Home

USER`S MANUAL

image

Contents

1. Alarm 1 Type Abs Abs upper absolute upper upper Abs lower absolute lower Rel upper relative upper Rel lower relative lower Rel intern relative internal Rel extern relative external SP 100 9999 99999 Deviation 0 9999 99999 Hysteresis 2 0 1 99 9 Memory Off Off off On on Alarm 2 Alarm 6 as Alarm 1 Modbus Address 1 1 247 Speed 9600 bps 4800 bps 9600 bps 19 2k bps 38 4k bps 57 6k bps 115 2k bps Mode RTU 8N2 Off RTU 8N2 RTU 8E1 RTU 801 RTU 8N1 36 Modbus TCP 2 On No No Yes Port number 502 0 65535 Ethernet DHCP On Off off On on IP Address 127 0 0 1 0 0 0 0 255 255 255 255 Subnet mask 255 0 0 1 0 0 0 0 255 255 255 255 Default 0 0 0 0 0 0 0 0 255 255 255 255 gateway Safety Admin On Yes No Yes Password 0 99999999 User 1 On Yes No Yes Level Level 2 Level 0 all parameters change Level 1 change of all parameters other than the Security submenu Level 2 change of SP program number clock settings Password 0 99999999 User 2 same as User 1 37 User 3 same as User 1 Settings LCD 100 0 100 illumination Language Polish English Polish Show out state No No Yes Show b inp No No state Yes Show clock No No Yes Hours Date
2. 73 7134 RW Digital filter of input no 2 0 filter off 1 time constant 0 2 s 2 time constant 0 5 s 3 time constant 1 s 4 time constant 2 s 5 time constant 5 s 6 time constant 10 s 7 time constant 20 s 8 time constant 50 s 9 time constant 100 s 7136 RW Type of input no 3 0 none 1 current input 0 20 mA 2 current input 4 20 mA 3 voltage input 0 5 V 4 voltage input 0 10 V 5 potentiometric input 100 Ohm 6 potentiometric input 1000 Ohm 7138 RW Unit of input no 3 O degrees Celsius 1 degrees Fahrenheit 2 physical units 7140 RW 0 1 3 4 0 25 Decimal point position for input 3 O without a decimal place 1 1 decimal place 2 2 decimal places 7142 RW 9999 99999 Indication for the lower limit for input 3 linear input 7144 RW 9999 99999 Indication for the upper limit for input 3 linear input 7146 RW 35 00 35 00 Measured value shift for input 3 7148 RW 0 2 9 Digital filter of input no 3 0 filter off 1 time constant 0 2 s 2 time constant 0 5 s 3 time constant 1 s 4 time constant 2 s 5 time constant 5 s 74 6 time constant 10 s 7 time constant 20 s 8 time constant 50 s 9 time constant 100 s 7150 RW 10 Function of binary input 1
3. 7 3 Parameters description The list of parameters is presented in the table 1 Lista parametr w konfiguracji Parameter name Symbol of parameter Factory setting Parameter modification range Table 1 sensors Inputs Analog input 1 Input type 24 Pt100 Pt100 Pt500 Pt1000 Ni100 Ni1000 Cu100 Tc J Te T Tc K Tc S Tc R Tc B Tc E Tc N Tel thermoresistor Pt100 thermoresistor Pt500 thermoresistor Pt1000 thermoresistor Ni100 thermoresistor Ni1000 thermoresistor Cu100 J type thermocouple T type thermocouple Ktype thermocouple S type thermocouple R type thermocouple B type thermocouple E type thermocouple N type thermocouple L type thermocouple 0 20mA linear current 0 20mA 4 20mA linear current 4 20mA 0 5V 0 10V linear voltage 0 5 V linear voltage 0 10 V linear input Unit C C degrees Celsius F degrees Fahrenheit PU physical units percent RH relative humidity Dot level DP1 DPO without DPO without a decimal a decimal place place DP1 1 decimal DP1 1 decimal place place DP2 2 decimal places Compensation Auto Auto Manual Comp temp 0 C 0 50 C MinInpAnalog 0 9999 99999 MaxinpAnalog 100 9999 99999 Correction 0 35 00 35 00 Filter 0 2 Off filter off 0 2 time constant 0 2 s 0 5 time constant 0 5 s 1 time constant 1 s 2 ti
4. none 1 heating 2 cooling 3 retransmission 7222 RW Analog output 2 retransmission source 0 measuring value 1 set point value 2 set point value measuring value 7224 RW 9999 99999 Min for retr of analog output 2 7226 RW 9999 99999 Max for retr of analog output 2 7228 RW 0 2 l output type for analog output 2 0 none 1 4 20 mA 2 0 20 mA 7230 RW U output type for analog output 2 0 none 1 0 5V 2 0 10 V 7232 RW Measuring value in loop 1 0 input 1 1 input 2 2 input 3 3 input 1 input 2 4 input 1 input 3 5 input 2 input 3 7234 RW 10 0 10 0 Input 1 coefficient in loop 1 7236 7238 RW RW 10 0 10 0 10 0 10 0 Input 2 coefficient in loop 1 Input 3 coefficient in loop 1 7240 RW 0 7 Binary inputs in loop 1 0 none 1 binary input 1 2 binary input 2 82 3 binary input 3 4 binary input 1 and 2 5 binary input 1 and 3 6 binary input 2 and 3 7 binary input 1 2 and 3 7242 RW SP type in loop 1 0 SP1 set point value 1 SP2 set point value 2 SP3 set point value 3 SP4 set point value 4 set point value from input 3 5 set point value from program 7244 RW Program number on loop 1 0 program number 1 1
5. 0 none 1 stop automatic control 2 switch to manual operation 3 switches to subsequent SP 4 program start 5 jump to the next segment 6 stops the incrementing of the set value in program 7 end of the program 8 stop of the program with possible continuation 9 stop the program and jump to the beginning 10 switching to subsequent SP from the additional input 7152 RW 10 Function of binary input 2 0 none 1 stop automatic control 2 switch to manual operation 3 switches to subsequent SP 4 program start 5 jump to the next segment 6 stops the incrementing of the set value in program 7 end of the program 8 stop of the program with possible continuation 9 stop the program and jump to the beginning 10 switching to subsequent SP from the additional input 7154 RW 10 Function of binary input 3 0 none 1 stop automatic control 2 switch to manual operation 3 switches to subsequent SP 4 program start 75 5 jump to the next segment 6 stops the incrementing of the set value in program 7 end of the program 8 stop of the program with possible continuation 9 stop the program and jump to the beginning 10 switching to subsequent SP from the additional input 7156 RW 0 12 Allocation of output 1 0 none 1 loop 1 2 loop 2 3 input 1 4 input
6. 113 114 115 RE92 09C LUMEL LUMEL S A ul Stubicka 1 65 127 Zielona G ra Poland Tel 48 68 45 75 100 Fax 48 68 45 75 508 e mail lumel lumel com pl http www lumel com pl Export Department Tel 48 68 45 75 302 Fax 48 68 32 54 091 e mail export lumel com pl
7. 6 binary input 2 and 3 7 binary input 1 2 and 3 7336 RW SP type in loop 2 0 SP1 set point value 1 SP2 set point value 2 SP3 set point value 3 SP4 set point value 4 set point value from input 3 5 set point value from program 86 7338 RW 10 19 Program number on loop 2 10 program number 11 11 program number 12 12 program number 13 13 program number 14 14 program number 15 15 program number 16 16 program number 17 17 program number 18 18 program number 19 19 program number 20 7340 RW 9999 99999 SP1 set value in loop 2 7342 RW 9999 99999 SP2 set value in loop 2 7344 RW 9999 99999 SP3 set value in loop 2 7346 RW 9999 99999 SP4 set value in loop 2 7348 RW 9999 99999 SP setting lower limit in loop 2 7350 RW 9999 99999 SP setting upper limit in loop 2 7352 RW Set value accrual in loop 2 0 off 1 accrual in units minute 2 accrual in units hour 7354 RW 9999 99999 Set value Ramp rate in loop 2 7356 RW 0 5 Control type in loop 2 0 control off 1 heating type control 2 cooling type control 3 heating cooling control 4 step by step valve control 5 step by step feedback valve control 7358 RW
8. Control algorithm in loop 2 0 on off algorithm 1 PID algorithm 7360 RW 0 1 100 0 Hysteresis in loop 2 7362 RW 99 9 99 9 Distance range in loop 2 87 7364 RW 100 0 100 0 Control signal in loop 2 7366 RW 9999 99999 Control lower limit in loop 2 7368 RW 9999 99999 Control upper limit in loop 2 7370 RW 0 550 0 C PID1 set proportional band in loop 2 0 990 0 F 7372 RW 0 9999 Integration time constant s from PID1 set in the loop 2 7374 RW 0 0 2500 0 Differentiation time constant s from PID1 set in the loop 2 7376 RW 0 0 100 0 Control signal correction for P or PD of PID1 set in loop 2 7378 RW 0 550 0 C PID2 set proportional band in loop 2 0 990 0 F 7380 RW 0 9999 Integration time constant s from PID2 set in the loop 2 7382 RW 0 0 2500 0 Differentiation time constant s from PID2 set in the loop 2 7384 RW 0 0 100 0 Control signal correction for P or PD of PID2 set in loop 2 7386 RW 0 550 0 C PID3 set proportional band in loop 2 0 990 0 PF 7388 RW 0 9999 Integration time constant s from PID3 set in the loop 2 7390 RW 0 0 2500 0 Differentiation time constant s from PID3 set in the loop 2 7392 RW 0 0 100 0 Control signal correction for P or PD of PID3 set in loop 2 7394 RW 0 550 0 C PID4 set proportio
9. field of self tuning field of start stop start of manual work Fig 6 Screen with fixed set point control 16 6 4 Screen with programming control start hold Loop 1 displayed of control measured valve set point valve stop of control program number segment number ramp soak number of left cycles control state set of PID parameters steering signal segment time program time EntstM Menu Fig 7 Screen with programming control 6 5 Change of displayed screens Button Screens allows for switching between two loops first and second Fig 8 presents the change of the dis played screens for the controller with fixed set point control EntxtM Menu i Button Screens 17 Screen via Context Menu ES Context Menu TRI Contirm alarms 700 0 Zeem screen Screens Edit Zoom CntxtM Menu Fig 8 Change of the displayed screens example 6 6 Edit mode Changing the value in the edit field To change the value in the edit field i e set value press the Edit button the first field of the list will by highlighted in yellow Then use the 4 ww 4 CP buttons to select the edit field for change After pressing the Change button use C CP buttons to change the number posi tion CY C amp increase or decrease the value of the selected number The change must be accepted with the OK button or
10. 10 kQ gt 100 kQ NOC contact load capacity 2 A 230 VAC 0 5 V max load capacity 40 mA NOC contact load capacity 2 A 230 VAC 0 10 V atR q 2 1 KQ 0 20 mA 42 20 mA at Roag 5000 for heating for cooling 0 5 of the range RS 485 Modbus baud rate mode address maximal response time Digital interface protocol Supply of object transducers Rated operating conditions supply voltage supply voltage frequency ambient temperature storage temperature relative air humidity preheating time operating position resistance of wires connecting the resistance thermometer or thermocouple with controller Power input Weight 4800 9600 19200 38400 57600 115200 bit s RTU 8N2 8E1 801 8N1 1 247 500 ms Ethernet Modbus TCP slave 24V d c 5 max 30 mA 85 253 V a c d c 40 440 Hz 0 23 50 C 20 70 C lt 85 no condensation 30 min any lt 20Q wire lt 16VA lt 0 5 kg Protection grade ensured by the housing acc to EN 60529 from the frontal plate from the terminal side IP65 IP20 109 Additional errors in rated operating conditions caused by ambient temperature change lt 100 intrinsic error value 10 K Safety requirements acc to EN 61010 1 installation category Ill pollution level maximum phase to earth operating voltage for supply circuit output 300 V for input circuits 50V altitude
