Home

Grinding Parameter

image

Contents

1. 40 mm mms 160 m s Residual stress Gren Vy 12 m min WZL Fraunhofer IPT Vy 80 m min IPT Vy 180 m min Agenda Repitition of lecture 9 Thermal heat flux in grinding Force and temperature measurement Practical investigation FEM simulation for surface grinding D FEM simulation for cylindrical grinding Attachement WZL Fraunhofer IPT Y ZA Fraunhofer IPT WIL RWTHAACHEN Page 36 System External cylindrical Grinding What happens Witz AM here uM U m UN A Input Parameters WZL Fraunhofer IPT Page 37 WAZU Fraunhofer m Grinding machine and parameters for external cylindrical grinding Machine 2 EMAG KOPP SN 204 500 mm Material T P enn 38MnS6 BY EM i 30 kW Coolant NG auBen max Emulsion 596ig 7 500 min Needle nozzel Vc max 150 m s KSS Emulsion oil Grinding parameters Dressing parameters Qw Vw Vo de U ded mm3 mms m min m s mm U S um oa 43 172 so o04 o2 5 s os Grinding wheel Dressing tool CBN 151 VSS 3443 J1 SN V 360 E 301 SG 071P 140 0 5 500 x 20 x 203 2 rotating WZL Fraunhofer IPT ZG Fraun hofer AH LUR oT RWTHAACHEN Page 38 Temperature measurement for ex
2. Distribution Create i lect Geer Select Step number in the ODB where the data Begin step to be read starts default 1st step in ODB Begin increment Increment number where the data to be read starts default 15t available nd step t Incremen Cancel End increment Number of the step where the data to be Interpolation M read ends default same step number as C Mesh compatibility fe Compatible Incompatible in Begin step Interpolabe feiers Number of the increment where the data to be read ends default last available increment Documentation Abaqus CAE x Speer User s Manual section 16 8 3 oo ____ Creating predefined fields 16 11 Compatible the mesh in the source ODB and the current Using the predefined field editors model are Hip Same or differ only in the element order Incompatible dissimilar meshes WZL Fraunhofer IPT EE Page 68 A Fraunhofer RWTHAACHEN N Creating a job S E Connector Sections F Fields e Amplitudes 17 l5 Loads 23 La BCs 2 L Predefined Fields Remeshing Rules IG sketches m Edit Job SECH Annotations KEE HET Analysis Double click CS IEN A Model Model 1 Grinding D7 06 600 TE Jobs mE ll Gg Adaptivity Processes nm Ell Co executions Submission General Memory Parallelization Precision Preprocessor Printout Print an echo of the input data If using a subroutine F Frink
3. F Fields TS Amplitudes L Loads Esc L Ls Predefined Fields 1 Remeshing Rules SH a Sketches WZL Fraunhofer IPT x EN Field Output Requests Manager Heat Load Edit F Output 1 Move Left Move SEI Gohl abe e activate Step procedure Heat transfer Variables Preselected defaults Status Created in this step ecien COPY Rename Wie 74 Fraunhofer RINTHAACHEN Click Edit Delete Dismiss Page 60 Field Output Request options EN Edit Field Output Request E 1 Frequency poem P BEE JN l F Ouktput 1 Timing Heat Load Name Step Procedure Heat transfer P Domain Whole mode sl SE NI 9 9 9 mg mg mg mg mg mi mg mi mi mi mi mu mem NINNE Output Yariables C Select From list below Ce Preselected defaults All C Edit variables HFL NT RFL K Displacement Velocity4cceleration K T Energy w Thermal v MT Nodal temperature IT TEMD Element Ferner abi ire Note Error indicators are nok available when Domain is Whole Model or Interaction Output for rebar Output at shell beam and layered section points Use defaults Specify I Include local coordinate directions when available ri Lu J nm qu WZL Fraunhofer IPT Fraunhofer IPT N 7 Output ge spaced time intervals i Every x units of time alte C Al C Ed HEL MIRE From time points EE
4. WZL Fraunhofer IPT IA Page 56 pe 145 ZA Fraunhofer RWTHAACHEN IPT Meshing the model generating the mesh m Meshing techniques IL Gs Structured meshing simple predefined mesh geometries are adapted to the Ne Click and hold geometries of the part prefer E Swept meshing a mesh is generated on one side of the region and copied one element layer at a time along the sweep path until it reaches the target side Free meshing unpredictable unstructured meshing technique that uses no predefined mesh geometries Bottom up meshing a manual incremental meshing technique in which the Mesh part tie between the mesh and the part geometry is not as strict as in the automatic meshing techniques R Mesh region We E Abagus indicates possible meshing techniques for part regions using Delete part color coding and provides more detailed documentation about these mesh techniques in the Abaqus CAE User s Manual chapter 17 Adding partitions or changing the element type can affect the available meshing Delete techniques region mesh Structured meshing color code green section 17 8 1 Swept meshing color code yellow section 17 9 1 Free meshing color code pink section 1 7 10 1 Bottom up meshing color code light tan section 17 11 1 Unmeshable color code orange WZL Fraunhofer IPT Page 57 N WZL ZA Fraunhofer RWTHAACHEN IPT Creating
5. WZL Fraunhofer IPT Page 73 N WZU A Fraunhofer RWTHAACHEN Backup WZL Fraunhofer IPT IA Page 74 E WZU 74 Fraunhofer RINTHAACHEN Procedures of finite element analyses in thermal simulation a Heat transfer model Grinding process Input process parameters Finite Element Model FEM table speed Vu heat profile heat flux density qw etc Material properties Specimen definition geometry material properties etc Loads Boundary Conditions Heat Input Formulation Solution Scheme m E No Does the simulation result Post Process match with the experiment Page 75 Finish WZL Fraunhofer IPT Yes F AL ZA Fraunhofer RWTHAACHEN IPT
