Home
Modbus Map - Meters USA
Contents
1. 4192H Time stamp yyyy mm dd hh 4197H 55 F3 ume R 4198H MAX of power demand F13 32768 32767 R 4199H Time stamp yyyy mm dd hh F3 time R 419eH mm ss 419fH MAX of reactive power demand F14 32768 32767 R 41a0H Time stamp yyyy mm dd hh 41 5 mm ss p time 41 6 MAX of apparent power demand F15 32768 32767 R 41a7H Time stamp yyyy mm dd hh F3 time R 41acH mm ss 41ladH MAX of voltage unbalance factor F17 32768 32767 R 41aeH Time stamp yyyy mm dd hh Aib3H mm ss ume 41b4H MAX of current unbalance factor F17 32768 32767 R 41b5H Time stamp yyyy mm dd hh 41baH mm ss dd time R 41bbH MAX of V1 V12 THD F18 32768 32767 R 41bcH Time stamp yyyy mm dd hh F3 tim R 41c1H mm ss 41c2H MAX of V2 V31 THD F18 32768 32767 R 41c3H Time stamp yyyy mm dd hh F3 time R 41c8H mm ss 41c9H MAX of V3 V23 THD F18 32768 32767 R 41caH Time stamp yyyy mm dd hh F3 time R A1cfH mm ss 4140 MAX of 11 THD F18 32768 32767 R 41d1H Time stamp yyyy mm dd hh 4id H mm ss p E 41d7H MAX of 12 THD F18 32768 32767 R 41d8H Time stamp yyyy mm dd hh mm ss me 41 MAX of 13 THD F18 32768 32767 R Aavim I Bee 1 A1dfH 41e4H Time stamp yyyy mm dd hh mm ss F3 time R 41 5 4293 are the address of previous parameters MIN havin
2. S Rxx PT1 PT2 CT1 CT2 power Ssum 4034H 4035H phase A power factor pp Rx 4036H 4037H Frese B power factor Rx 4038H 4039H Phase C power F1 PF factor PFc 403aH 403bH power factor PEER sum Voltage unbalance factor U unbl Current unbalance 403cH 403dH F1 Unbalance Rx 100 403eH 403fH F1 Unbalance Rx x 100 factor unbl 4040H 4041H Load Fi 76 0 67 0 82 0 ASCII characteristic L C R i 4042H 4043H Power demand F1 P Rxx PT1 PT2 x CT1 CT2 4044H 4045H Reactive Power Fi P Rxx PT1 PT2 x CT1 CT2 demand 4 APParent power FA P Rxx PT4 PT2 x CT1 CT2 demand Real time energy measurement Data stored in this block can be preset or cleared Function code 03H for reading 10H for writing Data type dword Bee 1 It can be set as primary energy or secondary energy according to user Please refer to F7 F8 and F9 for more details about the relationship between numerical value in register and the real physical value 4048H 4049H Energy IMP FA F7 0 999999999 R W 404aH 404bH Energy EXP FA F7 0 999999999 R W 404cH 404dH Reactive energy IMP F5 F8 0 999999999 R W 404eH 404fH Reactive energy EXP F5 F8 0 999999999 R W 4050H 4051H Energy TOTAL FA F7 0 999999999 R W 4052H 4053H Energy NET FA F7 0 999999999 R W 4054H 4055H Reactive energy TOTAL F5 F8 0 9999
3. SOE enable 0 2 AXM 1021 3 AXM 1031 4 AXM 1012 5 AXM 1022 6 AXM 1032 I Awam A Bee 1 86 0 none 1 AXM 1011 2 AXM 1021 3 AXM 1031 101cH Pulse counter clear 0 A AXM 1012 5 1022 R W 6 AXM 1032 101dH Basic parameter mode O JO secondary 1 primary R W System status parameter System status indicates what events happened in the meter what kinds of flags are read by user and to be the index of the storage of the events Flags should be cleared after being read by the controller otherwise new data will not be stored properly Function code 03H for reading 10H for writing Data type word 101eH 102dH pere pointer 1 new data R W BitO new alarming or not 102eH System status Bid nc SOE OE n R 102fH 1031H Reserved qH Alarming group F1 0 15 R number 1033H SOE group number F1 0 19 R 1034H time high R 1035H Run time low is 0299999229 R BitO AXM 1011 Bit1 AXM 1012 Expanded Bit2 AXM 1021 Bit3 1036H IO Modules AXM 1022 Bit4 AXM R connecting status 1031 Bit5 AXM 1032 0 disconnected 1 connected 1037H Temperature F26 R 1038H 103fH Reserved Bee I wass Please refer to chapter 3 and chapter 4 for more details about parameter settings Date and Time table Function code 03H for reading 10H for presetting 1040H Year F3 2000 2099 R W 1041H Mont
4. Relay2 ON Left to LSB 2 Read the Status of DI Function Code 02 1 On O Off DI1 s address is 0x0000 DI2 s address is 0x0001 and so on The following query is to read the Status of 4 Dis of Acuvim Il with the address of 17 Aawin I Query DI start DI start DI num CRC 16 CRC 16 Addr Fun addrhi addr lo D TUMM io Hi Lo 11H 02H 00H 00H 00H 04H 7BH 59H Table 5 6 Read 4 Dis Query Message Response The Acuvim Il response includes the Acuvim Il address function code quantity of data characters the data characters and error checking An example response to read the status of 4 Dis are shown as Table 5 7 The status of 4 015 are responding to the last 4 bits of the data DI1 bitO DI2 bit 013 bit2 DIA bit3 Address Function code Byte count Data CRC high 11H 02H 01H 03H E5H Table 5 7 Read Status of DI The content of the data is 7 6 5 4 3 2 1 0 0 0 0 0 0 1 MSB DI1 On DI2 On DI3 Off DI4 Off Bee 1 3 Read Data Function Code 03 Query This function allows the master to obtain the measurement results of Acuvim Il Table5 8 is an example to read the 3 measured data F V1 and V2 from slave device number 17 the data address of F is 4000H 4001H V1 s address is 4002H 4003 and V2 s address is 4004H 4005H Add F Data start Data start Data
