Home
CfP P86 Final Version
Contents
1. ES ESO Call for Proposals P86 Q Proposal Deadline 31 March 2010 12 00 noon CEST Call for Proposals ESO Period 86 Proposal Deadline 31 March 2010 12 00 noon Central European Summer Time Issued 26 February 2010 Preparation of the ESO Call for Proposals is the responsibility of the ESO Observing Programmes Office OPO For questions regarding preparation and submission of proposals to ESO telescopes please contact the ESO Observing Programmes Office opo eso org The ESO Call for Proposals document is a fully linked pdf file with bookmarks that can be viewed with Adobe Acrobat Reader 4 0 or higher Internal document links appear in red and external links appear in blue Links are clickable and will navigate the reader through the document internal links or will open a web browser external links ESO Call for Proposals Editor Gaitee A J Hussain Approved _____ Tim de Zeeuw Director General Contents I Phase 1 Instructions 1 1 ESO Proposals Invited 1 1 1 Important recent changes since Periods 84 and 85 o ooo 2 12 Important reminders e oe ne ieme a a e d ee ria da A A 4 1 3 Foreseen changes in the upcoming Periods a oaoa aaa aa a 6 2 Getting Started 6 2 1 Distribution of requested Right Ascension a 6 2 1 1 Prediction of RA demand during Period 86 7 2 2 Exposure Time Calculators available Online o o 9 2 3 Online Data Pro
2. e Seeing Seeing is defined as the image FWHM in arcsec at the wavelength of observation on the focal plane of the instrument s detector i e after image has been taken through the entire telescope and instrument It is not the instantaneous seeing outside the dome For MACAO instruments CRIRES SINFONI MIDI AMBER FLAMES and the IFU mode of VIMOS and in case the seeing cannot be measured on the detector the reference seeing is the one measured at the wavefront sensor of the active optics of the telescope Phase 1 seeing constraint for observations using AO instruments should be at most 1 4 VLTI runs with MIDI that do not make use of MACAO require excellent seeing condi tions Therefore MIDI runs that do not use MACAO for more than 20 of the requested time should indicate 0 6 as the seeing constraint Observations without MACAO should be carried out in Visitor Mode only AMBER observations without MACAO are not possible The seeing specified in the NAOS Preparation Software is the DIMM Differential Image Motion Monitor seeing corrected to zenith Use of the LGS in seeing enhancer mode requires a seeing better than 0 8 e Moon Moon illumination FLI is defined as the fraction of the lunar disk that is illuminated at local Chile civil midnight where 1 0 is fully illuminated Dark time specified by d in Box 3 of the ESOFORM package corresponds to moon illumination lt 0 4
3. The LABOCA integration time calculator also provides the total time including this 90 overhead 7 3 SABOCA the Submillimetre APEX Bolometer Camera SABOCA is a bolometer array operating in the atmospheric window at 350 ym 855 GHz SABOCA consists of an array of 39 superconducting TES Transition Edge Sensor thermistors with SQUID Superconducting Quantum Interference Device amplification and multiplexing Of these 37 are arranged in a hexagonal layout consisting of a center channel and 3 concentric hexagons one channel is known to be broken Two additional bolometers identical to the inner 37 but optically not coupled called blind bolometers were added to the layout at two diametral opposite positions for monitoring purposes The bolometers are designed to be operated at a temperature of about 300 mK provided by a cryostat using liquid nitrogen and helium in combination with a close cycle helium 3 sorption cooler The APEX beam size at this wavelength is 7 7 and the total field of view for SABOCA is 90 The array is undersampled on the sky the separation between channels is twice the beam size 15 To obtain fully sampled maps it is necessary to move the array on the sky during observations by scanning in one direction and then stepping in the other or by moving in a circular or spiral pattern in the telescope or astronomical coordinate system As the beam switching mode using the wobbling secondary has not been commissio
4. aged to request Service Mode if their programme involves Target of Opportunity events or synoptic observing or if they require the best observing conditions which occur at unpredictable intervals Further information on SM observing may be found in the Service Mode Guidelines 12 2 1 Service Mode policies To ensure the efficiency of SM observing ESO has implemented a number of rules procedures and limitations on Service Mode runs Some of them need to be carefully taken into account at the time of preparing an application for SM observations and are summarized here Please note that most of these items have important consequences on the way that execution overheads must be taken into account e Some observing strategies cannot be supported in Service Mode in particular real time decisions about the sequencing of OBs complex OB sequencing or decisions based on the outcome of previously executed OBs like adjustment of integration times or execution of some OBs instead of others e Observation Blocks OBs are executed non contiguously Since efficient SM oper ations require continuous flexibility to best match the OB constraints with actual observing conditions OBs for a given run are normally scheduled non contiguously It is thus not pos sible to reduce acquisition overheads by requiring the sequential execution of OBs with the same target field e Multi mode multi configuration OBs are normally not permitted in SM Although
5. 4000 with a 0 5 slit while the red grism 20 covers the range 605 nm to 715 nm at a resolution of up to 4000 with the 0 5 slit The grisms introduce a lateral shift of the beam so the effective field of view is 3 1 and 2 7 for the blue and red VPHGs respectively The wavelength range of the blue VPHG grism 19 can be extended to cover a more useful range e g reaching the Mg triplet at 520 nm or the G band at 430 nm by using slits offset to the red or blue With 15 mm offsets corresponding to wavelength offsets of 21 8 nm the wavelength range coverage for the grism 19 is 418 nm to 532 nm the full range is achievable by combining red offset and blue offset spectra There are offset slits available with 15mm offsets to the blue and red with 21 the full range of slit widths available for the normal slits These slits can of course be used with any other grism with the wavelength offset depending on the grism dispersion See the web pages for more details Up to 5 MOS plates can be loaded simultaneously They are punched off line so additional plates can be punched at any time To create multi slit masks pre imaging must be acquired using EFOSC 2 with the same position angle as for the actual observations typically one day before the spectroscopic observations Therefore NTT observers in La Silla may be asked to give up to 20 minutes of their allocated time for pre imaging observations for subsequent EFOSC2 MOS runs The
6. To prepare precise target acquisitions during Phase 2 ESO provides the FIMS software tool Usage of FIMS is required when using several spectroscopic modes as well as to prepare occulting bar imaging and spectropolarimetric observations Phase 1 proposers who wish to justify their time request by optimising movable or MXU slitlet positions during Phase 1 may find it useful to download and install FIMS Please refer to http www eso org sci observing phase2 FORS FIMS html for instructions on how to install FIMS and to the FIMS Users Manual on how to use FIMS Users are reminded that only the FIMS version specifically assigned to a given period may be used Older versions should never be used as they may not contain the correct FORS set up 27 6 2 7 Accurate Astrometry or Pre imaging Required Highly accurate relative astrometry is required for any observing mode that makes use of FIMS or does blind offsets during the acquisition The mask preparation with FIMS requires input images that are astrometrically corrected within the definitions and precision given below DSS images will in almost all cases not be suitable for the task In general the relative astrometry must be known to better than of the slit width over the entire field of view Relative astrometry here means that the slit positions must be known relative to those of the reference stars in the field of view with the given precision These relative astrometric calib
7. details e Active optics guiding For all observations a guide star is used for acquisition active optics and field stabilization The typical guide star magnitude ranges from R 11 to R 14 in optimal conditions Observations for which no suitable guide star exists cannot be carried out e Adaptive optics guiding VLTI only The Coude foci of the UTs are equipped with MACAO Multi Application Curvature Adaptive Optics units which can be used with natural guide stars with 1 lt V lt 17 seeing lt 1 4 To gt 1 5ms and airmass lt 2 The distance of the natural guide star from the science target is restricted to be within 57 5 4 2 3 Laser Guide Star facility on UT4 UT4 is equipped with a sodium laser that can be used to create an artificial point source which can then be used with NACO and SINFONI In most cases a tip tilt star TTS is still necessary to correct for tip and tilt SINFONI since P84 and NACO as of P85 can be used with the Laser Guide Star but without a TTS the so called seeing enhancer mode Please note that the TTS 17 can be both fainter and further away from the science target than natural guide stars NGS thus giving users access to a larger fraction of the sky Observations using the Laser Guide Star LGS require more stringent observing conditions than observations using natural guide stars For example the transparency needs to be clear CLR or better the airmass constraints need to be tigh
8. lt 2km s In simultaneous Th Ar mode HARPS users should strictly follow the calibrations foreseen by the Calibration Plan which includes a number of biases flatfields and Th Ar exposures taken before the night HARPS is equipped with its own pipeline installed on La Silla This pipeline provides the visiting astronomer with extracted and wavelength calibrated spectra in near real time in all observing modes When the Simultaneous Thorium Reference Method is applied the pipeline delivers precise radial velocities RV relative to the solar system barycentre for late type stars whose RV is known within 1 2km s provided that a set of standard calibrations has been executed in the afternoon 22 An additional fibre with a larger aperture 1 4 on the sky is available for HARPS This high efficiency mode is dubbed EGGS The higher efficiency compared to the base mode referred to as HAM is achieved by reducing flux losses through the larger fibre aperture and by dispensing the image scrambler The resolving power of the mode due to the larger fibre decreases to about 80000 This mode is particularly useful for faint objects Its peak efficiency is 11 and the gain in flux with respect to the HARPS base mode is 75 at 530 nm with a seeing of 0 8 This mode is now equipped with only one fibre therefore neither the sky subtraction nor the simultaneous Thorium reference method can be applied However the intrinsic instrument s
9. preferably no later than when the paper is submitted for publication ESO reserves the right to use any data obtained with ESO telescopes as part of programmes allocated ESO time for press releases Part IV 69 Appendix A Acronyms 4QPM ADP AMBER APEX APEX SZ APP AT CHAMP Col CONICA CRIRES DDT DIT DPS EIS EFOSC2 ESO ETC FEROS FFTS FIMS FINITO FLAMES FLASH FLI FORS1 FORS2 FOV GTC GTO HARPS HAWK I IB IFU IR ISAAC KMOS LABOCA LADC LGS LST LW MIDI MOS MPG MPIfR NACO NAOS NB NGS Four Quadrant Phase Mask Advanced Data Products Astronomical Multi BEam combineR Atacama Pathfinder EXperiment APEX Sunyaev Zel Dovich camera Apodizing Phase Plate Auxiliary Telescope for the VLT Interferometer Carbon Heterodyne Array of the MPIfR Co Investigator High Resolution Near Infrared CAmera Cryogenic high resolution IR Echelle Spectrometer Director s Discretionary Time proposal Discrete Integration Time Deep Public Survey ESO Imaging Survey ESO Faint Object Spectrograph and Camera European Southern Observatory Exposure Time Calculator Fibre fed Extended Range Optical Spectrograph Fast Fourier Transform Spectrometer FORS Instrumental Mask Simulator Fringe Tracking Instrument of NIzza and TOrino Fibre Large Array Multi Element Spectrograph First Light Apex Sub millimetre Heterodyne Fraction of Lunar Illumination Focal Reducer low dispersion Spectrograph 1 Focal Reducer lo
10. to medium resolution R 2500 over a field of view FOV composed of four quadrants each 7 x 8 separated by 2 gaps MOS masks which are prepared with the Mask Manufacturing Unit MMU on Paranal allow considerable freedom in the positioning shape and orientation of the slits The maximum number of slits that can be typically accommodated in the VIMOS FOV is up to 750 at low resolution and up to 150 at higher resolution The actual number of slits will depend on the multiplex used target density and their distribution in the field of view VIMOS is also equipped with an integral field unit IFU with 6400 microlenses coupled to fibres with a choice of two spatial samplings magnifications 0 67 per fibre or 0 33 per fibre With the lower spectral resolution settings the FOV of the IFU is 54 x54 using the 0 67 magnification or 27 x27 using the 0 33 magnification A quarter of these fields are covered at intermediate to higher spectral resolutions The VIMOS instrument works in the wavelength range 360 1000 nm VIMOS modes IMG MOS and IFU are summarised in Table 9 Users should refer to the detailed information available on the VIMOS web page to assess the feasibility of their programme with VIMOS All instrument modes and settings are offered both in Visitor Mode Sect 12 1 and Service Mode Sect 12 2 except for pre imaging runs which are carried out in Service Mode only Table 10 VIMOS IMG
11. 1 MOS HR Orange 0 205 pix 4 x 7 x 8 520 760 2150 0 6 1 MOS HR Red 0 205 pix 4 x 7 x 8 630 870 2500 0 6 1 IFU LR Blue 0 67 fibre 54 x 54 390 670 220 5 3 4 IFU LR Red 0 67 fibre 54 x 54 580 915 260 7 3 4 IFU MR 0 67 fibre 27 x 27 490 1015 720 2 5 1 IFU HR Blue 0 67 fibre 27 x 27 415 620 2550 0 5 1 IFU HR Orange 0 67 fibre 27 x 27 525 740 2650 0 6 1 IFU HR Red 0 67 fibre 27 x 27 640 860 3100 0 6 1 IFU LR Blue 0 33 fibre 27 x 27 390 670 220 5 3 4 IFU LR Red 0 33 fibre 27 x 27 580 915 260 7 3 4 IFU MR 0 33 fibre 13 x 13 490 1015 720 2 5 1 IFU HR Blue 0 33 fibre 13 x 13 415 620 2550 0 5 1 IFU HR Orange 0 33 fibre 13 x 13 525 740 2650 0 6 1 IFU HR Red 0 33 fibre 13 x 13 640 860 3100 0 6 1 1 In MOS mode with the LR and MR settings the actual spectral range depends also on the order sepa ration filter used with the HR settings the actual spectral coverage depends also on the position of the slit in the field of view 2 This is the resolution given by a slit with width 1 in MOS mode and by 1 fibre in IFU mode 3 This is the number of slitlets that can be accommodated along the dispersion direction VIMOS is a multi mode wide field optical instrument attached at the Nasmyth B focus of Melipal UT3 VIMOS allows imaging IMG and multi object spectroscopy MOS at low R 200
12. 2 4 um as calibrations based on sky lines are in any case better for redder wavelengths 6 1 2 Sensitivity Table 2 lists the offered sensitivities This table is only intended to be a quick feasibility guide Proposers should refer to the Exposure Time Calculator at http www eso org observing etc to assess the feasibility of their programmes Detailed information regarding CRIRES is provided in the Users Manual available via the CRIRES web pages 6 2 FORS2 Focal Reducer low dispersion Spectrograph 2 FORS2 is a multi mode optical instrument placed at the UT1 Cassegrain focus It is capable of imaging polarimetry long slit and multi object spectroscopy Following the merging of the two FORS instruments at the beginning of P83 it has two detector systems and a wide range of exchangeable optical elements The default MIT detector consists of a mosaic of two 2kx4k MIT CCDs 15 ym pixels and is available for Service and Visitor Mode observations A blue optimized E2V mosaic is available only for Visitor Mode observations Compared to the E2V detector the MIT mosaic provides greatly improved red sensitivity gt 750 nm with very low fringing However the response of the MIT detector below 600 nm is reduced The detector systems are not mounted at the same time hence the use of the E2V detector is limited to Visitor Mode and must be justified in the Phase 1 25 proposal Whether the MIT or E2V detector are required must
13. 20 2 H 19 9 K 17 9 H K 19 6 3 x 3 50 x 100mas NGS J 19 4 H 19 6 K 18 8 H K 19 8 0 8 x 0 8 12 5 x 25mas NGS J 17 8 H 18 7 K 18 3 H K 19 2 of 0 67 0 63 0 59 and 0 61 at the central wavelength of the J H K and H K gratings respectively For the closed loop adaptive optics observations with natural guide stars NGS we have assumed a guide star at a distance of 10 with a photometric brightness of R 12 and B R 1 5 magnitudes We encourage the use of the exposure time calculator for more detailed estimates http www eso org observing etc 6 11 2 Brightness Limits To avoid saturation of the detector and detector persistence which affects subsequent observations of faint sources no objects with J H K magnitudes lt 6 mag must be visible in a field of view of 15 around the AO guide star and or the science target However if fast_acquisition is used the limits are brighter by 1 and 2 magnitudes for 0 1 pix and 07025 pix respectively 6 11 3 Sky Subtraction The user should note that sky offset fields are mandatory for observations in the 25 and 100 mas scales The corresponding overheads have to be taken into account when estimating the required time for an observing run Typically 50 or 33 of the observing time is spent on sky if NDITsxy NDIT Target or NDITsxy 1 2 NDIT Target 6 11 4 Calibrations Observations of telluric standard stars at
14. ESO of ADP from all types of programmes is the same as for Large Programmes 3 How to submit an ESO Phase 1 proposal 3 1 How to obtain the ESOFORM Proposal Package The ESOFORM Proposal Package for this period may be obtained by logging into the ESO User Portal Please follow the instructions at http www eso org sci observing proposals esoform html Please note that different packages should be used for the preparation of ESO proposals and ESO GTC proposals For ESO proposals using La Silla Paranal or Chajnantor telescopes please use the package for Cycle 86A For ESO GTC proposals please use the package for Cycle 86B 3 2 How to fill the ESOFORM Proposal Form The ESOFORM Users Manual describes in detail how to fill the ATEX template and which information is needed to make a proposal valid Please be aware that the ESOFORM package is regularly updated and that only the Period 86 package may be used for proposal preparation The telescope schedules are prepared using scheduling software which relies on accurate constraints see Alves 2005 The ESO Messenger 119 20 Hence scheduling constraints that are not indicated or are inaccurately specified in BOX 13 of ESOFORM are unlikely to be taken into account by the scheduler Retrofitting scheduling constraints after the release of the schedule is often impossible 3 2 1 Important recent changes to ESOFORM e Run type field in the ObservingRun macro It is now possi
15. PRISM 4 1 UTs HIGH_SENS GRISM 2 8 3 UTs SCI_PHOT PRISM 3 2 2 UTs SCI PHOT GRISM 2 6 ATs HIGH SENS PRISM 0 74 20 ATs HIGH_SENS GRISM 0 31 30 ATs SCI PHOT PRISM 0 0 40 ATs SCI_PHOT GRISM 0 44 60 e Beam combiner optics either HIGH_SENS no simultaneous photometric measurement of beams before combination or SCI PHOT simultaneous photometric measurement e Limiting uncorrelated magnitudes are given in Table 16 e For MIDI the correlated flux is defined by the uncorrelated flux in Jy 12um multiplied by the estimated visibility The MIDI limiting correlated flux LCF can be obtained for each mode from the MIDI limiting uncorrelated flux LUF of this mode see Table 16 using the formulae Without FINITO LCF 0 5 x LUF With FINITO LCF 0 1 x LUF e Various spectral filters for acquisition images Details on MIDI and its instrumental modes can be found on the MIDI web page The raw accuracy of the visibility measurements is typically better than 20 The highest accuracy for calibrated visibilities can be obtained in SCILPHOT mode provided target and calibrator are both brighter than 15Jy for UTs and 200Jy for ATs The visibility of the Science source is abso lutely calibrated by observing a Calibration Source We offer two calibration modes either Science Calibration SCI CAL for normal accuracy requirements or Calibration Science Calibration CAL SCI CAL for high accuracy requi
16. an airmass within 0 1 of the science observation will be offered as part of the SINFONI calibration plan for all modes available e for all combinations of image scales and gratings Darks internal flat fields and wavelength calibrations are also part of the SINFONT calibration plan and are taken during daytime Time to obtain special calibrations such as observations of PSF reference stars must be requested in the proposal 6 11 5 Modes that are not offered Observations with the sky spider and spectral dithering are not offered in Period 86 6 12 MIDI MID infrared Interferometric instrument MIDI is the VLTI instrument for N band 8 13 um interferometry It is a two beam recombiner giving values of moduli of fringe visibility samples in the u v plane depending on the wavelength spectral resolution R 30 or R 230 MIDI has been offered in both Service and Visitor Modes since Period 73 and can be used with either the UTs or the ATs For a list of the offered telescope configurations please refer to the VLTI baseline page The main features of MIDI for Period 86 are e Interference fringes recorded in dispersed Fourier mode long slow scan with coherencing at 1 Hz rate e Spectrograph optics either NaCl PRISM mode R 30 or KRS5 GRISM mode R 230 42 Table 16 MIDI limiting uncorrelated flux LUF Telescopes Beam combiner Spectrograph Limit N mag Limit JyQ12um UTs HIGH_SENS
17. and spectra catalogues to the ESO archive by the time their scientific results are published in a refereed journal Guidelines for submission of these data products including a description of the required metadata and formats can be found at http archive eso org cms eso data data submission For further information proposers are invited to write an email to usd helpOeso org 58 During the period of execution of a Large Programme and upon its completion the PI will be invited by ESO to report to the OPC on the programme s preliminary results He she may also be asked to give a more comprehensive presentation of the outcome of the programme at an ESO Large Programme workshop similar to those of May 19 21 2003 and of October 13 15 2008 11 3 1 ESO GTC proposals for Large Programmes The accession agreement of Spain into ESO includes the allocation of 122 clear nights with the 10 4m GTC to proposals by PIs from ESO member countries including Spain This is the third and final call for ESO GTC proposals The ESO GTC programmes must satisfy the following conditions e Each programme should request a minimum of 10 nights e Of the order of 50 nights will be scheduled during the last year of ESO GTC programmes e The observations will be conducted in either Service Mode or Visitor Mode by the proposing teams according to the standard GTC operational procedures Within these constraints the ESO GTC liaison committee whic
18. camera VISTA InfraRed CAMera VIR CAM which covers a 1 65 degree diameter field of view with a loosely packed detector mosaic totalling 67 million pixels of mean size 0 339 The point spread function PSF of the tele scope camera system including pixels is measured to have a full width at half maximum FHWM of 0 51 There is no open time available on VIRCAM in P86 6 14 1 Filters The only moving part in the camera is the filter wheel In addition to the sets of filters listed in Table 17 it also includes one available position that can hold a further set of 16 filters 1 per detector This filter slot is planned to be available for visitor filters in the future cf below Due to the complexity of the cryogenic VIRCAM instrument and the VISTA facility possible filter exchange 45 will be linked to instrument and telescope maintenance intervals Regular instrument maintenance is expected to be scheduled about every two years The list of the currently offered filters is given in Tab 17 All filters are used in the approved public surveys Table 17 VISTA filters Filter Wavelength FWHM Comment um um Z 0 88 0 12 required by public surveys Y 1 02 0 10 required by public surveys J 1 25 0 18 required by public surveys H 1 65 0 30 required by public surveys Ks 2 15 0 30 required by public surveys NB1 18 1 18 0 01 required by public surveys 6 14 2 Focal plane geometry The sixteen 2048
19. coronagraphic mode features focal stops of 8 0 and 4 0 and a Lyot pupil mask The polarimetric measurements are performed using either a half wave plate or a quarter wave plate These super achromatic plates can be moved into the optical path and rotated to measure the polarisation at different angles without rotating the whole instrument The plates are housed in separate units and only one unit plate per night can be used Note that since EFOSC 2 is now mounted at the NTT Nasmyth B focus there is strong instrumental polarisation that varies with telescope pointing Users should allow time for additional observations of unpolarised standard stars to correct for this For imaging a set of standard Bessell and Gunn filters as well as several narrow band filters are available See the EFOSC 2 filter page for details Up to date information and documentation on the instrument are available on the EFOSC 2 web page Since Period 84 EFOSC 2 is mounted on the NTT and only operated in Visitor Mode Information about the characterisation of the instrument at the new focal station and telescope is available on the web pages 5 3 HARPS High Accuracy Radial velocity Planetary Search on the 3 6 m HARPS is the ESO facility for the measurement of very precise radial velocities It is fed by two fibres from the Cassegrain focus of the 3 6 m telescope The instrument is built to obtain very precise radial velocities on the order of 1m s
20. d polciest one pired ee aa a terena yaa 13 1 Who may submit time allocation policies s co cs em se aaae ee a a aa 13 2 Requesting use of non standard observing configurations 13 3 Policy regarding offered available observing configurations 13 4 Observing programme execution eee eee eee eee 13 4 1 Service Mode rim execution e ici ca a OR ww a A 13 4 2 ToO programme execution cosas eee hw ea a Shs 13 5 Phase 2 Service Mode policy Constraints and targets are binding 1310 PRE TMasWIS TIAS ok ee A EY OHS A Oe we Os 13 7 Data rights archiving data distribution veces ener 13 8 Publication of ESO telescope results a s ac soc wa saato e araea gad 13 9 Press Releases IV Appendix A Acronyms vii 50 50 50 54 54 55 55 Part I Phase 1 Instructions 1 ESO Proposals Invited The European Southern Observatory ESO invites proposals for observations at ESO tele scopes during Period 86 1 October 2010 31 March 2011 The following instruments are offered in this period La Silla EFOSC 2 ESO Faint Object Spectrograph 2 FEROS Fibre fed Extended Range Optical Spectrograph HARPS High Accuracy Radial velocity Planetary Searcher Soff Son of ISAAC WEI Wide Field Imager Paranal AMBER Near infrared interferometric instrument CRIRES Cryogenic high resolution IR chelle Spectrograph FLAMES Fibre Large Array Mult