11. and hub or switch EIA TIA 568A for the first connector and EIA TIA 568B for the second one in the cross over connection i e when connecting RE92 to the computer 13 4 3 Recommendations for installation To achieve full electromagnetic resistance of the con troller it is necessary to follow the rules described below do not supply the controller from the network in the proximi ty of devices generating high pulse noises and do not apply common earthing circuits apply network filters wires leading measuring signal should be twisted in pairs and for the resistance sensors in the three wire connection they should use twisted wires of exactly the same length cross section and resistivity protected by shielding all shields should be one side earthed or connected to the protection wire the nearest possible to the controller as a rule of thumb wires transmitting different signals sho uld be spaced as far as it is possible at least 30 cm and should be crossed only at the right angle 90 degrees to connect RE92 controller to the Ethernet it is recommen ded to use e U FTP twisted pair cable with separate foil shielding for every pair F FTP twisted pair cable with separate foil shielding for every pair and additional foil shielding for the cable S FTP former SFTP twisted pair cable with sepa rate foil shielding for every pair and additional mesh cable shielding e SF FTP former
12. be set to PRG Every program must have parameters set in the program parameters submenu For every segment select a segment type and proper parameters according to the seg ment type as indicated in the table 4 List of segment configuration parameters Table 4 Seg Type Seg Type Seg Type Seg Type Time Rate Dwell End Target SP Target SP Segment time Segment time Ramp rate Holdback Val Holdback Val Picture 22 and table 5 show an example of set value program The program assumes that the object temperature should increase from initial temperature to 800 C with a rate of 20 C per minute with active deviation block The temperature is then maintained for 120 minutes block disengaged and then drops to 50 C through 100 minutes block disengaged during object cooling it is necessary to engage the fan connected to the output 2 in Outputs gt Output2 menu Function parameter set to Prg Event and Prg Event parameter set to SegEvent1 62 PV A 800 C 50 C OUT2 time A me ON OFF 40 min 120 min 100 min time Fig 22 Example program Parameter value for the example program Table 5 Parameter Value Meaning Set value accrual start PrgStart Start PV from the initial current temperature The unit of time hours Time Unit hh mm and minutes Ramp Unit Min Ramp rate unit minutes Config Holdback I
13. programs defined for programming control Program 1 program 1 submenu Program 20 program 20 submenu Prg Conf podmenu parametr w programu Fac Parameter modification Symbol Parameter tory range of parameter description f di P setting sensors linear input PrgStart Program Start Start SP from the value start SP defined by SPO method Start PV from the current measured value SP mode Initial set 0 0 C MIN MAX value Time Unit Unit of the mm ss mm ss minutes and seconds segment hh mm hours and minutes duration time Ramp Unit Unit of the Min Min minutes set value Hour hours Ramp rate Holdback Block from Off Off inactive Type the control Lower lower deviation Upper upper Intern two sided 59 Cycles Program 1 1 999 Number iteration no Power Fail Control Con Continuation program after supply tinua continuation decay tion Stop control stop End Type Program Stop Stop control stop end control Last SP fixed set point control with set value from last segment Gain Gain Off Off off Sched Scheduling On on function for program Segment 1 segment no 1 parameters submenu Segment 15 segment no 15 parameters submenu Symbol Parameter Fac Parameter modification of parame description tory range ter setting A sensors line
14. time constant 2 s 5 time constant 5 s 6 time constant 10 s 7 time constant 20 s 8 time constant 50 s 9 time constant 100 s 72 7118 RW Type of input no 2 O thermoresistor Pt100 1 thermoresistor Pt500 2 thermoresistor Pt1000 3 thermoresistor Ni100 4 thermoresistor Ni1000 5 thermoresistor Cu100 6 J type thermocouple 7 T type thermocouple 8 K type thermocouple 9 S type thermocouple 10 R type thermocouple 11 B type thermocouple 12 E type thermocouple 13 N type thermocouple 14 L type thermocouple 15 current input 0 20 mA 16 current input 4 20 mA 17 voltage input 0 5 V 18 voltage input 0 10 V 7120 RW Unit of input no 2 0 degrees Celsius 1 degrees Fahrenheit 2 physical units 7122 RW 019 0 2 3 Decimal point position for input 2 0 without a decimal place 1 1 decimal place 2 2 decimal places 7124 RW Compensation of thermocouple cold terminals for input 2 0 automatic 1 manual 7126 RW 0 50 0 Cold terminals temperature with manual compensation for input 2 7128 RW 9999 99999 Indication for the lower limit for input 2 linear input 7130 RW 9999 99999 Indication for the upper limit for input 2 linear input 7132 RW 35 00 35 00 Measured value shift for input 2
15. 0 0 5 99 0 Output 2 Output 6 as per output 1 Analog output 1 Connections None None none Loop 1 loop 1 Loop 2 loop 2 Input 1 input 1 Input 2 input 2 Input 3 input 3 INP1 2 3 input 1 input 2 input 3 Function None None none Heating heating Cooling cooling Retransmission retransmission Retr source PV PV measuring value SP set value Deviation set value measuring value 29 Min for retr 0 9999 99999 Max for retr 100 9999 99999 I type output 4 20 mA 4 20mA current 4 20 mA 0 20mA current 0 20 mA U type output 0 10V 0 10V voltage 0 10 V Analog output 2 as per analog output 1 Loop 1 Inputs Measuring Inp1 input 1 value Inp2 input 2 Inp3 input 3 Inp1 Inp2 input 1 input 2 Inp1 Inp3 input 1 input 3 Inp2 Inp3 input 2 input 3 Val for Inp1 1 10 00 10 00 Val for Inp2 1 10 00 10 00 Val for Inp3 1 10 00 10 00 Binary inp None none BinInp1 binary input 1 Binlnp2 binary input 2 Binlnp3 binary input 3 Binlnp1 2 binary input 1 and 2 Binlnp1 3 binary input 1 and 3 BinInp2 3 binary input 2 and 3 Binlnp1 2 3 binary input 1 2 and 3 30 Set point value SP type SP1 SP1 SP1 set point value SP2 SP2 set point value SP3 SP3 set point value SP4 SP4 set point value IN3 set point value from input 3 PRG set point value from pr
16. 3 opening a valve 4 closing a valve 5 alarm 6 programming control event 7 cascade control slave loop signal 7200 RW Oi Output 6 program event 0 none 1 event 1 from a segment 2 event 2 from a segment 80 3 event 3 from a segment 4 event 4 from a segment 5 event 5 from a segment 6 event 6 from a segment 7 deviation block 7202 RW 0 5 99 9 Output 6 imp period 7204 RW 0 6 Allocation of analog output 1 0 none 1 loop 1 2 loop 2 3 input 1 4 input 2 5 input 3 6 input 1 input 2 input 3 7206 RW Linear output 1 function 0 none 1 heating 2 cooling 3 retransmission 7208 RW Analog output 1 retransmission source O measuring value 1 set value 2 set value measuring value 7210 RW 9999 99999 Min for retr of analog output 1 7212 RW 9999 99999 Max for retr of analog output 1 7214 RW 0 2 l output type for analog output 1 0 none 1 4 20 mA 2 0 20 mA 7216 RW U output type for analog output 1 0 none 1 0 5V 2 0 10 V 7218 RW Allocation of analog output 2 0 none 1 loop 1 2 loop 2 3 input 1 81 4 input 2 5 input 3 6 input 1 input 2 input 3 7220 RW Linear output 2 function 0
17. Analog output 1 and Outputs gt Analog output 2 Picture 14 shows method of transforming the retransmitted signal into proper analog output signal 45 A output signal out OUt retransmitted signal i gt Retr Min x Retr Max Fig 14 Transformation of the signal to be retransmitted The Retr Min parameter may be higher than Retr Max but this will cause the output signal to be inverted 9 4 Signal outputs Any binary output can be used for retransmission of the state of given binary input To do this while configuring the Assignment parameter choose the e EvIn1 binary input 1 short cut will activate the output EvIn2 binary input 2 short cut will activate the output Evin 3 binary input 3 short cut will activate the output EvIn1Neg binary input 1 release will activate the output EvIn2Neg binary input 2 release will activate the output EvIn3Neg binary input 3 release will activate the output 46 10 LOOP CONFIGURATION 10 1 Controlled signal The signal controlled in a loop might be a measure ment from the selected source Inp1 Inp2 Inp3 or combination of the measured values from two inputs Combined control signal is calculated by the controller using the following formula Controlled signal Coeff for Inp k Inp k Coeff for Inp k Inp k Where k is a input number 1 3 Example 1 To control the difference betwee
18. First loop works as the master controller and sets the set point for the slave controller PID SP Loop 1 PV rescalin to loop range PID control output Loop 2 PV o Fig 17 Cascade control 51 First loop should be set to PID control to select the cascade con trol In the second loop the parameter Control type in menu Loop 2 gt Control should be set to Cascade For resca ling the master loop output set the parameters Casc SO Lo and Casc SO Hi in menu Loop 2 gt Set value Gain Scheduling Function For control systems where the object behaves decidedly differently in various temperatures it is recommended to use the Gain Scheduling function The controller allows to remem ber up to four sets of PID parameters and switch them over automatically Switching between PID sets runs percussiveless and with a hysteresis to eliminate the oscillations on switching limits The parameter Typ GS settles the way of the function operation Off The function is disabled SP a Switching depending on the set point value Additionally one must also choose the number of PID sets parameter GS Level Nb and set their switching levels in dependence from the number of PID sets GS Level 1 2 GS Level 2 3 GS Level 3 4 b For the programmed control one can set the PID set individually for each segment First for the given program one must set the parameter Gain Scheduling in t
