     Step 4  Install UQ PyL software  Download UQ PyL MacOS version  unzip the source code using command    tar    xvf UQ PyL_Mac tar  gz   Then enter into the UQ PyL directory   cd UQ PyL Mac   Enter command to run UQ PyL main page   python main pyw  or python2 7 main pyw    Or run Interactive UQ PyL Software   python main  interactive pyw  or python2 7 main  interactive pyw     You can see the main page of UQ PyL software     24       eoo 2 UQ PyL    Uncertainty Quantification Python Laboratory       Design of Experiment Uncertainty Analysis Sensitivity Analysis Surrogate Modelling Optimization         Add Input Variables    Parameter Name     Parameter Lower Bound   0 00  Parameter Upper Bound   1 00    Parameter Distribution     EB   Uniform            Driver Generator   Add Reset    Show input variables    Parameter Name Parameter Lower Bound Parameter Upper Bound Parameter Distribution      Save to Parameter File          3 Using UQ PyL    3 1 UQ PyL Flowchart    Fig  1 is the flowchart illustrating how UQ PyL executes an UQ task  A typical task 1s  carried out in three major steps   1  model configuration preparation   2  uncertainty  propagation  and  3  UQ analysis  In the first step  the user specifies the model  configuration information  1 e   parameter names  ranges and distributions   and the  DoE information  1 e   the sampling te
15.  Perform the sensitivity analysis uncertainty analysis using the model  OUtput     Specify which column of the output file to analyze  zero indexed   morris analyze param Tile   Input Sobol   txt    Output SobolX  Utxt       column   0     4 1 5 Surrogate Modeling    Next  we do surrogate modeling using UQ PyL  There are three steps    1  Define parameter and model information    2  Do specific Design of Experiment or load Design of Experiment results   3  Choose surrogate modeling method and show the results     a UQ PyL    Uncertainty Quantification Python Laboratory EXE    Problem Definition   Design of Experiment   Statistical Analysis   Sensitivity Analysis C Surrogate Modelling Optimi Lar     Perform Design of Experiment    Load parameter file  D  UQ PyL UQ test functions params Sobol G  txt Choose Parameter File    Load Model File  D  Ug PyL UQ test functions Sobol G  py Choose Model File       Choose DoE method  QuasiMonte Carlo i      Define parameter and model information         Number of Sample Points    500      Generate DoE Script    Execute DoE Script    Choose Analysis Method  Load parameter file  D  UQ PyL Ug test functions params Sobol G  txt Choose Parameter File    Load data file  input file  output file   Choose Input File    Choose Output File    Surrogate Model Method  SYM v Show Results    43    Step 1  Define parameter and model information     lt  gt    lt  gt      lt  gt     R    Switch to    Surrogate Modeling    tab    Click    Choose Parameter Fi
16.  Step 3  Run for DoE results    lt  gt  Click    Generate DoE Script    button to generate DoE script which contains  information you just choose     lt  gt  Click    Execute DoE Script    button to run DoE script     Then  UQ PyL gives the tabular and graphic results of DoE     AN Figure 1   gt  E AN Figure 1   ui  ZOO SRv 00   SRv  Latin Hypercube Sampling  o  random  center  maxmin  centermaxmin  correlate  Model Evaluation Results    0 8    Model Evaluation Results    0 2       0 0 y E   E E 0 10 20 30 40 50  Sample Number    x 0 215726  y 0 549895    The result automatically save in text files  the name of files including DoE method  used and current time     32         model output latin  2015 05 18 22 12 46 bd 2015 5 18 22 12  Lj sample output latin  2015 05 18 22 12 46 txt 2015 5 18 22 12    This step can also 1mplemented using python script     Python script file  Sobol_G_DoE py       Optional   turn off bytecode   pyc files   import sys    sys dont write bytecode   True    from UQ DoE import lhs   from UQ test functions import Sobol G   from UQ util import scale samples general  read param file  discrepancy  import numpy as np    import random as rd      Set random seed  does not affect quasi random Sobol sampling   seed   1  np random  seed  seed     rd seed  seed       Read the parameter range file and generate samples  param file      UQ test functions params Sobol G txt     pf   read param file param file       Generate samples  choose method here   param values
17.  bl  bu  ngs 2     4 3 Run simulation on surrogate model    In Surrogate Modeling part  we generate a surrogate model from data sets of original  model and save the surrogate model in a   pickle file  Then we can run simulation on  the surrogate model we saved     For Design of Experiment part  we choose the model file as   pickle file  then it can  run DoE on the surrogate model you created  Let s take Sobol  G function as an  example  In section 4 1 5 we have created a surrogate model and saved it as     SVRmodel pickle    file  In Design of Experiment tab  we load    UQ PyL   SVRmodel pickle    file as model file  all the others as same as section 4 1 2     68    File    UQ PyL    Uncertainty Quantification Python Laboratory   CEN    About    Problem Definition Design of Experiment  gt  Statistical Analysis surrogate Modelling   Optimi  ak       Load Model Information    Choose Parameter File  0   UQ PyL UQ test_functions params Sobol_G  txt  Choose Model File  D   Ug PyL SVRmodel  pickle Choose Model File    Design of Experiment Method Load SVRmodel pickle as model file  Choose DoE method     Latin Hypercube Configuration    Choose different Latin Hypercube method  O Random Latin Hypercube   8  Center Latin Hypercube  O Maximin Latin Hypercube     Center Maximin Latin Hypercube    O  Correlation Latin Hypercube    Number of Sample Points     Generate DoE Script  Execute DoE Script    Show Design of Experiment Result    Choose Result Fite                    Then we do DoE 
18.  lhs  box behnken  central composite  fast sampler  A Pu  str 1   UQ test functions params Sobol G txt  ff2n  finite diff  frac fact  full fact  morris oat  plackett burman  saltelli  symmetric LH  from UQ analyze import   p  fo     90   array    0 66666667  0     9 33333333  0 66666667  1   from UQ RSmodel import gp  SVR  DI  kNN  BayesianRidge    uares  LAR  Lasso  Ridge  SGD  RF pf dict 3     num_vers     B     names       xd      x2     x3   ai     28   28  27    ert     bow           e PA  zetion import SCE  ASMO  ions import Sobol G  SAC s  mt 1 1  scale samples general  read param file  discrepancy       peram file      UQ test functions params Sobol G txt    26 pf   read param file param file  Spyder 2 2 5 internal shell on Python 2 7 6 32bits  Windows    gt  gt  gt  D 100 PyLiUQioptimizationiSCE py 79  SyntaxWarning  name  functn  is assigned to before    global functn  D  0Q PyL UQ optimization SCE py 131  SyntaxWarning  name  functn  is assigned to before global  declaration    Parameter Mu Sigma Mu Star Mu Star Conf  x1  0 706156 2 641627 2 640762 0 445780    param values   morris oat sample 10  pf  num vars    num levels   4  grid jump  gt  2  E  x2 0 127724 1 719118 1 542336 0 482545  0 039390 0 588605 0 542817       390 0 5  x 547 0 31  5 00 0 02  x6 367 0 0  7 75 0 02  x5 195 0 0    21 41  2015 10 11      B st         Yd       Interactive version of UQ PyL software    The interface is very similar to MATLAB GUI  we use Spyder package   http   pythonhosted org 
19.  this  computer  Click Next to continue       amp  Install for anyone using this computer      1 Install just for me    Pythonis v3  Ehe Python Distribution made by Scientists Far Scientists       Click  Next  to continue     Ipython x  y  dias    install     ich features of Python x y  2 7 6 0 you want to    Check the components you want to install and uncheck the components you don t want to    sect the type ft  components you wish to   art      SE 2 Python 2 7 6   E  y aal    DEST  space required  473  5MB Position your mouse over a component to see ibs  description     Pythonis v3  Ehe Python Distribution made by Scientists For Scientists    T       Choose    Custom    type to install     4    Jeython x y  Choose which    Check the components you want to install and uncheck the components you don t want to    Select the type of install   install  is TEN  4  Base Libraries 1 5 0 10  l hel Base Python 1 9 2 24   v  setuptools 3 0 12   v  requests 2 2  1 1  Jl htmlslib 0 999 2    P i La aen  Dex  Space required  473  5MB Position your mouse over a component to see its  description     Pythonis 4  Ehe Python Distribution made by Scientists Far Scientists    E CNN       For    Python    option  you must check all the package UQ PyL needed     ec    PyQt 4 9 6 4    NumPy 1 8 0 5   Scipy 0 13 3 6   Matplotlib 1 3 1 4   Scikit learn 0 14 1 4  Please note  this one is not checked by default     KK    Click    Next    to continue     C  Python   x y  2 7 6 0 Setup    CU Choose Inst