21. m 21 5 4 FEROS Fibre fed Extended Range Optical Spectrograph on the 2 2m 22 5 5 WFI Wide Field Imager on the 2 2 o o 23 6 Scientific Instruments Paranal 23 6 1 CRIRES Cryogenic high resolution IR Echelle SpectrOsrapl 2624 Pee eae a 23 GLL o Ea a ee ee ee ee ee Pe Se EE ee 24 Gili SSONSHIVIEY lt del ea eee OEE REESE E Ee Ee a 24 6 2 FORS2 Focal Reducer low dispersion Spectrograph 2 o o 24 6 2 1 Multi object Spectroscopy o o e 25 6 2 2 Migh throughput filers co e e eee eee ends ea A ee 25 6 2 3 Volume phased holographic grisms 000000004 25 G24 Polarimetty oc ece oe E Boe a ee ASRS ww GEOR Og OAM 25 6 2 5 High Time Resolution mode esa s s sau bee ea awe eee ee eas 25 6 2 6 FORS Instrumental Mask Simulator FIMS oo 26 6 2 7 Accurate Astrometry or Pre imaging Required 27 6 3 FLAMES Fibre Large Array Multi Element Spectrograph 27 vi 8 9 6 3 1 Instrument Capabilities gt e s oo lt 6 3 2 Observational Requirements cocoa ee rest GaS o o A ea dae ciaaikeee lt eo bd 4 44 dak See ee aes 6 4 UVES Ultraviolet and Visual Echelle Spectrograph 2 2 bb ade eae ed bed ad 6 5 XSHOOTER multi band medium resolution chelle spectrograph 6 6 ISAAC Infrared Spectrometer And Array Camera 2 2 2 000000004 6 7 VIMOS Visible Multi Object Spectrog
22. optics with a fast f 1 primary mirror giving an f 3 25 focus to the instrument at Cassegrain Shape and position of the mirrors are actively controlled by high and low order curvature wave front sensors WFS located inside the instrument focal plane The low order WFSs are used simultaneously to the scientific observations 18 VISTA is equipped with only one instrument VIRCAM described in Section 6 14 4 2 7 Paranal meteorological conditions Extensive statistical information on meteorological conditions on Paranal seeing wind water vapour etc can be found on the Paranal Web page Information about general climate and seismic statistics can also be found here Wind statistics at Paranal show that the wind speed is between 12 and 15 m s 10 of the time These conditions allow observations to be made only with the telescope pointing down wind Predominant winds blow from the North 4 3 Chajnantor The Llano de Chajnantor site is located on 67 45 longitude West 23 00 latitude South at 5104m altitude in the Chilean Atacama desert It is a very dry site inhospitable to humans but an excellent site for sub mm astronomy see Figure 5 Water vapour absorbs and attenuates sub mm radiation and thus a dry site is required for high frequency radio astronomy Llano de Chajnantor is one of the best sites available on Earth for sub mm astronomy it is also the site where ALMA is under construction a collaboration between Eur
23. other scheduled runs ESO will not restart a sequence of linked observations if the pre specified timing constraints cannot be fulfilled e Split runs with targets at widely different positions It must be recalled that according to the current procedure for the final release of SM data packages the complete data distribu tion takes place only after the run is completed It is thus advisable to split runs with targets in two widely separated regions of the sky so that the distribution of data for the targets observable at the beginning of the period can already take place before the observations for targets observable at the end of the period are completed This does not apply to the direct access that PIs now have via their User Portal account to their SM raw data e VLTI For VLTI observations a separate run must be specified for each requested baseline 13 Policy Summary Several policies regarding all aspects of use of ESO telescopes have been refined over the years by the ESO Observing Programmes Committee OPC and by the Scientific Technical Committee STC Here we summarize those policies relevant for ESO proposers for Period 86 For details on individual policies we refer to the VLT VLTI Science Operations Policy document 13 1 Who may submit time allocation policies ESO proposals may be submitted by any group or individual One single person the Principal Investigator or PI must be assigned to be principally responsible for
24. per OB is permitted the only filter exchange allowed is the one between acquisition and science template Users who want to observe the same targets with different filter grism combinations are requested to submit separate OBs for different filter grism combinations and to consider the respective overheads 6 7 3 MOS Observations in Visitor Mode Due to the rule that MOS observations should be carried out within 2h of the meridian in Visitor Mode it is desirable that the targets are uniformly distributed in RA for the night s of the obser vations If this is not the case users should apply for Service Mode observations For operational reasons a maximum number of 7 visitor masks per quadrant will be made available in the instru ment each night If a visitor is granted half nights the above number is reduced to 3 masks per quadrant Normally users should submit OBs for mask preparation well before their observing run so that masks can be manufactured before they arrive Visitor Mode VM observers who wish to use VIMOS in MOS mode are required to submit part of their OBs at least 3 weeks before the first night of the VM run Exceptionally limited additional support is guaranteed for mask preparation on the mountain up to 3 sets of masks per night to be prepared at least 48h in advance 6 7 4 VIMOS Observation Requirements in IFU Mode In IFU mode instrumental flexures will introduce flatfield residuals and wavelength calibration offs
25. permanently mounted at the two Nasmyth foci The telescope has a pointing accuracy of 2 RMS objects can be observed at zenithal distances from 2 to 75 Currently moving targets can be observed only with differential tracking not guiding Moving objects can be followed for up to 15 min with a tracking error smaller than 0 5 e 3 6 m telescope The 3 6 m telescope was commissioned in 1977 and completely upgraded in 1999 Since Period 78 only the f 8 Cassegrain focus is available In August 2004 the f 8 top end was completely replaced by a new unit permitting the secondary mirror to be actively controlled This system provides an improved image quality The pointing error is better than 5 RMS The only available facility instrument HARPS is permanently mounted at the Cassegrain focus The pointing limitations are described in the 3 6 m pages Full differential guiding is possible to observe moving targets e 2 2 m Telescope The 2 2 m telescope is a Ritchey Chretien design mounted in an equatorial fork mount It is on loan to ESO from the Max Planck Gesellschaft MPG and has been in 15 operation since 1984 In 2008 an extension of the agreement until March 31 2013 was signed between ESO and MPG according to which MPG is allocated 9 months of observations per year as of Period 83 Accordingly the preliminary breakdown of the time on the 2 2 m telescope in Period 86 is as follows from noon of the start date to noon o
26. pipelines for the most commonly used VLT VLTI instrument modes These data reduction pipelines serve three main purposes e Data quality control pipelines are used to produce the quantitative information necessary to monitor instrument performance see below e Master calibration product creation pipelines are used to produce master calibration products e g combined bias frames super flats wavelength dispersion solutions e Science product creation using pipeline generated master calibration products science products are produced by the Data Processing and Quality Control group in Garching for supported instrument modes e g combined ISAAC jitter stacks bias corrected flat fielded 55 FORS images wavelength calibrated UVES spectra The accuracy of the science products can be limited both by the quality of the available master calibration products and by the algorithmic implementation of the pipelines themselves In particular adopted reduction strategies may not be suitable for all scientific goals Therefore ESO assumes no responsibility for the usefulness of reduced data for any specific scientific project Pipelines can also be run on the end user s desktop in order to fine tune the reduction to specific science needs For this purpose the algorithmic part of the VLT VLTI pipelines pipeline recipes are available for home use and can be downloaded with two front end applications esoRex and Gasgano from http ww
27. telescope time allocation includes this compensation users whose programmes are affected by GROND interruptions are not entitled to any additional compensation FEROS and WFI are permanently mounted on the telescope 4 2 Paranal 4 2 1 The VLT UTs The VLT consists of four Unit Telescopes UTs From a user s perspective the four UTs can be regarded as identical The Paranal Observatory site is located at 70 25 longitude West 24 40 latitude South at an altitude of 2635m A UT main mirror is a single Zerodur blank of diameter 8 20m the secondary has a diameter of 1 12m The UTs have four foci two Nasmyth one Cassegrain and one Coud They are Alt Az mounted and cannot observe at zenith distances less than 4 or larger than 70 The VLT Interferometer only operates at zenith distances less than 60 4 2 2 UTs Performance e Pointing and tracking The UTs have a pointing accuracy of 3 The expected tracking accuracy under nominal wind load is 0 1 rms over 30 minutes when field stabilization is active The UTs also have the capability of tracking targets with additional velocities e g Solar System targets under full active optics control Proposers who need this capability should specify the additional velocities in RA and Dec for their targets for the purpose of feasibility assessment 16 Figure 4 Sky accessibility and vignetting by neighbour for the 4 UTs See Section 4 2 4 for more
28. the Phase 1 proposal and associated overheads have to be taken into account by the users Pre imaging runs are carried out typically two months in advance of the spectroscopic follow up Masks need to be prepared as soon as possible after the pre imaging has been completed and submitted according to Phase 2 procedures The observations taken as part of a pure imaging run without the pre imaging flag set cannot be used for the subsequent mask preparation due to the lack of the controlled mask to ccd transforma tion keywords in the headers Therefore even in the case when imaging data have been obtained with VIMOS the short pre imaging run is mandatory VIMOS is not equipped with an Atmospheric Dispersion Corrector In order to minimise slit losses MOS observations and their pre imaging are taken at a pre defined position angle on sky with slits oriented N S and the target within 2h of the meridian Special requirements for different field orientations should be clearly stated in the proposals In MOS mode instrumental flexures will introduce wavelength offsets if calibration data are taken at a very different rotator angle to the science exposure In order to minimise these effects attached night time arcs are mandatory for the blue settings and strongly recommended for the red settings The corresponding overheads need to be taken into account at Phase 1 and can be estimated using Table 19 34 In MOS mode only one filter grism combination
29. time scheduled on each telescope falls in this Class e Class C Filler runs OBs will only be executed if the observing conditions do not permit observations for runs within Classes A and B For Class A runs which are not completed by the end of Period 86 ESO will decide whether they can be declared substantially complete or have to be carried over to the next period provided that this is technically feasible In general a class A run will not be carried over for more than one additional natural visibility period Class B and C runs will not be carried over ToO runs are by definition Class A regarding priority in execution but they will not be carried over to the following Periods regardless of their completion status 13 4 2 ToO programme execution As for any other Service Mode run successful proposers of ToO runs will have to prepare OBs for their observations well ahead of the beginning of an observing period see Sect 12 2 Mostly ToO OBs will have to be dummy OBs with default values for target coordinates integration times etc At the time of occurrence of the predicted event the PI of the programme must activate it and at the same time provide the missing information for completion of the OBs The service observer will update and execute the specified OBs 13 5 Phase 2 Service Mode policy Constraints and targets are binding To optimize the use of ESO telescopes in Service Mode a proper mix of runs requiring various o
30. 14 mag under average seeing conditions while moderate image quality improvement is seen with stars as faint as R 16 17 mag under good seeing FWHM lt 0 6 conditions The main optical elements consist of a prism acting as a pre disperser and a 31 6 lines mm chelle grating Total spectral coverage per individual wavelength setting is 70 thanks to an array of four 1024 x 512 Aladdin III detectors Acquisition and guiding are performed by the means of a slit viewer equipped with an additional recently replaced Aladdin III detector and a series of five filters J H K and two neutral density H filters The recommended minimum slit width is 0 2 providing a resolving power up to R 100 000 A resolution of R 50 000 can be reached with a 0 4 slit width Standard and free wavelength settings are offered for both Visitor Mode Sect 12 1 and Service Mode Sect 12 2 For settings shortward of 3um the blue and red ends of the wavelength coverage can be affected by contam ination from adjacent orders and lack of illumination reproducibility Tables 4 and 5 of the User Manual report the spectral range free of these effects for all standard settings 24 Despite the availability of a Krypton and ThAr lamps and of the N20 and CO gas cells the lack of wavelength calibration lines still affect some settings Provided an adequate observational strategy is followed radial velocity measurements to better than 30m s can be reached fo
31. 8 Table 5 FLAMES Observational Capabilities Spectro Mode N Objects Aperture R Cover Comments UVES6 8 RED 6 or 8 with sky 1 0 47000 200 6 fib 520nm UVES7 1 RED 7 with sky 1 0 47000 200 Sim Calib GIRAF HR MEDUSA 131 with sky 1 2 21000 A 22 A 12 GIRAF LR MEDUSA 131 with sky 1 2 70001 ATA GIRAF HR IFU 15 15 sky 2x3 32000 A 22 A 12 GIRAF LR IFU 15 15 sky 2x3 110004 A 75 GIRAF HR ARGUS 1 11 5x7 3 32000 A 22 A 12 or 6 6x4 2 GIRAF LR ARGUS 1 11 5x7 3 110004 A 75 or 6 6x4 2 1 The resolving powers R given here are only average values for more details see http www eso org sci facilities paranal instruments flames doc which contains a description of all the GIRAFFE setups 2 The number of allocable buttons is 132 but only 131 spectra are fully covered on the detector e Two IFU slits each IFU deployable Integral Field Unit consists of a rectangular array of 20 microlenses of 0 52 each giving an aperture of 2x3 For each plate there are 15 IFU units dedicated to objects and another 15 dedicated to sky measurements In the latter only the central fibre is present e One ARGUS slit the large integral field unit ARGUS is mounted at the centre of one plate of the fibre positioner and consists of a rectangular array of 22 x 14 microlenses Two magnification scales are available 1 1 with a sampling of 0 52 microlens and a total
32. 92 24 sec XSHOOTER VIS Read out 7 1 x 2 Slow Fast 48 14 sec XSHOOTER VIS Read out 7 2 x 2 Slow Fast 27 9 sec XSHOOTER NIR Read out per DIT 0 88 sec NACO see Users Manual VIMOS IMG acquisition Instrument setup 3 VIMOS MOS acquisition Instrument setup 15 VIMOS IFU acquisition Instrument setup 10 VIMOS Read out IMG MOS IFU 4 quadrants 1 VIMOS Change of Filter IMG 3 VIMOS Attached screen flat arc IFU MOS 5 8 VIMOS Attached arc MOS 4J 4 4 ISAAC refers to detector user manual both Aladdin and Hawaii ISAACHw only to Hawaii detector ISAACAI only to Aladdin 5 For the Aladdin SW J Block H K and LW low background NB_3 21 and NB_3 28 filters only 6 In Medium Resolution MR only 7 Global overheads in are used for the LW imaging and spectroscopic chopping templates 8 When required see http www eso org sci observing phase2 CalibrationPlan html and the ISAAC 9 In a dichroic exposure the CCDs are read out in parallel 10 Flat and arcs are mandatory for IFU 12 The detectors are read sequentially see User Manual for details 11 Arcs are mandatory for MOS blue settings and strongly recommended for the MOS red settings Table 19 Telescope and Instruments Overheads continued 53 Hardware item Action Time minutes FLAMES Acquisition 9 FLAMES Instr Setup GIRAFFE 1 FLAMES Instr Setup UVES 1
33. Both modes are only offered with the standard resolution collimator 6 2 2 High throughput filters A set of high throughput filters are used on FORS2 to maximize the sensitivity below 600 nm 6 2 3 Volume phased holographic grisms In addition to the standard low resolution grisms a number of high throughput VPH grisms are available which are optimised for both the MIT and E2V detectors 6 2 4 Polarimetry FORS2 is capable of measuring both linear and circular polarisation for direct imaging and spec troscopy It uses a Wollaston prism as the beam splitting analyser and two superachromatic phase retarder plate mosaics located in the parallel beam 6 2 5 High Time Resolution mode The High Time resolution HIT mode is available with FORS2 currently only with the MIT detector in imaging Visitor and Service Modes and spectroscopy Visitor Mode only with a range of filters for imaging and the 600B and 300I grisms for spectroscopy In the one shift mode the times for a full shift across the mosaic are 1 4 16 64 256 sec providing time resolutions for 1 on sky from 2 3msec to 0 6sec The multiple shift MS mode is predomi nantly implemented for fast spectroscopy and allows a block of rows to be shifted together In MS mode two user defined slits can be used these place the spectra of the target and a comparison star onto a small region of the CCD After a pre defined wait time 0 1 20 secs the rows of the CCD are rapidl
34. FLAMES CCD read out GIRAFFE 1 FLAMES CCD read out UVES 1 FLAMES Screen Flatfields 7 FLAMES Plate Configuration 0 20 VISIR Imaging target acquisition incl setup VISIR fine acquisition gt 1 Jy source 5 VISIR blind preset lt 1 Jy source 2 VISIR Imaging read out chopping 50 of int time VISIR Burst read out nod chopping 80 of int time VISIR Spectroscopy target acquisition incl setup VISIR gt 1 Jy source 15 VISIR 0 2 1 Jy source 30 VISIR Spectroscopy read out nod chopping 50 of int time SINFONI Acquisition no AO 3 SINFONI Acquisition AO NGS 2 4 x DIT NDIT 5 SINFONI Acquisition AO LGS 9 4 x DIT NDIT 5 SINFONI Acquisition target AO and no AO 4 4 x DIT x NDIT SINFONI Instrument setup per grating change 2 5 SINFONI Science exposure read out per DIT 0 07 SINFONI Detector setup per DITxNDIT 0 3 HAWK I Target Acquisition and Instrument Setup 1 HAWK I Target Acquisition MoveToPixel and Instrument Setup 3 HAWK I Telescope Offset large 0 50 HAWK I Telescope Offset small 0 15 HAWK I Read out per DIT 0 03 HAWK I Filter change 0 35 MIDI One calibrated Visibility SCI CAL 60 MIDI One calibrated Visibility CAL SCI CAL U 90 AMBER One calibrated Visibility CAL SCI CAL in LR 30 45 number of bands AMBER One calibrated Visibility CAL SCI CAL in MR or HR 45 45 number of bands 7 AMBER One calibrated Visibility SCI CAL in LRU 20 30 number of bands 7 AMBER One calibrated Visibilit
35. OS see Sect 6 7 Unless informed otherwise VM investigators will be required to arrive on Paranal before the start of their observing run as follows 24 hours for UVES and 48 hours for all other instruments On La Silla Visiting Astronomers shall arrive 1 to 2 days before the start of the observations and may leave the site up to 1 to 2 days after the end of their observing run according to the transportation schedule see the La Silla Science Operations page Note that programmes must be executed as specified at Phase 1 and approved by the OPC In case the observing conditions are not ideal see Sect 4 2 2 the proposer should prepare a backup alternative programme to be executed in place of the primary programme Such backup programmes must be approved by ESO prior to the observing run The corresponding requests must be submitted via the web based form available at http www eso org sci observing phase2 ProgChange In the absence of a backup programme if the conditions prevent the execution of the observa tions intended for the Visiting Astronomer s primary programme the telescope will be used by the Observatory for execution of Service Mode observations For Paranal instruments proposers should request VM if their observing programme requires real time decisions Usage of VM should also be considered for those observations whose execution does not strongly benefit from the short term scheduling flexibility allowed by Service Mode
36. Period 86 Instrument Mode Rs AX Magnitude limit E2V MOS movable slits 260 1700 R 24 0 22 8 Long slit Spectroscopy 260 1700 R 24 0 22 8 Spectropolarimetry 260 1700 R 19 2 17 2 MIT MOS movable slits 260 2600 R 24 2 23 3 MXU exchangeable masks 260 2600 R 24 2 23 3 Long slit Spectroscopy 260 2600 R 24 2 23 3 HIT MS spectroscopy 660 780 R 19 5 12 3 HIT OS spectroscopy 660 780 R 14 3 1 In multi object spectroscopy one may have 19 slitlets of length alternating between 20 and 22 2 Only offered with the SR collimator 3 In long slit spectroscopy the slit is chosen out of a set of 9 slits with fixed width between 0 3 and 2 5 4 In HIT OS mode slit masks with widths between 0 5 and 5 0 are available The magnitude limits given in Table 4 are the R band magnitudes of a point source of zero colour that would result in a S N of 5 per pixel at 650 nm grisms 150I and 600RI in the continuum in a one hour integration with dark sky clear conditions a seeing FWHM of 078 an airmass of 1 2 and using the 170 slit and the SR collimator The two limits given are for the two representative resolutions In the case of the HIT MS mode the two limits represent the slowest and fastest readout modes available In the case of the HIT OS mode it is simply the limiting magnitude for the slowest mode available HIT OS5 256sec 6 2 6 FORS Instrumental Mask Simulator FIMS
37. Phase 1 proposal Corresponding requests including a brief justification must be submitted by email to esoform eso org at least two weeks before the proposal submission deadline Failure to follow this rule may lead to the rejection of the proposal by ESO for technical reasons 13 3 Policy regarding offered available observing configurations For Paranal it is ESO s intention to offer all the most frequently utilized instrument configurations and modes in both Service and Visitor Mode Users will be promptly informed if it becomes impossible to support some currently offered instrument mode and may be asked to switch from Service Mode to Visitor Mode or vice versa In general runs requiring non standard configurations will not be accepted in Service Mode 13 4 Observing programme execution Observations in both Visitor and Service Mode must be executed as described in the Phase 1 proposal including the instrument modes and specified targets Departures from Phase 1 spec ifications and targets will not generally be allowed unless a sound scientific justification ex ists and provided that the change does not involve a significant increase in the pressure fac tor on oversubscribed regions of the sky The request for changes of targets and instrument set up s along with the corresponding scientific justification must be submitted via the web based form available at http www eso org sci observing phase2 ProgChange For any other dep
38. S ECH 2 0 min per cycle IMG and IPOL none 3 See CRIRES User s Manual for more detail ion image not included 52 Table 19 Telescope and Instruments Overheads continued Hardware item Action Time minutes ISAAC Instrument Setup Imaging 0 5 ISAAC Instrument Setup Spectroscopy incl slit check 7 ISAAC Telescope Offsetting 0 25 ISAAC Target Acquisition 1 4 ISAACHw Read out per DIT imaging 0 07 ISAACAI Read out per DIT imaging without chopping negligible ISAACHw Read out per DIT spectroscopy 0 13 ISAACAI Read out per DIT spectroscopy without chopping negligible ISAACAI Imaging with chopping 40 ISAACAI Spectroscopy with chopping 30 ISAAC Night time flat one on off pair 4 ISAAC Night time arc one on off pair 3 ISAAC Burst and FastJitter Modes See the Burst web page UVES Instrument Setup 1 UVES Acquisition Bright Point Source 2 UVES Acquisition Faint Extended or Crowded Field 5 UVES Read out 1 x 1 Fast 0 75 UVES Read out 2 x 2 Slow 0 75 UVES Attached ThAr Night time 1 5 UVES Attached Flat Night time 2 XSHOOTER Target acquisition 3 5 XSHOOTER Telescope offsetting 0 25 XSHOOTER Instrument setup Slit 0 5 XSHOOTER Instrument setup IFU 1 XSHOOTER UVB Read out 1 x 1 Slow Fast 70 19 sec XSHOOTER UVB Read out 1 x 2 Slow Fast 38 12 sec XSHOOTER UVB Read out 2 x 2 Slow Fast 22 8 sec XSHOOTER VIS Read outl l 1 x 1 Slow Fast
39. S N of 6 between a bright H lt 7mag primary star and a methane rich Teg lt 1000K companion The pixel scale of this mode is 17 25 mas pixel and the FOV is 8x8 SDI replaces the old SDI which is not offered anymore The performance of SDI is equivalent to that of SDI but the mode offers a larger square FOV of 8 x 8 with the same pixel scale For more information consult the NACO web pages 6 10 5 Spectroscopic Modes Grism spectroscopy can be carried out using two slit widths 86mas and 172mas The slits are 40 long restricted to 28 for the S L27 cameras Prism and slitless spectroscopy are decommissioned 6 10 6 NACO Calibration plan and special calibrations The NACO calibration plan does not support all combinations of detector readout mode and instrument setup Observations requiring special calibrations must be carried out in VM In excep tional cases SM observations that require special calibrations will only be considered if the following information is provided in the proposal form e A comprehensive justification of the need for SM observations as opposed to VM Box 8D of the proposal form e A detailed description of the calibration strategy and needs in Box 9 e Specification of the need of special calibrations in Section 14 by uncommenting the provided lines Users are encouraged to send requests and questions to usd help eso org Night time calibrations is charged to the allocated obser
40. The exact dates of operation for 2010 have not been determined yet but they are likely to be in the early part of the period when the atmospheric transparency is expected to be better Time critical observations using CHAMP are therefore very difficult to schedule Users who would like to use CHAMP should contact the PI Dr Rolf Guesten rguesten AT mpifr bonn mpg de at least two weeks prior to submitting the proposal for which they are requesting approval Members of the PI team that will operate the instru ment for the guest proposal shall be included as Cols on the proposal 8 Visitor Instruments Visitor instruments can be mounted at the VLT UT1 the VLTI the NTT the 3 6 m telescope and at APEX in order to permit innovative observations by teams with their stand alone instruments or to test new instrumental concepts for the development of new facility instruments The requirements for visitor instruments are substantially reduced compared to the requirements for fully integrated facility instruments A set of guidelines on how to propose and carry out visitor instrument obser vations is found at http www eso org sci facilities paranal instruments visfocus No Visitor Instrument focus will be available on the VLT starting from Period 88 when KMOS will be commissioned As of Period P84 the VLT Visitor Focus is located at the NasmythB focus of UT1 Antu For technical information concerning the interface between an instrument a
41. To achieve this goal HARPS is designed as an chelle spectrograph fed by a pair of fibres and is contained in a vacuum vessel to avoid spectral drift due to temperature and air pressure variations One of the two fibres collects the starlight while the second is used to either record a Th Ar reference spectrum or the background sky simultaneously The two HARPS fibres object sky or Th Ar have a sky aperture of 1 resulting in a resolving power of 115 000 Both fibres are equipped with an image scrambler to provide a uniform spectrograph pupil illumination independent of pointing decentring The spectral coverage distributed over the chelle orders 89 161 is 378 nm 691 nm As the detector consists of a mosaic of 2 CCDs altogether 4kx4k 15 wm pixels one spectral order N 115 from 530 to 533nm is lost in the gap between the two chips HARPS reaches a signal to noise ratio of 110 per pixel at 550nm for a My 6 G2V star in 1 minute 1 seeing airmass 1 2 When using the Simultaneous Thorium Reference Method which is the mode for achieving the highest radial velocity accuracy this signal to noise ratio should be sufficient to achieve a photon noise dominated radial velocity accuracy of about 0 90 m s Taking into account errors introduced by the guiding focus and instrumental uncertainties a global radial velocity accuracy of about 1m s RMS is achieved This is obtained for spectral types later than G and for non rotating stars vsini
