Home
Introduction To GDDR5 SGRAM UM
Contents
1. ABI Unmatched Trace Length Routing The DDR3 and GDDR3 data interfaces require low skew among the data lines and their associated data strobe in order to meet the tight setup and hold timings constraints Especially with higher data rates it is often a challenge to meet these timings taking into account some unavoidable skew in the system due to transistor process variation package power supply asymmetries or board manufacturing tolerances This leads to typical PCB layouts where the trace length is matched as shown in Figure 12 on the left The GDDRS data interface does not require such matched routing but considers the skew compensation one piece of the overall interface trainings The data eye will be significantly improved because the available PCB area allows e g larger spacing between adjacent data lines resulting in less cross talk This also leads to even lower PCB cost when reducing the number of signal layers DDR3 GDDR3 GDDRS5 Figure 12 PCB Routing with Unmatched and Matched Trace Length User s Manual E1600E10 Ver 1 0 14 ELPIDA Descriptions in this document are provided only for illustrative purpose in semiconductor product operation and application examples Use of this information is under the full responsibility of the customer For details about the functions of individual products refer to the corresponding data sheet CHAPTER 4 ADAPTIVE INTERFACE TRAINING CHAPTER4 ADAPTIVE INTERFACE TRAINING The GDDR5 SGRA
2. e g all internal memory array operations Both contribute to an extremely low on chip jitter and good supply noise immunity of the GDDRS5 SGRAM Write Data Latching and Clock Distribution DDR3 and GDDR3 latch the Write data using a Write Data Strobe WDQS There is one data strobe per byte and the strobe is transmitted by the controller center aligned with the Write data to provide equal setup and hold times at the DRAM s receiver The DRAM must carefully maintain this phase relationship although the WDQS inside the DRAM has a fanout of 9 8 DQ DM while DQ and DM have a fanout of 1 This inherent mismatch has to be carefully compensated on chip This scheme has proven to be working at the data rates of DDR3 and GDDR3 but was considered inadequate for the data rates of GDDRS GDDRS uses a scheme with direct latching data receivers see Figure 8 4 latches are directly connected to each DQ receiver The WCK data clock is internally divided by 2 and then distributed as a four phase clock 0 90 180 270 to the DQ latches The four phases correspond to the 4 data words U I which are received within two WCK cycles or one CK cycle as shown in Figure 6 The main difference to DDR3 or GDDR3 is that there is no delay adjustment logic between DQ receiver and latch and no fixed phase relationship is specified between the WCK clock and data The procedure for aligning WCK clock and data is explained in Chapter 4 D 180 D 270 Figur
3. internal input level may be generated due to noise etc hence causing malfunction CMOS devices behave differently than Bipolar or NMOS devices Input levels of CMOS devices must be fixed high or low by using a pull up or pull down circuitry Each unused pin should be connected to Vpop or GND with a resistor if it is considered to have a possibility of being an output pin The unused pins must be handled in accordance with the related specifications STATUS BEFORE INITIALIZATION OF MOS DEVICES Power on does not necessarily define initial status of MOS devices Production process of MOS does not define the initial operation status of the device Immediately after the power source is turned ON the MOS devices with reset function have not yet been initialized Hence power on does not guarantee output pin levels I O settings or contents of registers MOS devices are not initialized until the reset signal is received Reset operation must be executed immediately after power on for MOS devices having reset function CME0107 User s Manual E1600E10 Ver 1 0 23 ELPIDA Descriptions in this document are provided only for illustrative purpose in semiconductor product operation and application examples Use of this information is under the full responsibility of the customer For details about the functions of individual products refer to the corresponding data sheet The information in this document is subject to change without notice Before
4. such that maximum power saving is achieved On Die Termination ODT The signal lines are usually terminated by a 60Q impedance At lower data rates it might be possible to achieve a stable operation by using a weak termination of 120Q or completely disabling ODT In both cases the memory interface s power consumption is reduced The GDDR5 SGRAM allows to control the ODT strength independently for address command and data Write Latency Write latency is the delay between a WRITE command and the actual start of a write burst When the latency is set to small values i e WL 3 the input receivers remain enabled when set to large values e WL 6 or 7 the input receivers turn on for the duration of a write burst only The power saving with larger WL values stems from the fact that write bursts account only for a small percentage of the overall memory transactions The performance penalty of a higher write latency is negligible Power Down and Self Refresh Like all other DRAMs GDDRS supports Power Down and Self Refresh mode e Power Down disables the input buffers and internal clock trees while the external CK and WCK clocks remain active mainly to keep the DRAM s PLL and internal synchronization logic in a locked state power down supports a fast exit to quickly react on anew memory request e Self refresh is the ultimate power down state where the GDDR5 SGRAM retains the stored information without external interaction exit f