19. PID1 set proportional band in loop 1 0 990 0 F 7278 RW 0 9999 Integration time constant s from PID1 set in the loop 1 7280 RW 0 0 2500 0 Differentiation time constant s from PID1 set in the loop 1 7282 RW 0 0 100 0 Control signal correction for P or PD of PID1 set in loop 1 7284 RW 0 550 0 C PID2 set proportional band in loop 1 0 990 0 PF 7286 RW 0 9999 Integration time constant s from PID2 set in the loop 1 7288 RW 0 0 2500 0 Differentiation time constant s from PID2 set in the loop 1 7290 RW 0 0 100 0 Control signal correction for P or PD of PID2 set in loop 1 7292 RW 0 550 0 C PID3 set proportional band in loop 1 0 990 0 F 84 7294 RW 0 9999 Integration time constant s from PID3 set in the loop 1 7296 RW 0 0 2500 0 Differentiation time constant s from PID3 set in the loop 1 7298 RW 0 0 100 0 Control signal correction for P or PD of PID3 set in loop 1 7300 RW 0 550 0 C PID4 set proportional band in loop 1 0 990 0 F 7302 RW 0 9999 Integration time constant s from PID4 set in the loop 1 7304 RW 0 0 2500 0 Differentiation time constant s from PID4 set in the loop 1 7306 RW 0 0 100 0 Control signal correction for P or PD of PID4 set in loop 1 7308 RW 0 1 200 0 Proportional band of cooling loop in loop 1 7310 RW 0 9999 Integrat
20. cancelled with the Cancel button 18 E Q2 30 10 12 7 500 0 selected field ST mv 100 0 hl iL Button Change Fig 9 Changing the value in the edit field Using the button type field To use such field e g start stop control press the Edit button the first item in the list will be highlighted in yellow Then use the Cw 4 P buttons to select the button type field Pressing the OK button performs a function appropriate to the given button 19 500 0 100 0 30 10 12 7 Fig 10 Using the button type field 6 7 Context menu Pressing the ContxtM button displays the context menu This menu allows for quick access to a given feature Fig 11 Context menu 20 7 CONTROLLER CONFIGURATION 7 1 Menu access password To switch to the controller configuration from the screen display level choose the Menu button Use selection and access password window will appear On the first run there is only one user Admin with no set password It is possible to create four users with different access rights User Admin has all the rights and can set them for the other users User privileges are selected from the menu Security gt User gt Level Level 0 allows for changing all parameters including the Security Level 1 all
21. eiecti tede eis 40 8 3 Measuring Input 9 scere irte teri ett tn c te e tne 40 8 4 Binary inputs 9 CONTROLLER OUTPUTS o rr xor o ton ra reborn errat 42 9 1 Controlling outputs 42 9 2 Alarm OUtpits icr rere ec re er e te 44 9 3 Retransmission OUtDULS cce cec etc eee ett 45 9 4 Signal OULDUIS oeren rr torri rre 46 10 LOOP CONFIGURATION zt reno euer nau en une 47 10 1 Controlled Sighi nrnna 47 10 2 Control typis noter eret ec tnit 48 10 3 Control range tenete 54 10 4 Set value in NOOD 2 titer cire eee 54 10 5 Control algorithms e e tint etra tes 54 11 PROGRAMMING CONTROL eese 59 11 1 Description of the programming control parameters 59 11 2 Defining the set value programs 62 12 unm 251 Introductions erede E et e eod 12 2 ENON CODES see eere cemere iran 12 3 Register fap nemer 13 SOFTWARE UPGRADE 14 TECHNICAL DATA 2e one ion i poene iion i nee ye enr em uec nueces 15 CONTROLLER ORDERING CODE eene 112 This manual is valid for the controller using software v1 05 00 1 INTRODUCTION 1 1 Purpose Two loop RE92 controller used to control temperature and other physical values e g pressure humidity flow level It can control two objects independently or control two physical values in one object e g two chamber furnaces 1 2 Controller properties RE92 controller is characteri
22. eleventh program loop 2 7632 RW 0 1 Program start stop loop 2 0 program stop 1 program start saving causes program to start from the beginning 7634 RW 0 1 Program set value accrual stop 94 loop 2 0 off 1 on 7636 RW 14 Realized segment 0 means first segment loop 2 Saving causes a jump to the given segment 7638 R Control status loop 2 0 control stop in the first section 1 control stop in the current section 2 program running 3 control deviation block active 4 set value accrual stop via button binary input or interface 5 program end 7640 R Number of cycles left loop 2 7642 R Section time elapsed s loop 2 7644 R Segment time remaining s loop 2 7646 R Program time elapsed s loop 2 7648 R Program time remaining s loop 2 7650 RW Reserved 7652 RW Reserved 7654 RW Reserved 7656 RW Reserved 7658 RW Reserved 95 Map of the registers from address 7660 Table 16 GEE Last register Rn first Description register address 7660 7676 Program 1 parameters 7678 7886 Sections 1 15 of program 1 7888 7904 Program 2 parameters 7906 8114 Sections 1 15 of program 2 8116 8132 Program 3 parameters 8134 8342 Sections 1 15 of program 3 8344 8360 Program 4 parameters 8362 8570 Sections 1 15 o
23. from the value set in the loop Deviation para meter it is the control deviation that engages the input input engagement hysteresis Hysteresis parameter a zone around the set value in which output state does not change alarm memory Latch parameter Yes means that the alarm will be locked until confirmed by operator 1 Deviation gt 0 SP d Deviation 0 absolute high absolute lower relative high AbsHigh AbsLo DevHigh 1 Deviation gt 0 SP d Deviation 0 t Deviation SP Deviation 1 Deviation SP Deviation relative lower relative internal relative external DevLo DevinBand DevOutBand Fig 13 Alarm types 9 3 Retransmission outputs Analog output may be used for retransmission of the selected value e g for registering object temperature or copying set values in multi zone furnaces Signal retransmission is possible if the controller is fitted with analog output 1 or 2 Set Function parameter to Retransmiss Type of a signal to be retransmitted is set through the Retr Source parameter Signal can be chosen from PV controlled signal Deviation control deviation a SP set point value The next parameter Output Type sets the analog output range Additionally it is necessary to set upper and lower limit of the signal to be retransmitted Retr Min and Retr Max Retransmission output parameters can be found in menu Outputs gt
24. maximum number of registers read written in one com mand 126 In case of Modbus TCP slave the parameters such as device address baud rate operating mode information unit maximal response time are not used Additionally a port is set by default at 502 Registers addresses are identical for Modbus slave and Modbus TCP slave RE92 controller uses following protocol functions Table 6 Code Meaning 3 n registers read 6 1 register write 16 n registers write 17 slave device identification 65 12 2 Error codes If the controller receives query with the transmis sion error or checksum error then such query will be ignored When a query with correct syntax and invalid values is found the controller returns an error code Table 7 shows error codes and their meaning Error codes Table 7 Code Meaning Cause 01 illegal function function is not handled by the con 02 illegal data address register address out of range troller 03 illegal data value is readout only 12 3 Register map register value out of range or register Register groups map Table 8 Address T range Value type Description 4000 4099 integer value set in the 16 bit register 16 bits 7000 7099 float value set in the two subsequent 2x16 bits 16 bit registers readout only regi sters 7100 7499 float value set in the two subsequent 2x16 bits 16 bit registers readout a
25. of connections before turning the controller on Prior to taking the controller housing off always turn the supply off and disconnect measuring circuits Removal of the controller housing during the warranty period voids the warranty The device is designed to installation and usage in the indu strial electromagnetic environment A switch or a circuit breaker should be installed in the buil ding or facility This switch should be located near the device easily accessible by the operator and suitably marked 4 INSTALLATION 4 1 Controller installation Fix the controller to the board with three screw brackets as shown in the fig 1A slot in the panel must have the following dimensions 92 5 9 x 92 5 8 mm The thickness of the panel material cannot exceed 6 mm Fig 1 Controller installation Dimensions of the controller are presented on the fig 2 96 76 7 69 RE92 nn Fig 2 Controller dimensions 4 2 Electrical connections The controller has three separate strips with screw terminals Two strips with 16 terminals each allow to connect all signal sources by a wire with a 2 5 mm cross section and two strips with 10 terminals each allow for connecting by a wire with 1 5 mm cross section 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 2000000000000000 El T T T T T T T T T T T T Out6 Out5 Out4 Out3 Out2 Out a Supp
26. program number 2 2 program number 3 3 program number 4 4 program number 5 5 program number 6 6 program number 7 7 program number 8 8 program number 9 9 program number 10 7246 RW 9999 99999 SP1 set value in loop 1 7248 RW 9999 99999 SP2 set value in loop 1 7250 RW 9999 99999 SP3 set value in loop 1 7252 RW 9999 99999 SP4 set value in loop 1 7254 7256 RW RW 9999 9999 99999 99999 SP setting lower limit in loop 1 SP setting upper limit in loop 1 7258 RW Set value accrual in loop 1 0 off 1 accrual in units minute 2 accrual in units hour 7260 RW 9999 99999 Set value Ramp rate in loop 1 83 7262 RW 0 25 Control type in loop 1 O control off 1 heating type control 2 cooling type control 3 heating cooling control 4 step by step valve control 5 step by step feedback valve control 7264 RW 0 1 Control algorithm in loop 1 0 on off algorithm 1 PID algorithm 7266 RW 0 1 100 0 Hysteresis in loop 1 7268 RW 99 9 99 9 Distance range in loop 1 7270 RW 100 0 100 0 Control signal in loop 1 7272 RW 9999 99999 Control lower limit in loop 1 7274 RW 9999 99999 Control upper limit in loop 1 7276 RW 0 550 0 C
