Home

as PDF - Hydrology Studio

image

Contents

1. Starting new project with Stormwater Studio is as easy as New Project creating a new word processing file you just click on the File menu select New Project That s it In fact the program is ready to start a new project upon initial launch In addition Stormwater Studio reloads the default rainfall files replacing those which may have been used in a previously loaded project 2015 Hydrology Studio Overview 13 Recent Projects New Project oa Open Project Save Project Save Project As Exit Stormwater Studio 2 1 The Basics In brief Stormwater Studio was designed to allow you to develop a plan model of a storm sewer system consisting of Lines adding data to these Lines and computing a finished design There are four basic steps in doing this 1 Drawing your system adding Lines on the Plan tab with your mouse 2 Specifying associated data for each of your storm sewer lines 3 Computing the results 4 Printing reports 2015 Hydrology Studio 14 Stormwater Studio 2016 Upstream T Surface Junction gt T Downstream Crown Rise Invert O Y Line Length 3 _ _ _ ____ _ _ CL Lines consist of a length of pipe with a junction at the upstream end A Line is a length of pipe with a junction access hole or inlet at its upstream end You can easily maintain a working model by only adding lines as necessary There s never a nee
2. Line IDs User defined Rainfall Print hi ac j Inlet IDs surface Diagram Print button is located on the Home tab Surface Charts First we ll take a look at the Surface charts which basically are plan view drawings of the 2015 Hydrology Studio Quick Start Tutorial 33 inlets To view click on the Surface tab Plan Surface Profile Reports Slope Sx Line Hao cfs Spread ft Depth Ft Inlet Catchment Carryover Captured Bypassed Gutter Inlet Gutter Inlet Id Type 1 2 29 0 54 2 72 0 11 3 36 3 36 0 34 0 34 CE 1 Crop Grate on Grade 967 Efficiency Plan view of Drop Grate inlet on grade Click Print to get a hard copy The data grid along the bottom indicates the amount of flow that was captured and how much was bypassed downstream Carryover Q is that which was bypassed by an upstream Line In this case it comes from Line 2 Click the Upstream button to view the curb inlet for Line 2 2015 Hydrology Studio Stormwater Studio 2016 Surface Profile Reports Cross Slope Sx en Di Back of Curb Line Ha cfs Spread ft Depth ft Inlet Catchment Camyover Captured Bypassed Gutter Inlet Gutter Inlet Id Type 2 1 50 0 00 1 06 0 54 8 55 127 0 23 0 31 CB 2 Curb on Grade 66 Efficiency Plan view of Curb inlet on grade Notice the Bypassed Q equals the Carryover Q for Line 1 Profile Drawings Stormwater Studio can plot a profile of any selection o
3. Merge to Existing Click this option button only if you want to connect the imported lines to the current system Next select a line number to connect to or choose New Outfall Include Elevations Check this box ON if you have assigned invert elevations Z coordinates to each of the line segments and you want to include them in the import When finished click the Import button You may need to click the Zoom to Extents button on the side tool bar to view the drawing when merging If you get an import error Stormwater Studio tries to piece together the network by connecting line segments with similar or 2 feet coordinates In the end there should only be one line that it couldn t connect Line 1 If it cannot configure your import file it s probably due to the lines not being drawn in the upstream direction or if two or more lines couldn t be coordinate matched Check your import file for these possibilities and try again Exporting Lines to DXF Any plan layout can be exported to a dxf file To export select Export Lines as DXF from the Import Export menu Import System from Land XAML Export System to Land XAML q Import Lines from DXF amp Export Lines to DAF Next enter the name of the file you wish to export Note that the labels lines etc will be assigned individual layers so that you can use or delete them if needed Adding Custom Labels Stormwater Studio allows you to annotate yo
4. 0 00 surface Elev Up ft 907 00 Benching Depressed y Line 2 Pipe Data Now select the Runoff tab to enter the data associated with the runoff The data inputted should reflect the following O 2015 Hydrology Studio Quick Start Tutorial Line Number Known Q cts Drainage Area ac Runoff Coefficient C 0 70 Tc Method Inlet Time min 10 0 Line 2 Runoff data Select the Inlets tab and enter data for the Curb inlet as shown below 2015 Hydrology Studio 2 Stormwater Studio 2016 Line Number Inlet Id CB 2 inlet Type Location Bypass Target Line 1 Drop Grate t Inlet Length ft 4 00 Throat Height in 4 00 Cross Slope 5x ft ft 0 02 Gutter X Slope Sw ft ft 0 05 Gutter Width ft 2 00 Local Depression a In 2 00 Longitudinal Slope ft ft 0 005 Manning s n 0 013 Line 2 Inlet data Next select Line 1 by either clicking on its junction on the drawing canvas or by simply clicking the Downstream button Click Downstream to select Line 1 Enter data for the Pipe Runoff and Inlet for Line 1 as follows 2015 Hydrology Studio Quick Start Tutorial 2 Runott Pipes Line Number Line Id Inlets 1 ay 4 Alignment Downstream Line No Outfall Line Length ft 50 0 Deflection Angle deg 0 00 a Physical Line Shape Circular Line Rise in Design Line Span in Design Invert Elev Dn ft 900 00 Slope of Invert 5 Design
5. Description for this area Another Description It s optional Composite Computes a composite C Enter up to 3 unique descriptions areas and runoff coefficients Check the option to include in printed reports if desired Tc Method Stormwater Studio provides the option of using a Known Time of concentration Inlet Time or calculating it using the TR55 method Choose by selecting from the drop down list box Inlet time is the time it takes for runoff to travel from the remotest upstream point in the drainage area to the inlet in question User This is the default method Allows you to directly enter the inlet time in minutes TR55 This option allows you to compute Tc by using the 3 component Tc as used by TR55 Click here to learn more Inlet Time min 2015 Hydrology Studio Basic Working Procedures 81 Enter the inlet time overland flow time for this catchment It is usually 10 to 20 minutes This is not the computed Tc for the system but the Tc for this inlet only The program will compute the overall Tc during the calculations f TR55 was chosen for the Tc Method click the corresponding ellipsis button button to open the built in Tc calculator The computed values will be automatically entered as the Inlet Time 4 5 2 1 TR55 Stormwater Studio has a built in TR55 worksheet that computes Tc Tc is computed by adding the travel times of Sheet Flow Shallow Concentrated Flow and Open Channel Fl
6. MHx MHy Downstream Line No f you have drawn your system in this data item is already set If not enter the line number which this line flows into The downstream line must have been previously input The downstream line number of Line 1 is always 0 outfall This software supports multiple systems outfalls Any line with a zero Downstream Line Number will become an Outfall Line Length lf you have drawn your system in on the canvas this data item is already set Also when adding lines from the Data Input window the program initially sets its length at a default 50 feet 15 meters and in the same direction as it s downstream line It is then intended for you to edit it as needed Enter the length of this line in feet It is the distance between junction centers Deflection Angle Degrees 2015 Hydrology Studio Basic Working Procedures 77 lf you have drawn your system in on the canvas this data item is already set As looking upstream enter the angle between this line and the projection of its downstream line in degrees Angles to the right are positive and angles to the left are negative The deflection angle for Line 1 is usually 0 However to change the orientation of your system you can specify an angle for Line 1 or any other outfall line Line Shape Stormwater Studio can model circular rectangular and elliptical pipes Choose which type from the drop down list box Note that Stormwater Studio does not
7. Stormwater Studio includes a feature located on the Profile tab that lets you participate in the design calculations in real time While viewing a profile plot you ll see a toolbar located on the upper right It contains a variety of tools to let you modify the design For example you can increase or decrease the pipe sizes inverts rim elevations fora given Line during the calculation process This allows you to fine tune your design for optimal cost effectiveness At the upper right of your profile plot you ll see the following toolbar LineS gt InvDn InvUp Rim Size V A at It s divided up into several categories or sections Here s the process 1 Select the Line you wish to make edits to 2 Make the edits using the provided tools 3 Click the Compute button located on the toolbar This step can be automated by clicking the Auto toggle button next to the Compute button Tip You can view the selected Line s results by clicking on the Results tab on the Input window Line Selector Line5 gt Use this to choose which Line you want to make edits to When viewing multiple lines at once it simply chooses the next or previous Line in the selected group If viewing only a single Line it will choose the next connecting line Not necessarily the next or previous line number Alternate When viewing a selection of Lines you can also select a line by clicking on the line itself or its junction in the profile drawi
8. highlight a desired variable then click the Add Column button Columns are added to your report left to right There is no limit to the number of columns you can add but after about 20 it will exceed 2015 Hydrology Studio 106 Stormwater Studio 2016 4 9 the maximum width of the final printed report Columns outside of the page boundaries will be omitted from the printed report but will be visible on the screen version Screen versions can be exported as csv files for further customizing Also note that Column 1 is reserved for the Line Number It is not shown on the Custom Reports Editor screen Removing Columns You can remove a single column or a selection of columns by highlighting them on the CUSTOM REPORT list and clicking the Remove Column button Rearranging Columns Once added you can move and column variable up or down by selecting it and clicking on the Move Up Down buttons Save Your Report When finished click the Save button The column selections are saved along with all other Stormwater Studio settings and are reloaded upon each start up Saving and Opening Project Files Stormwater Studio uses only two files 1 Project Files These files are used to store all of your project data including the IDF curves and background images that were being used at the time the project was last saved These files are saved in an ASCII format and can be viewed in any word processor Project files have a
9. 134 6 2 Stormwater Studio 2016 Manning s n values Material Manning sn Pipes Reinforced concrete 0 013 Vitrified clay pipe 0 013 Smooth welded pipe 0 011 Corrugated metal pipe 0 023 Polyvinyl chloride PVC 0 010 Natural Channels Gravel beds Straight Gravel beds large boulders Earth straight some grass Earth winding no vegetation Earth winding Overland Flow Smooth surfaces concrete asphalt bare soil Fallow Cultivated soils residue lt 20 Cultivated soils residue gt 20 Short grass Dense grass Bermuda grass Light underbrush woods Dense underbrush woods 2015 Hydrology Studio End User License Agreement EULA 135 7 End User License Agreement EULA EULA stands for End User Licensing Agreement This is the agreement through which the software is licensed to the software user EULA END USER LICENSE AGREEMENT FOR CULVERT STUDIO IMPORTANT PLEASE READ THE TERMS AND CONDITIONS OF THIS LICENSE AGREEMENT CAREFULLY BEFORE CONTINUING WITH THIS PROGRAM INSTALL Channel Studio End User License Agreement EULA is a legal agreement between you THE BUYER and Hydrology Studio By installing copying or otherwise using the SOFTWARE PRODUCT Stormwater Studio you agree to be bound by the terms of this EULA This license agreement represents the entire agreement concerning the program between THE BUYER and Hydrology Studio and it supersedes any prior proposal representation
10. BackKground OPLIONS Send dan nan ica tiens 64 INPor INg aBackoroUnd VID PR ic jane2s da 65 IMPOR CIN G LINES aia ni mes de nes a ti tem eat 67 importing trom o A geuaaaheeteonasereserteesecsewaessscndens 67 EXDOFUNG to Land Mb a dos 68 MORI LINeS OMR nee ss ane de ed ab 68 EXDOrnOLIN S to Dota als Re nec ads dt cn E 70 2015 Hydrology Studio Contents Adding Custom Labels A nn nn nsc A a aan A idees siennes on lacune Liste etienne eee 70 RA Labels AA O A A aoan a EE 72 SD Addi Data cido cio al ca 74 PIDGS Re A A Ten REA ll At 76 a te ue nice 79 TROS TR RE UT ceca 81 MES e E ET AN 82 GUD ese A a E r SS 85 Glale EA 86 OMIM IMAI OP 21 cad 87 DOD CURD ieee caret eit ee E A edi 88 Boeg CEE A E AE atleti dendeiccibs 88 EE E et Re E E E A E E E EE date Du rag Mae E E die EETAS 89 TIS AGW GUIS Ss tor anes ede o 0 a a E aa E 90 NONG gorraren A II A es Run 90 ET LAS Err EA ets 90 Edno Data ti a A A A 92 COMPUN roas EE E E E eSEE 93 Pipe DESION CIO INS Re E OE a O 95 Programmed PPE ze dd cal al da A nd Dd 99 Inlet DESIG It OD UON Ss octet E a rer is de niet etes 100 Using the Interactive Feature aaa escitas 101 8 Getting OU eich dere de Doel 103 Pilottina Protesis E 104 Customizinmg RE DOrts cai 104 9 Saving and Opening Project Files ccccscseeeeceeeeeeeeeneneneeceeneeeeneneneneneneneneseeesnenenenes 106 Part V Computational Methods 108 Tt Energy Grade Lerida a rina aed ea E 109 BOSSES A AAA R
11. CAD program as Single Line segments Polylines or LWPolylines 2 Each line must be drawn in an upstream direction 3 lt is recommended that you use the CAD program s Snap feature i e the line segment s coordinates must connect 4 The cad coordinates must be positive 2015 Hydrology Studio Basic Working Procedures 69 5 It is recommended that you specify a string based layer name in your CAD program Try to begin the layer names with a character not a number 6 You can only import one system one outfall at a time If you want to import multiple systems you ll need to do them separately To import your lines select Import Lines from DXF on the Import Export menu Import System from LandX MIL Export System to LandXAML Import Lines from DAF Export Lines to DAF Next enter the name of the file you wish to import lt must have a dxf file extension The following dialog box appears DXF Import ImportLines dxf DXF Import Options Layer Name Please Choose New Layout Merge to Existing Project Start at Line New Outfall Include Elevations ee Heb Coe Layer Name Select the name of the Layer that was used in your CAD program Click the Layer Name list box to show all of the available layers Then click the desired layer name New Layout Click this option button for a new project 2015 Hydrology Studio Stormwater Studio 2016 4 4 7 4 4 4 8
12. Catchment Incr Q and Q CIA in the reports Known Q s are automatically added to overland flows Carryover and Bypassed Q s Q s for individual inlets are developed from two components The first is from the catchment s drainage area or runoff The second component is from excess flows or non captured flows from upstream inlets This non captured flow is called carryover It is called bypassed when an inlet cannot capture 100 and sends a portion of the total flow off site or to another specified target inlet Carryover and bypass flows are both non captured flows To an inlet carryover is an incoming flow and bypassed is an outgoing flow These flows are labeled as Q carryover and Q bypassed on the reports Note that lines with a manhole or no inlet will bypass all carryover flows to its downstream line 2015 Hydrology Studio Computational Methods 119 Gutter O bypassed Q carryover Top of curb Plan View of Inlet 5 4 1 Inlets in Sags An inlet in a sag or sump has no longitudinal slope i e the gutter slope equals zero In addition inlets in sags capture 100 of the flow and thus no bypass flow Note that Drop Curb inlets are always in a sag Inlets in sag locations operate as weirs under low head conditions and as orifices at greater depths Orifice flow begins at depths dependent on the grate size or the curb opening height At depths between those at which weir flow definitely prevails
13. How to Activate Stormwater Studio Upon launch the program checks for the registration serial number If it is not available an activation screen appears like the following 2015 Hydrology Studio 8 Stormwater Studio 2016 Register Stormwater Studio Stormwater Studio 2016 You must register to unlock the full capabilities of Stormwater Studio or continue in trial mode to evaluate the software Please enter your serial number 1234 ABCD 5678 WXYZ Once the serial number is entered it is stored and you won t be reminded again Loose your serial number lf for some reason your serial number is lost please email support hydrologystudio com for retrieval 1 2 Getting Updates Stormwater Studio will automatically check for program updates upon each launch You may choose to Update or Skip and wait until a later time If you choose to skip the update you will not be prompted again until the next update is released Thus itis highly recommended you click Ok lf an update is available upon launch you ll see a screen like this 2015 Hydrology Studio Introduction 9 Update Available Application update new version of Stormwater Studio ts available Do you want to download it now Name Stormwater Studio From www hydrologystudio com Click Ok to immediately download the update You may then see the following screen If so click the More info link and then
14. LandXML 67 import lines from dxf 68 Import NOAA 48 Inlet Depth 128 Inlet Spread 128 inlet time 79 Inlets on Grade 124 138 Stormwater Studio 2016 insert 62 Installing 7 Interactive Design 101 J junction losses 111 K Known Capacity Inlet 89 L LandxXML 67 License Agreement 135 Local Depression 90 Lock Junctions 58 Lock Line Angles 58 Longitudinal Slope 90 Manning 134 matchline drop 95 Metric 42 Metric pipe sizes 99 minimum cover 95 Mowe lines 59 Moving an outfall 56 N NOAA 45 n values 134 Open 106 Pan 54 Pipe sizes 99 Plan View Label Options 72 Profile Plot 101 Program Updates 8 R Rational method 79 114 Renumber Lines 60 Reset Invert Elevations 129 Reset Pipe Sizes 129 return period 93 roughness coefficient 134 runoff coefficients 133 i Save 106 Select 55 Select lines for profile plots 13 Selecting 55 Selecting Lines 13 Supercritical flow 112 Suppress pipe travel time 93 Surface Diagram 72 Sw 90 Sx 90 Tailwater Elevation 76 TR55 81 116 Tutorial 20 U U S Customary 42 Z zero at outfall 95 Zoom 54 2015 Hydrology Studio 2015 Hydrology Studio Endnotes 2 after index 139 Back Cover
15. Layout Invariably you will need to modify the layout of your existing or newly drawn pipe system layout To do this double click on a line or its upstream junction The line will turn the color red indicating it s been selected Next drag your mouse to the desired location and either click Ok Select or press the Esc key to accept Unlike adding lines here you will have unlimited turns at positioning it Outtall Double click any line to edit Note that you may also enter any data item in the Data Input window while in this editing mode See Layout Options for other ways to modify your plan Editing the Downstream Line Number You may also make dramatic changes to your plan by editing Downstream Line Numbers For example in the layout shown below the Downstream Line Number for Line 3 was changed from 1 to 2 2015 Hydrology Studio Basic Working Procedures 57 Outfall Before editing the Downstream Line Number Outfall After editing Downstream Line Number Moving an Outfall Editing lines as described above will only allow you to move the line s upstream end and those upstream connected lines But what about about outfalls 2015 Hydrology Studio 5 Stormwater Studio 2016 Moving an outfall is accomplished by merely moving your mouse cursor over the outfall and dragging to the new location No need to double click See Layout Options as these can affect the outcome Outfall Result of Mo
