Home
PART ONE LCCR
Contents
1. Lower frame L 23 00 E Status field Message field LCCR GUI overall layout 4 2 The menus The menus allow the end user to perform some actions described bellow However we notify the reader that some actions can also be triggered through the keyboard by shortcut or by accelerator key For instance the function lt File Open gt can be triggered in three manners e either the end user presses the lt File gt menu and then presses the lt Open gt function direct action e or she proceeds lt Ctrl O gt just by pressing at the same time lt Ctrl gt and lt O gt keys shortcut 55 e or she first proceeds lt Alt F gt to open the lt File gt menu and then presses the lt O gt key to perform the lt Open gt action accelerator key Each time a shortcut exists it is displayed next to the corresponding menu item The accelerator key are underlined Moreover sometimes certain items corresponding to functions in the menu are disabled they are disabled when they should not be activated just to prevent the end user from using them Parameters Alt P View statistics Alt B View charts Alt C Forget solucion Export statistics Menu with variably enabled functions 4 2 1 File This menu de
2. 27 42411 The notion Of Sectolin a M nr kasqas de sd me rene Ma ane serpent aan 28 4 2 1 2 Characteristics of a sector its ability 28 42 1 3 The Constrantitself 3 55 22 ete aida te Re RAR SR ET AR AN Re ER MER RES 28 4 2 1 4 lis formalequatlon sis u uu internet ele de nn ea ua ahua aqu use spp ire re astra 29 4 2 2 The flight plans equity constraint nn nnnnnnnnnns 30 4 2 3 The flight plans round trip constraint r 30 4 2 4 The aerodromes curfew constraint Re Run 31 25 THC category CONS is 31 42 51 AWGralft Categories uuu k u Susu nette end ete ta tm Re aden des dret tt 31 4 2 5 2 How it interferes with the priority constraint 32 4 2 6 The exempted flight plan constraint 32 4 3 THE SOI ER art ne akay eee Se net wasaqa nie manu pas 32 vli 4 3 1 Before LCCR enumerates r 32 4 3 1 1 Domain variables definition sise 32 4 3 1 2 Definition of the constraints ss 32 4 3 1 3 Posting the Constralnts sites o id eli 33 43 14 Enumera ON cita iio 33 4 32 Th mainiline SAC oi A 34 4 3 2 1 A strategy to detect the flight plans that cannot be placed
3. ccccceeceeeeeeeeeeeeeeeeeeeeeeeeenneeeeeeees 34 4 3 2 2 A strategy to choose the groups of flight plans 34 4 3 2 3 strategy in the order the flight plans are instantiated within a group 34 4 3 2 4 A strategy for the delay of a given flight plan 35 4 3 3 Different strategies for different AIMS 35 43 31 The troundsMp iprO Narco a E nette da 35 43 82 Therequity priority iii on 35 4 3 3 3 The round trip and the equity priorities altogether 36 4 3 3 4 The category priority a A Lien ad 36 4 3 3 5 Regulation by loag0 a uay aaa a ide iia 36 4 3 3 0 Regulation by Capacity nn Lun olaa 41 4 3 3 7 Regulation by load and capacity sisi 42 4 3 4 R laxalloD usa A E 42 4341 Global mechanism titi tin costed Mr u tn o A A a 42 4 3 4 2 The flight plans delay relaxation uses 42 4 3 4 3 The sectors load relaxation sisi 43 4 3 4 4 The sectors capacity relaxation siemens 45 4 3 4 5 The sectors load and capacity relaxation ue 45 5 THE CODE dices E um rente ns antenne ere entente res antennes este 45 5 1 A WORD CONCERNING THE UNIX TO NT MIGRATION cooocccccccccccnnnnnnnncccnnncnnnannnnnnnncnnnncnnnnnnnns 45 5 2 THE ENVIRONMENT Z una aa et ein id ete et eA pastes age 45 5 2 1 Different software libraries used A 46 5 22 The exact COMENT ne A aia 46 5 2 3 To re
4. Elementary S ctors cio 68 4 2 3 6 Collapsed Sectors nanum ee tia el 68 FDA ES Y uu PEET EA EEEE EE EEEE E R EE E TE EERE 68 4 2 4 1 Parameters p a da 68 42 452 gt NIEW STATISTICS AIT DE umn u AA nima AE EA AO E E AA a hee E 72 4243 View chartS lt AlItY gt uuu u susta mua umuy rin li nasa A aN ku dre 73 42 44 Forget Solutions icc 2c cecsskeccechiacaccascsciaedscecasdeacedaqesabesssinccasnadhacdncniadeesesces shancasdagaaciaesiceiag essseisasadnsae 74 42 45 EXOT Statisti Sien sete de ghee ed be a 74 AZ View FOOUI ANON n e Re u ck Guach tine tase bebe aware florets dt tr de 75 42 51 IFiS ioie ua anu en e a din eds vis saus a Tawana iskaypa sss 75 4 2 5 2 Elementary SeclorS uu uu u u paa atado a yasa cla cee 75 4 253 GollapsedseclorSy musical tdt agente spa d uay tune ras e h kun 75 42 6 ABOUT A a 75 NA A 75 AL TIMO CONVENIO una sI y E u s 75 4 3 2 The notion of ability capacity or and load 75 4 3 3 TING THOU plan areena nl S e S D AL nt Bee bik hat Maya a 76 Aid AtHIIDEUIeS EME s L tu umn to a usta hapa etnias Py e af o co PO en es ie 76 493 922 Creation uu u m na u u nette p S Re ee SR cc et ee ees 77 4 33 93 MOdIfiCAtiON SR um O O een RO se ena so 78 GBA The AMOO aaa 78 AO ET AMD 1 ES e e o RSA RS ANA AS ANT MANS A nn ane ne m st ne ane nr eee EN ne nee 78 49 24 21 Cr ation don nes nn ne AE a in de Qatar een Dee est sta uapa OE 78 ASAS MOdIfICATION dada 79 495 Th calegoD 1 A A E A RA 79 4 9 52
5. 26 4 2 4 2 1 Since some relaxation is possible on the delay of a given flight plan we also give some formal symbols to its maximum delay max that represents the upper bound of note that O is the lower bound of dmin f At the beginning of the solving max is equal to max f which corresponds to the demand and with relaxation max increases but never exceeds max which corresponds to the maximum relaxation allowed Thus we can write the constraint on flight plan Amin 20 dnax lt max f max lt max f lt max Precision on the granularity and the time scale Note that all the times are defined with the precision of the minute Everywhere we refer to the term time noted t talking about an event we do refer to the number of minute elapsed since the beginning of the day on which LCCR regulates Since LCCR only presents and regulates the flight plans estimated to take off during the day considered as the regulation day there is no need to define any estimated take off date this date is implicit and it is the regulation date However with the effect of the regulation and the delay involved it is possible that LCCR should present some flight plans regulated to take off the day after Linear propagation of the delay Moreover we consider that once it has taken off a flight plan does not increase the delay it has already taken at take off which means that when you k
6. C Loox V3 3 Lib Loox lib Loox dll C Loox V3 3 Include Loox lib Loox dll LxChart lib LxPack lib XDK C Program xlibcon lib xlib lib Xlib dl C Program Files Exceed Files Exceed xmStatXt lib V6 1 xdk include V6 1 xdk lib xmstatic lib 5 2 4 To recompile the mode of compilation and of linkage It is essential to know the way the application was compiled and linked so as to be able to rebuilt it after some code modification The application was developed under Microsoft Developer Studio V6 0 Rapid Application Development RAD This RAD proposes a multithreaded dynamic linkage which was used This mode must be re used to re compile LCCR No other major feature is to be specific for its re compilation and re linkage At run time Some of these libraries are still necessary in order to execute LCCR This is the case of the LxPack and of the XDK dynamical linked libraries for instance 5 3 The application architecture We will not describe precisely how LCCR was coded but we give the main lines adopted that is to say the LCCR architecture 46 5 3 1 5 3 2 5 3 2 1 5 3 2 2 5 3 2 3 5 3 2 4 5 3 3 General architecture We can describe LCCR objects in a global way LCCR uses aerodrome sector aircraft type category flight classes LCCR also introduce the notion of ability class that describes aerodrome and sector capacity or and load limit profile and open periods
7. constraints The strategy it adopts depends on the kind of regulation that the end user selects such a strategy that is set throughout the heuristic will not be the same if the end user launches a search for a load regulation as the one to regulate by capacity As for the other constraints the strategy can change a lot the quality of the results and we will give some details so as to understand the importance of the priority parameters attached to the round trip and the equity constraints Nevertheless we can describe a global strategy of LCCR A strategy to detect the flight plans that cannot be placed This mechanism has been implemented to detect as soon as possible the flight plans that do not have any feasible delay value This occurs when the constraints of the problem are not able to detect an inconsistency To avoid that and before choosing a group of flight plans LCCR takes all the flight plans not yet placed one after another For each flight plan of these flight plans LCCR tries to place it with one of the value of its domain If the constraints fail each time it means that the flight plan cannot be placed Once all these flight plans have been tested LCCR keeps only the flight plans that cannot be placed we know that the problem will not have any solution if we do not grant to these flight plans an extra relaxation to their maximum delay That is the reason why LCCR relaxes these flight plans with an extra step of relaxa
8. e Modify mode when the current solution set is the modification solution set that one solution set for storage is being used and that no solution is present in memory for that set we say that LCCR is in modify mode It is the case for instance when the end user performs the lt Edit Activate modify mode gt function e Blocked mode when a solution is present in memory for the current solution set we say that LCCR is in blocked mode It is the case for instance when the end user opens a solution set with solution associated through the lt File Open gt function 4 2 2 2 2 Keep solution set lt Alt K gt Note that this function is only enabled when the current solution set is the modification set no solution needs to be present for that solution set that is to say that the end user is allowed to keep in memory a solution set without any solution found for it This function keeps the current solution set regulated or not in memory If some solution set for storage is free LCCR automatically stores the current solution set in the first solution set for storage not used with the smallest identifier If there is no more free solution set for storage LCCR asks the user which solution set for storage to overwrite all the formation information kept in the solution set for storage selected will be definitively lost The current solution set becomes the modification solution set initialised with the demand just kept modify mode 4 2
9. modify mode if at least one solution set for storage is used modify and insert mode otherwise 4 2 2 2 6 Activate modify amp insert mode Note that this function is only enabled when at least one of the three solution sets for storage is used or when a solution is present for the modification solution set This functions enables the end user to discard all the solution sets for storage and to insert or delete objects in the future The current solution set becomes the modification solution set modify and insert mode lt Solve forget solution gt lt Edit Discard solution set gt lt Edit Activate modify amp insert modify amp insert mode Po S blocked mode solve and solution lt lnsert solve and solution found lt Edit Visualise solution lt Validate gt lt lgnore lt Solve forget solution gt lt Edit Activate modify amp insert mode gt lt Edit Keep solution set gt lt Edit Activate modify State diagram of the various modes 4 2 2 3 Apply global value These functions provides a facility to apply globally values to the objects 4 2 2 3 1 Sectors co ordination time This function enables the end user to change the individual co ordination time of all the sectors LCCR asks the end user to enter a valid co ordination 66 time value then it applies it to all the sectors The old values will be definitively lost 4 2 2 3 2 Sectors load normalisation This function enables the end user to re co
10. the new maximum delay authorised on a given flight plan will be the maximum delay of the category its aircraft type belongs to The old values will be definitively lost View demand For this paragraph we consider that a set of data has been loaded into memory through the command lt File Open gt This menu concerns the editable lists of objects display The corresponding editable list is displayed on the upper frame of LCCR main frame When one the functions of that menu is called we say that LCCR is in demand view Aerodromes Categories Aircraft types Elementary sectors Collapsed sectors lt View demand gt menu Flights 4 2 3 1 1 All flights This function displays all the flight plans 67 4 2 3 1 2 Round trip This function displays all the round trip flight plans 4 2 3 2 Aerodromes This function displays all the aerodromes 4 2 3 3 Categories This function displays all the categories 4 2 3 4 Aircraft types This function displays all the aircraft types 4 2 3 5 Elementary sectors This function displays all the elementary sectors 4 2 3 6 Collapsed sectors This function displays all the collapsed sectors 4 2 4 Solve This menu concerns LCCR solver Parameters Alt P View statistics Alt B View charts Alt C Forget solucion Export statistics lt Solve gt menu 4 2 4 1 Parameters This function displays the solving parameter panel This dialog box can be used as well to launc
11. 2 2 3 Discard solution set lt Alt D gt Note that this function is only enabled when the current solution set is one of the three solution set for storage This function discards if confirmed the current solution set for storage all the information it contained is definitively lost and this solution set becomes free The current solution set becomes the modification set modify mode if at least one solution set for storage is used modify and insert mode otherwise 4 2 2 2 4 Visualise solution set lt Alt V gt Note that this function is enabled only when there is more than one solution set for storage used This function enables the end user to change the current solution set the end user is asked which solution set for storage to select if there is more than one solution set for storage used When there is just one solution set for storage used LCCR automatically selects it 65 The current solution set becomes the solution set for storage selected blocked mode 4 2 2 2 5 Activate modify mode lt Alt M gt Note that this function is only enabled when the current solution set if one of the three solution set for storage This function enables the end user to modify the demand data for a new solving for instance the current solution set becomes the modification set and the end user is allowed to change certain objects as well as the solving parameters The current solution set becomes the modification solution set
12. LCCR also manipulates collections of instances of those classes The code is commented as much as possible even if a code is never commented enough so as to enable the developer to understand the purpose of classes functions and methods We do hope the names given to these objects are evocative enough The COFEE data extraction The extraction of COFEE environment data is performed by LCCR so as to provide the necessary LCCR files these LCCR files constitute the entry data of the application The COFEE data are not directly taken as entry data but are beforehand read and put into a LCCR format to provide a steady entry point for LCCR The reason for the creation of intermediate files is that the COFEE files architecture does not fit in the way LCCR treats the data and without the creation of the LCCR intermediate files the reading of the entry data would be too long each time Necessity of an intervention by hand However LCCR needs the COFEE extraction already submitted and the COFEE data locally in the proper directory gathered LCCR does not call COFEE and tell it to submit the necessary queries retrieve the data from the queries result it is the responsibility of the end user to do that job and to put the information retrieved by COFEE in a proper directory The flight plans file From COFEE is only taken the environment for the day on which the end user wishes to make some regulation simulation When LCCR prototype was st
13. O O 79 4 352 NON ii diia 79 ADS Modificati ci A dd do TAR ll S S ea la 79 23 07 AB ICRA DB LT A u A nase y Ua 80 AO lio AHTIDUTeS uuu um uA uu mua A a attus Caza as 80 43 62 Creation asua nn qaa Mn ina a unas dant E Daviess E d sie 80 4 3 6 3 Modif AlO aii id 80 4 3 7 The elementary SOCION e nee als 80 AS HAUMIDULES mai ES E enr AA Shake sz za kaa ti te e AR ei 80 4 3 7 2 Greall llu u au u u ee 82 33 Modificaties ua davevevauee tusuieveedacseducussaasbadaubeaveeadevseedecucde tages dede Te awaq iw lue ee 82 4 3 8 The collapsed SOCIO ti 83 4 30 10 GATTIDUIeS ee NN 83 5 4 3 8 22 CreatlDn is uuu E E E SR ne SAL ha shaya a ee ne Re A ats e 4 3 8 3 Modifications sn uu a an uya li dede dde et eae ee eee ee 4 4 THE LISTS EDITABLE OR NOT AT The dlfferenktiliSIS A A Dante dr AS Tease E eee ees aa AA AT Layout RE CR una ne i Da a nent ee tn nee Rita ass 44 12 Click Mechanics ori id add aria dela 44 2 Demand MA a ca 4 4 3 Regulation VIEW it E A A Unit sua dun RT 4 4 4 The contextual menu AAA a AA Ei Re ee 4 4 4 1 Malidates ii a Ta il ab ce ad dp ind 44 42 ignore insert names unap kusha teen ere reg E ka Esp eee 4 4 4 3 SOM INCAS PAS sm Me ed AA AA SOP GSCKCASING OE 4445 Delete record genes a EE tentant rbd seen eee 4 4 4 6 IInSertr cordriss tresse Me tata taaan las 4 4 4 7 View regulation demand 4 4 4 8 View summary detail ee 4 44 9 Export in outer WINdOW en
14. To help expressing the load relaxation we note L s t the state of the profile at the beginning of the solving that is to say the load limit profile demanded 4 2 1 2 2 The capacity limit profile Analogously for the load limit profile the capacity limit profile noted c s corresponds to the graph displaying the number of air planes that are allowed to have entered s during the hour preceding t 4 2 1 3 The constraint itself We have just seen that each sector is given an ability limit profile Besides the definition of all the ability limits has been a problem that we encountered in LCCR because of a lack of information and LCCR needs coherent information concerning the load and capacity limits to perform accurate regulation But is exactly the constraint expressed 4 2 1 3 1 Load constraint This constraint ensures that for each sector s the number of air planes present in it at the same time t can not overpass the load limit L s t of this sector only for 0 lt t lt 24 60 We have to give more precision about what we call to be present 28 4 2 1 3 2 Capacity constraint Obviously the constraint concerning the capacity is built in the same spirit We give the formal definition afterwards 4 2 1 3 3 The co ordination time of a sector a major feature and impact on ability To be more precise we have to introduce the notion of co ordination time CT s of a given sector s Each time an air plane having the flight p
15. be inverted after regulation which means that VfieF VfLEF if da f da f2 aa f aa f2 and t lt t then ti f1 Stt f2 This constraint is called an equity constraint because it prevents flight plans that have a priori identical features not to be randomly inverted because of the regulation LCCR does not express this constraint in this way an extra parameter is introduced so as to make the constraint a bit more flexible This extra parameter is equity trigger expressed in minute and we consider the equation ti lt t equity trigger The parameter equity trigger settable through the solving parameters panel allows the two flight plans to be inverted but not too much and makes the constraint more operational In other words during the solving f is allowed to take off after f only if it does not take off more than equity trigger minute after f The flight plans round trip constraint This constraint concerns the flight plans that uses the same air plane to complete their corresponding journey i e that performs a round trip journey described by the two flight plans it involves that the call sign of the second leg flight plan is the same as the one leg s except for the last digit which must be increased by one that the aircraft type of the two flight plans is the same that the departure aerodrome of each flight plan is the same as the arrival aerodrome of the other flight Since these
16. can enter this stage in two different states e it is the first time during the current solving that LCCR posts the constraints and no special method is used e it is not the first time that LCCR posts the constraints during the current solving and a special method is called since this step corresponds to the problem relaxation 4 3 1 3 1 First time It is supposed that no relaxation has been performed so far when entering this stage LCCR deals as well with constraints on the ability load or and capacity profile heights as on the flight plans delays 4 3 1 3 1 1 The ability limit profile height variable LCCR posts on each sector the constraint on the height of its ability limit profile load or and capacity this constraint ensures that the current demanded ability is not over passed However it is possible that the constraint on this height is not feasible because the regulation problem is over constrained in this case LCCR grants the necessary amount of relaxation provided this amount does not exceed the maximum relaxation allowed when defining the domain variables so as the constraint posting does not fail and thus so that the satisfaction problem is respected If with all the relaxation allowed one ability cannot be respected on a given sector the corresponding constraint is ignored on that precise sector and LCCR solver fails to find a feasible solution 4 3 1 3 1 2 The flight plan delay variable Then LCCR posts the co
17. creation No category can be created Modification When in modify mode the end user wishes to modify the maximum delay of a category she just has to edit the cell corresponding to that attribute the modification is automatically validated when she quits the cell edition 79 4 3 6 4 3 6 1 4 3 6 2 4 3 6 3 4 3 7 4 3 7 1 The aircraft type Attributes An aircraft type is composed by e acode e aname e acategory represented by its number This information is the necessary and sufficient information for an aircraft type exhaustive description inside LCCR In addition LCCR displays for a given aircraft type e the number of flight plan using that aircraft type LINA IIA CN 235 CN235 2 12 CONCORDE 1 6 CANADAIR CL 667CV 58 1 11 DORNIER 228 100 200 2 26 D326 2 92 Some aircraft types Creation When LCCR is in modify and insert mode the end user can create a new aircraft type by calling the lt Insert record gt function when the aircraft types list is active through the lt View demand Aircraft types gt function When inserted by the end user all the attributes of the aircraft type must be filled in including its code When finished the end user must validate the information through the lt Validate gt function above the upper frame After this step the new aircraft type is created and LCCR exits from the insert mode the end user can abort at any time the insertion of the currently created o
18. crosses twice the same physical sector during the same flight plan Otherwise the problem overloading constraints may not set correctly and may be too restrictive compared with the actual problem The flight plan delay domain variable The only variable describing a flight plan is its real departure time We consider two different departure times the first departure time is the initial scheduled departure time as airline companies asked for it and noted ti where e stands for estimated the second is the actual departure time of the flight plan once the regulation performed noted t Thus for each flight plan we consider what we call its delay noted d t tfs f which correspond to the difference between the two departure times Note that this delay can only be positive and that this delay is a domain variable which implies that it has a lower bound value and a upper bound value we note them respectively dain and dmax Now we note de dain F dmax 17 nin SAmax f This delay is a domain variable thus with a dynamic domain and it is only when it is instantiated that this variable is bound Thus all along the solving as long as the flight plan f is not placed the delay domain variable a is not instantiated and its bounds Amin and dmax vary depending on the various constraints posted on it This is very important mainly when we will talk about the constraints