5. the external interface or the interconnect between memory controller and DRAM ODIC Architecture The GDDR5 SGRAM chip architecture see Figure 7 is called ODIC which stands for outer DQ inner control the architecture is reflected by the ballout The 32 bit data interface is physically split into 4 bytes with one byte located in each corner of the package bytes 0 and share a dedicated WCK clock and VREFD inputs also bytes 2 and 3 share a dedicated WCK clock and VREFD inputs both sections are physically separated with no data lines crossing the chip center e Address and command along with VREFC the CK clock and other control signals are located in the center COMMAND ADDRESS CENTRAL CONTROL COMMAND ADDRESS Figure 7 GDDR5 SGRAM ODIC Architecture The advantage of this architecture is that the internal WCK clock trees and high speed data lines shown in dark blue between the RX TX blocks and the pads can be kept very short The WCK clocks are also separated from the CK command clock which controls User s Manual E1600E10 Ver 1 0 11 ELPIDA Descriptions in this document are provided only for illustrative purpose in semiconductor product operation and application examples Use of this information is under the full responsibility of the customer For details about the functions of individual products refer to the corresponding data sheet CHAPTER 3 DATA EYE OPTIMIZATION
6. tracking of interface timings e improve data integrity by adding hardware support for the detection and correction of transmission errors This document discusses these features and outlines the benefits for GDDR5 based applications Benefits Benefits Benefits Highest signal quality Stable system operation Highest system stability Highest performance No need for trace length matching Error tolerance Low PCB cost Low PCB cost Figure 1 GDDRS5 Key Concepts The most obvious achievement with GDDRS is the enormous increase in memory bandwidth as shown in Figure 2 GDDR5 provides more than twice the memory bandwidth compared to its predecessor GDDR3 This extreme throughput enables users to either reach new levels of performance for their applications or support an equivalent level of performance with e g only half the interface width resulting in a significant power and cost saving Data rate per Pin Gbps Figure 2 Data Rate Comparison To give an example operated at a data rate of SGbps per pin or 20GB s per device a single GDDR5 SGRAM can read or write the contents of 4 DVDs 4 7GB in less than a second User s Manual E1600E10 Ver 1 0 5 ELPIDA Descriptions in this document are provided only for illustrative purpose in semiconductor product operation and application examples Use of this information is under the full responsibility of the customer F
7. M provides hardware support for adaptive interface training These trainings ensure that the GDDR5 SGRAM is operated with the widest timing margins on all signals They compensate for all imbalances in the interface timing resulting from impedance mismatches unmatched trace length in PCB routing and differences in path delays due to process voltage and temperature All interface trainings are fully orchestrated by the memory controller The GDDR5 SGRAM assists the memory controller by offering several unique hardware features that allow a fast and accurate training It should be pointed out that all timing adjustments are done at the memory controller only The duration of all trainings depends a lot on the specific implementation data topology and algorithms but in general has no performance impact In part this is achieved by certain hardware features inside the GDDR5 SGRAM that allow all trainings to occur without accessing the slower memory core The generic interface training sequence can be depicted from Figure 13 The sophisticated sequence of interface trainings allows to perform all training steps at the application s maximum frequency The full training is performed at power up or when certain operating conditions like clock frequency PLL on off or supply voltage have changed on the fly during normal operation Figure 13 Interface Trainings Power Up The device configuration x32 x16 mode and mirror function are detect
8. R 3 DATA EYE OPTIMIZATION The POD driver uses a 4002 60Q impedance that drives into a 60Q equivalent on die terminator ODT tied to VDDQ Due to high speed only single loads P2P being supported for the data bus Address and command may also be dual loaded P22P e g when used in conjunction with a clamshell configuration see Figure 5 The benefit of the VDDQ termination is that static power is only consumed when driving a Low which helps a system designer to reduce the power consumption of the memory interface Figure 9 Signaling Schemes Impedance Calibration and Offsets The driver and terminator impedances are automatically calibrated against an external precision resistor connected to the ZQ pin This auto calibration continuously compensates impedance variations from process voltage and temperature changes The calibrated driver and terminator values may be further offset to optimize the matching of driver and terminator impedances to the actual system characteristics Offset PU Driver Pullup Autocalibrated Impedance Impedance Offset PD Driver Pulldown Impedance Offset Termination Termination Impedance Figure 10 Impedance Offsets VREFD Options and Offsets The data input reference voltage VREF in Figure 9 may be either supplied externally or generated internally A more stable data eye has been observed using the internal VREF A VREF offset capability allows to vertically shift the write data eye when th