16. None and Drop Curb inlet types 2015 Hydrology Studio 9 Stormwater Studio 2016 4 6 Gutter width A a_i Grate Width Gt Drop Grate Local Depression Enter any local depression amount This value is measured from the projection of Sx See figure above Longitudinal Slope Required for all inlets on grade Enter the gutter slope or longitudinal slope of this inlet Not required for inlets in a sag or Manholes Head walls None Drop Curb inlet types Manning s n Select an n value for the gutter section This is not required on any inlet in a sag Manholes Head walls None and Drop Curb inlet types Editing Data Editing data is easy and can be done at any time Data can be edited in the same way as it was originally input Once a data item is edited the program immediately updates drawings Note that if you have changed any data item after performing calculations the results will be obsolete Be sure to recompute to bring the results current with your latest inputs Global Editing There may be times when you ll want to edit a single data item for a range of lines This can be accomplished by first selecting the lines you want to edit and then changing the desired data item in the Data Input window Note that only the Pipes Physical data can be global edited Most other data items on the Runoff and Inlet tabs can be global edited Be sure to click Ok Select when finished 2015 Hydrology Studio Ba
17. SSM Oxo ly Oe A SU A 197 PO PE PAS PU OZ 13 81 1O taney 4224070 09 526 762 504 Fez pos 00 0037 32227 92060710 64 LS 3 00 4 2 oe 070s 027 Ou Lop Oe Or Ti 1 Te 17 Oe 30g os OU 30min Sy 2a oly Ze cee Oy 44007 42 007 0609 oe 017 Oey 620 Oy 4 21 CO mrnt Leo lps Ol 352 OOO OO ee tps Cy os Oo Zn sy 0400 L07 41 20 2 94 1 0 2 10 2 37 2 01 06 2443 a E O AO PI A ES PA AA Chr Osady LoS DU ay Ds 00 y 0 197 Us oly La Uy Lalo 1240 Ls 00 LZ Sy Ose2Z 750 eZ Ops 329043007 0 2001 p0 02D 12709 809p 05 31 ZAR sy Ue dy ed yp Ol Oy O42 Diz 2 ype 0042 yp Ue 0 pol days Ue 077 0209p wd O47 Us LO U1 ey 02 2247022670632 day Us 05 0206 0 0c 0 00 0 11 0213 0 14 0216 0 19 0222 Aedes DeDiA O US 0 06 007 70 6097 0610044170 LOs 190 47 1 davi 0603 06 037 0404 005 0200 705 0070 07 040870 09 0 L0 LU dayizs OUs02 7040s 0 USD 04004 05 0570 03 702007007 06 06 20 0ay y Ue UL 0 02 05 020 02 Us 030203 0 037 0 04 0 04 0 04 SU sdayias Us0l OS DL r Os 0270 02 0020 02 05 05370 03550 037 0005 43 day is Ue Vl 0s 01 0 010 02 04027 0502 03 02 0 0270 02002 oU daY 3 0801 0 01 0 01 0 017020 0 027002 70 027 09 02 O UZ Date time GMT Tue Nov 20 20 02 01 2012 pyRunTime 0 0222988128662 Save this file as a txt or csv file preferably in your Stormwater Studio Rainfall folder Do not open in a spreadsheet and resave as this may modify the file format Next click the Import button on the Stormwater Studio IDF Wizard screen shown above Sel
18. and those at which orifice flow prevails flow is in a transition stage At these depths control is not well defined and will fluctuate between weir and orifice control The efficiency of inlets in passing debris is critical in sag locations because all runoff which enters the sag must be passed through the inlet Total or partial clogging of inlets in these locations can result in hazardous ponded conditions Grate inlets alone are not recommended for use in sag locations because of the tendencies of grates to become clogged Combination inlets or curb opening inlets are recommended for use in these locations Length E E Throat Hean Opening L Gutter Front View of Curb Opening 2015 Hydrology Studio 120 Stormwater Studio 2016 9 4 1 1 Curb Inlets The capacity of a curb opening inlet in a sag depends on water depth at the curb the curb opening length and the height of the curb opening Curb inlets operate as weirs to depths equal to the curb opening height and as orifices at depths greater than 1 4 times the throat height At depths in between flow is in a transition stage Gutter _ NN A Back of Curb Plan View of Curb Inlet in Sag Curb inlets that contain local depressions are referred as Depressed Depressed Curb Opening The equation used for the interception capacity of the inlet operating as a weir is Q Cw L 41 8 E Where Cw 2 3 1 25 L length of curb opening in ft m W gutter w
19. click Run anyway Windows protected your PC Windows Smartscreen prevented an unrecognized app from starting Running this app might put your PC at risk Publisher Unknown Publisher App StormwaterStudio exe It will take about 5 to 10 seconds to download and your new program will launch 1 3 About This Guide It s the 21st century and desktop software has matured User interfaces like those of Stormwater Studio are being designed to rely less on help aids like a user manual The best help system is actually no help In other words the user interface should be intuitive enough so that the user shouldn t have to disengage from their task and read a manual We like to think Stormwater Studio is one of those programs as it makes good use of tool tips and illustrations If at any time you feel some important content is missing or could be improved please send us an email at support hydrologystudio com We would appreciate your feedback 2015 Hydrology Studio 0 Stormwater Studio 2016 Rather than document each and every input item in the software this guide is more task based with How to topics The tutorials in the next section provide a quick introduction to using Stormwater Studio They are intentionally kept brief so that you can actually start using the program as quickly as possible Online Learning Videos and More As they say a picture is worth a thousand words A library of videos demonstrating the us
20. design pipe sizes for elliptical or rectangular sections Arch Pipes This program does not directly model arch pipes because of inconsistent depth to area relationships ff you need to model a different pipe section such as an arch itis recommended you use an equivalent section of a rectangular section Set the invert and crown to match conditions Then compute the Span that gives an equivalent cross sectional area of the desired section Line Rise Enter the diameter of the pipe or the height of the rectangular or elliptical pipe in inches To have the program size the pipe for you enter Zero f Zero was entered for any one of the invert elevations the program will size a circular pipe based on the Minimum Velocity Otherwise it will design it based on Manning s equation setting the slope of the energy grade line equal to the slope of the invert Line Span Enter the width of the rectangular or elliptical section If this line is a circular pipe this data item will be automatically inserted for you and will equal the Line Rise You may enter a zero for a rectangular shape to have the program design it for you Invert Elevation Down Enter the invert elevation of the downstream end of this line If you want the program to set it for you enter zero Note that when adding upstream lines Stormwater Studio will automatically place a default value equal to the upstream invert of the downstream line If Match Crowns has been checked on in th
21. ff you are outside of this range a new outfall line will be created Program will snap to existing junction When finished adding all lines press the Esc key or click the Ok Select button on the side tool bar Click when done Note that you can always manually edit the line s length and angle afterward to get more precise Also the default junction type is a Manhole It is assumed you will later modify the junction to the desired type at the data entry step Tip You can also add single lines by clicking on the Add newline button at the bottom of the Input window This wil automatically add a newline and set it s downstream line number to either the last line added or the currently selected line T omen Linen Pan and Zoom Stormwater Studio uses real world coordinates You can freely zoom in or out of your Plan Surface or Profile by simply scrolling your mouse wheel 2015 Hydrology Studio Basic Working Procedures 55 To pan click on a clear open space on the drawing canvas and drag your mouse in any direction Note that panning is unavailable while adding or editing lines 4 4 2 Selecting Lines Selecting lines is required in order to edit plan layouts data or create multi line profile plots Selecting from the Plan layout To select a line click on the line itself or its junction The selected line will turn red in color and the input window will populate with its data You may select mu
22. flow adjacent to the curb The interception capacity for curb inlets is computed using the following equation The equation also applies to slotted inlets 6 Lr KrO Sr Where LT curb opening length for 100 capture in ft m KT 0 6 0 817 Q gutter flow in cfs cms SL gutter slope longitudinal in ft ft m m n Manning s n value Se equivalent cross slope Se Sx S E Where 2015 Hydrology Studio 12 Stormwater Studio 2016 9 4 2 2 Sx cross slope of pavement in ft ft m m S w depression in ft m gutter width in ft m or for non depressed inlets cross slope Sw cross slope Sx E Ratio of flow in the gutter section to total gutter flow When the inlet length has been set to zero by you Stormwater Studio automatically sets the inlet length equal to LT If the specified inlet length is larger than LT it will capture 100 of the flow and Q captured will equal Q If the specified inlet length is less than the computed LT then Q captured is computed as follows Qcaptured 0Orx Er Where QT Q catchment Q carryover EF 1 1 L LT 1 8 Efficiency Q bypassed equals QT Q captured Grate Inlets The interception capacity of a grate inlet on grade depends on the amount of water flowing over the grate the size and configuration of the grate and the velocity of flow in the gutter just upstream The efficiency of a grate is dependent on the same factors and total flow i
23. in any order you wish It behaves very much like an Excel Spreadsheet To edit a cell simply double click or press F2 Type in your data item and press Enter or Tab to advance to the next cell 2015 Hydrology Studio Basic Working Procedures 41 Line Number Downstream Line No Qutfall Line Length ft 50 00 Deflection Angle deg 0 00 Line Shape Line Rise in Design Line Span im Design Invert Elev Dn ft 900 00 Slope of Invert Design Invert Elev Up ft Design No Barrels 1 Manning s n 0 013 Surface Elev Dn ft 903 00 surface Elev Up ft 904 50 Benching Depressed Y Tailwater Elev ft dc D Send Outflow to Line Offsite Data Input window 4 1 What To Do First What should you do first If you have read the Overview and Quick Start Tutorials then there are three things you should do 1 Create a folder on your computer to hold your project files 2015 Hydrology Studio amp Stormwater Studio 2016 4 2 Stormwater Studio uses Microsoft s Click Once technology to install itself on your computer As you may have noticed it was very fast and easy While it s void of confusing options it does not create file folders for your projects It is recommended you create a folder to hold these For example the following folder configuration is recommended under your Documents folder StormwaterStudioProjects Projects Rainfall Files The Projects folder will c
24. increments 1050 1200 1350 1500 1650 1800 1950 2100 2250 2400 In 300 mm increments 2700 3000 525 675 and 825 mm may be omitted 2015 Hydrology Studio 100 Stormwater Studio 2016 4 7 2 Inlet Design Options Inlet Design Options can be set on the Ribbon menu Inlet Design tab Stormwater Studio will adhere to these while performing calculations regarding inlets These settings will be saved upon program close and will be restored on launch To reset to factory defaults click the Reset button Inlet Defaults Denil 2 Le re k Defaults Click the Defaults button to open the Inlet Defaults window Here you can preset any inlet value to be used as an initial value when adding new inlets Inlet Clogging Factors Clogging factors can be specified for both Curb amp Grate inlets on grade or in a sag The factors are given as a percent and are applied to the inlet capacity calculations Curb on Grade 0 Curb in Sag 0 Grate on Grade 0 Grate in ag O x Design When Stormwater Studio sizes grates in sag locations it must first assume a depth If it knows the depth and Q it can solve for the grate size using the standard orifice equation The recommended default depth is 0 3 ft but can be changed to suite your needs Grate Design Depth 0 3 z Default Inlet n value 0 016 2015 Hydrology Studio Basic Working Procedures 101 4 7 3 Using the Interactive Feature New for the 2016 version
25. is selected Horizontal Throat vs Inclined The height of the orifice in the above orifice equation assumes a vertical orifice opening or horizontal throat As illustrated below inclined throats can reduce the effective depth on the orifice and the dimension Do A limited curb opening length could reduce the capacity of the curb opening inlet by causing the inlet to go into orifice flow at depths less than the height of the opening AO ra Horizontal Throat Inclined Throat 5 4 1 2 Grate inlets Grate inlets in sags operate as weirs to a certain depth dependent on their bar configuration and operate as orifices at greater depths Stormwater Studio uses both orifice and weir equations at a given depth The equation that produces the lowest discharge is used The standard orifice equation used is jo Che a Where Co 0 67 Ag clear opening area in sqft sqm g 32 16 9 8 gravity d depth of water over the grate in ft m The weir equation used is 2015 Hydrology Studio Computational Methods 123 Where Cw 3 0 1 66 P perimeter of the grate in ft m disregarding side against curb d depth of water over the grate in ft m lf the grate area A has been set to zero by you the program automatically computes it using the orifice equation and by assuming d Grate Design Depth as selected on the Inlet Design tab If the perimeter P has been set to zero by you Stormwater Studio designs it by assu
26. no Stormwater Studio 2016 Friction losses are computed by _ afithf HL 2 Where HL energy head loss hf friction head at the downstream end hf friction head at the upstream end Where Km 1 486 1 0 n Manning s n A cross sectional area of flow in sqft sqm R hydraulic radius W2 2g Ya 21 Datum Calculation Procedure Stormwater Studio computes the energy and hydraulic grade line in a fashion similar to 2015 Hydrology Studio Computational Methods 111 methods used for open channels The program begins computing at the most downstream line and works in a standard step procedure upstream This method assumes the starting hydraulic grade line elevation HGL is known In other words the user can specify a starting tailwater elevation If a tailwater elevation is not known the pipe crown elevation will be used ff the user specified tailwater elevation is less than dc D 2 then dc D 2 will be used Where dc critical depth D pipe diameter pipe Rise for elliptical and rectangular sections An upstream HGL is assumed for a given line and is then checked against the energy equation If the energy equation does not balance another HGL is assumed and the iterative process continues until the assumed HGL equals the computed HGL The downstream or starting HGL for the next upstream line is based on the computed HGL plus any junction loss Additionally if the s
27. of a gutter width and slope and compound gutter cross slopes Sw and Sx and an optional local depression a 2015 Hydrology Studio Basic Working Procedures 91 Throat Height Local Depression a Gutter Width Note the heavy dotted line refers to the gutter slope at the inlet face The specified Sx and Sw refer to the gutter upstream of the inlet At the inlet face Sx and the depression value are used to describe the section Stormwater Studio automatically computes spread widths and depths in the gutter section The following describes individual data items for inlets and gutters Note that certain cells on the input grid will be marked out with n a This indicates that data is not required for that particular junction Simply Tab through those cells Cross Slope Sx Enter the transverse slope of the pavement section only Sx See figure above This item is not required for Manholes Head walls or None inlet types Cross Slope Sw Enter the transverse slope of the gutter section only Sw This item is not required for Manholes Head walls None and Drop inlet types Gutter Width Enter the width of the gutter section This is the width as it corresponds to the Sw value if specified and should not be less than any grate widths specified for this line If this is a Drop Grate inlet you should select a width wide enough to contain the entire grate width This item is not required on Manholes Head walls
28. recessed several inches from the curb line and rounded in shape Slotted inlets function in essentially the same manner as curb opening inlets e as weirs with flow entering from the side Interception capacity is dependent on flow depth and inlet length Efficiency is dependent on flow depth inlet length and total gutter flow The interception capacity of an equal length combination inlet consisting of a grate placed alongside a curb opening ona grade does not differ materially from that of a grate only Interception capacity and efficiency are dependent on the same factors which affect grate capacity and efficiency A combination inlet consisting of a curb opening inlet placed upstream of a grate inlet has a capacity equal to that of the curb opening length upstream of the grate plus that of the grate taking into account the reduced spread and depth of flow over the grate because of the interception by the curb opening This inlet configuration has the added advantage of intercepting debris that might otherwise clog the grate and deflect water away from the inlet 5 4 2 1 Curb inlets Interception capacity of a curb opening inlet is largely dependent on flow depth at the curb and curb opening length Flow depth at the curb and consequently curb opening inlet interception capacity and efficiency is increased by the use of a local gutter depression at the curb opening or a continuously depressed gutter to increase the proportion of the total
29. sws extension Note that the program only stores the name and location of dxf background images 2 IDF curve files These files store the IDF curves and have an idf extension Saving Projects 2015 Hydrology Studio Basic Working Procedures 107 Stormwater Studio works much like a spreadsheet or word processor To save a project select Save Project from the File menu or click the Save button on the Quick Access toolbar located on the upper left of the main window If you are saving this file for the first time select Save Project As When using Save Project the program will automatically save the project under its current name Opening Projects To retrieve a project select Open Project from the File menu button How to Open Legacy stm Files Stormwater Studio can also open and save legacy Hydraflow version 8 0 and related versions that follow that format These files will have an stm file extension To open follow the procedures above and choose Storm Sewers file stm rather than Stormwater Studio sws File name yf Storm Sewers file stm ka Open Cancel 2015 Hydrology Studio Computational Methods 109 3 Computational Methods This section describes the computational methodologies employed by Stormwater Studio It is highly recommended that you review the computational methods and equations used so that you will better understand the output and results It is not the intention of this