6. WZL Fraunhofer IPT Cutting with geometrically undefined cutting edges Simulation Techniques in Manufacturing Technology Lecture 10 Laboratory for Machine Tools and Production Engineering Chair of Manufacturing Technology Prof Dr Ing Dr Ing E h Dr h c Dr h c F Klocke Page 1 Y Ss WZU ZA Fraunhofer RWTHAACHEN IPT Agenda D Repitition of lecture 9 Thermal heat flux in grinding Force and temperature measurement Practical investigation FEM simulation for surface grinding FEM simulation for cylindrical grinding Attachement WZL Fraunhofer IPT Y Page 2 WZU A Fraunhofer RWTHAACHEN Review From milling to grinding number of cutting edges WZL Fraunhofer IPT Page 3 Fraunhofer IPT Review Characteristics of grinding E cutting edges possess different geometries grinding wheel rake angle m mainly highly negative chip angle BW varying distance of the cutting edges and thus different chip thicknesses E varying distance of the cutting edges from the rotation axes workpiece bonding grinding grain ES GE ET L am m F ar 2 zu E es mU 7 Eee D A 5 S Poe O dde ads Va tool consists of three components grain bonding pore eee eae a c B tool can be dressed in the machine inui es a Gi CR in feed WZL Fraunhofer IPT Page 4 N ZA Fraunhofer IPT Review Modelling and simulation of grinding pr
7. m Martensitic steels can be harmed by grinding process deformation rehardening at the surface possible annealing in deeper regions possible 8 shown case grinding wheel wear leads to high process e BS 28 we di Deg A 7 MG L SC 9 Y RK S 5 XB ek Sos uae enw apr ke Z A AS wi IAM E e ia Z S y d et ya S 2 Ka y cron E bet ot AAT R T A TD E TEIG e INT ge Ka K al 1 2 i Ze NL LT KS gi 24 L a km at 5 N 17 die G ZTE e e V T TM lu Af P wl gd TUS N n C ex A i MT re A 2 H Me CG mg 3 y 34 E Kaz y P D K een R CAN dee e 4 A Kess y e 4 A SNO E 3 A 3 a WAS hs vx j S sy we a M Y vad L r 1 L a x Ww rM e ech 4 Vase d r be A Er 477 Ke EV UP TEE L 4 L2 JO zr tati 4 wre I 4 d vu E E a EK NO T ver T T v G X tu 1 00 lt 4 B V 1000 mn mm gt um W Pa a j Fo 3 e I c i R Page 13 Fraunhofer IPT Influence of abrasive material on surface integrity Residual stresses surface grinding material v 30 m s 100 Cr6V 62 HRC a um Vy 400 mm s tensile stress t 800 meu s Corundum iz d m A 46 Jot 8V 35 gt E o 400 mechanical thermal UD load load D Y o 0 effects of thermal load during CBN machining can exceed mechanical T effects 400 gt positive compressive stresses a near surface nc 800 0 40 80 120 Source Brinksmeier Depth um WZL Fraunhofer I
8. Enter property value here Page 50 N ZA Fraunhofer IPT Defining temperature dependent material properties KC The batterer in Ton dia table do Va ea o0 mJ need to be entered individually A table can be Material Behaviors copied from Microsoft Excel for instance and SES pasted into the Material Editor Specific Heat General Mechanical Thermal Other Delete E 50 800 o TI Select the a eer BEER ou Ze Z Use GE i lemperature 9 4r 2 umber of feld varbis dependent option E X30 gm m 480 2 NO PF 1 f t 1 T 320 z 2 column E Thermal conductivity 0 200 400 600 800 1000 1200 Temperature 8 C WZL Fraunhofer IPT ZG Fraunhofer Le zu Page 51 T R NTHAACHEN Defining a section Model Results Material Library Model Database Y Ei Model 1 E I Parts 1 E IZ bus Acie SC Parts Dee Assembly H obm Steps 1 Ea Field Output Requests 1 En History Output Requests n Hz Time Poinks 1 Ba ALE Adaptive Mesh Constraints CS Interactions 1 Interaction Properties Contact Controls 1 SES Contact Initializations il Constraints Je Connector Sections E TT Fields P x Amplitudes UZ Loads D pc F Predetined Fields Eg Remeshing Rules ai Sketches WZL Fraunhofer IPT Double click lll Create Section X Category Solid C Shell Beam Other ce B Edit Section Mame
9. E LL WZL Fraunhofer IPT Agenda Repitition of lecture 9 Thermal heat flux in grinding Force and temperature measurement Practical investigation FEM simulation for surface grinding FEM simulation for cylindrical grinding Attachement WZL Fraunhofer IPT Page 46 Y WZU ZA Fraunhofer RWTHAACHEN IPT Starting a new model main window gt Abaqus CAE 6 9 1 Viewport 1 Min Sa Part defaults sl E i Ei d Models 1 E Model 1 b Parts E Materials x Sections i E Profiles 42 Assembly ofa Steps 1 i P m Field Output Requests Ez History Output Requests les Time Points Bp ALE Adaptive Mesh Constraints H Interactions 44 Contact Initializations SCHU Constraints Da Bcs gt Ea Predefined Fields Remeshing Rules Co executions S File Model viewport View Part Shape Feature Tools Plugins Help Ki B308 Toolbars Module Part Model Model 1 E Part A new model database has been created bol The model Model 1 has been created Model Results Tree WZL Fraunhofer IPT Message area Command line interface ZA Fraunhofer IPT N Viewport where the model and results will be displayed Model Tree Results Tree graphical overview of model results Prompt area shows prompts related to the current tool being used Message area displays status information and warnings Comma
10. analysis steps m Abagus analyses involve multiple steps in which different loads and constraints are applied to the model m Abaqus automatically creates the step Initial This step can be used to apply initial conditions or boundary conditions with the limitation that all constraints applied in Initial must have a value of O Le Step Initial can define the initial temperature to be O or constrain a set of points to have zero displacement It cannot define the initial temperature to be 20 or define a non zero starting velocity for a point m Analysis steps and output requests must be created by the user WZL Fraunhofer IPT a Model 1 B Create Step ED Parts 1 M Heat Load Block 2 D BE ES Materials 2 it Sections 1 1 ER Profiles SA Assembly Gofa Steps 1 lt _ Bl Initial 1 B Field Output Requests L En History Output Requests 1 les Time Points L E ALE Adaptive Mesh Constraints ke Interactions Interaction Properties 1 Hn Contact Contrals s dd Contact Initializations eil constraints Je Connector Sections Insert new step after ES Select where the step will be inserted in the sequence Procedure type General General Linear perturbation Double click Steps Dynamic Temp i EOSL aI Heat transfer Mass diffusion Soils Static General EE 7
