Home

ACC-36E_____________________________16 Channel 12

image

Contents

1. M164 gt D S00CC motor 1 offset position register 1 32 Ix08 M264 gt D S014C motor 2 offset position register 1 32 Ix08 M364 gt D S 01CC motor 3 offset position register 1 32 Ix08 M464 gt D S024C motor 4 offset position register 1 32 Ix08 M564 gt D 02CC motor 5 offset position register 1 32 Ix08 M664 gt D 034C motor 6 offset position register 1 32 Ix08 M764 gt D S03CC motor 7 offset position register 1 32 Ix08 M864 gt D 044C motor 8 offset position register 1 32 Ix08 M5061 gt Y 5003400 12 12 u channel 0 A to D as unipolar M5062 gt Y 5003402 12 12 u channel 1 A to D as unipolar M5063 gt Y 5003404 12 12 u channel 2 A to D as unipolar M5064 gt Y 5003406 12 12 u channel 3 A to D as unipolar M5065 gt Y 5003408 12 12 u channel 4 A to D as unipolar M5066 gt Y 500340A 12 12 u channel 5 A to D as unipolar M5067 gt Y 500340C 12 12 u channel 6 A to D as unipolar M5068 gt Y 00340E 12 12 u channel 7 A to D as unipolar A PLC could be written to read the ADC into the position offset registers at power up OPEN PLC 25 CLEAR 15111 1000 8388608 1i10 71000 msec delay to ensure data is read properl While i5111 gt 0 endwhile M164 m5061 32 1i108 set power on position offset to m5061 for mtr M264 m5062 32 1i108 set
2. Chip UMAC Turbo DIP Switch SW1 Position Select Address 6 5 4 3 2 1 Y 78C00 03 ON ON ON ON ON ON CS10 Y 79C00 03 ON ON ON OFF ON ON Y 7AC00 03 ON ON OFF ON ON ON Y 7BC00 03 ON ON OFF OFF ON ON Y 78D00 03 ON ON ON ON ON OFF CS12 Y 79D00 03 ON ON ON OFF ON OFF Y 7AD00 03 ON ON OFF ON ON OFF Y 7BD00 03 ON ON OFF OFF ON OFF Y 78E00 03 ON ON ON ON OFF ON CS14 Y 79E00 03 ON ON ON OFF OFF ON Y 7AE00 03 ON ON OFF ON OFF ON Y 7BE00 03 ON ON OFF OFF OFF ON Y 78F00 03 ON ON ON ON OFF OFF CS16 Y 79F00 03 ON ON ON OFF OFF OFF Y 7AF00 03 ON ON OFF ON OFF OFF Y 7BFO0 03 ON ON OFF OFF OFF OFF MACRO Station Switch Settings Chip 3U Turbo DIP Switch SW1 Position Select PMAC Address 6 5 4 3 2 1 Y 8800 ON ON ON ON ON ON CS10 Y 9800 ON ON ON OFF ON ON Y A800 ON ON OFF ON ON ON Y B800 ON ON OFF OFF ON ON FFEO Y 8840 ON ON ON ON ON OFF CS12 Y 9840 ON ON ON OFF ON OFF Y A840 ON ON OFF ON ON OFF Y B840 ON ON OFF OFF ON OFF FFE8 Y 8880 ON ON ON ON OFF ON CS14 Y 9880 ON ON ON OFF OFF ON Y A880 ON ON OFF ON OFF ON Y B880 ON ON OFF OFF OFF ON FFFO Y 88C0 ON ON ON ON OFF OFF CS16 Y 98C0 ON ON ON OFF OFF OFF Y A8C0 ON ON OFF ON OFF OFF Y B8CO ON ON OFF OFF OFF OFF Note The default setting is All Closed position Hardware Description Accessory 36E Power Supply Connection TB1 If ACC 36E is installed on the UB
3. Pin Symbol Function Description 1 ADC1 Input Analog Input 1 2 ADC2 Input Analog Input 2 3 ADC3 Input Analog Input 3 4 ADC4 Input Analog Input 4 5 Open N A 6 AGND Common Ground 7 12V Output Positive supply 8 AGND Common Ground 9 ADC1 Input Analog Input 1 10 ADC2 Input Analog Input 2 11 ADC3 Input Analog Input 3 12 ADC4 Input Analog Input 4 13 Open N A 14 AGND Common Ground 15 12V Output Negative supply This common point is connected to the digital ground of the UMAC board The supply voltages are for output from the board to supply the sensors connected to ACC 36E The drawn current should not exceed 0 5A ACC 36E Pinouts 29 Accessory 36E J2 ADC5 through ADC8 DB15 Connector Pin Symbol Function Description 1 ADCS5 Input Analog Input 5 2 ADC6 Input Analog Input 6 3 ADC7 Input Analog Input 7 4 ADC8 Input Analog Input 8 5 Open N A 6 AGND Common Ground 7 12V Output Positive supply 8 AGND Common Ground 9 ADC5 Input Analog Input 5 10 ADC6 Input Analog Input 6 11 ADC7 Input Analog Input 7 12 ADC8 Input Analog Input 8 13 Open N A 14 AGND Common Ground 15 12V Output Negative supply This common point is connected to the digital ground of the UMAC board The sup