30. 1 4 8 2 Plotting Profiles You can plot profiles at any time even without computing results The Profile tab will draw the profile for any single or selection of Lines While working on the Plan tab you may select multiple lines by clicking on a line or its junction while holding down the shift key This method will select lines in consecutive order For example if you select Line 2 and then while holding down the Shift Key select Line 5 Lines 2 3 4 and 5 will be selected If you wish to select only Lines 2 and 5 select Line 2 and 5 while holding down the Ctrl Key An alternate method of selecting lines is by dragging your mouse using the right mouse button on the Plan tab The program will draw a dotted rectangle around the selected lines Any junction within the drawn rectangle will be selected Elev ft 128 00 128 00 124 00 3173 124 00 gts 120 00 120 00 116 00 116 00 112 00 112 00 108 00 108 00 104 00 104 00 100 00 100 00 96 00 96 00 325 Reach ft Grnd HGL Customizing Reports Stormwater Studio has a few reports that have been pre formatted Namely Standard HGL and Inlets In some cases you will need to format a report to meet the requirements of a local drainage authority or for some other purpose Two reports Custom1 and Custom2 have been reserved for user customization It s where you can specif
31. 4 Basic Working Procedures This section of the Help guide will explain in finer detail the aspects of running Stormwater Studio To avoid redundancy please review the Overview chapter This provides a quick glance of how to operate this software The rest of this section consists mostly of individual tasks as well as explanations of options and features Below is a brief description of Stormwater Studio s Home screen Ribbon Menu The home screen contains a state of the art Ribbon control as its main menu The Ribbon menu contains various tabs along the top each hosting options pertaining to your plan layout pipe design inlet design and calculation options The Ribbon menu has virtually eliminated or replaced most of those dialog boxes you ve seen in legacy software giving direct access to options without loading other windows and forms first Home Pipe Design Inlet Design Compute Arial Line Numbers Gutter Lines Lock Junctions Concrete g r Line ID User defined Lock Line Angles Metal Rainfall Print 12 Black inlet IDs Surface Diagram Tabs Your workspace contains four tabs which allow you to switch to different contexts while building and maintaining your model What s interesting about these tabs is that you can be using any one of them while modifying the Line data This allows you make changes to inputs and recompute results providing instant feedback Plan surface Profile Reports Plan This tab is used to gr
32. Auto Compute is an option that will automatically recompute the system is toggled on as shown below Auto Revert 2015 Hydrology Studio Basic Working Procedures 103 This is similar to an undo command It reverts back to the original Line s data 48 Getting Output How to Print Reports Print The Reports tab contains screen versions of tabulated reports Finished reports which automatically include a print preview can be printed at any time This print button is located on the Ribbon menu s Home tab The report that you produce depends on the tab you are currently using To print the Plan Surface or Profile views you must have their respective tabs active For example to print the Profile drawing you must be currently viewing the Profile drawing You ll then see an automatic print preview from which you can send to your printer for hard copies The same is true for the Surface and Plan tabs If on the the Reports tab the current screen report Standard HGL Inlets Custom1 Custom2 will be printed Please note that it is conceivable to print reports with outdated results For example if you performed any data edits after computing the results will show data based on previous inputs not the current A message will appear at the footer of the Reports tab as well as the printed reports indicating such To update the reports simply recompute 2015 Hydrology Studio 104 Stormwater Studio 2016 4 8
33. Cf factors can be edited on the Known Equation Coefficients screen or the Computed Coefficients screens 2015 Hydrology Studio 52 Stormwater Studio 2016 Cf factors are applied to the Runoff Coefficients when computing peak flows for the Rational Method The intensities shown on your reports will not reflect this factor The computed flows will however Correction Factors can be edited while you are setting up your IDF curves Rather than clicking Finish just after entering or importing data continue to click Next until you arrive at the Equation Coefficients screen shown below There you can enter Cf values Remember to click the Apply button Stormwater Studio IDF Curves Wizard Enter Known Equation Coefficients B Te D E yr S yT 1d yr 25 yr 1 00 LOD 100 1 00 54 1715 56 8780 63 5498 10 5000 10300 10 4000 0 3106 0 7303 100 yr 1 00 F2 3002 10 6000 0 6898 Mali Cf iregun Commies Patios oppted lo fue Corti App Bal aba Next nrinitons Edit the frequency correction factors Cf as needed 4 4 Building Your Model Cancel Building your storm sewer model is easy and straightforward You simply add lines and then apply data to each of those lines Lines can be drawn on the Plan map manually or imported from DXF LandXML or legacy stm files Stormwater Studio is equipped to allow up to 200 lines per project Plan view of a typical system 5 2015 Hydr
34. FTWARE PRODUCT and any copies thereof are owned by Hydrology Studio or its suppliers All title and intellectual property rights in and to the content which may be accessed through use of the SOFTWARE PRODUCT is the property of the respective content owner and may be protected by applicable copyright or other intellectual property laws and treaties This EULA grants you no rights to use such content All rights not expressly granted are reserved by Hydrology Studio 3 NO WARRANTIES Hydrology Studio expressly disclaims any warranty for the SOFTWARE PRODUCT The SOFTWARE PRODUCT is provided As ls without any express or implied warranty of any kind including but not limited to any warranties of merchantability or fitness of a particular purpose Hydrology Studio does not warrant or assume responsibility for the accuracy or completeness of any information text graphics links or other items contained within the SOFTWARE PRODUCT 4 LIMITATION OF LIABILITY In no event shall Hydrology Studio be liable for any damages including without limitation lost profits business interruption or lost information rising out of Authorized Users use of or inability to use the SOFTWARE PRODUCT even if Hydrology Studio has been advised of the possibility of such damages In no event will Hydrology Studio be liable for loss of data or for indirect special incidental consequential including lost profit or other damages based in contract tort or other
35. Input window consists of three data tabs each corresponding to a category of data A fourth tab displays a limited amount of computed results The Data Input window is blank until you select a line To select a line click on the line itself or its junction The selected line will turn red in color and the input window will populate with its data You may also select a line by clicking the Downstream or Upstream buttons at the bottom of the Data Input window Data can be entered on any tab in any order you wish In this case we will begin at the most upstream line and work downstream The input grid behaves very much like an Excel Spreadsheet To edit a cell simply double click or press F2 Type in your data item and press Enter or Tab to advance to the next cell Begin by selecting Line 2 The Data Input window will populate with Line 2 s current data and should be on the Pipes tab Make any changes necessary to ensure the Line Length is 60 and Deflection Angle is 45 degrees Then tab down to Surface Elevation Up Enter 907 Your finished input grid should look like this 2015 Hydrology Studio 2 Stormwater Studio 2016 Line Number 2 Line Id Downstream Line No 1 Line Length ft 60 00 Deflection Angle deg 45 00 Line Shape Line Rise In Design Line Span in Design Invert Elev Dn ft Design Slope of Invert Design Invert Elev Up ft Design No Barrels 1 Manning s n 0 013 Surface Elev Dn ft
36. Invert Eley Up ft Design No Barrels 1 Manning s n 0 013 4 Structure Surface Elev Dn ft 003 00 surface Elev Up ft 004 50 Benching Depressed 4 Quttall Tallwater Elev Ft Crown Send Outflow to Line Offsite Results Line 1 Pipe data You ll notice that the Outfall category is open This is because Line 1 is an outfall The Tailwater or starting HGL is set to begin at the Crown of the pipe This is the default setting for Tailwater Elev You can enter any actual known elevation The flow coming out of the pipe will be sent off site Other possible outfall pipes can have their flows sent to other branches or systems 2015 Hydrology Studio 30 Stormwater Studio 2016 Pipes Runoff Inlets Results Line Number 1 Drainage Area ac Runoff Coefficient C 0 70 ra Tc Method Inlet Time min 10 0 Line 1 Runoff data 2015 Hydrology Studio Quick Start Tutorial 31 Line Number 1 inlet Id inlet Type Location bypass Target Opening Area sqft 4 00 Grate Width ft 2 00 Grate Length ft 3 00 Cross Slope 5x f Tt 0 50 Gutter X Slope Sw ft ft n a Gutter Width ft 2 00 Local Depression a Im n a Longitudinal Slope ft ft 0 005 Manning s n 0 013 Line 1 Inlet data Done Now proceed to Step 3 Compute 3 3 Step 3 Compute Computing your system s results is very easy First click on the Compute tab on the Ribbon menu at the top of your screen Select the 10
37. Stormwater Studio 2016 User s Guide STORMWATER sl UBT 2015 Hydrology Studio 2 Stormwater Studio 2016 Table of Contents Part Part Il 1 Part Ill 1 Part IV Foreword 0 Introduction 9 Stalling And ACUVa UNO a 7 Getina UDALA coat 8 ADOUt THIS GUTO rita celos 9 Overview 11 The BASICS io ii EA PENE eee a NEARE ENAR 13 Quick Start Tutorial 19 Step AQUILINO Sao e e aas E ne cates 21 PROUT GK AMC TOO neta sees cael aceus aceten cunt arerees eee act 24 Step 2 Add Dal do 25 Step A A a aoc erm eRe Ie CSE PRR ren Oe OA eee PTT 31 Step 4 View Print REDON Siscissccscccavicshedecccscicaucascegncseiccssyiasiedacs cand seance ceci tn din 32 Basic Working Procedures 38 What Fo DO PISE seta 41 DY SLO INT WITS aia pacto 42 SE GING UD Rata lit ai dd 43 IDESCUFVES inunda carencia ed CP ET 43 Using Rainfall Map Dala sanos ant oca cacas 45 Enter Points rom EXIS UA CUVE Sannaa a da 47 IMPOFET ROM NOAA Atlas Td ise 48 KnoOWA Equation CoerriCiens sirarna la 50 IDF Correclion FACTO ES otitis A ani dti en Die en et tte tn tn ut aa en 51 Bunding our Model 52 How tO Add LINES iii 53 Farrand ZOOM tn EA A A 54 eae LINES e E E E E E E E E E E E de E E E T 55 Editing Your Layout ie a ias 56 Lavo QOD MOINS 53 cece eds as a AEE TEE Diem ATE 58 Moving Multiple Lines at ONC Eneda E O A rte at AN 59 FRO UIT CMG EINE S aso id Dean 60 YS SFUING JUNCIONS ca seen en ur nt orties none nt 62 Dele ting LINES sir A A LAN nn id 63
38. Then drag your mouse in the upstream direction to the desired length and angle In this 2015 Hydrology Studio 22 Stormwater Studio 2016 case 50 feet at O degrees deflection Note that the Line s current length and angle are displayed in the Input window to the right You can easily modify these later Le New Project Stormwater Studio 2016 Trial Version NE EE Home Pipe Design Inlet Design Compute m Arial v M Line Numbers Gutter Lines M Lock Junctions Concrete cu Q Line IDs M User defined Lock Line Angles Rainfall Print 12 Black Metric Help Inlet IDs Surface Diagram Pipes Runoff Line Number 1 Line Id Downstream Line No Outfall Line Length ft 50 0 i Deflection Angle deg 0 00 gt Then drag your mouse in the upstream direction ee to the desired length and angle Outfall D E ES E a ED Rainfall SamplelDF idf Frequency 2 yr Line No 1 X 198 51ft Y 194 78ft Dx 50 00 Dy 0 00 Once you have reached your desired length and position release the mouse button to accept Don t worry if you are not able to drag to the exact distance or angle You can edit those values in the next step To add the next line simply press your left mouse button and drag to the next upstream point In this case 60 feet at an angle of 45 2015 Hydrology Studio Quick Start Tutorial Ll LH New Project Stormwater Studio 2016 Trial Version 101
39. Y coordinates are displayed on the status bar at the bottom Finish the line by releasing the left mouse button Always draw in an upstream direction You can continue adding more lines as needed by repeating the above process Simply start drawing at or near the downstream connecting junction The program will automatically snap the two lines together when you are within about 5 feet A red circle appears around the connecting junction If you are outside of this range a new outfall line will be created Program will snap to existing junction gt When finished adding all lines press the Esc key or click the Ok Select button on the side tool bar 2015 Hydrology Studio 16 Stormwater Studio 2016 Click when done Note that you can always manually edit the line s length and angle afterward to get more precise Also the default junction type is a Manhole It is assumed you will later modify the junction to the desired type at the data entry step Tip You can also add single lines by clicking on the Add newline button at the bottom of the Data Input window This wil automatically add a newline and set it s downstream line number to either the last line added or the currently selected line T oman Cr Zooming and Panning You can freely zoom in or out by scrolling your mouse wheel To pan simply drag your mouse in any direction but not while adding lines Editing Your Layout Your plan layout can be
40. You may also select a line by clicking the Downstream or Upstream buttons at the bottom of the Data Input window Data can be entered on any tab in any order you wish The input grid behaves very much like an Excel Spreadsheet To edit a cell simply double click or press F2 Type in your data item and press Enter or Tab to advance to the next cell To simplify the data entry process data is broken up into subcategories These subcategory headings will collapse hiding data that is not required for that particular case Automatic Design This software has certain automated design features Basically if a data item is left blank the program will design it for you These options will be highlighted within the individual data descriptions Data for each line consists of Pipe Data Deals primarily with the Line s alignment size and invert and surface elevations Runoff This is where you assign drainage areas runoff coefficients inlet times and or known flows Inlets This tab contains all the data associated with the Line s inlet or junction 2015 Hydrology Studio Stormwater Studio 2016 4 5 1 Pipes Upstream T Surface Junction gt T Downstream Crown Rise E eee a Line Length 99020202055 A typical Storm Sewer Line Pipe data consists of the following Line ID Optional Enter any name or label that you wish to help identify this line For example
41. ample if the theoretical size needs to be 12 and the Minimum Pipe Size was set to 15 the resulting pipe area of the 15 will be too large to achieve the minimum velocity Minimum amp Maximum Slope Stormwater Studio will use these slopes for design only and will not set any invert slopes outside of these values Cover Options Min 3 0 a Zero at outfall Select the minimum cover in feet This value is measured from the surface elevation to the crown top of the pipe Remember the minimum cover constraint is used only when Full Design has been specified as the calculation option Otherwise it is ignored during any design procedure 2015 Hydrology Studio Basic Working Procedures 97 Check the Zero at outfalls box ON to prevent setting the outfall ends too deep This option will ignore the Minimum cover at the outfall Alignment Options rT Ic Matchline Drop ft 0 0 Allow Smaller Downstream Pipes Crowns Inverts During design and data inputs Stormwater Studio will match either the crowns of the pipes or their inverts Matching crowns prevent lines from flowing into another against a head Match Crowns Will match crowns of pipes regardless of their size Match Inverts Will match inverts Matchline Drop This alignment option will provide a drop in invert elevation across junctions of equal pipe sizes For example if a 24 inch line enters and exits a junction the program will automatically lower t
42. andAML Import Lines from DAF E Export Lines to DAF Next enter the name of the file you wish to import lt must have an XML file extension The program will read the file and display the new system on the on the Plan 2015 Hydrology Studio e Stormwater Studio 2016 4 4 7 2 4 4 7 3 LandXML importing is limited to Pipe Networks and it s associated elements Exporting to LandXML Exporting your system to LandXML is similar to saving any other file Choose Export System to LandXML from the Import Export menu Import System from Land XML TT Export System to Land ML Import Lines from DAF Es Export Lines to DAF Next enter the name of the file you wish to export Stormwater Studio will save this as a new file and will not update modify an existing LandXML file Importing Lines from DXF Stormwater Studio can import a plan layout of up to 200 Lines from a DXF file You can have the program merge this imported file with your existing plan or start a new plan The total number of lines cannot exceed 200 You can also import invert elevations if needed Once lines are imported the program computes their lengths downstream line numbers and deflection angles and assigns them to the corresponding alignment data All that is needed after that is the missing data such as the runoff data inlet type etc Before importing your plan the following conditions must be met 1 The line segments must be drawn in your
43. apability to analyze e Curb e Grate e Combination e Drop Curb e Drop Grate e Known Capacity e Generic 2015 Hydrology Studio 18 Stormwater Studio 2016 Inlets are located at the upstream end of a line and can be in a sag or on a longitudinal slope and can be of any size The purpose of this analysis is to determine the amount of flow a particular inlet can capture the ponding depth inlet and gutter soread widths the amount of flow that is bypassed and what affect it has on downstream inlets The program has design features that will size inlets to capture 100 of the flow To simplify this process Stormwater Studio assumes that all inlets have common n values These values are specified on the Ribbon menu Inlet Design tab Gutters however contain unique n values values for each line Unique Clogging factors can be specified for inlets containing a curb opening or a grate on grade or ina sag Stormwater Studio follows the methodology of FHWA HEC 22 for inlet interception capacity calculations Flow Development Stormwater Studio uses a separate procedure for determining Qs for inlets than that for the overall pipe network The Qs for inlets are computed using the Rational formula Q CIA But the intensity is based on the individual catchment s Inlet Time not the cumulative Tc The C xA term is for the individual catchment s drainage area and corresponding runoff coefficient This Rational method Q is labeled as Q