19. des vols dans l espace europ en voient le jour L tude pr sente cherche am liorer la gestion des flux a riens en introduisant un nouveau concept des contraintes de base L algorithme CASA Computer Assisted Slot Allocation utilis par la CFMU a Bruxelles est bas sur des contraintes de capacit Cette tude essaye de montrer qu une r gulation bas e sur des contraintes de charge est plus efficace La charge d un secteur est le nombre d avions pr sents simultan ment dans le secteur un instant donn La capacit d un secteur est le nombre maximal d avions pouvant entrer dans le secteur en une heure Comme la contrainte de charge utilise plus efficacement l espace disponible la dur e de travers e d un secteur par un avion est tr s inf rieure une heure dur e qui est la base de la contrainte de capacit le d lai total devrait d cro tre Les r sultats qui je le rappelle ne sont pas encore valid s par les op rationnels confirment cette hypoth se La p nalisation en termes de d lai totale et de nombre d avions retard s est de loin inf rieure celle observ e dans le cas de la r gulation par contraintes de capacit Si ce nouveau concept est accept d innombrables tudes portant sur l am lioration de la gestion du trafic devraient s en suivre Je pense en premier lieu une tude d impact de diff rents syst mes de priorit s de vols ou de groupes de vols particuliers INTRODUCTION Ce ra
20. for simulation purposes among them a city to city flow priority 5 ACKNOWLEDGEMENTS I must hereby acknowledge my debts to two persons Without their help the prototype could not have been implemented as it is today The current Director of Eurocontrol Experimental Centre M J M Garot not only gave me the freedom to develop a new concept Through his personal and direct intervention could have the necessary financial support M G Ranc active flow controller at the CFMU in Brussels gave me a very important operational help through several one week missions at Br tigny He updated the environmental CFMU input data and thanks to his advice the current prototype can take into account at least partly the desiderata of the operational staff LL 11aVI 00 66 2088 226402 vl 91 EE Z 1 6221 6S 290 8p1 VS 802 LE POLL S L OSS 99 g 0lL 65 94 LGZE Z 8SrG ALIOWAVO 98 L 89 69r89r zZE r91 01 8628 G0 0 L v0 0 6 02 LSS 6 6901 HE pL Le Ge 64 LL ptz 1 6 8 vl ayol 001 66 29 22961 0 Ez28 8 LELOL G0 0 110 92 Ge 26 8 sert ZE 69 1 ve vs 65 GE 131 946131 el dyol AW130 UI WLOL uw NOI LVXV Tat NOI LVXV 138 Kejap gt uu Gp cr gt Aejep gt c 1H9M4 XVN XVIN Q ulu G gt qaAv1aq Aejep e yum Jod uiw uru uuu SyO1L93S S1H9174 Waal Waal SLHOIN4
21. function above the ability row to delete Only when the end user is satisfied with the abilities she has to call the lt Validate gt function above the lower frame Modification When in modify mode the end user wishes to modify an already created sector she just have to edit the cell corresponding to the attribute she wants to change the modification is automatically validated when she quits the cell edition 4 3 7 3 1 The abilities Some limitation is imposed on the abilities modification Indeed when already created the end user must respect its overall open periods She is allowed to change the abilities of a sector to insert or delete periods but at the end of the modifications when validating the union of all the periods defined must be equal to the former union 82 4 3 8 4 3 8 1 4 3 8 2 4 3 8 3 The collapsed sector Attributes A collapsed sector is composed by e acode e alist of elementary sectors that it gathers represented by their codes separated by a single space e a co ordination time Concerning a collapsed sector when it is selected LCCR displays a list of abilities is displayed in the lower frame Period Capacities EGTTNOR 2400 40 13 A collapsed sector This information is the necessary and sufficient information for an exhaustive collapsed sector description inside LCCR As for the elementary sector LCCR displays for the collapsed sector some additional information t
22. gt button if she wants the solver to use the individual co ordination time of the sectors lt global gt if she wants to use the same global co ordination time for all the sectors In this latter case the end user should also fill in the lt duration gt field so as to specify this global co ordination time expressed in minute Flight plans maximum delay the end user should enable the lt individual gt button if she wants the solver to use the individual maximum authorised delay of the flight plans lt per category gt if for each flight plan she wants to use as a maximum delay authorised the maximum delay of the category its aircraft belongs to Round trip trigger this field expressed in minute enables the end user to specify the parameter round trip trigger Equity trip trigger this field expressed in minute enables the end user to specify the parameter equity trigger For any detail concerning the global parameters please refer to the LCCR reference documentation 4 2 4 1 7 Relaxation This frame gathers the information concerning the solver relaxation The end user should be familiar with the relaxation mechanism in LCCR so that she can set properly these parameters Flight delay if this button is disabled no relaxation is allowed on the flight plans maximum delay Otherwise the end user should fill in the two following fields which indicate the step delay relaxation step percentage and the maximum increase dela
23. lower frame 77 4 3 3 2 2 First or second leg of a round trip flight plan couple 4 3 3 3 4 3 4 4 3 4 1 4 3 4 2 When the end user validates a flight plan newly inserted LCCR looks at all the flight plans already created that may be its first or second leg flight plan and update correctly the information if it is the case We sum up the necessary conditions that LCCR uses to decide whether a couple of flight plans fa and fs is a round trip couple a being the first leg 1 the call sign of fa must be the same as the one of except that the last digit must be increased by one the aircraft types of the two flight plans must be the same f arrival aerodrome and f departure must be the same f arrival aerodrome and f departure must be the same fs must be estimated to take off between round trip mini and round trip maxi minute after estimated departure time on gt D Modification When in modify mode the end user wishes to modify an already created flight plan she just have to edit the cell corresponding to the attribute she wants to change the modification is automatically validated when she quits the cell edition The aerodrome Attributes An aerodrome is composed by e acode e alist of capacities Concerning an aerodrome when it is selected this list of capacities is displayed in the lower frame e alist of departure capacities e alist of arrival capacities e alist of glob
24. lt ABORT gt button displayed Note that the refreshing of the graphical layout is slower when solving Moreover all the menus are unavailable during solving the end user cannot use LCCR facilities during solving If LCCR does not find any solution the end user is notified otherwise LCCR displays the statistics panel at the end 69 LCCR messages i Solve solving ABORT LCCR solving abortion dialog box 4 2 4 1 1 Constraints used This frame gathers all the available constraints that LCCR can handle It is up to the end user to select or deselect the constraints that she wants to be respected These constraints are e The elementary sectors constraint on the ability capacity or and load this constraint imposes that the abilities limit profiles should be respected on all the elementary sectors e The collapsed sectors constraint on the ability capacity or and load this constraint imposes that the abilities limit profiles should be respected on all the collapsed sectors e The equity constraint on the flight plans using the parameter equity trigger settable through this panel This constraint imposes on all the flight plans couples f and departing from the same aerodrome in that chronological order and arriving at the same aerodrome that after regulation is allowed to take off after only if it does not take off more than equity trigger minute after fz e The round trip constraint on t
25. of flight plan from sector s stands for out Said in a more formal way this load constraint ensures Vses Vte 0 24 60 NL s t feF s t s CT s lt t lt t s d s lt L s t 4 2 1 4 2 Capacity There is a major difference between the capacity and the load constraint usually used The capacity takes into account all the flight plans that have been entering a given sector during the last hour whereas the load constraint is a more instantaneous measure of sector loading This notion of load was introduced to test whether such a constraint could improve the air traffic regulation by minimising the global delay of flight plans LCCR was partially built to compare a regulation by capacity versus a regulation by load 29 4 2 2 4 2 3 So as to make things clear we also give the capacity constraint formal equation Vses Vte 0 24 60L NC s t feF s tl f s CT s lt t lt ti f s CT s 60 lt C s t Here NC s t represents the number of air planes having entered the sector s during the full hour preceding t taking into account the co ordination time cT s of sector s The flight plans equity constraint This constraint concerns flight plans having the same departure and arrival aerodromes If we consider two different flight plans f and f assuming that f is scheduled to take off before In this case only the equity constraint imposes that the initial order of the two flights should not
26. percentage of sector s load relaxation percentage of sector s set of sectors elementary and collapsed crossed by flight plan departure time of flight plan estimated departure time of flight plan regulated departure time of flight plan entry time of flight plan in sector s estimated entry time of flight plan in sector s regulated entry time of flight plan in sector s arrival time of flight plan estimated arrival time of flight plan regulated arrival time of flight plan exit time of flight plan from sector s estimated exit time of flight plan from sector s regulated exit time of flight plan from sector s 49 50 PART THREE LCCR USER S MANUAL 1 Introduction 1 1 Acknowledgement This document concerns the end user of the LCCR prototype This document is a user one and it describes LCCR operational facilities it is aimed at giving the necessary information concerning the way the prototype is to be used The person who wishes to get technical documentation is prompted to refer to the LCCR reference manual 1 2 The problematic reminder Let us give a short reminder of the context in which LCCR prototype was elaborated Besides we will refer to the LCCR prototype by naming it LCCR so as to make things easier from now on The CFMU is given the responsibility to regulate the taking off of air planes we talk more commonly of flight plans from Europe so that the different physi
27. profile graph This profile was designed in order to choose correctly the flight plans the most urgent to be placed in other words this profile helps LCCR to choose the next sectors to be relaxed if necessary This profile is defined for each sector and it represents the potential difficulty for a sector to accept all the flight plans scheduled to cross it More precisely it is defined in the following way Considering a sector s for each flight plan that crosses s the load critical profile is increased by one unit during the interval time At defined by At t t 8 CT s dmin f lt t lt t f s d f This interval time represents the maximum occupation of flight plan in sector s Note that this interval time At is never empty and that it is equal to the demand and to the regulated crossing interval time of flight plan in sector s when flight plan is placed When the contribution is defined on sector s for all the crossing flight plans feF s we get this load critical profile This profile is always above the load demand profile and that is why we call it a critical profile When all the crossing flight plans F s are placed on sector s then the load critical profile is equal to the load regulated profile Note that this profile is made of integer values and that it is also dynamic Formally Vses Vt LCP s t card feS t s CT s dnin lt t lt t 8 d 8 dmax 4 3 3 5 1 3 The load fo
28. read it with much attention if she wants to be able to understand deeply how LCCR finds a feasible solution 4 3 1 4 3 1 1 4 3 1 2 Before LCCR enumerates Domain variables definition LCCR first defines all the domain variables coming from the flight plans departure times delay and entry time in each sector all linked to the delay and from the sectors load or and capacity limit profile heights LCCR gives to these domain variables their largest domain taking into account their maximum relaxation We explain why in the next paragraph Definition of the constraints Once the domain variables are defined LCCR sets the different constraints that is to say it creates the constraints the flight plans round trip constraints the flight plans equity constraints the aerodromes curfew constraints the sectors load constraints if asked for and the capacity constraints if asked for At this step since the domain variables were given an initial range corresponding to their maximum relaxation the problem is not already constrained as it should be it is rather constrained with the full relaxation LCCR works this way in order not to re built each time the constraints which is expensive is computing time LCCR saves the state of the domain variables at this level so as to be able to recover it very efficiently 32 4 3 1 3 Posting the constraints Now LCCR is able to post the constraints asked for without relaxation LCCR
29. round trip linked flight plan is itself part of an equity constraint the equity constraint flight plans are also considered so as to be placed and so on The consequence of this behaviour is that when LCCR tries to place a single flight plan it can consequently place a lot of flight plans as well simultaneously even if these flight plans are not part of the current flight plans group The category priority This priority is used to decide between two flight plans from the current selected group that have the same priority of placement In this precise case so as to determine which one is to be placed the first LCCR looks at the category their respective aircraft type belongs to and first tries to place the one with the smallest category number In fact this criterion is very rarely used because most of the time the flight plans have different priorities of placement Regulation by load We now explain the way the regulation by load is performed thus we are going to talk about the heuristic used in LCCR All what will be discussed about load is also true concerning the capacity but we will explain to the reader later how to make the interpolation 4 3 3 5 1 Three evaluation tool the load demand the load critical and the load forecasted profiles These three profiles are used to build LCCR heuristic we are going to describe each one of them so as to explain part of the heuristic mechanism Note that all these profiles are dy
30. s to provide an air traffic flow management service throughout the airspace of the 35 ECAC Member States This unit CFMU became fully operational in the Spring of 1996 replacing the five regional flow management units previously operated by national administrations The objective of the CFMU is to complement ATC Air Traffic Control in implementing a regulatory and smoothing mechanism in order to avoid overloads and to maximise the most efficient use of the airspace by providing dynamic flow management This regulatory mechanism consists in imposing ground delays on flights crossing overloaded sectors in order to eliminate the congestion Airspace availability To meet the objective of balancing demand and capacity the CFMU undertakes flow management in three phases Each flight will usually have been subjected to these phases prior to being handled operationally by ATC Strategic ATFM activity takes place during the period from several months until two days before a flight A strategic demand forecast initiates the Standard Routeing Scheme SRS which is a structure of mandatory European air routes in order to ensure maximum use of the available airspace Pre tactical ATFM activity takes place during the two days before the day of operation Based on the strategic forecasts the information received from the Flow Management Positions FMP at every air traffic control centre in Europe and the CFMU statistical data the Atfm Notificat
31. sector was regulated constraint parameters different from infinity it may happen that a certain number of flights that according to their estimated entry time should have entered the sector during the regulation period have a delay that does not allow their entry into the sector before the end of the regulated period These flights will enter all together the sector at the same time at the beginning of the period with infinite load and capacity This phenomenon is called bunching This peak of traffic should be smoothed by allotting entry slots in the sector This feature is not implemented in the current release The impact on the results is unpredictable Curfew Due to a lack of information currently the curfew is considered as a period of non availability i e after this period the airport is operational Since LCCR deals only with the 24 hours of a day a night curfew is considered finished at midnight Thus planes can arrive at any time after midnight which of course is incorrect Due to lack of power and core of our hardware the simulation of the combined load and capacity regulation could not be done But a priori we expect that the result should not differ very much from that obtained with capacity constraints This is due to the fact that the capacity constraints are much more restricting than the load constraints RESULTS Since the prototype and the results are not validated by operational staff we will make only two
32. short comments on the table page 11 1 Capacity regulation versus load regulation The total delay is much higher in the case of the capacity regulation Since the number of delayed flights does not vary in the same proportion the average delays are much higher Furthermore the number and the amount of long delays increases significantly It is the same for the number and the degree of relaxation on flights and sectors 2 Load regulation The sensitivity of the maximum sector load is high for the total delay and the number of delayed flights The average delays vary less lt is the same for the distribution of the delays 3 Graphs Graph 1 to 6 represent the traffic traversing the sector EDYMURW on the 18 of June 1999 Red corresponds to the capacity curve green to the load curve At time t the capacity curve indicates the number of flights having entered the sector between t and t 60 minutes The load curve represents the number of flights being simultaneously in the sector at time t The light grey curve indicates the number of flights the delay of which lies between 15 and 35 minutes The darker grey curve represents the flights the delay of which exceeds 35 minutes e Graph 1 represents the demand The capacity limit is 45 the load limit is 13 The sector is regulated during the two periods 4 00 5 30 and 12 00 21 00 e Graph 2 shows the capacity demand curve and the modifications after a capacity regulation full red e Gra
33. the capacity regulation VseS Vt CDP s t card feS t s CT s dmin St lt t 8 CT s 60 d CCP s t card feS ti s CT s dgin lt t lt thi f s CT s 60 dmax CFP s t gt ee 5 s t tes Ana d 60 where dc s t 1 if ti s CT s dyin lt t lt t 8 CT s 60 dyax 41 c s t 0 otherwise t 24 60 1 CDOV s Y max CDP s t C s t 0 t 0 t 24 60 1 ccov s Y max CCP s t C s t 0 t 0 t 24 60 1 CFOV s Y max CFP s t C s t 0 t 0 VfEF t ti s CT s 60 d 1 pe Y Y max CDP s t C s t 0 seS t t s CT s d 4 3 3 6 3 Same mechanism 4 3 3 7 4 3 4 4 3 4 1 4 3 4 2 The operations described concerning the load regulation are the same for the capacity regulation the different steps do not change only the flight plan priority and the profiles functions change Regulation by load and capacity Regulation by load and by capacity is possible as well on LCCR Nevertheless because of memory use restrictions it is not advisable to launch a solving on an important set of data exceeding 20 000 flight plans LCCR considers as well the load priority of a given flight plan as its capacity priority the priority of the flight plan f is p p pc f With this extra datum LCCR follows the same steps as described before Nothing more special is t
34. 1 relaxation s unit Lo s being the demand limit profile graph all the percentages being expressed between 0 and 1 44 This mechanism ensures that relaxation never overpasses the olobal load relaxation maximum percentage value for all the sectors It is important to note that the relaxation is spread all over the day on which LCCR regulates indeed the load limit profile is increased by the same amount of unit during all day that is to say with te 0 24 60 As far an independent relaxation on each open period is not implemented but it can be contemplated 4 3 4 3 3 No more possible load relaxation 4 3 4 4 4 3 4 5 5 As for the flight plans delay relaxation when all the sectors have been fully relaxed and yet LCCR cannot find a solution to the problem the solving is stopped and the end user is notified that there is no feasible solution The sectors capacity relaxation The mechanism is the same as for the load relaxation the capacity relaxation has its own capacity relaxation step percentage capacity relaxation maximum percentage solving parameters accessible from the solving parameters panel as well The capacity priority function pe s is defined in an analogue way and the capacity relaxation percentage relaxation s is also defined for each sector s The sectors load and capacity relaxation In this case the mechanism is the same as before including the solving stop condition When both load and cap
35. 3 1 2 CFMU CENTRAL FLOW MANAGEMENT UNIT iii 3 O Perr err Ste rere 5 3 CONCLUSION u ny u ieee ni NS seas ete cde us ete 9 4 COMPLEMENTARY STUDIES U u u u J 10 5 ACKNOWLEDGEMENTS uu u at ds 10 VERSION FRAN AISE DU SOMMAIRE DE L INTRODUCTION ET DES CONCLUSIONS 18 FRENCH VERSION OF SUMMARY INTRODUCTION AND CONCLUSIONS eccccccoccccccnnconaa 18 PART TWO cctools A che eh eee ace eee her A Tas 23 f INTRODUCTION esse u cg sea cana ses acs is 24 1 1 ACKNOWLEDGEMENT ikaenea aeeie aE E cetce tie duck E ete in nant em mienne 24 1 2 THE PROBLEMATIC REMINDER odias oi 24 2 WHAT LCCR PROPOSES iii 24 2 1 WHAT LO GR US NOT saus iii 24 22 COCR PURPOSE LL u uu LR Lee te mn ete eeu 25 3 ASHORT WORD CONCERNING CONSTRAINT PROGRAMMING CP 25 4 THE MODEL coin 25 21 THE VARIABLES eds fey 25 4 1 1 Departure and arrival aerodromes of a flight plan 26 BALL ATEO PAPE EE e RE asad 26 4 1 3 Sectors entering and exiting times of a flight plan 26 4 1 4 The flight plan delay domain variable 26 4 1 5 Precision on the granularity and the time scale 27 4 1 6 Linear propagation of the delay en ne rame tir e 27 24 2 THE CONSTRAINTS Re he at rn leas an nt te Res Rev te 27 4 2 1 The non overload constraint ability constraint
36. 4 3 2 5 3 2 5 1 3 2 5 2 following files placed in directory LCCR_ALWAYS so as to complete properly the LCCR extraction as well as the data loading e aerodromes default capacities Iccr collapsed_sectors_default_capacities Iccr and elementary_sectors default_capacities lccr for the LCCR extraction these files are used when the extracted COFEE files do not provide any capacity for the corresponding item e categories lccr for the loading The COFEE environment data files These files should be present it the directory named JYYYYMMDD which gathers the extracted COFEE data of the environment corresponding to the date DD MM YYYY for instance J19990702 for the day 02 07 1999 The exhaustive list of the files is ACTP sst ACTPIDEN sst for the aircraft types AD sst ADTINFO sst ADUA sst for the aerodromes CF sst CFAT sst CFCLSC sst CFELSC sst CFFCPR sst for the configurations CLSC sst CLSCAS sst CLSCCF sst for the collapsed sectors CP sst CPPE sst CPTA sst CPTE sst for the capacities ELSC sst ELSCCF sst for the elementary sectors Note that these files are provided thanks to the COFEE software which should be normally installed on the same machine as the LCCR prototype COFEE produces these data environment files through the COFEE data environment extraction module The ALL_FLIGHTS flights data file Moreover LCCR needs the flight plans description file which is commonly called the ALL_FLIGHTS data f
37. 5 6 1 4 5 6 2 4 5 6 3 4 5 6 4 4 5 6 5 4 5 6 6 4 5 6 7 Actions Zoom out View all range Show lines Show legend Hide layers Capacity vies Load view Capacity amp load view Demand View flights at Export in outer window The diagram chart contextual menu Zoom out Functions that changes the visible part of the time scale it doubles it so that the time scale is enlarged View all range Functions that shows the time scale from 21 00 PM the day before the regulation until 03 00 AM the day after the regulation Show hide lines Function that shows or hides the lined marks on the chart Show hide legend Function that shows or hide the legend of the chart diagram Show hide layers Function that shows or hide the graphical layers on the chart diagram in regulation view When active LCCR displays in different colours the regulated profiles according to the delay of the flight plans Three different layers are displayed The first one displays the regulated profile due to the flight plans having a delay greater or equal than limit layer2 the second one displays the regulated profile due to the flight plans having a delay greater or equal than limit layer1 and strictly less than limit layer2 the last layer shows the whole regulated profile Remember that the two parameters are settable through the LCCR settings panel lt File LCCR settings gt function see LCCR settings lt Alt L gt C