4. 10V range 4 ANAIO03 Input Analog Input 3 0 10V or 10V range 5 ANAI04 Input Analog Input 4 0 10V or 10V range 6 ANAIO5 Input Analog Input 5 0 10V or 10V range 7 ANAI06 Input Analog Input 6 0 10V or 10V range 8 ANAIO7 Input Analog Input 7 0 10V or 10V range 9 ANAI08 Input Analog Input 8 0 10V or 10V range 10 ANAIO09 Input Analog Input 9 0 10V or 10V range 11 ANATIO Input Analog Input 10 0 10V or 10V range 12 ANAII1 Input Analog Input 11 0 10V or 10V range 13 ANATI2 Input Analog Input 12 0 10V or 10V range 14 ANATI3 Input Analog Input 13 0 10V or 10V range 15 ANAT14 Input Analog Input 14 0 10V or 10V range 16 ANATI5 Input Analog Input 15 0 10V or 10V range 17 REF1 Input Reference to AGND 18 REF 2 Input Reference to AGND 19 AGND Common 20 AGND Common ACC 36E Pinouts 33
5. Then these M variable definitions M980 or M1980 can be used to monitor the inputs for either the Ultralite or Turbo Ultralite respectively Using ACC 36E with UMAC MACRO 19 Accessory 36E 20 Using ACC 36E with UMAC MACRO Accessory 36E MACRO I O NODE DATA TRANSFER The data transfer from the ACC 6E to the MACRO Station transfer nodes can be achieved using three methods 1 The first method uses MACRO I variables to transfer the A D data information directly to the MACRO I O node addresses automatically 2 The second method uses the MACRO I O data transfer method 3 The third method uses the encoder conversion table on the MACRO station to transfer the data for servo loop closure Automatic Transfer The automatic data transfer uses MACRO Station I variables to send the information from the ACC 36E to the MACRO Station I O node address Once the information is at the MACRO Station node address the information is used at the PMAC Ultralite There are three MACRO Station I variables to set up this automatic transfer MSn MI173 Up to six 12 bit transfers for A D inputs 1 8 MSn MI174 Up to six 12 bit transfers for A D inputs 9 16 MSn MI175 Up to four 12 bit transfers for A D inputs 1 16 must be consecutive Use these MI variables to send A D information to the node addresses automatically as described in the following paragraphs MI173 The MI173 variable specifies the registers used in A D transfer
6. USER MANUAL Accessory 36E DELTA TAU Ny Data Systems Inc NEW IDEAS IN MOTION Single Source Machine Control Power Flexibility Ease of Use 21314 Lassen Street Chatsworth CA 91311 Tel 818 998 2095 Fax 818 998 7807 www deltatau com Copyright Information 2003 Delta Tau Data Systems Inc All rights reserved This document is furnished for the customers of Delta Tau Data Systems Inc Other uses are unauthorized without written permission of Delta Tau Data Systems Inc Information contained in this manual may be updated from time to time due to product improvements etc and may not conform in every respect to former issues To report errors or inconsistencies call or email Delta Tau Data Systems Inc Technical Support Phone 818 717 5656 Fax 818 998 7807 Email support deltatau com Website http Awww deltatau com Operating Conditions All Delta Tau Data Systems Inc motion controller products accessories and amplifiers contain static sensitive components that can be damaged by incorrect handling When installing or handling Delta Tau Data Systems Inc products avoid contact with highly insulated materials Only qualified personnel should be allowed to handle this equipment In the case of industrial applications we expect our products to be protected from hazardous or conductive materials and or environments that could cause harm to the controller by damaging components