9. READ commands are issued repeatedly which return the FIFO data to the controller The controller will then sweeps its clock phase until the data are sampled correctly Write Data Training Write data training is the final step in aligning the data bus to the respective WCK clock It includes the same two aspects the alignment of the write data bits to the WCK clock at the DRAM s data latch bit training and the detection of burst boundaries out of a continuous write data stream framing Knowing that the read path has been trained before the controller iteratively writes and reads data to and from the Read FIFO and sweeps the write data phase until the data are written correctly After Write Data Training all data eyes are expected to be well centered and the GDDR5 SGRAM is ready for normal operation Continuous Tracking At the high data rates of GDDR5 even small changes in supply voltage or temperature will gradually shift the write and read data eye position away from the trained optimum making transmission errors more likely The controller is able to observe and compensate such data eye drift e g by monitoring the EDC pin which can be programmed to continuously send a clock like pattern EDC hold pattern to the controller This is known as Clock and Data Recovery CDR User s Manual E1600E10 Ver 1 0 16 ELPIDA Descriptions in this document are provided only for illustrative purpose in semiconductor product operation and
10. RS5 to x32 mode which results e g in a 1GB framebuffer by using 8 pieces of 1Gbit with a 256 bit wide memory interface at the controller e or populating both sides of the PCB and configuring the GDDRS to x16 mode which results e g in a 2GB framebuffer by using 16 pieces of 1Gbit with a 256 bit wide memory interface at the controller Clamshell mode has no performance penalty because it preserves the point to point connection on the high speed data bus The shared address and command interface can easily be connected by vias in the PCB and the use of mirror function mode which lets these pins appear at the exact opposite locations Memory Organization GDDRS like DDR3 uses an 8n prefetch architecture to achieve high speed operation 8n prefetch architecture means that the internal data bus to from the memory core is 8 times as wide as the I O interface but operated at only 1 8 of the I O data rate The 8n prefetch was chosen for GDDR3S as it offers the best compromise between the application s need for fine access granularity and fastest array speeds by using most advanced DRAM processes Elpida today offers 1Gbit and 2Gbit GDDR5 SGRAMs The addressing of both densities can be depicted from Table 2 1Gbit and 2Gbit differs only in the number of row address bits while x32 mode and x16 mode differ only in the number of column address bits The number of banks and page size are the same for all configurations Table 2 Addressing Scheme Clock
11. USER S MANUAL ELPIDA Introduction To GDDR5 SGRAM Document No E1600E10 Ver 1 0 Date Published March 2010 K Japan URL http www elpida com Elpida Memory Inc 2010 INTRODUCTION Intended Audience This manual is intended for users who design application systems using Graphics Double Data Rate 5 GDDR5 Synchronous Graphics Random Access Memory SGRAM Readers of this manual are required to have general knowledge in the fields of electrical engineering logic circuits as well as detailed knowledge of the functions and usage of conventional and graphics synchronous DRAM SDRAM DDR DDR2 DDR3 GDDR3 Explanatory Notes Caution Information requiring particular attention Note Footnote for items marked with Note in the text Remarks Supplementary information Related Documents e Elpida GDDR3 and GDDR5 SGRAM product portfolio http www elpida com en products gddr html Important Notice This document is intended to give users understanding of basic functions and usage of GDDR5 SGRAM Descriptions in this document are provided only for illustrative purpose in semiconductor product operation and application examples Any numerical individual products The incorporation of these information in the design of the customer s equipment is under the full responsibility of the customer Elpida Memory Inc assumes no responsibility for any damages or losses incurred by customers or third parties arising from the use of thes
12. application examples Use of this information is under the full responsibility of the customer For details about the functions of individual products refer to the corresponding data sheet CHAPTER 4 ADAPTIVE INTERFACE TRAINING To re center the data eye it is suggested to repeat Write and Read Data Training at regular intervals GDDRS even allows to perform such training in parallel with an ongoing regular refresh operation a period where the data bus is settled when using other DRAMs e g DDR3 Such a carefully implemented training during refresh has no performance penalty High End and Low Cost Systems The amount and accuracy of training depends a lot on the targeted data rates and other system characteristics A high end graphic card will require all training steps at highest possible accuracy to tweak the data rate to a maximum This may include a per bit training on the data lines to cancel out even small differences in signal flight times among the data lines Low cost systems on the other side may skip address training and perform per byte training instead of per bit training or use more coarse timing steps The small differences in signal flight times or small training inaccuracies are acceptable for the target data rate This usually allows a more cost and power optimized memory controller design User s Manual E1600E10 Ver 1 0 17 ELPIDA Descriptions in this document are provided only for illustrative purpose in semicond