20.  tit ae Add eae ae E E aE AEE AEE EEE PE PEE EE    FUNCTION  CALCULATE DESIRE OUTPUT    56    def getOutput       Q   E  Qo       functn   0 0  ignore   92  IT   0    ourtile   Open    ps testol  sac  day     CEM    for jj in range  ignore      lineln   outfile readline    while 1   lineln   outfile readline      if lineln          break  nCols   string split lineIn   Qe append  eval  nCols 4     Qo append  eval  nCols 5     functn   functn    Oe I    Oo 1      O0e 1    Oo 1    I I 1    Outflle  close t     funetn   functn I  functn   math sgrt  functn     return functn    tit ae at ae ae eae ea eae aE E E AEE aE EE PE EE PEE EE    MAIN PROGRAM    def predict  values    pf   read param file controlFileName   for n in range pf  num vars        pf  names   n     UO     pf  names    n     Y   np empty  values shape 0     os chdir  D  UQ PyL UQ test functions SAC      for i  row in enumerate  values      inputData   values i     genAppInputFile inputData appInputTmplts appInputFiles pf  num vars       p    names     runApplication    Y i    getOutput       57    print  Job ID     str itl     return Y    4 2 2 Design of Experiment  We do Design of Experiment for SAC SMA model     2 UQ PyL    Uncertainty Quantification Python Laboratory zn    Problem Definition  Design of Experiment Y Uncertainty Analysis   Sensitivity Analysis Surrogate Modelling Optimi dar     Load Model Information    Choose Parameter File  0D   VQ PyL UQ test_functions params SAC  txt    Choose Parameter File  
21.  to this location    home  quan p Canapy    Press Enter to accept this location   Press CIRL C to abort   or specify an alternate location  Please ensure that your location  contains only ASCII letters  numbers  and the following punctuation  Chars  9 7  Pr      fhome quanjp Canopy   gt  gt  gt  fhome quanjp swgfs software Canopy         Type the path you want to install Canopy  then press Enter to continue     15    Installing to  home quanjp swgfs software Canapy     please wait  Must specify the vendor namespace for these files with   vendor  No directories in update desktop database search path could be processed and updated   LE E     Updating MIME database in  home quan p  local share mime     Wrote 2 strings at 20   44   Wrote aliases at 44     4E   Wrote parents at 48   de   Wrote literal globs at dc   5  Wrote suffix globs at 50   108  Wrote full globs at 108   10c  Wrote magic at 10c   118   Wrote namespace list at 118   lic    LET    done   You can run the Canopy graphical environment by running the script   fhome quanjp  swots so0ttware Canopy  canopy  or by selecting  Canopy  in your Applications menu   On your first run  your Canopy User Python environment will be initialized   and you will have the opportunity to make Canopy be your default Fython    at the command line  Details at support enthought com  forums    Ihank you for installing Canopy        Complete to install Canopy     Step 2  Setting up Canopy environment  Enter into the Canopy directory  for me 
22.  variety of formats    including  png   bmp   tiff or  pdf formats  among others  Fig  3 shows the interactive  version of UQ PyL software  In this page  you can write down python script to  achieve UQ analysis and run the script to obtain the results  You can see the output  results and internal variables  values through the page     26    Ele About                   Problem Definition Design of Experiment   Statistical Analysis   Sensitivity Analysis   Surrogate Modelling   Optimi      Add Input Variables    Parameter Name             gt  am  o    Parameter Lower Bound   0 00          Input Variables Parameter Upper Bound     1 00    Parameter Distribution     ES Uni form                               Driver Generator    Show input variables    Parameter Name Parameter Lower Bound Parameter Upper Bound Parameter Distribution       Save to Parameter File             Fig 2  Graphic User Interface of UQ PyL Main Page    File Edit UQ PyL About    Dg b pDet3x  E                              eem    me  P Value    1 4 Opt  5   2 import sys Koy Lad Ls   3 sys dont_write_bytecode   True Y flo   90  array   0 92016797  0 93247791  1 17311737  0 65173187  0 64312815       4   5 from UQ DoE import monte carlo  normal  sobol  lhs  box behnken  central composite  fast sampler  pe str 1   UQ test functions params Sobol G txt   6 ff2n  finite diff  frac fact  full fact  morr  s oat  plackett burman  saltelli  symmetric LH   7 from UQ analyze import   p  fo     90   array    0 66666667  O  
23. 0 039866 0 034427 0 012365  Mamm x7 0 013475 0 027525 0 023902 0 011979  HM x8  0 007195 0 034502 0 029983 0 011464  43   1 k     44 Y para tlus       ple   45    finite diff sam   46    re repe a e  para slue   4      ar Y    lt   gt        Fig 3  Interactive Version of UQ PyL Software    27    4 Examples    4 1 Sobol    g function    4 1 1 Problem Definition    The expression of sobol    g function is     f x       gix     where    4x      2    aj   ita    The input parameter x  is uniformly distributed within  0  1   aj    10  1 4 5  9 99  99  99  991    The model is implemented using Python and the parameter file is shown below     Model file  UQ PyL UQ test_functions Sobol_G py     from future import division    gi xi       import numpy as np    Non monotonic Sobol    G Function  8 parameters   First order indices    xls D J7169 Tella   x21 0 1791 19 9429   xor DUST     2 509   x4  0 0072 0 78    Ron  0 000  Ds      HE              def predict  values    a  I0  l1  4 5  By 95  99  99  99   Y   np empty  values shape 0       for i  row in enumerate  values      Y i    1 0  for j in range 8    x   row 3     YHJ     abs 4 x   2    all 7 G   all     return Y    28    Parameter file  UQ PyL UQ test functions params Sobol G txt     xl p0 JD  x   Dal 22 0  xo DIO   20  x4 0 0 1 0  xo DO 140  xo DD  3   x  DU XL   x59 0 0 Es 0    Parameter file can also be generated from GUI of UQ PyL    Step 1  Enter    Parameter Name      Parameter Lower Bound    and    Parameter Upper  Bound 
24. 11 2H 28 4H txt   C Python2 slibssite packages    sklearnocross validation py 1137  DeprecationWarni  ny  Passing function as       score func   is deprecated and will be removed in 8 15    Either use strings or score ohjects The relevant new parameter is called   sco    ring     scoring scoring    The k fold mean square error cross validation scores are      H 43H7H918  H 35159512  H 393588897 3H 36591365 68 31136287  H 462HBHBH58  6 36738373 6 36966313 86 486746766 6 48561528 1    The mean value of the scores is  6 386529869176    The standard deviation of the scores is  6 6465546713762       45    400   ET       In this new version of UQ PyL  the software also save surrogate model as a   pickle  file automatically  For this example is     SVRmodel pickle    file         SVRmodel pickle 2015 10 11 20 44 PICKLE 3244 98 KB    This file can be opened by a Text Editor  please see the context of this file below     46        SVBmodel  pi ckl           1  ccopy reg       2  reconstructor  3 nO  4  zaklearn 2ym classes  n MR   amp  pl  7 c builtin    E object  5 pe  10  Ntp3  11  Rp4  12  dps  13 5  impl   14 ne  15  S epailon svr   TG p7  17 s5 kernel   18 n8  BENE be   20 D  I  21  s5 verbose   22 pl0  23 100  24 s5S probability   25 pil  26 100  27 35  label   2B pl   29  gnumpy core multiarray  30 _ reconstruct  al pls  32  cnumpy  34 pl 4  35  IO  36 tpl5  EMA  38 pl    BS Ep 7  40     Rp18    It saved the data structure of the surrogate model you built   In section 4 3  we w
25. 34427 0 012365      0 013475 0 027525 0 023902 0 011979   x8  0 007195 0 034502 0 029983 0 011464     00 A BET    oo  Re       74    
26. 5201 1 246218 8 361561    6 049704 6 677892 8 583383 6 127671      H H31H89  8 232696 6 174826 6 842758   8 660593 8 831374 8 822963 4 865992   H 6658601 8 639418 6 829168 8 687556   8 666185 8 824323 6 816861 4 684874   8 666736 8 834242 6 625536 8 666663       41       W Figure 1    OO A BET             This step can also implemented using python script     Python script file  Sobol G SA py       Optional   turn off bytecode   pyc files   import sys    sys dont write bytecode   True    from UO DoE import morris oat   from UQ analyze import     from UQ test functions import Sobol G   from UQ util import scale samples general  read param file  import numpy as np    import random as rd      Set random seed  does not affect quasi random Sobol sampling   seed   1  np random seed  seed     rd seed seed       Read the parameter range file and generate samples  param file      UQ test functions params Sobol G txt     pf   read param file param file       Generate samples  choose method here    param values   morris oat sample 50  pf  num vars    num levels   10   grid jump   5      Samples are given in range  0  1  by default  Rescale them to your    42    parameter bounds   scale samples general  param values  pf  bounds       np savetxt   Input SobolX  txt   param values  delimiter   9      Run the  model  and save the output in a text file    This will happen offline for external models  Y   Sobol G predict param values     np savetxt  Output SobolX  txt   Y  delimiter          