11. contact constraint data DN Create Job print model definition data attach It under the er es The source Print history data General tab Source Model sl can be either Scratch directory Select Z D SmallverificationBlack r HighSpeedBlack1 HighSpeedBlocki mech HighspeedBlack1 _tempabh a model or User subroutine File Select an input file _ SO OO ThickerBlock eng WZL Fraunhofer IPT ZA Fraunhofer WAL CUT Y ae RWTHAACHEN Submitting the job Right click on the job name i Annotations Options EIEE Analysis EE lab 1 m Write Input creates an input file without running the job This ie LAE EE can be used for running a job in the Batch System Dosen EA Data Check checks for errors in the job including subroutines KT It is useful for checking that a subroutine compiles can be EV compiled Write Input E Data Check Submit Submit actually runs the job creating an input file and a data check are both included in the submitting process Monitor can be used to check the progress of a running job or see messages produced during an already completed job Results opens the results file of an already completed job Copie Monitor Results Kill Export WZL Fraunhofer IPT wii Page 70 74 Fraunhofer RANTHAACHEN Monitoring a job Right click on the job name and select Monitor gt Errors usually resu
12. 0 Pe Materials 23 i Sections 1 1 a Profiles SA Assembly oba Steps 2 a o Initial T gB Heat Load T B Field Output Requests 1 3 Ez History Output Requests Kn Time Points 1 Ba ALE Adaptive Mesh Constraints TI Interactions 1 ES Interaction Properties SCH Contact Controls 1 dd Contact Initializations Constraints EE VS Connector Sections E F Fields A SES GEES Eb Bes e Double click EH Loads a Predefined Fields Ey B Remeshing Rules Es Sketches WZL Fraunhofer IPT B Create Load EJ EN Edit Load Mame MovingHeat Mame MovingHeat Step He Sid sl Type Surface heat Flux Step Heat Load Heat transfer Procedure Heat transfer Category Types for Selected Step Mechanical Thermal Acoustic Huid Electrical Mass diffusion ther Surface heat Flux Body heat Flux Concentrated heat Flux Region Picked Edit Region Distribution User defined lt Create Magnitude Note User subroutine DFLUS must be attached to the analysis job Cancel The distribution options for loads are similar to those for boundary conditions LX Continue Cancel The types of loads are limited based on the step type Documentation Abaqus CAE User s Manual section 19 8 1 Creating loads 16 9 Using the load editors E WZU 74 Fraunhofer RINTHAACHEN Page 66 N Subroutines m Subro
13. 0 Measuring point Coolant 0 B Grinding oil Needle nozzle Dressing parameters Temperature T C Spec Normal force I I 1000 wat U 4 Contact length d 750 L 9 a 15 um I I 900 Single pole thermocouple Typ J 290 l I 44a d 0 ida lida 167 5 170 172 5 175 177 5 Time t s WZL Fraunhofer IPT mm Page 20 A Fraunhofer RAWTHAACHEN IPT Comparing the different measuring methods 1000 o C z Temperature T O O WZL Fraunhofer IPT 170 172 174 Time t s ZA Fraunhofer IPT Wad m Material 42CrMo4 Grinding Parameter Q 2 5 mm3 mms Vw 600 mm min V 30m s Coolant Grinding oil Needle nozzle Dressing parameter U 4 gu 19 Um 2 color Pyrometer Tyo K O Typ J 176 Ww Page 21 RWTHAACHEN Agenda Repitition of lecture 9 Thermal heat flux in grinding Force and temperature measurement D Practical investigation FEM simulation for surface grinding FEM simulation for cylindrical grinding Attachement WZL Fraunhofer IPT Y ZA Fraunhofer IPT WIL RWTHAACHEN Page 22 System Surface Grinding Workpiece Tool Preparation Coolant Process parameters Input Parameters Grinding burn at the workpiece surface layer Boundary condition WZL Fraunhofer IPT Page 23 N Wi Fraunhofer RNTHAACHEN Experimental investigation in speed stroke gr
14. 20 Adiabatic surface h 20 m Maximum temperature of the coolant f Qw lubricant is tg 120 due to the boiling M point of emulsion M m Heat flux into the workpiece 2 Ow At Qs 7 Acool 7 Achip Mg In this approach of a Finite Element Model y only a thermal load is considered Page 28 WZL Fraunhofer IPT Ss WZU A Fraunhofer RWTHAACHEN Analytical calculation of different heat flux profiles in grinding Model by Carslaw and Jaeger 13 Table speed v Uniform heat source has a triangular distributed 10 4 heat flow density 8 78 Triangular E heat source moves linear and with constant speed over the surface gt B 52 W heat source has an unlimited expansion m vertical to the direction of movement ee m the heated solid is semi infinite i e it is only limited at one side 0 2x lg V l E cM For the evaluation of the triangular heat heat source flux profile experimental temperature measurements are necessary o Page 29 WZL Fraunhofer IPT FF Ww ZA Fraunhofer RWTHAACHEN IPT Results Practical investigation for heat flux profile evaluation Material 1000 v 42CrMo4 Contact length W Grinding Parameter 190 Q 2 5 mm3 mms s V 600 mm min 5 900 Single pole thermocouple type J v 30 m s e 250 Coolant lubricant o Oel 7 0 1A r7 Needle Nozzle 167 5 170 172 5 175 177 5 Dressing Parame
15. B Measuring point Workpiece Iron Wire M Constantan wire Double pole thermocouple 0 Constantan Isolator Workpiece Single pole thermocouple WZL Fraunhofer IPT Page 18 WLU Za Fraunhofer RWTHAACHEN IPT Calibration of different sensors 120 Typ J factor 1 08 E 100 E Typ K factor 1 24 80 Cem A gt Reference measuring calibrated Temperature T C O Thermocouple Typ K 1 2 3 4 5 6 7 8 9 10 Measuring point A PT100 TypK Typ J WZL Fraunhofer IPT N ZA Fraunhofer IPT Thermocouple PT100 TypK TypJ Heat source Reference Measuring Grinding oil Page 19 WIL RWTHAACHEN Characteristics of one grinding overrun Material 50 42CrMo4 E 40 Grinding parameters 2 Q 2 5 mm mms 30 l rinding direction v 600 mm min e 20 v 30 m s E 1