38. 91209 115014 C AUsers Edouard Data LCC R19990618 DEMAND 19991221 123443 al a a Open select the directory CAUsers Edouard Data LCCR19990618 OK Filter Cancel lt File Open gt demand and regulation if data directory selection box If the end user selected correctly a directory LCCR loads the corresponding data in memory as well as the solution results if necessary 4 2 1 2 1 1 Open demand data At the end of the demand data loading LCCR is in modify and insert mode and the current solution set is the modification solution set 60 4 2 1 2 1 2 Open demand data and regulation At the end of the demand data and regulation loading LCCR is in blocked mode and the current solution set is the modification solution set the solution loaded is present in memory 4 2 1 2 2 Save lt Ctrl S gt Function that saves on the hard disk the data corresponding to the current solution set in memory If the data in memory concern the date DD MM YYYY the data are saved in a newly created directory standing in LCCRYYYYMMDD named DEMAND yyyymmdd_hhmmss where dd mm yyyy stands for the date when the demand data are saved and hh mm ss stands for the corresponding time The environment field is updated 4 2 1 2 3 Save solution Function that saves the current solution set in memory provided there is a solution present in memory for it A new directory named SOLUTION_yyyymmdd_hhmmss is created created in directory
39. AW130 Avq AV1aq S1H9114 Avaa 3dA 1 03XV138 qaxv1au q3aAVv1aq 3SVH3AV 3SVH3AV XVN qQ3AV13qQ WLOL NOILVIN93H s lnuluu 081 SI Aejap pajdas9e winwixew ay S8 8Z S PSAJOAU S 4 I Jo saquunu u 6664 INP uz 9U JO 9114811 ay o AI 8 1 ase SYNS Burmo ay L Graph 1 EDYMURW 18 06 1999 Load and Capacity graph Demand Fri 18 Jun 1999 12 Graph 2 00 00 01 00 02 00 03 00 04 00 EDYMURW 18 06 1999 Capacity graph Capacity regulation Capacity on sector EDYMURW capacity regulation on solution 0 Fri 18 Jun 1999 11 00 12 00 13 00 14 00 15 00 16 00 17 00 18 00 19 00 20 00 21 00 22 00 23 00 Capacity on sector EDYMURW capacity regulation on solution 0 Fri 18 Jun 1999 13 00 00 14 00 00 15 00 00 16 00 00 17 00 00 18 00 00 13 Graph 3 EDYMURW 18 06 1999 Capacity and Load graph Capacity regulation Capacity amp load on sector EDYMURW capacity regulation on solution 0 Fri 18 Jun 1999 01 00 02 00 03 00 04 00 05 00 07 00 08 00 09 00 10 00 11 00 12 00 13 00 14 00 15 00 16 00 17 00 18 00 19 00 20 00 i i H Capacity amp load on sector EDYMURW capacity regulation on solution 0 Fri 18 Jun 1999 14 00 00 15 00 00 16 00 00 See i i i i issassssassansssansnaiussassasaananasaana 14 Graph 4 EDYMURW 18 06 1999 Load gr aph Load regulation Load on sector EDYMURW load regulation on solution 1
40. Abstract The aim of the model is the comparison of flow regulations subjected to different kinds of constraints gt Sector load constraints gt Sector capacity constraints y gt Simultaneous sector capacity and load constraints The model shows that the regulation based on load constraints is the most efficient in terms of flight delays The results of the double constraint regulation capacity plus load do not differ very much of those obtained by the regulations based on the sole capacity constraint The reason is that the capacity constraints are much more restricting than the load constraints The prototype has been implemented as a highly parameterised simulation tool that should be well fitted to study among other topics the impact of various flight priority definitions For the time being flow management operational staff has not yet validated the prototype This document has been collated by mechanical means Should there be missing pages please report to EUROCONTROL Experimental Centre Publications Office B P 15 91222 BRETIGNY SUR ORGE CEDEX France Load Capacity Constraint Regulation LCCR by J DEGRAND SUMMARY More and more research is done in order to solve the problem of the ever increasing traffic delays in the European Airspace The present study tries to investigate if an improvement can be achieved by changing the basic constraints on which the current regulation techniq
41. EUROPEAN ORGANISATION FOR THE SAFETY OF AIR NAVIGATION h EUROCONTROL EUROCONTROL EXPERIMENTAL CENTRE LOAD CAPACITY CONSTRAINT REGULATION LCCR EEC Note No 02 2000 Issued February 2000 The information contained in this document is the property of the EUROCONTROL Agency and no part should be reproduced in any form without the Agency s permission The views expressed herein do not necessarily reflect the official views or policy of the Agency REPORT DOCUMENTATION PAGE Reference Security Classification EEC Note No 02 2000 Unclassified Originator Originator Corporate Author Name Location EEC FDR EUROCONTROL Experimental Centre Flight Data Research BP15 91222 Br tigny sur Orge CEDEX FRANCE Telephone 33 1 69 88 75 00 CFMU rue de la Fus e 96 B 1130 Brussels TITLE LOAD CAPACITY CONSTRAINT REGULATION LCCR Sponsor Sponsor Contract Authority Name Location x References Date 02 2000 Pages Figures Tables xii 92 12 Author Appendix J Degrand Part 1 E Mercier Part 2 amp 3 Project Period CFM B E2 Distribution Statement a Controlled by Head of FDR b Special Limitations None c Copy to NTIS YES NO Descriptors keywords Air Traffic Flow Management Capacity Constraint Regulation Load Constraint Regulation Flight Delays Sector Collapsed Sector Constraint Programming Constraint Relaxation
42. Fri 18 Jun 1999 00 00 01 00 02 00 03 00 05 00 06 00 07 00 08 00 09 00 10 00 11 00 12 00 13 00 14 00 15 00 16 00 17 00 18 00 19 00 20 00 21 00 22 00 23 00 Load on sector EDYMURW load regulation on solution 1 Fri 18 Jun 1999 12 00 00 L 13 00 00 I D 15 00 00 k 16 00 00 17 00 00 18 00 00 19 00 00 15 Graph 5 EDYMURW 18 06 1999 Capacity and Load graph Load regulation Capacity amp load on sector EDYMURW load regulation on solution 1 Fri 18 Jun 1999 08 00 09 00 10 00 11 00 12 00 13 00 14 00 15 00 16 00 17 00 18 00 19 00 20 00 21 00 22 00 23 00 Capacity amp load on sector EDYMURW load regulation on solution 1 Fri 18 Jun 1999 12 00 00 13 00 00 14 00 00 15 00 00 16 00 00 17 00 00 16 00 00 19 00 00 mennnasnnennnnennnns 16 Graph 6 Delay Histogram Cumulative Delay Representation 18 06 1999 number 30 20 mi mlkhu h nlai su ssh 300 400 delay in min 500 number of flights 300 delay in min VERSION FRAN AISE DU SOMMAIRE DE L INTRODUCTION ET DES CONCLUSIONS FRENCH VERSION OF SUMMARY INTRODUCTION and CONCLUSIONS Load Capacity Constraint Regulation LCCR par J DEGRAND SOMMAIRE De plus en plus d tudes traitant du probl me des d lais de route
43. LCCRYYYYMMDD if necessary and creates the demand data files in the newly created if necessary directory named DEMAND_19000101_000000 In this directory LCCR creates the following files see The basic demand for more detail aircraft_types Iccr collapsed_sectors lccr demand_info lccr elementary_sectors lccr flights Iccr preferences lccr 4 2 1 1 1 3 Warning files issued Besides some warning files are generated during this operation It is important that the files that are generated by this function should be written enabled Otherwise LCCR cannot write the information on them These files are generated in the same directory as the one where the COFEE and ALL_FLIGHTS data files are present that is to say in directory named JYYYYMMDD We list these files and their meaning COFEE aerodromes_ not _found lccr aerodromes used in the description of a flight plan departure or and arrival but not present in COFEE files COFEE _aerodromes without_capacity_defined lccr aerodromes without any capacity defined on the day of the extracted COFEE files for the extraction day in this case LCCR uses the capacity in file aerodromes_ default _capacities lccr COFEE _aircraft_ types _not_found lccr aircraft types used in the description of a flight plan but not present in COFEE files for the extraction day COFEE_collapsed_sectors_without_capacity_defined Iccr collapsed sectors with an open period on which the COFEE extracted files do no
44. LCCRYYYYMMDD where DD MM YYYY is the day of the set of data for which regulation was performed where yyyy mm dd is the date when the solution was found and hh mm ss is the corresponding time The solution can be re opened in the future through the lt File Open gt function The environment field is updated 4 2 1 2 4 Close lt Ctrl C gt Function that discards the current data from memory and also the solution sets Once this function has been proceeded no more demand and optionally regulation data are present in memory Note that no set of data can be open until the previous set of date has been closed 4 2 1 2 5 LCCR settings lt Alt L gt LCCR prevents the end user from modifying these parameters in any mode different from the modify and insert mode This function displays the LCCR setting panel which enables the end user to set the following parameters e Round trip gap these two fields correspond to the minimum called round trip mini and maximum called round trip maxi time expressed in minute between the scheduled arrival time of a first leg flight plan and its associated second leg flight plan scheduled departure time e Elementary sector capacity unit this field corresponds to the amount of time expressed in minute used to express the capacity in LCCR We refer it as the parameter elementary sector capacity unit For instance if this value is equal to 60 the default value it means that all the capacities are hour
45. SeCIO HELENE MATE MO AR 91 5 3 UP TO THREE SOLUTION SET AT THE SAME TIME IN MEMORY a a a 91 5 4 FOUR MODES cd Me ere ont etes 91 5 4 1 The modify and insert mode si me ES ie EE Mis En 91 N A a Naaa ele E AE EE A O 91 BALI The Modify MOQ errre E E aE ER R E EEA 92 544 The block d MOE ii E E EERE 92 5 5 THE GRAPHICS DELETED BEFORE SEARCH IS LAUNCHED occccccnccncncnnncnnnnnnncnncnonanonononanononos 92 5 6 THE DIALOG BOXES aio 92 5 7 CASE SE SITIVITYS z au n ay sea tae paa EAE aiii ao 92 AAAAAAY INTRODUCTION This report discusses a fundamental change of the flow management procedures used today By my knowledge it is strictly outside the orderly routine development of Air Traffic Flow Management ATFM as planned in the current formalised programs of Eurocontrol The European Union and other ATC organisations For that reason the formal disclaimer normally appearing on the title page of all EEC reports is repeated and amplified here in bold type for emphasis This report represents ONLY the opinion of the author It does not IN ANY WAY represent the Official policy of the Agency Furthermore operational staff does not yet validate the results of the prototype Lastly although the author has benefited from informal discussions with Air Traffic controllers and Flow controllers over the past twenty nine years he has never been is not and could never be neither an Air Traffic controller nor a Flow con
46. This function can also be triggered directly by pressing the lt Ctrl gt key and by clicking the left mouse button at the same time in this case LCCR considers that the time demand is the current cursor time LCCR messages x E View flights at specify the time HHMM VALIDATE CANCEL lt View flight plans at gt function dialog box 89 LCCR flights list x Capacity regulated flights list for sector LIMMADS at 1356 B763 MMUI 0425 LIMC 1339 A321 LFPG 1250 LIMC 1401 MD80 LIMC 1350 LEBL 1505 A321 LIMC 1315 LEMD 1458 MD80 LEMD 1200 LIMC 1345 BA46 LEVC 1225 LIMC 1400 MD80 LIMC 1350 LIPE 1419 AT43 LIMC 1320 LIMP 1358 MD60 LIMC 1350 LIPZ 1422 MD60 LIMC 1310 LICC 1446 MD80 LICC 1150 LIMC 1325 4321 EGLL 1235 LIML 1414 4321 LFPG 1300 LIMC 1411 MD60 LIMC 1340 LFLL 1423 2 2 Z Z Z Z Z 2 S z z mM MD80 LIMC 1305 EDDL 1418 lt View flight plans at gt function flight plans list outer window 4 5 6 11 Export in outer window This function enables the end user to create a new window displaying the same diagram chart Nevertheless this new diagram chart is a static copy of the former one any change in the former one will not be reflected to the newly created Moreover the facilities of the new chart are limited 5 Some global concepts and mechanisms In this paragraph we present global concepts and mechanisms that are used in the LCCR prototype 5 1 The preferenc
47. acity regulations are asked for and that LCCR comes to the ability relaxation it considers a priority function p s including load and capacity This priority functions emphasises the need for a given sector s to be relaxed on load and on capacity very simply it is the sum of the load priority function p s and of the capacity priority function pc s that is to say Vses p s p Ss pr 8 This priority function is used to sort the sectors in a decreasing order so that LCCR only relaxes the most urgent sectors Note that relaxation on load cannot be separated from relaxation on capacity and inversely each time a load relaxation step is performed on a sector a capacity relaxation is performed as well The code Now that the model has been presented we can present the way it was coded LCCR was fully coded in C for more convenience 5 1 A word concerning the UNIX to NT migration To explain why LCCR now runs on a PC we have to explain its genesis LCCR was formerly being developed under HP UNIX V10 2 server wotan whose capacities were too weak however we did not want to re write the whole graphical stuff That is the reason why we decided to migrate the application to Microsoft WINDOWS NT V4 0 As a consequence the prototype can run as well on HP UNIX as on WINDOWS NT even if no test has been done so far on HP UNIX 5 2 The environment We here give some details concerning the environment in which LCCR prototype was
48. aerodrome represented by its code an arrival aerodrome represented by its code an estimated departure time before regulation an estimated arrival time before regulation a status N for normal and E for exempted when exempted the flight plan cannot be delayed and the solver will not take into account its maximum delay authorised a flight type 1 1 for a single flight plan 1 2 for the first leg of a round trip flight plans couple 2 2 for the second leg the flight plan linked to it the code of the other flight plan of its round trip flight plans couple empty otherwise its maximum delay authorised expressed in minute this attribute does not represent anything for an exempted flight plan its delay calculated after regulation its relaxation percentage after regulation 0 means that there has been no relaxation a list of elementary sectors crossed represented by their code for each elementary sector crossed the flight plan structure gathers the physical not taking into account the sector co ordination time estimated entry and exit time this constitutes the flight route Concerning the flight route a list of sectors is displayed in the lower frame when a flight plan is selected and LCCR displays on the same row 1 the code of the sector 2 the type of the sector E for elementary C for collapsed 3 the physical crossing duration not taking into account the s
49. al capacities Opening hours capacities EBBR Aend Capacity 0000 2400 32 An aerodrome This information is the necessary and sufficient information for an exhaustive aerodrome description inside LCCR Creation When LCCR is in modify and insert mode the end user can create a new aerodrome by calling the lt lnsert record gt function when the aerodromes list is active through the lt View demand Aerodromes gt function When inserted by the end user the code of the aerodrome must be filled in But before that the end user must first fill in the information of the lower frame the capacities of the aerodrome When finished she must validate the capacities through the lt Validate gt function above the lower frame once the capacities validated they can be also freely modified in the future Then the end user must fill in the aerodrome code asked for in the upper frame 78 When finished the end user must validate the information through the lt Validate gt function above the upper frame After this step the new aerodrome is created and LCCR exits from the insert mode the end user can abort at any time the insertion of the currently created object by calling the lt lgnore insert gt function the code of the aerodrome cannot be changed any longer in the future 4 3 4 2 1 The capacities 4 3 4 3 4 3 5 4 3 5 1 4 3 5 2 4 3 5 3 Each time the end user wishes to add a capacity she has to call t
50. als with a global handling of the entry data Extract COFEE settings Open tris O Save Ctrl S Save solution Close Ctrl C LCCR settings Ctri L Preferences Ctrl P Exit Ctrl X lt File gt menu 4 2 1 1 COFEE This part concerns the COFEE extraction and setting 4 2 1 1 1 Extract from COFEE amp ALL FLIGHTS Function that enables the end user to transform the COFEE data into the LCCR data The user is asked to enter the date DD MM YYYY on which this conversion should be done the format is YYYYMMDD via a dialog box It is possible to cancel the extraction before it is started by pressing the CANCEL button LCCR also displays the COFEE settings panel so as to enable the end user to specify the corresponding parameters If the end user wishes its own modifications performed on that panel to be effective she needs to call the lt APPLY gt function on it in that case or when she presses the lt CLOSE gt button it is normal that the panel should disappear 56 LCCR messages Ea Extract specify the date YYYYMMDD VALIDATE CANCEL lt File Extract gt extraction date dialog box 4 2 1 1 1 1 Files required Before extracting LCCR needs the COFEE environment and the ALL_FLIGHTS flights data to be present in directory JYYYYMMDD see The COFEE environment data files and The ALL_FLIGHTS flights data file for detail 4 2 1 1 1 2 Demand files created LCCR creates the directory named
51. annot be changed and the solver cannot be launched In this mode the current solution set is always the modification solution set LCCR exits from this mode as soon as a the object being created is validated lt Validate gt function or ignored lt lgnore insert gt function when the current list visible is the list from where the object was inserted 91 5 4 3 The modify mode This mode corresponds to a limited edit mode In this mode no object can be deleted nor created Nevertheless the end user is allowed to modify certain data that we exhaustively list To edit the attribute of an object the end user must double click on the cell representing it or keep the left mouse button pressed until the cell becomes editable To quit the edition by validating the modification press the lt Return gt key or click the left mouse button outside the cell being edited To cancel the modifications while still editing the cell press the lt Escape gt key Here comes the list of the objects editable attributes e For a flight plan its maximum delay authorised e For an aerodrome its capacities e For a category its maximum delay e For an aircraft type nothing e For asector its co ordination time and its abilities In this mode the current solution set is always the modification solution set LCCR exits from this mode as soon as a solution is present in memory for the current solution set or when the current solution set is one of th
52. apacity view Function that only displays the capacity profiles The view mode is capacity Load View Function that only displays the load profiles The view mode is load 88 4 5 6 8 4 5 6 9 4 5 6 10 Capacity and load view Function that displays as well the capacity and the load profiles In this graphical mode the function lt View flights at gt is disabled Demand Regulation Function that has an impact on the function lt View flight plans at gt on a chart diagram in regulation view When the end user calls the function with demand the flight plans displayed in the function lt View flight plans at gt will be the demand flight plans with a null delay before regulation In the other case where the mode is regulation lt View flight plans at gt will consider the reoulated flights after regulation View flight plans at lt Ctrl gt left mouse button click This function is disabled when in load and capacity view so as to avoid ambiguity Function that enables the end user to visualise the list of the flight plans taken into account at a given time in the sector represented by the chart diagram the non editable list is displayed in an outer window The end user is asked to enter this time and then LCCR displays a list representing all the flight plans taken into account by the current view mode capacity or load view modes Whether the view mode is capacity or load the list is built accordingly
53. arted the information concerning the flight plans was not correctly available through COFEE That is the reason why we use an heterogeneous source of data concerning the fight plans description the flight plans entry data come from the all flights file which describes all the flight plans for a given day This file should be present as well so that LCCR data extraction should be possible The permanent LCCR files In addition LCCR uses some permanent LCCR files which should not be touched by the end user These files give the information concerning the different categories the default capacities of sectors Without them LCCR will not be able to read any LCCR data The impact on the object architecture LCCR code includes some data extraction classes which are specific to that task and derived from the base classes introduced upper The LCCR data reading This operation enables to load the entry LCCR data into memory The objects created are instances of constraints classes derived from the base 47 classes already introduced Notably these classes use the CHIP domain variables and constraints 5 3 4 The LCCR solver The solver uses the previous objects and defines correctly the domain variables and the constraints posted on them Its aim is to built a search tree so as to find a solution 5 3 5 The LCCR GUI The GUI interface is made mainly of editable lists and chart diagrams LCCR uses instances of classes representi
54. as been enabled 1 The capacity and the maximum load are fixed input values For constraint computing purposes they are transformed in domain variables the domain of which are limited by the fixed input value and the maximum relaxation value DETAILS 1 SECTORS COLLAPSED SECTORS A sector is open individually during certain periods of the day For the rest of the day it belongs to collapsed sectors that regroup several individual sectors A sector is open 24 hours a day either individually or by means of collapsed sectors to which it belongs REGULATION PARAMETERS a DELAY Each flight plan contains a maximum delay that should not be exceeded This delay is a domain variable taking its numerical value between 0 and maximum delay The delay constraint is soft except in the case of exempted flights maximum delay 0 Each flight has its individual maximum delay But except the exempted flights the numerical value of it can be overwritten by a global value defined by aircraft type category b LOAD CAPACITY Each sector collapsed sector has an individual maximum load and capacity for each open period The maximal load depends on the capacity A basic load value input parameter corresponds to the lowest capacity during the day For one unit capacity increase the corresponding maximal load is increased by 10 Nevertheless for simulation purposes the value of every individual maximal period load can be modified independe
55. at a solution set for storage is free when no demand and optionally regulation data are stored in it if this not the case we say that the solution set is being used Each solution set for storage is given an identifier which is a number ranging from 1 to 3 When the current solution set is one of the solution sets for storage LCCR always displays this information in the environment field 4 2 2 2 1 Different modes LCCR works in four possible modes we describe exhaustively these modes Each one of these modes correspond to an editable state that we sum up at 64 the end of this document LCCR cannot be simultaneously in two different modes The current mode is always reminded in the environment field e Modify and insert mode when the current solution set is the modification solution set that no solution set for storage is used and that no solution is present in memory for that set we say that LCCR is in modify and insert mode It is the case for instance when the end user calls the lt Edit Activate modify amp insert mode gt function e Insert mode when the current solution set is the modification solution set that no solution set for storage is used that no solution is present in memory for that set and that an object is being created we say that LCCR is in insert mode It is the case for instance when LCCR is in modify and insert mode and that the end user creates a new object through the lt Insert record gt function