27. 8 42740023    77136507     Evolution Loop  23   Trial   1246   BESTF  6 608000   BESTX      6 49999998 6 50684122   4427293 6 526616 6 44431368 6 6048984  8 43158307    77078896 1    WORSTF  6 680001   WORST      6 49999913 00 5027474 6 44747874 0 51922003 0 44448914 6 660441623  8 42740023 M 77136507     THE POPULATION HAS CONVERGED TO f PRESPECIFIED SMALL PARAMETER SPACE  SEARCH WAS STOPPED AT TRI NUMBER  1246  NORMALIZED GE       ao Trace of the different parameters Trace of model value       300  Da e 7 e o 025    N  ul  o       Model value  o  N  o    Parameters  value  N  o  o       0 15       150          100                                                                   15 20 25 30 35 5 10 15 20 25 30 35  Evolution Loop Evolution Loop    This step can also implemented using python script     Python script file  SAC_Optimization py     Optional   turn off bytecode   pyc files   import sys   sys dont write bytecode   True    import shutil    67    from UQ optimization import SCE  from UQ util import scale samples general  read param file  discrepancy  import numpy as np    import random as rd      Read the parameter range file    param file      UQ test functions params SAC txt     bl np empty  0    bu np empty  0    pf   read param file param file    for i  b in enumerate  pf  bounds      bl   np append bl  b 0    bu   np append bu  b 1      dir      UQ test functions    shutil copy  dirt SAC  py   Gir    tunctn py        Run SCE UA optimization algorithm  SCE sceua
28. SA results Mu star Confidence Interval    12    10    Sigma       0  UZTWMZFWMUZK PCTIMADIMPZPERCREXPLZTWNIZFSM ZFPMLZSK LZPK PFREE  Mu star    This step can also implemented using python script     Python script file  SAC SA py       Optional   turn off bytecode   pyc files   import sys    sys dont write bytecode   True    from UQ DoE import morris oat   from UQ analyze import     from UQ test functions import SAC   from UQ util import scale samples general  read param file  import numpy as np    import random as rd      Set random seed  does not affect quasi random Sobol sampling   seed   1    np  random  seed  seed     62    rd seed seed       Read the parameter range file and generate samples  param file      UQ test functions params SAC txt     pf   read param file param file       Generate samples  choose method here   param values   morris oat sample 20  pf  num vars    num levels   10     grid jump   5       Samples are given in range  0  1  by default  Rescale them to your  parameter bounds   scale samples general  param values  pf  bounds       np savetxt  Input SAC txt   param values  delimiterz          Run the  model  and save the output in a text file    This will happen offline for external models   Y 2 SAC predict  param values    np savetxt   Output SAC txt   Y  delimiterz          Perform the sensitivity analysis uncertainty analysis using the model  output     Specify which column of the output file to analyze  zero indexed   morris analyze param file   Inp
29. ad DoE results    lt  gt  Click    Choose Input File    button to choose sample file you just generated  for  example     sample output latin2 2015 05 18 22 12 46 txt        lt  gt  Click    Choose Output File    button to choose model output file you just generated   for example     model output latin  2015 05 18 22 12 46 txt        35      UQ PyL    Uncertainty Quantification Python Laboratory    Problem Definition Design of Experiment Uncertainty Analysis    y Sensitivity Analysis   Surrogate Modelling Optimi tah    Perform Design of Experiment    Load parameter file  D  UQ PyL UQ test functions params Sobol G  txt  Load Model File  D   UQ PyL UQ test functions Sobol G  py  Choose DoE method  Monte Carlo   Number of Sample Points  50    Generate DoE Script    Execute DoE Script    Choose Analysis Method    Load parameter file  D  UQ PyL UQ test functions params Sobol G  txt    Load data file  input file  output file   D  UQ PyL sample output latin2 2015 05 18 22 12 46  txt    Basic Statistical Analysis Methods  Statistical Moments Methods    Advanced Statistical Analysis Methods  Pearson Spearman Correlations Analysis    Choose Parameter File    Choose Model File    Choose Parameter File  Choose Input File  Choose Output File   Show Results    Show Results       Define uncertainty analysis method and show results       SRS         Step 3  Choose statistical analysis method and show results     lt  gt  Choose statistical analysis method  like    Statistical Moments Methods 
30. all Location  Y J Pythonix  y  Choose Ehe Folder in which Eo install Pythonis  v  2 7 6 0     Setup will install all Pythonis  yi components in the Following Folder   Installation Folders of included packages may be customized  see previous page      To install in a different Folder  click Browse and select another Folder  Click Mexk to continue     FyEhan x v  Base Installation Directory    SU Program Pilesipsthonzy    Space required  535  7MB  Space available  25 036       Click  Next  to continue      3 Pythontz  y  2 7 6 0 Setup      Choose Start Menu Folder  1 Y ythonix  y Choose a Start Menu Folder For the Pythonis  wi 2 7 6 0    shortcuts     Select Ehe Start Menu Folder in which vau would like to create the program s shortcuts  You  can also enter a name to create a new folder     EndNote  Foxit Software  Google Chrome OU ve    Microsoft Office   Microsoft Silverlight   Py GPL v4 8 1 For Python v2 7  Python 2 7   F        Do nat create shortcuts    SS          Click  Install   then waiting for the installation process   After installation  you executable python exe file will be C  Python27 python exe  All  the package will be in the C  Python27 Lib site packages directory     Step 2  Install UQ PyL software  Please download UQ PyL Windows version  double click to run the installation file     10    Installing UQ PyL Software    Destination folder    Extraction progress     Extracting files to D  folder  Extracting from UQ PyL exe    Extracting UQ PyL UQ pptimization e
31. ameter File    Load Model File  D  Ug PyL UQ test functions SAC  py   Choose Model File       Step1  Load parameter file and driver file  Design of Experiment Method    Choose DoE method  Morris One at A Time m  Morries One At A Time MOAT  Configuration      Number of total sample points    dimensiontl    Number of Trajectories    Number of Trajectories  50 5    Generate DoE Script    Execute DoE Script    Step2  Load Design of Experiment results  Choose Analysis Method    Load parameter file   D   UQ PyL UQ test_functi ons params SAC  txt Choose Parameter File          Choose Input File       Choose Output File       Step3  Choose sensitivity analysis method and show results        Step 1  Define parameter and model information    lt  gt  Choose    Sensitivity Analysis  tab     lt  gt  Load parameter file    UQ PyL UQ test functions params SAC txt  and model file   driver file     UQ PyL UQ test functions SAC py           61    Step 2  Load DoE results    lt   gt  Load DOE results  sample input file     UQ PyL UQ test functions SAC sample output morris 2015 05 19 21 34 2  6 txt  and model output file     UQ PyL UQ test functions S AC model output morris 2015 05 19 21 34 26  txt        Step 3  Choose sensitivity analysis method and show results   lt   gt  Choose sensitivity analysis method    Morris    and click    Show Results    button to  acquire sensitivity analysis results     UQ PyL gives the tabular and graphic results     W Figure 1 O  OO A BET  Morries One at A Time 
32. analysis  it can obtain tabular and graphic results     hOO  EA       69    00      87    Model Evaluation Results    H  La    H  o    o  o    2      i  E  i  A   m  i  m  2  if  Ei  o  o  z    o  co    20 30  Sample Number       The result is different from run the same algorithm on the original Sobol    G function  model     For Parameter Optimization part  we also choose the model file as   pickle file  then it  can run global optimization algorithm on the surrogate model     E UQ PyL    Uncertainty Quantification Python Laboratory   a      Definition   Design of Experiment   Statistical Analysis   Sensitivity Analysis   Surrogate Modelling Optimization  gt     Load Data  Load Parameter File   D  UQ PyL Ug test functions params Sobol G  txt Choose Parameter File  Load Model  D   Ug PyL SVRmodel  pickle Choose Model File  Clowes EE ERREECHT Load SVRmodel pickle as model file  Optimization Method  Shuffled Complex Evolution v   Show Results    Show Optimization Results    Then we do SCE parameter optimization algorithm  1t can obtain tabular and graphic  results     70    van  Ch       6 47869971   63886959 6 3988961  8 45837269 M 54625876 1   WORSTF  6 576468   WORSTR       6 47925921 0 64045023 6 46132286  8 45816132 0 54382353     Evolution Loop  14   Trial   766  BESTF  6 5 76394   BEST       0 47827325  8 63882823 6 398 7 7878  6 45837516 6 549126  1   WORSTF  6 576468   WORST       6 47766161 3 8 63716216   39665221  6 45862374 M 535954161    M 58434864    6 58441515  