16. E 38MnS6 BY 800 Grinding parameters gt Q 10 mm3mms C V DIER m s 2 Wi V 80 m s CBN grinding wheel 400 Coolant 3 Emulsion 5 ig G ann Needle nozzle Dressing parameters U 5 E o 05 135 a 3 um Time t ms The triangular heat source fits best WZL Fraunhofer IPT Y FL Page 42 ZA Fraunhofer RWTHAACHEN IPT Results Cylindrical grinding simulation results 20 C EE Material 82 E 38MnS6 BY 146 a oo Grinding parameters 575 pe QW 10mm mms 461 4 CBN grinding wheel 524 oo Coolant 587 p3 Emulsion 5 ig 649 P Needle nozzle 712 PS Dressing parameters ODB Job 1 odb Abaqus Standard 6 9 1 Thu Mar 17 16 06 51 W Europe Standard Time 2011 115 U uu 5 A M MS a Bu dog 3 um The visual representation of the thermal effects allows a better understanding WZL Fraunhofer IPT a Page 43 4 Fraunhofer ASL AT IPT Results Cylindrical grinding simulation results Material O 38MnS6 BY C Grinding parameters o Q 10 mm3 mms V 0 168 m s v 80 m s CBN grinding wheel E Coolant Emulsion 5 ig Needle nozzle Dressing parameters WZL Fraunhofer IPT Page 44 wai Fraunhofer RNTHAACHEN iscussion Open d Z E ey Thanks for your attention m duscha wzl rwth aachen de 49 241 80 28185 Dipl Ing Michael Duscha Ema Tel Page 45 RNTHAACHEN IPT Bea D Zeg Q Ee C
17. I C Select f v P increments The evenly spaced time intervals option could help reduce the size of the output file and make the data from multiple simulations easier to compare I had not seen this option so have not tried it The abbreviations of all currently selected variables are shown in this field So far the default heat transfer outputs nodal temperature heat flux vector and reaction fluxes have been used for the simulations Page 61 WIL RWTHAACHEN Creating a boundary condition a Model 1 P E 5 Parts 14 HH Block 2 D re Materials 2 ja Sections 1 1 Profiles SE Assembly Ce Steps 2 D Initial T c Heat Load T B Field Output Requests 1 S Ez History OuEpuE Requests ar Time Points 1 Ba ALE Adaptive Mesh Constraints TE Interactions 1 X Interaction Properties Sri Contact Controls 1 di Contact Initializations ell Constraints Im Connector Sections E F Fields Ss Amplitudes i E m L Predefined Fields 1 Remeshing Rules a Sketches Procedure Category C Other Double click BCs EN Create Boundary Condition Mame Bc 1 step Initial sl Dp step Heat Load lt S Create Boundary Condition E Name Bc Procedure Heat transfer Category Types for Selected Step Mechanical Other Types for Selected Step Symmetry l Antisymmetry Encastre Connector material Flow Submo
18. PT Y Page 14 Wie 74 Fraunhofer RWWTHAACHEN Agenda Repitition of lecture 9 Thermal heat flux in grinding D Force and temperature measurement Practical investigation FEM simulation for surface grinding FEM simulation for cylindrical grinding Attachement WZL Fraunhofer IPT Y ZA Fraunhofer IPT WIL RWTHAACHEN Page 15 Principle of 3 component piezo electric force measuring m 3 different quartzes F shear effect Cap C measuring orientation by k a Specific orientation of crystal axis P i E m integration of a charge amplifier for each component E P TK T longitudinal effect ox La F M shear effect m y E sealed against cooling lubricants and other fluids i CA Source Kistler SR est ja WZL Fraunhofer IPT F Page 16 ZA Fraunhofer WAL IPT Temperature measuring methods for grinding processes Temperature measurement method 2 color pyrometer test probe in workpiece Ak IW ee xad x d xh GE stroke LL le TRUE z 100 um v remaining j material lay er d i Es i E ur U um KS WZL041190 RE MEME Source WZL Aachen WZL Fraunhofer IPT N ZA Fraunhofer IPT data acquisition semi permeable mirror quartz fiber Page 17 Single and double pole thermocouple measuring method Temperature J difference Metal junction lj AN A Li ee ENT Metal
19. Static Riks aF Fields Visco ka dk Amplitudes D Leads oe E Predefined Fields Eh Remeshing Rules N ac Sketches ZA Fraunhofer General steps can deal with linear or non linear behavior Linear perturbation steps are only for linear behavior Page 58 WIL RWTHAACHEN IPT Creating analysis steps e Edit Step Mame Heat Load Automatic incrementation allows Abaqus to increase or reduce the step size during the simulation Type Heat transfer Basic Incrementation Other Description apply moving heat source to bop surface of Ehe workpiece Response Steady state Transient EN Edit Step o The maximum number of Time period i Nemes Veet Lee increments should not be set too Mlgeom Off Type Heat transfer low or the simulation will be Basic Incrementation Other Sets the simulation Ra D DNE em terminated partway through time for this step Maximum number of increments ia Likewise the minimum increment I e the loads in this Initial Minimum Taximum Size will also terminate the step will be applied eeretsze f ae simulation if set too high for a simulated End step when temperature change is less than period of 1 second Max allowable temperature change per increment The current model uses a maximum The total simulation Max allowable emissivity change per increment oi number of increments of 80000 for time is the sum of 3