44. aphically draw and maintain your storm sewer model It functions in a CAD like fashion in that it draws in real world coordinates You can zoom in or out as well as pan by just using your mouse wheel The Line entities and Junctions are drawn ina fixed size regardless of the zoom level The status bar at the bottom of the window displays the mouse cursor s real world X amp Y coordinates Surface This tab displays a plan view of each inlet or junction in your model Profile The Profile tab displays a profile view of selected storm sewer lines Reports Displays a variety of tabulated reports for viewing exporting and printing Data Input Window This window is always displayed on the right side of your screen and contains a spreadsheet like grid for entering data associated with the lines drawn on the Plan Once your layout is done you can enter the associated data for each line The Data 2015 Hydrology Studio 4 Stormwater Studio 2016 Input window consists of three data tabs each corresponding to a certain category fourth tab displays a limited amount of computed results The Data Input window is blank until you select a line To select a line click on the line itself or its junction on the Plan Tab or a row on the Reports Tab The input window will populate with its data You may also select a line by clicking the Downstream or Upstream buttons at the bottom of this Data Input window Data can be entered on any tab
45. by one of the following equations FHA Equation Where B D and E are constants Tc time of concentration in minutes subject to the Minimum Tc Third Degree Polynomial Equation I A BX Cx pDx3 Where rainfall intensity in in hr mm hr X Ln time duration in minutes A coefficient B coefficient C coefficient D coefficient Appropriate values for X are 8 to 180 minutes subject to the Minimum Tc The constants are pre computed by the program or as manually entered and are based on geographic location Calculation Procedure The time of concentration is the time required for water to flow from the remotest point of the drainage area to the point of the system in question The program computes Tc by choosing the greatest of the following 1 The time of concentration of the upstream line plus the time of flow through the line from the upstream run 2 The time of concentration as above for any other connecting line s 3 The Inlet Time of the line under consideration For the most upstream run the time of concentration is the Inlet Time For all succeeding 2015 Hydrology Studio 116 Stormwater Studio 2016 9 3 1 lines the time of concentration is computed as the largest value of the three items above When computing flows for downstream lines Stormwater Studio uses a total CxA that is CA for the line in question plus CA for the next upstream line plus CA for the next upstream li
46. curb opening and using the methods described above for grate inlets Sweeper Inlets When the curb opening length is longer than the grate length the program assumes the open curb portion to be located upstream of the grate often called a sweeper inlet The sweeper inlet has an interception capacity equal to the sum of the curb opening upstream of the grate plus the grate capacity The grate capacity in this case is reduced by the interception by the upstream cub opening 2015 Hydrology Studio 128 Stormwater Studio 2016 9 9 TS AE of a a E a PE Paar a Gutters You ll notice on the printed reports two types of spreads Gutter and Inlet For inlets located in sags these two will be the same For inlets on grade the gutter spread refers to the spread just upstream of the inlet and is based on the gutter properties flow etc Inlet spread refers to the spread at the inlet On the surface plots the program plots the larger of the two Gutter Spread Stormwater Studio uses the following form of Manning s equation to compute the depth of flow in the gutter Where D depth of flow in gutter in ft m Q flow in gutter in cfs cms Z reciprocal of the cross slope S longitudinal gutter slope Kc 0 56 0 376 For compound cross slopes a trial and error procedure is used to compute D in the gutter Sw and Sx sections separately From this depth and cross section geometry the gutter
47. d to enter all of the anticipated lines initially The program can handle up to 200 lines at once with multiple outfalls Stormwater Studio automatically numbers your lines in the order that they are input Therefore the first line that is input will be line number 1 and the second line input will be number 2 and so on Typically Line X flows into Line X minus 1 Part of the input data for each line will be the Downstream Line Number This indicates to which line Line X flows into For example in the system shown above the Downstream Line Number for Line 3 is 2 The Downstream Line Number for Line 4 is also 2 i e Line 4 flows into Line 2 Similarly Line 2 flows into Line 1 thus it s Downstream Line Number is 1 Note that a Line s Downstream Line Number must be less than the Line Number itself i e Line 2 cannot connect to Line 5 Line Numbers must increase as you work 2015 Hydrology Studio Overview 15 upstream Step by Step In a nutshell assuming you have a rough layout of your storm sewer system follow these steps 1 Add your lines Begin at your outfall Line 1 Start by clicking on the Add New Line s button on the side toolbar Add new Line s Next move your mouse cursor over to the drawing canvas Drag hold down the left mouse button and move to draw the line to the desired length and deflection angle The length and angle are displayed on the input window to the right The upstream end s X amp
48. drology Studio Basic Working Procedures 51 X Ln time in minutes A coefficient B coefficient C coefficient D coefficient screen similar to the following appears Stormwater Studio IDF Curves Wizard Enter Known Equation Coefficients B Tc D E 1 yr 2 yr 3 yr 10 yr 25 yr 50 yr 100 yr 1 00 1 00 1 00 1 00 1 00 1 00 1 00 0 0000 58 1215 0 0000 58 8780 63 5498 67 7965 72 2003 0 0000 10 3000 0 0000 10 3000 10 4000 10 5000 10 6000 0 0000 0 8106 0 0000 0 7303 0 7097 0 6986 0 6898 Note Cf Frequency Correction Factor applied to Runoff Coefficients C Apply ear Optionally specify existing equation coefficients Clear the table if needed and enter B D amp E coefficients ff using Third Degree Polynomial enter the A B C amp D coefficients Note you can also specify Frequency Correction Factors Cf on this screen For more information see IDF Correction Factors When finished click the Apply button and then Finish You ll be taken back to the initial IDF Wizard screen where you ll see your new IDF curves See also IDF Correction Factors Save your curves by clicking the Save button and specifying a name for your file An idf extension will be applied This file will automatically open each time you launch Stormwater Studio You can of course change this file any time afterwords 4 3 2 IDF Correction Factors You can enter Frequency Correction Factors Cf with your IDF Curves The
49. drologystudio com Stormwater Studio was developed primarily for practicing civil engineers and related professionals involved with urban and rural storm drain modeling and design What you can do with Stormwater Studio e Interactively design entire storm sewer systems e Analyze new and or existing storm sewer systems e Comprehensive inlet design and analysis e Compute hydraulic and energy grade lines e Produce professional looking agency ready reports e Integrate your designs with a variety of Cad programs Technical Features e Models new and existing systems e Computes true energy based Hydraulic Grade Line HGL e Optionally balances Tc with HGL e Handles partial full and surcharged flow regimes automatically e Use widely accepted Rational method or specify your own Q s e Computes Tc and rainfall intensities automatically e Develops IDF curves with 8 return periods e Imports rainfall data from NOAA Atlases for IDF curve generation e Computes composite runoff coefficients e Computes full flow capacities e Computes junction losses in accordance with the latest HEC 22 third edition 2009 e Over 20 user defined design constraints e Models circular elliptical and rectangular sections e Models and or designs 9 junction inlet types with user defined defaults including curb grate combination and drop inlets with compound cross slopes and individual local gutter depressions e Automatically computes inlet bypass carryover flo
50. e Ribbon menu Pipe Design tab then it will suggest a value that matches the crowns Provided a Pipe Rise has been specified Slope of Invert optional Enter the slope of this line in percent This input item is optional If entered the will compute the upstream invert and will use it as the default value for the upstream invert elevation ff you do not enter a slope the program will compute it based on the invert 2015 Hydrology Studio Stormwater Studio 2016 elevations you enter Invert Elevation Up Enter the elevation of the invert at the upstream end of this line Enter zero to have the program set it for you Note that this item will automatically be set to zero if the downstream invert is set to zero The program cannot design downstream inverts when the upstream invert is fixed No Barrels Enter the number of barrels this pipe has It must be between 1 and 4 Note that you do not need to adjust the Line Length for this Manning s n Value Enter the roughness coefficient for this line The program will assume the default value of that set in the Ribbon menu Pipe Design tab See Useful Tables for other suggestions Surface Elevation Down Outfall Lines Only Unless an outfall line this item will be disabled and skipped Enter the finish or natural ground elevation at the downstream end of this line This item will be used for design when calculation option Full Design is chosen Otherwise this entry is only co
51. e invert rarely coincides with the energy grade line Reset Pipe Sizes When this option has been checked ON or if any pipe Rise amp Span has been set to zero Stormwater Studio will automatically compute a pipe size by first computing the required cross sectional area 0 Design Velocity Where Q flow rate Design Velocity Minimum Velocity selected on the Pipe Design tab It then selects an available pipe size whose area matches Area It only chooses commercially available sizes and within the minimum and maximum sizes specified by you Commercially available sizes are assumed to be 2 to 36 inches in 3 inch increments and 42 to 102 inches in 6 inch increments When a specific pipe size is not available the program will select the next smaller size For example if the theoretical size is 25 5 inches the software will round down and select the 24 inch This way the minimum velocity is maintained Reset Invert Elevations When this option has been checked ON or when an invert elevation for a line has been set to zero Stormwater Studio simply uses the above equation setting the velocity equal to the Minimum Velocity and solves for S It then sets the invert elevations accordingly If the resulting slope S is less than the Minimum Slope then S is reset to the minimum slope and a new pipe size will be selected at the new slope using Manning s equation lf Follow Ground Surface has been checked ON as a calculati
52. e of Stormwater Studio is being developed on the website at www hydrologystudio com Topics to include basic system modeling to interpreting results and everything in between Please check for new additions regularly as this will hopefully be your primary source for in depth explanations You ll probably learn some lessons on hydrology amp hydraulics along the way Basic Working Procedures This is where the nuts and bolts of this software are described Computational Methods This section of the guide opens the black box and reveals the inner workings of the program Methodology equations and assumptions are each detailed here Helpful Tables The last section contains tables of Runoff Coefficients and Manning s n values 2015 Hydrology Studio 12 Stormwater Studio 2016 2 Overview This section describes the most common basic tasks you will use when working with Stormwater Studio It is designed as a How To guide and reference manual Although it is organized roughly in the order that you would perform the tasks you don t need to start at the beginning and work your way through Every topic contains comprehensive links to background information and other relevant subjects so you can just pick out the task you need to perform and begin Below is the opening screen DO a e lH Pret Storer Stadio E Fed Vernon o PEPE stormwater Studia Mp a 2 QG DOME EE ints HT How to Begin a New Project
53. e program But eventually you ll want to setup your own local data The program stores this data in a separate file with an idf file extension Stormwater Studio automatically manages this file for you in that it opens it upon launch and saves it when exiting if anything has changed This IDF file should be saved in your Stormwater Studio Rainfall Files folder You may also choose to store it in any other folder you wish The IDF currently in use is shown in the Status Bar at the bottom of the Main Window lf you have setup several unique IDF curves for a variety of locations you can open any one of them at any time to use for your current project All rainfall files are embedded in each project file so it is not necessary for example to email an associate the sws project file and the associated idf rainfall file IDF Curves Stormwater Studio allows you to customize the IDF rainfall data It provides a variety of methods to choose from for setting them up To begin click the Rainfall button on the Ribbon Toolbar to open the Rainfall IDF Wizard g Rainfall 2015 Hydrology Studio 4 Stormwater Studio 2016 v Aantal IOF wizarg Sankt i ewes OR a IDF Cures AH 9 i Open Save Report Help Graph Table Sample IDF Curves Fa p VF i Ca q 6 5 E ma Di E a i E 30 3 d 45 SO Time min Stormwater Studio offers a Wizard to setup your IDF Curves Clic
54. e program returns to the SCS Input Window and inserts the computed Tc value Inlets Stormwater Studio has the ability to design and analyze a system of inlets along with your underground pipe system It has built in capability to analyze the following inlet types e Curb e Grate e Combination e Drop Curb e Drop Grate e Known Capacity e Generic Inlets are located at the upstream end of a line and can be ina sag or ona longitudinal Slope and can be of any size The purpose of this analysis is to determine the amount of flow a particular inlet can capture the ponding depth inlet and gutter spread widths the amount of flow that is bypassed and what affect it has on downstream inlets Default Data When adding a new inlet the program automatically assigns default values for you in order to speed up the process The default values are set on the Ribbon menu Inlet Design tab The program has design features that will automatically size inlets to capture 100 of the flow Unique Clogging factors can be specified for inlets containing a curb opening or a grate on grade or ina sag Stormwater Studio follows the methodology of FHWA HEC 22 for inlet interception capacity calculations Flow Development 2015 Hydrology Studio Basic Working Procedures 83 Stormwater Studio uses a separate procedure for determining Qs for inlets than that for the overall pipe network The Qs for inlets are computed using the Rational form
55. ect the file you just saved and click Open Click Apply Then click Finish You ll be taken back to the initial IDF Wizard screen where you ll see 2015 Hydrology Studio 50 Stormwater Studio 2016 4 3 1 3 your new IDF curves Save your curves by clicking the Save button and specifying a name for your file An idf extension will be applied This file will automatically open each time you launch Stormwater Studio You can of course change this file any time afterwords Known Equation Coefficients Even though there are several ways to setup your IDF Curves in the beginning once completed they take the form of an equation Stormwater Studio uses two types of equations Each can accept custom coefficients to match your exact IDF curves To enter your own coefficients select Enter Known Equation Coefficients from the IDF Wizard opening screen Choose one of the following equation types IDF Curve Equation This method takes on the form Where rainfall intensity in hr Tc time in minutes B coefficient D coefficient E coefficient Third Degree Polynomial Equation Some regions have IDF curves which are based on a third degree polynomial equation These curves typically do not plot as a straight line on log log scales You have the option of creating IDF curves using a third degree polynomial equation as follows I A BX cx Dx Where rainfall intensity in hr 2015 Hy
56. em using the Full Design option and setting it to follow the ground surface Do this by selecting Lines 1 and 2 either from the Plan or Reports tab Then click on the Profile tab You should see the exact profile as shown above Next click the Compute tab on the Ribbon menu and check Full Design and Follow Ground Surface as shown below Compute 1 Analysis amp Design 8 Full Design Suppress Junction Losses Follow Ground Surface Now click Run Stormwater Studio will reset the pipes to follow the ground surface at the Minimum Depth of Cover as shown below Note that Line 1 does not follow the ground surface because itis an outfall This can be over ridden by checking off the Zero at Outfall Cover option on the Pipe Design tab Elev ft 917 00 915 00 913 00 911 00 909 00 907 00 905 00 903 00 901 00 899 00 897 00 Grnd El 903 00 Inv El 900 15 Sta 0 0b Outfal 20 SOL 15 0 20 40 Sta 1 1D CB 2 121 4 17 70 80 90 100 110 120 917 00 915 00 913 00 911 00 909 00 907 00 905 00 903 00 901 00 899 00 897 00 Reach ft HGL Designed by following the ground surface Notice the hydraulic jump 2015 Hydrology Studio Quick Start Tutorial 2015 Hydrology Studio Basic Working Procedures 39
57. enu Inlet Design tab 4 5 3 6 Generic Use this inlet type if none of the other inlet types here work for your particular situation It s good if the inlet type is not important and you already know what the capacity is or if you want Stormwater Studio to design a capacity for you For example if this generic 2015 Hydrology Studio 9 Stormwater Studio 2016 4 5 3 7 4 5 3 8 4 5 3 9 type has a known capacity of 3 cfs the program will bypass 1 cfs if the Q catchment plus Q carryover equals 4 cfs Generic inlets are not intended to be used in sags When the Known Capacity is less than the total Q the program will bypass the excess to the Bypass Line To have the software set the capacity for you set the Known Capacity input to zero Headwalls Open head walls do not require gutter or inlet input data Selecting this junction type is mainly for cosmetic reasons Headwalls capture 100 of the flow Enter the Surface elevation as it corresponds to the top of the head wall Do not attempt to use this junction as an outfall None l Select None when you need to connect two pipes without the use of a traditional junction This may be useful for modeling pipes on curves Simply make them a series of straight lines using this junction type Energy losses are taken into account based on the deflection angle See Computational Methods Gutters Among other data each inlet has a gutter cross section that consists