5. 0114 1 ON 0 OFF 1012 000eH 0115 1 ON 0 OFF 000fH DI16 1 ON 0 OFF 0010H DI17 1 ON 0 OFF 0011H 0118 1 ON 0 OFF 0012H 0119 1 ON 0 OFF 0013H DI20 1 ON 0 OFF 1022 0014H DI21 1 ON 0 OFF 0015H 0122 1 ON 0 OFF 0016H 0123 1 ON 0 OFF 0017H DI24 1 ON 0 OFF 1032 0018H 0125 1 ON 0 OFF Bee 1 106 0019H DI26 1 ON 0 OFF bit 001aH DI27 1 ON 0 OFF bit 001bH DI28 1 ON 0 OFF bit Relay status Function code 01H for reading 05H for controlling output AXM IO11 0000H Relay1 1 ON 0 OFF bit 0001H Relay2 1 ON 0 OFF bit 031 0002H Relay3 1 ON 0 OFF bit 0003H Relay4 1 ON 0 OFF bit AXM IO12 0004H Relay5 1 ON 0 OFF bit 0005H Relay6 1 ON 0 OFF bit AXM 1032 0006H Relay7 1 ON 0 OFF bit 0007H Relay8 1 ON 0 OFF bit
6. F18 Related with R W value parameters 1051H_ First group delay F1 0 3000 10ms R W First group output to 0 none 1 8 1052 relay i related relay R W 1053H Same as the first 109dH 2nd to 16th group group R W Alarming parameter code table 0 frequency 1 Va 2 Vb 3 Ve 4 Average phase voltage 5 Uab 6 Ubc 7 Uca 8 Average line voltage Line current Line current of phase Line current of phase 9 10 11 of phase A B 12 Average line 13 Neutral current 14 Power of phase A current 15 Power of 16 Power of phase C 17 Power of all phase B 18 Made 19 SE power of 20 Vip power of phase A p p 21 Reactive 22 Apparent power of 23 Apparent power of power of all phase A phase B Apparent 24 power of 25 Apparent power of all 26 PF of A phase C 27 28 PFofC 29 PF Voltage M 30 Unbalan e 3 Current unbalance 3 Load characteristic R factor unbl L C factor U unbl THD V V 34 THD_V2 V2 or V31 35 THD_V3 V3 or V23 or V12 Average 36 THD V 37 THD M 38 THD 12 Average 39 THD 13 40 THD 41 Al1 sampling value 42 43 AI3 sampling value 44 Al4 sampling value I 90 1 0 Modules settings These settings are for some extended 1 0 modules if there is no any extended 1 0 modules all the settings of no use 1 0 connecting status before you do any settings Function code for reading 10H for writi
7. Refer to following table R W 10c4H A03 transforming parameter Refer to following table R W 10c5H AO4 transforming parameter Refer to following table R W AO transforming parameter settings 0 Frequency 1 Va 2 Vb 3 Vc 4 Average phase 5 Uab voltage 6 Ubc 7 Uca 8 Average line voltage 9 Line current of 10 Line current of T Line current of phase A phase B phase C 12 Average Dine 13 Neutral current 14 Power of phase A current 15 Power of phase B 16 Power of phase C 17 Power of all 18 Reactive power 19 Reactive power 20 Reactive power of phase A of phase B of phase C 21 Reactive power 22 Apparent power 23 Apparent power of all of phase A of phase B Apparent power Apparent power 24 of phase C 25 of all 26 uu 27 PF of B 28 PF of C 29 PF Basic Analog measurements There are two different modes to read basic analog measurements one is secondary mode and another is primary mode In primary mode the numerical value in register of Acuvim II is equal to the real physical 93 I CAMA A in register and the real physical value is as following table Rx is the i value In secondary mode the relationship between numerical value lt numerical value in register of Acuvim 11 Function code 03H for reading 4000H 4001H Frequency F1 F Rx R 4002H 4003H Phase voltage V1 F1 U Rxx PT1 PT2 R 4004H 4005H Phase voltage V2 F1 U Rxx PT1 PT
8. is started by 66 first preloading a 16 bit register to all 1 s Then a process begins of applying successive 8 bit bytes of the message to the current contents of the register Only the eight bits of data in each character are used for generating the CRC Start and stop bits and the parity bit do not apply to the CRC During generation of the CRC each 8 bit character is exclusive ORed with the register contents Then the result is shifted in the direction of the least significant bit LSB with a zero filled into the most significant bit MSB position The LSB is extracted and examined If the LSB was a1 the register is then exclusive ORed with a preset fixed value If the LSB was a 0 no exclusive OR takes place This process is repeated until eight shifts have been performed After the last eighth shift the next 8 bit byte is exclusive ORed with the register current value and the process repeats for eight more shifts as described above The final contents of the register after all the bytes of the message have been applied is the CRC value When the CRC is appended to the message the low order byte is appended first followed by the high order byte Bee I 5 2 Format of Communication Explanation of frame Addr Fun Data start Data start Data Zof Data of CRC 16 reg hi reg lo regs hi regs lo Hi 06H 03H 00H 00H 00H 21H 84H Table 5 3 Explanation of frame In table5 3 the mean