20. can be predicted for high table speeds WZL Fraunhofer IPT Page 32 WZU A Fraunhofer RWTHAACHEN Results Comparison between simulated and experimental temperature Temperature Tmax C 2 colour pyrometer test set up d Overrun n 5 E Overrun n 1 KE o D 0 QO Blind hole c c Silica fibre Di dig 250 um E Workpiece E o x N For low table speeds the x 3 thermal impact has a main 0 90 100 190 200 m X influence on the surface Table speed v m min layer Grinding wheel Grinding parameters Coolant lubricant With increasing table speeds B181LHV160 Q 40 mm mms Emulsion 596 the grinding mechanism Material Vs 160 m s could not be considered 100Cr6 HRC 62 V 3 Vi 1000 mm3 mm completely WZL Fraunhofer IPT Page 33 Wan 74 Fraunhofer RINTHAACHEN Results Validation of the FEM Simulation Depth z mm 0 2 Simulation results a 800 Austenizing temperature 750 C LLI emm wm wm wm mm wm mu mu mau ma D o C 640 E E E o E Q 40 mm mms 480 o Z V 160 m s d Zen Ke S 320 M o d 5 artensite temperature 220 C ac Q a ei Es gu FESSES i ps Ee SE E 160 ke U 0 999 1 009 1 019 1 029 1 039 1 049 Time t s WZL Fraunhofer IPT F Page 34 74 Fraunhofer RANTHAACHEN IPT Results Validation of the FEM Simulation Depth z mm
21. ching the part Tools for creating basic shapes L Tools for E adding constraints BS iia Example use of BS New denson HE the prompt area to SN f N Go to previous step define a dimension WZL Fraunhofer IPT Page 49 Wai 74 Fraunhofer RNTHAACHEN Defining material properties Model Results Mo del 1 pats Materials Materials A Sections Profiles Assembly Steps 1 Field Output Requests History Output Requests Time Points ALE Adaptive Mesh Constraints Interactions Interaction Properties Contact Controls di Contact Initializations Constraints L Tes Connector Sections Fields Amplitudes Loads Bis fla Predefined Fields dg Remeshing Rules D Sketches d Annotations cxi Analvsis 1 Jobs HRE Adaptivity Processes E Co executions WZL Fraunhofer IPT Model Database ka E e TT Tode Double click OK Cancel NEN 9 5 Cancel Ni Edit Material SL Edit Material Name Materia Mame WS 100Cr Description D ti escription Edit Material Behaviors TT Material Behaviors Density Specific Heat General Mechanical ther EEN Incun 2 General Mechanical Thermal Other Delete Heat Generation Conductivity Type Isotropic sl Use temperature dependent data Inelastic Heat Fraction Joule Heat Fraction Latent Heat E Specific Heat Number of Field variables 0 eg Data Conductivity
22. del Displacement Rotation Velocity Angular velocity 4cceleration 4ngular acceleration Connector displacement Connector velocity Connector acceleration Cancel Cancel Continue The available BC types are limited based on the step type E g No mechanical BCs can be set in a heat transfer step Documentation Abaqus CAE User s Manual section 16 8 2 Creating boundary conditions 16 10 Using the boundary condition editors WZL Fraunhofer IPT N E WZU 74 Fraunhofer RNNTHAACHEN Page 62 Selecting the region to apply a boundary condition EE Select regions For the boundary condition Sets Ee Instructions appear in the Prompt Box Regions are selected by clicking on features edges or I areas of the model Features are highlighted in orange as the cursor moves over them a selected feature is highlighted red Hold down the shift key to select multiple features gt Heat convection gt Heat transfer Y WZL Fraunhofer IPT Page 63 WZU ZA Fraunhofer RWTHAACHEN IPT Setting the distribution of a boundary condition Mame BcC 1 User defined Ki Magnitude ag Kn A non time dependent non uniform distribution can also be defined here Step Heat Load Heat geet Defining the distribution as Make NN MM Distribution Uniform sl Create L EM Ba begaangen Amplitude nstantaneous gt Create
23. e Type C Independent mesh on instance he current grinding Note To Beete elen simulation includes only a mesh you must edit its part s mesh single part instance of the Autao affset From other instances cancel workpiece Page 54 a Wie 74 Fraunhofer RINTHAACHEN E Madel 1 WZL Fraunhofer IPT Meshing the model element type E Parts na Expand Parts EBec2D Expand the L Features 9 E dy Sets 3 part to be Assign ih Surfaces zm P aa Meo 4 gt Element g Stringers T e i Section Assignments 1 US Steel Solid Homogeneous E Es Orientations dn Ex Composite Lavyups Element type can be defined before or in defining the mesh Abaqus Explicit supports fewer element types than Abaqus Standard Heat Transfer elements are only available in Standard The current model uses linear quadrilateral Heat Transfer elements Documentation on Element Types Abaqus User s Manual sections 23 28 N e x se Select the regions to be assigned element types Done select model regions EN Element Type mmm Element Library Family Standard Explicit seneralized Plane Strain _ my mE l Geometric Order Linear Quadratic MW Element Type Family el Sox ti Element Library Element Controls M cie g Standard E Explicit IT Dispersion control DC2D4 A 4 RT Geometric Order I 1 Linear Quadratic
24. inding Machine Prax BLOHM PROFIMAT 40 KW Material 2 100Cr6 HRC 62 400 mm Coolant lubricant A Emulsion 5 11 000 min Qoo 96 l min Grinding parameters Dressing parameters Q Vw Vo Vw U dog mm3 mms m min m s mm mm S um 10 45 12 180 80 160 1000 0 6 0 8 Grinding wheel Dressing tool WZL Fraunhofer IPT Page 24 N E WZU 74 Fraunhofer RINTHAACHEN BLOHM PROFIMAT 408 HT Y WZL Fraunhofer IPT Page 25 ZA Fraunhofer IPT Agenda Repitition of lecture 9 Thermal heat flux in grinding Force and temperature measurement Practical investigation D FEM simulation for surface grinding FEM simulation for cylindrical grinding Attachement WZL Fraunhofer IPT Y ZA Fraunhofer IPT WIL RWTHAACHEN Page 26 Procedure of FE modelling processes Hypermesh Abaqus CAE User Subroutine Geometry e Material properties e Heat source Mesh e Boundary conditions e Material behavior Input File Abaqus Standard Pre Processing e FE Models e Moving heat source DFLUX Output Temperature WZL Fraunhofer IPT N ZA Fraunhofer IPT Page 27 From the real process to a Finite Element Model rs lubricant Grinding wheel speed v Boundaries wo dimensional model m Linear moving heat source m Temperature independent thermal material properties B he surface of the solid is adiabatic m Bottom surface is set to