27. response to a level PrgEnd end of the program response to the rising edge PrgStop stop of the program with possible continuation response to the rising edge PrgStopBeg stop the program and jump to the beginning response to the rising edge SP IN3 switching to subse quent SP from the additional input response to the rising edge Bi ary input 2 as per binary input 1 27 Binary input 3 as per binary input 1 Outputs Output 1 Connections None None none Loop 1 loop 1 Loop 2 loop 2 Input 1 input 1 Input 2 input 2 Input 3 input 3 INP1 2 3 input 1 input 2 input 3 BinInp1 binary input 1 Binlnp2 binary input 2 Binlnp3 binary input 3 InvBinlnp1 inverted binary input 1 InvBinInp2 inverted binary input 2 InvBinInp3 inverted binary input 3 Function None None none Heating heating Cooling cooling Opening valve opening Closing valve closing Alarm alarm Event Prg progr control event CascadeSlv signal of the slave loop with cascade control 28 Prg Occ None None none Occ 1 Sec event 1 from a section Occ 2 Seg event 2 from a section Occ 3 Sec event 3 from a section Occ 4 Sec event 4 from a section Occ 5 Sec event 5 from a section Occ 6 Sec event 6 from a section Prg Block deviation block Output type None Transmitter SSR Imp period 20
28. volatile memory beginning of PID control with new settings the error code is on the display one must confirm it transition to the manual work mode 57 The auto tuning process will be stopped without coun ting PID settings if a supply decay occurs or the field ST will be again selected and confirmed If the auto tuning is not achieved with success the er ror message will be displayed Auto tuning and Gain Scheduling In case when Gain Scheduling is used one can carry out the auto tuning in two ways The first way consists on choosing a suitable set of PID parameters in which calculated PID parameters will be stored and realizing the auto tuning on the level of the currently chosen set point value for the fixed set point control One must set the parameter GS Type in the menu Loop x gt Gain Scheduling to Set and select the parameter GS Set between P D1 and P D4 The second way enables an automatic realization of the auto tuning for all PID sets One must set the GS type to SP and choose a number of PID sets for setting the pa rameter GS Level Nb Set point values for the individual PID sets must be provided in the parameters SP1 SP2 SP3 SP4 in the menu Loop x gt Set point value from the lowest to the highest 58 11 PROGRAMMING CONTROL 11 1 Description of the programming control parameters List of configuration parameters Table 3 Programs
29. 2 5 input 3 6 input 1 input 2 input 3 7 binary input 1 8 binary input 2 9 binary input 3 10 inverted binary input 1 11 inverted binary input 2 12 inverted binary input 3 7158 RW 0 7 Output 1 function 0 none 1 heating 2 cooling 3 opening a valve 4 closing a valve 5 alarm 6 programming control event 7160 RW 0 7 Output 1 program event 0 none 1 event 1 from a segment 2 event 2 from a segment 3 event 3 from a segment 4 event 4 from a segment 5 event 5 from a segment 6 event 6 from a segment 7 deviation block 7162 RW 0 5 99 9 Output 1 imp period 76 7164 RW 0 12 Allocation of output 2 0 none 1 loop 1 2 loop 2 3 input 1 4 input 2 5 input 3 6 input 1 input 2 input 3 7 binary input 1 8 binary input 2 9 binary input 3 10 inverted binary input 1 11 inverted binary input 2 12 inverted binary input 3 7166 RW 0 7 Output 2 function 0 none 1 heating 2 cooling 3 opening a valve 4 closing a valve 5 alarm 6 programming control event 7168 0 7 Output 2 program event 0 none 1 event 1 from a segment 2 event 2 from a segment 3 event 3 from a segment 4 event 4 from a segment 5 event 5 from a segment 6 event 6 from a segment 7 deviation block 7170 RW 0 5 99 9 Output 2 imp peri
30. 98 RW 0 0 100 0 Maximum control signal in loop 1 92 7500 RW 0 0 100 0 Minimum control signal in loop 2 7502 RW 0 0 100 0 Maximum control signal in loop 2 Map of the registers from address 7600 Table 15 o Regi gt 5 ster x Parameter Description ad E E range P a dress 6 7600 RW 0 9 Number of realized program 0 means first program loop 1 7602 RW 0 21 Program start stop loop 1 0 program stop 1 program start saving causes program to start from the begin ning 7604 RW o Program set value accrual stop loop 1 0 off 1 on 7606 RW 0 14 Realized segment 0 means first segment loop 1 Saving causes a jump to the given segment 93 7608 R Control status loop 1 0 control stop in the first section 1 control stop in the current section 2 program running 3 control deviation block active 4 set value accrual stop via button binary input or interface 5 program end 7610 R Number of cycles left loop 1 7612 R Section time elapsed s loop 1 7614 R Segment time remaining s loop 1 7616 R Program time elapsed s loop 1 7618 R Program time remaining s loop 1 7620 RW Reserved 7622 RW Reserved 7624 RW Reserved 7626 RW Reserved 7628 RW Reserved 7630 RW 10 19 Number of realized program 10 means
31. DUAL LOOP CONTROLLER RE92 TYPE USER S MANUAL Ce Contents 1 INTRODUCTION 52 25057 enniermatenteekedennnenenden a aneedeehexsccussasns 5 TA PUNOS ornoo nau ana asa 5 1 2 Controller DrOp6rti8S rtc ee 5 2 CONTROLLER SET scc neee on iot eco cues dnt ee ker depre dana e reais 6 3 BASIC REQUIREMENTS OPERATIONAL SAFETY 7 A INSTALLATION mec 7 4 1 Controller intstallatiOl icai ct eii ee 7 4 2 Electrical coritiectiofis irr rr rre denn 9 4 3 Recommendations for installation sss 14 5 STARTING WORK ier oni tone ee eee etae aaro spesa ER eur E EM 15 6 STARTING THE CONTROLLER aaneen 15 6 1 Information Dar re eene inda deed 15 6 2 Button markiNDS uere tt eret eee tette erected 16 6 3 Screen with fixed set point control 16 6 4 Screen with programming control sss 17 6 5 Change of displayed screens 17 6 6 Edit MOG cates dics Aetna re reete e eee ete 18 6 7 ICOnteXE Ille tec ete rte ce cen ndn 20 7 CONTROLLER CONFIGURATION aaneen 21 7 1 Menu access pass Word nova verrveneronserrvensvnnasersverevnnseessdeen 21 7 2 Programming MattiXeis scenes 23 T3 Parameters descriptions et a beetle 24 8 INPUTS AND OUTPUTS OF THE CONTROLLER 39 8 1 Measuring Input T rte ert adriana entrara 39 8 2 Measuring input 2
32. Manufacturer s Revert to manufacturer s settings settings other than Ethernet group settings Information Type RE92 Loader version eg 1 00 Program eg version 1 00 00 Serial number eg 12010001 MAC Address 2 1 default setting and extent of the changes depends on input 3 field in the ordering code 2 shown for Ethernet version 38 8 INPUTS AND OUTPUTS OF THE CONTROLLER RE92 controller is fitted with two measuring inputs one additional input optional and three binary inputs 8 1 Measuring inputs 1 Input 1 is the source of the measured value used for control and alarms Input 1 is an universal input capable of accommodating various sensors or standard signals Input signal is selected with a Input type parameter Displayed unit is set through the Unit parameter Position of the decimal point that determines measu red and set values is set through the Digit Point parameter For thermocouple a cold terminal compensation must be set through a CJC Type parameter When the CJC Type parameter is set to Auto compensation is automatic when it is set to External the compensation temperature is set by the CJC Temp parameter For the linear inputs set the indication for the lower and upper analog input threshold through the LowScale and HighScale parameter Correction of the indicated measuring value is done through the Shift parameter When the measuring value is unstable a
33. PrgStart RW 0 1 Program start method O from the value defined by SPO 1 from the current measured value 2 Start SP RW MIN MAX Initial set point value 4 Time Unit RW 0 1 Unit of the segment 5 duration time 2 O minutes and S seconds 3 1 hours and minutes 6 Ramp RW 0 1 Unit of the set value o Unit Ramp rate 0 minutes 1 hours 8 Holdback RW 0 3 Control deviation block Type 0 inactive 1 lower 2 upper 3 double sided 10 Cycles RW 1 999 Program iteration no Number 98 12 Power RW Od Control after supply Fail decay O program continu ation 1 control stop 14 End Type RW 01 Program end control 0 control stop 1 fixed set point con trol with set value from last segment 16 Gain RW 0 1 Gain Scheduling Sched function for program 0 off 1 on 0 Seg Type RW 0 3 Segment type 0 time defined segment 1 accrual defined segment 2 set value hold 3 program end 2 Target SP RW MIN MAX Set value at the end o 1 of a segment 4 Seg RW 1 5999 Segment duration time 9 Duration 6 Ramp RW 1 5500 Set value Ramp rate Rate 1 8 Holdback RW 0 2000 Upper control deviation Val 1 value when it is exceeded set value accrual is stopped 99 10 Events RW 0 7 Ev
34. S STP twisted pair cable with separate foil shielding for every pair and additional mesh and foil cable shielding 14 5 STARTING WORK After turning a supply on the controller displays logo and then moves to the normal operational mode LUMEL gt 6 STARTING THE CONTROLLER 6 1 Information bar Information bar displays the state of outputs binary inputs and real time clock When active binary outputs and inputs are displayed in black inactive ones are displayed in light grey color State of the outputs binary inputs and real time clock can be hidden state of binary state of outputs Inputs date On 12701712 L time Fig 4 Information bar 15 6 2 Button markings Depending on the service location controller buttons can perform different functions Functions are described in the bar on the bottom of the screen If the button lacks description it is inactive at the moment Fig 5 shows an example of the button marking Function Function Function Function Function Function of button 1 of button 2 ofbutton3 of button 4 of button 5 of button 6 Screen Edit CntxtM Menu Fig 5 Buttons marking example 6 3 Screen with fixed set point control displayed loop set point measured valve valve set point valve steering signal measured valve control status field of change of set point valve set of PID parameters EntstM Menu
35. a s l 2000 m Electromagnetic compatibility noise immunity acc to standard EN 61000 6 2 noise emission acc to standard EN 61000 6 4 110 18 CONTROLLER ORDERING CODE Versions and ordering Table 19 RE92 X X X XX Input 3 none current 0 4 20 mA voltage 0 5 10 V potentiometric transmitter 100 1000 O Output 1 and 2 2 relays 1 2 binary outputs 0 5 V 2 nao Analog outputs none 2 analog outputs 0 4 20 mA and 0 10 V Ethernet none with Ethernet Transducer supply none 24 V d c Version standard 1 custom made 00 XX Language version Polish English other m Additional quality requirements without additional quality requirements with extra quality inspection certificate acc to customer s request 1 the code will be established by the manufacturer only after agreeing with a manufacturer 111 IN STANDARD 2 universal inputs 3 binary inputs 6relay outputs _RS 485 Modbus Slave supply 85 253 V a c d c Example of order The code RE92 1 1 0 1 0 00 E 0 means RE92 RE92 controller 1 with additional input current 0 4 20 mA 1 output 1 and 2 2 relays O analog outputs none 1 with Ethernet 0 transducer supply none 00 standard version E user s manual in English 0 without additional quality requirements 112