13. application examples Use of this information is under the full responsibility of the customer For details about the functions of individual products refer to the corresponding data sheet CHAPTER 6 LOW POWER CHAPTER6 LOW POWER The power consumption of a GDDR5 memory interface has been widely addressed during the definition of features and device operation For a realistic estimation of the potential power saving it is recommended to consider the power saving of the whole memory interface comprising memory controller DRAM and the interface Supply Voltage GDDRS operates from a 1 5V supply voltage while GDDR3 still requires 1 8V Elpida s GDDR5 SGRAMSs also support operation at 1 35V Elpida expects that the supply voltage of aGDDRS based system will gradually decrease down to 1 2V or even 1 0V with further technology shrinks Dynamic Voltage Scaling DVS Elpida s GDDR5 SGRAMs allow to change the supply voltage between 1 5V and lower voltages e g 1 2V on the fly and thus scale the system s power consumption to the actual system workload The voltage transition may occur when the DRAM is set into self refresh mode as shown in Figure 16 The duration of the voltage transition is determined by the voltage regulator s characteristics and on board buffer caps CK Figure 16 Dynamic Voltage Scaling Dynamic Frequency Scaling DFS Elpida s GDDR5 SGRAMS are specified to operate over a large contiguous frequency ran
14. data from the internal CK clock domain to the external WCK clock domain and output drivers Clock training is initiated by the controller The controller sweeps the WCK clocks against the CK clock and the GDDR5 SGRAM responds by a static signal indicating an early or late phase The procedure continues until the optimum phase relationship is detected which is indicated by the transition from early to late In most applications the phase relationship trained at power up provides sufficient margin to cover any drift occurring during further system operation Read Data Training Read data training is the first step in aligning the data bus to the WCK clock It includes two aspects the alignment of the latching clock in the memory controller to the center of the read data bit bit training and the detection of burst boundaries out of a continuous read data stream framing Read and Write Data Training can effectively be performed without the use of the memory array Specific training commands utilize the DRAM s Read FIFO that usually acts as a temporary storage for read data Figure 14 shows the regular data paths in green color and additional paths for data training in red color Address Inputs Data Bus Figure 14 Data Paths for Read and Write Data Training Initially the FIFO is pre loaded with data being safely transmitted over the previously trained address bus Once the FIFO has been pre loaded special
15. e 8 Write Data Latching The PLL cancels out any duty cycle error of the incoming WCK clock It also suppresses high frequency WCK jitter above the PLL s bandwidth but tracks low frequency clock phase variations The bandwidth is programmable and thus adjustable to system characteristics The low jitter resulting from the combination of direct latching data receivers short WCK clock trees and PLL have proven to be key for the very high data rates achieved with GDDRS The PLL offers a bypass option which is targeted at lower speed operation The high speed data path for Reads runs off the same four phase internal WCK clocks not shown in Figure 8 Signaling Scheme and On Die Termination GDDRS carries the proven single ended and VDDQ terminated signaling concept of GDDR3 to achieve highest data rates By maintaining these concepts within GDDRS the rich experience gathered by users in system tweaking is allowing a fast and smooth transition from GDDR3 to GDDRS Figure 9 compares the Pseudo Open Drain POD signaling scheme of GDDRS5 with the Stub Series Terminated Logic SSTL scheme of DDR3 User s Manual E1600E10 Ver 1 0 12 ELPIDA Descriptions in this document are provided only for illustrative purpose in semiconductor product operation and application examples Use of this information is under the full responsibility of the customer For details about the functions of individual products refer to the corresponding data sheet CHAPTE
16. e before using the product in aerospace aeronautics nuclear power combustion control transportation traffic safety equipment medical equipment for life support or other such application in which especially high quality and reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk of bodily injury Product usage Design your application so that the product is used within the ranges and conditions guaranteed by Elpida Memory Inc including the maximum ratings operating supply voltage range heat radiation characteristics installation conditions and other related characteristics Elpida Memory Inc bears no responsibility for failure or damage when the product is used beyond the guaranteed ranges and conditions Even within the guaranteed ranges and conditions consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail safes so that the equipment incorporating Elpida Memory Inc products does not cause bodily injury fire or other consequential damage due to the operation of the Elpida Memory Inc product Usage environment Usage in environments with special characteristics as listed below was not considered in the design Accordingly our company assumes no responsibility for loss of a customer or a third party when used in environments with the special characteristics listed below Example 1 Usage in liquids inc