58. es indicating the layout of the gutters or more specifically the direction of bypass flows The system shown below has Gutter Lines turned on 2015 Hydrology Studio Basic Working Procedures 73 DC 3 4 CB 4 Outfall CB 2 The thick light blue lines indicate bypass target lines For example the Bypass Target for Line 4 is Line 2 The inlet for Line 3 is in a sag and thus a circle is drawn around it Surface Diagram Sometimes it s more beneficial not to show the actual storm sewer lines but just the surface flows and appurtenances The system below is shown with the Surface Diagram checked on The storm sewer lines are shown as dotted lines 2015 Hydrology Studio Stormwater Studio 2016 4 5 DC 3 CB 4 CB 1 CB 2 Adding Data Once your layout is done you can enter the associated data for each line Data is entered into the Data Input window to the right of the layout canvas The Data Input window consists of three data tabs each corresponding to a particular category A fourth tab displays a limited amount of computed results Runott Line Number 4 4 Alignment Downstream Line No 3 Data is divided into 3 categories 2015 Hydrology Studio Basic Working Procedures 75 The Data Input window is blank until you select a line To select a line click on the line itself or its junction The selected line will turn red in color and the input window will populate with its data
59. ew IDF curves See also IDF Correction Factors Save your curves by clicking the Save button and specifying a name for your file An idf extension will be applied This file will automatically open each time you launch Stormwater Studio You can of course change this file any time afterwords 4 3 1 2 1 Import from NOAA Atlas 14 Provided your state is one which is listed on this atlas you can quickly import this data by first exporting it from NOAA s Precipitation Frequency Data Server To start click the NOAA button on the Ribbon Toolbar to open the web server Then select your state and follow the instructions Be sure to set the Data type to Precipitation Intensity Partial Duration as shown above At the bottom of the PF Tabular table you ll see an option to export as a csv file 2015 Hydrology Studio Basic Working Procedures 49 a csv Estimates from the table in csv format precipitation frequency estimates Submit Click Submit The file will open in your web browser or other text viewer and will look similar to the following Point precipitation frequency estimates inches hour NOAA Atlas 14 Volume 2 Version 3 Data type Precipitation intensity Time series type Partial duration Project area Ohio River Basin Latitude decimal degrees 33 8000 Longitude decimal degrees 81 0000 PRECIPITATION FREQUENCY ESTIMATES BY duration FOr ARIZ 1 272 050 10 25 00 100 200 500 1000 years
60. f lines as well as just single lines at a time They can be printed or exported to a DXF file Here we will first select Lines 1 and 2 Do this by returning to the Plan tab Click on the upstream inlet of Line 2 while holding down the Shift key The program automatically selects lines from the outfall to this line Both lines 1 and 2 should now be highlighted in red Click on the Profile tab The drawing should look similar to this 2015 Hydrology Studio Quick Start Tutorial 35 Elev ft 917 00 917 00 915 00 915 00 913 00 913 00 911 00 911 00 907 00 3 5 907 00 905 00 z y gt 905 00 903 00 903 00 901 00 901 00 GOLF 12 0 44 897 00 897 00 0 10 20 30 40 50 60 70 80 90 100 110 120 Grnd HGL Reach ft Tabulated Reports To see all of this in numerical form click on the Reports tab To view Individual line data and results click on a row tn the table fa Tutorial sws Stormwater Studio 2016 ox Home Pipe Design Inlet Design Compute 0 Rainfall Print Help Plan Surface Profile Reports Pipes Runoff Inlets Results Standard HGL inlets MyCustom Custom2 ff amp Line Number 2 1 Line Id 5 5 Runoff z Addn Total Cap Ave 5 a Station Length Drainage Area Coeff Area XC Tc Intensity Runoff Escala Picci Full Vel Pipe Invert Elev HGL Elev Surface Elev Lin a Tc min 10 0 Line To Line Incr Total Incr Total Inlet System Incr Total Incr Total Size Sl
61. he outgoing line by the amount specified Allow Smaller Downstream Pipes In some cases during design the theoretical pipe size required may be smaller than the one connecting upstream It is not typically a good design practice for pipes to decrease in the downstream direction but if you insist turn this option on 2015 Hydrology Studio o Stormwater Studio 2016 Size Options Check those pipe sizes which you want to exclude from the design processes Omit 21 in Omit 27 in Omit 33 in Miscellaneous Options Default n value 0011 gt Default Benching Depressed i Default n value Select an n value to be used as an automatic default when a new line is added to your system Default Benching Benching tends to direct flow through the access hole resulting in a reduction in energy losses Select a default benching style 2015 Hydrology Studio Basic Working Procedures 99 a Depressed d Full Benching e Improved 4 7 1 1 Programmed Pipe Sizes Below is a list of pipe sizes used in Stormwater Studio when it designs the pipe itself You may enter any known size however U S Customary Inches In 2 inch increments 6 8 10 12 In 3 inch increments 15 18 21 24 27 30 33 36 In 6 inch increments 42 48 54 60 66 72 78 84 90 96 102 21 2 and 33 inch may be omitted Metric millimeters In 75 mm increments 150 225 300 375 450 525 600 675 750 825 900 In 150 mm
62. idth in ft m d depth at the face of curb measured from the cross slope Sx in ft m Note If L gt 12 feet 3 65 m then the equation for non depressed inlets is used per HEC 22 2015 Hydrology Studio Computational Methods 121 Throat Height Local Depression a FF Gutter Width Inlet wth local depression Without Depression The equation used for the interception capacity of the inlet operating as a weir is Where Cw 3 0 1 60 L length of curb opening in ft m d depth at the face of curb measured from the water surface to cross slope Sx in ft m The equation used for the interception capacity of the curb inlet depressed and non depressed operating as an orifice is 9 Cot zgd Where Co 0 67 h total height of curb opening in ft m L length of curb opening in ft m g 32 2 9 8 gravity d depth measured from water surface to the center of the inlet opening in ft m lf the inlet length has been set to zero by you Stormwater Studio automatically computes it by using the above weir equations assuming the depth to be equal to the total curb 2015 Hydrology Studio 122 Stormwater Studio 2016 opening and solving for L Note that the inlet depths reported are measured from the lip of the curb opening i e Depth d h 2 where his the total opening Inclined Depths Do h 2 Sin 45 In transition flow both equations are evaluated The smallest Q
63. ine Numbers inlet bypass flows can be sent to any inlet in your system This is most useful for when gutters flow opposite their Line flow This target will be indicated on the Plan view when Gutter Lines has been checked ON at the Ribbon menu Home tab 2015 Hydrology Studio Basic Working Procedures 85 4 5 3 1 Curb A typical curb opening inlet will have a rectangular opening along the face of the curb to which it is attached Curb inlets can have horizontal or 45 degree inclined throat openings This data item is fixed for all inlets of this type in a given project and is set in the Defaults on the Ribbon menu Inlet Design tab Length Throat Heat Opening Le Gutter Front View of Curb Opening Horizontal Throat Inclined Throat Location Please choose this inlet s location On Grade or Sag from the drop down list box Note that inlets on grade must specify the gutter s longitudinal slope 2015 Hydrology Studio s Stormwater Studio 2016 Inlet Length Enter the total length of the opening By setting this value to zero Stormwater Studio will automatically design it for 100 capture Throat Height h Horizontal Throat This is the height of the opening and is measured from the projection of cross slope Sx Do not include any local depression amount See Gutters for more information Throat Height h Curb Inclined throat This is the height of the opening and is measured perpendicular to the
64. iod This tutorial will follow four basic steps 1 Drawing your system adding Lines on the Plan tab with your mouse 2 Specifying associated data for each of your storm sewer lines 3 Computing the results 2015 Hydrology Studio Quick Start Tutorial 21 4 Printing reports 3 1 Step 1 Add Lines The most common way is to draw these at the Plan view tab Begin at your outfall Line 1 Start by clicking on the Add New Line s button on the side toolbar Add new Line s Next move your mouse cursor over to the drawing canvas Drag hold down the left mouse button and move to draw the line to the desired length and deflection angle The length and angle are displayed on the input window to the right The upstream end s X amp Y coordinates are displayed on the status bar at the bottom Finish the line by releasing the left mouse button Always draw in an upstream direction old New Project Stormwater Studio 2016 Trial Version EN ES lets Home Pipe Design Inlet Design Compute E Arial v M Line Numbers Gutter Lines W Lock Junctions Concrete m s Us Customary Line IDs M User defined Lock Line Angles f Metri Rainfall Print 12 Black letnic Help Inlet IDs Surface Diagram Move your cursor to the downstream end of the new Line ES E a Rainfall SamplelDF idf Frequency 2 yr Total Lines 0 X 186 82 ft Y 222 64 ft
65. ion has been checked On Also note that if the total Q s shown on your reports don t match the corresponding Q Cia this option has been checked on Suppress Pipe Travel Time Turn this feature on if you want calculations to ignore travel times in pipes when computing Tc for the system 4 71 Pipe Design Options The Pipe Design Options can be set on the Ribbon menu Pipe Design tab Stormwater Studio will adhere to these while performing calculations regarding pipes These settings will be saved upon program close and will be restored on launch To reset to factory defaults click the Reset button 2015 Hydrology Studio NOS Stormwater Studio 2016 Size Velocity and Slope Min 12 bl Min 3 0 i Min 0 2 bi Max 96 Max 10 0 ll Minimum Pipe Size This is the smallest pipe size that will be used when designing pipe sizes Select from the list box by clicking the list box arrow Maximum Pipe Size This is the largest pipe size that will be used when designing pipe sizes Minimum Velocity When zero s have been specified for both invert and pipe rise the program will select a pipe size based on this velocity When a specific pipe size is not available the next smaller size will be selected in order to maintain the velocity at a minimum For example if the theoretical size is 19 5 inches the program will round down and use an 18 inch pipe Note that there will be times when the minimum velocity cannot be achieved For ex
66. k New to begin This screen displays the current set of IDF curves Note that IDF curves no matter what method was used to develop are equation based in the end and have no time limit even though the graph displayed only shows intensities up to 60 minutes Click the Table tab to view the curves in numeric format The curves cannot be edited on this screen How to Create New IDF Curves Ep To create a new set of curves or edit existing curves click the New button a This opens the IDF Wizard which will walk you through a series of steps New 2015 Hydrology Studio Basic Working Procedures 45 Stormwater Studio IDF Curves Wizard Please choose ane of the following methods Create Using Rainfall Map Data Eastem amp Central United States Hydro 35 Westem United States NOAA Atlas 2 Enter Intensities From Existing IDF Curves or NOAA Atlas 14 Enter Known Equation Coefficients IDF Curve Equation Ec DIE Third Degree Polynomial Equation A EX CK42 DX 3 You have three choices to start 1 Create using rainfall map data Use this method to enter precipitation values directly from Hydro 35 Eastern United States or NOAA Atlas 2 Maps Western United States Use this method if your state is NOT listed on NOAA Atlas 14 2 Enter intensities directly from your existing IDF curves or import from the newest NOAA Atlas 14 Recommended 3 Enter known equation coefficients Sto
67. lan shown below uses Line 2 to accept the flows exiting Line 3 To send flows off site enter zero Send outflows to any other Line 4 5 2 Runoff Stormwater Studio uses this data to compute flows in your system You can enter known Qs directly and or specify Rational method data If a particular line does not have any incoming overland flows i e a manhole then the runoff data can be skipped The program will carry upstream flows through the line Please see Rational method in the Computational Methods for more information Known Q Enter any known or additional flow for this line This value can be positive or negative is added to any other incoming flows and is carried downstream to be added to other downstream lines when Accumulate Known Qs is checked in the Ribbon menu Pipe Design tab Note that when Use inlet captured flows has been checked on any Known Q s will be ignored on manholes or non inlet type junctions 2015 Hydrology Studio s Stormwater Studio 2016 Drainage Area Enter the drainage area that contributes to this line only The program will accumulate the areas during the calculations Runoff Coefficient C Enter the runoff coefficient corresponding to this drainage area See Runoff Coefficients for suggested values Composite Coefficients Stormwater Studio will compute a weighted or composite coefficient by clicking the button next to the data cell Surface Description cosillasal C
68. les f Rainfall Print 12 Black e Help Inlet IDs Surface Diagram Your finished layout will look like this OE DG Seed F Rainfall SamplelDF idf Frequency 2 yr Totallines 2 X 132 84 ft Y 241 04 ft There s an alternate way to add lines to your system Here s how Your next step is to add the associated data for each line Advance to Step 2 A Quick Alternative Sometimes it s easier to add lines from the Data Input window rather than draw them on the canvas lt depends on your particular situation but in many cases this method could be a big time saver For example in the case of our tutorial you could have added those two lines by simply clicking the Add button at the bottom of the Data Input window two times Once for each line Cum When using this method the program will add a line 50 feet in length 15 meters at a zero deflection angle It will automatically connect to the last inputted line or to any selected line Once added you can just modify the length and angle to match your desired layout In our case Line 1 would need no changes Line 2 would need to have its length changed to 60 and its Deflection Angle to 45 2015 Hydrology Studio Quick Start Tutorial 25 3 2 Step 2 Add Data Once your layout is done you can enter the associated data for each line Data is entered into the Data Input window to the right of the layout canvas The Data
69. ltiple lines by clicking on a line or its junction while holding down the shift key This method will select lines in consecutive order For example if you select Line 2 and then while holding down the Shift Key select Line 5 Lines 2 3 4 and 5 will be selected This is useful for performing edits on multiple lines or selecting lines to view on the Profile tab f you wish to only select Lines 2 and 5 select Line 2 and 5 while holding down the Ctrl Key An alternate method of selecting lines is by dragging your mouse using the right mouse button The program will draw a dotted rectangle around the selected lines Any junction within the drawn rectangle will be selected In the drawing below Lines 1 and 2 will be selected because their junctions are located inside of the rectangle Qutfall Selecting Lines by dragging a rectangle using the right mouse button Selecting from the Data Input Window On the Input Window you will find two buttons labeled Downstream and Upstream These buttons will also allow you to select individual lines Clicking on the Upstream button for example advances the selection to the next upstream line 2015 Hydrology Studio 5 Stormwater Studio 2016 4 4 3 ecco Selecting from the Reports tab When viewing the Reports tab you can select individual or multiple lines by dragging your mouse across rows or by clicking on rows Use the Shift key to select consecutive rows Editing Your
70. m manually or import from CAD files In addition to adding a background map you can geo reference your map by specifying X Y coordinate extents In fact you can specify X Y extents even without a map added to the background Setting Background Extents You can set the coordinate extents of your background with or without a map attached to it Here s how Click the Map button on the side toolbar on the Plan tab Then select Set Background extents Import Background Map Set Background Extents Plane Darle nr LA pr Clear Background Map Export Plan to Image File The following screen appears where you can enter coordinates for the lower left and upper right 2015 Hydrology Studio Basic Working Procedures 65 Set Background Extents El xMax yMax Background Map Canvas xMin yMin Enter the desired minimum X Y and maximum X Y coordinates and click Ok Your Plan view will reset to use those extents and will display your mouse coordinates on the status bar at the bottom of your screen 4 4 6 1 Importing a Background Map Instead of drawing your system in your cad program Stormwater Studio allows you to import a background map from dxf and image files This aids in the accuracy of the pipe alignments as you draw your system layout Background images from DXF can come from any standard dxf file but are limited to Line Polyline LWPolyline Arcs and Circles Line weights certain entity types as
71. ming d Grate Design Depth and solving for P in the weir equation lt is believed that when the depth of water over the grate 0 3 ft 09 m the inlet begins a transition to acting as an orifice 5 4 1 3 Combination Inlets Combination inlets consisting of a grate and a curb opening are considered advisable for use in Sags where hazardous ponding can occur Equal length inlets refer to a grate inlet placed along side a curb opening inlet both of which have the same length A sweeper inlet refers to a grate inlet placed at the downstream end of a curb opening inlet The curb opening inlet is longer than the grate inlet and intercepts the flow before the flow reaches the grate The sweeper inlet is more efficient than the equal length combination inlet and the curb opening has the ability to intercept any debris which may clog the grate inlet Sweeper Inlet The interception capacity of combination inlets in sags is equal to that of the grate alone in weir flow In orifice flow the capacity is equal to the capacity of the grate plus the capacity of the curb opening Stormwater Studio essentially uses the procedure described above for grate inlets in sag However when the depth at the curb is such that orifice conditions exist for the grate both procedures are used grate and curb inlets in sags and adds their capacities to arrive at the total capacity Note that both weir and orifice equations are used for the curb inlet analysis In othe
72. modified at any time For example to change a line s length or location double click the line or its junction Then drag the upstream end to the new location and click Ok Select or press Esc Use the Plan Layout options on the Ribbon menu Home tab at the top to lock unlock the upstream junctions and line angles You can also modify the selected line s data on the Data Input window 2 Add Associated Data As you may have already noticed an input window resides on the right side of your screen It is this window where you ll enter data for each storm sewer Line The data is divided into three categories Pipes Runoff and Inlets To view edit or enter data click on the corresponding tab Each tab contains a grid which displays data corresponding to the selected line on the Plan tab You may enter any data at any time on any tab There is not a specific order that you to need to follow It is recommended however to enter Pipe data starting at the most downstream line as Stormwater Studio has the ability to suggest values for invert elevations as you work upstream The Data Input window behaves much like an Excel spreadsheet Enter data by typing in the value or choose from a drop down list box and press Tab or the Enter key to advance to the next item A more detailed discussion regarding each data item can be found in the Basic 2015 Hydrology Studio Working Procedures section Selecting Lines To select a line click on