42. Type macro is TOO must contain at least one ToO run for which the tenth parameter of the ObservingRun macro is set to TOO No ToO run is allowed in Normal Short or Calibration Programmes e Large Programmes Large Programmes can no longer be converted to Normal Programmes Accordingly the ConvertLargeToNormal macro has been removed from ESOFORM e ESO GTC Programmes A special template has been developed for submission of ESO GTC proposals It is similar to the ESO Large Programme template but adapted for the GTC It is part of a separate ESOFORM package labelled 86B and it can be retrieved from the the same location in the ESO User Portal as the regular package 86A for observing proposals for ESO telescopes e As of P85 additional flexibility is allowed for specification of the observing run duration and of the breakdown of observing runs in Box 3 of the proposal form Details may be found in the ESOFORM Users Manual e Users have the possibility to submit proposals involving observations with both EFOSC 2 and SOFI for which the amount of time requested with either of the instruments is below the 3 night minimum duration limit applicable to La Silla runs provided that the considered EFOSC 2 and SOFI observations are to be executed on contiguous nights and that the sum of the durations of the EFOSC 2 run and of the associated SOFI run is greater than or equal to 3 nights In Box 3 of the ESOFORM proposal form the instrument des
43. a given run or at the end of the period whatever comes first An additional overhead for data processing has to be taken into account At the end of a semester data from all Service Mode runs will be distributed e The exceptions to the general rule are ToO data and pre imaging data which are made available to the PI via FTP directly from the archive This automatic service will normally take place within a maximum of 48 hours from the observing time e Service Mode Pls have direct access to their proprietary data via their User Portal account Data can be made available to the PI as soon as they have been safely archived in the ESO Science Archive in Garching e The proprietary period for Service Mode data starts when the data is made available for the first time to the user this also includes archive requests submitted during the period in order to access proprietary data 13 8 Publication of ESO telescope results Publications based on observations collected at ESO telescopes should state this in a footnote to the article s title The corresponding observing proposal should be clearly identified by its ESO reference number For example Based on observations collected at the European Southern Observatory Chile ESO Programme 086 C 1234 13 9 Press Releases Should you consider that your results are worthy of a press release to the general public please contact the ESO Outreach Department information eso org as soon as possible
44. ale The UVES instrument modes offered in Period 86 are listed in Table 6 This table is intended as a quick guide only for detailed information proposers should refer to the UVES Users Manual and Exposure Time Calculator ETC available through the UVES web page Table 6 indicates for a given mode the accessible wavelength range the maximum resolving power that can be obtained the approximate wavelength range covered in one exposure and an estimate of the limiting magnitude Please note that for each instrument mode standard settings have been defined in Service Mode only UVES standard settings are allowed Visitor Mode observers are encouraged to use the specially defined UVES standard settings The magnitude limits listed in Table 6 are estimated on the basis of the following conditions continuum source 0 7 seeing 1 slit no binning 3 hour integration S N of 10 per resolution element at the peak of the central order no moon They are indicative of the limiting performance of the instrument only as they depend on the wavelength UVES proposers should use the ETC for their S N estimates Whether or not an image slicer should be used depends on the trade off between slit losses due to seeing and the reduced transmission reduction between 20 and 40 when using an image slicer The peculiar spectral formats and the reduced sample of the sky spectrum with the image slicer also have to be taken into account Eight interfe
45. also called seeing enhancer mode The name of the TTS must be left blank in the target list of the Phase 1 proposal It is compulsory to provide the magnitude of the star and the bandpass in which the magnitude is given for both NGS and LGS with TTS Observations in LGS mode require either clear CLR or photometric PHO conditions the transparency constraint must be set accordingly in the proposal In addition LGS without TTS seeing enhancer mode must require seeing conditions better than 0 8 Separate runs should be specified in the proposal form for observations using a NGS on the one hand and for LGS observations on the other hand The LGS mode of NACO is offered in Service and Visitor Mode 6 10 2 Observing modes CONICA is the imager and spectrograph which is fed by NAOS CONICA offers a large range of modes filters grisms and masks Only the main characteristics of each mode are described here Details can be found in the NACO Users Manual For low Strehl ratios a few percent or less users should carefully weight the advantages of using NACO over other IR instruments such as HAWK I and ISAAC which generally have larger fields of view lower backgrounds and higher throughputs A summary of the offered modes is given in Table 12 Visitor mode must be requested for programmes requiring e Lyot coronagraphy SDI 4 and 4QPM coronography as flexures inside NACO require the observer to monitor constantly the centering
46. aperture of 115x773 and 1 1 67 with 03 microlens and a total aperture of 66x42 In addition 15 ARGUS sky fibres can be positioned in the 25 field GIRAFFE is equipped with one 2kx4k EEV CCD 15 ym pixels with a scale of 03 pixel in MEDUSA IFUs and ARGUS direct mode and a scale of 015 pixel in the enlarged ARGUS mode GIRAFFE is operated with 39 fixed setups 31 high resolution 8 low resolution modes The standard readout mode of FLAMES GIRAFFE is 225 kHz unbinned which ensures low read out noise Starting from Period 86 a high speed readout mode 625 kHz unbinned low gain with increased readout noise but less overheads is offered in Visitor Mode only No pipeline support is available for this mode UVES is the high resolution spectrograph at UT2 of the VLT see Sect 6 4 It was designed to work in long slit mode but it has been possible to add a fibre mode 6 to 8 fibres depending on setup and or mode fed by the FLAMES positioner to its Red Arm only Only three of the standard UVES Red setups are offered with central wavelength of 520 580 and 860 nm respectively see the UVES Users Manual for details The standard readout mode of FLAMES UVES is 225 kHz unbinned which ensures low readout noise Since Period 76 a high speed readout mode 625kHz unbinned low gain with increased readout noise but less overheads has been offered in Visitor Mode only No pipeline support is available for this mode With an ape
47. arture from Phase 1 specifications such justification must be provided by writing to paranal eso org at least one month before the beginning of the observations for runs sched uled in Visitor Mode For Service Mode runs these requests and associated justifications must be submitted to usd help eso org or to p2pp waiver eso org clear instructions are available at http www eso org sci observing phase2 WaiverChanges html at least one week before the Phase 2 deadline ESO reserves the right to reject the changes if insufficiently justified if con flicting with any other approved programmes or if they imply significant changes in the overall distribution of scheduled targets in the sky Observations of targets for which no authorization has been obtained are not allowed at the telescope 67 13 4 1 Service Mode run execution On the basis of OPC ranking the runs to be conducted in Service Mode will be subdivided for operational reasons into the following Classes e Class A All possible effort will be made to execute all OBs corresponding to the runs in the requested observing period Approximately the first half according to the OPC ranking of the total amount of Service Mode time scheduled on each telescope falls in this Class e Class B Best effort will be made to have these runs conducted in the requested observing period Approximately the second half according to the OPC ranking of the total amount of Service Mode
48. as faint as R 17mag in excellent seeing conditions Ideally NGS should be as close as possible to the scientific target if not the science target itself and usually closer than 10 The NGS can be chosen to be as far as 30 away from the science target or as far as 60 but with some constraints on the field orientation and depending on atmospheric conditions the AO system can still provide a mild improvement in the encircled energy The name of the NGS must be specified in the target list of the Phase 1 proposal using the ESOFORM proposal template The LGS mode see Section 4 2 3 for additional details can be used with or without a tip tilt star In Period 86 the LGS mode of SINFONT is offered in Service and Visitor Mode If a tip tilt star TTS is used it should be in the V magnitude range 12 18 and can be as far away as 60 from the science target However performance decreases with increasing distance and there are some constraints on the field orientation The name of the TTS must be specified in the target list of the Phase 1 proposal using the ESOFORM proposal template The LGS mode without a tip tilt star the so called seeing enhancer mode has been offered since Period 85 Users requesting this mode must specify CLR or better for the transparency and a seeing better than 0 8 in their Phase 1 application In the target list of the Phase 1 proposal using the ESOFORM proposal template please leave the TTS name blank If
49. asilla instruments harps index html 5 4 FEROS Fibre fed Extended Range Optical Spectrograph on the 2 2 m FEROS is ESO s high resolution high efficiency spectrograph on the 2 2 m telescope It is a bench mounted thermally controlled prism cross dispersed chelle spectrograph providing in a single spectrogram spread over 39 orders almost complete spectral coverage from 350 to 920nm at a resolution of 48 000 The spectrograph is fed by two fibres allowing simultaneous spectra of an object and either the sky or a calibration source normally a wavelength calibration lamp The fibres are illuminated via apertures of 2 0 and are separated by 2 9 The mechanical and thermal stability of FEROS is such that the wavelength calibration obtained during the day is sufficiently accurate for most purposes Additional night time calibrations are not necessary Although not intended as a radial velocity machine precise radial velocity work accuracies of 25m s or better is possible especially via the Object Calibration mode A dedicated pipeline provides in almost real time extracted 1 dimensional wavelength calibrated spectra which can be used as a preview and to check S N The core of the FEROS pipeline is included in the standard MIDAS distribution and together with the FEROS DRS package provided at the FEROS web site can be used to re reduce the data to obtain publication quality results A new atmospheric dispe
50. ate should not be used even if the total amount of requested time does not exceed 10 hours the Normal Programme template should be used instead All GTO proposals will be evaluated and ranked together with Normal Programme proposals to provide feedback to the GTO teams on the scientific standing of their GTO programmes In general GTO runs must be conducted in Visitor Mode Sect 12 1 The only exceptions are those explicitly stated in the contractual agreement between ESO and the corresponding external consortium However ESO may exceptionally transfer some GTO runs from Visitor Mode to Service Mode for operational reasons such as the availability of VLTI baselines or the availability of the LGSF 61 11 6 Proposals for Calibration Programmes ESO operates a large number of complex instruments with many possible configurations and ob serving modes Although the Observatory executes a rigorous calibration plan for each instrument ESO does not have the resources to fully calibrate all potential capabilities of all instruments On the other hand the astronomical community has expressed interest to perform calibrations for certain uncalibrated or poorly calibrated modes or to develop specialized software for certain calibration and data reduction tasks In recognition of this ESO has introduced a new type of programmes the Calibration Programmes for which users are invited to submit proposals that aim at filling in some of the gaps in t
51. ay operating simultaneously in the 350 ym and 450 um atmospheric windows It is composed of 14 pixels divided into two sub arrays of 7 pixels each arranged in a hexagonal configuration The two sub arrays operate at orthogonal signal polarizations The RF tuning range is 620 720 GHz for the 450 um and 780 900 GHz for the 350 um sub array The beam spacing is 2 15 times the half power beam widths of 8 8 at 692 GHz and 7 7 806 GHz so only the central pixels of the two sub arrays are spatially co aligned on sky The front end is connected to a FFT spectrometer array back end providing up to 2 8GHz of bandwidth for each detector pixel with spectral resolution of 212kHz The system is operated in single sideband mode For exposure time calculations users should assume SSB system temperatures of typically 1000 1400 K at the frequency of the CO 6 5 line at 691 GHz and 2500 4000 K CO 7 6 at 806 GHz closer to the edge of the atmospheric window The image gain suppression is better than 10 15 dB for all pixels in the centre of the IF band All CHAMP proposals should add a 20 additional overhead for instrument characterisation and calibration purposes such as the establishment of a pointing model and the determination of the gain curves Further information on CHAMP can be found in the CHAMP homepage As the operation of CHAMP requires the presence of the instrument team all ESO CHAMP observations will be scheduled on fixed dates
52. be explicitly requested in Box 14 by uncom menting the corresponding instrument configuration line This will ensure smooth operations by flagging the detector change in the schedule The image scale in the default readout mode 2 by 2 binning is 0 125 pixel in the high resolution HR mode and 025 pixel in the standard resolution SR mode The field of view in these two modes is respectively 4 25 x 4 25 and 6 8 x 6 8 note that the detector area is larger than the field of view The different magnifications are chosen by setting one of the two collimators Hence each magnification has to be calibrated independently Unbinned CCD readout modes are only offered for applications that specifically require them the use of unbinned modes must be explicitly requested in the proposal In addition to the standard imaging and longslit spectroscopy modes some of the key capabilities of FORS2 are listed below 6 2 1 Multi object Spectroscopy FORS2 provides two multi object spectroscopy modes The MOS mode comprises 19 movable slitlets of fixed slit lengths between 19 and 21 and user selectable slit widths The MXU mode provides the possibility to insert a mask in the focal plane in which slits of different lengths widths and shapes can be cut with a dedicated laser cutting machine The FIMS tool Sect 6 2 6 must be used for Phase 2 preparation of MOS and MXU observations The performance of the MOS and MXU modes are equivalent cf Table 4
53. ber 2001 issue As part of the Phase 1 proposal investigators will have to specify which mode they desire and why they request that mode While it will be attempted as much as possible to follow the desire of the proposers with respect to observing mode ESO does reserve the right to allocate time in a mode different from the one requested Note especially the restrictions of available modes detailed in Sects 12 1 and 12 2 and the policy in Sect 13 3 The telescope as well as the instruments will be operated by Observatory staff only The astronomer interfaces with the telescope instruments via Observation Blocks OBs produced using the Phase 2 Proposal Preparation P2PP tool see http www eso org sci observing phase2 P2PP P2PPTool html 12 1 Visitor Mode In Visitor Mode VM the astronomer is physically present at the observatory during the data acquisition Each approved VM run will be allocated specific calendar nights One of the programme 63 investigators will travel to the Observatory and execute the observations For all ESO instruments data acquisition will be done by executing Observation Blocks OBs i e observing sequences specified by the astronomer which are based on templates provided by ESO VM investigators will be encouraged to construct their OBs before arriving on the site However P2PP allows OBs to be constructed and or modified in real time at the telescope with only the partial exception of VIM
54. bility accuracy and Closure phase accuracy The limiting magnitudes are estimates on the basis of at least 50 of the frames being successfully processed by the AMBER pipeline If a lower yield rate is accepted an increase of up to 0 5 in the limiting magnitude can be achieved In this case the user should account for additional integration in the same spectral band see Sect 6 13 5 to obtain more frames The limiting correlated magnitude depends on the AMBER spectral resolution and the FINITO tracking mode No Tracking Group Tracking or Fringe Tracking The main interest of FINITO 44 Group Tracking on faint magnitude is to enhance the SNR on the AMBER closure phase but reducing the flux in the H band In order to be observable with FINITO the target should have e Hmag 2 5 ATs 1 7 UTs e Visibility in H gt 15 ATs gt 10 UTs 6 13 4 Calibration strategies AMBER requires frequent calibration on sky using calibrator stars We offer two calibration modes CAL SCI CAL and CAL SCI The first one is the standard mode which should be used in most cases in particular when absolute calibration is required for best accuracy Absolute calibration is required in most program but for some programs wavelength differential quantities provide the astrophysical information In that case CAL SCI or SCI CAL is sufficient The choice of on sky calibration strategy should be specified in the cali
55. ble to request target of opportu nity ToO runs in proposals for ToO GTO and DDT programmes These programmes may include a mixture of ToO runs and normal runs ToO runs are defined as runs for which the target cannot be known more than one week before the observation needs to be executed Such runs will be scheduled for execution upon receipt of an activation trigger by ESO the target and observing time information will be inserted by the Observatory support staff into generic Observation Blocks OBs submitted 1The possibility for GTO teams to request ToO observations as part of their guaranteed time is restricted to those cases in which this option is explicitly mentioned in the GTO contract 11 by the PI at Phase 2 Targets that are unknown at Phase 1 proposal submission time but can be observed more than one week after they have been identified should be observed as part of normal non ToO runs The related OBs should be defined or updated by the PI once the target is known The OBs should be stored in the ESO database with the complete information needed to allow them to be executed as part of the regular Service Mode queues In the ESOFORM proposers must specify which runs are of ToO type by inserting the TOO flag upper case in the tenth final field of the ObservingRun macro For non ToO runs this field should be left empty ToO programmes i e programmes for which the type param eter set in the ESOFORM Programme
56. bration request section of the proposal That strategy will be reviewed particularly carefully during the technical feasibility Proper justification must be provided in case one wants to use CAL SCT instead of the standard CAL SCI CAL 6 13 5 Execution times For each Observing Block OB either SCI or CAL e Acquisition requires 15min in HR or MR 10 minutes in LR including the spectrograph setup and the recording of the calibration fringes so called P2VM e Integration requires 15min A maximum of 3 integrations is allowed per OB which could consist in repeating 3 times the same integration or covering 3 different wavelength ranges within the same spectral setup Hence a normal CAL SCI CAL sequence requires 90min in MR or HR 75min in LR When observing targets close to the limiting magnitude in MR or HR it is recommended to double or triple the integration and to focus on wavelength differential quantities Hence a CAL SCI sequence with triple integration requires 2x1h 2h Using non standard DIT below 200ms in MR and HR or below 25ms in LR see Sect 6 13 2 can strongly reduce the spectral coverage available within one integration To obtain measurements at different position within the range of the spectrograph setup the user can use 2 or 3 integrations with different central wavelengths see Sec 6 13 1 6 14 VIRCAM VISTA InfraRed CAMera VISTA see Sec 4 2 6 is equipped with the near infrared
57. bserving conditions and with targets spread over the entire range of RAs for a given period is necessary For this reason proposers are requested in their Phase 1 proposal to specify not only the targets with accurate coordinates but also the needed observing conditions lunar phase seeing sky transparency Due to their essential role in determining the long term scheduling of Service Mode time the constraints specified at Phase 1 are binding Successful proposers will not be allowed to change the constraints instrument set ups target lists and or times per target that were requested at Phase 1 in their Phase 2 submissions unless explicitly authorized by ESO see Sect 13 4 13 6 Pre imaging runs A separate pre imaging run must be specified for VLT programmes for which pre imaging is required If this is not specified in the proposal the time needed for the execution of the pre imaging will be deducted from the total allocation of the project Pre imaging runs are always scheduled in priority class A but in case that the pre imaging run is not specified separately this will not happen automatically In such cases there is a risk that pre imaging might not be identified as such until a later time For this reason please be sure to indicate the pre imaging character of the run by using the corresponding INSconfig macro in the BTEX ESOFORM template 68 13 7 Data rights archiving data distribution All data are ESO property ESO grant
58. ccessible via the OSIRIS and CanariCam web pages and should be read by the prospec tive applicants to avoid duplication Correspondingly the abstracts and lists of targets from approved ESO GTC proposals will be made public through the ESO web pages at least one month before the deadline for submission of normal GTC proposals ESO GTC observations will be executed either in service or visitor mode However clear nights are guaranteed as per the Agreement so applicants should apply for the exact amount of time required to complete the programme before March 2012 Since for service mode observations the requested time must be specified in hours rather than in nights the minimum duration of ESO GTC service mode programmes will be 90 hours 59 ESO GTC proposals must be submitted using the ESO BPTFX template for Large Programmes Note however that the version of this template to be used in this case is different from that for the ESO telescopes and is available as part of a special ESOFORM package cycle 86B This package can be obtained as explained in Sect 3 1 11 4 Target of Opportunity Proposals Normally up to 5 of the available ESO general observing time may be used for Target of Opportu nity ToO proposals For events with exceptional characteristics ESO will also consider overriding Visitor Mode observations ESO recognizes two categories of Targets of Opportunity 1 Unpredictable ToOs are those concerning unpredictable astro
59. ducts Public Imaging Surveys Science Verification Advanced Data Proc rea a a a RR BA a e Boe oan ee ee ae 9 3 How to submit an ESO Phase 1 proposal 10 3 1 How to obtain the ESOFORM Proposal Package o 10 3 2 How to fill the ESOFORM Proposal Formio cos c a eG aeaea aa 10 3 2 1 Important recent changes to ESOFORM 10 3 2 2 Observing conditions definitions o aaa 62 4 0445 46 ec 11 3 9 Proposal SUBMISSION lt s s oe eos Goa ee RRR be a a A RA ee a 12 II ESO Telescopes and their Instrumentation 14 4 The Observatory 14 AM Lala 22445 oh eee te Be ote alae aie ee a EY Sh dn ae gy Bah eo EE EA 14 a2 Parma iraa ORDA Bare WE REO PR ee Ce eee daw SESS aed 15 Lal he VEF WES ok ea a a Gee ee A RED RaSh ARES E a 15 4 242 UTs P riormanc 6 44 eee Ce be eta Sa eee See aes 15 4 23 Laser Guide Star facility on UTA lt 16 4 2 4 Paranal Sky accessibility zones of avoidance 004 17 425 The As Vili oniy coca aa A SE ERE a a 17 AG NOIA s 2 0464688 edd eh ede eo dou hea eee o ba wees 48 Hd 17 4 2 7 Paranal meteorological conditions s lt s a e sssaaa oeae ai 18 AS Canann 4 a re ate a ee a a A A 18 5 Scientific Instruments La Silla 20 5 1 Sofl Son of ISAAC on the NTT 20 5 2 EFOSC 2 ESO Faint Object Spectrograph and Camera 2 on the NTT 20 5 3 HARPS High Accuracy Radial velocity Planetary Search on the 3 6
60. e ae ee A RAR a is 0 11 39 Sky Subtraction 2 004 444 05 SSS Ee SRL a ee Hee aS 611A Calbratigns lt 2 2 64244255444 4444484 050525 AEE OE OY 6 11 5 Modes that are not offered o o 0002 ee eee 6 12 MIDI MID infrared Interferometric instrument 6 13 AMBER Astronomical Multi BEam combineR 2004 6 13 1 Spectral Modes and Coverage ee G 13 2 Integration times DIT e soe ce ce ee ae kb we ee A 613 3 Limits miagniiMdes os bw varas Ma a A Gee a 6 13 4 Calibration strategies 0 0 25 m a p a a ee ee a 6 13 95 Execution TIMES 6 200044 44s ne SADR e eed Dae a eee ew a 6 14 VIRCAM VISTA InfraRed CAMera 2 0000 eee eee O PMS ao oe a ae MEE SE Re ELGG SERA GRADE 4 OS 6 14 2 Focal plane geomietiy 2 04 62k eee See Ree eR REE ESE es 6 14 3 Instrument performance 0200002 ee eee eee 6 14 4 VISTA Public Surveys and Call for Proposals 6 1425 VIRCAM calibration plam 28 44 aa eae a E Aaa Scientific Instruments Chajnantor Wal BHPL e oaaae e e A A a A 7 2 LABOCA the Large APEX Bolometer Camera o e e 7 3 SABOCA the Submillimetre APEX Bolometer Camera 7 4 APEX SZ the APEX Sunyaev Zel dovich Camera o o e 7 5 CHAMP The Carbon Heterodyne Array of the MPIfR Visitor Instruments How to estimate overheads 10 Calibration Plans and Pipelines 10 1 Data Quality Cont
61. e expected improvement that can result from the proposed observations Moreover the proposal should emphasise the relevance and the overall scientific gain of the calibration techniques and products resulting from these observations Calibration Programmes do not pertain to any of the standard OPC categories A B C or D since in general they are not directly related to a unique scientific area the special subcategory code LO should be used to distinguish them The PI of Calibration Programmes are required to deliver to ESO the resulting Advanced Data Products within one year of the completion of the corresponding observations The procedure to be followed is described at http archive eso org cms eso data data submission 11 7 Director s Discretionary Time Proposals Up to 5 of the available ESO general observing time may be used for Director s Discretionary Time Proposals DDTs in Period 86 Only DDT proposals belonging to one of the following categories will be considered e proposals of ToO nature requiring the immediate observation of a sudden and unexpected astronomical event e proposals requesting observations on a highly competitive scientific topic e proposals asking for follow up observations of a programme recently conducted from ground based and or space facilities where a quick implementation should provide break through results e proposals of a somewhat risky nature requesting a small amount of observing time to t