9. of Data Zof CRC 16 CRC 16 rop addr hi addr lo regs hi regslo jregsHi Lo 11H 03H 40H 00H 00H 06H D2H 98H Table 5 8 Read F V1 V2 Query Message Response The Acuvim Il response includes the Acuvim II address function code quantity of data byte data and error checking An example response to read F V1 and V2 F 42480000H 50 00Hz V1 42C7CCCDH 99 9V V2 42C83333H 100 1V is shown Byte Data1 Data1 Data 2 Data2 Data3 Data3 Data4 Data4 count hi Lo hi lo hi lo hi lo 11H 3H OCH 42H 48H OOH OOH 42H C7H CCH CDH Addr Fun Data5 Data5 Data 6 Data6 CRC16 CRC16 hi Lo hi lo hi lo 42H C8H 33H 33H CAH 7FH Table 5 9 Read F V1 and V2 Message 4 Control Relay Function Code 05 Query This message forces a single relay either on or off Any relay that exists within the Acuvim II can be forced to be either status on or off The data value FFOOH will set the relay on and the value OOOOH will turn it off all other values are illegal and will not affect that relay Aavim I The example below is a request to the Acuvim II with the address of 17 to turn on Relay1 DO addr DO addr Value Value CRC 16 CRC 16 Addr Fun a hi lo hi lo Hi Lo 11H 05H 00H 00H FFH 00H 8EH AAH Table5 10 Control Relay Query Message Response The normal response to the command request is to retrans
10. 2 R 4006H 4007H Phase voltage V3 F1 U Rxx PT1 PT2 R 4008H 4009H Average voltage Vave F1 U Rxx PT1 PT2 R 400aH 400bH Line voltage V12 U Rxx PT1 PT2 R 400cH 400dH Line voltage V23 F1 U Rxx PT1 PT2 R 400eH 400fH Line voltage V31 F U Rxx PT1 PT2 R 4010H 4011H line voltage py ly Rxx PT4 PT2 R avg 4012H 4013H Phase line current 11 F1 Rxx CT1 CT2 R 4014H 4015H Phase line current 12 F1 I RXx CT1 CT2 R 4016H 4017H Phase line current I3 F1 I Rxx CT1 CT2 R 4018H 4019H Average current lavg F1 I Rxx CT1 CT2 R 401aH 401bH Neutral current In F1 I Rxx CT1 CT2 R 401cH 401dH Phase A power Pa Fl P Rxx PT1 PT2 CT1 CT2 R 401eH 401fH Phase B power Pb F1 __ 1 2 1 2 R 4020H 4021H Phase C power Pc F1__ P Rxx PT1 PT2 x CT1 CT2 _R 4022H 4023H System power Psum F1 P Rxx PT1 PT2 CTT CT2 R 4024H 4025H Phase A reactive FI Q Rxx PT1 PT2 x CT1 CT2 R power Qa Phase B reactive Q Rxx PT1 PT2 x CT1 4025H 4027H ver Qb Ft C x R Phase C reactive Rxx PT1 PT2 x CT1 4028H 4029H 1 D x R 402aH 402bH System reactive F1 Q Rxx PT1 PT2 x CT1 R power Qsum CT2 402cH 402dH Phase A Apparent Fi S R PTT PT2 CT1 CT2 R power Sa 402eH 402fH Phase B Apparent F1 S Rxx PT1 PT2 x CT1 CT2 power Sb 4030H 4031H Phase Apparent Fi S R PT1 PT2 CT1 CT2 power Sc 4032H 4033H Stem Apparent Fi
11. 4368H 0116 pulse counter number F1 0 4294967295 R 4369H 436aH 0117 pulse counter number F1 0 4294967295 R Aavim I 436bH 436cH 0118 pulse counter number F1 0 4294967295 R 436dH 436eH 0119 pulse counter number F1 0 4294967295 436fH 4370H DI20 pulse counter number F1 0 4294967295 R AXM I1O22 4371H 4372H DI21 pulse counter number F1 0 4294967295 R 4373H 4374H DI22 pulse counter number F1 0 4294967295 R 4375H 4376H DI23 pulse counter number F1 0 4294967295 R 4377H 4378H DI24 pulse counter number F1 0 4294967295 R AXM 1032 4379H 437aH 0125 pulse counter number F1 0 4294967295 R 437bH 437cH 0126 pulse counter number F1 0 4294967295 R 437dH 437eH 0127 pulse counter number F1 0 4294967295 R 437fH 4380H DI28 pulse counter number F1 0 4294967295 R Al input value The output of Al is mapped to the range of 0 4095 according to its sampling value using some algorithm Data type is word Function code for reading Please refer to User s manual of expanded 1 0 modules for more details 4385H AI1 sampling value F1 0 4095 R 4386H AI2 sampling value F1 0 4095 R 4387H Al3 sampling value F1 0 4095 R 4388H Al4 sampling value F1 0 4095 R AO output The output of AO is the actual value of output It will get a different unit V or mA according to different outputs Data ty