7. 003416 ADC4 Y 003417 ADC12 2nd 15073 Y 003418 ADC5 Y 003419 ADC13 2nd 15074 Y 00341A ADC6 Y 00341B ADC 14 2nd 15075 Y 00341C ADC7 Y 00341D ADC15 2nd 15076 Y 00341E ADC8 Y 00341F ADC16 2nd For the ACC 36E 15060 controls the number of pairs of multiplexed A D converters that are processed and de multiplexed into individual registers If I5060 is set to 0 none of these A D converters is processed automatically If 15060 is set to a value greater than zero it specifies the number of pairs of ADCs in the automatic processing ring Each phase clock cycle one pair is processed and the values copied into image registers in RAM 15061 through 5076 control the addresses of the multiplexed A D converters read in the A D ring table as enabled by 15060 These I variables contain offsets from the starting Turbo PMAC address 078800 where these ADCs can reside The base address of the ACC 36E will be defined by the SW1 setting 15081 through 5096 contain the convert codes written to the multiplexed A D converters that are read in the A D ring table as enabled by 15060 The convert codes control which of the multiplexed ADCs at the address is to be read and the range of the analog input for that ADC 10 Using ACC 36E with UMAC Turbo PMAC Accessory 36E 15081 15096 are 24 bit values represented by six hexadecimal digits Legitimate values are in the format 00000n where n can take any hex value fro
8. MACRO UMAC Turbo MACRO Select Type A Card Type A Card Type B Card Type B Card 10 078C00 FFEO or 8800 078C00 079C00 8800 9800 07AC00 07BC00 A800 B800 12 078D00 FFE8 or 8840 078D00 079D00 8840 9840 07AD00 07BD00 A840 B840 14 078E00 FFFO or 8880 078E00 079E00 8880 9880 07AE00 07ECO0 A880 B880 16 078F00 88C0 078F00 079F00 88C0 98C0 07AF00 07BFO0 A8C0 B8C0 Addressing Conflicts When using only the Type A or Type B UMAC cards in an application make sure the individual cards are set to the addresses as specified in the manual to avoid potential addressing conflicts If using both Type A and Type B UMAC cards in the rack be aware of the possible addressing conflicts If using the Type A card on a particular Chip Select CS10 CS12 CS14 or CS16 then do not use a Type B card with the same Chip Select address unless the Type B card is a general I O type If the Type B card is a general I O type then the Type B card will be the low byte card at the Chip Select address and the Type A card s will be setup at the middle byte and high byte addresses Type A and Type B Example 1 ACC 11E and ACC 36E If using an ACC 11E and ACC 36E both cards cannot use the same Chip Select because the data from both cards will be overwritten by the other card Type A and Type B Example 2 ACC 11E and ACC 65E For this example the two cards are allowed to share the same Chip Select be
9. 4 pin terminal block which provides the connection for power supply inputs to ACC 36E when it is used in a standalone configuration Do not use this connector when the card is sitting on the 3U rack ACC 36E Layout Diagram with DB15 Option J1 TOP J2 P3 P1 J2 BOTTOM J1 Hardware Description 3 Accessory 36E ACC 36E Layout Diagram with Terminal Block Option OP o O L I 4 TB1 top TB3 TB2 top ji top P3 El P1 TB1 a BOTTOM E TB2BOTTOM TB3 TB1 Bottom T T T L a oy L E Point Jumper Jumper Config Description Settings Default El 1 2 Turbo PMAC MACRO 1 2 for 3U Turbo PMAC and Set by factory Select MACRO CPU 2 3 for legacy MACRO CPU before 6 00 For legacy MACRO Stations P N 602804 100 through 602804 104 Address Select DIP Switch SW1 The switch two SW1 settings will allow selection of the starting address location for the first encoder Encoders 2 through 8 will follow in descending order from the address selected by the S2 switch The following two tables show the dip switch settings for both the UMAC Turbo and the MACRO Station 4 Hardware Description Accessory 36E UMAC Turbo Switch Settings