17. e eye opening is not symmetrical around the default VREF level User s Manual E1600E10 Ver 1 0 13 ELPIDA Descriptions in this document are provided only for illustrative purpose in semiconductor product operation and application examples Use of this information is under the full responsibility of the customer For details about the functions of individual products refer to the corresponding data sheet CHAPTER 3 DATA EYE OPTIMIZATION Data Bus Inversion DBI Address Bus Inversion ABI Data Bus Inversion DBI see Figure 11 is a feature that reduces the supply noise induced jitter on the high speed interface it limits the number of DQ lines per byte driving a Low to 4 DBI is used for Reads and Writes and operates as following the transmitter the controller for Writes the GDDR5 SGRAM for Reads counts the number of zeros within a byte and decides whether to invert 0 count gt 4 or not invert CU count lt 4 the data conveyed on the DQs The inversion is indicated on the additional signal DBI which can be considered a 9th data bit The receiver the GDDR5 SGRAM for Writes the controller for Reads performs the reverse operation based on the level on the DBI pin Signals Transmitted Data Data Bus Received Data DQO DQ DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DBIO Figure 11 Data Bus Inversion The same function is also available for the address bus Address Bus Inversion ABI and supported by the additional signal
18. e information User s Manual E1600E10 Ver 1 0 3 ELPIDA Descriptions in this document are provided only for illustrative purpose in semiconductor product operation and application examples Use of this information is under the full responsibility of the customer For details about the functions of individual products refer to the corresponding data sheet CONTENTS CHAPTER 1 EIERE tee 5 CHAPTER 2 ENEE steet 7 CHAPTER 3 DATZ EYE OPTIMIZATION ee 11 CHAPTER 4 ADAPTIVE INTERFACE ee 15 CHAPTER 5 DATA INTEGRITY E 18 CHAPTER 6 er 19 8857 EEN 21 User s Manual E1600E10 Ver 1 0 4 ELPIDA Descriptions in this document are provided only for illustrative purpose in semiconductor product operation and application examples Use of this information is under the full responsibility of the customer For details about the functions of individual products refer to the corresponding data sheet CHAPTER 1 OVERVIEW CHAPTERI OVERVIEW GDDRS5 SGRAM is the latest generation of Elpida s high speed DRAM products GDDR5 combines unprecedented memory bandwidth with low system implementation costs and thus makes it the ideal DRAM platform for many applications including graphic cards game consoles and high performance computing For achieving ultra high bandwidth GDDRS introduces a variety of features that optimize the data eye by adapting I O impedance and reference voltage to the actual system characteristics e allow efficient adaptation and
19. e provided only for illustrative purpose in semiconductor product operation and application examples Use of this information is under the full responsibility of the customer For details about the functions of individual products refer to the corresponding data sheet The information in this document is current as March 2010 The information is subject to change without notice NOTES FOR CMOS DEVICES OU PRECAUTION AGAINST ESD FOR MOS DEVICES Exposing the MOS devices to a strong electric field can cause destruction of the gate oxide and ultimately degrade the MOS devices operation Steps must be taken to stop generation of static electricity as much as possible and quickly dissipate it when once it has occurred Environmental control must be adequate When it is dry humidifier should be used It is recommended to avoid using insulators that easily build static electricity MOS devices must be stored and transported in an anti static container static shielding bag or conductive material All test and measurement tools including work bench and floor should be grounded The operator should be grounded using wrist strap MOS devices must not be touched with bare hands Similar precautions need to be taken for PW boards with semiconductor MOS devices on it HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES No connection for CMOS devices input pins can be a cause of malfunction If no connection is provided to the input pins it is possible that an