36. ar input Seg Type Segment Time Time time defined segment type Accrual accrual defined segment Hold set value hold End program end Target SP Set value at 0 0 C MIN MAx the end of a segment 60 Seg Dura Segment 00 01 00 01 99 59 2 tion duration Ramp Set value 0 1 0 1 550 0 1 5500 C 3 Rate Ramp rate time unit time unit 0 1 990 0 F 1 9900 F 3 time unit time unit 4 Holdback Upper con 0 0 0 200 0C 92000 c Val trol devia 0 0 360 0 F 0 3600 F 9 tion value after it is exceeded set value accrual is stopped Event 1 Event 1 Off Off off state On on Event 2 Event 2 Off Off off state On on Event 3 Event 3 Off Off off state On on Event 4 Event 4 Off Off off state On on Event 5 Event 5 Off Off off state On on Event 6 Event 6 Off Off off state On on PID set PID set for PID1 PID1 PID1 a segment PID2 PID2 PID3 PID3 PID4 PID4 1 See TBD table 2 Time unit is defined by the Time unit parameter Resolution of the parameter depends on the Dot pos parameter i e position of the decimal point 4 Ramp unit is defined by the Ramp Unit parameter 61 11 2 Defining the set value programs Up to 20 programs may be defined One program may include up to 15 sections To ensure that parameters related to the programming control are displayed in the menu a SP Mode parameter must
37. digital filter with a programmable time constant value may be used When using this feature use the lowest filter time constant value that allows for the stable measuring value When the time con stant is too high it may cause the control to become unstable The range of a filter time constant a Filter parameter may be set to 0 2 to 100 seconds 39 Measuring input 1 parameters can be found in menu Inputs gt Analog input 1 8 2 Measuring input 2 Input 1 is the source of the measured value used for control and alarms Measuring input 2 parameters are the same as the ones for input 1 can be found in menu Inputs gt Analog input 2 8 3 Measuring input 3 Input 3 may be used as signal controlled for any loop as the independent input or component for compound signal on different input e set value for any loop additional measurement point displayed on a measure ment screen Input 3 is an input that can accommodate the standard signals Input signal is selected with a Input type parameter Displayed unit is set through the Unit parameter Position of the decimal point that determines measured and set values is set through the Digit Point parameter Set the indication for a lower and upper analog input threshold through the LowScale and HighScale parameter Correction of the indicated measuring value is done through the Shift parameter When the measuring value is unstable a digital f
38. e internal 5 relative internal 89 7422 RW 9999 99999 Alarm 1 set value 7424 RW 9999 99999 Alarm 1 deviation for relative alarms 7426 RW 0 1 99 9 Alarm 1 hysteresis 7428 RW 0 1 Memory of the alarm 1 0 off 1 on 7430 RW 05 Alarm type 2 O absolute upper 1 absolute lower 2 relative upper 3 relative lower 4 relative internal 5 relative internal 7432 RW 9999 99999 Alarm 2 set point value 7434 RW 9999 99999 Alarm 2 deviation for relative alarms 7436 RW 0 1 99 9 Alarm 2 hysteresis 7438 RW 0 1 Memory of the alarm 2 0 off 1 on 7440 RW 0 5 Alarm type 3 O absolute upper 1 absolute lower 2 relative upper 3 relative lower 4 relative internal 5 relative internal 7442 RW 9999 99999 Alarm 3 set point value 7444 RW 9999 99999 Alarm 3 deviation for relative alarms 7446 RW 0 1 99 9 Alarm 3 hysteresis 7448 RW 0 1 Memory of the alarm 3 0 off 1 on 90 7450 RW 0 5 Alarm type 4 O absolute upper 1 absolute lower 2 relative upper 3 relative lower 4 relative internal 5 relative internal 7452 RW 9999 99999 Alarm 4 set point value 7454 RW 9999 99999 Alarm 4 deviation for relative alarms 7456 RW 0 1 99 9 Alarm 4 hysteresis 7458 RW 0 1 Memory o
39. e program after activation of the binary input e stop of the program with possible continuation control stop and the program stop at the current position after acti vation of the binary input e stop the program and jump to the beginning control stop and the program jump to start after activating the binary input 41 e switching to SP from the additional input set point is switched to the value of the additional input during active binary input Note If one channel is assigned to more than one binary input than for each of them must be set a different function 9 CONTROLLER OUTPUTS RE92 controller has six binary outputs and two analog outputs current and voltage optional 9 1 Controlling outputs Heat function output is a reverse output It is used during con trol when the increase of the controlled signal causes the value of output signal to drop Such output is allocated during the loop configuration to the heating control heating loop in the heating cooling control or valve opening in the step by step control Cool function output is a non reverse output direct It is used during control when the increase of the controlled signal causes the value of output signal to increase Such output is allocated during the loop configuration to the cooling control cooling loop in the heating cooling control or valve closing in the step by step control For the proportional control with the excepti
40. ents state bit sum bit O set event 1 bit 1 set event 2 bit 2 set event 3 bit 3 set event 4 bit 4 set event 5 bit 5 set event 6 12 PID RW 0 3 PID set for a segment 0 PID1 1 PID2 2 PID3 3 PIDA 14 Seg Type 16 Target SP 18 Segment N time 20 6 Ramp as per segment 1 5 rate 22 O Holdback Val 24 Events 26 PID 28 Seg Type 30 Target SP 32 Segment c time c 34 9 Ramp as per segment 1 5 rate P 9 36 9 Holdback Val 38 Events 40 PID 100 42 Seg Type 44 Target SP 46 Segment time mea Ramp as per segment 1 E rate p g oO 50 Holdback Val 52 Events 54 PID 56 Seg Type 58 Target SP 60 Segment E time 62 Ramp as per segment 1 9 rate 7 64 Holdback Val 66 Events 68 PID 101 70 Seg Type 72 Target SP 74 o Segment E time 76 E Ramp as per segment 1 D 5 rate 78 Holdback Val 80 Events 82 PID 84 Seg Type 86 Target SP 88 Segment time E id e Ramp as per segment 1 gt rate 92 V Holdback Val 94 Events 96 PID 102 98 Seg Type 100 Target SP 102 Segment co time c 104 9 Ramp as per segment 1 5 rate p 9 106 9 Ho
41. f program 4 8572 8588 Program 5 parameters 8590 8798 Sections 1 15 of program 5 8800 8816 Program 6 parameters 8818 9028 Sections 1 15 of program 6 9028 9044 Program 7 parameters 9046 9254 Sections 1 15 of program 7 9256 9272 Program 8 parameters 9274 9482 Sections 1 15 of program 8 9484 9500 Program 9 parameters 9502 9710 Sections 1 15 of program 9 9712 9728 Program 10 parameters 9730 9938 Sections 1 15 of program 10 9940 9956 Program 11 parameters 96 9958 10166 Sections 1 15 of program 11 10168 10184 Program 12 parameters 10186 10394 Sections 1 15 of program 12 10396 10412 Program 13 parameters 10414 10622 Sections 1 15 of program 13 10624 10640 Program 14 parameters 10642 10850 Sections 1 15 of program 14 10852 10868 Program 15 parameters 10870 11078 Sections 1 15 of program 15 11080 11096 Program 16 parameters 11098 11306 Sections 1 15 of program 16 11308 11324 Program 17 parameters 11326 11534 Sections 1 15 of program 17 11536 11552 Program 18 parameters 11554 11762 Sections 1 15 of program 18 11764 11780 Program 19 parameters 11782 11990 Sections 1 15 of program 19 11992 11008 Program 20 parameters 12010 11218 Sections 1 15 of program 20 97 Register map for single program Table 17 E z a 3 5 E Marking E Laramati Description ED g range o o x 0
42. f the alarm 4 0 off 1 on 7460 RW 0 5 Alarm type 5 O absolute upper 1 absolute lower 2 relative upper 3 relative lower 4 relative internal 5 relative internal 7462 RW 9999 99999 Alarm 5 set point value 7464 RW 9999 99999 Alarm 5 deviation for relative alarms 7466 Alarm 5 hysteresis 7468 Memory of the alarm 5 0 off 1 on 7470 Alarm type 6 O absolute upper 1 absolute lower 2 relative upper 3 relative lower 4 relative internal 5 relative internal 7472 9999 99999 Alarm 6 set point value 91 7474 RW 9999 99999 Alarm 6 deviation for relative alarms 7476 RW 0 1 99 9 Alarm 6 hysteresis 7478 RW 0 41 Memory of the alarm 6 0 off 1 on 7480 RW 1 247 Address 7482 RW 0 29 Baud rate 0 4800 bps 1 9600 bps 2 19 2k bps 3 38 4k bps 4 57 6k bps 5 115 2k bps 7484 RW Transmission protocol 0 none 1 RTU 8N2 2 RTU 8bE1 3 RTU 801 4 RTU 8N1 7486 RW 0 10 LCD illumination 7488 RW 0 1 Language 0 English 1 Polish 7490 RW Shot outputs state 0 no 1 yes 7492 RW Show binary inputs state 0 no 1 yes 7494 RW Show clock 0 no 1 yes 7496 RW 0 0 100 0 Minimum control signal in loop 1 74
43. he menu Programs gt Program x gt Config Prg to On Set Permanently setting of one PID set The PID set is set through the GS Set parameter 52 SPA PID 4 GS Level 3 4 PID 3 GS Level 2 3 PID 2 GS Level 1 2 o2oo2ll PID 1 PID Fig 18 Gain Scheduling switched over from SP time Fig 19 Gain Scheduling switched over for each segment in the programmed control 53 10 3 Control range Control range is defined by Ctrl Lim Lo and Ctrl Lim Hi parameters Control range defines limits for the PID control and auto tuning algorithm 10 4 Set value in loop A set value in loop may be one of the four values defined as SP1 SP2 SP3 SP4 value read from the input 3 or one of the PRG programs Soft start If the value is controlled in loop via SP1 SP2 SP3 or SP4 it is possible to determine an allowable speed of controlled changes i e soft start during object activation or while chan ging the set value It allows for smooth achievement of a target value without re regulation When accrual process starts temporary set value changes from the measured value to the set value allocated to a loop Selection of the Ramp rate unit between rate min and rate h is set in the Ramp Mode parameter and the Ramp rate in the Ramp Rate parameter 10 5 Control algorithms on off algorithm When high accuracy of a tem