33. ast  we do parameter optimization using UQ PyL  There are two steps   1  Define parameter and model information   2  Choose parameter optimization method and show the results     48    EN UQ PyL    Uncertainty Quantification Python Laboratory   E      Definition   Design of Experiment   Statistical Analysis   Sensitivity Analysis Surrogate Modelling  Optimization a  Load Data    Load Parameter File   D  UQ PyL UQg test functions params Sobol G  txt Choose Parameter File    Load Model  D  UQ PyL UQ test functions Sobol G py Choose Model File       Choose   ptimization Method Load parameter and model information    Opt imization Method  Shuffled Complex Evolution    Show Results    Show Optimization Results    Step 1  Define parameter and model information    lt  gt  Switch to    Optimization    tab     lt  gt  Click    Choose Parameter File    button to choose     UQ PyL UQ test functions params Sobol  G txt  file     lt  gt  Click    Choose Model File  button to choose     UQ PyL UQ test functions Sobol G py    file     49      UQ PyL    Uncertainty Quantification Python Laboratory x      Definition   Design of Experiment   Statistical Analysis   Sensitivity Analysis Surrogate Modelling Optimization 4    Load Data  Load Parameter File  D  UQ PyL UQ test functions params Sobol G  txt Choose Parameter File  Load Model  D  UQ PyL UQ test functionz Sobol G  py Choose Model File    Choose   ptimization Method    Optimization Method  Shuffled Complex Evolution sel  Show Results    
34. cal Analysis    Statistical moments  Confidence interval  Hypothesis test     1 2 3 Sensitivity Analysis    Morris One at A Time  MOAT   Derivative based Global Sensitivity Measure   DGSM   Sobol    Sensitivity Analysis  Fourier Amplitude Sensitivity Test  FAST    Metamodel based Sobol   Correlation analysis  Delta Moment Independent Measure   Delta   Multivariate Adaptive Regression Splines  MARS  based sensitivity analysis     1 2 4 Surrogate Modeling    Generalized Linear Model  Ordinary Least Squares  Ridge Regression  Lasso  Least  Angle Regression  LARS Lasso  Bayesian Regression  and Elastic Net   Regression    3    Tree  Random Forest  Nearest Neighbors  Support Vector Machine  Gaussian Process     MARS  Stochastic Gradient Descent     1 2 5 Parameter Optimization    Shuffled Complex Evolution  SCE   Dynamically Dimensional Search  DDS    Adaptive Surrogate Modeling based Optimization  ASMO   Particle Swarm  Optimization  PSO   Simulated Annealing  SA   and Monte Carlo Markov Chain   MCMC      1 3 Overview about functionality of the UQ PyL package    CO sl Oy OF A GQ  N np    10  TE  E  13  14  12  16  17  18  19  20  21  22  GE  24  25  26  Z    2 0  29  30  J1    ANTE   Dy  DoE   EHE   Y    main  py    box behnken py   central composite py   fast   samp Lerc py   faure py   It2npy   finate Ort py   frac Factspy   fut tact py   GLPypy   halton py   hammersley py   lng pY   monte carlo py   NHOIris odtspy   piackett Dburman  py   Saltelli py   Sta py   symmetric LH py
35. chniques and sample sizes  to prepare for UQ  exercise for a given problem  In the second step  the different sample parameter sets  generated in the last step are fed into the simulation model  or mathematical function   to enable the execution of simulation model  function calculation   In the third step  a  variety of UQ exercises are carried out  including statistical analysis  SA  surrogate  modelling and parameter optimization     25    Parameter Name  Parameter Range    Parameter Distribution    i model    configuration    preparation                         Control  Template       Control  File    a    Uncertainty  Propagation     E          I   I   I   I L e      I   I               e      Outputs       UO Analysis    Parameter    Y a a A a      Tabular and Graphic      Analysis Results      Fig 1  UQ PyL flowchart    3 2 UQ PyL Main Frame    UQ PyL 1s equipped with a Graphic User Interface  GUI  to facilitate execution of  various functions  but it can also run as a script program in a batch mode  Fig  2  shows the main page of UQ PyL  Different tab widgets allow user to execute different  steps of UQ process  including problem definition  DoE  Statistical Analysis  SA   Surrogate Modeling and Parameter Optimization  One may click on the desired tab by  mouse and or enter the required information via keyboard to perform various tasks   After a task 1s completed  the software generates tabular results and or graphical  outputs  The graphical outputs can be saved in a
36. e  import numpy as np    import random as rd      Read the parameter range file    param file 2    UQ test functions params Sobol G txt     bl np empty  0    bu np empty  0    pf   read param file param file    for i  b in enumerate  pf  bounds      bl   np append bl  b 0    bu   np append bu  b 1      dir      UQ test functions    Ssiutil  copy dirt  Sobol G py   dlire functu py        Run SCE UA optimization algorithm  SCE sceua bl  bu  pf  ngs 2     4 2 SAC SMA model    4 2 1 Problem Definition  The SAC SMA is a rainfall runoff model which has a highly non linear     non monotonic input parameter model output relationship  There are sixteen    parameters in the SAC SMA model  Thirteen of them are considered tunable  and the    other three parameters are fixed at pre specified values according to Brazil  1988      Table 1 describes those parameters and their ranges     No    Parameter Description   1  10 0  300 0   2  5 0  150 0   3  0 10  0 75   4    PCTIM Impervious fraction of the watershed area  decimal    0 0  0 10   fraction     5 ADIMP Additional impervious area  decimal fraction   0 0  0 20   6 ZPERC Maximum percolation rate  dimensionless   5 0  350 0           REXP Exponent of the percolation equation  1 0  5 0    dimensionless     8 LZTWM   Lower zone tension water maximum storage  mm     10 0  500 0     52    9 LZFSM Lower zone supplemental free water maximum  5 0  400 0   storage  mm     10 LZFPM Lower zone primary free water maximum storage  10 0   drainage ra
37. e samples  param file      UQ test functions params Sobol G txt     pf   read param file param file       Generate samples  choose method here   param values   lhs sample 50  pf  num vars    criterion  center    res   discrepancy evaluate param values     print res    37      Samples are given in range  0  1  by default  Rescale them to your  parameter bounds   scale samples general param values  pf  bounds       np savetxt    Input Sobol   txt   param values  delimiter           Run the  model  and save the output in a text file    This will happen offline for external models   Y   Sobol G predict param values    np savetxt  Output Sobol   txt   Y  delimiterz          Perform the sensitivity analysis uncertainty analysis using the model  Output    Specify which column of the output file to analyze  zero indexed     moments analyze  Output Sobol   txt   column 0     4 1 4 Sensitivity Analysis    Next  we do sensitivity analysis using UQ PyL  There are three steps    1  Define parameter and model information    2  Do specific Design of Experiment or load Design of Experiment results  Different  sensitivity analysis method need different Design of Experiment method     3  Choose sensitivity analysis method and show the results     38    UQ PyL    Uncertainty Quantification Python Laboratory zB        ETS N E T    Problem Definition   Design of Experiment   Uncertainty Analysis CSensitivity Analysis J Surrogate Modelling   Optimi Lah    Load parameter file   D  UQ PyL UQ test fu
38. gned to before global  B nus H   o mple  i pf   m T declaretion   E  E        global functn   gi   Deren value HEITE Te prt Dun vel dic second order   ATuc   Parameter Mu Sigma Mu Star Mu Star Conf   genre o no ser  VET MUERTA AA Ge QURE IN   x1  0 706156 2 641627 2 640762 0 445780   A aca nem agem pol um men x2 0 127724 1 719118 1 542336 0 482545   RIIT epit peri ape ET o min x3  0 039390 0 588605 0 542817 0 148633   A   H ET   Gage ep     SE x4  0 118547 0 313918 0 295576 0 098900   39    HEEL  irum a Ro E  Xm Ha     x5 0 001200 0 025919 0 024397 0 005641   40        m pee   ES   x6  0 002367 0 039866 0 034427 0 012365   Bom sees x Ap   x7 0 013475 0 027525 0 023902 0 011979     peter OU do oo  mt NE eddie   x8  0 007195 0 034502 0 029983 0 011464   43      box k     44 4 param value entra oss UD prs   45 5     finit ff  sam   f ta    46 4 res   discrepes evaluate  pera lues   47                a d              Interactive UQ PyL Software    13    2 2 2 Linux platform    Canopy is a globally recommended Python distribution  It contains Python and 100   common built it packages  It also contains all the package UQ PyL used in one  software  So you can install Canopy for all the dependences UQ PyL needed  Please  go to the official website  https   www enthought com products canopy   for more  information     Step 1  Install Canopy software    Canopy is a commercial software  However  it provide free use for academic usage  If  you use Canopy for education or academic  you ca