73. must compute multiple system iterations so that the computed Tc s match those that were assumed with reasonable accuracy Stormwater Studio first computes the HGL using Tc s based on a full flow velocity It then computes the system a second time using Tc s based on actual velocities These new velocities are still incorrect because they are based on the original HGL calculation but they are more accurate than those used on the first trial As one would expect several system iterations would cause the Q s Tc s and resulting HGL to converge to correct values Stormwater Studio uses three iterations 2015 Hydrology Studio 6 1 Useful Tables Runoff Coefficients Useful Tables 133 Rational method runoff coefficients are tabulated below Note that Stormwater Studio allows you to compute composite coefficients with up to three pairs of drainage area and coefficients Description of Area Business Downtown Neighborhood Residential Single family Multi units detached Suburban Apartments Industrial Light Heavy Parks cemeteries Playgrounds Railroad yards Lawns Sandy soil Heavy soil Unimproved Asphalt Concrete Roofs 2015 Hydrology Studio Coefficient 0 70 0 95 0 50 0 70 0 35 0 45 0 40 0 75 0 25 0 40 0 50 0 70 0 50 0 80 0 60 0 90 0 10 0 25 0 20 0 35 0 20 0 40 0 05 0 20 0 18 0 35 0 10 0 30 0 70 0 95 0 80 0 95 0 75 0 95 Typical Design
74. n 100 year in 3 1 82 3 83 Note Enter rainfall amounts in whole in Enter the 5 15 and 60 minute precipitation amounts for the 2 and 100 year return periods and click Finish You ll be taken back to the initial IDF Wizard screen where you ll see your new IDF curves See also IDF Correction Factors Save your curves by clicking the Save button and specifying a name for your file An idf extension will be applied This file will automatically open each time you launch Stormwater Studio You can of course change this file any time afterwords If you are in the Western United States O 2015 Hydrology Studio Basic Working Procedures 47 The IDF Wizard will display this screen Stormwater Studio IDF Curves Wizard Enter Rainfall Amounts from NOAA Atlas 2 Maps 6 hour 24 hour 2 year in 0 0 100 year in 0 0 State Region Ave elevation ft 0 Note Enter rainfall amounts in whole in Enter the 6 and 24 hour precipitation amounts for the 2 and 100 year return periods Select your state from the dropdown list Note that only some states require an elevation input Click Finish to generate the curves You ll be taken back to the initial IDF Wizard screen where you ll see your new IDF curves See also IDF Correction Factors Save your curves by clicking the Save button and specifying a name for your file An idf extension will be applied This file will automatically open each time you launch S
75. n the gutter The interception capacity of grate inlets on grade is computed using the following equations E RE R 1 Eo Where E efficiency of the grate R ratio of intercepted frontal flow to total gutter flow E ratio of frontal flow to total gutter flow R side flow interception efficiency The R term in the above equation is dependent on the specific grate properties illustrated in HEC 22 and most likely will not match every situation In that light Stormwater Studio assumes R 1 This assumes all frontal flow will be intercepted without any loss of flow due to splash over effects 2015 Hydrology Studio Computational Methods 127 Where Kc 0 15 0 0828 V velocity of flow in the gutter in ft s m s L grate length in ft m The amount of intercepted flow for grates on grade E x Q Non intercepted flows are bypassed If the grate length has been set to zero for design the program will use the following weir equation Where Cw 3 0 1 66 P perimeter of the grate in ft m disregarding side against curb d depth of water over the grate in ft m lt solves for P and then sets the grate length L equal to P 2 x grate width This design does not guarantee 100 capture however 5 4 2 3 Combination inlets The interception capacity of combination inlets on grade is essentially equal to that of the grate alone Stormwater Studio computes this capacity by neglecting the
76. ne and so on Tc by TR55 In addition to manual entry Stormwater Studio can compute Time of Concentration using TR55 With TR55 Tc is broken into 3 components or segments The final Tc is the sum total of the three components Tc T sheet T T shallow T T cnannel Sheet Flow Time Flow over plane surfaces and typically ranges between 125 to 150 feet 40 to 45 meters Where n Manning s roughness coefficient L Flow Length must be lt 100 ft 30 m per WinTR55 P Two year 24 hr rainfall inches mm S Land Slope ft ft m m Entered as in the program Shallow Concentrated Flow Time After about 100 feet sheet flow become shallow concentrated flow Where L Flow Length ft m V Average velocity ft s m s and 2015 Hydrology Studio Computational Methods 117 Where C 20 3282 paved surfaces C 16 1345 unpaved surfaces S Watercourse slope ft ft m m Channel Flow Time Occurs withing channels swales ditches streams or even piped systems Manning s equation is used to compute velocity Where L Flow length ft m V Average velocity ft s m s and Where V Average velocity ft s m s R Hydraulic radius ft m a wp S Channel slope ft ft m m Entered as in the program n Manning s roughness coefficient 5 4 Inlets Stormwater Studio has the ability to design and analyze a system of inlets along with your underground pipe system It has built in c
77. nes in your system In most cases you can simply change the Downstream Line Number of the line you wish to move All other connecting lines will then follow However this may not be possible if the new downstream line already has a higher line number Downstream Line Numbers must always be less than the upstream line This feature allows you to renumber any line in your system some restrictions apply which then may allow you to connect it to the desired downstream line To renumber a Line select it and click the Renumber button on the side toolbar at the Plan tab The following screen appears where you can enter the new line number EE Renumber Lines O Renumber Line 6 This procedure may reassiqn new numbers to upstream Lines New Line Number 2015 Hydrology Studio Basic Working Procedures 61 Example In the system below we d like to reconnect Lines 4 thru 5 to Line 7 Ordinarily we could easily change the Downstream Line Number of 4 to 7 but 4 is less than 7 so it violates the connectivity rules So we must renumber Line 4 to 6 or Line 6 to 3 and then 7 to 4 We want to move Lines 4 thru 5 to Line 7 We renumbered Line 6 to 3 and Line 7 to 4 Once renumbered you can easily respecify the Downstream Line Number as shown below 2015 Hydrology Studio amp Stormwater Studio 2016 Change the Downstream Line Number of Line 6 to Line 4 To maintain line angles while relocati
78. ng The bottom section of the junction will be highlighted in dark red Incremental Edits Inv Dn InvUp Rim Size MEON 2015 Hydrology Studio 102 Stormwater Studio 2016 This tool is used to make changes to the Invert elevations Rim elevation and pipe Rise For example to increase or decrease the Line s Rise toggle the Rise button and click the Up or Down arrows ff the Line is circular in shape both Rise and Span are affected Invert Down Invert Up and Rim may be selected all together or singularly Their values will increase by 01 ft 001 m for each click of the Up Down arrows Hold the Shift key to increase by 0 1 ft 0 01 m Hold the Ctrl key to increase by 1 0 ft 0 10 m Alignment Edits Use the buttons to re align the downstream or upstream ends of the Line It will adhere to the current settings on the Pipe Design tab Align Dn will either match the crown or invert with the downstream line Align Up will either match the crown or invert with the upstream line Redesign This will redesign this Line using the current settings on the Pipe Design tab You ll have two options 1 Pipe Only Redesigns the pipe size only and preserves the current invert elevations 2 Pipe and Inverts Resizes the pipe using the Full Design calculation option and it s current Follow Ground Surface settings on the Compute tab Compute amp Auto Compute This recomputes the HGL using the most recent edits Auto
79. ng be sure to have Line Angles locked and Junctions unlocked Lock Junctions Lock Line Angles 444 Inserting Junctions Stormwater Studio allows you to add a junction over an existing line The procedure is quite simple Just select any existing Line and then click the Insert button on the side toolbar For example to insert a new junction somewhere on Line 2 select Line 2 and click Insert A new junction will be placed at the center of the line To adjust its location double click the line and edit as you would any other line Note that the program will interpolate and assign invert and surface elevations to the new junction 2015 Hydrology Studio Basic Working Procedures 63 0o o Before inserting After inserting 4 4 5 Deleting Lines You can delete a single selected line or a selection of many lines in your system To delete select the line s to be deleted and click the Delete button on the side tool bar The program will automatically reconnect the system and adjust Line numbers for you For example the system below will have Line 2 deleted Outfall Before deleteing Line 2 2015 Hydrology Studio amp Stormwater Studio 2016 4 4 6 Qutfall After deleting Line 2 Background Options You can add a background map to your plan view from either a dxf file or Jpg png omp image files These can be very useful when needing some form of reference whether you draw your syste
80. nstream end of Line 1 or any other outfall The program will design any pipe size and set any other invert elevation that was set to zero 2015 Hydrology Studio 18 Stormwater Studio 2016 You will also need to introduce a flow at the upstream ends of your system In other words Stormwater Studio needs to have a flow rate in each line to compute the HGL EGL profile ff a line is without flow the program will stop and alert you For example in the 5 line system shown above you will need to specify drainage areas Inlet Times and Runoff Coefficients or Known Qs for Lines 5 and 3 The computed flows will be carried downstream Note that you are not required to specify particular inlet types The default manholes can suffice To compute click on the Compute tab on the top Ribbon menu Then click the Run button Run Check out the results on the Profile Reports and Surface tabs as well as the Results tab on the Input window 4 Print Reports The Reports tab contains screen versions of tabulated reports Finished reports which automatically include a print preview can be printed at any time The reports button is available on the Ribbon menu s Home tab The report that you produce depends on the tab you are using For example if on the Plan tab the report will contain the plan layout The same is true for the Surface and Profile tabs If on the the Reports tab the current screen report will be printed WARNING Please n
81. ology Studio Basic Working Procedures 53 By definition a Line is a length of pipe with a junction or inlet at its upstream end Upstream T Surface Junction gt E Downstream A Crown res EE Invert Re Line Length i CL Profile of a typical Line 44 1 How to Add Lines You can manually add and or import up to 200 storm sewer lines to your model There can be multiple outfalls as well You can also customize the X Y coordinates background extents to match your project needs To add new lines manually begin at your outfall Line 1 Start by clicking on the Add New Line s button on the side toolbar Add new Line s Next move your mouse cursor over to the drawing canvas Drag hold down the left mouse button and move to draw the line to the desired length and deflection angle The length and angle are displayed on the input window to the right The upstream end s X amp Y coordinates are displayed on the status bar at the bottom Finish the line by releasing the left mouse button Lines are always drawn in an upstream direction 2015 Hydrology Studio MES Stormwater Studio 2016 4 4 1 1 You can continue adding more lines as needed by repeating the above process Simply start drawing at or near the downstream connecting junction The program will automatically snap the two lines together when you are within about 5 feet A red circle appears around the connecting junction
82. on option then the slope is set first to match grade If the slope exceeds the Maximum Slope it is reset to the Maximum Slope 2015 Hydrology Studio 9 6 1 Computational Methods 131 lf both of the above options have been checked ON Stormwater Studio first selects an available pipe size whose area matches Area With the chosen pipe size it sets the inverts using the procedure described above Note that the final velocity will not always be exactly equal to the Minimum Velocity This is due to the affects of the downstream HGL after the design is complete Balance Tc With HGL When using the Rational method this calculation option helps to eliminate conflicts between the time of concentration and the final hydraulic grade line Traditionally storm sewers are designed to flow full This is acceptable because the pipes are sized to match a certain flow rate and velocity When analyzing existing systems however the actual velocity is not Known until the hydraulic grade line HGL is computed The computed Q s are based on assumed pipe velocities and thus an assumed Tc The resulting HGL is based on these assumptions as well When the actual velocity is different from the assumed velocity the computed Tc is incorrect and thus the computed Q and resulting HGL are incorrect This option solves this problem by re computing the hydraulic grade line HGL based on actual flow rates and actual Tc s To do this Stormwater Studio
83. ontain your project files filename sws while the Rainfall Files will contain your rainfall data described in the following section 2 Set your system units U S Customary default or Metric 3 Set up your local rainfall files This software ships with default rainfall data for which is useful while getting to know the program But eventually you ll want to setup your own local data Tip The companion products Hydrology Studio and Culvert Studio use the same IDF file If you are already using this product you may open the rainfall files from its folder and use for this software as well System Units Stormwater Studio is designed to function using either U S Customary or Metric units This option is selected on the Home tab and can be changed at any time lt is recommended that you set your units before attempting to start a new project or open an existing one as the program cannot convert an existing project from one type of units to the other When you select your units the program will automatically start a new project and will load its built in IDF curves See also Programmed Pipe Sizes for a list of the available pipes Stormwater Stdio will use when designing 2015 Hydrology Studio 4 3 4 3 1 Basic Working Procedures 43 Setting Up Rainfall During calculations Stormwater Studio automatically uses built in rainfall data The software ships with default data for which is useful while getting to know th
84. ope Dn Up Dn Up Dn Up Runoff cfs 1 60 ft ac ac min min in hr in hr cfs cfs cfs cfs cfs ft s in ft ft ft ft ft ft Additional Q cfs 0 00 1 Outfall 50 0 0 50 0 85 0 70 0 35 0 60 10 0 10 3 6 53 6 53 2 29 3 89 0 00 3 89 3 68 3 17 15 0 33 900 09 900 25 901 34 901 50 903 00 904 50 Total Q cfs 1 60 2 1 60 0 0 35 0 35 0 70 0 25 0 25 10 0 10 0 6 53 6 53 1 60 160 0 00 160 236 2 04 12 044 900 50 900 76 901 70 901 82 904 50 907 00 rae Pipe Size in 12 Pipe Slope 0 44 Full Flow Capacity cfs 2 36 Ave Velocity ft s 2 04 Cover Down ft 3 00 Cover Up ft 5 24 HGL Down ft 901 70 HGL Up ft 901 82 HGL Junction ft 901 87 Surface Elev ft 907 00 Freeboard ft 5 17 Gutter Spread ft 8 55 Inlet Spread ft 7 27 Results are current with inputs Project Name Rainfall SamplelDF idf Frequency 10 yr Total Lines 2 Note that you can select multiple lines just like on the Plan tab by dragging your mouse across multiple rows of the grid Conclusion This concludes the Quick Start Tutorial which only scratches the surface of what 2015 Hydrology Studio Stormwater Studio 2016 Stormwater Studio can do Don t be fooled by its simplicity Feel free to explore some options on your own most which can be found within the Pipe Design Inlet Design and Compute tabs on the Ribbon menu One such option to explore is in the Compute tab Try recomputing this syst
85. or understanding between the parties If you do not agree to the terms of this EULA do not install or use the SOFTWARE PRODUCT The SOFTWARE PRODUCT is protected by copyright laws and international copyright treaties as well as other intellectual property laws and treaties The SOF TWARE PRODUCT is licensed not sold 1 GRANT OF LICENSE THIS SOFTWARE PRODUCT IS COPYRIGHTED AND ALL RIGHTS ARE RESERVED BY HYDROLOGY STUDIO THE DISTRIBUTION AND SALE OF THIS PRODUCT ARE INTENDED FOR USE OF THE ORIGINAL PURCHASER ONLY SINGLE SEAT YOU MAY INSTALL AND USE ONE COPY OF THE SOFTWARE ON A SINGLE COMPUTER THE PRIMARY USER OF THE COMPUTER ON WHICH THE SOFTWARE IS INSTALLED MAY MAKE A SECOND COPY FOR HIS OR HER EXCLUSIVE USE ON A PORTABLE COMPUTER YOU MAY ALSO INSTALL A COPY ON A NETWORK SERVER USED ONLY TO RUN THE SOFTWARE HOWEVER YOU MUST ACQUIRE AND DEDICATE A LICENSE FOR EACH SEPARATE COMPUTER ON WHICH THE SOFTWARE IS INSTALLED OR RUN FROM THE STORAGE DEVICE EXCEPT AS PROVIDED HEREIN A LICENSE FOR THE SOFTWARE MAY NOT BE SHARED OR USED CONCURRENTLY ON DIFFERENT COMPUTERS SITE INADDITION TO THE PROVISIONS OF SINGLE SEAT LICENSES YOU MAY INSTALL AND USE THE SOFTWARE CONCURRENTLY ON MULTIPLE COMPUTERS AT THE SITE DESIGNATED AT PURCHASE ADDITIONAL SITES MUST ACQUIRE AND DEDICATE A SEPARATE LICENSE 2 COPYRIGHT 2015 Hydrology Studio 136 Stormwater Studio 2016 All title including but not limited to copyrights in and to the SO
86. ote that it is conceivable to print reports with outdated results For example if you performed any data edits after computing the results will show data based on previous inputs not the current A message will appear at the footer of the Reports tab as well as the printed reports indicating such To update the reports simply recompute 2015 Hydrology Studio 2 Stormwater Studio 2016 3 Quick Start Tutorial Here is a step by step example which models two storm sewer lines The software ships preloaded with sample IDF curves which you can use for this example If you have already set up your IDF curves you can still work through this example but your results will differ somewhat There s nothing you need to do regarding the IDF curves at this moment as they automatically load on program launch Given In this example your are given two storm sewer lines one with a Curb inlet and the other a Drop Grate inlet Both lines flow to an outfall location New drop grate inlet Invert 900 00 DA 0 5 ac Surface 903 00 CG 0 f0 Inlet Time 10 min Surface 904 50 Quttall 50 ft 60 fi New curb Inlet DA 35 ac C 0 70 Inlet Time 10 min Surface 907 00 The outfall invert elevation is fixed at 900 00 ft Our task is to compute the flows and design the Curb and Drop Grate inlets as well as the storm sewer pipes that convey the design flows including their sizes invert elevations and slopes for a 10 year return per