12. 99999 R W 4056H 4057H Reactive energy NET F5 F8 0 999999999 R W 4058H 4059H Apparent energy F6 F9 0 999999999 R W Harmonics THD Harmonics odd HD even HD Crest Factor THFF K factor etc are all stored here The data type is word Voltage parameters refer to line voltage when it is set to 2LL 3LL and phase voltage for others Function code 03H for reading The following are the THD of voltage and current 405aH THD V1 of V1 V12 F18 0 10000 R 405bH THD V1 of V2 V31 F18 0 10000 R 405cH THD V1 of V3 V23 F18 0 10000 R 405dH Average THD V F18 0 10000 R 405eH THD 11 F18 0 10000 R 405fH THD I2 F18 0 10000 R 4060H THD_I3 F18 0 10000 R 4061H Average I F18 0 10000 R Voltage Harmonics even HD odd HD Crest Factor are shown as below 4062H Harmonics of V1 V12 407fH the 2 to 31 F19 0 10000 R 4080H Odd HD of V1 V12 F20 0 10000 R 4081H Even HD of V1 V12 F21 0 10000 R 4082H Crest Factor of V1 V12 F22 0 65535 R 4083H THFF of V1 V12 F24 0 10000 R 4084H 40a5H Parameters of V2 V31 Same as V1 R 40a6H 40c7H Parameters of V3 V23 Same as V1 R 40c8H Harmonics of 11 the 2 s F19 0 10000 R 40e5H to 31 40e6H Odd HD of I1 F20 0 10000 R 40e7H Even HD of I1 F21 0 10000 R 40e8H K Factor of 11 F23 0 65535 R 40e9H 4109H Parameters of I2 Same as 11 R 410aH 412aH Parameters of 13 Same
13. AXM 1012 BitO DI15 Bit1 DI16 Bit2 DI17 Bit3 DI18 Te D1320 PS Bit4 DI19 Bit5 DI20 0 DI 1 pulse counter 10b1H DI pulse constant high 0 1 65535 Working mode of relay 0 control output 10b2H 5 and 6 9 1 alarming output Output mode of relay 10b3H 5 and 6 0 0 latch 1 momentary 10b4H Pulse width 50 50 3000ms Bee 1 92 1022 BitO DI21 Bit1 DI22 10b5H DI21 24 type 0 Bit2 DI23 Bit3 DI24 R W O DI 1 pulse counter 10b6H DI pulse constant 0 1 65535 R W Working mode of 0 pulse output cil DO3 4 0 1 alarming output RAW 10b8H DO Pulse width 20 20 1000ms R W 0 none 1 consumption power 2 gererating power 10b9H DO3 output 0 3 absorption reactive R W power 4 generating reactive power 10baH DO4 output 0 Same as above R W 0 0 20mA 1 4 20mA 10bbH AO3 4 type 0 2 0 5V 3 1 5V R W AXM 1032 BitO DI25 Bit1 DI26 10bcH 0125 28 type 0 Bit2 DI27 Bit3 DI28 R W O DI 1 pulse counter 10bdH DI pulse constant 0 1 65535 R W Working mode of O control output 10beH relay 7 and 8 0 1 alarming output R W Output mode of 10bfH relay 7 and 8 0 O latch 1 momentary R W 10cOH Pulse width 50 50 3000 R W 0 0 20mA 1 4 20mA 10c1H AI3 4 type 0 2 0 5V 3 1 5V R W AO transforming select 10c2H O1 transforming parameter Refer to following table R W 10c3H JAO2 transforming parameter
14. Chapter 5 Function and Software Introducing Modbus Protocol Format of the communication Data Address Table and Application Details of Acuvim II This chapter will mainly discuss how to handle the meter via the communication port using software To master this chapter you should be familiar with Modbus and have read other chapters of this manual and you have generously mastered the function and application of this product Bee T This chapter includes Modbus protocol format of communication and data address table and Acuvim II application details 5 1 Introducing Modbus Protocol The Modbus RTU protocol is used for communication in Acuvim Il The data format and error check methods are defined in Modbus protocol The half duplex query and respond mode is adopted in Modbus protocol There is only one master device in the communication net The others are slave devices waiting for the query of the master Transmission mode The mode of transmission defines the data structure within a frame and the rules used to transmit data The mode is defined in the following which is compatible with Modbus RTU Mode Coding System 8 bit binary Start bit 1 Data bits 8 Parity no parity Stop bit 1 Error checking CRC check Framing Address Function Data Check 8 Bits 8 Bits Nx8 Bits 16 Bits Table5 1 Data Frame Format Address Field The address field of a message frame co