39. hoose Executable File      Generate Driver              lt  gt  Choose    Problem Definition  tab  click on    Driver Generator  widget     lt  gt  Click    Choose Model Input File    to load model configuration file  for SAC  model is    UQ PyL UQ test functions SAC ps testO01 sac     ze Click    Generate Template File  to generate model configuration template file   this file will be used in model driver file     54    E UQ PyL    Uncertainty Quantification Python Laboratory        Design of Experiment   Uncertainty Analysis   Sensitivity Analysis   Surrogate Modelling Optimiigk       Generate Template File    Load Model Input File    D  UQ PyL UQ test functions SAC ps test  l sac Choose Model Input File    4  lal    Generate Template File    Input Variables    Generate Driver       Load Parameter File  D  Ug PyL UQ test functions params SAC  txt Choose Parameter File    Load Model Input File   D  UQ PyL UQ test functions SAC ps test  l sac Choose Model Input File    Driver Generator    Load Executable File  0D   UQ PyL UQ test_functions SAC mopexcal  exe Choose Executable File       Generate Driver       Generate Python driver file                 lt  gt  Click    Choose Parameter File  to load model parameter file  for SAC model is   UQ PyL UQ test functions params SAC txt      lt  Click    Choose Model Input File    to load model configuration file  for SAC  model is    UQ PyL UQ test functions SAC ps test01l sac        lt  gt  Click    Choose Executable File    to load 
40. ill introduce how to run simulations on surrogate models you  built     This step can also 1mplemented using python script     Python script file  Sobol G Surrogate py       Optional   turn off bytecode   pyc files   import sys    sys dont write bytecode   True    from UQ DoE import sobol   from UQ RSmodel import SVR   from UQ test functions import Sobol G   from UQ util import scale samples general  read param file  discrepancy  import numpy as np    import random as rd    47      Set random seed  does not affect quasi random Sobol sampling   seed   1  np random seed  seed     rd seed  seed       Read the parameter range file and generate samples  param file      UQ test functions params Sobol G txt     pf   read param file param file       Generate samples  choose method here     param values   sobol sample 500  pf  num vars         Samples are given in range  0  1  by default  Rescale them to your  parameter bounds   scale samples general  param values  pf  bounds       np savetxt   Input Sobol   txt   param values  delimiter           Run the  model  and save the output in a text file    This will happen offline for external models  Y   Sobol G predict param values     np savetxt  Output SobolX  txt   Y  delimiter           Perform regression analysis using the model output    Specify which column of the output file to analyze  zero indexed   model   SVR regression  Input Sobol   txt    Output Sobol   txt      column   0  cv   True     4 1 6 Parameter Optimization    At l
41. is     home quanjp swefs software Canopy        you can see the file inside it    quanjp  login02 Canopy   11  total 336  drwxrwxr x  drwxrwxr x   rw rw r     rwXr Xr x    LA    co    quan p quanjp  quan p quanjp    quan p quanjp  quanjp quanjp  quanjp quanjp  quanjp quanjp  quan p quanjp  quan p quanjp  quanjp quanjp    quan p quanjp   E    Li  zl h   m           i   A e O  cua    Pd    _ boot  py  canopy   canopy cli  canopy desktop  canopy mime  xml    LO  A h3  J CD     IWH C E     us  hn    LA  io coc  de pa  e  e       rwXIWXIr X     rw rIw r         FrW   IWw   I      drwxrwxr x  drwxrwxr x    zb    His      CH  e    cC  d  d    cu    EUN LM LLL Pt    C L    ma m       LL     e Oh  ca   Ki  C L   f      bi       Run      canopy    to setting up Canopy software    16    Canopy System and User environment locations    Your Canopy environment will be installed in the location shown below   You may change it  if you wish to  What s this    Canopy environment directory    home quanjp swgfs software Python    Continue       Enter the Canopy environment directory  for me is      home quanjp swgfs software Python     click    Continue    to continue  Your python  installation will in this directory     Setting up your Canopy environment       E       After that  a dialogue will display     Do you want to make Canopy your default Python environment     This will give you direct access to Canopy Python  and to utilities like IPython   easy install  nosetests  from your terminal 
42. le    button to choose     UQ PyL UQ test_functions params Sobol_G txt    file   Click    Choose Model File    button to choose     UQ PyL UQ test_functions Sobol_G py    file     UQ PyL    Uncertainty Quantification Python Laboratory   E    Problem Definition   Design of Experiment   Statistical Analysis   Sensitivity Analysis   Surrogate Modelling Optimi tad     Perform Design of Experiment    Load parameter file  D  UQ PyL UQ test_functions params Sobol_G  txt Choose Parameter File    Load Model File  D  Ug PvL Ug test functions Sobol G  py Choose Model File    Choose DoE method  Quasi Monte Carlo    Number of Sample Points  500    Generate DoE Script    Execute DoE Script       Choose Analysis Method    Load parameter file  D  Ug PvyL Ug test functions params Sobol G  txt Choose Parameter File    Load data file  input file  output file   Choose Input File    Choose Output File       Surrogate Model Method  SYM v Show Results    Do Design of Experiment and load results  OR  Load Design of Experiment results directly    Step 2  Do DoE for surrogate modeling method and load results       gt  gt  gt  4     Choose DoE method  for example    Quasi Monte Carlo       Set    Number of Trajectories     for example  500    Click    Generate DoE Script    button to generate script    Click    Execute DoE Script    button to run script and acquire DoE result    Load input output file you just generated  1  Click    Choose Input File  button to  load sample file  for example    UQ PyL 
43. ls   _ ANTE apy   discrepancy py   spyderlib    spyderplugins     Statistics moments method  MOAT sensitivity analysis  Sobol  sensitivity analysis    Metamodel based sobol  sensitivity    Ensure all needed files are loaded  Por GUL uses   GLP Bayesian Ridge regression  Decision Tree regression  GLP Elastic Net regression  Gaussian Process regression  k nearest neighbor regression  GLP LAR regression   GLP Lars regression    GLP Lasso regression      HE HE         YS 4  4      MARS regression      GLP Ordinary Least Squares    t Random Forest regression    GLP Ridge regression    Stochastic Gradient Descent regression      Support Vector Machine regression    Ensure all needed files are loaded  For GUI uses   ASMO optimization   DDS  Optimization   Monte Carlo Markov Chain optimization  Particle Swarm Optimization    Simulated Annealing optimization                dB  4      Shuffled Complex Evolution    Ensure all needed files are loaded  Compute discrepancy of design    Spyder package               Spyder package    2 Installation    2 1 Dependencies    UQ PyL is an open source package written in Python language  It runs on all major  platforms  Windows  Linux  MacOS   It requires some pre installed standard Python  packages    Python version     2 7 6   Numpy  gt   1 7 1   Scipy  gt   0 16 0   Matplotlib  gt   1 4 3   PyQt4  If you use graphic user interface    Scikit learn   0 14 1    9995429    2 2 Detailed Installation    2 2 1 Windows platform    For Windows platform  
44. model executable file  for SAC model is     UQ PyL UQ test functions SAC mopexcal exe       ze Click    Generate Driver    button to acquire model driver file     The driver file  UQ PyL UQ test_functions SAC py  shows below     import os   import math   import string  import numpy as np    from   util import read param file    tat He at ae TE TE eae E E E E aE AEE AEE EE AAA    USER SPECIFIC SECTION    controlFileName    D  UQ PyL UQ test functions params SAC txt     55    appinputriles    ps test  l sac   appInputTmplts   applInputFiles     Tmplt     at He tate ae eae ae AE aE aE a AEE aaa EEE aE PEPE EEE    FUNCTION  GENERATE MODEL INPUT FILE    genAppInputFile inputData appTmpltFile appInputFile nInputs inputName  s    infile   open appTmpltFile   r    outfile   open appInputFile   w    while 1   lineln   infile readline      E linea       Y     break  lineLen   len lineln   newLine   lineln    if nInputs  gt  0   for find in range  nInputs    strLen   len  inputNames  fInd    sind   string find newLine  inputNames fInd    if sind  gt   O0   sdata     7 3f    inputData fInd   strdata   str sdata   next   sInd   strLen  lineTemp   newLine 0 sInd    strdata          newLine  next  lineLen 1   newLine   lineTemp  lineLen   len newLine   outfile write newLine   infile close    outfile closet     return    E E AE TE TE TE TE TE TE TE TE TE dd AE AE dd dd dd dd dd dd dd dg    FUNCTION  RUN MODEL    def runApplication     sysComm    mopexcal exe   os system sysComm     return   