62. e on the UTs should be designed so that scientifically meaningful results can be achieved in a single night 6 13 1 Spectral Modes and Coverage The following spectral modes are offered the Low Resolution H K bands LR HK Medium Res olution K band MR K High Resolution K band HR K and Medium Resolution H Band MR H For central wavelengths and wavelength coverages for LR HK MR K MR H and HR K see the AMBER web page Using a short DIT lt 180 ms in medium or high resolution and lt 25ms in low resolution limits the spectral range that can be recorded because the detector has to be windowed to increase readout speed Users interested in obtaining visibility measurements at several spectral positions inside the range allowed by each configuration can add up to two additional spectral bands 6 13 2 Integration times DIT External fringe tracking with FINITO is available on both the UTs and the ATs The use of FINITO allows the entire AMBER detector to be read maximizing simultaneous spectral coverage It also allows the AMBER DITs to be adjusted to yield sufficient signal to noise ratio per frame in the fringes However the DIT has to remain small since even with the help of the fringe tracker interferometric fringes get significantly blurred after integrations lasting seconds Note that Medium and High Resolution are only offered with external fringe tracking as standard setup If no fringe tracker is used i e faint and or
63. eb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Month Figure 5 Annual variation of the Precipitable Water Vapour PWV content at Chajnantor based on 10 years of site testing During Period 86 observations will only be scheduled from August to December when median conditions are expect to be around PWV 1mm 20 run This also accounts for the different receivers of SHFI which should be grouped into a single run Different run ID s should only be used for different instruments or in Large Programme proposals for observations to take place in different periods This restriction is needed to increase the observing efficiency at APEX More on APEX including SHFI LABOCA and SABOCA observing time calculators can be found at www apex telescope org 5 Scientific Instruments La Silla 5 1 SofI Son of ISAAC on the NTT Sofl is the infrared spectro imager mounted on the NTT and has the following observing modes e Imaging with plate scales of 0 273 and 0 288 pixel using broad and narrow band filters in the wavelength range 0 9 2 5 wm Sofl provides a field of view of 4 92 As of Period 80 the imaging modes with 0 144 pixel plate scales e the small field objective and the large field plus focal elongator are no longer offered A Js filter similar to that on ISAAC is available in addition to the standard J filter e High time resolution imaging in Burst and FastPhot mode with integration times of the order of a few
64. ector General Urgent requests must be clearly identified in Box 5 Special Remarks of the application form Please note Within one month following the delivery of the data the PI of an accepted DDT proposal must submit a report on the achieved science to opo eso org 11 8 Non member State Proposals A Non member State Proposal is a proposal where 2 3 or more of the proposers are not affiliated to ESO member state institutes independently of the nationality of the proposers and of the affiliation of the PI Non member state proposals are submitted in the usual way but a separate set of criteria are used for the review of such proposals Sect 13 1 This non member state policy does not apply to the host state Chile whose participation is regulated by the Interpretative Supplementary and Amending Agreement to the 1963 Convention Sects 11 9 and 13 1 11 9 Host State Proposals Qualifying proposals whose Pl is affiliated with an institute of the Host State Chile are counted as a Host State Proposals The designation as Host State Proposal is independent of the fraction of non member state Col s 12 Observing Modes In Period 86 most VLT and VLTI instruments will be offered in two modes Visitor Mode VM and Service Mode SM These modes have been extensively described in the Data Flow Operations section of the December 1997 and June 1998 issues of The ESO Messenger see also an article on Service Mode scheduling in the Septem
65. ecution of their observations and to carefully study the possibility of performing them with a NGS ATs New baselines are offered since P85 see the VLTI baseline page Note also the new information on limitations of STRAP guiding related to the moon see Sect 4 2 5 VLTI open for visitor instruments The possibility to install a Visitor Instrument at the VLTI has been offered to the community since P85 CRIRES The installation of metrology fibers was completed in December 2009 once the corresponding control software is implemented wavelength setting reproducibility for the standard settings will be significantly improved FLAMES GIRAFFE A fast readout mode 625Khz is offered in visitor mode only It is not supported by the pipeline VIMOS As a part of a VIMOS upgrade project ESO plans to replace the currently installed four CCDs with E2V deep depletion CCDs similar to the ones installed in GIRAFFE The new detectors will have a better throughput in the red and a much reduced fringing The expected gain in QE at 900 nm is at least a factor 1 5 The intervention is expected to take place in the middle of Period 85 i e in the months of June and July 2010 This intervention is expected to invalidate all previous pre imaging observations Please consult the VIMOS web page for the latest news on the upgrade HAWK I A Fast Photometry mode is implemented and offered starting in Period 86 NACO The fo
66. ed in their science programme have to consider that only one free slot will be available in the VIRCAM filter wheel and that the selected filter will be mounted for a minimum of two years corresponding to the planned maintenance intervals of the instrument At proposal submission the proposal PI will have to demonstrate the availability of the visitor filter set its compatibility with the instrument requirements and the basic performance of the individual filters 6 14 5 VIRCAM calibration plan The VIRCAM calibration plan is currently under review to include the experience of the Science Verification and Dry Runs Future applicants should presume that the photometric calibration is based on 2MASS stars in the field of view with an extinction correction according to Hodgkins et al 2009 MNRAS 394 p 675 in the extrapolated Y and Z bands Future applicants will have to include the time for additional standards in their proposals 7 Scientific Instruments Chajnantor 7 1 SHFI The APEX Swedish Heterodyne Facility Instrument SHFI contains 4 single pixel receivers e APEX 1 a Single Side Band SSB SIS receiver covering 211 275 GHz with SSB receiver temperature Trec around 130 K between 210 and 260 GHz and 180 K between 260 and 270 GHz APEX 1 covers lower frequencies than previously offered at APEX allowing observations during conditions with PWV gt 2 mm e APEX 2 a Single Side Band receiver covering 275 370 GHz with SSB receiver tempera
67. efer to the detailed information that is available via http www eso org sci facilities lasilla instruments wfi index html Table 1 WFI limiting magnitudes Filter Limiting magnitude S N 5 U 23 8 B 26 0 V 25 5 R 25 3 I 24 3 The limiting magnitudes correspond to a one hour integration with dark sky clear conditions a seeing FWHM of 0 8 and an airmass of 1 2 and have been calculated for a point source of zero colour AOV star To estimate the operational overheads of your proposed observations please consult Chapter 5 1 of the WFI handbook Note that for dithering offsets larger than 150 the overhead increases by 1 minute per offset These extra overheads must be properly accounted for As of Period 82 WF is offered only in Visitor Mode All applicants are invited to take into account the availability restrictions of the 2 2 m during ESO time and the corresponding lunar phases see Sect 4 1 6 Scientific Instruments Paranal 6 1 CRIRES Cryogenic high resolution IR chelle Spectrograph CRIRES is the infrared 0 95 wm 5 4 um high resolution spectrograph located at the Nasmyth A focus of UT1 It provides long slit 39 spectroscopy with a spatial sampling of 0 1 Spatial resolution and signal to noise ratio can be maximized by the optional use of a MACAO adaptive optics system equipped with an optical R band wavefront sensor Good correction is still ob tained with stars as faint as R
68. equirements IMG Offsets gt 30 during OB execution often cause the loss of the guide star resulting in large operational overheads For this reason offsets gt 30 are not allowed with VIMOS If an offset pattern with a greater amplitude is needed users should use separate OBs at each offset position Please make sure you take into account the increased overhead time due to this feature when estimating the total time needed for VIMOS imaging runs In IMG mode filter exchanges are allowed within an OB Overheads for filter exchanges should be taken into account using the estimate given in Table 19 6 7 2 VIMOS observation requirements MOS and pre imaging MOS observations are performed with machine cut masks that have to be prepared well in advance ESO provides a software package vmmps for slit definition and positioning for Phase 2 preparation equivalent to FIMS for the FORS instruments The user can define rectangular slits of width wider than 0 6 and length up to 30 Inclined slits can be defined The change of CCDs scheduled to happen during P85 June July 2010 will invalidate all pre imaging data taken before August 1 2010 Pre imaging is mandatory for subsequent spectroscopic MOS follow ups even when targets come from a pre defined catalogue and must be carried out with the R filter Pre imaging is done in Service Mode this also applies for MOS Visitor runs separate runs must be requested for pre imaging in
69. erriding priority over other observations except if the latter are strictly time critical Additionally the following instrument specific restrictions apply e UVES can only be used with standard wavelength settings e ISAAC can only be used in the SW imaging and SW spectroscopic modes e FORS2 can only be used in the broad band imaging long slit spectroscopic imaging polari metric and spectro polarimetric modes e SINFONI is available in NGS and noAO mode but not in LGS mode e HAWK I all the filters can be used but the trigger requesters must follow the manual indi cations closely as far as brightness restrictions of objects in the field are concerned The delivery of the encoded alerts to the Paranal Observatory is entirely the responsibility of the PI Successful PIs will be asked to provide a set of OBs by the Phase 2 deadline to be certified for execution as is done for other Service Mode runs Details on the activation mechanisms and the preparation of RRM observations can be found at http www eso org sci observing phase2 RRMObservation html 11 5 Guaranteed Time Observations Guaranteed Time Observations GTO arise from contractual obligations of ESO vis vis the ex ternal consortia who build ESO instruments see http www eso org observing proposals Guaranteed Time Observers must submit proposals for their GTO time using the standard tem plates and by the standard proposal deadline The Short Programme templ
70. es e g attached calibrations for VIMOS IFU and some MOS modes see the VIMOS User Manual for details The time needed to execute such attached calibrations needs to be included in the proposal see Section 10 2 As a guideline to help proposers estimate the overheads associated with their observations we provide typical numbers in Table 19 More details can be found in the instrument manuals Proposers are strongly encouraged to make use of the Phase 2 Preparation Tool P2PP during the preparation of their proposals in order to accurately determine the overheads required by their programmes It is possible to simulate the detailed breakdown of the programme in terms of its constituent Observation Blocks OBs using the P2PP tutorial accounts http www eso org sci observing phase2 P2PP P2PPDocumentation html The Execution Time Report option offered by P2PP then provides an accurate estimate of the time needed for the execution of each OB including all the necessary overheads Service Mode proposers should take into account that the total execution time estimated by P2PP reflects the official ESO time accounting in Service Mode 10 Calibration Plans and Pipelines 10 1 Data Quality Control ESO has implemented calibration plans for all instruments The primary purposes of these plans are to assure data quality monitor instrument performance and calibrate science observations Based on these plans calibration data are obtained
71. esponse Mode RRM ESO continues to offer VLT Rapid Response Mode RRM During Period 86 FORS2 on UTI UVES and XSHOOTER on UT2 ISAAC on UT3 and SINFONI and HAWK I on UT4 are available in RRM 60 RRM proposers should note that e A RRM trigger is a special ToO trigger that can only be activated up to 4 hours after an event After this deadline observations should be requested through normal ToO triggers e As with ToO programmes proposers will need to indicate in the ATEX template the number of targets per run and the requested number of triggers per target e RRM runs have to be specified as separate runs in the ESOFORM template Upon receiving an encoded alert indicating the coordinates of the target and the associated Ob serving Block OB to be executed any ongoing integration will automatically be terminated and the RRM OB will be executed Depending on the instrument and the target position the tele scope instrument will be at the location of the target within about 6 minutes following the arrival of the alert at Paranal Depending on the target brightness and instrument mode target acquisition may take some more time RRM observations in Period 86 are subject to the following restrictions e The requested instrument must already be in operation No change of instrument and tele scope focus is accepted by the automatic RRM system e RRM activations will be accepted during Service Mode and Visitor Mode runs They have ov
72. est the feasibility of a programme DDT programmes that have target of opportunity runs should now mark their corresponding Run Types as TOO in the ObservingRun macro See the ESOFORM Users Manual for more details DDT programmes involving TOO runs should also fill in the NTOORun macros in the ESOFORM proposal template as instructed 62 Approved DDT proposals are carried out in Service Mode on Paranal and Chajnantor or in Visitor Mode override on La Silla Very few non time critical DDT proposals are foreseen to be approved so proposers should provide a clear justification in Box 8D of the application form why the programme should be considered for DDT allocation and why it was not submitted through the normal OPC procedure In the absence of such a justification the proposal will not be considered for DDT allocation and the proposers will be encouraged to resubmit their proposals for the next appropriate OPC submission deadline As a general rule proposals originally submitted to the OPC that were not allocated time must not be submitted as DDT proposals DDT proposals may be submitted at any time They must be written using the special ESOFORM DDT template Proposers must upload the DDT ESOFORM template and submit their DDT proposals by registering and logging into the User Portal You can find more details at http www eso org sci observing proposals esoform html DDT proposals are reviewed at ESO and approved by the Dir
73. ets if the calibration data and the science data are taken at very different rotator angles In order to minimise these effects attached night time arcs and screen flats are mandatory in IFU mode for all settings The corresponding overheads need to be taken into account at Phase 1 and can be estimated using Table 19 In IFU mode only one filter grism combination per OB is permitted Users who want to observe the same targets with different filter grism combinations are requested to submit separate OBs for different filter grism combinations and to consider the respective overheads 6 8 VISIR VLT Imager and Spectrometer for mid Infra Red VISIR is the mid infrared imager and spectrometer at the Cassegraing focus of UT3 It works in the wavelength ranges 8 13 um and 17 24 um and has been offered to the community since Period 75 6 8 1 Imaging Modes offered in Period 86 In Period 86 the imager with a 256 x 256 detector array is offered with image scales of 0075 pixel SF and 0 127 pixel IF The filters available are PAH1 ArlIII SIV_1 SIV SIV_2 PAH2 SiC PAH2 2 Nell 1 Nell NelI_2 Q1 Q2 Q3 B8 7 B9 7 B10 7 B11 7 B12 4 J7 9 J8 9 J9 8 and J12 2 The sensitivities with only few exceptions range between about 4 and 20 mJy 100 1h in the N band and between about 50 and 150 mJy 1005 1h in the Q band depending on the selected filter and image scale The Burst read out mode is offered in Visitor mode only for the imager I
74. extended objects or airmass too high the integra tion times with AMBER will have to be short to minimise the blurring caused by the atmospheric turbulence In Low Resolution without external fringe tracking the maximum authorized DITs are set to 100ms on the ATs and 50ms on the UTs If absolute visibility measurements is the goal the shortest authorized DITs are recommended see table 2 in the Template manual if closure phase and wavelength differential mode are the quantity of interest the maximum recommended DIT should be used Special Modes Special programs may require a different combination of mode and DIT This is the case when using MR or HR without external fringe tracking A shorter DIT strongly reduces the limiting magnitude It also reduces the spectral coverage that can be read see Sect 6 13 1 Any proposal requiring a non standard DIT should carefully detail the justification and the technical feasibility It will be scheduled in Visitor Mode In service mode the AMBER DITs ought to be chosen while preparing the Phase II The AMBER template manual available on the AMBER documentation page provides the recommended DITs for all offered configurations 6 13 3 Limiting magnitudes AMBER and the VLTI have limitations in magnitude V band H band and K band fringe con trast H band and K band airmass and seeing The details of these limitations can be found on the AMBER web page as well as the most updated values on Visi
75. f the end date from October 1 2010 to October 29 2010 MPG time from October 29 2010 to November 20 2010 ESO time from November 20 2010 to December 17 2010 MPG time from December 17 2010 to December 31 2010 ESO time from December 31 2010 to January 28 2011 MPG time from January 28 2011 to February 19 2011 ESO time from February 19 2011 to March 18 2011 MPG time from March 18 2011 to April 1 2011 ESO time These dates may be subject to minor changes One night per month during the ESO time slots will be reserved for scheduled technical activi ties and execution of the calibration plan In Period 86 ESO will be allocating approximately 66 nights for execution of scientific programmes on the 2 2 m telescope the corresponding runs will be scheduled exclusively during the ESO time slots Of these 66 nights up to 18 will be allocated to Chilean proposals see Sect 11 9 within the framework of the guaranteed time to which Chile is entitled as host country as per the agreement between ESO and Chile see Sect 13 1 During ESO time Visitor Mode runs may be interrupted for target of opportunity observations of Gamma Ray Bursts and X ray transient afterglows with the GROND instrument of the Max Planck Institute for Extraterrestrial Physics up to 15 of the time allocation of each run may have to be given away to such observations A compensation buffer of 10 nights is included in the ESO 66 nights of science time The ESO
76. for certain standard instrument modes on a regular basis Paranal calibration data are reviewed on a daily basis by Paranal Science Operations and the Garching Data Processing and Quality Control group A brief summary of the calibration plan for each instrument is available on line from http www eso org qc pipeline status html 10 2 Calibration Plans and Calibration of Science Observations The typical target accuracy of the calibrations plans to calibrate science data is 5 10 This may not be sufficient for all science programmes Important not all instrument modes and or configurations are covered by the current calibration plans Read the appropriate user manual and online documentation carefully http www eso org qc pipeline status html Daytime calibrations included in the calibration plans e g bias flat fields and arc lamp exposures are performed by the Observatory for both Service and Visitor Mode runs Whenever possible these data are obtained in the morning immediately after night time operations conclude Service and Visitor Mode users receive these data automatically For Service Mode runs certain ESO specified night time calibrations e g photometric standard stars telluric absorption correction stars are obtained systematically as described by the calibration plan in the instrument specific user manuals For many programmes these calibrations may be Table 19 Telescope and Instrument Overheads 51 Ha
77. gh the ESO User Portal interface Pre imaging Paranal for VLT instruments and modes for which pre imaging is required a separate pre imaging run must be specified in the proposal to be executed in Service Mode Failure to do so will result in the deduction of the time necessary for the pre imaging from the allocation destined to the main part of the project see Sect 13 6 Pre imaging La Silla Pre imaging frames for EFOSC 2 will have to be obtained at the beginning of the spectroscopic run itself The resulting lower efficiency should be taken into account in the computation of the execution time required for this run Monitoring programmes Monitoring programmes in Service Mode are executed on a best effort basis only i e a monitoring sequence might be interrupted by long periods of unsuitable weather conditions or Visitor Mode scheduling Although proposals requesting Visitor Mode do not need to include a backup programme the observer must normally prepare one for the case of unfavourable weather note in particular Sect 4 2 7 Approval of this backup programme must be sought at least one month in advance through the change request form located at http www eso org sci observing phase2 ProgChange see Sect 12 1 e The information provided in the proposal is binding all observing runs must be executed as described in the proposal Deviations from the proposal either by observing different targets or by using different i
78. grey time g to moon illumination between 0 4 and 0 7 and bright time specified by n to moon illumination gt 0 7 However in Service Mode bright time specified by n at Phase 1 is understood as meaning that no restriction is set regarding the lunar illumination FLI 1 0 at Phase 2 By definition moon illumination 0 when the moon is below the local horizon Lunar illumination does not have a noticeable influence on the feasibility of infrared observations However the UT active optics can be adversely affected by the proximity of a bright moon to the science target requiring a moon mininum angular distance of 30 Similar restrictions affect observations using the Auxiliary Telescopes see Sect 4 2 5 Observers must therefore pay attention to the moon distance to the target while planning their observations Naturally seeing and moon illumination conditions are not relevant for APEX observations which require an acceptable precipitable water vapour PWV range to be specified in mm Please note that observing conditions requested at Phase 1 cannot be changed at Phase 2 see Sect 13 5 for more detail 3 3 Proposal Submission Proposals can be submitted via a web upload that can be accessed by logging into the User Portal at http www eso org UserPortal prior to the submission deadline 31 March 2010 12 00 noon Central European Summer Time In order to efficiently verify and sub
79. gth LW magnitudes of a flat spectrum point source that would result in a S N of 5 per resolution element in the continuum in one hour of integration under typical background conditions a seeing FWHM of 0 65 and using a 170 slit Limits on IR spectroscopic capabilities vary strongly with wavelength due to the absorption emission spectrum of the atmosphere the range of values given in Table 8 reflects this variation 6 7 VIMOS Visible Multi Object Spectrograph VIMOS will be refurbished during Period 85 Details on the scope of the upgrade project expected performance validity of pre imaging observations and availability of the instrument are given in the News section of the VIMOS web pages Table 8 ISAAC Period 86 offered spectroscopic modes Instrument Mode A AX Scale Mag limit Range pixel SW LRes Spectroscopy 500 0 147 18 20 5 SW MRes Spectroscopy 3000 0 147 17 5 19 5 LW LRes Spectroscopy 500 0 147 11 14 LW MRes Spectroscopy 2000 0 147 10 13 32 Table 9 VIMOS Period 86 offered settings and modes Mode Scale FOV Wavelength A AA I Dispersion Spectral range nm H A pix multiplex IMG UBVRIz 0 205 pix 4x 7 x 8 z MOS LR Blue 0 205 pix 4x 7 x 8 370 670 180 5 3 4 MOS LR Red 0 205 pix 4 x 7 x 8 550 950 210 7 3 4 MOS MR 0 205 pix 4 x 7 x 8 480 1000 580 2 5 1 MOS HR Blue 0 205 pix 4 x 7 x 8 415 620 2050 0 5
80. h oversees the execution of the programme has established the following e In this final call ESO GTC proposals are invited for Large Programmes to be observed between 1 March 2011 and 29 February 2012 The available instruments are 1 OSIRIS the optical imager and multi object spectrograph in the following modes broad band imaging narrow band imaging with the red tunable filter long slit spec troscopy and fast detector read out mode 2 CanariCam the mid IR imager spectro polarimeter in the following modes imaging spectroscopy and polarimetry The above links contain the information to be used for proposal preparation including the exposure time calculators e The mechanism for submission and evaluation of ESO GTC proposals is the same as for ESO Large Programmes For this last call as for the two previous calls the technical feasibility of the proposals by the GTC will be done after the evaluation by the OPC but well ahead of the start of observa tions Thus PIs will be informed of any changes in the foreseen performance with sufficient anticipation to allow them to revise their observing strategy if needed e The ESO rules for Guaranteed Time Observations GTO will apply to the ESO GTC pro grammes recommended by the OPC e GTO programmes from the instrumentation teams will have priority over ESO GTC propos als In order to avoid duplication the abstracts and lists of targets from these GTO teams are a
81. has also found out that flexures affect the centering of the Lyot masks by up to 1 5 pixels for this reason Lyot coronagraphy has been moved to VM as well The approximate limiting magnitudes for imaging are listed in Table 14 pend on many factors such as the readout mode the NAOS dichroic etc These limits de Users should use 39 the preparation software and the ETC for detailed calculations Table 14 NACO magnitude limits with the NAOS visual dichroic Band J H Ks L FWHM mas 32 42 56 98 Sky Background mag 16 0 14 0 13 0 3 0 Limiting Magnitude 24 05 24 05 23 35 18 55 1 With the NAOS N90C10 dichroic the background for Ks is 11 0 mag per square arc second 2 5 sigma in 1 hour using a V 11 5 mag reference 10 away from the source with a visible seeing of 0 8 Please note that these limits are valid for point sources and have been computed over apertures with a radius of 1 25 times the values listed in the first row For NB filters subtract 2 to 3 magnitudes for spectroscopy subtract 4 to 5 magnitudes For L band imaging without chopping observations are done only with the AutoJitter template to ensure proper sky subtraction 6 10 4 Simultaneous Differential Imager SDI This is a high contrast imaging mode using the simultaneous differential imager SDI which has been offered since Period 81 Contrasts of 30 000 can be obtained at 075 in 40min at