56. axation maximum percentage values are coherent In this case LCCR gives some extra relaxation by one step of relaxation to all the flight plans not yet placed This step is a customisable parameter of the solving parameters panel and we note it delay relaxation step percentage Let us explain how this relaxation is performed on a flight plan not yet placed e If flight plan f has already used the maximum allowed relaxation that is to say if the delay relaxation percentage of flight plan noted relaxation f is greater or equal to delay relaxation maximum percentage no additional relaxation is performed on e Otherwise flight plan f is increased its delay relaxation percentage by increasing relaxation f by delay relaxation step percentage without exceeding delay relaxation maximum percentage This delay relaxation percentage relaxation f is used to define a new flight plan delay upper bound by replacing its former value by the corresponding percentage of the initial upper bound delay More formally if flight plan is performed one relaxation step on its delay domain variable we can write that relaxation f becomes min relaxation f delay_ relaxation step percentage delay _relaxation maximum percentage and max d becomes max d 1 relaxation f all the percentages being expressed between 0 and 1 This mechanism ensures that relaxation never overpasses the global delay relaxation maximum percentage value f
57. bject by calling the lt lgnore insert gt function the code of the aircraft type cannot be changed any longer in the future Modification When in modify and insert mode the end user wishes to modify the category an already created aircraft type belongs to she just has to edit the cell corresponding to that attribute the modification is automatically validated when she quits the cell edition The elementary sector Attributes An elementary sector is composed by e acode e a list of collapsed sectors which it belongs to represented by their codes separated by a single space e a co ordination time Concerning an elementary sector when it is selected LCCR displays a list of abilities is displayed in the lower frame 80 Period Capacities EGTTDTN 48 An elementary sector This information is the necessary and sufficient information for an exhaustive elementary sector description inside LCCR In addition LCCR displays some information that we describe bellow 4 3 7 1 1 Demand additional information The crossing flights number which is the number of flight plans crossing that sector if a flight plans crosses a sector twice non consecutively it is considered to cross it twice The average crossing duration which is the average crossing time of the flights crossing that sector not taking into account the co ordination time of the sector this value is expressed in minute The load cumulative du
58. cal sectors and aerodromes should not be overloaded This charge is done in real time by the air traffic controllers in Brussels Here to regulate an air plane means to delay its departure time if necessary The constraint of load and capacity are not the only ones and there are other constraints such as equity constraints concerning flight plans with same departure and same destination and priorities constraints concerning flight plans of air planes presenting different passengers capacity 2 What LCCR proposes So far this regulation mission is given to the CASA system which works with slots allocation LCCR proposes to make up this regulation regarding the main target which is to regulate all the flight plans over all the sectors This regulation is obviously a simulation 2 1 What LCCR is not LCCR is absolutely not a real time application since it was not designed for The data concerning the flight plans are given as an entry to LCCR nevertheless the data resulting from the regulation made by LCCR is never given back to the system that provided the entry data However this does not imply that it would not be feasible with the technology used in LCCR 2 2 LCCR purpose LCCR purpose is to provide a decision help application for the CFMU controllers thus for a given day and all the flight plans scheduled during that day by the air companies LCCR proposes a regulation simulation all over Europe restrictively on the flight p
59. coded 45 5 2 1 5 2 2 product Different software libraries used LCCR uses four main software libraries described bellow e Chip C V5 2 1 library which delivers all the CP kernel enabling to express variables constraints so as to be able to enumerate a solution This library is the property of Cosytec SA e Loox and Loox Extension Pack in C V3 3 libraries LxPack which enable to design the Graphic User Interface GUI include editable lists and Gantt diagrams These libraries are the property of Loox Informatique SA e X Development Kit V6 1 XDK libraries which enable to emulate a PC into a X client server platform These libraries were useful and enabled us not to re code the whole GUI when we came from UNIX to WINDOWS NT These libraries are the property of Hummingbird company e At last X Designer software that enabled us to design the frames architecture graphically This product generates automatically C code which was used in LCCR to handle the graphic designed via LxPack The product belongs to Imperial Software Technology IST company The exact content We give hereby the exact content of all these libraries so as re compilation and re linkage of LCCR should be easy with these modules The reference are given on PC KAYAK XAs mei static library path static libraries dynamic libraries header files path Chip C CHIPCDIR Lib chipccrmt lib CHIPCDIR Include LxPac k
60. compile the mode of compilation and of linkage 46 524 PAE UU OR ae RL A RC CE OR D sq ash 46 5 3 THE APPLICATION ARCHITECTURE a aa T aaaa ses eeeeeeneneennnnnee 46 5 3 1 General aro ec ia de E a dev er 47 5 3 2 The COFEE data extraction a 47 5 3 2 1 Necessity of an intervention by hand ss 47 5 3 2 2 The flight plans file uuu uu IS uusha a asua asisisunuriasia Yin ushi 47 5 3 2 3 The permanent LOCR files u q ua nai ia uuu aa hua RNE 47 5 3 2 4 The impact on the object architecture ss 47 53 3 The LGGR dale reading A aaah aula uui iyan upa A 47 2 94 The LO CH SO Vai dias oca cr 48 5 835 A AA O NE pa re piora R SO Ai eas 48 O INDEX k l A baara ab akak Re ee AR ER 48 PART THREE ee ar etats 51 1 INTRODUCTION coins 52 151 AGKNOWEEDGEMENT Q nad sukama qan 52 1 2 THE PROBLEMATIC REMINDER cccccccccccnocccnnnnnnnnnonononnnnnnnnnnnononnnnnnnnnnnnnnnnnonnnnnnnnnnnncnnananinnns 52 2 WHAT LCCR PROPOSE S as 52 Bod WHARECGGRISNO Tinta cia a 52 2 2 LECR PURPOSE cout aida 52 3 THE USER AND THE ENVIRONMENT 52 Sl TAE USER os rue uqaupay Susa haya earned 53 3 2 THE APPLICATION GLOBAL ENVIRONMENT oocccccncccncccconnccnnnnnnnonononnncnnnnnonnnononnnncnnnnnnonononnnos 53 3 2 1 Possible confusion on the word ex
61. e the capacity or the maximum load is increased by one unit or more than one unit Once the system is feasible the regulation exempted flights are set b For all the other flights if there are still congested areas relaxation of the maximum accepted delay is enforced until a fixed limit is reached If there are still overloaded sectors c Relaxation of the constraints of the most congested sectors according to a congestion priority function until all the flights pass If the maximal relaxation fixed by input parameter is not high enough the solver finds no solution All these relaxation procedures are executed in several steps The amplitude of each step and the limit of the flight delay relaxation are defined via input parameters NOTA BENE The relaxation respect the equity and priority criteria HEURISTIC The number of daily flights over Europe lies between 20 000 and 27 000 About 2 000 sectors are concerned The quality of the regulation depends heavily on the heuristics chosen The exempted flights are placed first For all the other flights a priority function is computed It is an increasing function of the degree of congestion of all the sectors the flight crosses The flights are placed in descending order of this function Exception The two legs of a round trip flight are treated together if the round trip priority has been chosen by input parameter It is the same for the equity constrained flights if the equity trigger h
62. e three solution set for storage 5 4 4 The blocked mode This mode corresponds to a non edition mode In this mode no object can be deleted nor created nor modified In this mode the current solution set is either the modification solution set and a solution is present in memory for that set or it is one of the three solution set for storage LCCR exits from this mode as soon as the current solution set is the modification solution set and that no solution is present for that solution set 5 5 The graphics deleted before search is launched So as to spare memory LCCR discards all the objects layouts before a solving is launched This implies that the end user loses the current display We remind the end user that it is not possible to interact with LCCR during the solving except for aborting 5 6 The dialog boxes We notify the end user that it is always possible to perform a close or a cancel action on a dialog box just by pressing the lt Escape gt key 5 7 Case sensitivity LCCR is case sensitive that is to say that it makes the difference between the lower and the upper case The end user should always type considering that feature For instance if she wants to edit the collapsed sector EGTTNOR through the lt Edit Collapsed sector gt and that she enters lt egttnor gt instead of lt EGGTNOR gt LCCR will not find the corresponding collapsed sector 92
63. e category of the aircraft type at For each category cae CA where CA is the set of all categories max ca expressed in minute is the maximum delay that all the flight plans of that category can accept Thus VfeF dcaeCA CA AT f ca O lt d f lt max ca How it interferes with the priority constraint Thanks to these categories LCCR forces the flight plans to accept a maximum delay according to the category their aircraft belong to Usually the less the category is the less the maximum delay is But it is not always the case and the end user can set the categories as she wants Nevertheless in all cases the category i is always considered to have a greater priority than category i 1 These categories enables LCCR to give different priorities to flight plans of different importance The exempted flight plan constraint Also LCCR enables the end user to specify certain flight plans as exempted which means that the delay of these flight plans must be null If is such an exempted flight it means that max d max max f 0 so that we always have d 0 This constraint is necessary for certain kind of flight plans such as transatlantic ones on which no regulation can be made since the CFMU does not control their departure area This constraint applies also to humanitarian flight plans political flight plans for instance The solver This part is the most delicate part of this documentation the reader will have to
64. e it represents the number of aircraft he has on the screen and he has actually to take care of simultaneously IMPLEMENTATION The sector load constraint regulation is treated as a standard activity resource problem for each sector The resource is the maximum sector load The activity is the flight traversing the sector During the traversing time plus the co ordination time between the previous and the current sector it consumes one unit of the resource Thus the total number of activities is the number of flights times the number of sectors they cross The problem is solved by the cumulative constraint concept implemented in the Chip software The sector capacity constraint regulation is implemented as follows at any given time t the number of aircraft having entered the sector during the period t 60 min t must not exceed the capacity currently used at time t The following implemented functions are common to the three different kinds of regulation FUNCTIONS CONSTRAINTS e Load capacity constraints on sectors e Among the daily flights a certain number is regulation exempted i e these flights can not be subjected to any delay e For round trip flights the regulated time between the arrival time of the first leg and the departure time of the second one must not be less than the corresponding estimated time In other words the delay of the first leg is transferred to the second one e The order of the departure time of two fli
65. e vols Traitement initial des plans de vol IFPU 1 IFPU 2 Bruxelles Br tigny Plans de vol essages de r ponse op rationnelle e Les cr neaux ne doivent tre allou s que si des proc dures de gestion des courants de trafic sont en vigueur 2 LCCR The aim of the LCCR prototype is to investigate whether regulations based on load constraints would be less penalising in terms of delays than regulations based on capacity constraints as the currently used CASA algorithm is implemented Remember The sector load at a given moment is the number of aircraft simultaneously in the sector at that moment The sector capacity at a given moment is the maximum number of aircraft that are allowed to enter the sector in one hour The aim of the LCCR prototype is to compare the results of regulations based either on sector load constraints sector capacity constraints or constraints on both sector load and capacity The idea behind this work is based on the fact that the sector load unit used by an aircraft is blocked only during the duration of the flight across the sector while the capacity unit is blocked during a fixed period usually an hour Since the duration of the traversal of a sector is far less than an hour the sector resource is more efficiently used by a load reoulation and consequently the penalisation in terms of delays should be decreased Furthermore the load is a more realistic concept for the controller sinc
66. east one elementary sector not fully open during the extraction day COFEE flights_not_kept Iccr flight plans not kept for the extraction day in addition of the flight plans that are scheduled to take off the day before the extraction day which are not listed in COFEE flights_not_kept Iccr these flight plans are not kept because they have the same call sign as another and that they are scheduled to take off or to land in the same time as the flight plan with the same call sign In this case the first flight plan encountered in FLIGHTS sst is kept the other is not COFEE flights_with_gaps Iccr flight plans kept for the extraction day that present a gap of time between two consecutive elementary sectors crossings COFEE flights_with_multiple_definition Iccr flight plans kept for the extraction day that do not have a unique call sign When LCCR extraction finds a flight plan that will be kept and with a call sign already used for another flight plan it postfixes the call signs of the two flight plans with a N where N is equal to 1 for the first one N is equal to 2 for the second one If in the future LCCR extraction finds a third flight plan using the same former call sign it postfixes its call sign with a 43 and so on COFEE flights with no _elementary sector crossed lccr flight plans kept for the extraction day that do not cross any elementary sector COFEE flights with same time_crossing lccr flight plans kept for the ex
67. ected in list 4 2 2 1 4 Elementary sector lt Alt E gt When this function is triggered the end user is asked to enter an elementary sector code and if the corresponding elementary sector exists it is displayed and selected in a list 4 2 2 1 5 Collapsed sector lt Alt C gt When this function is triggered the end user is asked to enter a collapsed sector code and if the corresponding collapsed sector exists it is displayed and selected in a list 4 2 2 1 6 Sector lt Alt S gt When this function is triggered the end user is asked to enter a sector elementary or collapsed code and if the corresponding sector exists it is displayed and selected in a list 4 2 2 2 The notion of solution set Before explaining the next functions we have to explain the notion of solution set used through LCCR A solution set is composed by a demand a set of solving parameters and an optional regulated information solution of the solver LCCR is able to store up to three solution sets also called the solution sets for storage in memory at the same time In addition LCCR offers a special additional solution set that we call the modification solution set when the end user changes the demand data or the solving parameters she always changes the modification solution set Moreover LCCR always displays the demand and optionally the regulation data corresponding to a given solution set that we call the current solution set We say th
68. ector co ordination time the estimated entry time before regulation the calculated entry time after regulation the estimated exit time before regulation the calculated exit time after regulation the capacity limit profile relaxation on the sector Yes if there has been capacity limit profile relaxation No otherwise 9 the load limit profile relaxation on the sector Yes if there has been load limit profile relaxation No otherwise DSL In this list when a sector is highlighted it means that the corresponding flight plan crosses it during at least one minute of its open periods in demand view the flight plan is considered to take off at its estimated take off time in regulation view the flight plan is considered to take off at its regulated take off time 76 4 3 3 2 A flight plan This information is the necessary and sufficient information for an exhaustive flight plan description inside LCCR there is no need to specify the estimated take off date since it is the same as the regulation day Creation When LCCR is in modify and insert mode the end user can create a new flight plan by calling the lt Insert record gt function when the demand flight plans list is active through the lt View demand Flights All gt function When inserted by the end user all the attributes of a flight plan must be filled in But before that the end user must first fill in the information
69. ei a a Le ee ee Ut a nee THE CHARTS DIAGRAMS socio ca us ati RS AE ist nn 5 1 ALO sceim en o ae s a ns Deo okt tes O 52 The Jeg nd A 5 3 The scrollbars zoom mechanism OE 5 4 Demand view u RE nes RS 00 ROQUIQUON VIEW sssi orriotan ooe late ions line nn td nent venesdstgianees 30 0 TAG COMOX al MONT ennemie ANNA 45 651 ZOONVOUL esate ete tl a ed a Re niet 45 62 View allyange susu ieee ROA AA i ee ea 4 5 653 sShow hide linesu a cet ee o al colt ks 4 5 6 4 Show hide ISgefid uy un a cada deaths hes xd ee trendiest eee hab ee lene maka agbala kiy qaqa 4 5 6 52 Show Nde aye S u L L u S D aa aa Ae a AE a a aaa AE aA aaa EE taiora isdn anai 4 5 6 6 Capacity A 4 5 6 7 LOAD Ml Weiss ta aaa 4 5 6 8 Capacity and load view 4 5 6 9 Demand Regulation 4 5 6 10 View flight plans at lt Ctrl gt left mouse button click 4 5 6 11 Export in Outer windows ies cesta ii Ann ab een nt ire SOME GLOBAL CONCEPTS AND MECHANISNS 90 5 1 THE PREFERENCES e 90 5 2 WHAT CAN BE CHANGED IN THE OBJECTS ooccccccccnncccnnncccononcnnncnnonancnnncnnnnanonnnnnnnnancnnancnnnanes 90 5 2 1 Fora flight plan s u u oen ce en 90 522 FOr an aerOQrOre u us u L tnaa anaa ua E a A a les eae u aypa 91 E Fora category ESS sasana uwa shuyu Te en te 91 5 24 F r ah aireratt ype u nn ne an sl tn nn 91 52 5 FOP
70. es LCCR uses some preferences that are automatically stored through the different lt Save gt functions The name of the file containing the preferences is preferences lccr These preferences concern the settable parameters and the solving parameters 5 2 What can be changed in the objects We sum up here the different attributes that can be changed for the various objects once the object has been created and validated or loaded Each time an attribute is modifiable in modify mode we mark it with a 5 2 1 For a flight plan e The aircraft type via its code e The estimated take off time when this field is modified the estimated arrival time as well as the entry and exit times in all the crossed sectors are modified accordingly e Its maximum delay allowed The flight plan cannot be modified through the sectors it crosses 90 5 2 2 For an aerodrome e All the capacities can be changed as well as the periods on which they are applied 5 2 3 For a category e Its maximum delay 5 2 4 For an aircraft type e The category number it belongs to 5 2 5 For a sector e lts co ordination time e Its abilities but not its open periods 5 3 Up to three solution set at the same time in memory 5 4 5 4 1 5 4 2 LCCR can store up to three solution set in memory To enable the end user to re launch the solver without losing the former solution LCCR offers the opportunity to store each demand and its optional solution w
71. es place on the eve of the currently studied day are not taken into consideration INPUT DATA MODIFICATIONS Before the Solver is launched there is an easy access to all the input data flight plans environment airports aircraft types type category In order to allow consecutive tests some of these data can be modified on line Maximum flight delay Aircraft type Estimated departure time of a flight Maximum sector load and capacity LCCR deals automatically with induced input data modifications due to a primary modification For instance the estimated departure time update induces the same update for the other estimated times of a flight plan HARDWARE The prototype has been implemented on a Hewlett Packard Kayak PC bi processor 2 450 MHz 384 Mb under Window NT SHORTCOMINGS The main shortcomings of the current release of the prototype are 1 LCCR takes into account only those flights whose the estimated departure time is inside the 24 hour window of the studied day Thus the transatlantic flights taking off in the US before midnight GMT and entering the European airspace early in the morning are not considered The impact on the regulation results is difficult to foresee Bunching The sector load and capacity parameters are defined per time period It may happen that during a period a sector presents no difficulty and the corresponding parameters are put to infinity If during the previous period the
72. es to place first the one way flight plan even if it was not the one selected formerly to be instantiated and only after it tries to place the return flight plan if the one way flight plan could be placed This option is most of the time to be selected because it prevents LCCR from placing the second leg flight plan of a round trip flight plans couple with very little delay whereas its corresponding first leg flight plan has not been placed yet imposing then that its delay should be very limited because of the round trip constraint posted formerly on the couple of flight plans If the round trip priority is inactive and that LCCR first places the second leg flight plan without placing the first leg as well relaxation on the first leg flight plan is inefficient since its maximum delay is already majored due to the placement of its second leg flight plan The equity priority As for the round trip priority this equity priority is only efficient provided the equity constraint has been set active When this option is made active the way a solution is searched is similar to the strategy used when the round trip priority is activated Thus when LCCR tries to place a flight plan it looks whether this flight plan belongs to a group of flight plans linked by an equity constraint If it is the case LCCR not only tries to place the selected flight plan but also all the equity flight plans estimated to depart before the flight plan selected The order
73. et if there is one This file is created in the directory named LCCRYYYYMMDD set of data in memory for date DD MM YYYY The name of the text file is statistics _yyyymmdd_hhmmss lccr where dd mm yyyy represents the date when the solution was found and hh mm ss represents the time at which the solution was found This exported file gathers all the parameters used to issue the corresponding regulation as well as the statistics of the regulation 74 4 2 5 4 2 5 1 View regulation For this paragraph we consider that there is a solution present for the current solution set This menu concerns the non editable lists of objects display The non editable lists are displayed on the upper frame Some extra information corresponding to the regulation is displayed on these lists No object can be modified nor deleted in these lists When one of the functions of that menu is called we say that LCCR is in regulation view Flights r Elementary sectors Collapsed sectors lt View regulation gt menu Flights 4 2 5 1 1 All flights This function displays all the flight plans 4 2 5 1 2 Delayed flights 4 2 5 2 This function displays all the delayed flight plans Elementary sectors This function displays all the elementary sectors 4 2 5 3 Collapsed sectors This function displays all the collapsed sectors 4 2 6 About F1 This menu displays global information about LCCR 4 3 The objects 4 3 1 4 3 2 There are severa