45. n download  canopy 1 5 5 full rh5 64 sh from our website or from Canopy official website  After  downloading  you should install Canopy by steps below     chmod 755 canopy 1 5 5 full rh5 64 sh   canopy 1 5 5 full rh5 64 sh    Welcome to the Canopy 1 5 5 installer     Io continue the installation  you must review and approve the license term    agreement     Tess Enter to continue       If you approve the license term  press Enter to continue    14    Canopy Product License   Express Canopy Express Software License Agreement  Basic    Professional Canopy Subscription License Agreement  Academic Canopy Software License for Academic Use    Please review your applicable license carefully   By installing or using a Canopy product you  siqnify your assent to and acceptance of the  terms of the applicable license to Canopy  If  vou do not accept the terms of the applicable  license  then you must not use the Canopy  products  Should you have any questions  regarding licensing  please contact us at  support  enthought com     ENTHOUGHT CANOPY EXPRESS  Software License Agreement    Ihis Enthought Canopy Express Software License  Agreement  the     greement  is between Enthought   Inc   a Delaware corporation  2   nthought      and  the licensee subscriber who accepts the terms of  this Agreement  the     ustomer      The effective    Do you approve the license terms   yes no     no   gt  gt  gt  yes   no  y       Type    yes    then press Enter to continue     Canopy will be installed
46. nctions params Sobol G  txt          Choose Parameter File    Load Model File  D  AUQ PyL UQ test_functi ons S obol G  py        Choose Model File         EES Define parameter and model information    Choose DoE method   Morris One at A Time       Morries One At A Time  MOAT  Configuration      Number of total sample points    dimension 1    Number of Trajectories    Number of Trajectories  E baal       Generate DoE Script             Execute DoE Script       Choose Analysis Method    Load parameter file  D  UQ PyL UQ test_functions params Sobol_G  txt  Choose Parameter Fila        Load data file  input file  output file         Choose Input File      Choose   utput File            Sensitivity Analysis Method  Morris    D Show Re sults                   Step 1  Define parameter and model information    lt  gt  Switch to    Sensitivity Analysis    tab     lt  Click    Choose Parameter File    button to choose     UQ PyL UQ test functions params Sobol G txt    file     lt  Click    Choose Model File    button to choose     UQ PyL UQ test functions Sobol G py    file     39    uo UQ PyL    Uncertainty Quantification Python Laboratory BS    Problem Definition   Design of Experiment   Uncertainty Analysis  Sensitivity Analysis Surrogate Modelling Optimiigk    Perform Design of Experiment    Load parameter file   D  UQ PyL UQ test functions params Sobol G  txt Choose Parameter File    Load Model File  D  Ug PvyL UQg test functions Sobol G  py Choose Model File    Desizn of Experime
47. nt Method  Choose DoE method   Morris One at A Time    Morries One At A Time MDAT  Configuration      Number of total sample points    dimension 1    Number of Trajectories    Number of Trajectories  50    Generate DoE Script    Execute DoE Script       Do specific Design of Experiment and load results  OR  Load Design of Experiment results directly    Choose Analysis Method    Load parameter file  D  UQ PyL UQ test_functions params Sobol_G  txt Choose Parameter File    Load data file  input file  output file   Choose Input File       Choose Output File    Sensitivity Analysis Method  Morris X Show Results       Step 2  Do specific DoE for specific sensitivity analysis method  For example  we do  Morris analysis in this chapter  Then load DoE results    Choose DoE method  for this experiment is    Morris One at A Time       Set    Number of Trajectories     for example  50    Click    Generate DoE Script    button to generate script    Click    Execute DoE Script    button to run script and acquire DoE result    Load input output file you just generated  1  Click    Choose Input File    button to  load sample file  for example      UQ PyL sample output morris 2015 05 19 17 54 55 txt     2  Click    Choose  Output File    button to load model output file  for example      UQ PyL model output morris 2015 05 19 17 54 55 txt      Po       40    E UQ PyL    Uncertainty Quantification Python Laboratory 2s    Problem Definition   Design of Experiment   Uncertainty Analysis ensitivit
48. odel   SVR regression  Input SAC    Output SAC   column   0  cv   True     4 2 5 Parameter Optimization    2 UQ PyL    Uncertainty Quantification Python Laboratory   O    File About      Optimization    Load Parameter File   D  UQ PyL UQg test functions params SAC  txt Choose Parameter File    y         Definition   Design of Experiment   Uncertainty Analysis   Sensitivity   nalysis   Surrogate Modelling    Load Data                Load Model  D   UQ PyL UQ test functions SAC  py m   L choose Model File          Step1  Load parameter file and model driver    Optimization Method  Shuffled Complex Evolution v   Show Results       TM Step2  Choose optimization method and show results  Show Optimization Results       Step 1  Define parameter and model information    lt   gt  Choose    Optimization    tab     lt  gt  Load parameter file  UQ PyL UQ test functions params SAC txt  and model file   driver file     UQ PyL UQ test functions SAC py      66    Step 2  Choose optimization method and show results   lt  gt  Choose optimization method    Shuffled Complex Evolution    and click    Show  Results    button to acquire optimization results     UQ PyL gives the tabular and graphic results     C         8 42378595 6 771927931     Evolution Loop  22   Trial   1195  BESTF  6 866000  BEST      6 49999998 0 50025442 0 44093632 6 52111712 0 44434248 0B 60504633  8 43312661    98 778055538   WORSTF  6 660001  WORSTX      8 49999913 80 5027474 8 44747874 0 51922003 8 44448914 0B 60441023  
49. ose Parameter File    Choose Model File  D  UQg PyL UQ test functionz Sobol G  py Choose Model File       Desi fE   t Method  e d cam iis Load parameter file and model file    Choose DoE method  Latin Hypercube E  Latin Hypercube Configuration  Choose different Latin Hypercube method     Random Latin Hypercube   0  Center Latin Hypercube  C  Maximin Latin Hypercube      Center Maximin Latin Hypercube  C  Correlation Latin Hypercube    Number of Sample Points  50      Generate DoE Script          Execute DoE Script       Show Design of Experiment Result    Choose Result File  Choose Result File    Display Result    Step 1  Define parameter and model information    lt  gt  Switch to    Design of Experiment  tab     lt  gt  Click    Choose Parameter File    button to choose     UQ PyL UQ test functions params Sobol  G txt  file     lt  gt  Click    Choose Model File    button to choose     UQ PyL UQ test functions Sobol G py    file     30    ES    UQ PyL    Uncertainty Quantification Python Laboratory pas    Problem Definition     Design of Experiment  y Uncertainty Analysis   Sensitivity Analysis Surrogate Modelling Optimi dar     Load Model Information    Choose Parameter File   D  UQ PyL UQ test functions params Sobol G  txt    Choose Model File  D  Ug PyL UQ test functions Sobol G  py    Choose DoE method  Latin Hypercube    Latin Hypercube Configuration    Choose different Latin Hypercube method     Number of Sample Points     Generate DoE Script    Choose Parameter File  
50. ose surrogate modeling method and show results   lt  gt  Choose surrogate modeling method    SVM       lt  gt  Click    Show Results    button to acquire surrogate modeling results     UQ PyL gives the tabular and graphic results     64       This step can also implemented using python script     Python script file  SAC Surrogate py       Optional   turn off bytecode   pyc files   import sys    sys dont write bytecode   True    from UQ DoE import monte carlo   from UQ test functions import SAC   from UQ util import scale samples general  read param file  discrepancy  import numpy as np    import random as rd      Set random seed  does not affect quasi random Sobol sampling   seed   1  np random seed  seed     rd seed seed     Read the parameter range file and generate samples  param file      UQ test functions params SAC txt     pf   read param file param file       Generate samples  choose method here     param values   monte carlo sample 500  pf  num vars       65      Samples are given in range  0  1  by default  Rescale them to your  parameter bounds   scale samples general  param values  pf  bounds       np savetxt  Input SAC txt   param values  delimiterz          Run the  model  and save the output in a text file    This will happen offline for external models   Y 2 SAC predict  param values    np savetxt   Output SAC txt   Y  delimiter           Perform regression analysis using the model output    Specify which column of the output file to analyze  zero indexed     m