20. ed at power up In addition the ODT for the address command lines is set for normal or clamshell mode depending on the logic level on the CKE pin Address Training Once a stable CK clock is provided commands may be issued to the GDDR5 SGRAM The address training is optional and may be used to center the address input data eye The GDDR5 SGRAM supports address training by an internal signal bridge from its address inputs to the DQ outputs This bridge allows the controller to directly observe and adjust the address input timing Once the address input timing is trained the controller may program the GDDR5 SGRAM s configuration registers Clock Training CK and WCK clocks require a certain phase relationship which may vary from device to device or after a configuration change such as PLL on off This phase relationship ensures a reliable phase over of write data from the external WCK clock domain to the User s Manual E1600E10 Ver 1 0 15 ELPIDA Descriptions in this document are provided only for illustrative purpose in semiconductor product operation and application examples Use of this information is under the full responsibility of the customer For details about the functions of individual products refer to the corresponding data sheet CHAPTER 4 ADAPTIVE INTERFACE TRAINING internal CK clock domain for a correct write operation to the memory array Likewise the same phase relationship ensures a reliable phase over of read
21. ge starting from a data rate as low as 200Mbps up to the maximum rated data rate While e g 400Mbps may be sufficient for displaying static images like from a web browser or e mail client a data rate of e g 1 5Gbps may be required for HD video playback and the maximum data rate will be utilized by high end gaming applications The memory system s power consumption depends a lot on the clock frequency as shown in Figure 17 for one GDDR5 SGRAM It is therefore a good practise to scale the clock frequency on the fly to the actually required memory bandwidth IDD0 ACT PRE cycle 4 IDD2P Precharge power down PS IDD3N Active standby A IDD4R READ burst 4 IDD4W WRITE burst 3 Data Rate Figure 17 Supply Current vs Data Rate User s Manual E1600E10 Ver 1 0 19 ELPIDA Descriptions in this document are provided only for illustrative purpose in semiconductor product operation and application examples Use of this information is under the full responsibility of the customer For details about the functions of individual products refer to the corresponding data sheet CHAPTER 6 LOW POWER For optimum power saving it is recommended to combine DVS with DFS the users define a set of operating points data rates for their system and with DVS they will scale the supply voltage to the lowest supported voltage at the specified data rates The DRAWM s internal voltages may be adjusted by the use of special register bits
22. ing and Data Rates The GDDR5 SGRAM runs off two different clocks as shown in Figure 6 e Commands and addresses are referenced to the differential clock CK CK commands are registered at every rising edge of CK addresses are registered at every rising edge of CK and every rising edge of CK Read and write data are referenced to both edges of a free running differential forwarded clock WCK WCK which replaces the pulsed strobes WDQS RDQS used in previous DRAMs such as GDDR3 or DDR3 Example Frequencies and Data Rates 1GHz 1Gbps 2Gbps RD Read WR Write 2GHz ACT Activate PRE Precharge BA Bank Address RA Row Address 1 D I H Figure 6 Relationship of Clock Frequencies and Data Rates User s Manual E1600E10 Ver 1 0 9 ELPIDA Descriptions in this document are provided only for illustrative purpose in semiconductor product operation and application examples Use of this information is under the full responsibility of the customer For details about the functions of individual products refer to the corresponding data sheet CHAPTER 2 FEATURES It has been observed that clock frequency and data rate are sometimes mixed up when referring to the performance of a graphic card The specialty of GDDRS is the 4X relationship between data rate and the CK clock compared to the 2X relationship in DDR3 and GDDR3 In other words a 4Gbps GDDRS and a 2Gbps GDDR3 are both clocked at 1GHz The GDDRS clocking c
23. ll responsibility of the customer For details about the functions of individual products refer to the corresponding data sheet
24. luding water oils chemicals and organic solvents 2 Usage in exposure to direct sunlight or the outdoors or in dusty places 3 Usage involving exposure to significant amounts of corrosive gas including sea air CLs HoS NH3 SO and NOx 4 Usage in environments with static electricity or strong electromagnetic waves or radiation 5 Usage in places where dew forms 6 Usage in environments with mechanical vibration impact or stress 7 Usage near heating elements igniters or flammable items If you export the products or technology described in this document that are controlled by the Foreign Exchange and Foreign Trade Law of Japan you must follow the necessary procedures in accordance with the relevant laws and regulations of Japan Also if you export products technology controlled by U S export control regulations or another country s export control laws or regulations you must follow the necessary procedures in accordance with such laws or regulations If these products technology are sold leased or transferred to a third party or a third party is granted license to use these products that third party must be made aware that they are responsible for compliance with the relevant laws and regulations M01E0706 User s Manual E1600E10 Ver 1 0 24 ELPIDA Descriptions in this document are provided only for illustrative purpose in semiconductor product operation and application examples Use of this information is under the fu