74. f flight plans to be placed The size of this group depends on a solving parameter which is the flight plan group percentage noted group percentage expressed between 0 and 1 This parameter represents the percentage of the total flight plans to be chosen each time for one group Only card F group percentage flight plans will be chosen except if all the flight plans not yet placed have a null priority in this case all the flight plans left are selected Note that this special case appears when all the flight plans not yet placed can be placed at their current delay lower bound since their priority is null 4 3 3 5 4 The heuristic to choose a flight inside a group This heuristic is half dynamic depending on a quality factor referred as search quality ranging from 0 to 999 set through the solving parameters panel Indeed each time 1000 search quality flight plans are placed LCCR re computes the order in which it chooses the flight plans not yet placed inside the same current group The order is given by the decreasing load priority for each flight plan computed in the previous stage Thus the higher this search quality factor is the finer and the more dynamic the heuristic is 4 3 3 5 5 The heuristic to choose a delay for a given flight plan 4 3 3 5 5 1 No optimisation asked for This heuristic is very basic when the optimisation is not set on the solving parameters panel When LCCR tries to place a flight plan it simply tries to
75. ferior than 45 minutes e red is used for flight plans having a delay greater or equal than 45 minutes and strictly inferior than 120 minutes e purple is used for flight plans having a delay greater or equal than 120 minutes 4 4 4 9 Export in outer window This function enables the end user to create a new window displaying the same list Nevertheless this new list is a static copy of the former one any change in the former one will not be reflected to the newly created Moreover this new list cannot be edited at all nor exported 4 5 The charts diagrams LCCR uses these charts diagrams to represent the demand and regulation of the sectors 4 5 1 What it represents A chart diagram displays an abscise representing the time and an ordinate representing the capacity or and load profiles i e the capacity or and load 86 4 5 2 4 5 3 4 5 4 4 5 5 4 5 6 maximum profiles demand profiles and regulated profiles of a given sector All the profiles displayed take into account the sector co ordination time Note that the profiles displayed represent the solving parameters and not the individual values In fact when the end user chooses to use a global co ordination time for all the sectors instead of the individual value the diagram charts use this global value instead of the individual ones The legend The end user can display the legend of the diagram which illustrates the information present The scrollbars zoo
76. ghts having the same itinerary same departure and arrival airports can only be reversed if the difference of the reversed regulated departure times does not exceed a certain amount input parameter This is the so called equity criterion All these constraints except the second one can be neutralised by an input parameter PRIORITIES For simulation purposes certain priorities can be chosen e Round trip flights If the first leg has a delay greater than a threshold input parameter a priority is given to the second leg in order to minimise an additional delay e Type category Following the general heuristics see later if two flights have the same value of their priority function the plane the type of which belongs to the highest category priority is placed first Via input parameters these priorities can be chosen or not RELAXATION The basic idea is that the whole demand all the filed flight plans must be satisfied Thus the constraints on the domain variables affecting regulation i e sector resources capacity load flight delays with one exception must be SOFT constraints In the current release of the prototype the rerouting alternative is not foreseen The relaxation of these constraints are implemented according to the following hierarchy a If after setting the constraints no solution is possible even with the maximum flight delay relaxation the sector constraints of the overloaded sectors are relaxed i
77. h a new solving as to visualise the solving parameters used We describe from the top left to the bottom right the different fields of this panel 68 LCCR solving parameters Constraints used F elementary F equity curfew m Priorities handled I collapsed M round trip equity pas _1 capacity Quality F load flight percentage quality Global parameters coordination time gt individual global duration min maximum delay v individual per category round trip trigger min 10 equity trigger min ls Relaxation M on flights delay step a2 maximum increase 50 J on capacity step ls maximum increase 20 F onload step E maximum increase E SOLVE CLOSE APPLY LCCR solving parameters panel Once the parameters correctly set the end user can press the lt APPLY gt button so that LCCR takes into account the new parameters this button is disabled when LCCR is in blocked mode the lt SOLVE gt button a well It is possible to cancel any change not yet applied by pressing the lt CLOSE gt button When the end user presses the lt SOLVE gt button LCCR applies the parameters and then launches the solver In this case LCCR first posts the constraints stage during which no abortion is made possible and then starts to place the flight plans the end user can interrupt the solving by pressing the
78. h of sector s demand L s t load limit profile of sector s at time t Lo s t load limit initial profile of sector s at time t demand 48 LCOV s LCP s t LDOV s LDP s t LFOV s LFP s t max max f max NC s t NL s t p f p s Pc f Pc s pr pr s relaxation f relaxation s relaxation s S t ti f ti f ti f s t s t s t t f t f t f s t f s t f s load critical over volume of sector s load critical profile of sector s at time t load demand over volume of sector s load demand profile of sector s at time t load forecasted over volume of sector s load forecasted profile of sector s at time t current maximum value of dnax initial maximum value of max without any relaxation final maximum value of max with relaxation number of flight plans having entered sector s during the hour preceding time t taking into account the sector co ordination time CT s number of flisht plans present in sector s at time t taking into account the sector co ordination time CT s priority function of flight plan f relaxation priority function of sector s capacity priority function of flight plan f capacity relaxation priority function of sector s load priority function of flight plan f load relaxation priority function of sector s delay relaxation percentage of flight plan f capacity relaxation
79. has been inserted but not yet validated In this case LCCR passes from the insert mode to the modify and insert mode Sort increasing This function sorts the corresponding column in a increasing order Sort decreasing This function sorts the corresponding column in a decreasing order Delete record This function enables the end user to delete the corresponding object on the row or the cell for an aerodrome on which the button has been clicked lt deletes as well the row from all the lists where it appears except the exported lists Insert record This function enables the end user to create an object of the same type in an editable list Once this function called LCCR is in modify mode and it creates a new row in the list from where the function was called a cell when it handles with aerodromes As long as the modifications are not validated through the lt Validate gt function the graphical modification are not taken into account Especially for the aerodrome the flight plan the sector objects it is necessary to validate the changes first on the lower frame and only then on the upper frame If the end user wants to abort the creation of the object she has to perform the lt lgnore insert gt action 85 4 4 4 7 View regulation demand On a sector or a flight plan list this function enables the end user to switch from the demand view activated via the lt View demand gt functions to the regulation view activated v
80. hat is built in the same way we consider the parameter elementary sector capacity unit instead of collapsed sector capacity unit Creation Everything said concerning the elementary sector creation applies to the collapsed sector s except that the collapsed must be notified the elementary sectors belonging to it and that a collapsed can be inserted only when the demand collapsed sectors list is active through the lt View demand Collapsed sectors gt function Modification Everything said concerning the elementary sector is valid for the collapsed sector The lists editable or not LCCR uses much the lists so as to represent the objects A list is a graphical representation of an array composed by columns and rows with headers On each row the same object is represented A row is split into cells as many as columns plus a header Each editable list provides a vertical and an horizontal scrollbar if necessary so that the end user can view the whole information it contains 4 4 1 4 4 1 1 4 4 1 2 The different lists Layout All the objects presented can be displayed on the lists Some lists are editable some not some lists present the regulated information some only the estimated information demand Click mechanism On the sectors respectively aerodromes lists displayed in the upper frame when the end user clicks with the left mouse button on one row header 83 respectively on one cell LCCR displays
81. he lt Insert record gt function above the lower frame specify the start and end times of the period the capacity for that period in the column corresponding to the kind of capacity global departure arrival When she wants to erase a capacity she just has to call the lt Delete record gt function above the capacity row to delete Only when the end user is satisfied with the capacities she has to call the lt Validate gt function above the lower frame Modification When in modify mode the end user wishes to modify an already created aerodrome she just has to select the aerodrome make the necessary modifications on the lower frame where the capacities are displayed and then validate the modifications by calling the lt Validate gt function If the end user does not validate the modifications LCCR will not take them into account The category Attributes A category is composed by a number a number of minimum passengers a number of maximum passengers a maximum delay This information is the necessary and sufficient information for an exhaustive category description inside LCCR In addition LCCR displays for a given category e the number of aircraft types belonging to that category e the number of flight plans whose aircraft type belongs to that category A um p ers Maximum pa igers Maximum delay _ Aircrafts number 300 1000 180 11 200 299 180 81 100 199 180 21 5 99 180 0 0 0 4 180 8 113 The categories No
82. he lt View demand Elementary sectors gt function When inserted by the end user all the attributes of an elementary sector must be filled in But before that the end user must first fill in the information of the lower frame the abilities of the elementary sector When finished she must validate the abilities through the lt Validate gt function above the lower frame once the abilities validated they can still be modified in the future but restrictively Then the end user must fill in the information asked for in the upper frame including the code of the elementary sector in the row header as well a the collapsed sectors it belongs to separated by single spaces When finished the end user must validate the information through the lt Validate gt function above the upper frame After this step the new elementary sector is created and LCCR exits from the insert mode the end user can abort at any time the insertion of the currently created object by calling the lt lgnore insert gt function the code of elementary sector cannot be changed any longer in the future 4 3 7 2 1 The abilities 4 3 7 3 Each time the end user wishes to add an ability to the sector she has to call the lt Insert record gt function above the lower frame specify the start and end times of the period the capacity and the load of the sector for that period When she wants to erase an ability from the sector she just has to call the lt Delete record gt
83. he flight plans using the parameter round trip trigger settable through this panel This constraint imposes on all the round trip flight plans couples f and f that after regulation the difference of delay between f and f must be less than round trip trigger minute In other words this constraint imposes that the former gap between the arrival time of the first leg flight plan f and the departure time of the second leg flight plan fs should be respected greater or equal than the estimated one minus round trip trigger minute after regulation e The curfew constraint on the aerodromes This constraint imposes that no flight plan is allowed to depart from an aerodrome during the periods when this aerodrome has a null departure capacity and that no flight plan is allowed to arrive at an aerodrome during the periods when this aerodrome has a null arrival capacity When a constraint is enabled LCCR posts it accordingly before solving For any detail concerning these constraints please refer to the LCCR reference documentation 4 2 4 1 2 Priorities handled This frame gathers all the possible priorities handled during the solving The various priorities are used to impose a strategy concerning the order in which LCCR tries to place the flight plans When a priority is enabled LCCR uses it during the solving e The equity priority when LCCR places a flight plan during the solving it places as well all the flight plans in equity constraint
84. hich compose a solution set in memory Each solution set stored can be re displayed so as to enable regulation comparison This feature is practical when the end user wishes to perform little modification on the demand or simply when she wants to change the solving parameters but that she wants to keep in memory the former values Four modes LCCR can run in four different modes imposing specific edition modes When the cursor becomes a cross above a list it means that the corresponding cell under the cursor is not editable The modify and insert mode The first mode corresponds to the data in memory total free edition the end user is allowed to change any feature of the objects unless they were not forecasted to be edited Moreover the end user can delete and create some of these objects In this mode the current solution set is always the modification solution set LCCR exits from this mode as soon as a solution is present in memory for the current solution set or that one solution set for storage is used The insert mode This mode corresponds to the data insertion edition the end user is allowed to change only the attributes of the object being created Moreover the end user cannot delete or modify other objects However it is possible for the end user to visualise other objects of a different class As long as LCCR stays in insert mode the data cannot be saved through the lt File Save gt function the LCCR settings c
85. ia the lt View regulation gt functions and inversely If one row is selected in one table only the corresponding other row will be created in the other view if the editable list has not been created yet Off course this feature is enabled only if one solution is present for the current solution set 4 4 4 8 View summary detail This feature is new and has not been fully tested Yet On a sector list and in regulation view this function enables the end user to switch from the summary view to the detail view and inversely The detail view if the kind of list LCCR displays when the end user calls one of the lt View demand gt functions standard list However when in summary view LCCR does not represent any figure but it represents for each sector its crossing flight plans delays repartition after regulation that we call the summary Off course this feature is enabled only if one solution is present for the current solution set and when LCCR is in regulation view LECMNVMN LECMTLD LECMVTB 6 510 12 9505 375 30600 1260 0 0 0 Detail view PRET a Summary view The various layers are represented in different colours hard coded e green is used for flight plans having a delay strictly inferior than 15 minutes e cyan is used for flight plans having a delay greater or equal than 15 minutes and strictly inferior than 30 minutes e yellow is used for flight plans having a delay greater or equal than 30 minutes and strictly in
86. ile For date DD MM YYYY this file should also be present in the directory named JYYYYMMDD and its name should be FLIGHTS sst The LCCR files The basic demand The LCCR demand data files are produced by LCCR extraction operation and for an extraction of the date DD MM YYYY the following LCCR files are created in the newly created if necessary directory DEMAND 19000101 000000 standing in directory LCCRYYYYMMDD also created if necessary e aerodromes lccr for the aerodromes aircraft_types lccr for the aircraft types collapsed_sectors lccr for the collapsed sectors elementary_sectors lccr for the elementary sectors flights lccr for the flight plans Other possible demands LCCR enables the end user to save the current solution set data present in memory into another demand directory named DEMAND _yyyymmdd_hhmmss created in directory LCCRYYYYMMDD corresponding to date DD MM YYYY where dd mm yyyy is the date when the data are saved hh mm ss the corresponding time 54 4 The Graphic User Interface The Graphic User Interface GUI is the main frame of the application We first describe the overall layout then the different menus the editable lists and the diagram charts 4 1 Overall layout The application is composed by a main window with menus and a splitter which divides the main window into two dependently resizable frames the upper frame and the lower frame Moreover there are three special text fields to give s
87. ion Message ANM for the next day is prepared It defines the tactical plan for the next operational day and informs aircraft operators and air traffic control units about the ATFM measures that will be in force in European airspace on the following day Tactical ATFM is the work carried out on the current operational day lt includes the allocation of individual aircraft departure times re routings and alternative flight profiles The IFPS Integrated Initial Flight Plan Processing System is the main source for the CFMU demand database All flight plans within the IFPS airspace are sent by the air operators to the IFPS which acknowledges receipt processes the data stores it in the CFMU data base and sends the information to the air traffic control units which will be concerned with the flight CASA Computer Assisted Slot Allocation is the currently used regulation algorithm Without going into details let us say that it is based on capacity constraints of the sectors The airspace is divided in three dimensional volumes called sectors For each sector a controller is in charge and this controller can handle a maximum number of flights per hour This number is called sector capacity If this capacity is exceeded by the demand the sector will be regulated by giving entry slots to the flights concerned In order to satisfy these entry slots the flights are delayed on ground SYSTEMES CFMU tre STRAT E ENV ARC Plans d
88. l kind of objects in LCCR We describe the main objects used throughout the prototype Time convention All times are expressed with 4 digits HHMM stands for HH MM Note the convention used in LCCR when a time corresponds to the day the date of the set of data before the regulation day it is preceded by a when it refers to the day after it is precede by a For instance if we open a set of data corresponding to the date 02 07 1999 1200 corresponding to midday on the same day 1200 to midday the 01 07 1999 and 1200 to midday the 03 07 1999 The notion of ability capacity or and load LCCR handles the notion of ability A list of abilities is attached to an aerodrome or to a sector elementary or collapsed and it designates a capacity or and a load An ability is composed by e a start time during the date of the regulation e anend time always during the date of the regulation e a capacity or and a load maximum value for the period delimited by the previous start and the end times 75 4 3 3 4 3 3 1 The notion of ability is used everywhere a maximum ability profile is required that is to say for the sectors and for the aerodromes Concerning the aerodromes only the capacity concept is displayed and used when it is null for the curfew constraint The flight plan Attributes A flight plan is composed by a code an aircraft type represented by its code a departure
89. l of that flight plan Demand view This kind of view is activated through the lt View demand gt menu in the upper frame This kind of view only displays the information concerning the demand nothing about any regulation is displayed Regulation view This kind of view is activated through the lt View regulation gt menu in the upper frame it displays as well the information concerning the demand as the information concerning the regulation The contextual menu Each list presents a contextual menu this popup menu is displayed as soon as the end user clicks the right mouse button anywhere over the list This contextual menu offers various facilities enabled or disabled according to the situation 84 4 4 4 1 4 4 4 2 4 4 4 3 4 4 4 4 4 4 4 5 4 4 4 6 Actions Validate Sort increasing Sort decreasingy Delete recard insert recard ignore insert View demand View summary Export in outer window List contextual menu Validate This function forces LCCR to take into account the graphical modifications performed on the layout of an object This function is available as soon as the end user creates a new object through the lt Insert record gt function or when she edits the abilities of an object aerodrome or sector in the lower frame Ignore insert This function enables the end user to cancel the creation of an object while the latter is still being created that is to say when it
90. laced on sector s then the load forecasted profile is equal to the load regulated profile Note that this profile is made of real floating values and that it is once again dynamic Formally Vses Vt etats d s CT s 5 8 0 Z a d 4 8 CT s where S s t 1 if tts 8 CT s dyin lt t lt ti s d 8 dnax s t 0 otherwise 4 3 3 5 2 Link with the load profiles the load over volumes All these profiles enable LCCR to consider some other functions helpful for the heuristic mostly during the relaxation Note that all these functions take into account the co ordination time CT s of each sector s which magnifies a lot the load constraint 4 3 3 5 2 1 The load demand over volume For a given sector the load demand profile is considered so as to be compared with the load limit profile which is the graph representing at any time t the load limit accepted by the corresponding sector and that was already noted L s t for a given sector s or L s for the profile graph By comparing these load demand over volumes LCCR sorts the sectors The dynamic upper surface which is called a volume between the load limit profile and the load demand profile is called the load demand over volume and is notes LDOV s for a given sector s Formally Vse 8 t 24 60 1 LDOV s XJ max LDP s t L s t 0 t 0 We also define the load demand volume LDV s which is the total amount of minute du
91. lan enters sector s we consider in fact that is present in s CT s minute before its real entrance In LCCR the co ordination time does not vary during the regulation day This co ordination time plays another role that we have to mention so as to be precise if a flight plan was scheduled to enter physically a sector s after t 0 and that with the co ordination time CT s it is scheduled to cross it before t 0 LCCR regulates flight plan only on the part of its crossing time t such as t20 Nevertheless this happens very rarely and does not affect regulation in general since there is almost no regulation at midnight 4 2 1 3 3 1 Its impact on load It is easy to figure out that the greater the co ordination time is the more constraining the load constraint is This is why this co ordination time can be considered as a major feature of the model when regulation by load 4 2 1 3 3 2 lts impact on capacity We note that the co ordination time CT s of sector s does affect the regulation only in the fact that it shifts the regulated capacity profile to the left it does not make the constraint more constraining 4 2 1 4 lts formal equation We give the formal equations of the ability constraints so that there is no ambiguity left 4 2 1 4 1 Load We note NL s t the number of air planes present taking into account the co ordination time CT s of sector s at time t in sector s and we note t f s the regulated exit time