25. lt in the simulation being terminated Warnings are things the user should be aware of that might cause problems WZL Fraunhofer IPT SA S Highspeedi2 1sec Monitor I EX Job HighSpeedi 1sec Status Running EH See Equil Total Total Step Time LPF SESCH Iter Iter Time Freq Time LPF Inc Z 1 aU U 3 3 1 U 2 13925e Z 1 4 U 3 3 1 1 7 5414e 56 1 75414e Z 1 U Z l o0845e 06 1 75414e 0 Z 3 1 U Z 1 0000 B Z62Zdle 0p 1 75414e amp 0 e 4 Log Errors Warnings Output Data File Message File Status File Completed Analysis Input File Processor Spefted Abaqus Standard Search Text Text bo find Match cass Jl Mext 4 Previous Kill Dismiss The data file file extension dat message file msg and status file sta can be monitored here These files are saved to the working directory and can be viewed in a text editor Page 71 wie Fraunhofer RNTHAACHEN Structure Repetition of lecture 9 Thermal heat flux Force and temperature measurement Practical investigation FEM simulation for surface grinding FEM simulation for cylindrical grinding WZL Fraunhofer IPT Y ZA Fraunhofer IPT WIL RWTHAACHEN Page 72 Agenda Repitition of lecture 9 Thermal heat flux in grinding Force and temperature measurement Practical investigation FEM simulation for surface grinding FEM simulation for cylindrical grinding Attachement
26. manipulated Legend P cutting power F tangential force V cutting speed A contact area q heat flow Page 10 Calculation of WZL Fraunhofer IPT heat flux into workpiece m heat flux into cooling lubricant deoo assumption cooling lubricant can take heat flux until boiling point 3 38 m heat flux into chip qui assumption chips can take heat until melting point heat flux into grinding wheel q grit contact analysis grinding wheel contact analysis m heat into workpiece q can be calculated as difference of total heat flux q calculated from measured forces and the assumed heat fluxes Ou chip and Os Page 11 Y Wie 74 Fraunhofer RINTHAACHEN Surface integrity of the workpiece machined surface m Surface layer properties residual stresses micro structure micro hardness roughness electrical optical thermal magnetical properties hardness residual stresses Source Brinksmeier WZL Y WZL Fraunhofer IPT Page 12 ZA Fraunhofer IPT Surface integrity Change of structure EI pe K e act a G Vi 250 mn mm 4 W i ee AS T CEECHEEG In material 16MnCr5 hard roller burnished grinding wheel sintered corundum A80H6V grinding parameters v 80 m s q 2 120 Q 15 mm mms ext cyl circumferential plunge grinding cooling lubricant emulsion 596 Source WZL Fraunhofer IPT
27. mm mmm wm ma ma 9 Generalized Plane Strain Piezoelectric Plane Strain i EE uad Tri Quad e Element Controls A Convection Diffusion I i Dispersion control N N l pc2b4 A 4 node linear heat transfer quadrilateral N V0 I b l I Note To select an element lt select Mesh Contro OK Defaults ZA Fraunhofer WU T R NTHAACHEN Meshing the model seeding the part E Seeding the part guides Abagus in generating the mesh The seeds are placed along the edges of the part or part regions and Abagus will then place the element nodes at the seeds whenever possible Click and hold Methods of seeding Ex Seed Part seeds all edges in the part based on the desired average element size creates Global seeds Seed Edge by number seeds selected edges based on the desired number of elements along that edge Local seeds Seed By Size seeds selected edges based on the desired average element size along that edge Local seeds Seed Edge Biased creates a non uniform seed distribution along selected edges Local seeds the User defines the Bias Ratio the desired ratio between the largest and the smallest element lengths and the number of elements to be put along the edge Documentation on seeding Abaqus CAE User s Manual section 17 4 Understanding seeding
28. nd line interface allows use of command line inputs Toolbox area displays tools available in the current module Page 47 WIL RWTHAACHEN Creating a part Model Results Base Feature controls the TNT Deeg feature type used to sketch ne Mame men Double click the basic form of the part E Parts lt H Modeling Space i ES Materials Parts Sege 3D P 2DPlanar Axisymmetric Approximate size controls S Profiles HAS Assembly Type the size and spacing of the T a Steps 1 ae Field Output Requests grid used for sketching the Ser History Output Requests part It should be approximately equal to the kr Time Points 1 Ba ALE Adaptive Mesh Constraints H a ERS Y Speck SS largest dimension of the part in the model units Options Deformable C Discrete rigid C Analytical rigid Eulerian Mone available qi Contact Initializations Base Feature il Constraints Tm Connector Sections Shell C Wire Paint F Fields 1 le Amplitudes lk Loads b Bcs P Predefined Fields Ey Remeshing Rules IG Sketches A Annotations Approximate size za Ag Adaptivity Processes Cancel ES Ca executians WZL Fraunhofer IPT Page 48 wzi 74 Fraunhofer RINTHAACHEN Sketching the part Module Part Model Madel 1 Y Part E r A DO epes te T ol The toolbox contains tools for IC Ciy sket