25. oncept is completed by the WCK data clock of 2X the command clock frequency Considering the CK and WCK frequency relationship as in Figure 6 and the burst length of 8 each Read or Write burst takes two CK clock cycles For gapless Read or Write operations READ and WRITE commands would be issued every second cycle like at TO and T2 in Figure 6 The intermediate command slot at T1 may be used to open ACTIVATE or close PRECHARGE a page in one of the other banks in parallel with the ongoing Read or Write operation User s Manual E1600E10 Ver 1 0 10 ELPIDA Descriptions in this document are provided only for illustrative purpose in semiconductor product operation and application examples Use of this information is under the full responsibility of the customer For details about the functions of individual products refer to the corresponding data sheet CHAPTER3 DATA EYE OPTIMIZATION CHAPTER3 DATA EYE OPTIMIZATION The performance limits when tweaking graphic cards are usually determined by crosstalk inter symbol interference ISI and all sources of jitter in the interface between memory controller and DRAM but not the DRAM itself The GDDR5 SGRAM provides a variety of features that all contribute to the dramatic improvement in data eye opening and system stability for both Reads and Writes Some of the features target the on chip high speed clocking scheme associated with the WCK clocks while other are dedicated to the actual signaling on
26. or details about the functions of individual products refer to the corresponding data sheet CHAPTER 1 OVERVIEW When first introduced to the market GDDR5 based graphic cards operated at data rates of about 3 6Gbps while 5 0Gbps are achieved today Elpida is working closely with all major enablers to raise the data rate to 7Gbps and beyond in the near future DDR3 has been added to this bandwidth comparison as it is the latest DRAM generation originally defined for PC and server applications but also being adopted for graphic card applications User s Manual E1600E10 Ver 1 0 6 ELPIDA Descriptions in this document are provided only for illustrative purpose in semiconductor product operation and application examples Use of this information is under the full responsibility of the customer For details about the functions of individual products refer to the corresponding data sheet CHAPTER 2 FEATURES CHAPTER 2 FEATURES Table 1 compares the main features of DDR3 DRAM GDDR3 SGRAM and GDDR5 SGRAM Table 1 Main Features of DDR3 GDDR3 and GDDR5 mows b o 6 6 OoOO Pee 6 PM P Basen nien Jann GDDRS Interface The GDDR5 SGRAM s interface to the controller comprises 62 signals see Figure 3 e A 32 bit wide data bus DQ logically split into 4 bytes each byte is accompanied by two additional signals DBI Data Bus Inversion and EDC Error Detection and Correction which are explained later in this document e Two diffe
27. rential forwarded data clocks for bytes 0 and 1 WCKO1 WCKO1 and bytes 2 and 3 WCK23 WCK23 e Ten multiplexed address inputs BA3 BAO A12 A0 ABI e Six command inputs RAS CAS WE CS CKE RESET e A differential clock CK CK for commands and addresses The other pins MF Mirror Function SEN Scan Enable VREFC CMD ADDR input reference VREFD data input reference and ZQ impedance reference are either pulled high or low or connected to external sources DQ7 DQ0 DBI0 EDCO WCKO01 WCK01 DQ15 DQ8 DBI1 EDC1 BA3 BA0O A12 A0 ABI CK CK IRAS CAS WE CS ICKE RESET DQ23 DQ16 DBI2 EDC2 WCK23 WCK23 DQ31 DQ24 DBI3 EDC3 Notes 1 EDC pins are output only 2 A12 pin for 2Gbit only 3 Pins not shown MF SEN VREFC VREFD ZQ 4 xxx indicates active low signal Figure 3 GDDRS Interface User s Manual E1600E10 Ver 1 0 7 ELPIDA Descriptions in this document are provided only for illustrative purpose in semiconductor product operation and application examples Use of this information is under the full responsibility of the customer For details about the functions of individual products refer to the corresponding data sheet CHAPTER 2 FEATURES Ballout and Mirror Function Figure 4 shows the two ballouts of aGDDR5 SGRAM with Mirror Function MF set to and 1 The mirror function changes the physical location of command address data and WCK pins and thus a
28. rom self refresh takes longer than from power down because the CK and WCK clocks need to be re synchronized and the PLL must re lock Other Power Saving Features Elpida s GDDR5 SGRAMSs support a few more power saving features which may be activated at lower data rates the individual saving potential is less than what e g is achieved with DVS and DFS but helps when power consumption is a big concern or competitive advantage s The DRAM s voltage generators may be adapted to react slower on successive commands e The input receiver s speed may be reduced e The WCK clock may be disabled during power down User s Manual E1600E10 Ver 1 0 20 ELPIDA Descriptions in this document are provided only for illustrative purpose in semiconductor product operation and application examples Use of this information is under the full responsibility of the customer For details about the functions of individual products refer to the corresponding data sheet GLOSSARY Table 3 Glossary DQ een Jm Feier User s Manual E1600E10 Ver 1 0 21 ELPIDA Descriptions in this document are provided only for illustrative purpose in semiconductor product operation and application examples Use of this information is under the full responsibility of the customer For details about the functions of individual products refer to the corresponding data sheet MEMO User s Manual E1600E10 Ver 1 0 22 ELPIDA Descriptions in this document ar