44. ilter with a programmable time constant value may be used The range of a filter time constant a Filter parameter may be set to 0 2 to 100 seconds 40 Measuring input 3 parameters can be found in menu Inputs gt Analog input 3 8 4 Binary inputs The function of the binary inputs are set through the Function parameter that can be found in menu Inputs gt Binary input 1 Inputs gt Binary input 2 and Inputs gt Binary input 3 Then you need to allocate binary inputs to the appropriate loop The following functions of the binary input are available e no function state of binary input does not influence the controller operation e Stop during active binary input the control is interrupted and control outputs start to function as after sensor failure alarm and retransmission operate normally e switch to manual during active binary input the control ler is in the manual operation mode e switch to the next SP during active binary input the set point value is switched to another eg from SP1 to SP2 e program start after activation of binary input the process of programming control starts e jump to next segment after activation of binary input follows the jump to the next segment of programming control e stop counting program set value during active binary input follows the stop of set value counting for program ming control e end of the program jump to the end of th
45. ion time constant s of cooling loop in the loop 1 7312 RW 0 0 2500 0 Differentiation time constant s of coo ling loop in the loop 1 7314 RW 0 2 Gain Scheduling function in loop 1 0 off 1 switched according to set value 2 selected fixed PID set 7316 RW 0 2 Number of PID sets for Gain Schedu ling switched according to the value set in loop 1 0 2 PID sets used 1 3 PID sets used 2 4 PID sets used 7318 RW 9999 99999 Switching level for PID1 and PID2 set switched as per value set in loop 1 7320 RW 9999 99999 Switching level for PID2 and PID3 set switched as per value set in loop 1 85 7322 RW 9999 99999 Switching level for PID3 and PID4 set switched as per value set in loop 1 7324 RW Fixed PID set for Gain Scheduling in loop 1 0 PID1 set 1 PID2 set 2 PID3 set 3 PID4 set 7326 RW Measuring value in loop 2 0 input 1 1 input 2 2 input 3 3 input 1 input 2 4 input 1 input 3 5 input 2 input 3 7328 RW 10 0 10 0 Input 1 coefficient in loop 2 7330 RW 10 0 10 0 Input 2 coefficient in loop 2 7332 RW 10 0 10 0 Input 3 coefficient in loop 2 7334 RW O T Binary inputs in loop 2 0 none 1 binary input 1 2 binary input 2 3 binary input 3 4 binary input 1 and 2 5 binary input 1 and 3
46. ldback Val 108 Events 110 PID 112 Seg Type 114 Target SP 116 Segment 2 time 118 Ramp as per segment 1 gt rate o 120 Holdback Val 122 Events 124 PID 126 Seg Type 128 Target SP 130 o Segment Z time c 132 e Ramp as per segment 1 gt rate 134 Holdback Val 136 Events 138 PID 103 140 Seg Type 142 Target SP 144 Segment time t dis Ramp as per segment 1 D 148 amp Holdback Val 150 Events 152 PID 154 Seg Type 156 Target SP 158 N Segment E time 160 Ramp as per segment 1 Q rate 99 162 Holdback Val 164 Events 166 PID 168 Seg Type 170 Target SP 172 Segment 2 time E iii Ramp as per segment 1 D 176 amp Holdback Val 178 Events 180 PID 104 182 Seg Type 184 Target SP 186 Segment X time 188 5 EE as per segment 1 190 d Holdback Val 192 Events 194 PID 196 Seg Type 198 Target SP 200 Segment time 202 5 Ramp as per segment 1 204 8 Holdback Val 206 Events 208 PID 13 SOFTWARE UPGRADE Controller software may be upgraded New software versions are available as a one file on the following website http www lumel com pl After copying this file to the main directory of the SD card control
47. ler software may begin To do this when controller is off press and hold left button and then turn a controller supply on 105 14 TECHNICAL DATA Input 1 and 2 Input signals and measuring ranges Table 18 Intrin Sensor type Standard Range sic error Pt100 EN 200 850 C 328 1562 F 0 20 Pt500 60751 200 850 C 328 1562 F 0 20 A2 2009 Pt1000 200 850 C 328 1562 F 0 20 Ni100 60 180 C 76 356 F 0 20 Cu100 50 180 C 58 356 F 0 20 Fe CuNi J 100 1200 C 148 2192 F 0 30 Cu CuNi T 100 400 C 148 752 F 0 3096 NiCr NiAI K 100 1372 C 148 25016 F 0 30 a o o 0 PtRh10 Pt S EN 60584 0 1767 C 32 32126 F 0 5096 PtRh13 Pt R 1 1997 0 1767 C 32 3212 6 F 0 50 PtRh30 PtRh6 B 0 1767 C 32 3212 6 F 0 50 NiCr CuNi E 100 1000 C 148 1832 F 0 30 NiCrSi NiSi N 100 1300 C 148 2372 F 0 30 chromel kopel L 100 800 C 148 1472 F 0 30 linear current I 0 20 mA 0 20 mA 0 2 1 digit linear current I GOSTR 4 20 mA 4 20 mA van a 8 585 2001 9 linear voltage U 0 5V 0 5 V 0 296 1 digit linear voltage U 0 10 V 0 10 V 0 296 1 digit Intrinsic error is related to the measuring range 200 1767 C 392 3212 6 F 106 Additional errors from automa
48. lgorithm shown in Fig 16 is based on conversion of changing the control signal to the relay opening closing time referred to the full opening closing time The differences between the calculated and the actual valve position are unavoidable because of multiple changes in the di rection of valve movement due to the inertia of a drive or its wear in the absence of a feedback The controller uses the function of automatic positioning of a drive during operation to eliminate these differences This function does not require user interven tion and its function is to extend switching on time of the relay when the control signal reaches 0 or 100 The relay for opening closing will remain on for a time equal to the time of a valve full open close from a moment of a signal reaching 100 0 50 The positioning of the valve will be stopped once the signal is equal to the maximum value In the specific case the positioning is performed by completely closing the valve it is carried out each time after turning the controller supply on changing full open close time The time of full opening of the valve can have a different value than the time of closing Both parameters should be set to the same value when using a drive with identical times Cascade control Cascade control is used in the processes with a high latency to obtain the best quality of control Second loop works as a slave controller which controls the out put
49. ly E o t Out us 24 V In1 i In3 In2 Oooo ooo ooo nnen nn 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 oooooooooooooooo 16 15 14 13 12 11 109 817 6 514 3 2 1 H H H i i i i b og 053 FE d o P104 d did gd Pd GND B Ai 1U2 12 GND U1 GND In3B In2B In1B RS485 1 i Out2A OutlA slave H H i Hl 44 4 Fig 3 Connection strips of the controller CONNECTING THE SUPPLY supply i DN i supply should be connected to the terminals 52151 51 and 52 according to technical data CONNECTION OF 1 AND 2 INPUT IN2 26 25 24 23 22 IN2 26 25 24 23 22 1N1 21 20 19 18 17 IN1 21 20 19 18 17 thermoresistor Pt100 thermoresistor Pt100 in 2 wire system in 3 wire system IN2 26 25 24 23 22 IN2 26 25 24 2322 IN1 21 20 19 18 17 IN 2112019118117 8 E iat E V thermoresistor Pt1000 thermocouples IN2 26 25 24 23 22 IN2 26 25 24 23 22 1N1 21 20 19 18 17 IN1 21 20 19 18 17 D e 0 4 20 mA current input voltage input 0 4 20 mA 0 5 10 V CONNECTION OF INPUT 3 29128127 29128127 29128127 014 20 mA En 0v current input voltage input potentio
50. me constant 2 s 5 time constant 5 s 10 time constant 10 s 20 time constant 20 s 50 time constant 50 s 100 time constant 100 s Analog input 2 as per analog input 1 25 Analog input 3 Input type 1 4 20mA 0 20mA linear current 0 20mA 0 10V 4 20mA linear current 4 20mA R100 0 5V linear voltage 0 5 V 0 10V linear voltage 0 10 V R100 potentiometric input 100 Ohm R1000 potentiometric input 1000 Ohm Unit C C degrees Celsius F degrees Farenheit PU physical units percent RH relative humidity Dot level DP1 DPO without a decimal place DP1 1 decimal place DP2 2 decimal places MinWeAnalog 0 9999 99999 MaxWeAnalog 100 9999 99999 Korekta 0 35 00 35 00 Filter 0 2 Off filter off 0 2 time constant 0 2 s 0 5 time constant 0 5 s 1 time constant 1 s 2 time constant 2 s 5 time constant 5 s 10 time constant 10 s 20 time constant 20 s 50 time constant 50 s 100 time constant 100 s 26 Binary input 1 Function none none none Stop stop automatic control response to a level ManualOp switching to manual operation response to a level SP 1 switching to subse quent SP response to a level StartPrg program start response to the rising edge NextSegment jump to the next segment response to the rising edge PrgBlock stop the incrementing of the set point in the program
51. metric 0 5 10 V input 0 4 20 mA CONNECTION OF THE BINARY OUTPUTS 47 45 43 41 39 37 4846 4442 40 38 OUT6 OUTS OUT4 OUT3 OUT2 OUTI supply output 1 6 relay SSR 39 37 HELT had 40 38 OUT2 OUT1 output 1 and 2 voltage 0 5 V supply CONNECTING THE ANALOG OUTPUTS 5 0 4 20mA 6 F 0 10 V load 7 waere max 5000 load OUTIA min 1kQ output 1A current 0 4 20 mA and voltage 0 10 V 8 0 4 20mA 9 F 0 10 V load 10 H max 5000 load OUT2A min 1kQ output 2A current 0 4 20 mA and voltage 0 10 V 12 CONNECTING THE BINARY INPUTS 2 iN volt free binary inputs 3 IN28 4 1n38 CONNECTING THE RS 485 INTERFACE 4 A SBT RS 485 RS 485 slave interface l rcup CONNECTING OBJECT TRANSDUCERS SUPPLY 35 36 supply object transducers of load up to 30 mA ETHERNET CONNECTION LLLI For Ethernet connection use the category 5 shielded twisted pair wire with RJ 45 connector compliant to the following standards EIA TIA 568A for both connectors in stri ke through connection i e between RE92
52. n input 2 and input 3 signals enter PV Inp2 Inp3 Coeff for Inp 2 1 0 Coeff for Inp 3 1 0 Example 2 To control the mean of input 1 and input 2 signals enter PV Inp1 Inp2 Coeff for Inp 1 0 5 Coeff for Inp 2 0 5 10 2 Control types Heating type control Controller uses this type of control when the parameter Control Type in menu Loop 1 gt Control or Loop 2 gt Control is set to Heat It is a reverse control when the increase of the con trolled signal causes the value of output signal to drop Output allocated to the loop must have the Heat function set 47 Cooling type control Controller uses this type of control when the parameter Control Type in menu Loop 1 gt Control or Loop 2 gt Control is set to Cool It is a non reverse direct control when the increase of the controlled signal causes the value of output signal to increase Output allocated to the loop must have the Cool function set Control with two heating cooling loops Controller uses this type of control when the parameter Control Type in menu Loop 1 gt Control or Loop 2 gt Control is set to Heat Cool For every control loop set the distance range Dead Band parameter and select the parameter set for PID and PIDC cooling steering output 100 Dead Band main loop lt gt auxiliary loop cooling heat 0 gt setpoint temperature C Fig 15 Control with tw