87. ow from each of three components A B and C as described in Technical Release 55 TR 55 Urban Hydrology for Small Watersheds The individual data items are self explanatory however a brief description of the flow types are described below To use this feature select the TR55 from the drop down list box as the Tc Method Then click the button next to it Sheet flow is flow over plane surfaces usually in the upper reaches of the drainage area A typical n value used is 011 for smooth surfaces such as concrete asphalt or bare soil Dense grasses yield 24 Bermuda grass is 41 while woods range from 40 to 80 depending on the underbrush The Flow Length is limited to 300 feet per TR55 and 100 feet per WINTR55 After 300 feet sheet flow turns to shallow concentrated flow The average velocity is automatically computed and is based on the watercourse slope and surface type Paved or unpaved This segment is best described as the surface between sheet flow and open channel flow For these data items it is assumed the channel is bank full Velocity is automatically computed 2015 Hydrology Studio amp Stormwater Studio 2016 4 5 3 You can enter data for up to 3 components for each flow type areas A B 4 C Getting a Printed Report hard copy worksheet will be printed if you check the option on as shown below Y Include with printed output When finished click the Apply button and then Close Th
88. p Pal 2015 Hydrology Studio Stormwater Studio 2016 4 5 3 4 4 5 3 5 Drop Curb Drop Curb inlets are a type of curb inlet used in sags in open yard areas They typically have four sides with rectangular openings Note that the length entered should be equal to the sum of the four sides and that compound cross slopes are not allowed e Swis not a required input Length f 4 Section Location Drop Curb inlets are assumed to be in Sag locations Inlet Length Enter the total length all four sides or if circular the total circumference of the opening By setting this value to zero Stormwater Studio will automatically design it for 100 capture Throat Height Horizontal Throat This is the height of the opening Drop Grate Drop grate inlets can be in either sag or on grade locations Compound cross slopes are not used i e Sw is not a required input 2015 Hydrology Studio Basic Working Procedures 89 Slope 5x Slope 5x Gutter idth Grate Width tyr RE Section Opening Area Enter the clear opening area of the grate Required only in sags Grate Width amp Length Enter the width and length of the grate Set the Length to zero for automatic design The program will size the inlet length for 100 capture When Stormwater Studio designs for grates in sags including combination inlets it sizes the grate opening area using the Grate Design Depth in the Ribbon m
89. ption capacity of inlet on grade increases with increasing flow rates and inlet efficiency generally decreases with increasing flow rates Factors affecting gutter flow also affect inlet interception capacity The depth of water next to the curb is the major factor in the interception capacity of both grate inlets and curb opening inlets The interception capacity of a grate inlet depends on the amount of water flowing over the grate the size and configuration of the grate and the velocity of flow in the gutter The efficiency of a grate is dependent on the same factors and total flow in the gutter Interception capacity of a curb opening inlet is largely dependent on flow depth at the curb and curb opening length Flow depth at the curb and consequently curb opening inlet interception capacity and efficiency is increased by the use of a local gutter depression at the curb opening or a continuously depressed gutter to increase the proportion of the total flow adjacent to the curb Top slab supports placed flush with the curb line can substantially reduce the interception capacity of curb openings Tests have shown that such supports reduce the effectiveness of openings downstream of the support by as much as 50 and if debris is caught at the support interception by the downstream portion of the opening may be 2015 Hydrology Studio Computational Methods 125 reduced to near zero If intermediate top slab supports are used they should be
90. puted from each inflow pipe and is added to the adjusted EGL in Step 2 This newly computed energy level is used as the starting energy for the incoming line s Supercritical Flow Stormwater Studio has the ability to compute supercritical flow profiles with hydraulic jumps automatically When the energy equation cannot balance the software initially assumes critical depth and proceeds to the next upstream line When finished with the subcritical profile it reverses the calculation procedure for any lines with critical depth assumed at their upstream ends i e from upstream to downstream and computes the 2015 Hydrology Studio Computational Methods 113 supercritical profile Hydraulic Jump The Momentum Principle is used for determining depths and locations of hydraulic jumps At each step one tenth of the line length during supercritical flow calculations Stormwater Studio computes the momentum and compares it to the momentum developed during the subcritical profile calculations ff the two momentums equal it is established that a hydraulic jump must occur There may be occasions when a hydraulic jump does not exist or is submerged The condition which must be satisfied if a hydraulic jump is to occur is Momentum M of the subcritical profile equals the momentum M of the supercritical profile Where a yA _ 7 Where Q flow rate A cross sectional area of flow Y distance from the water su
91. r words the grate could be in orifice flow while the curb opening is in weir flow As with the single grate inlet if the grate area A on the combination inlet has been set 2015 Hydrology Studio 14 Stormwater Studio 2016 9 4 2 to O by you the program automatically computes it using the orifice equation and by assuming d Grate Design Depth as selected on the Inlet Design tab and solving for Ag If the perimeter P has been set to 0 by you the program sets it by assuming d Grate Design Depth and solving for P in the weir equation There is not a design option for the curb opening length on combination inlets The program sets it equal to the grate length if found to be 0 Inlets on Grade An inlet on grade has a positive longitudinal gutter slope Its interception capacity Qi is the flow intercepted by an inlet under a given set of conditions The efficiency of an inlet E is the percent of total flow that the inlet will intercept for those conditions The efficiency of an inlet changes with changes in cross slope longitudinal slope total gutter flow and to a lesser extent pavement roughness In mathematical form efficiency E is defined by the following equation ar E Y Where E inlet efficiency Q total gutter flow cfs cms Qi Intercepted flow cfs cms Flow that is not intercepted by an inlet is termed carryover or bypass Factors Affecting Interception Capacity The interce
92. rface to the centroid of A The location of the jump is the point along the line when M M and is reported as the distance from the downstream end of the line The length of the jump however is difficult to determine especially in circular channel sections There have been many experimental investigations which have yielded results which are contradictory Many have generalized that the jump length is somewhere between 4 and 6 times the Sequent depth Stormwater Studio assumes 5 2015 Hydrology Studio EU Stormwater Studio 2016 9 3 o A 106 00 T m m m a ze e rr rr a AA l ee as ee 102 00 i 100 00 Line with supercritical flow producing hydraulic jump The Rational Method The Rational method was developed over 100 years ago and continues to be used for urban watershed modeling typically on areas less than about 20 acres While there exists many varieties of the Rational method Stormwater Studio uses the most popular the Standard Rational Standard Rational The Standard Rational method computes the peak discharge as determined by the well known Rational formula Q kCiA x Cy Where Q peak discharge cfs cms k 1 English 0 00278 Metric C runoff coefficient basin area acres hectares i intensity in hr mm hr 2015 Hydrology Studio Computational Methods 115 C frequency correction factor The rainfall intensity is computed
93. rmwater Studio uses two types of equations FHA IDF Equation and Third degree Polynomial You may directly enter coefficients for these rainfall intensity equations 4 3 1 1 Using Rainfall Map Data Stormwater Studio has the ability to generate IDF curves from NWS precipitation data The computational procedure is that as described in FHA Circular No 12 Drainage of Highway Pavements Technically when using Hydro 35 data or existing curves Stormwater Studio manipulates your input data to generate coefficients B D amp E for use in an Intensity vs Tc equation shown below This method requires minimal inputs but varies depending on what part of the U S you 2015 Hydrology Studio 4 Stormwater Studio 2016 are defining and if NOAA has updated data available for your state Y Your best source for this data is from NOAA s National Weather Service Precipitation Frequency Data Server Click the NOAA button on the Ribbon Toolbar to open the web server Then select your state and followthe instructions Set the Data type to Precipitation Depth Partial Duration men using it for IDF curve setup DATA DESCRIPTION Units english Time series type partial duration Data type If you are in the Eastern Contiguous United States The IDF Wizard will display this screen Stormwater Studio IDF Curves Wizard Enter Rainfall Amounts from Hydro 35 Maps 5 min 15 min 60 mi
94. rom the Map menu shown above 4 4 7 Importing Lines Stormwater Studio lets you to import and export lines and systems from other sources like DXF and LandXML data files Many of today s CAD programs produce both dxf and LandXML files thus providing a seamless connection with Stormwater Studio Once your system is designed and results computed you can export your project back to LandXML or dxf See also How to Open Legacy stm Files 4 4 7 1 Importing from LandXML LandXML is a data file designed to facilitate the exchange of data created during the land planning civil engineering and land surveying process LandXML allows design teams and clients to share data across platforms quickly and seamlessly even from remote locations LandXML data files are independent of operating systems computers and the vendors who create them For example you can create and layout your storm sewer system in any LandXML supporting cad program export it to a LandXML file Then import the system to Stormwater Studio Run the calculations Export back to LandXML Any LandXML supporting software can open it for final drafting You could also create your project in Stormwater Studio and export it as a new LandXML file for importing into other LandXML supported software Importing from LandXML is very straight forward To import choose Import System from LandXML from the Import Export menu w Import System from LandX MIL Export System to L
95. rom the downstream up and the minimum cover constraint will be ignored 2 Full Design Use for newsystems only When using this option Stormwater Studio resets all pipe sizes and invert elevations to zero and re designs the entire system It first sizes pipes based on the specified minimum maximum pipe sizes and minimum velocity It then computes the invert slopes Next it sets the invert elevations as high as possible but always below the minimum cover specified At junctions the outlet invert elevation is fixed by the lowest Surface Elevation Note that this option requires all lines to have Surface Elevations inputted Follow Ground Surface This option will force the pipe slopes to follow the ground surface rather than the theoretical slope produced by Manning s equation This reduces the usage of drop structures minimizing excavation costs Pipe slopes are designed not to exceed the Maximum Slope set in the Ribbon menu Pipe Design tab Use the Full Design option when upstream constraints are important and when designing news systems Just remember this methods works from the upstream down and adheres to the minimum cover constraint Suppress Junction Losses This option will force the calculation procedure to skip calculation energy losses at the upstream structure Design Options As described above in Analysis amp Design the program will fill in or design any pipe size or invert elevation that has been set to zero These design op
96. section to provide the basis of the theories used or to demonstrate how they were derived But rather provide the actual equations and methods employed by the software Hydraulics amp Hydrology The program uses only widely accepted methods within the industry Procedures described in HEC 22 and the Rational method are the primary methodologies This section will provide a summary of the concepts used but it is not intended to be all encompassing Below is a list of publications which provide details on the methods used FHA Hydraulic Engineering Circular No 22 Third Edition 2009 TR 55 Urban Hydrology For Small Watersheds 5 1 Energy Grade Line Stormwater Studio uses the energy based Standard Step method when computing the hydraulic profile This methodology is an iterative procedure that applies Bernoulli s energy equation between the downstream and upstream ends of each line in your system It uses Manning s equation to determine head losses due to pipe friction The greatest benefit to using this method is that a solution can always be found regardless of the flow regime This method makes no assumptions as to the depth of flow and is only accepted when the energy equation has balanced The following equation is used for all flow conditions y 72 it 14 F1 1 Y24 HL 28 28 Where V velocity in ft s m s Z invert elevation in ft m Y HGL minus the invert elevation in ft m 2015 Hydrology Studio
97. sic Working Procedures 93 Click when done 4 7 Computing Once you have entered your line data you are ready to calculate results This is initiated by selecting the Compute tab on the Ribbon menu and clicking the Run button Run Stormwater Studio offers a variety of options for computing your system These are explained in detail below Hydrology Return Period yrs 2 i Minimum Tc min 5 Hydrology options allow you to choose the return period as well as set the smallest Tc that will be used when accessing your IDF curves ff you are using Known Q s exclusively you may choose None for the Return Period Calculation Options ON Analysis ee Design O Full Design Suppress Junction Losses Balance Tc with HGL You have two separate calculation methods 1 Analysis and Design Use for newor existing systems After computing flows this option analyzes and designs from the downstream up and will 2015 Hydrology Studio 94 Stormwater Studio 2016 use any and all existing data for the calculations i e pipe sizes and or invert elevations input by you Any data that has been set to zero for design will be designed by the program Please see Automated Design for details on the actual processes including the option Balance Tc with HGL Use this option when downstream constraints are important when modeling existing systems and when correcting deficiencies in a system Just remember this methods works f
98. smetic If left blank the program will draw a dotted line at the Minimum Depth of Cover specified on the Ribbon menu Pipe Design tab Surface Elevation Up Enter the finish or natural ground elevation at the upstream end of this line This ttem will be used for design when calculation option Full Design is chosen Otherwise this entry is only cosmetic If left blank the program will draw a dotted line at the Minimum Depth of Cover specified on the Ribbon menu Pipe Design tab Benching Stormwater Studio strictly follows the calculation methods prescribed by HEC 22 Third Edition for junction loss calculations Benching is one of the factors and needs to be chosen here Select from the drop down list box The program will assume the default value of that set in the Ribbon menu Pipe Design tab See Pipe Design Options for more information Outfall Lines Only Tailwater Elevation Stormwater Studio will use this entry as the starting water surface elevation when 2015 Hydrology Studio Basic Working Procedures 79 computing You may choose Crown the default or enter a known elevation The Known Elevation must be equal to or greater than dc D 2 f less than that the program will automatically adjust the Known Elevation to dc D 2 That s Critical depth Pipe Rise 2 Send Outflow to Line This feature allows you to direct flows coming from upstream outfalls to any other line in your system For example the p
99. spread is computed This depth and spread is labeled Gutter Depth and Gutter Spread respectively in the reports 2015 Hydrology Studio Computational Methods 129 Gutter Spread Y Sw e Gutter Width Inlet Spread Using the above equations for the variety of inlet types and conditions it computes the final inlet depth as the total depth at the inlet not just d for example The inlet spread is then computed accordingly using basic geometry This depth and spread is labeled as Inlet Depth and Inlet Spread respectively in the reports Inlet Depth Gutter Width 5 6 Automated Design As shown on the Pipe Design tab Stormwater Studio offers various design options regardless of which calculation option you use Analysis amp Design or Full Design They are 1 Reset Pipe Sizes 2 Reset Invert Elevations When designing the program uses the following form of Manning s equation Where 2015 Hydrology Studio 130 Stormwater Studio 2016 D pipe diameter in ft m n Manning s n value Q line discharge in cfs cms S slope of the invert in ft ft m m Kd 2 16 3 20 This procedure assumes that the pipe is flowing full and that the slope of the invert is equal to the slope of the energy grade line Remember the S term or slope in Manning s equation in its traditional use is the slope of the energy grade line Not the slope of the invert In real world conditions the slope of th
100. tarting HGL at the downstream end of any line except outfalls is below Normal Depth Normal Depth will be the new starting HGL In the case of steeply sloped pipes where Normal Depth is less than Critical Depth Critical Depth will be used as the starting HGL 5 1 1 Losses in Junctions Stormwater Studio computes losses at junctions automatically and uses the methodology prescribed by HEC 22 Third Edition The finer details and equations used in this method is beyond the scope of this user s guide but can be found in the referenced publication 2015 Hydrology Studio 112 Stormwater Studio 2016 9 2 Grade Additional Losses HgDn Entrance Loss EGL HGL This method follows three fundamental steps and computes energy losses in each step Step 1 Entrance Loss Determines an initial energy level based on either inlet control weir and orifice or outlet control partial and full flow equations Step 2 Additional Losses This step makes adjustments to the energy level computed in Step 1 These adjustments are based on benching angles of incoming lines and plunging flows lt should be noted that these adjustments can be positive or negative For example benching tends to reduce energy losses in which case you may see the EGL line decrease across the junction In all cases the adjusted energy level cannot be below the initial energy level as computed in Step 1 Step 3 Exit Loss An exit loss is com