15. H 433eH Fifteenth group Same as the first group 433fH 4348H Sixteenth group Same as the first group fee I Counting number of I O Modules DI are arranged according to expanded 1 0 module addresses user check out the counting number of DI along with those modules The counting number of I O modules will be stored in non volatile memory during power off They can be cleared up via communication and panel Data type is word Function code 03H for reading AXM IO11 4349H 434aH DI1 pulse counter number F1 0 4294967295 R 434bH 434cH DI2 pulse counter number F1 0 4294967295 R 434dH 434eH DI3 pulse counter number F1 0 4294967295 R 434fH 4350H 014 pulse counter number F1 0 4294967295 R 4351H 4352H DI5 pulse counter number F1 0 4294967295 R 4353H 4354H DI6 pulse counter number F1 0 4294967295 R AXM IO21 4355H 4356H 017 pulse counter number F1 0 4294967295 R 4357H 4358H DI8 pulse counter number F1 0 4294967295 R 4359H 435aH DI9 pulse counter number F1 0 4294967295 R 435bH 435cH DI10 pulse counter number F1 0 4294967295 R AXM IO31 435dH 435eH DI11 pulse counter number F1 0 4294967295 R 435fH 4360H 0112 pulse counter number F1 0 4294967295 R 4361H 4362H 0113 pulse counter number F1 0 4294967295 R 4363H 4364H DI14 pulse counter number F1 0 4294967295 R AXM IO12 4365H 4366H DI15 pulse counter number F1 0 4294967295 R 4367H
16. as 11 R MAX MIN records MAX MIN value and stamp time Function code 03H for reading 4136H MAX of V1 F11 32768 32767 R 4137H Time stamp yyyy mm dd hh i 413cH mm ss da time 413dH MAX of V2 F11 32768 32767 R 413eH Time stamp yyyy mm dd hh 4143H_ 55 ii ne 4144H MAX of V3 F11 32768 32767 R 97 Bee 1 Bee 1 4145H Time stamp yyyy mm dd hh F3 time R 414aH mm ss A14bH MAX of V12 F11 32768 32767 R Time stamp yyyy mm dd hh F3 time R mm ss MAX of V23 F11 32768 32767 R Time stamp yyyy mm dd hh F3 tim R mm ss MAX of V31 F11 32768 32767 R Time stamp yyyy mm dd hh F3 time R mm ss MAX of I1 F12 32768 32767 R Time stamp yyyy mm dd hh F3 time R mm ss MAX of I2 F12 32768 32767 R Time stamp yyyy mm dd hh imis F3 time R MAX of 13 F12 32768 32767 R Time stamp yyyy mm dd hh F3 tim R mm ss MAX of system power F13 32768 32767 R Time stamp yyyy mm dd hh F3 time R mm ss MAX of system reactive power F14 32768 32767 R Time stamp yyyy mm dd hh F3 time R mm ss MAX of system apparent power F15 32768 32767 R Time stamp yyyy mm dd hh F3 time R mm ss MAX of power factor F16 32768 32767 R Ti dd hh ime stamp yyyy mm dd hh F3 me R mm ss MAX of frequency F10 32768 32767 R
17. e count of actual data bytes in the field For example if the master requests a slave to read a group of holding registers function code 03 the data field specifies the starting register and how many registers are to be read If the master writes to a group of registers in the slave function code 10 hexadecimal the data field specifies the starting register how many registers to write the count of data bytes to follow in the data field and the data to be written into the registers If no error occurs the data field of a response from a slave to a master contains the data requested If an error occurs the field contains an exception code that the master application can use to determine the next action to be taken The data field can be nonexistent of zero length in certain kinds of messages Error Check Field Messages include an error s checking field that is based on a Cyclical Redundancy Check CRC method The CRC field checks the contents of the entire message It is applied regardless of any parity check method used for the individual characters of the message The CRC field is two bytes containing a 16 bit binary value The CRC value is calculated by the transmitting device which appends the CRC to the message The receiving device recalculates a CRC during receipt of the message and compares the calculated value to the actual value it received in the CRC field If the two values are not equal an error will result The CRC
18. er demand P Rx X PT1 PT2 X CT1 CT2 w F13 Reactive power demand B A PTIZETZIXIC TI var F14 Apparent power demand S Rx X PT1 PT2 X CT1 CT2 VA F15 Power factor PF Rx 1000 No unit F16 Unbalance factor Unbl Rx 1000 X100 No unit F17 THD THD Rx 10000 X 100 No unit F18 Harmonics HDn Rx 10000 X 100 No unit F19 Total odd HD HDo Rx 10000 X 100 No unit F20 Total even HD HDe Rx 10000 X 100 No unit F21 Crest factor CF Rx 1000 No unit F22 K factor KF Rx 10 No unit F23 83 fee 1 THFF THFF Rx 10000 X 100 No unit F24 Phase angle Phase angle Rx 10 Degree F25 temperature Temperature Rx 10 F26 Important Note Regions from System parameters settings to AO transforming parameter settings are the regions that can be set and modified Please follow the rules when you communicate with Acuvim ll 1 Using function code 10H one communication order can only modify contents in one region such as System parameters settings System status parameter Date and Time table Over range alarming Global settings Over range alarming Single settings I O Modules settings It can not be accomplished in one communication order to modify contents in both of two or more regions above 2 Using function code 03H there is no such rules described above System parameter setting System parameters determine how the meter works User should understand them clearly by referring to c