53. nal band in loop 2 0 990 0 F 7396 RW 0 9999 Integration time constant s from PID4 set in the loop 2 88 7398 RW 0 0 2500 0 Differentiation time constant s from PID4 set in the loop 2 7400 RW 0 0 100 0 Control signal correction for P or PD of PID4 set in loop 2 7402 RW 0 1 200 0 Proportional band of cooling loop in loop 2 7404 RW 0 9999 Integration time constant s of cooling loop in the loop 2 7406 RW 0 0 2500 0 Differentiation time constant s of coo ling loop in the loop 2 7408 RW 0 2 Gan an function in loop 2 0 1 switched according to set value 2 selected fixed PID set 7410 RW 0 2 Number of PID sets for Gain Schedu ling switched according to the value set in loop 2 0 2 PID sets used 1 3 PID sets used 2 4 PID sets used 7412 RW 9999 99999 Switching level for PID1 and PID2 set switched as per value set in loop 2 7414 RW 9999 99999 Switching level for PID2 and PID3 set switched as per value set in loop 2 7416 RW 9999 99999 Switching level for PID3 and PID4 set switched as per value set in loop 2 7418 RW 0 3 Fixed PID set for Gain Scheduling in e 2 0 PID1 set 1 PID2 set 2 PID3 set 3 PIDA set 7420 RW 0 5 Alarm type 1 0 absolute upper 1 absolute lower 2 relative upper 3 relative lower 4 relativ
54. nd write registers 7600 12000 float value set in the two subsequent 2x16 bits 16 bit registers readout and write registers 66 Map of the registers from address 4000 Table 9 egister ddress Xs Marking Opera tions Parameter range Description 1 11 Command register 1 switch to manual operation in loop 1 2 switch to manual operation in loop 2 3 switch from manual operation to automatic control in loop 1 4 switch from manual operation to automatic control in loop 2 5 start auto tuning in loop 1 6 start auto tuning in loop 2 7 stop auto tuning in loop 1 8 stop auto tuning in loop 2 9 alarm reset 10 revert to default settings with exception of Ethernet group and defined programs 11 revert defined programs to default settings 4001 100 999 Loader version number x100 4002 10000 65000 Loader version number x10000 67 4003 Controller manufacture code bit 1 0 INPUT 3 0 0 input 3 none 1 0 output 3 current 0 4 20 mA 1 1 output 3 voltage 0 10 V bit 3 2 OUTPUT 1 and 2 O 1 output 1 and 2 relay 10 output 1 and 2 0 5 V bit 4 ANALOG OUTPUTS 0 0 analog output none 0 1 analog output 2 4004 4005 4006 0 0xFFFF 0 0xFFFF 0 0xFFFF Controller status description in table 10 Alarm sta
55. ntern Program block active Prg Val double sided eras 1 Program iteration no Continua Program continuation after Power Fail tion supply decay Control end after program End Type Stop doses 63 Seg Type Accrual Segment type Ramp rate Target SP 800 Target set value 800 0 C Ramp rate 20 0 C Seg Ramp rate 20 ment 1 minute Holdback 50 Block active when deviation Val is higher than 50 0 C Event 1 Off Events 1 on output 2 off Segment Segment Section type segment type time duration time Segment Segment Segment time 2h00 120 E time 02 00 minutes Event 1 Off Events 1 on output 2 off Seg Segment Segment Section type segment ment 3 type time duration time Target SP 50 Target set value 50 0 C Segment 01 40 Segment time 1h40 100 time minutes Holdback 0 Block inactive Val Event 1 On Events 1 on output 2 on Segment Section type program end Seg type End ment 4 Event1 Off Events 1 on output 2 on 64 12 MODBUS PROTOCOL 12 1 Introduction RE92 controller is equipped with RS 485 serial interface with implemented MODBUS protocol Summary of the RE92 controller Modbus protocol A device address 1 247 baud rate 4800 9600 19200 38400 57600 bit s 115200 bit s operation modes RTU mode 8N2 8E1 801 8N1 maximum response time 500 ms data format float 2x16 bits
56. o heating cooling loops 48 Three step step by step control The controller offers two algorithms of the step by step control for cylinder control e with no feedback signal from the valve opening and closing of the valve is based on PID parameters and control deviation with the feedback signal from the valve positioning device opening and closing of the valve is based on PID control deviation and valve position read from the input 3 To select the three step step by step control the Control Type parameter in menu Loop 1 gt Control or Loop 2 gt Control should be set to Valve or to Valve Fdb For every control loop set the insensitivity range for the set point in which the valve does not change its position the parameter Dead Band and select the set of PID parameters Auto tuning algorithm is not available for the step by step control Step by step control with no feedback additionally requires the parameters settings valve open time Valve Open Time valve close time Valve Close Time minimum valve work time Min Work Time 49 relays state off ud 3 Xx mA 8 x 1 i 1 1 1 1 T i 1 i 1 1 i i 1 1 i i 1 1 1 1 i 1 1 1 i i i 1 1 i i 1 i i 1 1 1 i i 1 1 ip I e B DUROS MEET time s a temperature femperatue ee 3 setpoint gt time Fig 16 Three step step by step control with no feedback The principle of the a
57. od 7172 RW 0 12 Allocation of input 3 0 none 1 loop 1 2 loop 2 3 input 1 4 input 2 5 input 3 77 6 input 1 input 2 input 3 7 binary input 1 8 binary input 2 9 binary input 3 10 inverted binary input 1 11 inverted binary input 2 12 inverted binary input 3 7174 RW Output 3 function 0 none 1 heating 2 cooling 3 opening a valve 4 closing a valve 5 alarm 6 programming control event 7176 Output 3 program event 0 none 1 event 1 from a segment 2 event 2 from a segment 3 event 3 from a segment 4 event 4 from a segment 5 event 5 from a segment 6 event 6 from a segment 7 deviation block 7178 RW 0 5 99 9 Output 3 imp period 7180 RW 0 12 Allocation of input 4 0 none 1 loop 1 2 loop 2 3 input 1 4 input 2 5 input 3 6 input 1 input 2 input 3 7 binary input 1 8 binary input 2 9 binary input 3 10 inverted binary input 1 11 inverted binary input 2 12 inverted binary input 3 78 7182 RW 0 7 Output 4 function 0 none 1 heating 2 cooling 3 opening a valve 4 closing a valve 5 alarm 6 programming control event 7 cascade control slave loop signal 7184 07 Output 4 program event 0 none 1 event 1 f
58. ogram Program no Prg01 Prg01 Prg02 Prg03 Prg04 Prg05 Prg06 Prg07 Prg08 Prg09 program no 10 Prg10 program no 1 program no 2 program no 3 program no 4 program no 5 program no 6 program no 7 program no 8 program no 9 for loop 2 Prg11 Prg20 SP1 9999 99999 SP2 9999 99999 SP3 9999 99999 SP4 9999 99999 SPL 9999 99999 SPH 9999 99999 SP accrual Ramp rate Off off accrual min accrual in units minute accrual h accrual in units hour 9999 99999 31 Control Control type Heating Off control off Heating heating type control Cooling cooling type control Heat Cool heating cooling control Valve step by step valve control Feedback valve step by step feedback valve control Algorithm PID On Off on off algorithm PID PID algorithm Hysteresis 2 0 1 100 0 Distance 0 0 99 9 99 9 Valve Open 30s 3 600 s Time Valve Close 30s 3 600 s Time Min Work 0 1s 0 1 99 0 s Time Out Min 0 0096 0 0 100 0 Out max 100 00 0 0 100 0 Signal 0 100 0 100 0 demage Lower reg 0 9999 99999 threshold Upper reg 800 9999 99999 threshold PID Parameters PID 1 Pb 30 0 C 0 1 550 0 C 0 1 990 0 F 32 Ti 300
59. on of the analog outputs an impulse period is also set Impulse period is a time between two subsequent input engagements during proportio nal control Impulse period length should be adjusted for the dy namic properties of the object and characteristics of the output device It is recommended to use SSR transmitter for quick pro cesses Relay output is used for a contactor control in the slow 42 changing processes Long impulse periods for quick change processes may cause unnecessary oscillation In theory the shorter impulse period is the better the control however for the relay output a period should be as large as possible to optimize lifespan of the relay Impulse period setting recommendations Table 2 Output Impulse period is Load recommended gt 20 s electromagnetic min 10 s 2 A 230 V a c transmitter min 5 s 1 A 230 V a c semiconductor transistor output 1 3s transmitter SSR 43 9 2 Alarm outputs Alarm configuration is done in two steps 1 In Output k submenu where k 1 6 menu Outputs select the number of loop or input allocated to the output being configured Assignment parameter set Function parameter to Alarm In Alarms submenu for every output defined as alarm output please set 44 alarm type Type parameter set value SP parameter itis the controlled or measu ring signal value that engages the input deviation
60. ows to change all parame ters with the exception of the Security submenu Level 2 allows for changing the set values current program date and time Admin Button o user 3 i Button VD 21 Cancel 4 Y aA gt ok Button MENU 22 7 2 Programming matrix MENU Inputs Analog input 1 Analog input 2 Analog input 3 Binary input 1 Binary input 2 Binary input 3 Outputs Output 1 Output 2 Output 3 Output 4 Output 5 Output 6 Analog output 1 Analog output 2 Inputs Loop 1 Measured value Setpoint value Control PID parameters PID1 Gain Scheduling PID2 PID3 Loop 2 Inputs PID4 Measured value PIDC Setpoint value Control PID1 PID parameters PID2 Gain Scheduling PID3 PID4 Programs Program 1 PIDC Program 20 Config Prg Alarms Segment 1 Alarm 1 Alarm 2 Seg ment 15 Modbus Alarm 3 Alarm 4 Alarm 5 Modbus TCP Alarm 6 Ethernet Security Admin User 1 Settings User 2 User 3 Information Fig 12 Programming matrix
61. perature control is not required especially for the high time constant and small delay it is possible to use on off control with hysteresis This method ensures simple and reliable control its downside is the oscillation even at low hysteresis values 54 output hysteresis on off setpoint measured value value Fig 20 Heating output operation SMART PID algorithm When high precision of the temperature control is necessary itis recommended to use PID algorithm Innovative SMART PID algorithm ensures increased precision in the extended range of the control object classes Tuning of the controller to object is achieved by manual setting ofthe proportional term derivation term or difference term or automatically by auto tuning function Proceeding in case of a unsatisfactory PID control PID parameters are best selected by doubling or halving the value The following rules should be observed during changes a Oscillations e increase the proportional band increase integration time decrease the differentiation time b Over regulations e increase the proportional band increase integration time increase the differentiation time 55 c Instability decrease the proportional band decrease the differentiation time d Free jump response decrease the proportional band decrease integration time Trace Controller operation algorithms of con