101. te nee O E 111 Supercrtical FIOW inca rn ida 112 The Rauonal Method star dl rl il a 114 TO DY TRIO iaa rd td dd 116 A A nes ss cours lase ane cueiti don der niie N 117 HATE US SAS curia i RU RD dd aa LATE A ed id te oat 119 CURAS eee nor AE eae ee eee eer 120 cn E 122 CODINA alo MES ER A iD Ri dera an 123 InletS On Grad iu a cede aia A A Re jte en 124 SAA ge sde de tn en deeDc ele dei er a elite 125 Gral A DIET SR Re 126 Solne ol ee crete eee trate een eee Ra A eect O nr dis ere ten 127 GUO ES TE SO a a eel aie A 128 Automated Desi Nao ias 129 Balance Te Win AGREE ct nd Mn ee 131 Part VI Useful Tables 132 RUNON COC TCI ONS setae echinacea D de ne eee sep en 133 2 Manning s A Va lle Si A ne en ands Nae are nr 134 2015 Hydrology Studio 4 Stormwater Studio 2016 Part VII End User License Agreement EULA 135 Index 137 2015 Hydrology Studio 6 Stormwater Studio 2016 1 Introduction Welcome and congratulations for choosing Stormwater Studio This state of the art desktop application features comprehensive storm sewer network modeling utilizing the most popular agency accepted computational methods along with automated design features All this wrapped around a rich user interface built from the ground up with Windows Presentation Foundation Say goodbye to those outdated forms based programs If you have landed on this page from an internet search and would like to visit our website please visit www hy
102. the line itself or its junction The selected line will turn red in color and the Data Input window will populate with its data You may select multiple lines by clicking on a line or its junction while holding down the shift key This method will select lines in consecutive order For example if you select Line 2 and then while holding down the Shift Key select Line 5 Lines 2 3 4 and 5 will be selected This is useful for performing edits on multiple lines Global Editing or selecting lines to view on the Profile tab f you wish to only select Lines 2 and 5 select Line 2 and 5 while holding down the Ctrl Key An alternate method of selecting lines is by dragging your mouse using the right mouse button The program will draw a dotted rectangle around the selected lines Any junction within the drawn rectangle will be selected In the drawing below Lines 1 and 2 will be selected Outtall Selecting Lines by dragging a rectangle using the right mouse button On the Data Input Window you will find two buttons labeled Downstream and Upstream These buttons will also allow you to select lines Clicking on the Upstream button for example advances the selection to the next upstream line T run Ce 3 Compute the Results Once you have entered data for each line you may compute the system A certain amount of data is required before this can happen At a minimum you will need to specify an invert elevation at the dow
103. throat opening angle assumed to be 45 deg Do not include any local depression amount 4 5 3 2 Grate Gutter l orate Plan view of Grate inlet Opening Area Enter the clear opening area of the grate Required only in sags Grate Width amp Length Enter the width and length of the grate 2015 Hydrology Studio 4 5 3 3 Basic Working Procedures 87 Set the Length to zero for automatic design The program will size the inlet length for 100 capture When Stormwater Studio designs for grates in sags including combination inlets it sizes the grate opening area using the Grate Design Depth in the Ribbon menu Inlet Design tab Combination Combination inlets require the same input data as both Curb and Grate Inlets Note that you may enter unique lengths for the grate and curb opening When the curb opening length is longer than the grate length the program assumes the open curb portion to be located upstream of the grate often called a sweeper inlet Combination inlets are assumed to have horizontal throat openings Per HEC 22 the capacity of combination inlets on grade is equal to the grate alone Capacity is computed by neglecting the curb opening Sweeper inlets The sweeper inlet has an interception capacity equal to the sum of the curb opening upstream of the grate plus the grate capacity The grate capacity of sweeper inlets is reduced by the interception by the upstream cub opening
104. tions allow you to reset those items without having to actually edit them In addition It allows you to preserve the downstream invert at outfalls Use these options when employing Analysis amp Design Full Design resets them anyway Reset Invert Elevations Reset Pipe Sizes 2015 Hydrology Studio Basic Working Procedures 95 For example if your system is already designed from an invert elevation standpoint and you d like to re size the pipes check Reset Pipe Sizes and recompute using Analysis amp Design Note that Design Options uncheck themselves after each use Flow Options Accumulate Known Qs Use Inlet captured Flows in System Suppress Pipe Travel Time Accumulate Known Q s Known Qs can be introduced into any line of your system This feature accumulates these known Qs as the program works downstream if checked If unchecked known Q s are not summed Use inlet captured flows in system Typically inlet flow quantity calculations are done separately from system flows In other words most designers assume that all of the flows computed by the Rational method will enter the pipes If checked this option limits the system flows to those actually captured by the inlets This option should typically be in the OFF position Important If the junction is not an inlet it cannot capture inlet flows resulting in a zero Q ff a line has a drainage area C and inlet time its junction type must be an inlet when this opt
105. tormwater Studio You can of course change this file any time afterwords Click the Open or Save buttons to open or save an existing idf file 4 3 1 2 Enter Points from Existing Curves Stormwater Studio allows you to enter intensities directly from your existing IDF curves You can also enter or import intensities from the newest NOAA Atlas 14 Ribbon Toolbar to open the web server Then select your state and followthe instructions Set the Data type to Precipitation Intensity Partial Duration when using it for IDF curve setup Your best source for this data is from NOAA s National Weather Service Precipitation Frequency Data Server Click the NOAA button on the 2015 Hydrology Studio 4 Stormwater Studio 2016 DATA DESCRIPTION Data type precipitation intensity Units english Time series type partial duration If you selected Enter Intensities from Existing IDF Curves or NOAA Atlas 14 the following screen appears Stormwater Studio IDF Curves Wizard Enter Intensities from Existing IDF Curves or NOAA Atlas 14 Note Enter rainfall intensities in in hr Enter intensities directly or import from NOAA Clear the table and enter intensities directly into the table Click Apply Then click Finish You ll be taken back to the initial IDF Wizard screen where you ll see your n
106. ula Q CIA But the intensity is based on the individual catchment s Inlet Time not the cumulative Tc Known Q s are automatically added to overland flows Carryover and Bypassed Q s Q s for individual inlets are developed from two components The first is from the catchment s drainage area or runoff The second component is from excess flows or non captured flows from upstream inlets This non captured flow is called Carryover lt is called Bypassed when an inlet cannot capture 100 and sends a portion of the total flow off site or to another specified target inlet Carryover and bypass flows are both non captured flows To an inlet carryover is an incoming flow and bypassed is an outgoing flow These flows are labeled as Q carryover and Q bypassed on the reports Note that lines with a manhole or no inlet will bypass all carryover flows to its downstream line Gutter carryover O bypassed Top of curb Plan View of Inlet Bypass Targets Bypass target lines are those lines that accept bypass flows from other inlets In the system shown below the Bypass Target for Line 4 is Line 2 Thus all flows which were not captured by CB 4 will flow to the inlet at Line 2 CB 2 2015 Hydrology Studio NN Stormwater Studio 2016 DC3 4 CB 4 Outfall CB 2 Enter the number of the line inlet in which all bypass flows are to go Enter zero to have the flows sent off site Note that unlike Downstream L
107. ur drawing with custom labels They can be placed anywhere on the plan drawing and can be of many different fonts and colors Adding Labels 2015 Hydrology Studio Basic Working Procedures 71 To add a new label follow these steps 1 Choose the font style size and color from the Ribbon menu Arial Bold Italic v Black DarkRed DarkGreen SaddleBrown i Gray 2 Click the Add Custom Label button from the side toolbar 3 Then move your cursor over to the canvas and drag a rectangle Next type in the desired text inside of the rectangle Note that you can change the font any time even while typing My custom label 4 Click Ok Select button on the side tool bar to accept Editing Labels To edit an existing label simply double click the label Moving Labels Once a label has been added it can be moved by selecting it and dragging it to its new location 2015 Hydrology Studio Stormwater Studio 2016 4 4 9 Deleting Labels To delete a label click on the text to highlight and then click the Delete button on the side toolbar mr Plan View Labels Stormwater Studio offers a variety of options for labeling your plan view These options are accessed from the Ribbon Menu Line Numbers Gutter Lines Line IDs User defined Inlet IDs Surface Diagram These check box options simply toggle on or off the corresponding labels Gutter Lines The gutter Lines option displays lin
108. v Home Pipe Design Inlet Design Compute Arial v M Line Numbers Gutter Lines M Lock Junctions Concrete US Customary r a Line IDs M User defined Lock Line Angles Rainfall Print 12 Black 2 Metal Metric Help Inlet IDs Surface Diagram Surface Profile Reports Pipes Runoff Inlets Results Line Number 2 Line Id BEPELEPELI r m Line Length ft 60 0 Add the next Line by dragging your mouse Defiecion Ane 2500 to its upstream end Line Shape Circular Release the mouse button to accept oo ine span in esign 4 E Invert Elev Dn ft 0 00 Press Esc or click Ok Select to finish Slope of Invert Design 4 Invert Elev Up ft Design No Barrels 1 Manning s n Downstream Line No Surface Elev Dn ft Surface Elev Up ft 0 00 Benching Depressed 0 011 0 00 ft Downstream ee ami EU Enter Project Name Rainfall SamplelDF idf Frequency 2 yr Line No 2 X 207 71ft Y 21244ft Release your mouse button to accept and then press the Esc key or click the Ok Select button Click when done Your finished plan will look similar to the following 2015 Hydrology Studio 2 Stormwater Studio 2016 3 1 1 i e New Project Stormwater Studio 2016 Trial Version ea ES Joe St Home Pipe Design Inlet Design Compute Arial v Line Numbers Gutter Lines Lock Junctions Concrete Line IDs V User defined Lock Line Ang
109. ving the outfall Junctions Locked Line Angles Unlock ed 4 4 3 1 Layout Options The Ribbon menu contains a Plan Layout category with two options Lock Junctions Lock Line Angles Lock Junctions This option will allow you to either hold or release all upstream junctions at their current position while editing a line For example the editing activity in the system below shows the affect of junctions locked and unlocked Outfall 1 o 2 o 3 o System before editing O 2015 Hydrology Studio Basic Working Procedures 59 Outtall Editing wth junctions locked Outtall Editing wth junctions unlocked Lock Line Angles Sometimes you ll have a need to move a junction upstream or downstream without moving the line itself This is easily accomplished by locking the Line Angles When locked only the junction will move but nothing else as shown below Outtall 1 2 3 EEO OO Editing wth both line angles and junctions locked 4 4 3 2 Moving Multiple Lines at Once lf your plan is coordinate specific and you need to move an entire branch or the whole system follow these steps 2015 Hydrology Studio 6 Stormwater Studio 2016 4 4 3 3 1 Unlock Junctions 2 Unlock Line Angles Lock Junctions Lock Line Angles Plan Layout 3 Move your mouse cursor over the outfall junction Then drag to the new position Renumbering Lines On occasion you may have the need to relocate a line or an entire branch of li
110. well as Blocks and Text are not supported in order to achieve high speed redraws In addition the background map will be drawn ina single color also to help speed up redraws Image files will be imported as they are To import a background map click the Map button on the side tool bar and select Import Background Map 2015 Hydrology Studio e Stormwater Studio 2016 Import Background Map set Background Extents Clear Background Map Export Plan to Image File Next enter the name of the file you wish to import lt must have a dxf png jpg or omp file extension The program will then display the Map Extents screen where you can specify the Map extents Not required for DXF files The program will read the file and display the drawing on the Plan View Below shows a sample map imported from a dxf file HI E C Where does this map go when I save a project Nowhere Stormwater Studio only keeps a copy of it s file name and path when you save your project file It automatically searches for the background file and reloads it when opening that project file It will advise you if the original file cannot be found It is recommended that you include any background map files with your project files when sending or transporting them to reviewers or colleagues 2015 Hydrology Studio Basic Working Procedures 67 Clearing the Background Map To clear or remove a background map select Clear Background Map f
111. wise Hydrology Studio shall have no liability with respect to the content of the SOFTWARE PRODUCT or any part thereof including but not limited to errors or omissions contained therein trademark rights or business interruption Copyright 2016 Hydrology Studio All Rights Reserved 2015 Hydrology Studio Index stm files 106 A access hole losses 111 Accumulate Known Qs 93 Activating the software 7 Adding Lines 21 Analysis amp Design 93 Arch pipes 7 6 B Balance Tc with HGL 129 benching 95 Bypass flows 117 Bypass target 82 C0 Carryover 117 Catchment 117 Cf 51 Clogging Factors 100 Combination in Sag 123 Combination Inlets on Grade 127 composite runoff coefficients 79 Curb in Sag 120 Curb inlet 85 Curb Inlets on Grade 125 custom labels 70 Custom Reports 104 D Deflection Angle 76 Delete Line s 63 Downstream Line Number 56 drainage area 79 Drop Curb Inlet 88 2015 Hydrology Studio Drop Grate Inlet 88 DXF background 65 E Editing layout 56 Energy Grade Line 109 EULA 135 Export DXF 67 Export LandXML 6 7 Export plan to DXF 70 F Frequency Correction Factors 51 Full Design 93 C global editing 92 Grate in Sag 122 Grate Inlet 86 Grate Inlets on Grade 126 Gutter 90 Gutter Depth 128 Gutter Lines 72 Gutter Spread 128 H Headwall 90 Hydraulic Grade Line 109 hydraulic jump 112 Hydro 35 45 IDF Equation Coefficients 50 Import DXF 67 Import
112. ws along with separate gutter and inlet soread widths e Bypass flows can be directed off site or to any other inlet in the project including 2015 Hydrology Studio Introduction upstream inlets and other systems e All inlet calculations comply with Federal Highway Administration FHWA Hydraulic Engineering Circular 22 HEC 22 e Imports and exports system layouts from DXF and LandXML files e Imports DXF and most image files as background images e Much more Output Features Professional reports are tabulated and include Standard DOT style HGL EGL Calculations Inlet tabulation and two User defined reports Each are exportable to txt or csv file formats Other reports include plan views inlet surface drawings and multi line profiles Includes Print Preview 1 1 Installing and Activating By now you probably have Stormwater Studio installed but just in case you haven t just follow the purchase download instructions at the product s website www hydrologystudio com The initial download will contain the free trial version which has no time limit but limited functionality For example the total number of storm sewer lines you can model will be limited to six you won t be able to save project files and most of the reports will be watermarked Stormwater Studio uses Microsoft s Click once technology which makes the installation process fast and easy A desktop icon will be automatically created and will launch the program
113. y what output variable appears in each particular column There is a list of some 80 different built in variables you can choose from to include as well as a user defined report name Once created Stormwater Studio saves the reports and reloads them upon each start up There s no need to manage open or save files for these It s completely automatic 2015 Hydrology Studio Basic Working Procedures 105 To view the custom reports make the Results tab active by clicking on it You ll see the Reports toolbar at the upper left Standard HGL Inlets Customi Custom Y fJ 4 Click on Custom1 or Custom2 Then click the Edit Reports button on the right Y This opens the Custom Reports editor Y Custom Report Build Custom Report OUTPUT FIELDS EGL Junction Energy Loss Flow Rate Freeboard Invert Up Friction Slope Ave Ground Rim Elev Up Grate Area Ground Rim Elev Dn Grate Length Freeboard Grate Width Ground Rim Elev Dn Ground Rim Elev Ub Distance from the HGL Junction to the Ground Rim elevation Build your own custom reports This screen allows you to build your own reports by selecting output variables from the list on the left and adding them to your report on the right You can name your report by modifying the text in the upper right The default is Custom1 or Custom2 Adding Columns to Your Report To add a new column scroll through the OUTPUT FIELDS
114. year return period from the drop down list box Your Hydrology and Calculation options should look like this O 2015 Hydrology Studio Stormwater Studio 2016 3 4 Return Period yrs 10 8 Analysis amp Design 1 Full Design Suppress Junction Losses ay Balance Tc with HGL Minimum Tc min 5 Next click the Run button Run Stormwater Studio will begin by checking for any erroneous or missing critical data lt then starts at the upstream end of your system and works downstream computing flows Next it works back upstream computing the hydraulic and energy grade lines The Calculation option Analysis amp Design tells it to design any pipe sizes slopes and invert elevations that have been set to zero In our case all pipes sizes and inverts except for the outfall have been set for Design Calculations take only a fraction of a second Once computing is finished you ll be rewarded with lots of colorful charts profile drawings and tabulated reports Click here to move to Step 4 where you can see them Step 4 View Print Reports As mentioned in Step 3 Calculations occur very quickly and now you can get started on seeing results This step will present all the various charts and tabulated reports available To print a report you are currently viewing simply click the Print button on the Home tab of the Ribbon menu p Home Pipe Design Inlet Design Compute si Arial v Line Numbers Gutter Lines 7

Download Pdf Manuals

image

Related Search

Related Contents

スペクトラムアナライザ MSA300シリーズ(Rev.2.0)  System Control Manual  Progress Lighting P6413-09 Installation Guide  Manual del usuario  QC seismic software  USER MANUAL DIESEL HYUNDAI DHY12000SE  LED Tube Single_Final_Rev5_Front  Kompletter Basiskurs 3.2, Stand Oktober 2013  Sales and Contracts  Security Policy Management for Handheld Devices  

Copyright © All rights reserved.
Failed to retrieve file