19. g the same format Sequence component U1 U12 11 are consisting of real part and complex part They have positive sequence negative sequence and zero sequence Data type is int Function code 03H for reading 4294H positive sequence real part of UA F11 32768 32767 R 4295H positive sequence complex part of UA F11 32768 32767 R 4296H negative sequence real part of UA F11 32768 32767 R 4297H negative sequence complex part of UA F11 32768 32767 R 4298H zero sequence real part of UA F11 32768 32767 R 4299H zero sequence complex part of UA F11 32768 32767 R 429aH positive sequence real part of IA F12 32768 32767 R 429bH positive sequence complex part of IA F12 32768 32767 R 429cH negative sequence real part of IA F12 32768 32767 R 429dH negative sequence complex part of IA F12 32768 32767 R 429eH zero sequence real part of IA F12 32768 32767 R 429fH zero sequence complex part of IA F12 32768 32767 R Phase angle All voltage and current s phase angles corresponding to V1 V12 are stored here You can find out the phase sequence according to them Data type is word Function code 03H for reading 42a0H phase angle of V2 to V1 F25 0 3600 R 42a1H phase angle of V3 to V1 F25 0 3600 R 42a2H phase angle of 11 to V1 F25 0 3600 R 42a3H phase angle of I2 to V1 F25 0 3600 R e 42a4H phase angle of I3 t
20. h F3 1 12 R W 1042H Day F3 1 31 R W 1043H Hour F3 0 23 R W 1044H minute F3 0 59 R W 1045H second F3 0 59 R W Over range alarming setting This setting consists of global settings and single settings The global settings contain settings of all global variables There are 16 groups of records with the same format Function code 03H for reading 10H for writing Please refer to chapter 4 for more details Global settings 1046H Global alarming enable 0 disable 1 enable 1047H Alarming flash enable O disable 1 enable 0 65535 BitO channel 1 1048H Alarming channel enable 1 enable 0 disable setting Bit1 channel 2 Bit15 channel 16 Pee 1 88 setting The same as previous 0 255 BitO first logic switch Logical And between 1 enable 0 disable 104911 alarming setting Bit1 second logic switch RAN Bit7 eighth logic switch 0 65535 BitO channel 1 output Alarming output to DO1 1 enable 0 disable R W setting Bit1 channel 2 output Bit15 channel 16 output 104bH Alarming output to DO2 0 65535 R W setting The same as previous Alarming output to DO3 0 65535 104cH setting The same as previous R W 404dH Alarming output to DO4 0 65535 R W Single settings First group parameter 104eH F1 0 44 R W code 104fH First group comparison Fi 1 more 2 R W mode equal 3 less 1050H First group setting F10
21. hapter 3 and chapter 4 Function code 03H for reading 10H for presetting Data type word Format code F1 1000H Pass Word 0 10 9999 R W 1001H Communication Address 1 1 247 R W 1002H Baud Rate 19200 600 38400 R W 1003H Voltage Input Wiring Type O 0 3LN 1 2LN 2 2LL 3 3LL R W joga Input Wiring 0 1 1 2 2 R W Type 1005H PT1 High 16 bit O RM R W 1006H PT1 Low 16 bit 220 0 R W 1007H PT2 220 0 50 0 400 0 R W 1008H CT1 5 1 50000 R W 1009H CT2 5 1 5 R W 100aH kWh pulse constant 1 1 6000 100bH jkvarh pulse constant 1 1 6000 100cH LCD Back light Time 1 0 120 400du Demand Slid Window 45 4 30 Time 100eH Demand calculating 1 1 sliding window mode 2 thermal 100fH Clear demand memory 0 Only 1 works 1010H Max Min clear 0x55 Only works 1011H Run time clear 0 Only 1 works 1012H Current 11 direction g Positive 1 Negative 1013H Current I2 direction g 0 Positive 1 Negative 1014H Current 3 direction o PB Positive 1 Negative 1015H VAR PF convention 0 0 IEC 1 IEEE 1016H Energy clear 0 Only 1 works 0 fundamental 1017H Energy calculating mode 1 i fullewave 1018H Reactive Power O real 1 general measuring mode 1019H Energy display mode 0 O primary 1 secondary O none 1 reset 101aH Ethernet Module reset 0 2 load default and reset 0 none 1 AXM 1011 101bH