92. lans scheduled to be departed on that given day This regulation is limited to the sectors even if the aerodromes curfew constraint is taken into account no regulation is performed on the aerodromes otherwise To be a decision help application on the one side it presents the demand as well on charts and on lists on the other side it presents the result of regulation A particular effort was brought concerning the different tools of monitoring so as to enable the end user an air traffic controller to determine quickly what flight plan or what sector is mostly responsible for a given delay 3 The user and the environment We describe in this section the conditions and the resources required so that the LCCR prototype can run properly 52 3 1 The user LCCR is a single user application no particular thing is to be said about that There is no particular profile per end user so that every potential end user shares the same environment Note that the parameters different from the data modified inside LCCR are saved in preferences files Moreover LCCR is a single document application which means that it can only handle one set of data at the same time this set of demand data represents the entry data of the regulation problem for a given date DD MM YYYY 3 2 The application global environment 3 2 1 3 2 2 Some special attention is to be brought on a environment variable that should be set correctly before starting LCCR Thi
93. load limit profile during the solving regulation compared to the minimum non null load during the regulation day The load regulated overload coord which is after regulation the total number of minute during which the load regulated profile exceeds the initial load limit profile This value is expressed in minute this value is called the load regulated over volume LROV in the LCCR reference manual The capacity relaxation which is the number of additional units granted during all the regulation day limited to the sector open periods to the sector capacity limit profile during the solving regulation 81 4 3 7 2 e The capacity relaxation which is the percentage of additional units granted during all the regulation day limited to the sector open periods to the sector capacity limit profile during the solving regulation compared to the minimum non null capacity during the regulation day e The capacity regulated overload coord which is after regulation the total number of minute during which the capacity regulated profile exceeds the initial capacity limit profile This value is expressed in minute this value is called the capacity regulated over volume CROV in the LCCR reference manual Creation When LCCR is in modify and insert mode the end user can create a new elementary sector by calling the lt Insert record gt function when the demand elementary sectors list is active through t
94. ly capacities if it is equal to 30 the capacities are half hourly capacities e Collapsed sector capacity unit same thing as for the elementary sector but applied on the collapsed sectors We refer it as the parameter collapsed sector capacity unit 61 4 2 1 3 LCCR LCCR settings EX Flight amp sector E lt round trip gap min lt bo elementary sector capacity unit 60 collapsed sector capacity unit 60 LCCR settings panel It is necessary that the lt APPLY gt should be pressed so as LCCR takes the modifications into account in the future When the end user presses the lt APPLY gt or the lt CLOSE gt button the panel disappears Preferences Function that displays the preferences These preferences only concern the charts and the layers displayed e Layer limit 1 this field represents the first limit Limit layer1 used to build the graphical layers of a chart diagram representing the profile of a sector it is also used when LCCR computes some statistics on a solution To know exactly what this parameter represents refer to the paragraph dealing with the charts diagrams see Show hide layers e Layer limit 2 same kind of applications as for the layer limit 1 It is noted limit layer2 LCCR preferences x Graphic layer limit 1 min 15 layer limit 2 min las LCCR preferences panel Some additional preferences are used in LCCR such as the fact that it displays or not the legend
95. m mechanism Each chart diagram always presents a vertical and an horizontal scrollbar These scrollbars present a specific facility which consists in enabling the end user to zoom in and out Indeed when the end user clicks on the edge of the accelerator by while pressing the lt Shift gt key its size changes and the time scale is updated accordingly The resize mechanism is centred when pressing both the lt Shift gt and lt Ctrl gt keys The diagram chart horizontal scrollbar Demand view In this view when the end user clicks the left mouse button by pressing lt Ctrl gt at the same time on a sector row header in demand view the corresponding chart diagram appears in the lower frame lt shows the capacity or and load demand profiles as well as the capacity or and load maximum profile Regulation view In this view when the end user clicks the left mouse button by pressing lt Ctrl gt at the same time on a sector row header in regulation view the corresponding chart diagram appears in the lower frame It shows the capacity or and load demand and regulated profiles as well as the capacity or and load maximum profile The contextual menu Each chart diagram presents a contextual menu this popup menu is displayed as soon as the end user clicks the right mouse button anywhere except on the time scale over the diagram This contextual menu offers various facilities enabled or disabled according to the situation 87 4
96. ment The severe congestion problems increasingly experienced since the mid 1980 s by Air Traffic Management ATM systems have directed much current attention toward Air Traffic Flow Management ATFM Congestion occurs whenever the capacity of one or more elements of the ATM system airports terminal area en route sectors is exceeded by demand over a period of time Thus congestion is mostly associated with peak traffic hours of the day peak travel times of the year and periods of adverse weather conditions In the long run over periods of 10 20 years congestion may be alleviated by means of capacity improvements attained through the construction of additional runways and airports or through advances in ATM technology and procedures In the medium term six months to a year demand management measures such as slot assignment at busy airports or use of congestion pricing at such airports may also be helpful On a short term basis e for any given levels of demand and for any given ATM system capacity ATFM provides the only approach for reducing the costs due to air traffic congestion Thus ATFM s objective is to manage dynamically air traffic demand with the available capacity of airports and airspace sectors on a day to day basis in order to minimise the cost due to congestion 1 2 CFMU Central Flow Management Unit In this context the ECAC European Civil Aviation Conference asked Eurocontrol in the beginning of the 90
97. mpute the different load limit profiles for all the sectors LCCR asks the end user to enter a valid basis load value used as the basis load normalisation The old values will be definitively lost We now explain the way LCCR computes the load limit profile values according to this basis load value that we note basis load For a given sector and on all its open periods LCCR looks for the non null and non infinite capacity lowest value let us call minimum capacity this value It then applies the basis load as local load limit in the open periods where the local capacity limit is equal to minimum capacity For the other periods the new local load limit is increase by 1 unit if the local capacity is strictly less than 15 of the minimum capacity by 2 units if the local capacity is strictly greater than 15 but strictly less than 25 of the minimum capacity and it is doubled if the local capacity exceeds or equals 25 ofthe minimum capacity in this case LCCR considers that the sector is split into two sectors with one controller monitoring each sector that is why the local load limit is doubled This normalisation was performed so as to harmonise the load in accordance with the capacity 4 2 2 3 3 Flight plans category delay 4 2 3 4 2 3 1 This function enables the end user to change the individual flight plans maximum delay authorised LCCR asks the end user is she confirms this action if yes it applies it to all the flight plans
98. n Ajouter la r gulation par d lais l alternative de la r gulation par reroutage Adapter le mod le un v ritable outil de simulation pour tester l impact de syst mes vari s de priorit s de vols p ex priorit s de flux entre certains pairs d a rodromes 20 21 22 PART TWO LCCR REFERENCE MANUAL 1 INTRODUCTION 1 1 Acknowledgement This document concerns the developer eager to be able to modify LCCR code This document is a technical one and it will not describe LCCR operational facilities it is aimed at giving the necessary information concerning the way the prototype was designed The LCCR end user who wishes to get practical and functional documentation is prompted to refer to the LCCR user s manual This document is divided into two main parts e the model the first part deals with the exact description of the Load and Capacity Constraint Regulation LCCR prototype problem so as no more ambiguity can remain concerning its aim and its rules e the code the second part purpose is to provide the developer the necessary indications so that she can enter the code of LCCR and correct or modify it 1 2 The problematic reminder Let us give a short reminder of the context in which LCCR prototype was elaborated Besides we will refer to the LCCR prototype by naming it LCCR so as to make things easier from now on The CFMU is given the responsibility to regulate the taking off of air planes we talk mo
99. n 35 min 130877 93 2 Maximum delay relaxation 49 Number of flights relaxed 76 4 2 Number of sectors 1823 Maximum capacity relaxation 0 Number of sectors capacity relaxed 0 F LCCR requlation statistics panel 4 2 4 3 View charts lt Alt Y gt This function enables the end user to display the two charts corresponding to the solution of the current solution set if there is one e The histogram chart that represents the flight plan delay in the x axis and the number of flight plans having a delay x in the y axis e The cumulative chart that also represents the flight plan delay in the x axis and the number of flight plans having a delay less or equal than x in the y axis 73 4 2 4 4 4 2 4 5 Ei LCCR regulation histogram chart 25 50 75 100 125 150 175 suo LCCR regulation cumulative chart Forget solution This function enables the end user to discard from memory the current solution present for the current solution set if there is one This solution is discarded from memory and the current solution set remains the modification solution set If no solution set becomes being kept LCCR becomes in modify and insert mode otherwise LCCR is in modify mode Export statistics This function enables the end user to export into a file the features of the solution associated to the current solution s
100. n the expression flight plan this is very often a shortcut to designate the air plane itself that is to say not only the conceptual list of elementary sectors crossed by a given air plane but also the physical air plane itself Indeed each flight plan is an element of the set F of all the flight plans scheduled to take off during the day the prototype is working on and it is described by the following items Departure and arrival aerodromes of a flight plan e Its departure and arrival aerodromes noted respectively da and aa f Aircraft type e The aircraft type of the air plane noted AT f Sectors entering and exiting times of a flight plan e The different sectors it physically crosses and the times it enters them which are also variables all linked to another as we will see these sectors are noted S f seS f crosses s where S is the set off all the sectors on Europe elementary and collapsed The entry time in one sector s of S is noted t s stands for in So as to make things easier we will consider that tt is the departure time of the flight plan and that t is its arrival time stands for out For this flight plan the duration to cross physically sector s without taking into its co ordination time CT s we explain later is noted d s Note that it is supposed that all the flight plans are convex this means that it is supposed that any given air plane never
101. namically built their layout is not constant within the same solving 4 3 3 5 1 1 The load demand profile We now describe one basic measure which is the load demand profile of a given sector s noted LDP s t or LDP s for the profile graph This profile is defined for each sector and it represents the current dynamic load demand profile it is defined in the following way Considering a sector s for each flight plan that crosses s the load demand profile is increased by one unit during the interval time At defined by At t t 8 CT s Amin St lt t 8 duin This interval time represents the current occupation of flight plan in sector s as if were placed with its current delay lower bound value dain f When the contribution is defined on sector s for all the crossing flight plans feF s we get this load demand profile This profile s limit is the load regulated profile i e when all the crossing flight plans F s are placed on sector s then the load demand profile is equal to the load regulated profile Note that this profile is made of integer values and that it is dynamic 36 Formally Vses Vt LDP s t card fes f t s CT s dun f lt t lt ti f s d f s du 4 3 3 5 1 2 The load critical profile To understand how this regulation is done we have to describe one other important measure which is the load critical profile of a given sector s noted LCP s t or LCP s for the
102. nd exit times being collapsed accordingly The LCCR files created are generated in directory LCCRYYYYMMDD DEMAND_19000101_000000 Note that once extraction finished no data is kept in memory if the end user wants to read the LCCR files generated she needs to explicitly perform it through the lt File Open gt function 4 2 1 1 2 COFEE settings This function displays a panel that enables the end user to define the LCCR extraction parameters These parameters are described as followed e The basic load this is the basis load applied to all the sectors elementary and collapsed and it is noted basis load This parameter is used on the sectors extracted by LCCR as described in the sector normalisation function see Sectors load normalisation e The co ordination time this is the default co ordination time applied on al the sectors e The flight plans maximum delay this is the maximum flight plans delay authorised applied on all the flight plans except for the exempted flight plans that are saved with a null maximum delay authorised LCCR COFEE settings Ea COFEE extraction sectors basis load las sectors coordination time min E flights maximum delay min 130 APPLY CLOSE COFEE settings panel 59 It is necessary that the lt APPLY gt should be pressed so as LCCR takes the modifications performed by the end user into account in the future When lt APPLY gt or lt CLOSE gt is pressed the
103. ng each of these objects to represent them and to interact with them 6 Index We sum up some notations used throughout this document so as to make its reading easier aa f arrival aerodrome of flight plan f AT aircraft type of flight plan CA at category of the aircraft type at max ca maximum delay of category ca CT s co ordination time of sector s da departure aerodrome of flight plan c a curfew of aerodrome a set of times C s capacity limit profile graph of sector s Co s capacity limit initial profile graph of sector s demand C s t capacity limit profile of sector s at time t C s t capacity limit initial profile of sector s at time t demand CCOV s capacity critical over volume of sector s CCP s t capacity critical profile of sector s at time t CDOV s capacity demand over volume of sector s CDP s t capacity demand profile of sector s at time t CFOV s capacity forecasted over volume of sector s CFP s t capacity forecasted profile of sector s at time t d delay of flight plan domain variable F s set of flight plans crossing sector s elementary or collapsed dmax flight plan delay d upper bound Amin f flight plan delay d lower bound d f s physical crossing duration of flight plan f in sector s not taking into account the sector co ordination time CT s L s load limit profile graph of sector s Lo s load limit initial profile grap
104. ning the quality of the solution when the problem is over constrained For a given sector s we note p s its load priority concerning the relaxation this load priority should emphasise the urgency to relax the corresponding sector in case of load relaxation The more the dynamic load demand profile exceeds the load maximum profile the more probable is the sector to be relaxed This is the idea used when load relaxation is performed by LCCR In a empirical manner we define the load priority p s of a sector s as a linear combination of its load over volumes i e of its load demand critical normalised as we will see and forecasted volumes More formerly Vses Pr S 0 LDOV s B LFOV s y LCOV s with LCOV s LCOV s LDV s LCV s with y lt B lt a And so as to give precedence to the load demand over volume which is the most reliable function is greater than B and y Moreover as the load forecasted volume seems to be empirically better than the load critical profile B is greater than y The normalised load critical over volume LCov is used instead of the load critical over volume Lcov so as to curb its impact and so as to get an homogeneous priority expressed in minute Note that when LCOV s is null all the other over volumes are null as well and that consequently p s is also null These factors are delicate to tune and with a 3 B 2 and y 1 LCCR seems to be set correctly 4 3 4 3 2 Selecting the relevant sec
105. nir sur une tr s courte analyse des r sultats provisoires obtenus La deuxi me partie est un rapport technique r dig par E Mercier ing nieur de la soci t Cosytec qui a r alis la programmation du prototype La troisi me partie est le manuel d utilisateur 19 CONCLUSION Je r p te que les r sultats obtenus restent provisoires Entre autres imperfections ils ont t obtenus en donnant la m me valeur num rique des param tres individuels comme la charge maximale par secteur et le d lai maximal acceptable par avion Pour s approcher davantage de la r alit ces valeurs doivent tre individualis es Cette adaptation ne peut tre r alis e que par des op rationnels exp riment s En outre les lacunes mentionn es dans le rapport devraient tre combl es ult rieurement Je pense en premier lieu l int gration au mod le de la r gulation des a roports Toutes ces am liorations ne pourront se faire qu en collaboration troite avec des op rationnels actifs N anmoins malgr les imperfections cit es on peut dire d s maintenant qu une r gulation bas e sur des contraintes de charge est plus efficace que celle bas e sur des contraintes de capacit en termes de d lais et de nombre d avions retard s ETUDES ULTERIEURES Si le nouveau concept propos est accept je verrais des d veloppements dans trois directions Ajouter la r gulation des a rodromes la r gulation de l espace a rie
106. now the delay of that given flight plan you know all the entering times of the sectors it crosses In terms of equation we can write VfteF Vses t s t s d f Or written in a different way t s t s d f We define for each sector s the set of flight plans crossing it noted F s feF f crosses s For one flight plan there is only one unknown which is its delay after regulation d all other variables t s and t s of that flight plan are related to the delay domain variable by a linear equation so that there is only one free variable per flight plan The constraints Now that we have defined the variables of the problem let us explain the different constraints we have posted on them The non overload constraint ability constraint This constraint is the main part of the constraints It enables LCCR to express the fact that a sector must not be overloaded either on load or on capacity or both We remind that LCCR only regulates the flight plans departing the day of the regulation considered For more convenience we call this constraint the ability constraint in the future So as not to overload the reading of this document we will only give the explanations concerning the load the capacity constraint can be easily deduced from what has been said concerning the load constraint 27 To explain this constraint we have to go into more detail concerning the way the phy
107. nstraints on the flight plans delays domain variable so as to specify that these variables are not allowed to exceed their current maximal value However it may happen that certain flight plans delay cannot be curbed enough for these flight plans LCCR grants just the necessary relaxation provided it does not exceed the maximum relaxation given when defining the domain variables so that these flight plans can be placed In opposition to what is performed for the ability constraint posting if a flight plan can not respect its demand maximum delay constraint LCCR can always relax its delay within its maximum delay relaxation so that this stage is always successful 4 3 1 3 2 Not the first time relaxation 4 3 1 4 In this case it is not the first time LCCR posts the constraints it is only the case when LCCR performs some relaxation In this case the two types of constraints are re posted in the same order but with the relevant domain variables upper bounds re adjusted Enumeration All the constraints are posted now the enumeration can start We explain in the next paragraph the different strategies used in LCCR However each time the enumeration fails partially or not and that some relaxation is asked for LCCR returns to the step before that is to say to the constraints posting 33 4 3 2 4 3 2 1 4 3 2 2 4 3 2 3 The main line strategy LCCR tries to place all the given flight plans respecting the different
108. ntly of the capacity ROUND TRIP FLIGHTS Two flights are considered being the first and second leg of a round trip flight if The callsigns are the same except the last digit that is increased by one for the return flight The aircraft types are identical The departure and arrival airports are swapped A predefined fixed time period input parameter has to elapse between the arrival of the first leg flight and the departure of the return leg Thus a delay encountered on the first leg will be propagated to the return leg CO ORDINATION During the whole traversal of a sector a flight is under the control of the air traffic controller responsible for this sector But the activity of the controller starts x minutes before the flight enters its sector These x minutes are called the co ordination time During this time the control remains under the responsibility of the previous sector but the controller of the next sector has to take the flight already into account in order to prepare the insertion of the flight into the traffic of the other flights traversing the sector at the same period Each sector has its own individual co ordination time But an overall unique numerical value input parameter can overwrite the individual values The co ordination time is added to the duration of traversing of the sector by the aircraft in order to fix the activity duration time OVERLAPPING FLIGHTS Flights the estimated departure time tak