29. nly sections applicable to the selected regions Type Solid Homogeneous Material wa 100Cr6 Region Region Picked KREE RWTHAACHEN Page 53 Creating an assembly S Model 1 Es Parts 1 lz Materials 2 it Sections 14 E Profiles Expand the ELS Assembly a Assembly DS Instances 1 007 Position Constraints group and 8 Features double click o pense Instances 0 bp Surfaces 1 n Connector Assignments Engineering Features oft Steps 1 L B Field Output Requests 1 Er History Output Requests pes Time Points 1 Ex ALE Adaptive Mesh Constraints Interactions 1 Interaction Properties Rl Contact Controls gt FI Contact Initializations Constraints EE i Tig Connector Sections F Fields TS Amplitudes i DS Loads ba L H Predefined Fields 1 Remeshing Rules ai Sketches WZL Fraunhofer IPT m he assembly contains all the parts involved in an analysis and defines their relative locations and orientations contains one or more parts may contain multiple copies part instances of a single part the orientation of a part instance in the assembly is not necessarily the same as its orientation in the Part module ER Create Instance Parts Additional copies of a part or other parts can also be added to the assembly by repeating the process Instanc
30. ocesses heuristic and empirical models are limited and difficult to transfer from one process to another Molecular Dynamics M D o o AP nganan Finite Element models are complex to apply and the necessary material proporties are often not known kinematics Finite Element analysis FEA physical m Molecular dynamics are very fundamental gt microscopic m fundamental models can be regression fundamental e models with physical background kinematics models can be used for applicable simulations regression artificial neural nets rule based O G O O d O Zeen O C E oource CIRP Keynote Paper 2006 Brinksmeier et al wan Fraunhofer FRANTHAACHEN WZL Fraunhofer IPT Page 5 Review Comparison of model types highly D medium C low Molecular Dynamics MD kinematics m Finite Element s analysis FEA e A fundamental sexo anne CUj sin ot regression ae artificial neural nets KK rule based DOC oource CIRP Keynote Paper 2006 Brinksmeier et al WZL Fraunhofer IPT N starting effort 9 w 09 O O O O O 0 O CU needed ZA Fraunhofer IPT knowledge needed Mc D maintenance development Q Q QO QO amount of data 6 gt o O O experiments effort for o 6 O data analysis effort for DE Ed SV NEK IN transferability to other processes Ae d e
31. seconds of simulation time and a all steps The max allowable temperature change per minimum increment size of SE 008 increment affects the increment size and the accuracy of the simulation If the calculated temperature change for an increment exceeds this value Abaqus will try again with a smaller increment size OK Cancel Wi Page 59 A Fraunhoter RWTHAACHEN WZL Fraunhofer IPT N Controlling output data S Model 1 m There are two types of output request BG Parts 0 TS AT Field output records data from the entire model or from large io Right click IN Aan Field Output portions of the model intended to be at relatively low frequency E 3E Sections 1 Requests History output records data for a smaller region of the model at NN Profiles select SE Assembly E ofa Steps 2 AO Initial a Heat Load elle Output Requests 1 1 En History Output Requests ka Time Points high frequency Manager m When an analysis step is created Abaqus automatically creates a default Field Outout Request that records default output values for that step type This output request can also be Er ALE Adaptive Mesh Constraints edited to add or remove output requests Fi Interactions 1 X Interaction Properties i Contact Contrals 1 di Contact Initializations Constraints 1 I Connector Sections
32. ter Time t s U aa 15 um Experimental investigation showed that a triangular heat flux profile d shows best results g a Q Constantan Principle single pole thermocouple type J WZL Fraunhofer IPT F Page 30 74 Fraunhofer RANTHAACHEN Results Simulation results for the creep grinding process IB c97 c XXIee c J 561 C 494 C 7 T426 C Material I 358 C D 2socc nee IB 55c EN ju 100Cr6 HRC 62 Grinding wheel B181 LHV 160 Grinding parameters v 12 m min Q 40 mm3 mms v 160 m s Coolant lubricant 9 INNEN U M WO Kou NT Emulsion 5 5 Austenizing temperature 750 C 2 600 E to 450 Austenizing temperature was not reached E 300 during the simulation of different grinding processes C 150 m Therefore it is assumed that no phase 0 L ee ee AM A E e e E transformation will take place 0 1 2 3 Depth z mm WZL Fraunhofer IPT F Page 31 A Fraunhofer RWTHAACHEN Results Temperature history at the hottest point of the surface layer 800 Material 100Cr6 HRC 62 o 640 Grinding wheel a B181 LHV 160 a Grinding parameters o 480 History point at the surface Q 40 mm3 mms 3 fc V 160 m s 5 320 Coolant lubricant 2 Emulsion 5 a 160 v 12 m min Vy 80 m min 0 J 0 999 1 009 1 019 1 029 1 039 1 049 Vw 120 m min Time t s The maximum temperature and the temperature gradient
33. ternal cylindrical grinding Rotorelectronics E Slide track K1 RK1 R2 Shaft Constantan wire Typ J Coil for transmission of measurement data GreenGlass GFK disc devided Stator unit SK1 S4 K1 WK1 T WZL Fraunhofer IPT Page 39 ZA Fraunhofer IPT Results Experimental results of external cylindrical grinding Material 38MnS6 BY Grinding parameters Q 20 mm3 mms V 0 168 m s V 80m s CBN grinding wheel Normal force Tangential force Coolant Emulsion 5 ig 5 Contact time tremp 21 ms Needle nozzle Dressing parameters 28 29 30 31 32 33 34 uy mH 1000 Bee 5 daa SUM E 750 ed U S Q ES Normal force G 500 E 550 Tangential force C i _ Grinding spindel 30 30 5 31 31 5 32 ERR Time t s EE Temperature WZL Fraunhofer IPT mm Page 40 ZA Fraunhofer WE x RWTHAACHEN From the real process to a Finite Element Model ng whee m 7 workpiece z Vw 3 t Boundaries Two dimensional model with a quadratic moving heat source m lemperature independent thermal material properties m he surface of the solid considered with heat convection m Bottom surface is set to 20C B Maximum temperature of the coolant lubricant is tg 120 C due to the boiling point of emulsion WZL Fraunhofer IPT ZG Fraun hofer AH LUR oT RWTHAACHEN Page 41 Results Validation of cylindrical grinding simulation results 1000 p Material Experimente