82. he Principal Investigator PI must be identified as being principally responsible for this proposal By submitting a proposal the PI agrees that he she and his her collaborators will act according to ESO s policies and regulations including the conditions specified in the present Call for Proposals if observing time is granted A number of policies and procedures have been changed since Periods 84 and 85 the most important of which are highlighted below All proposers should read the Call for Proposals carefully before submitting their Phase 1 proposal Any question about policies or the practical aspects of proposal preparation should be addressed to the ESO Observing Programmes Office opo eso org Enquiries about technical requirements of the planned observations should be sent to the User Support Department usd help eso org for Paranal and Chajnantor and to lasilla eso org for La Silla Part I of this Call for Proposals provides information on how to complete and submit a proposal to ESO Phase 1 Part II summarizes the capabilities of ESO telescopes and available instrumentation while Part III outlines in detail the policies and procedures regarding proposing for carrying out and publishing ESO observations 1 1 Important recent changes since Periods 84 and 85 e General changes ToO Runs As of Period 86 Target of Opportunity ToO programmes may include both observations of ToO nature and regular non ToO observati
83. he existing coverage of the calibration of ESO instruments Up to 3 of all the available observing time may be made available for calibration proposals Cali bration Programmes will be evaluated by the OPC with a view to balancing the added calibration value for future science with the more immediate return of the regular science proposals of the cur rent period The OPC is supported by a dedicated ESO internal calibration programme committee to review the technical and operational feasibility Successful proposers will be required to deliver documentation and data products and software to ESO to support future observing programmes The raw calibration data as well as the advanced calibration products that are obtained as part of Calibration Programmes will be non proprietary and made available to the entire community through the ESO archive and the respective instrument Web pages Scientific publications that take advantage or make use of the data or results of Calibration Programmes will have to reference the corresponding proposals Calibration Programmes must only be submitted using the ATEX template for Normal Programmes In particular the Short Programme proposal template should not be used even if the amount of requested time does not exceed 10 hours the Normal Programme template should be used instead In Box 8A entitled Scientific rationale the proposers should clearly state the limits of the existing calibration plan and th
84. i Element Spectrograph FORS2 FOcal Reducer low dispersion Spectrograph 2 HAWK I High Acuity Wide field K band Imager ISAAC Infrared Spectrometer And Array Camera MIDI MID infrared Interferometric instrument NAOS CONICA High Resolution NIR Camera and Spectrograph SINFONI Spectrograph for INtegral Field Obs in the NIr UVES UV Visual Echelle Spectrograph VIMOS Visual Multi Object Spectrograph VISIR VLT Imager and Spectrometer for mid Infra Red XSHOOTER UV Visual NIR medium resolution chelle spectrograph Chajnantor LABOCA Large Apex BOlometer CAmera SABOCA Submillimetre APEX Bolometer CAmera SHFT Swedish Heterodyne Facility Instrument APEX SZ 330 channel 2mm bolometer array CHAMP Carbon Heterodyne Array of the MPIfR Proposals are also invited for observations at the Gran Telescopio Canarias GTC within the framework of the accession agreement of Spain into ESO ESO GTC proposals can be submitted for observations to be carried out between 1 March 2011 and 29 February 2012 For this call the following instruments are offered CanariCam Mid IR camera for imaging spectroscopy coronagraphy and polarimetry OSIRIS Optical System for Imaging and low Intermediate Resolution Integrated Spectroscopy The deadline for the submission of both ESO proposals and ESO GTC proposals is 31 March 2010 12 00 noon Central European Summer Time In each submitted proposal one single person t
85. ields wavelength dispersion solutions depending on the instrument configuration and pipeline availability Important note for La Silla users It is the responsibility of the Visiting Astronomer to obtain all nighttime and daytime calibration frames required Although ESO staff will execute standard day calibration sequences and make them available to the visitor all afternoon calibrations and sky flat fields must be obtained by the visitor 10 3 Data Reduction Pipelines 10 3 1 Data Organization Gasgano and SAFT Gasgano a Java based data file organizer developed and maintained by ESO is made available to the community and can be used to manage and organize the astronomical data observed and produced by all VLT compliant telescopes in a systematic way Gasgano can be retrieved from http www eso org sci data processing software gasgano It is also possible to build Unix shell scripts for data organisation using the Stand Alone FITS Tools SAFT available from http archive eso org saft In particular the dfits and fitsort tools can be used in combination to select groups of related files i e all frames with the same instrument configuration for processing SAFT and in particular the hierarch28 tool can be effectively used to elegantly handle ESO HI ERARCH keywords e g convert them for use with other packages like IRAF In collaboration with the various instrument consortia ESO has undertaken to implement data reduction
86. ignation SOFOSC should be used to refer to the combined usage of EFOSC 2 and SOFI in a single contiguous run The combined run must have a duration of at least 3 nights The respective amounts of time required for observations with each of the two individual instruments must be specified in the time justification section Box 9 Examples illustrating this new convention can be found in the ESOFORM Users Manual Proper usage of this convention will be enforced in P86 e With the introduction of AT baselines for the VLTI see the VLTI baseline page detailed specification of the 2 AT for MIDI or 3 AT for AMBER baselines has been moved from Phase 1 to Phase 2 Accordingly users should only specify the required AT quadruplets in the VLTI page of the Phase 1 proposal form e For encapsulated figures version 1 4 of the pdf format is supported as of P85 More details are given in the ESOFORM Users Manual If you are re submitting a proposal you need to address the OPC comments received on the previous submission of this proposal 3 2 2 Observing conditions definitions Observing conditions are defined as follows e Sky Transparency Photometric No visible clouds transparency variations under 2 only assessable by analysis of photometric standard stars Clear Less than 10 of the sky above 30 degrees elevation covered in clouds trans parency variations under 10 12 Thin cirrus transparency variations above 10
87. in the ETCs generally reflect actual conditions on Paranal accurately they do not account for local effects such as observation in the zodiacal light Proposers of VLTI observations should check the feasibility of their proposed observations with the visibility calculator viscalc available from the ETC page At Phase 2 users are also encouraged to select a suitable calibrator star for their planned observations using the CalVin tool available also from http www eso org observing etc Service Mode proposers are reminded see Sect 13 5 that the requested observing conditions are binding in Phase 2 hence consistency is required between the seeing constraint indicated in the first page of the proposal and the seeing value used in the ETC to estimate the observing time necessary to complete the programme The same is true for the requested sky transparency and lunar phase Non photometric sky transparency can be simulated by adding 0 1 0 2 mag to the object magnitude for CLEAR THIN CIRRUS conditions respectively 2 3 Online Data Products Public Imaging Surveys Science Verification Advanced Data Products etc Public data from observations made with Paranal and La Silla telescopes can be searched for at http archive eso org Most of the data taken in Period 84 will become available during Period 86 Users are reminded of these opportunities in order to stimulate the scientific use of the Archive and to allow a better preparat
88. ing Period 86 the distribution of instruments on the UTs will be UT1 CRIRES FORS2 UT2 FLAMES UVES XSHOOTER UT3 ISAAC VIMOS VISIR UT4 HAWK I NACO SINFONI Proposers should take advantage of this information in choosing targets to maximize the probability 35 30 4 N u N o DMM hh SAA m ul Requested Time m o FEDS PS SESS ESTES A ESTEE SESS ESTEE SEEPS RRE PERO PODRAS A A 6 30 10 30 12 30 Right Ascension Figure 2 Prediction of RA distribution of demand during Period 86 percentage of the total amount of time requested on the considered telescope The RA bins are defined as for Fig 1 The first and last bins also include the requested targets with RAs respectively earlier than the lower limit and later than the upper limit of the nominal range corresponding to the period 40 N S 35 S S S 30 S g S Es S E 5 S mUT4 o N N 3 6 2 20 S z E N E NTT g S 15 S S 10 NS S X N N S N S S S S Ne N NN O EA 0 30 2 30 4 30 6 30 8 30 10 30 12 30 Right Ascension Figure 3 Expected time allocation in nights for ongoing Large Programmes in Period 86 The RA bins are defined as for Figs 1 and 2 of scheduling and completion of their runs see Fig 2 Proposers should also consider the time expected to be allocated in Period 86 to on going Large Programmes started in earlier periods shown in Fig 3 The telescopes on which no time has been allocated b
89. installation on and removal from the telescope such instruments are normally sched uled in blocks including several contiguous runs the length of these combined blocks is typically greater than 3 nights 2 On the NTT users can apply for combined runs using both EFOSC 2 and SOFT The total duration of each of these runs must be greater than or equal to three nights The combined runs must be requested using the instrument name SOFOSC Details are also available in Sect 3 2 1 and the ESOFORM Users Manual 3 There is no minimum duration for runs of Calibration Programmes Note that the minimum duration requirement for La Silla is applicable to each individ ual run of a proposal involving a La Silla instrument not to the total duration of the programme summed up over all runs see Sect 11 for more information about the defi nition of programme and run More generally proposals for long runs are strongly encouraged on the La Silla telescopes Splitting of runs in half nights e g a 3 night run spread over 6 half nights should be avoided as much as possible such runs may not be schedulable HARPS A new spectropolarimetric mode for HARPS is commissioned and offered to the community in Period 86 In Period 86 time is available on the 2 2 m telescope for new proposals by general users for observations to be executed during the slots assigned to ESO see Sect 4 1 for details Proposers should take these ti
90. ion of projects for Period 86 Several sets of reduced data products are available online at http archive eso org cms eso data data packages 10 These include Advanced Data Products ADP from the GOODS imaging and spectroscopic cam paign or delivered to ESO by the community data from the ESO Imaging Survey EIS Science Verification Demonstration and Commissioning data of VLT and VLTI instruments Raw images from the VISTA Public Surveys are immediately available and advanced data products stacked images catalogs will become available in incremental releases UVES reduced data have been ingested into the ESO Science Archive and can be retrieved using a dedicated Request Form http archive eso org eso eso_archive_adp html The Pls of Large Programmes that have been accepted since Period 75 are required to deliver final data products to ESO by the time their results are published see Sect 11 3 The procedure to be followed is described at http archive eso org cms eso data data submission An overview of ADP releases from Large Programmes is given at http archive eso org cms eso data advanced data products releases The Pls of Calibration Programmes are required to deliver to ESO the resulting data products within 1 year of the completion of the corresponding observations Voluntary submission of Advanced Data Products by PIs of Normal or Short Programmes is also encouraged The procedure for submission to
91. is seeing limited down to at least 0 4 seeing i e 0 3 measured in K 15 217 o SSS Ze 7 5 v ae Figure 6 HAWK I field of view sketch 6 9 2 Brightness limiting magnitude and persistence The HAWK I detectors show a persistence effect if the observed sources are heavily saturated which affects subsequent observations of faint sources In general observations of fields containing objects brighter than Ks 8 1 mag H 9 1 mag or J 8 8 mag should be carried out in Visitor Mode 6 9 3 Limiting magnitudes Typical limiting magnitudes of HAWK I S N of 5 on a point source 3600s integration on source under average conditions 0 8 seeing 1 2 airmass are given in Table 11 Table 11 HAWK I limiting magnitude examples Filter Limiting mag Limiting mag Vega AB J 23 9 24 8 H 22 5 23 9 Ks 22 3 24 2 The read out noise is around 5e while the dark current of the instrument is around 2 e7 pix s The exposure time calculator should be used for detailed exposure time calculations in partic ular for narrow band filters A new Fast Photometry mode has been implemented and is offered starting from P86 Please refer to the user manual for information 6 10 NACO NAOS CONICA NACO provides adaptive optics assisted imaging polarimetry spectroscopy and coronagraphy in the 1 5 um range and is installed at the Nasmyth B focus of UT4 Important note Due to the planned installation of MUSE scien
92. ld of view for APEX SZ is 23 The standard observing mode for clusters are raster scans which reach a central map rms of 75 uK CMB in 1 hour of observing time The alternative observing mode are circle drifts which are smaller and thus have higher central coverage but do not allow as much skynoise filtering to be applied This mode obtains and rms of 60 uK All observing time estimates should assume the above sensitivities and a 90 overhead for slewing pointing focus and calibrations As the operation of the APEX SZ instrument requires the presence of the instrument team all APEX SZ observations from the different APEX partners will be scheduled in a joint observing block The exact dates of operation for 2010 have not been determined yet but it is likely to be during November Time critical observations using APEX SZ are therefore very difficult to schedule Proposers interested in using APEX SZ should include a col from the instrument 49 team and should contact Dr Adrian Lee Adrian Lee AT berkeley edu at least 1 week prior to submission of a proposal Further information on APEX SZ can be found on the APEX SZ homepage Technical questions should be direct ed to the ESO APEX Project Scien tist Dr Carlos De Breuck cdebreuc AT eso org 7 5 CHAMP The Carbon Heterodyne Array of the MPIfR CHAMP is a MPIfR PI instrument which is offered to the ESO community on a collaborative basis with MPIfR CHAMP is a heterodyne arr
93. limiting magnitudes Magnitude limit S N 5 U 25 9 B 27 2 V 26 8 R 26 4 1225 5 z 24 6 The magnitude limits in Table 10 correspond to a one hour integration with dark sky clear con 33 ditions a seeing of 0 8 and an airmass of 1 2 for a point source of zero colour AOV star giving S N 5 The magnitude limits in MOS mode are 23 8 for the lower resolution settings and 22 2 for the higher resolution settings S N is computed per pixel integrated along the slit direc tion it refers to central wavelength and corresponds to a 1 0 slit in IFU mode 23 3 for the lower resolution settings and 20 8 21 5 for the higher resolution settings depending also on the spatial magnification These values should only be used as a rough guide Users should refer to the Exposure Time Calculator available at http www eso org observing etc to test the feasibility of their programme and to estimate the corresponding execution time Performances in the I and z bands are expected to improve significantly following the June July 2010 upgrade The observing overheads are given in Table 19 and more details are given in the VIMOS web pages Note For MOS runs ESO will consider OBs as successfully executed when at least 3 of the 4 quadrants are operational and work within specifications Below we summarise some important requirements for OB preparation that must be taken into account during Phase 1 6 7 1 VIMOS Observation R
94. llowing changes take place in Period 86 the new visible wavefront sensor WFS 14x14 is offered for both NGS and LGS observations cube mode without pupil tracking is offered both in SM and VM cube mode without AO speckle mode is offered both in SM and VM simple imaging i e without masks or coronographs in pupil tracking mode is offered in VM only the new intermediate band filter centered at 4 05um IB_4 05 is offered the new Apodizing Phase Plate APP coronograph is offered in both VM and SM and only with the NB IB_4 05 filters grism spectroscopy is offered both in Service and Visitor mode Chopping remains unavailable AMBER Starting from P86 the standard sequence of observation is CAL SCI CAL VIRCAM VISTA starts public survey operations in P85 No open time is available in P86 For details please refer to Sect 6 14 Latest News on Paranal telescopes and instruments can be found at http www eso org sci facilities lpo news e Chajnantor SHFI The APEX 3 receiver covering 385 to 500 GHz is offered in Period 86 pending succesful commissioning in March 2010 FLASH This MPIfR PI instrument is no longer offered in Period 86 because this fre quency window is covered by the APEX 3 receiver of SHFI APEX SZ This MPIfR Berkeley PI instrument continues to be offered in Period 86 during ESO time in collaboration with the instrument team Users should contact
95. me slots into account for the selection of the targets of their proposals Proposals for Large Programmes will not be accepted for this telescope Starting from P84 a streamlined operation model has been introduced in La Silla While Visiting Astronomers do not have a specific support astronomer assigned on the mountain technical and logistical support will be delivered as usual by ESO staff Please also note that the new reduced transportation schedule to and from the Observatory may have an impact on the arrival and departure days of the observers at the site See Sect 4 1 for additional details and check the on line instructions for visiting astronomers e Paranal Laser Guide Star The experience that has now been acquired by ESO with the Laser Guide Star LGS shows that when it works nominally it can be effectively used at most for 20 of the UT4 science time due to the frequency of realisation of the required sky conditions and to intrinsic LGS operational constraints The LGSF is offered with NACO and SINFONI in SM and VM Taking into account the already existing commitments for this facility in particular for on going Large Programmes and for Guaranteed Time Observations it is expected that it will be possible to allocate only a limited amount of time less than 10 nights in P86 to new programmes requiring the use of the LGS Accordingly proposers are encouraged to carry out a critical assessment of the need for LGS for ex
96. ment in their proposals see Sect 9 11 1 Proposals for Normal Programmes The largest fraction of ESO observing time in Period 86 is foreseen to be allocated to Normal Programmes Proposers must use the standard TAT X template Sect 3 1 In this template the proposer may use a total of two pages not including figures for the five sections A Scientific Rationale B Immediate Objective C Telescope Justification D Observing Mode Justification Visitor or Service E Strategy for Data Reduction and Analysis An additional 2 pages of attachments for inclusion of figures or tables is permitted Proposals for Normal Programmes must be used only when the total amount of requested telescope time summed over all the individual runs is greater than 10 hours If the total amount of requested time summed over all runs is less than or equal to 10 hours the proposal form for Short Programmes must be used see Sect 11 2 If the programme contains Visitor Mode runs the total amount of requested time must be computed after the conversion of these runs from nights to hours For Period 86 1 night is taken to be equivalent to 8 hours If the proposal contains runs requesting La Silla telescopes and instruments the duration of each such run must be greater than or equal to 3 nights except for runs using Visitor Instruments or for combinations of contiguous EFOSC 2 and SOFT runs totalling at least 3 nights see Sect 4 1 57 11 2 Pro
97. mit your proposal please note that 13 e Postscript figures are not accepted The proposals are compiled using the pdflAT X package which accepts only PDF and JPEG file formats e Always compile your proposal locally with pdfl4TpX Some of the checks are made at the IAT X level and checking your proposal in this way will save you time If there are errors please read the output carefully in order to identify the problem e Further checks are made by the web software which uploads your proposal and checks that it complies with ESO s requirements The receiver allows you to verify your proposal without actually submitting it You should take advantage of this feature to check that your proposal is technically correct well before the Phase 1 deadline This can be done by verifying a skeleton version of the proposal early this version should contain all the technical details but not necessarily the full scientific description This will ease the final submission process considerably e Plan ahead Over past periods congestion of the proposal submission system has repeatedly occurred in the last few hours before the proposal deadline leading to delays in response time that occasionally exceeded 1 hour Try to submit proposals at least one day before the deadline and avoid last minute stress At the end of the submission procedure an acknowledgment page is displayed Please print it as a receipt The PI of the proposal and the sub
98. mitter will also receive later a confirmation ticket via email but the acknowledgment page is the official receipt If you are not sure if your proposal has successfully entered the system do not re submit it but rather contact OPO at opo eso org Neither proposals nor corrections to proposals that are submitted after the deadline will be consid ered 14 Part II ESO Telescopes and their Instrumentation 4 The Observatory 4 1 La Silla The La Silla Observatory site is located at 70 43 longitude West 29 15 latitude South at an altitude of 2375m The telescopes operated by ESO are the New Technology Telescope NTT the ESO 3 6 m telescope and the ESO MPG 2 2 m telescope Since Period 82 proposals for observations with these three telescopes are restricted to Visitor Mode runs Each run must have a minimum duration of 3 nights This restriction does not apply to runs using Visitor Instruments At the NTT for programmes involving observations with both EFOSC 2 and SOFI to be performed on contiguous nights the minimum duration requirement applies to the combined length of the corresponding EFOSC 2 and SOFI run The naming convention SOFOSC is used to refer to this combination see Sect 3 2 1 and the ESOFORM manual for more details on how to specify such combined runs in the ESOFORM proposal form Requests for usage of the NTT and the 3 6 m telescope for the execution of Large Programmes are particularly encouraged As of Peri
99. multiple configurations within one OB may sometimes reduce overheads scheduling and cali brating such OBs is extremely inefficient Different configurations should thus be in different OBs e OB Total Execution Time Proposers should make sure that all overheads including telescope pre setting and acquisition overheads as specified in Table 19 have been properly accounted for e OB execution times must be below 1 hour Long OBs are more difficult to schedule and execute within the specified constraints because of the unpredictable evolution of the observing conditions For this reason OBs taking more than one hour to execute are not normally accepted with the exception of AMBER Proposers are especially encouraged to plan for OBs substantially shorter than one hour if the execution conditions are particularly demanding as the fulfilment of all the constraints during the entire execution time becomes more unlikely as the OB becomes longer e Phase 1 constraints are binding ESO will not allow any change of constraints at Phase 2 since constraints play an essential role in determining the long term scheduling of SM time Substantial changes with respect to the times on target specified at Phase 1 will not be allowed at Phase 2 e Fulfilment of Phase 2 constraints ESO will consider an OB as successfully executed if all the conditions in the constraint set are fulfilled OBs executed under conditions marginally outside constraints by no more
100. n All required standard FLAMES calibrations are acquired by the Observatory staff during daytime No night time calibrations are foreseen except for screen flatfields so called attached flatfields if additional flatfielding accuracy is required For ARGUS mode screen flatfields are taken for Service Mode programmes in twilight together with a spectrophotometric standard star at no extra cost to the user 6 4 UVES Ultraviolet and Visual Echelle Spectrograph UVES is the high resolution optical spectrograph of the VLT and is located at the Nasmyth B focus of UT2 UVES is a cross dispersed chelle spectrograph designed to operate with high efficiency from the atmospheric cut off at 300 nm to the long wavelength limit of the CCD detectors 1100 nm To this purpose the light beam from the telescope is split in two arms UV to Blue and Visual to Red within the instrument The two arms can be operated separately or in parallel via a dichroic beam splitter With two dichroic observations the complete wavelength range 300 1100 nm can be covered The resolving power is 40 000 when a 1 slit is used The maximum two pixel resolution is 80 000 or 110 000 in the Blue and the Red Arm while using a 0 4 and 0 3 slit respectively Three image slicers are also available to obtain high resolving power without excessive slit losses The instrument is built for maximum mechanical stability and therefore allows accurate calibration of the wavelength sc
101. n the 4 GHz IF bandwidth of SHFI Spectral resolutions ranging from 976 56 0 92 km s71 to 122 07 kHz 0 12kms can be selected For exposure time calculations users should use the SHFI observing time calculator Note that the time needed to search for an appropriate off source position in extended line emitting regions is not included SHFTI users wishing to map extended line emitting regions should either provide an appropriate off source position or request additional observing time in the technical justification section to search for such a position The overhead for this amounts to 30 min per field 7 2 LABOCA the Large APEX Bolometer Camera LABOCA is a 295 channel bolometer array operating in the 870 ym atmospheric window with a beam size of 18 641 and a total field of view of 11 4 The instrument was commissioned in May 2007 An overview of the instrument is given on the APEX home page www apex telescope org bolometer laboca As the beam switching mode using the wobbling secondary has not been commissioned yet we will only offer the continuous integration modes during Period 86 Proposals that would benefit from using the wobbler e g flux determinations of single sources may mention this in the technical description Box 9 of the proposal form If the beam switching mode is available at the time of the observations this mode may be used However integration time calculations should be based only on the com