51. ou plan to manually specify the full path to  Canopy Python  you must specify Canopy s  User  Python  rather than the Canopy  installation Python  Learn More       L    Choose    Yes     then click    Start using Canopy        22    eoo Welcome to Canopy       m    CHTHOUONT Hi  welcome to Canopy   CANOPY Log in to your Enthought account or create one           ne   A   E  E       y    Editor Package Manager Doc Browser       Training on Demand    Recent files    No recent files Restore previous session G    Open an existing file F      Version  1 5 5 3123   No updates found   Also  you can check your python installation in your python installation path  All files  are in    YourPythonPath User      for me IS   Users wangchen Library Enthought Canopy_64bit User    The python executable file  is in    YourPythonPath User bin         Step 3  Test your Python installation   If you have multiple python environment  please specific one  For MacOS you could  add a line like this to the  etc launchd conf file   export PY THONPATH  Users wangchen Library Enthought Canopy_64bit User bin    23    Then enter command    source launchd conf    to make your launchd conf file renew          Type    python    or    python2 7    command  if you can see    Enthought Canopy Python     that means you already accomplished the installation     ouchenmatoMacBook Pro  UQ PyL Linux wangchen  python   Enthought Canopy Python 2 7 9   64 bit    default  Jun 38 2815  19 41 21    GCC 4 2 1  Based on Apple
52. r  bashrc file renew     Type    python    or    python2 7    command  if you can see    Enthought Canopy Python     that means you already accomplished the installation     n M LE    Enthought Canopy Python 2 7 9   64 bit    default  Jun 30 2015  22 40 22    GCC 4 1 2 20080704  Red Hat 4 1 2 55   on linux        Iype  help    copyright    credits  or  license  for more information     You can check if all the packages UQ PyL needed are already installed  Using   import  command  if no error messages that means you already have all the  packages     ba    Enthought Canopy Python 2 7 95 d Dit  default  Jun 30 2015  22 40 22    GEC 4 1 2 20080704 4 1 2 55   on linux    Ivpe  help    copyright   redits HE license    for more information    gt  gt  gt  import numpy    gt  gt  gt  numpy  version _     gt  gt  gt  import matplotlib    gt  gt  gt  matplotlib  version     1 4 3     gt  gt  gt  import aklearn    gt  gt  gt  gklearn  version   0 16 1         import FyQt4       Step 4  Install UQ PyL software  Download UQ PyL Linux version  unzip the source code using command    tar    xvf UQ PyL_Linux tar  gz   Then enter into the UQ PyL directory   cd UQ PyL Linux   Enter command to run UQ PyL main page    python main pyw  or python2 7 main pyw     19    Or Interactive UQ PyL Software  python main  interactive pyw  or python2 7 main  interactive pyw     You can see the main page of UQ PyL software              Driver Generator                   2 2 3 MacOS platform    For MacOS platfo
53. r Opinia e 66   4 Run simulation On surrogate mode ete ape er a Sa at ep Eege 68   dak Wise merac ito VO PVL S ege 72  4 4 1 How to run interactive UQ PyL Software    72   4 4 2 How to use interactive UO ETA Be EE 73    1 Introduction    1 1 A Quick Start    UQ PyL  Uncertainty Quantification Python Laboratory  is a software platform for  performing various uncertainty quantification  UQ  activities such as Design of  Experiments  DoE   Statistical Analysis  Sensitivity Analysis  SA   Surrogate  Modeling and Parameter Optimization  This document describes how to set up  problems and use these UQ methods to solve them through UQ PyL  The  mathematics of those UQ methods can be found in the separate theory manual     We request that you cite the following paper when you report the results obtained by  using the UQ PyL software platform     C  Wang  O  Duan  Charles H  Tong   2015   UQ PyL     A GUI platform for  uncertainty quantification of complex models  Under review for Environmental  Modeling    Software     1 2 Available UQ PyL Capabilities    1 2 1 Design of Experiment    Full Factorial design   Fractional Factorial design   Plackett Burman design   Box Behnken design  Central Composite design  Monte Carlo design  Latin  Hypercube design  random  center  maxmin  center maxmin  correlate   Symmetric  Latin Hypercube design  Improved Distributed Hypercube design  Sobol    sequence   Halton sequence  Faure sequence  Hammersley sequence  Good Lattice Point     1 2 2 Statisti
54. rm  Canopy also has a MacOS version  You can download Canopy  software and UQ PyL MacOS version from our website  The installation process is  very similar with Linux platform     Step 1  Install Canopy software   First  double click the  dmg file to start the installation     20       Drag Canopy into your Applications folder to install        Canopy Applications     ZENTHOUGHT    Pull Canopy icon to Application folder     Canopy       Step 2  Setting up Canopy environment    Double click    Canopy    icon to start setting Canopy environment     21    eoo Canopy Environment Setup    Canopy System and User environment locations  Your Canopy environment will be installed in the location shown below   You may change it  if you wish to  What s this    Canopy environment directory   Change       Users wangchen Library Enthought Canopy_64bit       Write Canopy environment directory  click    Continue    to continue  Your python  installation will be in this directory     eoo Canopy    Setting up your Canopy environment              After that  a dialogue will display   eoo Make Canopy your default Python environment     Do you want to make Canopy your default Python environment     Yes  Recommended     This will give you direct access to Canopy Python  and to utilities like IPython   easy install  nosetests  from your terminal   command prompt  Learn More       No    Later on  if you want to make Canopy Python the default  you can do so from the  preferences dialog  Warning   If y
55. sample output sobol 2015 10 11 17 54 55 txt     2  Click    Choose  Output File  button to load model output file  for example     UQ PyL model output sobol 2015 10 11 17 54 55 txt      44    i5    UQ PyL    Uncertainty Quantification Python Laboratory    Problem Definition   Design of Experiment   Statistical Analysis   Sensitivity Analysis   Surrogate Modelling Optimifak    Perform Design of Experiment    Load parameter file     Load Model File     Choose DoE method     Number of Sample Points     Generate DoE Script    Execute DoE Script    Choose Analysis Method    Load parameter file     D  Ug PyL UQg test functions params Sobol G  txt    D  UQ PyL UQ test functionz Sobol G  py    Quasi Monte Carlo Y    4    500    D  Ug PyL Ug test functions params Sobol G  txt    Load data file  input file  output file    D  UQ PyL sample output sobol 2015 10 11 20 28 40  txt    Surrogate Model Method     Choose Parameter File    Choose Model File    Choose Parameter File    Choose Input File    Choose Output File    Show Results       Choose Surrogate Modeling method and show results    Step 3  Choose surrogate modeling method and show results   lt  gt  Choose surrogate modeling method  like    SVM       lt  gt  Click    Show Results    button to show sensitivity analysis results     UQ PyL gives the tabular and graphic results     D  lt  gt UG PyL gt python  E  m UQ R  model  m sum  I D  UQ PyL   sample_output_sobol_2615_1  H 11 ZH 28 4BH txt  Y D  lQ PuL model output sobol 2H815 1H 
56. spyder   to achieve this function  The left part of the interface  is a code editor  you can type your python code here  After run the python code  you  can see internal variable values in the upper right of the interface and output results 1n  the lower right part     4 4 2 How to use interactive UQ PyL Software    Method One  You can write your own python code in the editor part then click  Run      gt     display on the upper right part and lower right part of the interface     button to run the python script  Variable values and output values will be    Method Two  Also you can click    Open    button D to load a exist python script     gt     file  for example  AUQ PyL python example py   then click    Run    button to  run the python script     You can see the variable values below     Key Type Size Value    Y float  4  90  array   6 92016797  0 93247791  1 17311737  6 65173187  0 64312815        param file str 1   UQ test functions params Sobol G txt   param values float64  90 8  array    0 66666667  6  a 0 33333333  0 66666667  1  fed  i num vars   8   names     xl    x2    x3    x4    x5    x6    x     x8 amp      boun    pf dit     3    seed int 1 1       And tabular and graphic outputs     73    Parameter Mu Sigma Mu Star Mu Star Conf  xl  0 706156 2 641627 2 640762 0 445780   xz 0 127724 1 719118 1 542336 0 482545   x3  0 039390 0 588605 0 542817 0 148633   x4  0 118547 0 313918 0 295576 0 098500   xo 0 001200 0 025919 0 024397 0 005641   Sp  0 002367 0 039866 0 0