29. ssists in routing devices back to back on the PCB The MF pin is tied to VSSQ or VDDQ depending on the desired orientation 12 13 14 1 vss vssa vona e ES gt vss vss vssa VDD SC VDDQ vssa vss vssa gen M Een Wl BE BAS B9 VDDQ vssa vona WCK23 WCK23 vop vona weKo1 weko1 vp C pin is OFF when configured to x16 mode pin is OFF when configured to x16 mode Figure 4 GDDRS Ballout Clamshell Mode The GDDR5 SGRAM can operate in a x32 mode or a x16 clamshell mode to allow a clamshell configuration as shown in Figure 5 The mode is set at power up Figure 5 GDDR5 Clamshell Configuration Users Manual E1600E10 Ver 1 0 8 ELPIDA Descriptions in this document are provided only for illustrative purpose in semiconductor product operation and application examples Use of this information is under the full responsibility of the customer For details about the functions of individual products refer to the corresponding data sheet CHAPTER 2 FEATURES The benefit of clamshell mode is that users are able to quickly react on changing market conditions by easily creating new product variations E g by taking the same component from the inventory utilizing the same controller PCB layout and memory channel width the user can decide on the actual framebuffer size at a very late stage of the manufacturing process by e either populating only one side of the PCB and configuring the GDD
30. ssumed and the controller is supposed to repeat the command in error The procedure is asymmetric in the sense that only the controller performs the CRC check and takes corrective actions while the GDDRS5 SGRAM executes each command regardless of a CRC error Ultimately this EDC feature may be used as an indicator for a data eye drift over time and trigger a retraining However the more safe procedure is to schedule retraining on a regular basis and consider the EDC capability as additional safeguard Write Data Mask Traditionally all DRAMs support partial write where individual bytes may be excluded from the write operation by the use of data masking This partial write is equivalent to a read modify write but consumes less memory bandwidth The data mask information is usually conveyed on an extra data mask DM pin associated with each data byte The drawback of this scheme is that a bit error on the DM signal is not recoverable meaning that a masked byte may erroneously be overwritten The EDC feature would not solve the issue because the failure would be detected by the controller after the actual write has been performed by the GDDR5 SGRAM Therefore it was decided to implement a more safe scheme which sends the data mask information via the address bus along with the WRITE command User s Manual E1600E10 Ver 1 0 18 ELPIDA Descriptions in this document are provided only for illustrative purpose in semiconductor product operation and
31. uctor product operation and application examples Use of this information is under the full responsibility of the customer For details about the functions of individual products refer to the corresponding data sheet CHAPTER 5 DATA INTEGRITY CHAPTERS DATA INTEGRITY The manifold hardware features and training algorithms supported by GDDRS already ensure very reliable operation of GDDRS based systems at very low bit error rates BER Some applications however require BER some orders of magnitude lower than those e g acceptable for graphics card or game console applications These requests are addressed by the GDDR5 SGRAM in two ways e Securing the high speed I O s signal integrity by adding redundancy e Securing partial write operations by using a more safe path for conveying the write data mask Error Detection and Correction EDC GDDRS supports error detection and correction EDC on its bidirectional DQ and DBI lines using a cyclic redundancy check CRC 8 algorithm that is widely accepted in high speed communication networks The algorithm detects all single and double bit errors The procedure is as follows see Figure 15 Figure 15 Error Detection and Correction The GDDR5 SGRAM calculates the CRC checksum on the fly for each Read or Write burst and returns the checksum to the controller on the dedicated EDC pin The controller performs the same CRC calculation if both checksums don t match a transmission error is a
32. using this document confirm that this is the latest version No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Elpida Memory Inc Elpida Memory Inc does not assume any liability for infringement of any intellectual property rights including but not limited to patents copyrights and circuit layout licenses of Elpida Memory Inc or third parties by or arising from the use of the products or information listed in this document No license express implied or otherwise is granted under any patents copyrights or other intellectual property rights of Elpida Memory Inc or others Descriptions of circuits software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples The incorporation of these circuits software and information in the design of the customer s equipment shall be done under the full responsibility of the customer Elpida Memory Inc assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits software and information Product applications Be aware that this product is for use in typical electronic equipment for general purpose applications Elpida Memory Inc makes every attempt to ensure that its products are of high quality and reliability However users are instructed to contact Elpida Memory s sales offic
Download Pdf Manuals
Related Search
Related Contents
Sony Wok STR-DH500 User's Manual Baumatic BR201.3A combi-fridge Mode d`emploi 522 621 livret d`evaluation des competences en langues v Ergotron StyleView Laptop Cart, SLA 取扱説明書PDFはこちらから Manual 1.0 SL 218 A - Theimer und Mager Veranstaltungstechnik Employee Management Self Service Internet Portal Lenovo ThinkCentre M58p SSF Copyright © All rights reserved.
Failed to retrieve file