102. ncluding seeing optics and sampling estimated image quality Paranal seeing convolved with the instrument PSF of 0 51 image distortion lt 15 in the corners photometric calibration 2 RMS in respect to 2MASS in J H Ks photometric calibration 2 RMS internally sky concentration illumination lt 5 absolute can be corrected down to lt 2 detector 16 Raytheon VIRGO HgCdTe arrays sensitive over 0 84 to 2 5um high quantum efficiency large number of hot pixels some dead areas on detector 1 6 14 4 VISTA Public Surveys and Call for Proposals VISTA will be dedicated for its first five years of operation primarily to the execution of six public surveys For details please refer to the the VISTA Public Survey web page Regular public survey operations start as of Period 85 One year after the start of regular survey operation science time will be made available to Chilean Host State Proposals according to the ESO Chile host state agreement cf Sect 11 9 At the same time up to 15 of the available observing time will become available to the community through the corresponding ESO Call for Proposal currently planned for Period 87 The proposals received will be considered in scientific competition with the ongoing public surveys with any unallocated time returned to the public surveys All VISTA observations are carried out in Service Mode Users who plan to propose their own visitor filter set to be us
103. nd the VLT Visitor Focus please consult http www eso org sci facilities paranal instruments visfocus requirements html A comparable set of guidelines on how to propose a visitor instrument on the VLTI is available at http www eso org sci facilities paranal instruments vlti visitor Technical information on the interface for VLTI Visitor Instruments can be found at http www eso org sci facilities paranal instruments vlti visitor requirements html 50 Technical information on the interface to the NTT and 3 6 m telescope is found at URL http www eso org sci facilities lasilla instruments visitor VisitorInstruments pdf 9 How to estimate overheads Service and Visitor Mode observers must include the overhead times associated with their science target observations in their proposals In Service Mode observations the total execution time must include all overheads from telescope pre setting to target acquisition and to all other relevant instrument overheads for every planned Observation Block In order to fulfil the 1h OB rule proposers should note that all overheads must be accounted for within this one hour Also in Service Mode time for night time calibrations and associated overheads should be included only in cases where the accuracy of the calibration plan is not deemed sufficient for the science goals Please note that calibrations need to be executed as part of the science OBs in some instrument mod
104. ne observation and the next to less than 15 minutes including the telescope preset and the acquisition of the next field e A medium high resolution optical spectrograph GIRAFFE with three types of feeding fibre systems MEDUSA IFU ARGUS e A link to the UVES spectrograph Red Arm via 8 single fibres of 1 entrance aperture Special observing software FLAMES OS coordinates the operation of the different subsystems also allowing simultaneous acquisition of UVES and GIRAFFE observations with the observing modes listed in Table 5 For combined observations the exposure times for UVES and GIRAFFE do not need to be the same Note that it is not possible to observe simultaneously in two GIRAFFE modes or to observe the same target simultaneously with the two spectrographs 6 3 1 Instrument Capabilities GIRAFFE is a medium high R 5 600 48 000 resolution spectrograph for the entire visible range 370 950nm It is equipped with two gratings and several filters are available to select the required spectral range Five additional fibres allow simultaneous wavelength calibration of every exposure Each object can be observed in only one or a fraction of a single chelle order at once The fibre system feeding GIRAFFE consists of the following components e Two MEDUSA slits one per positioner plate up to 132 separate objects including sky fibres are accessible in MEDUSA single fibre mode each with an aperture of 1 2 on the sky 2
105. ned yet we will only offer the continuous integration modes during Period 86 Proposals which would benefit from using the wobbler e g flux determinations of single sources may mention this in the technical description Box 9 of the proposal form Tf the beam switching mode is available at the time of the observations this mode may be used However integration times should be based only on the compact mapping mode given by the observing time calculator Exposure time estimates should assume a noise equivalent flux density NEFD 200 Jy s weather conditions of PWV 0 5mm 37 working bolometers and a 90 overhead for slewing pointing focus and calibrations A dedicated SABOCA integration time calculator is available at http www apex telescope org bolometer saboca obscalc 7 4 APEX SZ the APEX Sunyaev Zel dovich camera The MPIfR Berkeley PI instrument APEX SZ is a bolometer array operating at 152 23 GHz 2mm It is optimised for surveys of the Sunyaev Zel dovich effect in distant clusters but can also be used for other studies APEX SZ consists of an array of 330 superconducting TES Transition Edge Sensor thermistors with SQUID Superconducting Quantum Interference Device multiplex ers There are 330 channels in the focal plane of which 232 can be read out reliably with a typical NEP of 10716 W Hz Typically 160 low noise channels are used for mapping The APEX beam at this wavelength is 59 and the total fie
106. ng implementing Public Spectroscopic Surveys for 2011 A special call for proposals for such surveys shall be issued this year 2 Getting Started Observing proposals must contain a scientific case a summary of the proposed observing programme a list of desired instrument modes and configurations a target list and a precise definition of required observing conditions seeing atmospheric transparency lunar illumination In addition a calcula tion of the number of hours nights of observing time needed to accomplish the scientific goals must be carried out and summarized in the proposal Thus it is important that proposers consult technical documentation about the capabilities and sensitivities of the instrument s that will be used to obtain the observations Proposers are reminded about the existence of P2PP Phase 2 Preparation tool tutorials http www eso org sci observing phase2 P2PP P2PPDocumentation html and a P2PP tutorial account for all VLT instruments that can be useful in preparing Phase 1 When necessary proposers should discuss their technical requirements with the appropriate experts contacts provided via the ESO User Support Department usd help eso org for Paranal and Chajnantor and via lasilla eso org for La Silla before submitting their proposals Advice about policies and about the practical aspects of proposal preparation e g specification of time con straints fulfilment of minimum run length for La Silla etc sho
107. nomical events which require immediate observations The occurrence of such events cannot be foreseen with sufficient anticipation to allow them to be the subject of proposal submission by the regular biannual deadline They qualify for allocation of Director Discretionary Time Corresponding applications for observing time should be submitted as DDT proposals Sect 11 7 not as ToO proposals 2 Predictable ToOs are those concerning predictable events in a generic sense only This is typically but not limited to known transient phenomena and follow up or coordinated observations of targets of special interest Proposals aimed at studying such events are in the ESO proposal terminology ToO proposals ToO programmes may only be submitted using the Normal Programme ESOFORM template by the same biannual deadline as Normal Programmes Even if the total amount of requested time does not exceed 10 hours the Normal Programme template should be used Proposals should be for generic targets and or times However if accepted by the OPC the programme will not be executed until the PI contacts ESO to request its activation after the predicted event has occurred The observing strategy must be the one approved by the OPC and the amount of requested time may not exceed that granted by the OPC The observations will be conducted in Service Mode and in exceptional cases ongoing programmes may be interrupted Read more on ToO policy As ToO programmes may
108. non member state proposals Sect 11 8 the following additional criteria will be taken into account e The required telescope instrumentation is not available at any other observatory accessible to the applicants e Ifan ESO member state proposal and a non member state proposal are rated equally prefer ence will be given to the ESO member state proposal The following policy extracted from the agreement between ESO and its host state Chile governs the allocation of time to Host State Proposals Sect 11 9 Chilean scientists who present meritorious projects shall have the right to obtain up to 10 of the observing time of ESO telescopes For VLT projects at least one half of this 10 shall be dedicated to projects of Chilean astronomers in cooperation with astronomers of ESO member countries Following the recommendations of the OPC and a technical feasibility check the ESO Director General grants observing time based on OPC ranking and availability However in the case of sudden astronomical events a ToO or DDT programme may be activated and exceptionally take priority leading to an interruption of the currently active run 13 2 Requesting use of non standard observing configurations Proposers should pay particular attention to the fact that as indicated in the instrument manuals use of certain non standard instrumental modes or configurations requires prior approval by ESO This approval must be obtained before submitting the
109. ns An article about SM scheduling appeared in The ESO Messenger 2001 v 105 p 18 The article helps proposers understand how they may optimize their use of this observing mode and it should be considered compulsory reading for SM proposers The interval between the completion of the run or of the period and the release of the SM data package to the PI is typically a few weeks depending on the instrument mode and the data volume SM Pls have direct access via their personal User Portal account to their own raw proprietary data as soon as the data is ingested in the ESO Archive Pipeline reduced data products will also become available to PIs of the corresponding SM programmes shortly afterwards Please note that SM proposers must include overheads for all science exposures Guidelines 64 are provided in Sect 9 ESO will absorb all time required to complete the calibration sequences to the level of accuracy foreseen in the calibration plan see Sect 10 2 as well as overheads associated with such calibra tions If those calibrations are not adequate the SM proposer must include time for any additional calibrations including overheads For Paranal in general proposers should request SM if their planned observations demonstrably ben efit from the short term scheduling flexibility allowed by this mode provided that their programmes can be fully pre specified without requiring any real time decisions Proposers are especially encour
110. nstrument modes or different constraints may be allowed only under exceptional circumstances and after approval by ESO see Sect 13 5 1 3 Foreseen changes in the upcoming Periods e ISAAC is expected to be decommissioned during 2011 to allow the installation of the second generation instrument SPHERE on UT3 Proposals for Large Programmes with ISAAC should take this limited availability of ISAAC into account The decommissioning date is subject to SPHERE maintaining its current schedule e NACO is expected to be decommissioned by the end of 2011 to allow the installation of the second generation instrument MUSE on UT4 Proposals for Large Programmes with NACO should take this limited availability of NACO into account The decommissioning date is subject to MUSE maintaining its current schedule e SHFI The two Fast Fourier Transform Spectrometer units of SHFI will be upgraded to 32768 Channels allowing to cover up to 4 GHz instantaneous bandwidth with a channel separation of 76kHz 0 1km s This upgraded system is expected to be available in Period 87 e VIRCAM It is foreseen that up to 15 of the available time on VIRCAM will be offered in open time in P87 For details please refer to Sect 6 14 Visitor Instruments on VLT No Visitor focus will be available on the VLT starting from Period 88 when KMOS will be commissioned e Spectroscopic Surveys Following a recommendation by the Scientific Technical Committee STC ESO is consideri
111. o a single run Different runs should only be used for different APEX instruments For Large Programmes this restriction should be understood as a single run per instrument and per period Different runs should be specified for observations planned to take place in different periods Duplications Proposers are reminded that large amounts of data are available via the ESO data archive Sect 2 3 see also http archive eso org and they are therefore strongly advised to check if observations equivalent to the proposed ones have been performed already Before submitting proposers must check that their proposed observations are not duplicating Guaranteed Time Observations approved for Period 86 Overheads All proposers Service Mode and Visitor Mode are reminded that they must include all overheads in the computation of the total observing time to be requested in their proposals see Sect 9 Service Mode OBs Service Mode Observation Blocks OBs including all overheads can last up to a maximum of 1 hour Longer OBs have to be specifically requested and justified at Phase 2 via a waiver request which will be evaluated by the Observatory Access to SM data Principal Investigators of Service Mode programmes have access to their proprietary SM raw data as soon as the data have been ingested in the ESO Archive Reduced data in the form of PI Packs are made available soon after the ingestion of the raw data The data access is provided throu
112. od 83 the maximum duration for Large Programmes with these telescopes has been increased to four years However users should be aware of the limited possibilities of approval of new Large Programmes on the 3 6 m telescope in Periods 86 to 90 as described in Sect 1 1 Large Programme proposals are not accepted for the 2 2 m telescope Starting from P84 a streamlined operation model is being introduced in La Silla While technical and logistical support will be delivered as usual by ESO staff on the mountain no support astronomer will in general be available on site General information can be found on the La Silla web page on http www eso org sci facilities lasilla Proposers are also strongly advised to read the La Silla Science Operation page that provides updated information on support and procedures at http www eso org sci facilities lasilla sciops The median seeing in La Silla is 0 8 and the sky is photometric 70 of the time For more information take a look at La Silla weather statistics e NTT telescope The New Technology Telescope is an Alt Az 3 5 m Ritchey Chretien tele scope housed in a rotating building designed for optimized air flow Its thin meniscus Zerodur mirror is controlled in order to maintain the optical figure so that the total aberrations are smaller than 0 15 80 encircled energy the NTT was the first telescope to be equipped with Active Optics The instruments Sofl and EFOSC 2 are
113. odes Imaging polarimetry and coronagraphy can be done with a variety of filters pixel scales and fields of view Table 13 Table 13 NACO pixel scales and fields of view Wavelength range Scale mas pix FOV arcsec SW filters 54 3 56x56 SW filters 27 0 28 x 28 SW filters 13 3 14x14 NB 4 07 NB_3 74 54 7 56x 56 NB_4 07 NB_3 74 L 27 1 28 x 28 1 For reference the diffraction limited FWHM of a point source imaged with an 8m telescope are J 32 mas H 42 mas Ks 56 mas L 98 mas and M 123 mas 2 Short Wavelength SW filters refer to filters with wavelengths shorter than 2 5 um Polarimetry observations are carried out using the retarder plate and the Wollaston_00 J band polarimetry observations are not possible because of the location of the J filter in the same wheel as the Wollaston Coronagraphy can be done with occulting masks of 0 7 and 1 4 in diameter as well as with a semi transparent mask of 0 7 diameter with a transmission of 0 4 0 3 for H band Ks band Since Period 80 the two new four quadrant phase 4QPM masks are offered in Visitor Mode One mask is optimised to work at K band 4QPM_K and offers a 13 x 13 FOV while the other one 4QPM_H is optimised for H band observation and has an 8 x 8 FOV Accurate centering is critical for the performance of the 4QPM and it is the main reason why these modes are offered only in VM Recent investigation
114. of the star in the coronagraphic spot e SAM e special calibrations i e calibrations not defined in the NACO Calibration Plan see Sec 6 10 6 SM proposals require a detailed justification for the need for SM and will be considered on a case by case basis as part of the technical feasibility evaluation of the Observatory See Sect 6 10 6 for details The following modes are decommissioned e prism and slitless spectroscopy 38 Table 12 NaCo modes in Period 86 Imaging SM and VM All filters Imaging cube SM and VM Limited setups Open loop Imaging cube SM and VM Limited setups SDI SM and VM Replaces SDI Lyot Coronagraphy VM C_0 7 C_1 4 all cam C_0 7_sep_10 not 13 camera 4QPM Coronagraphy VM Optimized for H and K SDI 4 VM APP SM and VM Simple Imaging NB and IB_4 05 only SAM VM Includes pupil tracking and cube mode SAM Pol VM SAM with Woll_00 Polarimetry SM and VM Woll_00 retarder plate only Grism Spectroscopy SM and VM all modes except pupil tracking LGS SM and VM See section 4 2 3 LGS SE SM and VM See section 4 2 3 Pupil Tracking SM and VM Simple Imaging only APP included Pupil Tracking VM All SAM and coronagraphic modes except APP e wire grid polarimetry instead users can opt for the Wollaston_00 in combination with the retarder plate e Fabry Perot Imaging instead observations with SINFONI should be considered 6 10 3 Imaging Polarimetric and Coronagraphic M
115. on observations only disappearances can be supported in Service Mode ap pearances must be in Visitor Mode The Burst and the Fast Jitter modes are intended for fast relative photometry of the order of a few milliseconds with the hardware windowed Aladdin array Tech nical details restrictions and overheads of the new modes are available at the ISAAC web page Table 7 ISAAC Period 86 offered imaging modes Instrument Mode Scale FOV Magnitude limits pixel arcsec SW Imaging 0 148 152 x 152 J 24 H 23 Ks 22 SW Polarimetry 0 148 3 x 20 x 1508 J 23 H 22 Ks 21 LW Imaging 0 071 73 x 73 L 16 M_NBx13 LW Imaging 3 21 3 28 um 0 148 152 x 152 L 16 LW FastPhot JHK 0 148 4 7 x 4 7 to 152 x 152 1 For both the Hawaii and Aladdin arrays 2 In polarimetry the FOV consists of three non overlapping strips each of 20 x 150 The magnitude limits c f Table 7 are the J 1 25 ym H 1 65 wm Ks 2 2 um and L 3 8 um background limited magnitudes for a flat spectrum point source that would result in a S N of 5 in one hour of integration under typical background conditions and a seeing FWHM of 0765 In addition to the standard J H Ks and L broadband filters ISAAC is equipped with a wide selection of narrow band typically AA A 0 015 filters It is not possible to observe using ISAAC with user supplied filters The magnitude limits given in Table 8 are the short wavelength SW and long wavelen
116. ons In the proposal form the two types of observations must be requested as part of different runs a new flag is used to identify ToO runs For more details see Sects 3 2 1 and 11 4 for more details Large Programmes As of Period 86 Large Programmes can no longer be converted to Normal Programmes OPTICON In Period 86 ESO telescopes will not participate in the OPTICON Access Programme Guaranteed Time Observations GTO will be carried out in Period 86 with AM BER HARPS MIDI NACO SINFONI and XSHOOTER For details about the planned observations please see http www eso org sci observing visas gto 86 e La Silla As in previous periods proposals for Large Programmes on the NTT and the 3 6 m telescope are encouraged Large Programmes on these two telescopes may have a duration of up to four years However for Periods 86 to 90 a large fraction 40 to 55 of the available science time on the 3 6 m telescope is already committed to Large Programmes started between Periods 83 and 85 There is a minimum run length of 3 nights for runs to be executed with La Silla telescopes Proposals including La Silla runs with a duration of less than 3 nights will be rejected at submission time by the automatic proposal reception system with three exceptions 1 There is no minimum duration for runs to be carried out with Visitor Instruments see Sect 8 However in order to minimise the overheads associated with their
117. ope North America and East Asia to construct and operate a large interferometer for high sensitivity high frequency imaging of the southern sky ESO has been offering time on the Atacama Pathfinder Experiment APEX a 12 meter radio telescope at the Chajnantor site since Period 77 APEX is an international collaboration involving the Max Planck Institut fiir Radioastronomie MPIfR Onsala Space Observatory OSO and ESO ESO receives 24 7 of the observing time on APEX During Period 86 the ESO time is tentatively scheduled in August October and December Time critical programmes should be scheduled during these months For Period 86 applications are invited for the Swedish Heterodyne Facility Instrument SHFT the 870 um LABOCA bolometer array the 350 ym SABOCA bolometer array and in collaboration with MPIfR the PI instruments APEX SZ 152 GHz bolometer array and CHAMP 7 7 pixel dual channel heterodyne array covering 620 to 720 GHz and 780 to 900 GHz Observations will be done for up to 24 hours per day but users should be aware that afternoon conditions are often significantly worse than night or morning Observations using high frequency instruments SHFI APEX T2 SHFI APEX 3 SABOCA and CHAMP should avoid the afternoon time All observations will be done in Service Mode by the local APEX staff Tn exceptional cases e g moving targets remote observing from Bonn in collaboration with MPIfR can be considered No Visitor Mode
118. orresponding execution time The corresponding observing overheads are given in Table 19 For more details please consult the VISIR User Manual available at http www eso org instruments visir doc 6 9 HAWK I High Acuity Wide field K band Imager HAWE 1 is a near infrared 0 85 2 5 um wide field imager installed at the Nasmyth A focus of UT4 The instrument is cryogenic 120K detectors at 80K and has a fully reflective design The light passes four mirrors and two filter wheels before hitting a mosaic of four Hawaii 2RG 2048x2048 pixels detectors The final f ratio is 4 36 1 on the sky corresponds to 169 um on the detector As of Period 83 proposers can use the Rapid Response Mode RRM to trigger HAWK I observa tions For details on RRM policies please see Sect 11 4 1 On line information on HAWK I can be found in the instrument web pages 36 6 9 1 Filters and field of view HAWE 1 is offered with 10 observing filters placed in two filter wheels Y J H Ks with transmission curves identical to the VIRCAM filters as well as 6 narrow band filters Bry CH4 H2 and three cosmological filters at 1 061 1 187 and 2 090 um The field of view of HAWK I on the sky is 7 5 x7 5 covered by the mosaic of the four Hawaii 2RG chips The four detectors are separated by a cross shaped gap of 15 The pixel scale is 0 1064 pix with negligible distortions lt 0 3 across the field of view The image quality
119. pact mapping mode given by the observing time calculator The following observing patterns will be offered e Spiral mode e Raster map in spiral mode e On The Fly mapping OTF The main advantages of the spiral modes are that 1 the scanned area is only slightly larger than the LABOCA field of view leading to a maximum of integrations on the central 11 field of view and 2 the overheads by the telescope control system are much smaller as the spirals use a continuous data taking mode while there is a dead time when the telescope turns at the edges of the OTF maps The optimal observing pattern depends on the spatial extent of the source to be imaged Recommendations are provided on the APEX home page www apex telescope org bolometer laboca observing For integration time calculations users should assume the following values Noise Equivalent Flux Density NEFD 120 mJyy s and 248 working bolometers For point source detection experiments one can apply a low frequency sky noise filtering improving the sensitivity to NEFD 75 mJyys 48 All proposers should use the LABOCA observing time calculator available from www apex telescope org bolometer laboca obscalc All integration times calculated using the LABOCA observing time calculator should be multiplied by a factor of 1 9 to account for overheads such as acquisition software setup telescope slewing and calibrations skydip pointing focus and flux calibration
120. pe 2 Kueyen Unit Telescope 3 Melipal Unit Telescope 4 Yepun Ultra Violet UV Visual Echelle Spectrograph Visible MultiObject Spectrograph VISTA InfraRed CAMera VLT Imager and Spectrometer for mid Infra Red Visible and Infrared Survey Telescope for Astronomy Very Large Telescope Very Large Telescope Interferometer Visitor Mode programme VLT Survey Telescope Wide Field Imager UV Visual NIR medium resolution echelle spectrograph end of document
121. posals for Short Programmes Short Programmes are similar to Normal Programmes except that the total amount of time required to complete them summed over all their runs is less than or equal to 10 hours For the conversion between hours in Service Mode and nights in Visitor Mode see Sect 11 1 When applying for a Short Programme proposers must use the ATFX template for Short Programmes In this template the proposers may use a total of one page not including figures for the five sections A Scientific Rationale B Immediate Objective C Telescope Justification D Observing Mode Justification Visitor or Service E Strategy for Data Reduction and Analysis One additional page of attachments for inclusion of figures or tables is permitted Proposals for Short Programmes are evaluated by the OPC on the same basis as Proposals for Normal Pro grammes and a single merged ranking is established for both types of proposals 11 3 Proposals for Large Programmes Up to a maximum of 30 of the observing time distributed by the OPC on the VLT VLTI can be allocated to Large Programmes Proposals for Large Programmes may also be submitted for APEX they are encouraged for the 3 6 m telescope and the NTT The definition of an ESO Large Programme is as follows e a programme requiring a minimum of 100 hours of ESO telescope time spread over a maximum of two years four years for La Silla e a programme that has the potential to lead to a majo
122. proposals will be accepted Note that due to the ongoing commissioning of the APEX instruments the APEX schedule and instrument availability can be subject to change at short notice From Period 81 the wobbling secondary is offered on all SHFI proposals The APEX wobbler can chop in azimuth up to 300 with rates up to 2 Hz Because the LABOCA detectors need to be cooled to 0 3K using liquid Helium the LABOCA observations will be scheduled in continuous blocks of observing time This will make time critical observations during ESO time difficult to schedule The re filling of the Helium will generally be done during the afternoon when weather conditions are expected to be the worst with a shorter re cycling procedure 11 to 12 hours later The exact schedule will be optimised according to the LST pressure on the targets SABOCA also has a liquid Helium cooled cryostat but as the hold time is 48 hours the observations can be scheduled with more flexibility During Period 86 SABOCA is expected to be available only in August and October All APEX proposals should clearly indicate the requested PWV for their observations in Box 12 of the proposal form Figure 5 gives the statistical distribution of PWV throughout the year For each proposal all observations with the same APEX instrument should be merged in a single 19 Chajnantor PWV 3 75 quartile 50 quartile 25 quartile 2 5 2 E E gt 15 a 4 0 5 0 Jan F