34. u ToT E 29 Page 6 Review Difficulties in grinding process simulation Cutting speeds v 15 200 m s Temperatures peaks above 1200 C Many material properties are Temperature gradients not known within these ranges 109 O s 10 C mm Forming speeds up to 107 1 s WZL Fraunhofer IPT We Page 7 Fraunhofer RNTHAACHEN Agenda Repitition of lecture 9 D Thermal heat flux in grinding Force and temperature measurement Practical investigation FEM simulation for surface grinding FEM simulation for cylindrical grinding Attachement WZL Fraunhofer IPT Y ZA Fraunhofer IPT WIL RWTHAACHEN Page 8 The grinding process Chip formation in grinding I l l N elastic elastic and elastic and plastic deformation plastic deformation deformation and chip removal WZL Fraunhofer IPT Page 9 Wie 74 Fraunhofer RNNTHAACHEN Energy distribution and heat flow A 0 bonding X Penetration ZS path Oe workpiece Q Taan uu Q Qcool Ochip Awt Qs E F Vol D tee cooling lubricant chip workpiece grinding wheel Use Fs OG chip R hip l dent Qd lt H 0 WZL Fraunhofer IPT Y ZA Fraunhofer IPT WL RWTHAACHEN Thermal energy flows in all relevant components of system Workpiece q Grinding wheel o Chip Qichip Cooling lubricant qcoo The distribution of the heat flow can be
35. utines provide more flexibility for specifying certain model parameters than is provided by normal input methods m Different subroutines with different specifications are required for different purposes l e a different subroutine is required for specifying a heat flux distribution DFLUX than is required for specifying a distribution for a boundary condition DISP m Subroutines are written in Fortran and a suitable Fortran compiler is required to use them in a simulation m Documentation Abaqus Analysis User s Manual 14 2 User subroutines and utilities Abaqus User Subroutines Reference Manual includes discussion of individual subroutines and their requirements WZL Fraunhofer IPT Page 67 N WZU A Fraunhofer RWTHAACHEN Incorporating previous results as a predefined field EN Create Predefined Field X S LE Select regions Far the Field or press Done to use calculated temperatures Marne Predefined Field 2 Sep initia lt JL Rm wm mm mau mau mu mau mu mu mu mu mu mau mm ER Edit Predefined Field From results or output database File Direct specification From results or output database File User defined Procedure Category C Mechanical Other Types for Selected Step Mame Predefined Field z Type Temperature Material assignment Step Calc stresses Dynamic Implicit Initial State From results or output database File and user defined Region Read From file
36. workpiece Type Solid Homogeneous ZA Fraunhofer IPT This model represents a homogeneous solid so the section should be Homogeneous Solid even though the model is 2 D Shell is for parts with a thickness that is much smaller than the other two dimensions oelect an existing material Or Material ws_100Cre lt Plane stress strain thickness fi Cancel create a new one Page 52 WIL RWTHAACHEN Assigning a section to a part E Model 1 2 ajs Parts 14 GC Bez Under Parts di Features 8 expand the Model YES Sets 3 de Surfaces Tree for the part i skins P Double click Section SS SE Section Assignments i 1 fee Orientations Assig nm e nts 2 Composite Layups d Engineering Features ZE Fla Mesh Empty ZS Materials 2 2 GE Sections 1 m Assigning the section to a part region defines what material properties are used for that part region m he material properties assigned to a region can be easily changed by changing the Section definition The Section Assignment does not need to be changed WZL Fraunhofer IPT N ZA Fraunhofer IPT d x Select the regions to be assigned a section Done Follow the directions in the Prompt Box and select the regions of the part using the mouse selected regions will be highlighted in red EE Edit Section Assignment NI Section Section Steel sl Note List contains o
37. would requ Ire Name analyticalField 1 attaching a wea OK Cancel S u b ro uti n e Enter an expression by typing and selecting parameter names and operators below Note Parameter names and operators are case sensitive EN Edit Boundary Condition Example 2 5 pow Y 3 Mame BC 1 PO Clear Expression Type Temperature Local system Global Edit Create Operators Local system type Rectangular Step Heat Load Heat transfer EE r 4 6 parameters Region Picked Edit Region Distribution User defined lt T Magnitude z0 oke User subroutine DISP must be attached to the analysis job OK Cancel OK Cancel Lreate Distribution User defined ED create WZL Fraunhofer IPT N ZS ZIL Page 64 74 Fraunhofer RANTHAACHEN Boundary conditions Degrees of freedom m he degrees of freedom are numbered as shown in the figure The 1 2 and 3 directions are the x y and z directions respectively Numbering for degrees of freedom from Abaqus documentation 1 Translation in the 1 direction U1 2 Transition in the 2 direction L2 3 Transimiion in the 3 direction U3 4 Rotation about tha 1 diraction UR 11 5 Agtaton about the 2 diracti n URS 8 Rotation about the 3 direction UATI Page 65 Y WZL Fraunhofer IPT IA WU ZA Fraunhofer RWTHAACHEN IPT Creating a load E Madel 1 P E 1 Parts 1 FH Block 2

Download Pdf Manuals

image

Related Search

Related Contents

DVM M891 - Velleman  Istruzioni per l`uso Igrometro elettronico  DIFF DATA INTERFACE FILE FORMAT (DIFF) USER`S MANUAL  User Manual - GlobalCom Satellite Communication  ControlLogix Controllers  4. NORMAL PROCEDURES  battlefield-hardline  Samsung SC54J0 Manuel de l'utilisateur  BUDDYBOX - Sumitomo Drive Technologies  MANUEL D`INSTRUCTIONS Lampe boîte à bijoux Mia and Me REF  

Copyright © All rights reserved.
Failed to retrieve file