57. te  day    12 Lower zone primary free water lateral drainage rate    0 001  0 05    day    directly to lower zone free water  decimal fraction   14 0 30   dimensionless   Laud to lower zone tension water  decimal fraction   Table 6  Parameters of SAC SMA model  So we generate the parameter file  UQ PyL UQ test_functions params SAC txt  as     UZTWM 10 300  UZFWM 5 150    DAR    ist e Ta  PETIM  0     Qu ll   ADIMPS Q 02   APERC 5  3900   REXP A     LZTWM 10 500  LZFSM 5 400  LZFPM 10 1000  BASE OS  05959  LABR Us 001  005  PEREEB O 0 9    SAC SMA model is an executable file on Windows or Linux or MacOS system  In  order to using UQ PyL  we need to generate a python driver to couple SAC SMA  model and UQ PyL platform  The driver file can be generated automatically by  UQ PyL s GUI     53    2 UQ PyL    Uncertainty Quantification Python Laboratory         Problem Definition    Design of Experiment   Uncertainty Analysis   Sensitivity   nalysis   Surrogate Modelling   Optimi tad                Generate Template File       po Load Model Input File   D  UQ PyL Ug test functions SAC ps test  l sac Choose Model Input File    gt   em      US    Generate Template File      Input Variables       A EH Generate Template file  A Load Parameter File  D  UQ PyL UQ test functions params SAC  txt   Choose Parameter File    Load Model Input File   D  UQ PyL UQ test functions SAC ps test  l sac Choose Model Input File  ee Load Executable File   D  UQ PyL UQ test_functi ons SAC mopexcal  exe   C
58. there is a software integrate Python and some common  packages called Python xy   It contains all the packages UQ PyL needed  You can just  install Python xy  and UQ PyL to run UQ analysis     Step 1  Install Python xy  software   You can download    Python xy     from our website  Double click the Installation file  to start installation     td Prthon z y   2 7 6 0 Setup    License Agreement      pythonix  y  Please review the license terms before installing Pythontx  v   eB     Press Page Down to see khe rest of the agreement     Copyright E 2008 Pierre Raybaut  Licensed under the GNU General Public License version 3    Python  components are distributed as they were received from their copyright holder   under their own copyright and or license  and without any linking with each other  Pethor   5 4  software collection  Le  the cofec  anof software  libranes and documents  is licensed  under the terms of the GNU General Public License version 3    http  Zw  gnu  arg  licenses  gpl  tek     GNU GENERAL PUBLIC LICENSE  Version 3  29 June   007    IF you accept the terms of the agreement  click I Agree to continue  You must accept the  agreement to install Pythonis  y  2  7 6 0     Pythonis vy  Ehe Python Distribution made by Scientists Far Scientists       Click    I Agree  to continue     Choose Users  Y python x y  Choose for which users you want to install Python x y  2  7 6 0     Select whether you want to install Python x y  2 7 6 0 for yourself only or for all users of
59. ut SAC txt    Output SAC txt   column    0     63    4 2 4 Surrogate Modeling    2 UQ PyL    Uncertainty Quantification Python Laboratory   E    Problem Definition Design of Experiment Uncertainty Analysis Sensitivity Analysis urrogate Modelling Optimi Lah     Perform Design of Experiment       Load parameter file  D   UQ PyL UQ test_functions params SAC  txt Choose Parameter File  Load Model File  D  UQ PyL UQ test functions SAC py Choose Model File  Choose DoE method  Monte Carlo     Number of Sample Points   200 F    Stepi  Load parameter file and driver file    Generate DoE Script    Execute DoE Script    Step2  Load Design of Experiment results    Choose Analysis Method    Load parameter file  D   UQ PyL UQ test functions params SAC  txt Choose Parameter File    Load data file  input file  output file   Choose Input File    Choose Output File       Surrogate Model Method  SYM v Show Results    Step3  Choose surrogate modeling method and show results       Step 1  Define parameter and model information    lt  gt  Choose    Surrogate Modeling  tab     lt  gt  Load parameter file    UQ PyL UQ test functions params SAC txt  and model file   driver file     UQ PyL UQ test functions SAC py        Step 2  Load DoE results for surrogate modeling    lt  Choose DoE results  sample input file     UQ PyL UQ test functions SAC sample output mc 2015 05 19 21 45 26 tx  t  and model output file     UQ PyL UQ test functions SAC model output mc 2015 05 19 21 45 26 txt    KK    Step 3  Cho
60. ut file  output file   Choose Input File  Choose   utput File   Basic Statistical Analysis Methods  Statistical Moments Methods Y Show Results    Advanced Statistical Analysis Methods  Pearson Spearman Correlations Analysis Y Show Results    Step 1  Define parameter and model information    lt  gt  Switch to    Statistical Analysis    tab     lt  gt  Click    Choose Parameter File    button to choose     UQ PyL UQ test functions params Sobol G txt    file     lt  Click    Choose Model File    button to choose     UQ PyL UQ test functions Sobol G py    file     34    2 UQ PyL    Uncertainty Quantification Python Laboratory      Problem Definition   Design of Experiment ncertainty Analysis   Sensitivity Analysis   Surrogate Modelling Optimiigk    Perform Design of Experiment    Load parameter file  D  UQ PyL UQ test functions params Sobol G  txt Choose Parameter File  Load Model File  D   UQ PyL VQ test_functions Sobol_6  py Choose Model File  Choose DoE method  Monte Carlo y   Nunber of Sample Points  50 T    Generate DoE Script    Execute DoE Script  Load Design of Experiment results    Choose Analysis Method    Load parameter file  D  Ug PyL Ug test functions params Sobol G  txt Choose Parameter File    Load data file  input file  output file   Choose Input File    Choose Output File       Basic Statistical Analysis Methods  Statistical Moments Methods x Show Results    Advanced Statistical Analysis Methods  Pearson Spearman Correlations Analysis Y Show Results    Step 2  Lo
61. xamples line py    Extraction progress    After unzip  there will be two shortcut on the desktop  one is refer to UQ PyL  software main page  the other is refer to interactive version of UQ PyL software   Double click the shortcuts can start the UQ PyL software  If the shortcut doesn   t work        11    please go to your install path  double click the    main pyw    file or   main interactive pyw  file to start these    In UQ PyL main page  you can do uncertainty quantification  analysis through  pull down menus  In interactive version of UQ PyL software  you can write python  script to run uncertainty quantification analysis and can see output results and internal    variables  values through the software s interface     Loading Uncertainty Quantification Python Laboratory             Version 1 0     PyL    UQ PyL Splash Page          12    File About    Problem Definition Statistical Analysis   Sensitivity Analysis   Surrogate Modelling   Optimiisk    Add Input Variables       Parameter Name     Parameter Lower Bound     0 00    Input Variables Parameter Upper Bound     1 00    Parameter Distribution                    A    Driver Generator    Show input variables    Parameter Name Parameter Lower Bound Parameter Upper Bound Parameter Distribution    Save to Parameter File       UQ PyL Software Main Page    So Pythonexamplepy  UQ PyL Interactive Environment   AMES       File Edit About  D    spetta    1h Optional turn off bytecode   pyc files   Key T Size Vel  poe ype ue 
62. y Analysis  gt  Surrogate Modelling   Optimitah     Perform Design of Experiment    Load parameter file  D  UQ PyL UQ test functions params Sobol G  txt Choose Parameter File    Load Model File  D  UQ PyL UQ test functions Sobol G py Choose Model File    Design of Experiment Method  Choose DoE method  Morris One at A Time    Morries One At A Time  MDAT  Configuration      Number of total sample points    dimension 1    Number of Trajectories    Number of Trajectories  50      Generate DoE Script    Execute DoE Script    Choose sensitivity analysis method and show results    Choose Analysis Method    Load parameter file  D  UQ PyL UQ test functions params Sobol G  txt Choose Parameter File   Load data file  input file  output file    D  UQ PyL sample output morris 2015 05 19 17 54 55  txt Choose Input File  D  Ug PvL model output morris 2015 05 19 17 54 55  txt Choose Output File   Sensitivity Analysis Method  Morris v Show Results          LESE  E      l  Step 3  Choose sensitivity analysis method and show results     lt  gt  Choose sensitivity analysis method  like    Morris       lt  gt  Click    Show Results    button to show sensitivity analysis results     UQ PyL gives the tabular and graphic results     EN CAWindowsisystem321cmd exe   o       Soho 1 G txt  I D  lQ PuL sample  output  morris 2H15 H5 19 17 54 55 txt  Y D zU    FyuL model output morris 2Hi15 H5 17 17 54 55 txt  Parameter Mu Sigma Mu Star Mu Star Conf    4 248158 2 559118 2 864968 0 422817   HBH 29H318 1 61
    
Download Pdf Manuals
 
 
    
Related Search
    
Related Contents
Trane S&P Unit Heaters Installation and Maintenance Manual  Konica Minolta Z6 Digital Camera User Manual  Title: SMOS L2 OS Operational Processor Software User Manual  Le roman et ses personnages : visions de l`homme et du monde    Descargar manual  PLUM RAM - Plum Mobile  Agilent G3199B Quiet Cover II  Automatic XML購入申込書 - Automatic XML InDesign自動処理  fiche projet mode d`emploi    Copyright © All rights reserved. 
   Failed to retrieve file