123. r advance or breakthrough in the field of study has a strong scientific justification and a plan for a quick and comprehensive effort of data reduction and analysis by a dedicated team e not a ToO programme see Sect 11 4 A good organizational structure of the proposing team availability of resources and relevant ex pertise must be demonstrated A special ATEX template must be used for Large Programmes Sect 3 1 Because of the extra requirements on the Large Programme proposals the proposers may use a total of three pages not including figures for the four sections A Scientific Rationale B Immediate Objective C Telescope Justification D Observing Mode Justification Visitor or Service An additional 2 pages of attachments are permitted Proposers of Large Programmes should keep in mind that the entire OPC hence also non experts in a specific field as well as the specialised OPC panels will be evaluating their proposal and that they should clearly explain the relevance of the proposed programme to general astrophysics If a Large Programme proposal contains runs requesting La Silla telescopes and instruments the duration of each such run must be greater than or equal to 3 nights Contrary to previous periods Large Programmes can no longer be converted to Normal Pro grammes Proposers should be aware that the Pls of successful proposals for Large Programmes are required to provide all data products processed images
124. r any update and news 6 6 ISAAC Infrared Spectrometer And Array Camera ISAAC is an infrared 1 5 um imager and spectrograph mounted at the Nasmyth A focus of UT3 It has two independent arms one equipped with a 1024x1024 Hawaii array and the other with a 1024x1024 InSb Aladdin array The Hawaii arm is used at short wavelengths 1 2 5 um The Aladdin arm is udsed predominantly at long wavelengths 3 5 um but is also available for short wavelength imaging with broad band filters Below we summarise in two tables the operational modes and the performance of ISAAC These tables are only intended to be quick reference guides Proposers should refer to the detailed information available via the ISAAC web pages 31 Important note Due to the planned installation of SPHERE scientists interested in submitting Large Programme proposals for ISAAC should carefully plan their time request because ESO cannot guarantee ISAAC observations beyond the end of P86 March 2011 During Period 86 we will continue to offer all ISAAC instrument modes already offered in Period 85 i e short wavelength imaging spectroscopy and polarimetry and LW imaging and spectroscopy in both Visitor Mode and Service Mode Sections 12 1 and 12 2 Since Period 80 we have offered two new imaging modes with the Aladdin detector Burst mode and FastJitter mode They are offered in both Visitor Mode and Service Mode However please note that for lunar occultati
125. r stars showing a sufficient number of spectral features For the latest information on the instrument please consult the CRIRES web pages Table 2 Point source sensitivities determined using a 0 4 slit adaptive optics optical seeing of 0 8 and nodding along the slit The values listed correspond to a S N of 10 for a 1h on source integration in one spectral dispersion element They are obtained by integrating the spectrum profile along the spatial direction Band Sensitivity Magnitude mJy J 1 1 15 4 H 1 1 15 1 K 1 1 14 6 L 9 5 11 2 M 26 9 4 6 1 1 Calibration The observer has to supply his her own standard star calibration OBs to correct for telluric features In particular for Service Mode observations OBs are typically executed in one hour blocks therefore a telluric OB should be supplied for each science OB in order to achieve a proper correction High precision wavelength calibration or flat fielding requires an attached template The observing time needed to execute these calibrations is charged to the observer The Observatory provides day time calibrations such as lamp flats and wavelength calibrations with the same wavelength settings as those used for the science as well as darks obtained with the same detector settings as the science and telluric observations lamp flats and wavelength calibration frames Note however that day time wavelength calibrations are only provided for A lt
126. raph o o e 6 7 1 VIMOS Observation Requirements IMG o o 6 7 2 VIMOS observation requirements MOS and pre imaging 6 7 3 MOS Observations in Visitor Mode o e e o 6 7 4 VIMOS Observation Requirements in IFU Mode 6 8 VISIR VLT Imager and Spectrometer for mid Infra Red 6 8 1 Imaging Modes offered in Period 86 o o 6 8 2 Spectroscopy Modes offered in Period 86 6 83 Calibrationst sisi tirada A ees 6 8 4 Exposure Time Calculator so acc eee AE EE RES be A 6 9 HAWK I High Acuity Wide field K band Imager a 609 1 Filters and field ot view c socs acens e uoe e e 4444554080 A 6 9 2 Brightness limiting magnitude and persistence 6 9 3 Limiting magnitudes oa s i soe ioa ea i Ra aa OEE ER 6 10 NACO NAOSFCONICA e oe a eaa A AA a 6 10 1 Adaptive optics correction with Natural and Laser Guide Stars 6 10 27 Observing modes oi cs e a REA 6 10 3 Imaging Polarimetric and Coronagraphic Modes 6 10 4 Simultaneous Differential Imager SDI 00 610 5 Spectroscopic Modes s sdra s Re ee eR Re ee HE EE ee 6 10 6 NACO Calibration plan and special calibrations 6 11 SINFONI Spectrograph for INtegral Field Observations in the Near Infrared 6 11 1 Instrument Performance gt ees ec occ eee ees G2 Brightness LIS se e
127. rations are fulfilled if your FIMS preparation is based on images taken with FORS1 after March 22 2003 or on any FORS2 images An important exception is multi object spectroscopy with unbinned CCD readout modes users wishing to apply for this mode must request additional pre imaging even if previous FORS1 or FORS2 images are available If images of adequate quality are not available Phase 1 proposers must apply for pre imaging defined as a separate run in the Phase 1 proposal and clearly marked as pre imaging PRE IMG in the Instrument configuration section of the proposal Failure to do so will result in the deduction of the pre imaging time from the time allocation assigned to the main project if the programme is approved for execution As a rule pre imaging runs are carried out in Service Mode even for programmes whose main spectroscopic runs are conducted in Visitor Mode For further information FORS2 proposers should visit the FORS web page 6 3 FLAMES Fibre Large Array Multi Element Spectrograph FLAMES is the multi object intermediate and high resolution spectrograph of the VLT Mounted at the Nasmyth A platform of UT2 FLAMES can access targets over a large corrected field of view 25 diameter It consists of three main components e A Fibre Positioner OzPoz hosting two plates while one plate is observing the other positions the fibres for the subsequent observations therefore limiting the dead time between o
128. rdware item Action Time minutes La Silla telescopes Preset point and acquire target 4 La Silla telescopes Preset NTT with image analysis 6 HARPS Read out 1 SOFI Imaging 30 of total int time SOFI Spectroscopy 35 of total int time EFOSC 2 Read out 2 FEROS Read out 2 WFI Move to gap pixel 7 WFI Template change with initial offset lt 120 0 5 WFI Template change with initial offset gt 120 1 WEI Filter change 1 WFI Offset readout 1 17 Paranal telescopes Preset 6 FORS2 Acquisition 1 cycle w o exp time 1 5 or 2 FORS2 Through Slit Image 2 cycles w o exp times 4 FORS2 Instrument Setup 1 FORS2 Retarder Plate Setup per PMOS IPOL OB 1 FORS2 Read out 100kHz binned spectroscopy 0 7 FORS2 Read out 200kHz binned imaging 0 5 CRIRES Acquisition without AO 3 CRIRES Acquisition with AO 5 CRIRES Read out 10 60 exposure timel CRIRES Nodding cycle 0 4 CRIRES Change of wavelength setting 14 24 BI CRIRES Change of derotator position angle 1 CRIRES Attached wavelength calibration 2 5 CRIRES Attached lamp flat 2 1 Typically one cycle for the target acquisition exposure time of the acquisi MXU MOS and PMOS 2 min LSS IPOL ECH 1 5 min per cycle IMG none 2 Through slit exposures are mandatory for all spectroscopic OBs Two cycles are typically enough to centre the target on the slit exposure time of the through slit image not included MXU MOS PMOS LS
129. rements A proposal can consist of different observations of the same target with different baselines and or hour angles in which case the observing time to be requested is simply computed as the number of required time slots multiplied by the duration of one slot as given in Table 19 Time constrained observations e g variable objects can further be requested in the appropriate section of the pro posal FINITO the VLTI fringe tracker is available with MIDI on the ATs and in Visitor Mode only since there is no pipeline to process MIDI data by blind coherent integration It provides co phasing in the N band with an accuracy close to 0 12 rad RMS at 10 wm Users must be aware that the limiting uncorrelated flux of the target for MIDI remains unchanged and to be observable by FINITO the target should have e Hmag 2 5 ATs e Visibility in H gt 15 ATs 6 13 AMBER Astronomical Multi BEam combineR AMBER is a near infrared multi beam interferometric instrument combining up to 3 telescopes simultaneously In Period 86 AMBER can be used with UTs or ATs For specifications of the UT and AT performances see Sect 4 2 2 and Sect 4 2 5 All possible triplets of UTs are available 43 and a number of selected AT combinations For the telescope positions and baseline lengths of the different AT and UT baselines please refer to the VLTI baseline page Because of the limited availability of UTs for AMBER any scientific programm
130. rence filters are offered with the UVES RED arm in Visitor Mode The purpose of these filters is to isolate certain chelle orders to allow the use of the maximum slit length of 30 The central wavelengths of the filters are chosen to permit observations of the most important emission lines in extended objects The filters and their central wavelengths are Ha 656 6 nm 30 Table 6 UVES Period 86 instrument modes Accessible Maximum Covered Magnitude Instrument mode A range resolution A range limits nm A AA nm Blue arm 300 500 80 000 80 17 18 Red arm 420 1100 110 000 200 400 18 19 Dichroic 1 300 400 80 000 80 17 18 500 1100 110 000 200 18 19 Dichroic 2 300 500 80 000 80 17 18 600 1100 110 000 400 18 19 I cell 500 600 110 000 200 17 1 With a 0 4 blue and 0 3 red slit H8 486 1 nm Orr 500 7 nm Om 436 3 nm Nit 575 5 nm Or 630 0 nm Sir 672 4nm and Herr 468 6 nm The peak transmissions of the filters range from 70 to 90 Finally in July 2009 the MIT CCD was replaced by an improved version that offers less fringing and higher throughput redwards of 800 nm See the UVES news page for details 6 5 XSHOOTER multi band medium resolution chelle spectrograph XSHOOTER the first VLT 2nd generation instrument is the UV Visual NIR medium resolution spectrograph mounted at the UT2 Cassegrain focus Three arms each with optimized op
131. require a mixture of ToO runs and normal see 3 2 1 runs it is now possible to specify which runs are normal in the ESOFORM IXT X template Proposers are requested to specify which runs are of ToO type in the tenth final field of the ObservingRun macro of the ESOFORM A more detailed description and examples can be found in the ESOFORM Users Manual Note that users submitting a ToO programme will need to indicate the number of targets per run and the requested number of triggers per target using the appropriate macros in the 4TfX template A trigger is defined as the request for execution of one Observation Block with a given instrument at a given epoch Similar observations to be executed with the same instrument at different epochs count as different triggers as do observations with different instruments at the same epoch Any observing request by other groups at the time an event occurs e g a DDT proposal with exactly the same scientific goal and aiming at observing the same object will be rejected by ESO except if it is a coordinated project in collaboration with the PI of the accepted ToO programme ToO programmes are not carried over to the following periods ToO proposers should bear in mind that ToO proposals are ranked across OPC categories by the whole OPC hence including non experts in their specific field they should therefore clearly explain the relevance of the proposed programme to general astrophysics 11 4 1 Rapid R
132. rol ce boy arar ba a Lene ey ww ain 10 2 Calibration Plans and Calibration of Science Observations 10 3 Data Reduction Pip lines lt s s ce tama 4 6644 be ed tbe eee eee he ad 10 3 1 Data Organization Gasgano and SAFT o o 10 3 2 Pipelines in the ESO Environment 2460 2 446508 4 4445 104 Quality Control ss e440 PH ewe e ad de e ae AROS Bee EOS 10 5 The ESO Science Data Products Forum e III Proposal Types Policies and Procedures 11 Proposal Types 11 1 Proposals for Normal Programmes sa o saci e 00 ee Dee a 11 2 Proposals for Short Programmes lt lt ce ocecncsorsrcns roses 11 3 Proposals for Large Programmes oa cco sasarean t RRA REE e ES 11 3 1 ESO GTC proposals for Large Programmes ooo 11 4 Target of Opportunity Proposals a da aa aana 11 4 1 Rapid Response Mode RRM oo o o 11 5 Guaranteed Time Observations lt o e ma ca a a a ae o a ee 11 6 Proposals for Calibration Programmes e 11 7 Director s Discretionary Time Proposals lt s o oos i ae saca aama ddid da 11 8 Non member State Proposals 0 404 24 644 i i Eo a e A e acs 11 9 Host tato Proposals e e o OR RR e e A E e Ge ads 12 Observing Modes 12 1 Visitor Mode 12 1 1 ToO programme execution during VM observations 12 2 Service Mode 12 2 1 Service 13 Policy Summary M
133. rsion corrector ADC was installed in March 2006 correcting the loss of transmission in the previous ADC It dramatically decreases the loss of light injected into the fibre when observing at airmasses greater than 1 3 During Period 86 FEROS will be offered only in Visitor Mode The available ESO time slots at the 2 2 m telescope as defined in Sect 4 1 need to be taken into account for proposal preparation Further details can be found in the FEROS web pages The two spectral ranges 853 4 854 1 nm and 886 2 887 5 nm are lost due to non overlap of the spectral orders 23 5 5 WFI Wide Field Imager on the 2 2 m The Wide Field Imager WFI has a field of view of 34 x33 and is composed of a mosaic of 4x2 CCD detectors with a pixel size of 0 24 and narrow inter chip gaps yielding a filling factor of 95 9 It offers excellent sensitivity from the atmospheric UV cut off to the near IR The filter storage and exchange mechanism with 50 positions accommodates 11 broad band filters including a fully transparent one 27 medium band filters covering the whole wavelength range and 8 narrow band filters centred at ONI SII Ha and a few other wavelengths The large number of medium and narrow band filters are specifically selected to support the determination of photometric redshifts of distant objects We summarise the performance of WFI below The table should only be used as a quick guide of feasibility Proposers should r
134. rther accepts Calibration Programmes to achieve improved calibration of its instruments see Sect 11 6 for details Important note for some instruments and modes calibrations need to be obtained immediately after the science observation and as a part of the same OB by means of attached calibration templates Such attached calibrations that are an integral part of the science OB are not considered as a part of the calibration plan and their execution time must therefore be included in the time applied for For Visitor Mode runs night time calibrations are the responsibility of the visiting observer with the following exception up to approximately 30 minutes per night will be used by the observatory staff to obtain standard ESO calibration data The ESO obtained data will be used to monitor in strument performance and to assure a baseline calibration accuracy within the ESO Science Archive for data obtained during this night ESO does not guarantee that these standard calibration data will be sufficient to calibrate the Visitor Mode science observations to the accuracy desired by the observer Visitor Mode proposers should plan accordingly ESO obtained calibration data are made available automatically to both Visitor and Service Mode users as part of their end of run data package All users receive the relevant raw data In addition Service Mode users may also receive master calibration data e g combined stacks of bias frames reduced flat f
135. rture on the sky of 1 the fibres project onto 5 UVES pixels giving a resolving power of 47 000 For faint objects and depending on the spectral region one or more fibres can be devoted to recording the sky contribution In addition for the 580nm setup only a separate calibration fibre is available to acquire simultaneous ThAr calibration spectra This allows very accurate radial velocity determinations In this configuration 7 fibres remain available for targets on sky The upgrade of the MIT CCD in the UVES red arm in July 2009 has provided a marked increase in sensitivity in the 860 nm setting and decrease in fringing see Sect 1 1 29 6 3 2 Observational Requirements The operation of FLAMES requires the observer to have his her own list of target coordinates with a relative astrometric accuracy better than 03 when preparing Phase 2 Bad astrometry results in large losses at the fibre entrance and therefore in much poorer performance The minimum object separation is 11 The Fibre Positioner is able to place the fibres with an accuracy better than 0 1 During Phase 2 it is necessary to run dedicated software FPOSS that assigns the fibres to the selected objects Considerations regarding the relevant astrometric effects induced by the atmosphere can be found in the FLAMES Users Manual For more detailed information on instrument setups and performance estimates the user is referred to the FLAMES web page 6 3 3 Calibratio
136. s a twelve month proprietary period for science and acquisition data to the PI of the programme as part of which these data were obtained This period applies to each exposure individually The period starts as files are being made available to or retrieved by Pls For Visitor Mode runs it starts at the time of the observation while for Service Mode runs as soon as any data are made available to the PI The latter refers to the standard SM data package usually shipped to the PI once the run is completed and or to any PI direct request for proprietary raw data via his her User Portal account during the period Should you wish to specify a shorter period than the nominal 12 months in Period 86 please do so using the ProprietaryTime macro in the AIFX ESOFORM template Calibration and technical data are not subjected to proprietary period and become publicly available as soon as they are ingested in the ESO Archive For Visiting Astronomers raw data will in general be made available before astronomers leave the Observatory site In the case of Service Mode observations data products raw data calibration data and any associated pipeline calibrated data will be distributed to the programme Pl at the conclusion of their Service Mode run SPECIAL NOTE Since ESO has recently revised some of its data distribution procedures we clearly spell out the current rules here e Asa general rule Service Mode data packages are distributed upon completion of
137. see Sect 12 2 For the La Silla instruments only VM is offered VM is not supported on APEX Please note that VM proposers must include overheads for all science exposures Guidelines are provided in Sect 9 12 1 1 ToO programme execution during VM observations VM observations may be interrupted by time critical DDT or ToO programmes As far as possible the execution of observations for such programmes will be confined to scheduled Service Mode periods which typically account for approximately 60 of the allocated time Under exceptional circumstances the Director of the Observatory may decide to interrupt VM runs to allow Service Mode observations 12 2 Service Mode Up to approximately 60 of the total time available for observations on Paranal will be carried out in Service Mode SM SM is also the only mode supported for APEX Service Mode is not offered on La Silla Investigators awarded SM time will be required to specify their programme by submitting to ESO in advance a Phase 2 package consisting of OBs finding charts and a Readme form Observers intending to submit proposals to be executed in SM may find it useful to familiarize themselves with the Phase 2 Service Mode procedures Once the OBs are completed they will be submitted to ESO for verification and acceptance Accepted OBs will be executed by ESO staff based on their OPC recommended priority and a proper match between the requested and the actual observing conditio
138. stream and then used to process science data acquired during the same time interval Service Mode users can access their pipeline science data products for supported instrument modes during the period via the User Portal Master calibration products produced in Garching are ingested into the ESO Science Archive and can be requested for some instruments together with raw science by all users 10 4 Quality Control As mentioned above the ESO pipelines are used to monitor the performance of the various instru ments and their temporal trends Extensive information about Paranal data handling and processing including instrument specific quality control parameters e g zero points colour terms wavelength solutions are maintained on the ESO Quality Control Web pages These pages provide information and data about actual instrument performance since the start of VLT operations Corresponding La Silla calibration data are reviewed by La Silla Science Operations and used for instrument health checks The trends are available from the web pages of the respective instruments 10 5 The ESO Science Data Products Forum The ESO Science Data Products Forum is a platform for sharing ideas methods software and data to assist with the production of science data products from ESO telescopes The forum is a service for the ESO community Contributions are by general users of the ESO instruments Users are encouraged to contribute about any topic related
139. t allows one to save every single DIT of the observation providing a time resolution of few tens milliseconds depending on the instrument setup Please refer to the VISIR Web pages for further details 6 8 2 Spectroscopy Modes offered in Period 86 The spectrometer is offered for N and Q band spectroscopy in the following modes 35 Low resolution LR mode with a resolution of R 350 in four settings that cover the full N band Sensitivities are about 50 mJy 100 Lh e Medium Resolution MR mode with a resolution of up to R 3600 in the N band for the wavelength ranges of 7 4 9 4 ym and 10 2 13 0 um and with a resolution of R 1800 in the Q band for the wavelength ranges of 17 1 19 0 um and 19 9 20 3 ym Sensitivities are between about 200 and 2000 mJy 100 1h depending on the spectral range High resolution HR mode with a resolution of R 15000 30000 at wavelengths near the H2 S4 Nell H2 S1 lines in longslit mode and a wider range of wavelengths including the H2 3 H2 2 ARII SIV Coll CIV Nell CoIII Col PIII Fell Nil STII NaIV HD 0 0 R 9 R 10 lines in cross dispersed mode Sensitivities are between about 2000 and 10000 mJy 100 1h depending on the spectral range and mode The VISIR spectrometer observing modes have the following restrictions e Acquisition is possible with the spectro imager only for targets brighter than 200 mJy using the N_SW or N_LW fil
140. t can be read directly off the figure counting intervals between dots The smaller plots for UT2 UT3 and UT4 are similar only the vignetting due to neighbouring domes vary 4 2 5 The ATs VLTI only The VLT Interferometer is complemented by an array of relocatable 1 8 m Auxiliary Telescopes ATs For Period 86 the ATs are offered with MIDI and AMBER The baselines offered for P86 are available at the VLTI baseline page The ATs are equipped with STRAP units which provide tip tilt correction for targets with 1 7 lt V lt 13 5 The distance of the guide star from the science target is restricted to be within 57 5 While observations on AMBER and MIDI are not affected by the moon there are some restrictions due to the guiding of the telescopes e If the FLI is gt 90 guiding is not possible for stars fainter than 9th magnitude if the distance to the moon is lower than 20 degrees e If the FLI is gt 90 guiding is impossible for any star if the distance to the moon is lower than 10 degrees Visitors are requested to check for potential limitations during the preparation of their observations 4 2 6 VISTA The Visible and Infrared Survey Telescope for Astronomy VISTA is a 4 m class wide field survey telescope for the southern hemisphere VISTA is located at ESO s Cerro Paranal Observatory in Chile on its own peak about 1 5km from the four UTs The telescope has an altitude azimuth mount and quasi Ritchey Chr tien
141. tability better than 1m s is much superior to the EGGS radial velocity accuracy The achievable radial velocity accuracy of the EGGS mode is limited by systematics and is of the order of 10m s RMS The amount of diffuse light in the spectrograph is of the order of 4 The EGGS mode is also supported by a full reduction pipeline running at the telescope Both raw and reduced data will be delivered to the user The HARPS baseline mode and the high efficiency mode can be both used on the same night The time needed to switch from one mode to the other is of the order of 1 minute For radial velocity measurements a calibration sequence similar to that of the base mode should be used Starting from Period 86 a polarimeter is available on HARPS The unit is able to perform both circular and linear polarimetry Preliminary measurements of the throughput indicate a light loss with respect to the base mode of HARPS in the range of 20 to 30 increasing to 40 in the bluest orders Instrumental polarization is not detected down to a level of 107 for zenith angles smaller than 60 degrees Closer to the horizon instrumental polarization grows rapidly if the Atmospheric Dispersion Corrector is in the light beam HARPS polarimetric data are reduced by the online pipeline HARPS will be offered only in Visitor Mode during Period 86 The user manual and exposure time calculator are available through the HARPS web page at http www eso org sci facilities l
142. tens of milliseconds via hardware windowing of the detector array Information about technical details restrictions and overheads is available in the Soff user manual e Low resolution R 600 0 93 2 54 um spectroscopy with fixed width slits of 0 6 1 and 2 e Medium resolution R 1500 spectroscopy with the same fixed width slits e 0 9 2 5 micron imaging polarimetry Sofl is equipped with a Hawaii HgCdTe 10241024 detector Up to date information and documen tation on the instrument are available at http www eso org sci facilities lasilla instruments sofi Sofl is only operated in Visitor Mode 5 2 EFOSC 2 ESO Faint Object Spectrograph and Camera 2 on the NTT EFOSC 2 is a very versatile instrument for low resolution spectroscopy and imaging in the visi ble and near UV It also has polarimetric capabilities both for imaging and spectroscopy and a coronagraphic mode and it can efficiently perform Multi Object Spectroscopy The instrument is equipped with a Loral Lesser UV flooded 2kx2k CCD The pixel size is 0 12 with a corresponding field of view of 4 1 The traditional grisms cover the 318 1100 nm wavelength range with resolutions ranging from 100 to 1000 Slits from 0 5 to 15 are available Since P81 two volume phase holographic grisms VPHG have been offered for medium resolution spectroscopy The blue grism 19 covers the wavelength range from 440 nm to 510 nm at a resolution of up to