62. rom a segment 2 event 2 from a segment 3 event 3 from a segment 4 event 4 from a segment 5 event 5 from a segment 6 event 6 from a segment 7 deviation block 7186 RW 0 5 99 9 Output 4 imp period 7188 RW 0 12 Allocation of input 5 0 none 1 loop 1 2 loop 2 3 input 1 4 input 2 5 input 3 6 input 1 input 2 input 3 7 binary input 1 8 binary input 2 9 binary input 3 10 inverted binary input 1 11 inverted binary input 2 12 inverted binary input 3 7190 RW 0 7 Output 5 function 0 none 1 heating 2 cooling 3 opening a valve 4 closing a valve 5 alarm 79 6 programming control event 7 cascade control slave loop signal 7192 0 7 Output 5 program event 0 none 1 event 1 from a segment 2 event 2 from a segment 3 event 3 from a segment 4 event 4 from a segment 5 event 5 from a segment 6 event 6 from a segment 7 deviation block 7194 RW 0 5 99 9 Output 5 imp period 7196 RW 0 12 Allocation of input 6 0 none 1 loop 1 2 loop 2 3 input 1 4 input 2 5 input 3 6 input 1 input 2 input 3 7 binary input 1 8 binary input 2 9 binary input 3 10 inverted binary input 1 11 inverted binary input 2 12 inverted binary input 3 7198 0 7 Output 6 function 0 none 1 heating 2 cooling
63. s 0 9999 s Td 60 0 s 0 0 2500 0 s YO 0 00 0 100 0 PID 2 PID 3 PID 4 as per PID1 PIDC Pb 100 00 0 1 200 0 Ti 300 s 0 9999 s Td 60 0 s 0 0 2500 0 s Gain Scheduling GS Type Off Off off SP switched according to set value Set fixed set GS level no 2 2 2 PID sets used 3 3 PID sets used 4 4 PID sets used GS Level 1 2 0 9999 99999 GS Level 2 3 0 9999 99999 GS Level 3 4 0 9999 99999 GS Set PID1 PID1 PID1 set PID2 PID2 set PID3 PID3 set PID4 PID4 set Loop 2 as per loop 1 33 Programs Program 1 Config Prg PrgStart Start PV Start SP Start PV Start SP 0 9999 99999 Time Unit mm ss mm ss hh mm Ramp Unit Min Min Hour Block Off Off Lower Upper Intern Cycles Number 1 1 9999 Supply decay Continu Continuation ation Stop End prg Stop Stop Last SP Gain off off scheduling On Odcinek 1 Section type Time Time Accrual Hold End Target SP 0 9999 99999 34 Segment time 00 00 00 00 99 59 Ramp rate 0 1 0 1 999 9 Deviation 0 9999 99999 Event 1 off off On Event 2 off off On Event 3 off off On Event 4 off off On Event 5 off off On Event 6 off off On PID set PID1 PID1 PID2 PID3 PID4 Segment 2 Segment 10 as Segment 1 Program 2 Program 20 as Program 1 35 Alarms
64. scription es 2 o 7100 RW OL 18 Type of input no 1 O thermoresistor Pt100 1 thermoresistor Pt500 2 thermoresistor Pt1000 3 thermoresistor Ni100 4 thermoresistor Ni1000 5 thermoresistor Cu100 6 J type thermocouple 7 T type thermocouple 8 K type thermocouple 71 9 S type thermocouple 10 R type thermocouple 11 B type thermocouple 12 E type thermocouple 13 N type thermocouple 14 L type thermocouple 15 current input 0 20 mA 16 current input 4 20 mA 17 voltage input 0 5 V 18 voltage input 0 10 V 7102 RW 0 2 Unit of input no 1 0 degrees Celsius 1 degrees Fahrenheit 2 physical units 7104 RW 0 194 Decimal point position for input 1 0 2 5 0 without a decimal place 1 1 decimal place 2 2 decimal places 7106 RW 0 1 Compensation of thermocouple cold terminals for input 1 O automatic 1 manual 7108 RW 0 50 0 Cold terminals temperature with manual compensation for input 1 7110 RW 9999 99999 Indication for the lower limit for input 1 linear input 7112 RW 9999 99999 Indication for the upper limit for input 1 linear input 7114 RW 35 00 35 00 Measured value shift for input 1 7116 RW 0 9 Digital filter of input no 1 0 filter off 1 time constant 0 2 s 2 time constant 0 5 s 3 time constant 1 s 4
65. t start in loop 2 1 active O inactive 13 14 Reserved 15 Controller error check the error register Register 4005 alarm state Table 11 bit Description 0 State of the alarm 1 1 active O inactive 1 Status of the alarm 2 1 active O inactive 2 Status of the alarm 3 1 active O inactive 3 Status of the alarm 4 1 active O inactive 4 Status of the alarm 5 1 active O inactive 5 Status of the alarm 6 1 active O inactive 6 15 Reserved Register 4006 error register Table 12 bit Description 0 Uncalibrated input 1 1 Uncalibrated input 2 2 Uncalibrated input 3 2 Uncalibrated input 1 current 3 Uncalibrated input 1 voltage 4 Uncalibrated input 2 current 5 Uncalibrated input 2 voltage 6 14 Reserved 15 Controller memory checksum error Map of the registers from address 7000 Table 13 Regi Ope ster ad rations Description dress 7000 R Measuring value at input 1 7002 R Measuring value at input 2 7004 R Measuring value at input 3 7006 R Measuring value in loop 1 7008 R Set point value in loop 1 7010 R Loop 1 controlling signal in loop 1 7012 R Loop 2 controlling signal in loop 1 7014 R Measuring value in loop 2 7016 R Set point value in loop 2 7018 R Loop 1 controlling signal in loop 2 7020 R Loop 2 controlling signal in loop 2 Map of the registers from address 7100 Table 14 58 5 25 E ee De
66. tic compensation reference junction temperature lt 2 C from automatic resistance compensation of resistance thermometer wires lt 0 3 C Current flowing through resistance thermometer sensor 0 22 mA Measurement time 0 25 s Input resistance for voltage input 100 kQ for current input 10 0 Error detection in the measurement circuit thermocouple Pt100 Pt1000 measuring range exceeded 0 10 V over 11 V 0 5 V over 5 5 V 0 20 mA over 22 mA 4 20 mA over 1 mA and over 22 mA Input 3 depends on input 3 in ordering code Sensor type Range Intrinsic error linear current 0 20 mA 0 2 1 digit linear current 4 20 MA 0 2 1 digit linear voltage 0 5V 0 296 1 digit linear voltage 0 10 V 0 2 1 digit potentiometric 100 Q 0 100 Q 0 2 1 digit potentiometric 1000 Q 0 1000 Q 0 2 1 digit 107 Measurement time Input resistance for voltage input for current input 0 25 s 100 kQ 500 Setting range of controller parameters see Table 1 Binary inputs 1 3 shorting resistance opening out resistance Output 1 and 2 types relay voltageless voltage transistor Output 3 6 types relay voltageless Analog output types 1A and 2A analog voltage analog current Way of output operation reverse direct Analog outputs error Digital interface protocol 108 voltageless lt
67. trolled value P PD PI PID XA o Pb pol tdi PbT ppt cif td t Pbf pbl td pb tit PbT tif td pb tdi Pb td Ph Pb til Pb til Fig 21 PID parameters correction method 56 Auto tuning The controller has the function to select PID settings In most cases these settings ensure an optimal control To begin the auto tuning one must select the field STjon the screen of a single loop with fixed set point control and then press a button Exec For the correct execution of the auto tuning function the setting of Ctrl Lim Lo and Ctrl Lim Hi para meters is required The parameter Ctrl Lim Lo should be set on the value corresponding to the measured value at the switched off control For object temperature control one can set 0 C The parameter Ctrl Lim Hi should be set on the value corre sponding to the maximum measured value when the control is switched on the full power Message SELF symbol in the control status field informs about the activity of the auto tuning function The duration of auto tu ning depends on dynamic object properties and can last maxi mally 10 hours During auto tuning or directly after it over regu lations can occur and because of this one must set a smaller set point if possible The auto tuning is composed of following stages Autotuning process Autotuning finished with success YES calculation of PID settings and stored them in the non
68. tus description in table 11 Error status description in table 12 4007 1000 1000 Controlling signal from loop 1 x10 for writing during manu al operation 4008 RW 1000 1000 Controlling signal from loop 2 x10 for writing during manu al operation 4009 RW Current time format hour 100 minutes 4010 RW Current time seconds 4011 RW 101 1231 Current date format month 100 day 68 4012 RW 2000 2099 Current date year 4013 R 1201 9999 Serial number older part 4014 R 1 9999 Serial number younger part Register 4004 controller status Table 10 bit Description 0 Input 1 measuring value out of measurement range 1 Input 2 measuring value out of measurement range 2 Input 3 measuring value out of measurement range 3 Loop 1 measuring value out of measurement range 4 Loop 2 measuring value out of measurement range 5 Manual operation in loop 1 1 active O inactive 6 Manual operation in loop 2 1 active 0 inactive 7 Auto tuning in loop 1 1 active O inactive 8 Auto tuning in loop 2 1 active O inactive 9 Auto tuning in loop 1 failed 10 Auto tuning in loop 2 failed 69 11 Soft start in loop 1 1 active O inactive 12 Sof
69. zed by the following features e two loop control and measurement 3 5 TFT full color screen resolution 320 x 240 pixel e intuitive handling via six buttons and graphic user interface e twouniversal measuring inputs for thermoresistors thermo couples or standard linear signals additional input communication interfaces RS 485 Modbus Slave Modbus TCP Slave Sixbinary outputs e two voltage and current analog outputs e three binary inputs e object transducers supply output software upgrade possibility using SD card e two step control three step step by step control three step control of heating cooling type e SMART PID innovative algorithm alarms 2 CONTROLLER SET Complete set of the controller includes A COMMON SR 4 aoe sire 3 holders to fix the meter in the panel 4 plug with 16 screw terminals 5 plug with 10 screw terminals 6 user manual nitent 7 guarantee card eenen y o i TIT IId Z CELLE p i La LL hippy 1 pc 1 pc 4 pcs 2 pcs 2 pcs 1 pc 1 pc 3 BASIC REQUIREMENTS OPERATIONAL SAFETY The controller conforms to a safety standard EN 61010 1 Additional comments concerning safety N Assembly and installation of the electrical connections should conducted only by people authorized to perform assembly of electric devices Always check the state

Download Pdf Manuals

image

Related Search

Related Contents

オイルキャッチタンク KIT(シリンダータイプ) 取扱説明書  Kenmore 9-Year Energy Guide  Istruzioni per l`uso Per il tecnico autorizzato AURON con tubi a  Genie Load Lifter Product Specifications  Allianz ®  Wechselrichter Fronius Symo Installationshilfe  Renesas R0E33062PMSRC0 User's Manual  Jeux de mémoires - école supérieure d`arts & médias de Caen  Logitech 939-000732  取扱説明書 GEH183 - DeWalt Service Technical Home Page  

Copyright © All rights reserved.
Failed to retrieve file