22. ing of each abbreviated word is Addr address of slave device Fun function code Data start reg hi start register address high byte Data start reg lo start register address low byte Data of reg hi number of register high byte Data of reg lo number of register low byte CRC16 Hi CRC high byte CRC16 Lo CRC low byte Bee 1 1 Read Status of Relay Function Code 01 This function code is used to read status of relay in Acuvim Il 1 On O Off Relay1 s address is 0x0000 Relay2 s address is 0x0001 and so on The following query is to read relay status of Acuvim II with the address of 17 Query Addr Fun Relay start Relay start Relay Hof Relay of CRC 16 CRC 16 reg hi reg lo regs hi regs lo Hi Lo 11H 01H 00H 00H 00H 02H BFH 5BH Table 5 4 Read the status of Relay1 and Relay2 Query Message Response The Acuvim Il response includes the Acuvim Il address function code quantity of data byte the data and error checking An example response to read the status of Relay1 and Relay2 is shown as Table5 5 The status of Relay1 and Relay2 are responding to the last 2 bits of the data Relay1 bitO Relay2 bit1 Address Function code Byte count Data CRC high CRC low 11H 01H 01H 02H D4H 89H Table 5 5 Relay status responds The content of the data is 7 6 5 4 3 2 1 0 0 0 0 0 0 0 1 0 MSB LSB Relay1 OFF LSB
23. l rules to follow in using the meter 1 Data type bit refers to binary word refers to 16 bit unsigned integer using one data address and 2 bytes of memory it varies from 0 to 65535 int refers to 16 bit integer using one data address and 2 bytes of memory it varies from 32768 to32767 dword refers to 32 bit unsigned integer using two data addresses and 4 bytes of memory with high word at the front and low word at the end it varies from 0 to 4294967295 Rx high word 65536 low word float refers to 32 bit single value using two data addresses and 4 bytes of memory it varies from 1 175494E 38 to 3 402823E 38 2 Relationship between communication value and numerical value Aavim 1 The numerical value may not the communication value it is important to notice this The following table shows how they respond to each other Numerical value equals to System parameters communication valtie No unit F1 Run time T Rx 100 Hour F2 Numerical value equals to Unit of cine communication ete time F3 Energy primary Ep Rx 10 kWh F4 Reactive energy primary Eq Rx 10 kvarh F5 Apparent energy primary Es Rx 10 KVA F6 Energy secondary Ep Rx 1000 KWh F7 EA Eq Rx 1000 Kvarh F8 Apparent energy Es Rx 1000 KVA F9 secondary frequency F Rx 100 Hz F10 Voltage U Rx X PT1 PT2 10 V F11 Current I Rx X CT1 CT2 1000 A F12 Pow
24. mit the message as received after the relay status has been altered Addr Fun Relay addr Relay addr Value Value CRC CRC hi lo hi lo Hi Lo 11H 05H 00H 00H FFH 00H 8bEH AAH Table5 11 Control Relay Response Message 5 Preset Reset Multi Register Function Code 16 Query Function 16 allows the user to modify the contents of a Multi Register Some Registers of Acuvim II can have their contents changed by this message The example below is a request to an Acuvim 11 with the address of 17 to preset Ep imp as 17807783 3KWh while its HEX value is OA9D4089H Ep imp data address is 0x4048 and 0x4049 Data start Data start Data of Data of Byte reg hi reg lo reg hi reg lo Count 11H 10H 40H 48H 00H 02H 04H Addr Fun Value hi Value Lo Value hi Value lo CRC hi CRC lo OAH 9DH 40H 89H F1H 6AH Table5 12 Preset Multi Register Query Message Bee 1 Response The normal response to a preset Multi Register request includes the Acuvim Il address function code data start register the number of registers and error checking Data start Data start Data of Data of CRC16 CRC16 Addr Fun reg hi reg lo reg hi Reg lo hi lo 11H 10H 40H 48H 00H 02H D6H 8bEH Table5 13 Preset Multi Register Response Message 5 3 Data Address Table and Application Details of Acuvim Il There are severa
25. ng Please refer to User s manual of extended 1 0 Modules gt gt for more details Please check the AXM 1011 BitO DI1 Bit1 DI2 Bit2 DI3 Bit3 Dl4 109eH DI1 6 type 0 Bit4 DI5 Bit5 DI6 R W 0 DI 1 pulse counter 109fH DI pulse constant 0 1 65535 R W Working mode of relay 1 0 control output 10a0H and 2 0 1 alarming output R W 10a1H a mode of relay 1 5 1 momentary R W 10a2H Pulse width 50 50 3000ms R W AXM 1021 BitO DI7 Bit1 DI8 3 absorption reactive power 4 generating reactive power 10a3H DI7 10 type 0 Bit2 DI9 Bit3 DI10 R W 0 DI 1 pulse counter 10a4H DI pulse constant 0 1765535 R W 10a5H Working mode of DO 0 O pulse output R W 1 alarming output 10a6H DO pulse width 20 20 1000ms R W 0 none 1 consumption power 10a7H DO1 output 0 2 gererating power R W Aavim I 10a8H DO2 output 0 Same as above R W 0 0 20mA 1 4 20mA 2 0 5V 10a9H AO1 2 type 0 ETUR RW 3 1 5V AXM 1031 BitO DI11 Bit1 DI12 10aaH DI11 14 type 0 Bit2 DI13 Bit3 DI14 R W O DI 1 pulse counter 10abH DI pulse constant 0 1 65535 R W 10acH Working mode of 0 O control output R W relay 3 and 4 1 alarming output Output mode of 10adH 0 O latch 1 t R W a relay 3 and 4 Siena ONENA 10aeH Pulse width 50 50 3000ms R W 0 0 20mA 1 4 20mA 1OafH Al1 2 type 0 2 0 5V 3 1 5V R W