109. o be noted concerning this double regulation except for the relaxation and we will discuss this issue later Relaxation This mechanism is essential in LCCR since most of the data are over constrained LCCR provides the opportunity to soften somehow different constraints of the problem Without relaxation no solution could be provided simply because there is no solution That is the reason why we stress the importance of the corresponding solving parameters which modify a lot the physiognomy of a solution Much care is to be brought by the end user on the definition of the different relaxation parameters Global mechanism There is a global mechanism concerning the relaxation on LCCR LCCR always relaxes first on the maximum delay of the flight plans and if there is still no solution it relaxes the abilities of the sectors load or and capacity We first detail the mechanism concerning the flight plans delay maximum relaxation and then the relaxation on the sectors abilities The flight plans delay relaxation This is the first kind of relaxation performed by LCCR This relaxation occurs when a group of flight plans cannot be placed entirely that is to say when LCCR does not find any proper delay value for at least one flight plan This 42 4 3 4 3 relaxation is active only if the corresponding solving parameter is enabled by default it is and if the other related parameters delay relaxation step percentage and delay rel
110. of a chart diagram for example and all these preferences are saved each time the end user saves the data into a file named preferences lccr It is necessary that the lt APPLY gt should be pressed so as LCCR takes the modifications into account in the future When the end user presses the lt APPLY gt or the lt CLOSE gt button the panel disappears 62 4 2 1 4 4 2 2 4 2 2 1 Exit lt Ctrl X gt This function enables the end user to quit LCCR The end user should save the demand and optionally the regulation data before leaving if she wants to be able to recover them in a next session of LCCR Edit For this paragraph we consider that a set of demand data has been loaded into memory through the command lt File Open gt Flight Ctrl 1 Aerodrome Ctrl 2 Aircraft type Ctrl 3 Elementary sector Ctrl 4 Collapsed sector Ctrl 5 Sector Ctrl 6 Discard solution set Alt D Visualize solution set Alt V Activate modify mode Alt M Activate modify 8 insert mode Apply global value x lt Edit gt menu This menu enables the end user to search for a specific kind of object aerodrome aircraft type sector and to display it in the upper frame not having to view the full corresponding list It also enables LCCR to swap between different modes of use and to apply global values to the objects Note that when the end user searches for a specific kind of object if this object exists the whole list representing all the object
111. of the lower frame the flight route composed by elementary sectors crossings When finished she must validate the flight route through the lt Validate gt function above the lower frame once the flight route validated it cannot be modified any longer in the future Then the end user must fill in the information asked for in the upper frame including the call sign of the flight plan in the row header When finished the end user must validate the information through the lt Validate gt function above the upper frame After this step the new flight plan is created and LCCR exits from the insert mode the end user can abort at any time the insertion of the currently created object by calling the lt lgnore insert gt function the call sign of the flight plan cannot be changed any longer in the future 4 3 3 2 1 The flight route Each time the end user wishes to add an elementary sector to the route she has to call the lt Insert record gt function above the lower frame specify the name of the elementary sector in the row header field the entry time in the exit time from that elementary sector the type field and the crossing time field are not editable on purpose When she wants to erase an elementary sector from the route she just has to call the lt Delete record gt function above the elementary sector row to delete Only when the end user is satisfied with the global route she has to call the lt Validate gt function above the
112. ome relevant information about the state of the application the environment field the status field the message field Some message boxes are displayed to allow the end user to confirm actions abort actions enter some needed value Load and Capacity Constraint Regulation File Edit Viewdemand Solve View regulation Environment field Environment for SAT 27 2 1999 version 0 solution set 1 blocked mode COLLAPSED SECTORS regulation LSAZUP1 LSAZUP2 LSAZUP3 LECMTLD LECMVTB LIMMEN1 LIMMENZ LPPCUNS LPPCUCS LPPCUSS LPP 6 LIPPN1 LIPPN2 LIPPN3 6 274 LIPPS1 LIPPS2 LIPPS3 6 264 EGTTBNH EGTTGOL EGTTBNL 6 395 23700 LIRRDEP LIRROVS 6 506 1 8640 1938 30360 290 LFFSU LFFAO 6 278 1 4878 0 16680 284 LECMTIN LECMZMILECMVWTR IEC ER 750 15 163an 1 SO 279 Splitter iS r Capacity on sector LECMPZ capacity regulation Sat 27 Feb 1999 00 00 01 00 02 00 03 00 04 00 05 00 06 00 07 00 08 00 09 00 10 00 11 00 12 00 13 00 14 00 15 00 16 00 17 00 18 00 19 00 20 00 21 00 22 00
113. or all the flight plans Moreover we see that relaxation is inefficient concerning the exempted flight plans since for them max d 0 Note that with relaxation the other constraints round trip and equity are still handled by the solver If no more delay relaxation is possible i e when all the flight plans not yet placed are already fully relaxed or when delay relaxation is not active LCCR performs relaxation on the sectors abilities The sectors load relaxation We suppose that the end user regulates by load and that she has set the flight maximum delay relaxation mechanism on This is the second type of relaxation performed by LCCR The mechanism described bellow is active only if the end user has made the corresponding solving parameters active and if she has properly defined the other related parameters load relaxation percentage and load relaxation maximum percentage This relaxation is part of the sectors abilities relaxation When no more flight plan delay relaxation can be performed LCCR relaxes the load maximum profile L s of some sectors collapsed and elementary so as to provide a solution to the problem All the problem consists in finding the relevant sectors to be relaxed that is to say the sectors that prevent currently the solver from finding a solution To find them LCCR uses all the previously described evaluation tools 43 4 3 4 3 1 The sector load priority function This function is very decisive concer
114. oses a regulation simulation all over Europe restrictively on the flight plans scheduled to be departed on that given day This regulation is limited to the sectors even if the aerodromes curfew constraint is taken into account no regulation is performed on the aerodromes otherwise To be a decision help application on the one side it presents the demand as well on charts and on lists on the other side it presents the result of regulation A particular effort was brought concerning the different tools of monitoring so as to enable the end user an air traffic controller to determine quickly what flight plan or what sector is mostly responsible for a given delay 3 A short word concerning Constraint Programming CP LCCR uses the Constraint Programming technology provided by Cosytec SA This technology is based on a paradigm that enables the CP user to model its problem in terms of variables discrete in our case give to each of them an initial valid domain express the constraints on them that represent the real constraints of the problem and find a solution for all these variables that is to say to give them a unique value These three steps can be summed up as follows 1 The real problem is thought in term of variables that have an initial valid domain representing the different values it can take a priori These variables should be the unknowns of the problem 2 The constraints of the problem must be thought as constraints on the va
115. panel disappears 4 2 1 2 LCCR This part concerns the LCCR reading saving closing and setting 4 2 1 2 1 Open lt Ctrl O gt Function that enables the end user to load the entry demand data into memory LCCR asks the end user to select the directory in which the data are saved for that purpose it displays a selection file box open at the root path directory displaying all the LCCRYYYYMMDD directories containing all the DEMAND_yyyymmdd_hhmmss directories holding the data When this name is followed by a the corresponding directory holds as well the information concerning a solution dd mm yyyy stands for the date when the data were saved the day when the solution was found when and hh mm ss stands for the time when the data were saved the time when the solution was found when During this operation LCCR loads into memory the LCCR files from directory named LCCRYYYYMMDD DEMAND yyyymmdd_hhmmss Thus this function enables the end user to open demand data with or without regulation solution associated LCCR file x Directories C AUsers Edouard Data LCCR19990618 DEMAND 19991207 153205 C AUsers Edouard Data LCCR19990618 DEMAND 19991208 114135 C AUsers Edouard Data LCCR19990618 DEMAND 19991208 120049 C Users Edouard Data LCC R19990618 DEMAND 19991208 160113 C AUsers Edouard Data LCCR19990618 DEMAND 19991208 165651 C AUsers Edouard Data LCCR19990618 DEMAND 19991208 171415 C AUsers Edouard Data LCCR19990618 DEMAND 199
116. ph 3 shows the same than graph 2 plus the impact of the capacity regulation on the load curve e Graph 4 and 5 give the curves corresponding to load regulation e Graph 6 gives an overall view of the total delay distribution 3 CONCLUSION As said before the previous results are still provisional They were obtained in giving the same numerical value to individual parameters maximal basic sector load and maximal accepted flight delay To improve the results and make them closer to reality the values of these parameters have to be adapted to the individual sector and flight situations This work can only be accomplished by experienced operational staff Furthermore the shortcomings mentioned before should be dealt with in particularly the integration of the airport regulations that are not yet covered Many other improvements defined in close collaboration with operational staff will hopefully be implemented later Nevertheless despite the previously mentioned shortcomings we can state by now that traffic flow regulation based on sector load constraints is much more efficient in terms of delays than regulation based on sector capacity constraints 4 COMPLEMENTARY STUDIES If the new concept is going to be validated the main further studies proposed are e Add airport regulation to the current airspace regulation e Add to the current regulation based on flight delays the alternative of rerouting e Implement various priority schemes
117. place it with a delay equal to the lower bound value dmin of its current delay domain variable d This strategy globally tends to minimise the total sum of the flight plans delays 4 3 3 5 5 2 Optimisation parameters However the strategy is more complex when some optimisation parameters are active Three optimisation options are available in LCCR either the end user chooses to minimise the number of flight plans delayed or she wants to minimise the total delay sum of all the flight plans said in another way the average delay per flight plan or she decides to minimise the average delay per delayed flight plan average delay per delayed movement 4 3 3 5 5 2 1 Number of flight plans delayed optimisation Before setting a given flight plan to a feasible delay value LCCR tries a range of feasible delay value LCCR contemplates each of these feasible 40 delay values and will try to instantiate the delay domain variable d to the value that minimises the number of flight plans delayed The way to know what is the best value is to store the state of all the domain variables instantiate the corresponding flight plan delay domain variable d to one of its domain value look at the constraints propagation deduction and keep the value that minimises our criteria 4 3 3 5 5 2 2 Average delay per flight plan optimisation Before setting a given flight plan to a feasible delay value LCCR tries a range of feasible delay
118. plans that take off or land on an aerodrome a subject to some curfew during an aerodrome curfew c a no flight can take off nor land on the aerodrome This implies that the concerned flight plans can only take off and land respectively outside their departure and arrival aerodrome curfew These flight plans will be delayed or limited in delay so as to respect this constraint An exception is accepted when the flight plan was formerly scheduled to take off or to land respectively during its departure or arrival aerodrome curfew Moreover the curfew on an aerodrome can be made of several periods LECR considers as well curfew on departure as curfew on arrival More formally we can write V fe F if tte f c da then ti f ec da f and if t c aa then t f e ec aa f The category constraint This constraint handles the flight plans whose aircraft types have disparate passenger capacities This constraint forces flight plans to take into account the capacity of its passenger welcoming thus it introduces the notion of category Aircraft categories LCCR introduces different categories of air planes sorted according to the number of passenger it is able to welcome Currently the first category gathers all aircraft types able to welcome more than 300 passengers the second category gathers all aircraft types able to welcome between 100 and 300 passengers 31 4 2 5 2 4 2 6 4 3 We note cA at th
119. pport traite dun changement fondamental des proc dures de r gulation des flux a riens ma connaissance ce nouveau concept n est pas pr sent dans les programmes officielles d EUROCONTROL de l Union Europ enne et d autres organismes de contr le a rien Pour cette raison je tiens rappeler la formule apparaissant sur la page de garde du fascicule Ce rapport ne refl te que les opinions de son auteur ll ne repr sente nullement la politique officielle de l Agence En outre les r sultats n ont pas encore taient valid s par les op rationnels Enfin quoique l auteur e t b n fici de nombreuses discussions avec des contr leurs a riens et des contr leurs de flux durant les 29 derni res ann es il n a jamais t n est pas et ne sera jamais ni un contr leur a rien ni un contr leur de flux Ainsi d un manque de collaboration formelle avec des op rationnels except l aide p riodique d un contr leur de flux de la CFMU qui d ailleurs a t tr s efficace l tude n a pu tenir compte que tr s partiellement des probl mes r els rencontr s journellement par les contr leurs actifs Par cons quent les id es exprim es sont personnelles et l auteur regrette qu elles n aient jusqu maintenant attir aucune attention de la part du monde op rationnel Le rapport est divis en trois parties La premi re partie revient sur l arri re fonds explique les sp cifications et l installation du prototype pour fi
120. ration coord which is the sum of all the crossing flights duration including the sector co ordination time expressed in minute this value is called the load demand volume LDV in the LCCR reference manual The load cumulative overload coord which is the total number of minute during which the load demand profile exceeds the load limit profile This value is expressed in minute this value is called the load demand over volume LDOV in the LCCR reference manual The capacity cumulative duration which is the sum of all the crossing flights duration if we considered that each flight plan would cross the sector during collapsed sector capacity unit minute this value is called the capacity demand volume cDv in the LCCR reference manual The capacity cumulative overload coord which is the total number of minute during which the capacity demand profile exceeds the capacity limit profile This value is expressed in minute this value is called the capacity demand over volume cDov in the LCCR reference manual 4 3 7 1 2 Regulation additional information The load relaxation which is the number of additional units granted during all the regulation day limited to the sector open periods to the sector load limit profile during the solving regulation The load relaxation which is the percentage of additional units granted during all the regulation day limited to the sector open periods to the sector
121. re commonly of flight plans from Europe so that the different physical sectors and aerodromes should not be overloaded This charge is done in real time by the air traffic controllers in Brussels Here to regulate an air plane means to delay its departure time if necessary The constraint of load and capacity are not the only ones and there are other constraints such as equity constraints concerning flight plans with same departure and same destination and priorities constraints concerning flight plans of air planes presenting different passengers capacity 2 What LCCR proposes So far this regulation mission is given to the CASA system which works with slots allocation LCCR proposes to make up this regulation regarding the main target which is to regulate all the flight plans over all the sectors This regulation is obviously a simulation 2 1 What LCCR is not LCCR is absolutely not a real time application since it was not designed for The data concerning the flight plans are given as an entry to LCCR nevertheless the data resulting from the regulation made by LCCR is never given back to the system that provided the entry data However this does not imply that it would not be feasible with the technology used in LCCR 24 2 2 LCCR purpose LCCR purpose is to provide a decision help application for the CFMU controllers thus for a given day and all the flight plans scheduled during that day by the air companies LCCR prop
122. recasted profile Another measure allows to refine dynamically the heuristic this is the load forecasted profile of a given sector s noted LFP s t or LFP s for the profile graph This profile was also designed in order to choose correctly the flight plans the most urgent to be placed This profile is defined for each sector and it represents the potential difficulty for a sector to accept all the flights scheduled to cross it this measure is very close to the load critical profile but it is less critical however It is defined in the following way Considering a sector s for each flight plan which crosses s the load forecasted profile is increased by d f s CT s dnax Amin d s CT s unit during the interval time At defined by At t t 8 CT s dmin St lt t 8 dnax This interval time represents the maximum occupation of flight plan in sector s as for the critical profile Note that this interval time At is never empty and that it is also equal to the demand and regulated crossing interval time of flight plan in sector s when flight plan is placed When the contribution is defined on sector s for all the crossing flight plans feF s we get this load forecasted profile This profile is a normalisation of 37 the current load critical profile representing an equi probabilistic load profile and that is why we call it a forecasted profile When all the crossing flight plans F s are p
123. riables which means that the model must be designed so as to enable the CP user to model the constraints as well Here Cosytec SA supplies a pack of pre defined global powerful constraints on the one hand that enable a more natural way of designing the different constraints on the other hand that deduce powerfully restrictions of the domain variables 3 Once these two steps achieved the CP user must elaborate a strategy so as to find a feasible solution as fast as possible Cosytec SA supplies a mechanism that enables the CP user to build dynamically a search tree while always respecting the constraints 4 The model We now present the way the problem was modelled and the constraints expressed as well as the strategy used to provide a solution We present the design of the model lt is very important to understand this model if we want to be able to understand the way LCCR works to find a feasible solution 4 1 The variables Before all let us notify the reader of the notation taken further the indices and Stand respectively for estimated and regulated Off course when a variable takes one of these two indices it indicates that we refer to its estimated or regulated measure accordingly The same kind of convention is taken for the exponents and standing respectively for in and out 25 The flight plans scheduling problem is easily modelled by variables In this document note that we use very ofte
124. ring which the sector s is crossed including the co ordination time CT s t 24 60 1 LDV s Y LDP s t t 0 Note that this measure is constant all solving long what LCCR performs is to shift this load volume so as not to overpass the load limit profile 4 3 3 5 2 2 The load critical over volume For a given sector the load critical profile is also evaluated so as to be compared to the load limit profile When the load critical profile does never exceeds the load limit profile LCCR is ensured that there will no problem on the given sector from a load constraint point of view at least Nevertheless when this load critical profile exceeds the load limit profile it is possible that the corresponding sector might be overloaded Off course this does not mean that it will be overloaded and that regulation has to be performed on it but by comparing these load critical over volumes LCCR can sort the sectors The dynamic upper surface which is called a volume between the load limit profile and the load critical profile is called the load critical over volume and is noted LCOV s for a given sector s 38 Formally Vse 8 t 24 60 1 LCOV s XY max LCP s t L s t 0 t 0 We also define the load critical volume LcV s which is the total amount of minute during which the sector s would be crossed including the co ordination time CT s if each flight plan feF s of all the flight plans crossing it crossed it during a period increa
125. ristic A strategy in the order the flight plans are instantiated within a group As explained upper there is another heuristic defined which handles the flight plans of a group Once a group of flight plans has been chosen by LCCR these flight plans are going to be instantiated This strategy defines 34 4 3 2 4 4 3 3 4 3 3 1 4 3 3 2 in what order the flight plans are placed and it depends on the options selected in the solving parameters panel as we will see A strategy for the delay of a given flight plan At an even finer level LCCR defines a strategy that chooses a feasible delay value for a given flight plan to be instantiated This strategy will be discussed later on and we will see that it depends on some other solving parameters dealing with the optimised results query Different strategies for different aims The round trip priority First note that this option is effective only when the round trip constraint is enabled When this option is selected LCCR will give priority to the round trip flight plans And yet it does not mean that LCCR places first the round trip flight plans The strategy adopted is quite different when this option is enabled Indeed when a flight plan is bound to be placed LCCR looks if this flight plan is part of a round trip flight plan and if it is the case it does not only place this flight plan but also the flight plan linked to it And to improve its chance of success LCCR tri
126. rofile as we just introduced it LCCR does not try to place all the flight plans of a sector but instead it tries to place first the most critical flight plans To do so LCCR considers a load priority function for each flight plan which will be referred to by the notation p 4 3 3 5 3 1 The flight plan load priority function We now give the way the flight plan load priority function is built Given a flight plan we consider recursively all the sectors elementary and collapsed that it might physically cross s And for each sector ses it crosses LCCR computes its contribution to the eventual overloading volume during the interval time it would cross s if its delay d were equal to its current delay lower bound value dain This contribution is added to Pz which was previously reset to 0 More formerly 39 V EF t ti s CT s d s d j 1 pi f Y Y max LDP s t L s t 0 ses f t ti s CT s d 4 3 3 5 3 2 How the flight plans are ordered Thus we get for each flight plan a sum of all the crossed sectors contribution LCCR sorts the flight plans not yet placed by decreasing priority It then normalises the load priority by giving the value 100 to the flight plan with the highest load priority noted P max p fe FY and for each flight plan the previous priority p is replaced by px P Now the flight plans are sorted and LCCR chooses the next group o