143. ter and the atmosphere needs to be quiet i e good seeing and a weak or absent jet stream Further note that for operational reasons the LGSF is currently scheduled in blocks of typically one week per month As of P84 the LGSF is offered with NACO and SINFONTI in Service and Visitor Mode The peak K band Strehl ratio that one gets with the LGS in ideal conditions is around 20 This depends on many factors so users are encouraged to use the SINFONI and NACO ETCs The point at which one should consider using the laser instead of a natural guide star can be estimated with the ETCs Although the details depend on the distance of the NGS TTS from the science target the airmass and the vertical profile of the turbulence the magnitude at which one should consider using the laser is around R 13 5 to 14 A programme that requires observations of a NGS on the one hand and the LGS on the other hand should be specify these as separate runs in the proposal form 4 2 4 Paranal Sky accessibility zones of avoidance Figure 4 represents the sky accessibility for the 4 UTs The outermost circle marks the telescope safety limit zenith distance 70 All other concentric circles come in zenith distance intervals of 10 and are marked with the corresponding airmass value An object will move along one of the curves of constant declination The solid dots on those curves mark the movement in 1 hour intervals the maximum visibility period of a given objec
144. ters and for targets brighter than 50 mJy using the Nell filter Fainter targets can be acquired with restrictions on allowed airmass and slitwidth using the imager with sensitivities as given in the web page e Absorption line spectroscopy is untested and flatfielding problems may be anticipated The slits cover a range of 0 4 170 in width and the image scale of the 256 x 256 detector array is 0 127 pixel Please refer to the VISIR Web pages for further details Note that sensitivity limits in the MIR vary strongly with wavelength due to the atmosphere 6 8 3 Calibrations In imaging one photometric standard star observation will be provided per science target with no cost for the user In low resolution spectroscopy the Observatory will provide spectrophotometric observations of a telluric standard star Such a calibration measurement will be performed at least once per night per instrument configuration The Observatory does not provide standard star calibrations for VISIR medium and high resolution spectroscopy If MR HR or any additional standard star observations are required the user has to supply his her own calibration OBs using the corresponding calibration templates The observing time needed to execute this calibration is charged to the programme 6 8 4 Exposure Time Calculator The users are requested to use the ETC http www eso org observing etc in order to test the feasibility of their programme and estimate the c
145. than 10 of the specified value will not be scheduled for re execution Adaptive Optics assisted observations with a Strehl ratio within 50 of the specified constraint will not be repeated VLTI OBs executed marginally outside the specified LST intervals by no more than 30 min will not be scheduled for re execution 65 e Programmes with linked time requirements SM is also intended to support programmes with special timing requirements However proposers planning such programmes should keep in mind that at most 60 of both bright and dark time is allocated to SM on Paranal and that observing conditions cannot be predicted when a time series is started This means that timing sequences that are extremely long and or complex timing links that are very restrictive and time series for observations requiring excellent observing conditions are unlikely to be successfully completed Therefore all such proposals are reviewed for technical feasibility and may be rejected if judged to be too complex Proposers for programmes requiring timing links are strongly encouraged to consider how they may simplify their timing sequences as much as possible as this will minimize the risk that the observations are deemed unfeasible If a given OB cannot be executed within its intended observability window ESO will try to execute it as soon as possible thereafter on a best effort basis taking into account the user specified constraints and the constraints imposed by
146. the instrument PI before submitting an APEX SZ proposal CHAMP This MPIfR PI instrument is offered during ESO time in collaboration with the instrument team Users should contact the instrument PI before submitting a CHAMP proposal e ESO GTC proposals In the final call for ESO GTC proposals time can be requested on the GTC instru ments CanariCam and OSIRIS These observations will be executed in either Service Mode or Visitor Mode Only Large Programme proposals requesting a minimum total amount of time of 10 nights 90 hours will be considered 1 2 Important reminders e ESO User Portal Proposals are submitted via a web upload procedure that is accessed by logging into the ESO User Portal at http www eso org UserPortal See Sect 3 for more details e Rapid Response Mode RRM FORS2 on UT1 UVES and XSHOOTER on UT2 ISAAC on UT3 SINFONI and HAWK I on UT4 continue to be offered in this mode in Period 86 RRM observations that correspond to events with exceptional characteristics may be activated during either Service Mode or Visitor Mode runs over which they have observational priority except if these runs involve strictly time critical observations For details on the RRM policies see Sect 11 4 1 e Observing mode on the VLT As per the VLT VLTI Science Operations Policy at least 40 of the available time on the VLT is reserved for Visitor Mode VM observations and Service Mode SM observations are sched
147. the fact that there is a non uniform distribution of RA demand across the sky For the telescope scheduler favourite sky regions mean higher demand for observation time at certain times of the year i e increased competition for specific Right Ascensions For example there are only a limited number of photometric dark nights in April a particularly popular demand on average 10 times less than the total requested by observers A direct consequence of this is that only the top OPC ranked runs make it to the telescopes during April s dark time On the other hand the opposite is true for January and August see Fig 1 The time request for targets in these months RA 8h and 20h respectively is very low allowing a significantly higher fraction of runs applying for time at these RAs to be scheduled if considered useful by the OPC While an accurate knowledge of the distribution of favourite sky regions helps the Observatory in optimizing short and long term scheduling of observations and engineering activities this optimiza tion can only do so much when the demand for time is non uniform ESO observers are encouraged to take advantage of this situation and investigate if targets around RA 8h and 20h will suit their science goals 2 1 1 Prediction of RA demand during Period 86 Based on the time request for all the ESO telescopes in the last 10 periods one can make an educated guess of the RA demand expected during Period 86 Note that dur
148. the programme The PI will also act as the official contact between ESO and the proposers for all later correspondence e g Phase 2 information data distribution By submitting a proposal the PI takes full responsibility for its contents in particular with regard to the names of Cols and the agreement to act according to the ESO policies and regulations including the conditions specified in the present Call for Proposals Following the introduction of the ESO User Portal PIs identify themselves uniquely in Phase 1 proposals by their User Portal username Note that each individual is allowed to have only one account in the User Portal database multiple accounts should not be created or used by the same user Failure to comply with this restriction may lead to the rejection by ESO of the proposals of the offending PI Any proposal received by ESO prior to the submission deadline will be reviewed by the OPC who will rank them according to the following criteria e Scientific merit of the proposal and the importance of its contribution to the advancement of scientific knowledge e Evidence that detailed plans exist for complete and timely data analysis and that the propos ing individual or team will have sufficient time and resources to carry out the analysis Proposals should be self contained Their evaluation will be based solely on their explicit contents to the exclusion of external references such as personal webpages etc 66 For
149. the user of the LGS mode without a tip tilt star requires observation of a PSF calibrator associated with a science target this PSF calibrator has to be observed via a separate OB i e the template SINFONI_ifs_cal_PSF cannot be used within the science OB itself for the observation of the PSF calibrator sufficient time must be requested in the proposal The fast_acquisition template must be used only in case of acquisition of bright targets which would saturate the detector in closed loop with the large scale Excellent astrometry is required for this acquisition mode As of Period 85 proposers can use the Rapid Response Mode RRM to trigger SINFONI obser vations This mode is offered with the NGS and noAO modes of SINFONI For details on RRM policies please see Sect 11 4 1 Pre Imaging runs can also be proposed with SINFONTI Such observations are typically dedicated to test the feasibility of a specific science programme e g faint target difficult acquisition 6 11 1 Instrument Performance Table 15 gives the limiting magnitudes S N of 5 for continuum sources integrated over the typical size of the point spread function in one hour of integration time These values were calculated for a visual seeing of 0 8 which would provide infrared seeing values 41 Table 15 SINFONI fields of view and limiting magnitudes Field of View Spatial Scale Mode Limiting Magnitudes continuum 8 x 8 125 x 250mas noAO J
150. tics dispersive elements and detectors allow high efficiency observation simultaneously in the wavelength range 300 2480 nm The instrument operations started in October 2009 P84 Each arm is an independent cross dispersed chelle spectrograph complete with its own shutter and or slit mask The incoming light is split into the three different spectrographs arms through 2 dichroics that have cut off wavelengths at 5595A for the separation of UVB VIS light and 10240A for the separation of the VIS NIR light Three piezo controlled mirrors located in front of each arm guarantee that the optical path is maintained aligned against instrument flexure and corrected for differential atmospheric refraction between the telescope guiding wavelength and each arm central wavelength Two pairs of ADC prisms in the optical path of the UVB and VIS arms compensate for the atmospheric dispersion at different airmasses Two instrument modes are offered short slit spectroscopy SLT with a selection of different slit widths for each arm and a fixed length of 11 arcsec and IFU spectroscopy which allows observing a field of 1 8 x 4 arcsec reformatted to a 0 6 x 12 arcsec long slit The spectral format is fixed The orders in each detector are highly curved and the sky arc lines within each order are highly tilted DITs of 1800s in the NIR arm are no longer offered as they lead to remnants Refer to the the XSHOOTER pages User Manual and XSHOOTER SM rules fo
151. tists interested in submitting Large Programme proposals for NACO should carefully plan their time request because ESO cannot guarantee NACO observations beyond the end of P87 September 2011 37 6 10 1 Adaptive optics correction with Natural and Laser Guide Stars NAOS the adaptive optics front end has been designed to work with Natural Guide Stars NGS and moderately extended objects It is equipped with one infrared and one visual wavefront sensor For a point like reference source with a visual brightness of V 12 NAOS can provide Strehl ratios as high as 50 on axis in the K band in optimal weather conditions A more realistic value is 40 in good conditions It can provide partial correction for targets as faint as V 17 Users should use the preparation software and the NACO ETC for the preparation of their proposals Since Period 85 NAOS can also be used with the LGS LGS mode see Section 4 2 3 for additional details Two modes are possible e with a tip tilt star TTS of V magnitude in the range 12 18 and with a maximum angular separation of 60 from the science target However the performance of the adaptive optics correction decreases with increasing angular separation from the science targets Finally the choice of the TTS imposes some constraints on the field orientation The name of the TTS must be specified in the target list of the Phase 1 proposal using the ESOFORM proposal template without a tip tilt star
152. to the reduction calibration and analysis of science data from ESO instruments Posts might simply describe problems encountered with the data reduction or offer solutions to such problems Software calibration data or documents up to 100MB in size can be attached to any post 56 Part III Proposal Types Policies and Procedures 11 Proposal Types For Period 86 the list of proposal types is e Proposals for Normal Programmes e Proposals for Short Programmes Proposals for Large Programmes Target of Opportunity Proposals Guaranteed Time Observation Proposals Proposals for Calibration Programmes e Director s Discretionary Time Proposals Proposals for all of those categories must be submitted by the current deadline except proposals for Director s Discretionary Time DDT which may be submitted at any time An observing programme as described in a single proposal may consist of several runs e g for observations with different instruments or to be executed in different observing modes or at different epochs Proposals for Visitor Mode observations Sect 12 1 must request time in nights proposals for Service Mode observations Sect 12 2 must request time in hours Note that any given proposal may request a mix of Visitor Service Mode observations provided that they are split into separate runs e Please note All proposers Service and Visitor Mode must include time for all overheads telescope instru
153. ture Trec around 135K APEX 2 has replaced the APEX 2A Double Side Band receiver whose frequency coverage is assured by APEX 2 at similar sensitivity 47 e APEX 3 a Double Side Band DSB SIS receiver covering 385 500 GHz with DSB Tec around 110K As the SSB version of this receiver has not yet been mounted in the cryostat this receiver is offered conditionally to successful integration and commissioning Observations in this frequency range require the best quartile of precipitable water vapour conditions PWV lt 0 5 mm Only a limited amount of observing time will be available on APEX 3 so proposals should be self contained and the requested amount of time should be modest e APEX T2 a Double Side Band DSB HEB receiver operating at 1 25 1 39 THz with DSB Trec around 1200 K THz observations require excellent weather conditions PWV lt 0 2 mm During period 86 such exceptional conditions are statistically expected to occur only during the August and October ESO runs APEX T2 proposals should therefore be very short and concentrate on bright sources Further information on the SHFI receivers can be found on the APEX instrumentation pages As back end the Fast Fourier Transform Spectrometer FFTS has two units with a fixed bandwidth of 1GHz of which the central 900 MHz are usable This allows users to cover up to 1 8GHz instantaneous bandwidth The two FFTS units can also be individually configured to cover two regions of 900 MHz withi
154. uld be sought from the Observing Programmes Office opo eso org The following subsections give some additional information and references that should be useful to proposers 2 1 Distribution of requested Right Ascension The distribution of the demand in Right Ascension RA is far from uniform throughout the year and the probability that an OPC recommended run is successfully scheduled and completed de pends on this pressure Proposers are encouraged to read the article by Alves amp Lombardi 2004 12 10 8 4 0 00 30 02 30 04 30 06 30 08 30 10 30 12 30 14 30 16 30 18 30 20 30 22 30 Requested Time an Right Ascension Figure 1 Distribution of requested time percentage of total on Paranal and La Silla as a function of Right Ascension RA The histogram bins have a width of 2h and are labelled with the RA of their centre The data for all requested targets over the last 10 periods are shown here The ESO Messenger 118 15 on the sky distribution of VLT observations In order to optimize telescope time allocation and to maximize the scientific return of the Observatory proposers should be aware that choosing targets at certain RA s can have an enormous impact on the probability of successful scheduling and completion of their runs In this section we present statistics for previous periods If possible proposers should avoid the RA demand peaks discussed below Figures and 2 highlight
155. uled for at least 50 of the available time Depar tures from the observing mode requested by the proposers may be implemented by ESO so as to ensure that the intended distribution between Service Mode and Visitor Mode is achieved As a rule proposers should request Service Mode only for observations that demonstrably benefit from the short term scheduling flexibility allowed by this mode Otherwise Visitor Mode should be requested Proposers who wish to do so may identify runs that lend themselves for observations in either Service or Visitor Mode by specifying one of the modes using the alternative run feature in Box 3 of the ESOFORM Phase 1 proposal form Please note that if a certain instrument mode is offered exclusively in either Service Mode or Visitor Mode e g NACO 4QPM is in VM only then this overrides the scheduling considerations outlined above APEX This telescope is offered in Service Mode only In their Phase 1 proposal APEX users must specify the requested precipitable water vapour PWV for their project to allow a better distinction between observations requesting a range of atmospheric transparencies should either indicate an appropriate off source position or request time to find such a position if they wish to observe extended line emitting regions need to merge all observations on a given APEX instrument into a single run This also accounts for the different receivers of SHFI which should be grouped int
156. ving time 40 6 11 SINFONI Spectrograph for INtegral Field Observations in the Near Infrared SINFONT is a near infrared 1 2 5 wm integral field spectrograph fed by an adaptive optics AO module It is currently installed at the Cassegrain focus of UT4 The spectrograph operates with 4 gratings J H K H K with spectral resolutions of 2000 3000 and 4000 corresponding to the J H and K gratings respectively and R 1500 with the H K grating Each wavelength band fits fully onto the Hawaii 2RG 2kx2k detector The SINFONT field of view on the sky is sliced into 32 slices The pre slit optics allows one to choose the width of the slices The choices are 250 mas 100 mas and 25 mas leading to fields of view of 8x8 3x3 and 0 8 x0 8 respectively Each one of the 32 slitlets is imaged onto 64 pixels of the detector Thus one obtains 32 x 64 2048 spectra of the imaged region of the sky The adaptive optics module of SINFONI can be used with natural guide stars NGS the laser guide star LGS or without guide stars the noAO mode in which case the AO module just acts as relay optics and the spatial resolution is dictated by the natural seeing If more than one of these modes are used in a given programme they should be requested as part of different runs In the NGS mode the star should be brighter than R 11 mag for peak performance However the AO can work and will provide moderate image quality improvement with stars
157. w dispersion Spectrograph 2 Field Of View Gran Telescopio Canarias Guaranteed Time Observations High Accuracy Radial velocity Planet Searcher High Acuity Wide field K band Imager Intermediate Band Integral Field Unit InfraRed Infrared Spectrometer And Array Camera K band Multi Object Spectrograph LArge BOlometer CAmera Linear Atmospheric Dispersion Compensator Laser Guide Star Local Sidereal Time Long Wavelength in the IR MID infrared Interferometric instrument Multi Object Spectroscopy Max Planck Gesellschaft Max Planck Institut fiir Radioastronomie NAOS CONICA Nasmyth Adaptive Optics System Narrow Band Natural Guide Star 70 OB OPC OPO P2PP PI PWV RRM SABOCA SAM SDI SE SHFI SINFONI SM STC SPHERE WFI XSHOOTER Observation Block Observing Programmes Committee Observing Programmes Office formerly VISAS Phase 2 Proposal Preparation software tool Principal Investigator Precipitable Water Vapour Rapid Response Mode Submillimetre APEX BOlometer CAmera Sample Aperture Mask Simultaneous Differential Imager Seeing Enhancer Swedish Heterodyne Facility Instrument Spectrograph for INtegral Field Observations in the Near Infrared Service Mode programme Scientific Technical Committee Spectro Polarimetric High contrast Exoplanet REsearch Science Verification Short Wavelength in the IR Target of Opportunity User Support Department Unit Telescope 1 Antu Unit Telesco
158. w eso org pipelines A brief summary of current and anticipated VLT VLTI pipeline availability and functionality for each instrument is available on line from http www eso org qc pipeline status html 10 3 2 Pipelines in the ESO Environment Available pipelines are installed on Paranal and La Silla and normally run automatically at all times only HARPS FEROS and Soff have pipelines at La Silla These on line pipelines use recent but typically not the most recent archival master calibration data to produce quick look QC information for the Observatory staff as well as quick look science products for supported instrument configurations These science products are available to Visitor Mode observers for review and use as they wish With the exception of HARPS and FEROS they are not included in the data package delivered to the Visitor Mode observer at the end of their observing run If they wish users may copy these science products onto removable media CD ROM and DVD Blank media are available from the Observatory for this purpose However these science products may not be the best possible because they do not use the most recent master calibration data The Garching based off line pipelines for VLT VLTI instruments do use the best available and certified quality checked master calibration products during Service Mode science product creation The Garching master calibration products are created from the daily calibration data
159. x 2048 pixel IR detectors Raytheon VIRGO HgCdTe 0 84 2 5um in the camera are not buttable and are arranged as shown in Fig 7 The diagram shows the focal plane as it would be seen looking directly down the camera body down the Z axis which on the telescope points towards the sky On the sky in the default instrument rotator position Y corresponds to N and X to West Ba SMOJ 1098180 y di Bn B f 27 E E suunjo9 10493480 42 5 S Science detectors controlled by IRACE Figure 7 VIRCAM focal plane geometry A single integration of length DIT secs or a co added series of these known as an Exposure produces a sparsely sampled image of the sky known as a Pawprint The area of sky covered by the pixels of a pawprint is 0 6 deg Full almost uniform sky coverage of a Tile of 1 501 deg can be achieved with six pawprints offset by 47 5 in y at two respective x positions offset by 95 of the detector size Any sky position of a tile will fall at least on two of these six pawprints 6 14 3 Instrument performance Table 18 summarizes the instrument performance as established during commissioning The instru ment performance can be further evaluated from the publicly available Science Verification data sets which are available through the VISTA Science Verification web page 46 Table 18 VISTA performance pixel scale 0 34 pixel best image quality achieved 0 6 i
160. y SCI CAL in MR or HR 30 30 number of bands 13 Includes configuration of UVES fibres homing the rotator to 00 swapping of the plates and the acqui sition of field telescope preset acquisition of the guide star and start of the active optics are not included and account for additional 6 minutes For ARGUS fast acquisition Visitor Mode only the acquisition overhead is 2 minutes and is calculated assuming that plate 2 is already attached to the telescope and the calibrator added if the exposure time is shorter than 20 minutes 15 here DIT and NDIT as required for the AO natural guide star NGS 16 This time includes all telescope and instrument overheads as well as the integration times on the science target visibility has to be obtained 14 Plate configuration takes 20 minutes at most Medusa fibres This does not translate into additional overheads if the running exposure on the other plate is at least 20 minutes long Plate configuration overheads have to be 17 With a maximum number of 3 bands per wavelength setting For each new wavelength setting a new calibrated 54 sufficient In this case Service Mode proposers should only request enough time to complete their science observations If the published calibration plan is not sufficient Service Mode proposers must request more time including all operational overheads for additional user defined calibrations Please note that ESO fu
161. y on going Large Programmes do not appear in this figure 2 2 Exposure Time Calculators available Online To aid proposers in calculating exposure times needed to achieve their scientific objectives Exposure Time Calculators ETCs for ESO instruments are accessible directly on the ESO Web They can be reached via http www eso org observing etc for La Silla and Paranal instrumentation For APEX instrumentation please go to http www apex telescope org instruments Links to useful proposal preparation software tools e g Object Observability Calculator Airmass Calculator Digitized Sky Survey can be found at http www eso org sci observing tools index html Information on standard stars and sky characteristics as well as additional tools are available at http www eso org sci facilities paranal sciops tools html The parameters used by the ETCs are based on data collected during instrument commissioning and operations The ETC parameters are frequently updated and changes will be reflected by the running version number To help the Observatory staff assess the technical feasibility of observations proposers are requested to specify the version number of the ETC they used in the section 9 Justification of requested observing time and lunar phase of their proposals Please check the ESO web pages for the ETC version to be used in Period 86 Please note that while the sky background values used
162. y shifted 50 microsec causing the exposed region to be moved into the storage area the unexposed region of the CCD and a new region to be illuminated This shift and wait scheme continues until the first pair of spectra taken reach the limit of the storage region and the CCD is subsequently read out in the normal way allowing 41 pairs of spectra per CCD readout 26 We summarise the operational modes and performance of FORS2 in the two tables below These tables are only intended to be quick feasibility guides Proposers should refer to the detailed infor mation e g Users Manual Exposure Time Calculator available via the FORS web pages Table 3 Offered FORS2 imaging modes for Period 86 Instrument Mode Magnitude limit S N 5 Direct Imaging MIT U 24 8 B 27 3 V 27 1 R 26 7 I 25 7 z 24 7 Direct Imaging E2V U 25 9 B 27 6 V 27 3 R 26 7 1 25 7 HIT Imaging MIT U 16 0 B 19 5 V 20 0 R 20 3 I 19 5 The magnitude limits in Table 3 correspond to a one hour integration with dark sky clear conditions a seeing FWHM of 078 and an airmass of 1 2 and have been calculated for a point source of zero colour AOV star The U B and V magnitude limits are calculated using the new high throughput filters The values are shown for both the standard MIT detector mosaic as well as the E2V mosaic which is available for Visitor Mode observations Table 4 Offered FORS2 spectroscopic modes for
Download Pdf Manuals
Related Search
Related Contents
PINNACLE TNG Brennenstuhl 1172610 halogen lamp IC-1 Installation & User`s Manual Notebook User manual Origin Storage 128GB MLC SATA 取扱説明書等 - アイ・オー・データ機器 Cole-Parmer Instrument Company Nation et démocratie au Québec : l`affaire Durham かんたんマニュアル ダウンロードする - GMTradings Copyright © All rights reserved.
Failed to retrieve file