26. ntains eight bits Valid slave device addresses are in the range of 0 247 decimal A master addresses a slave by placing the slave address in the address field of the message When the slave sends its response it places its own address in this address field of the response to let the master know which slave is responding Function Field The function code field of a message frame contains eight bits Valid codes are in the range of 1 255 decimal When a message is sent from a master to a slave device the function code field tells the slave what kind of action to perform 01 Read Relay Output Status Obtain current status of Relay Output 02 Read Digital Input DI Status Obtain current status of Digital Input Obtain current binary value in one or more registers 05 Control Relay Output Force Relay to a state of on or off Place specific binary values into a series of consecutive Multiple Registers Table5 2 Function Code 03 Read Data 16 Press Multiple Register Data Field The data field is constructed using sets of two hexadecimal digits in the range of 00 to FF hexadecimal The data field of messages sent from a master to slave devices contains additional information which the slave must use to take the action defined by the function code This can include items like discrete and register addresses the quantity of 75 Bee I Bee 1 items to be handled and th
27. o V1 F25 0 3600 R 42 5 phase angle of V23 to V12 F25 0 3600 R i 42a6H phase angle of 11 to V12 F25 0 3600 R 42a7H phase angle of I2 to V12 F25 0 3600 R 42 8 phase angle of I3 to V12 F25 0 3600 R Alarming records There are 16 groups of records with the same format Function code 03H for reading 10H for writing Please refer to chapter 4 for more details yyyy mm dd hh mm ss ms 42a9H First group alarming status F1 0 65535 42aaH First group alarming F1 0 44 parameter code 42abH First group over range or F10 F18 Related with reset value parameters 42acH 42b2H First group Time stamp F3 42b3H 42bcH Second group Same as the first group 42bdH 42c6H Third group Same as the first group 42c7H 42d0H Fourth group Same as the first group 42d1H 42daH Fifth group Same as the first group 42dbH 42e4H Sixth group Same as the first group 42e5H 42eeH Seventh group Same as the first group 42efH 42f8H Eighth group Same as the first group 42f9H 4302H Ninth group Same as the first group 4303H 430cH Tenth group Same as the first group 430dH 4316H Eleventh group Same as the first group 4317H 4320H Twelfth group Same as the first group 4321H 432aH Thirteenth group Same as the first group 432bH 4334H Fourteenth group Same as the first group 4335
28. pe is float Function code for reading Please refer to User s manual of expanded I O modules for more details 103 Pee 1 438aH 438bH Value of A01 F1 R 438cH 438dH Value of A02 F1 R 438eH 438fH Value of A03 F1 R 4390H 4391H Value of A04 F1 R SOE Records There are 20 groups of records with the same format Function code 03H for reading What you need to know is that the data is got from the SOE enabled 1 0 module if this 1 0 module is not connected the data is useless Please refer to lt lt User s manual of expanded 1 0 modules gt gt for more details First group time stamp 4399H 439fH yyyy mm dd hh mm ss F3 R ms 43a0H First group DI status F1 R 43a1H 4438H 2nd to 20th group R 0 none 1 AXM 1011 2 AXM 1021 4439H 1 0 module of SOE F1 3 AXM 1031 R 4 AXM 1012 5 AXM 1022 6 AXM 1032 DI Status Current DI status if related 1 0 module isn t connected the DI status will be set to 0 Function code 02H for reading 1011 0000H 1 ON 0 OFF 0001H DI2 1 ON 0 OFF 0002H 013 1 ON 0 OFF 0003H 014 1 ON 0 OFF 0004H 015 1 ON 0 OFF 0005H DI6 1 ON 0 OFF 1021 0006H 017 1 ON 0 OFF 0007H DI8 1 ON 0 OFF 0008H 019 1 ON 0 OFF 0009H DI10 1 ON 0 OFF AXM 1031 000aH 0111 1 ON 0 OFF 000bH 0112 1 ON 0 OFF 000cH 0113 1 ON 0 OFF 000dH
Download Pdf Manuals
Related Search
Related Contents
MUSCADET version 4.1 User's Manual 16273 Appareillage de transformation 15KV IDEES & DEBATS Cybersécurité, mode d`emploi Glossaire This user manual describes all proceedings concerning CAMÉRA DE VÉHICULE Manuel d`instructions EVAPORATIVE HUMIDIFIER - Sunpentown International, Inc. Smeg DI410C dishwasher Copyright © All rights reserved.
Failed to retrieve file