127. round trip flights are not notified in the entry data of LCCR in order to find these round trip flight plans LCCR uses an additional criteria A flight plan is the return flight plan of a flight plan f if flight plan is scheduled to depart between round trip mini and round trip maxi minute after flight plan f scheduled arrival In equations it makes Vf e F V e F if da f aa f aa f da f AT AT and round trip mini lt t 2 t lt round trip maxi 30 4 2 4 4 2 5 4 2 5 1 then f the first leg and f the second leg is a couple of round trip flights In this case only the round trip constraint imposes that the delay of the return flight plan should be greater or equal to the delay of the one way flight VfieF Vf gt e F f the first leg and f the second leg is a couple of round trip flights d f round trip trigger d f As for the equity constraint the parameter round trip trigger settable through the solving parameters panel allows the constraint to be more operational and flexible with it the delay of the return flight plan f is only impacted if the delay of the one way flight plan f is strictly greater than round trip trigger This constraint emphasises the fact that the same air plane is used for the two flight plans and that it needs to be re prepared after the one way journey The aerodromes curfew constraint This constraint concerns the flight
128. s of the same type may be not displayed There are two cases either the whole list exists and it is displayed or it does not exist and in this case the list displayed is only composed by one row the one representing the object In any of these two cases the object is selected we say that an object is selected when one row representing that object in a list is selected through its row header and consequently highlighted 22680 0 21180 0 A list example Search and edit an object For all the functions described in this paragraph if the end user presses the lt VALIDATE gt button without having fulfilled the dialog box text field the search is cancelled Moreover when the end user has fulfilled this text field she can directly press the lt ENTER gt key so as to get the same effect as the lt VALIDATE gt button 63 4 2 2 1 1 Flight lt Alt F gt When this function is triggered the end user is asked to enter a flight plan call sign and if the corresponding flight plan exists it is displayed and selected in a list 4 2 2 1 2 Aerodrome lt Alt A gt When this function is triggered the end user is asked to enter an aerodrome code and if the corresponding aerodrome exists it is displayed and selected in a list 4 2 2 1 3 Aircraft type lt Alt T gt When this function is triggered the end user is asked to enter an aircraft type code and if the corresponding aircraft type exists it is displayed and sel
129. s variable s name is LCCRPATH and it should point to the directory where the COFEE environment data environment is to be thought in terms of regulation extracted lie We call this directory the LCCR path and in the future every directory will be referred relatively to that root path In wrong cases LCCR issues two kinds of error message boxes LCCR messages EX Environment variable LCCRP ATH is not set Cannot run LCCRPATH environment variable not set LCCR messages Environment variable LCCRP ATH set to improper value exemple de mauvais chemin Cannot run EXIT LCCRPATH environment variable badly set Possible confusion on the word extraction So that the reader makes no confusion we should warn her that we often use the same word for two different things Indeed when we talk about extraction it can refer either to COFEE data environment extraction via the software COFEE or to the extraction available in the LCCR prototype to translate the COFEE data environment and the ALL_FLIGHTS data flight plans into the LCCR entry demand data In the future we talk of COFEE extraction in the first case and of LCCR extraction in the second case The permanent data files LCCR uses two types of demand data files as an entry for the loading Once some LCCR extraction has been completed the end user can load the LCCR demand data produced by this extraction However LCCR needs the 53 3 2 3 3 2
130. sed by its delay domain variable d range dmax Amin t 24 60 1 LCV s Y LCP s t t 0 Here this measure is not constant but tends to be equal to the load demand volume LDV s the more flight plans are placed the closer the load critical volume to the load demand volume is This value does not represent anything concrete that is why afterwards we will consider a value deduced from it 4 3 3 5 2 3 The load forecasted over volume For a given sector the load forecasted profile is evaluated so as to be compared to the load limit profile By comparing these load forecasted over volumes LCCR can sort the sectors The dynamic upper surface which is called a volume between the load limit profile and the load forecasted profile is called the load forecasted over volume and is noted LFOV s for a given sector s Formally Vse 8 t 24 60 1 LFOV s X max LFP s t L s t 0 t 0 We do not have to introduce the load forecasted volume LFV s since it is equal to the constant load demand volume LDV s LFV s LDV s 4 3 3 5 3 The heuristic to choose a group of flight plans Now we return to the heuristic used to select a group of flight plans When LCCR regulates by load it uses fully these load profiles LCCR computes the load profiles on all the sectors elementary and collapsed For each one of these profiles it defines the load over volumes which represent the surfaces of the load profiles above the load limit p
131. sical sectors are treated all over Europe 4 2 1 1 The notion of sector A sector is a physical volume of the European airspace To each sector is assigned at least one air traffic controller And yet this does not involve that an air traffic controller is assigned to a single sector Thus a sector can be elementary on a time period grouped with others in a collapsed sector on an other time period It is necessary to introduce the elementary and the collapsed sectors so as to make things clear 4 2 1 1 1 The elementary sector The elementary sector is a sector that is monitored by an air traffic controller who does not monitor any other sector during a time period of the day 4 2 1 1 2 The collapsed sector Whereas a collapsed is a gathering of sectors on which a controller is assigned during a time period of the day Currently we consider that a collapsed sector can only contain elementary sectors 4 2 1 2 Characteristics of a sector its ability A sector noted s elementary or collapsed is given a load limit profile as well as a capacity limit profile we talk about ability limit profile in general 4 2 1 2 1 The load limit profile The load limit profile L s corresponds to the graph displaying number of air planes that are allowed to be in at the same time This load limit noted L s t can vary during the day t standing for the time Indeed the different load limits are given as an entry of the problem for each t 0 lt t lt 24 60
132. some information concerning the object represented by the row respectively by the cell in the lower frame If the end user clicks on a row header representing a sector with the left mouse button and the lt Ctrl gt key pressed at the same time LCCR displays the chart diagram corresponding to the traffic that crosses this sector see The charts diagrams for more information 4 4 1 2 1 Special behaviour This mechanism is also used in two other special cases even if the list on which it is applied is not in the upper frame 4 4 1 2 1 1 On a flight route list While viewing a flight route list in the lower frame when the end user clicks with the left mouse button on the row header of a sector elementary or collapsed LCCR displays in an outer frame its information in two split non editable lists If moreover the end user pressed the lt Ctrl gt key at the same time LCCR will issue in an outer frame a list presenting the detail concerning that sector above and its chart diagram below 4 4 1 2 1 2 On a flight plans list got through the lt View flight plans at gt function 4 4 2 4 4 3 4 4 4 While viewing the list of the flight plans crossing a given sector at a given time got through the lt View flight plans at gt functions above a chart diagram when the end user clicks the left mouse button on the row header of a flight plan LCCR issues in an outer frame two non editable lists split representing the detai
133. t plans LCCR takes compared to the total number of flight plans for each group placement 2 The bar represents the quality of the solving referred as search quality On this factor depends the frequency of the solver strategy refreshing the higher the corresponding value is the finer the solving will be but the longer the solving will be For any detail concerning the solving quality please refer to the LCCR reference documentation 4 2 4 1 5 Regulation type This frame enables the end user to specify what kind of regulation she wants LCCR to perform non exclusively e Capacity when this button is active the regulation by capacity is taken into account e Load when this button is active the regulation by load is taken into account Note that for instance when the end user selects the load regulation and disables the collapsed sectors in the constraints used regulation on the collapsed sectors will not be performed by the solver For any detail concerning the regulation type please refer to the LCCR reference documentation 4 2 4 1 6 Global parameters This frame gathers the necessary information concerning the olobal parameters Note that the individual values are not overwritten by the global parameters the solver only uses the global parameters when demanded for the regulation Thus the end user should be very carelul on that point 71 Sectors co ordination time the end user should enable the lt individual
134. t provide any capacity for the extraction day in this case LCCR uses the capacity in file collapsed_sectors_default_capacities Iccr 57 COFEE elementary_sectors_never_open lccr elementary sectors never open during the extraction day that is to say with no open period during the extraction day COFEE elementary_sectors_not_found lccr elementary sectors used in the description of a flight plan but not present in COFEE files for the extraction day COFEE elementary_sectors_not fully open lccr elementary sectors that are not always open during all the day of the extraction that is to say for at least one period of time of that day that means that this elementary sector has the property not be collapsed in any activated collapsed sector neither to be activated during that period COFEE_elementary_sectors_without_capacity_defined Iccr elementary sectors with an open period on which the COFEE extracted files do not provide any capacity for the extraction day in this case LCCR uses the capacity in file elementary_sectors_default_capacities Iccr COFEE_extraction_statistics Iccr file that gathers different information concerning the extraction COFEE_flights_crossing_never_open_elementary_sector lccr flight plans kept for the extraction day that cross at least one elementary sector never open during the extraction day COFEE flights_crossing_not_ fully_open_elementary_sector Iccr flight plans kept for the extraction day that cross at l
135. these flight plans are taken to be instantiated is given by their estimated departure time locally the first flight plan to take off is the first to be placed When one of the equity constrained linked flight plan cannot be placed LCCR considers that the former flight plan selected cannot be placed As for the previous priority it is very wise always to activate this option The reason is about the same as for the round trip priority if you do not activate this option LCCR may place a flight plan with very little delay while this flight plan belongs to a group of equity constrained flight plans and that this flight plan is estimated to take off one of the last among the group If the equity priority is inactive and that LCCR first places this flight plan the maximum delay of the other flight plans of the group will be constrained to be somehow less delayed than the flight plan placed and relaxation on them will be useless 35 4 3 3 3 4 3 3 4 4 3 3 5 The round trip and the equity priorities altogether When both of the priorities are activated and if both their corresponding constrains are enabled LCCR gives priority as well on the round trip constrained and the equity constrained flight plans In this case when LCCR tries to place a flight plan it first deals with the round trip case Afterwards it deals with the equily case Nevertheless these two options selected altogether can provide a triggering behaviour to LCCR if the
136. tion how this relaxation proceeds will be explained in the relaxation paragraph This process if continued as long as there is no more flight plan that cannot be placed If this stage fails relaxation on the abilities load or and capacity of the sectors is launched and this stage is given up A strategy to choose the groups ot flight plans Indeed LCCR does not try to place all the flight plans at the same time It divides the set F into smaller sets and then tries to place these sets of flight plans The way these groups of flight plans are chosen will be explained further as well as the order in which they are instantiated within it Once a group of flight plans has been totally instantiated which implies with success the flight plans of this group are never re put into question provided the solver is not re launched This means that the heuristic is highly important in this context Besides the number of flight plans taken to build one group o flight plans is a parameter noted group percentage that is settable through the solving parameters panel LCCR gives the end user the opportunity to indicate what percentage of flight plans are to be taken at each group definition This percentage is the percentage related to the total number of flight plans to be regulated The smaller this percentage group_percentage is the slower the solver is to provide a solution We will discuss more about this parameter when we have talked about the heu
137. tors to relax Once the load priority functions computed for each sector LCCR sorts the sectors in a decreasing priority order lt considers the sector s with the greatest px s noted P s and all the sectors with a priority greater or equal than P s decreased by ability relaxation percentage ability relaxation percentage 30 seems to be a well tuned value only these selected sectors will be load relaxed by a additional step of load relaxation step percentage More precisely the way each sector s of these sectors is relaxed follows about the same rule as for the flight plans delay relaxation e lf the sector s has already used the maximum allowed relaxation that is to say if the load relaxation percentage of sector s noted relaxation s is greater or equal to load relaxation maximum percentage no additional relaxation is performed on s e Otherwise sector s is increased its load relaxation percentage by increasing relaxation s by load relaxation step percentage Without exceeding load relaxation maximum percentage This load relaxation percentage relaxation s is used to define a new sector limit profile by raising its former value by the corresponding percentage of the initial limit profile More formally if sector s is performed one moe relaxation step its relaxation s becomes min relaxation s load_ relaxation step percentage load relaxation maxi mum percentage and its limit profile L s is raised to L s
138. traction 53 viii 3 2 2 The permanent data files a 53 3 2 3 The COFEE environment data liles o cccoccoonncnnccooncnnccnononnnononoconononnroncnnoznonns 54 3 2 4 The ALL_FLIGHTS flights data Me nas nina tint 54 32 5 The ECO flles u uu aa unu linus bulanan nuhal py An ten 54 32541 The basicdemand iii Rae a ides erage met Gan SP A pu SSS aS 54 3 2 5 2 Other possible d emanmds_ u rita AS S 54 4 THE GRAPHIC USER INTERFACE 55 4 15 OVERAEPPEDAYOUTz a u unaq aaa iii 55 A THE MENUS iia uy anu u usun A A QN aa ake A aaa 55 ADT Ellen an nam L A k ov nel sh q PE Sak N usa AS 56 ARA GORBE o CR NN ash unaypa Ae ne uya lt Ne 56 42712 CCR ES nr ee A dee nee De uma qa ee een en ee 60 A ASS ATA 62 pS LA Ta t m ne I am DR aY S is ug gun S 63 AOD Edit a uuu An qhatuyta ahua Aa aap t thse 63 42 21 Searoh and editan Object u n u tt evan Qan ap a Wa ass es a aqa SM qa Ten 63 4 2 2 2 The notion of solution Set u U T S U S u uyu Tai huu ayaq aku Suku 64 42 23 Apply global Value 2 un tt usun iii ee agtapsazteazataarsast 66 423 View demanda lu urine a A 67 4231 Els Eee te EE EE EE EE PS eM a 67 42 32 A rOdroffi6S uuu l una ea errant ado uy sayay dau N ete rar rt en due d c arte t a ttes ete ad uee 68 4 23 37 Categor tarta 68 42 34 Ala POS ti ba Aiea cant avast 68 4 2 3 5
139. traction day that cross at the same time two different elementary sectors COFEE flights with unknown _aircraft_type lccr flight plans kept for the extraction day that uses an undefined aircraft type in the COFEE extracted files In this case LCCR extraction creates an aircraft type with the same ICAO code and adds it to the file COFEE _aircraft types _not_found lccr 58 e COFEE flights_with_unknown_arrival_aerodrome lIccr flight plans kept for the extraction day that land on an undefined arrival in the COFEE extracted files In this case LCCR extraction creates an aerodrome with the same code and adds it to the file COFEE aerodromes_ not found Iccr e COFEE flights with unknown departure aerodrome lccr flight plans kept for the extraction day that take off from an undefined departure in the COFEE extracted files In this case LCCR extraction creates an aerodrome with the same code and adds it to the file COFEE_aerodromes_not_found Iccr e COFEE_flights_with_unknown_elementary_sector_crossed Iccr flight plans kept for the extraction day that cross an undefined elementary sector in the COFEE extracted files In this case LCCR extraction creates an elementary sector fully open with the same code and adds it to the file COFEE_elementary_sectors_not_found lccr LCCR checks various things during that stage among these things if a flight crosses consecutively the same elementary sector it is considered to cross it only once the entry a
140. troller Thus due to a lack of formal co operation with operational staff except the sporadic help of one flow controller of the CFMU which by the way was very efficient the study could only take partly into account the actual day to day problems the active operational staff faces daily So the ideas presented here are entirely personal and the author is regretfully aware that they have not yet raised any interest among the operational staff The report is divided in three parts The first part is an explanation of the background the aim the implementation and the provisional results of the prototype It is written in common language and is due to the author The second part is a rather technical account composed by E Mercier engineer of Cosytec Complex System Technology who implemented the prototype The third part is the User s Manual xi xii PART ONE LCCR LOAD CAPACITY CONSTRAINT REGULATION ANM AO ATC ATFM CASA CFMU COSYTEC ECAC EEC FMP IFPS LCCR SRS Abbreviations Atfm Notification Message Air Operator Air Traffic Control Air Traffic Flow Management Computer Assisted Slot Allocation Central Flow Management Unit Complex Systems Technology European Civil Aviation Conference Eurocontrol Experimental Centre Flow Management Positions Integrated Initial Flight Plan Processing System Load Capacity Constraint Regulation Standard Routeing Scheme 1 BACKGROUND 1 1 ATFM Air Traffic Flow Manage
141. ues are built on The currently used CASA Computer Assisted Slot Allocation by the CFMU in Brussels is based on capacity constraints This study tries to show that a regulation based on load constraints is more efficient The sector load is the number of aircraft simultaneously present in the sector at a given moment The sector capacity is the maximum number of aircraft allowed to enter the sector in one hour Since the load constraint uses more efficiently the available airspace the traversal of a sector by a plane is much less than one hour duration that lies at the basis of the capacity constraint the total delay should decrease The results which are not yet validated by the operational staff confirm the previous hypothesis The penalisation in terms of total delay and number of delayed flights is effectively much lower than in the case of the capacity constraint regulation If this new concept is validated many studies can be done in order to improve the current flow management One of the first one should deal with various flight priority implementations This could be done in parallel with the current priority study based on the capacity constraint regulation vi TABLE OF CONTENTS PART ONE ccs oes caesicies secs catcensiec carecsscenceesegexracs cc tawesviaeenesccuecescaqestecs anameenencanesacouacesseceeenes eotacusnecens 1 1 BACKGROUND iia ie ee ee ee eee 3 1 1 ATFM AIR TRAFFIC FLOW MANAGEMENT iii
142. value LCCR contemplates each of these feasible delay values and will try to instantiate the delay domain variable da to the value that minimises the total sum of the flight plans delays The way to know what is the best value is to store the state of all the domain variables instantiate the corresponding flight plan delay domain variable d to one of its domain value look at the constraints propagation deduction and keep the value that minimises our criteria 4 3 3 5 5 2 3 Average delay per delayed flight plan optimisation 4 3 3 6 The technique is about the same Before setting a given flight plan to a feasible delay value LCCR tries a range of feasible delay values LCCR contemplates each of these feasible delay values and will try to instantiate the delay domain variable d to the value that minimises the average delay per delayed flight plan Regulation by capacity There is not much to say concerning the regulation by capacity everything that has been said concerning the load regulation can be interpreted as well for the capacity just by considering a crossing time duration of 60 minutes for each sector crossed by a flight plan 4 3 3 6 1 Link with the load In other words LCCR works with capacity in the same way as for the load all the equations remain correct if you replace d s CT s by the value 60 4 3 3 6 2 The formal equations So as the reader makes no confusion we give the definitions related to
143. with it and estimated to take off before it 70 e The round trip priority when LCCR places a flight plan during the solving it places as well its linked flight plan if it belongs to a round trip flight plan couple so as to minimise the difference between the regulated and estimated gaps between the first leg arrival time and the second leg departure time e The category priority when LCCR cannot give priority concerning the order in which two flight plans are placed during the solving LCCR compares the category their aircraft type belong to and give priority to the flight plan with the smallest category number For any detail concerning these priorities please refer to the LCCR reference documentation 4 2 4 1 3 Optimisation This frame concerns LCCR solving optimisation There are three different optimisations available and exclusively 1 Minimise the number of delayed flight plans 2 Minimise the average delay per flight 3 Minimise the average delay per delayed flight According to the criteria LCCR will perform additional computation during the solving so as to get the best solution For any detail concerning the optimisation please refer to the LCCR reference documentation A 2 A 1 4 Quality This frame concerns LCCR solving quality 1 The flight percentage field indicates the value of group percentage used to select a group of flight plans during the solving This factor corresponds to the percentage of fligh
144. y relaxation maximum percentage Capacity if this button is disabled no relaxation is allowed on the sectors capacity limit profiles Otherwise the end user should fill in the two following fields which indicate the step capacity relaxation step percentage and the maximum increase capacity relaxation maximum percentage Load if this button is disabled no relaxation is allowed on the sectors load limit profiles Otherwise the end user should fill in the two following fields which indicate the step load relaxation step percentage and the maximum increase load relaxation maximum percentage For any detail concerning the relaxation please refer to the LCCR reference documentation 4 2 4 2 View statistics lt Alt X gt This function enables the end user to display the statistics panel corresponding to the solution of the current solution set if there is one 72 LCCR statistics x Statistics capacity regulation Solution found in 274 sec Number of flights 13781 Number of flights delayed 1796 13 0 Total delay 140405 min Maximum delay 269 min Delay per flight 10 min Delay per delayed flight 78 min Flights delayed less than 15 min 326 18 2 Total delay of flights delayed less than 15 min 2484 1 8 Flights delayed between 15 and 35 min 294 16 4 Total delay of flights delayed between 15 and 35 min 7044 5 0 Flights delayed more than 35 min 1176 65 5 Total delay of flights delayed more tha
Download Pdf Manuals
Related Search
Related Contents
Samsung AVMWH035EA4 User Manual GC B lyophilisé User Manual Weslo WLEX13820 User's Manual Comment configurer votre TV-Box 取扱説明書 - Zoom D-Link WORKGROUP FIREWALL 1LAN Copyright © All rights reserved.
Failed to retrieve file