10. D A D MACRO Node Ultralite Turbo Ultralite Channel Location Address M Var M Var ADC9 Y 200 12 12 X COA9 8 12 M1009 gt X COA9 8 12 M1009 gt X 078429 8 12 ADC10 Y 201 12 12 X COAA 8 12 M1010 gt X COAA 8 12 M1010 gt X 07842A 8 12 ADCI11 Y 202 12 12 X C0AB 8 12 M1011 gt X C0AB 8 12 M101 1 gt X 07842B 8 12 ADC12 Y 203 12 12 X COB1 8 12 M1012 gt X COB1 8 12 M1012 gt X 07842D 8 12 ADC13 Y 204 12 12 X COB2 8 12 M1013 gt X COB2 8 12 M1013 gt X 07842E 8 12 ADC14 Y 205 12 12 X COB3 8 12 M1014 gt X COB3 8 12 M1014 gt X 07842F 8 12 Now the M variables defined can be used to process the data in the PMAC Ultralite 22 Using ACC 36E with UMAC MACRO Accessory 36E M1175 The MI175 variable specifies the registers used in A D transfer between one to two MACRO nodes It transfers the upper and lower A Ds to a 24 bit node with a maximum of two 24 bit nodes The individual digits are specified as follows Digit Valid Values Description l 1 2 Specifies the number of nodes to be used 2 0 Reserved for future use 3 6 C0A0 Node 2 COA4 MACRO Station X Address of MACRO I O node 24 bit Node 3 COA8 Node 6 register COAC Node 7 COBO Node 10 COB4 Node 11 7 0 Reserved for future use 8 0 Reserved for future use 9 12 200 207 MACRO Station Y A D Address Bits 00 23 When this function is active the MACRO
11. Function Description 1 ADC9 Input Analog Input 9 2 ADC9 Input Analog Input 9 3 ADC10 Input Analog Input 10 4 ADC10 Input Analog Input 10 5 ADC11 Input Analog Input 11 6 ADCI1 Input Analog Input 11 7 ADC12 Input Analog Input 12 8 ADC12 Input Analog Input 12 9 NC NC 10 NC NC 11 AGND Input Output Common reference for ADC9 ADC12 12 AGND Input Output Common reference for ADC9 ADC12 32 ACC 36E Pinouts Accessory 36E Connector TB2 Bottom ADC13 through ADC16 Pin Symbol Function Description 1 ADC13 Input Analog Input 13 2 ADC13 Input Analog Input 13 3 ADC14 Input Analog Input 14 4 ADC14 Input Analog Input 14 5 ADC15 Input Analog Input 15 6 ADC15 Input Analog Input 15 7 ADC16 Input Analog Input 16 8 ADC16 Input Analog Input 16 9 NC NC 10 NC NC 11 AGND Input Output Common reference for ADC13 ADC16 12 AGND Input Output Common reference for ADC13 ADC16 Connector TB3 Bottom Power Supply Outputs JCAL 20 Pin Header Connector for ADC Calibration at Factory Only WARNING This header is not pin for pin compatible with the PMAC2 JANA port Pin Symbol Function Description Notes 1 ANAIO0 Input Analog Input 0 0 10V or 10V range 2 ANAIO1 Input Analog Input 1 0 10V or 10V range 3 ANAIO2 Input Analog Input 2 0 10V or
12. Read Method For example convert channels 4 and 10 as unipolar inputs and read channels 1 and 9 as bipolar in the PLC 10 program M100 gt Y 78c00 24 M variable for Conversion Channel Select M101 gt Y 78c00 0 12 u M variable for Read Data for channels 1 to 8 M102 gt Y 78c00 12 12 u M variable for Read Data for channels 9 to 16 OPEN PLC 10 CLEAR M100 3 convert channel 4 as unipolar also converts channel 12 15112 1 while 15112 gt 0 endwhile P104 M101 P100 now contains converted channel 4 data 15112 1 while 15112 gt 0 M100 1 convert channel 10 as unipolar also converts channel 2 15112 1 while 15112 gt 0 P110 M102 P100 now contains converted channel 10 data M100 8 convert channels 1 and 9 as bipolar 15112 while 15112 gt 0 P101 M101 P101 now contains converted channel 1 data P109 M102 P109 now contains converted channel 9 data CLOSE Using ACC 36E with UMAC Turbo PMAC 15 Accessory 36E 16 Using ACC 36E with UMAC Turbo PMAC Accessory 36E USING ACC 36E WITH UMAC MACRO To use the data from the analog to digital converters on the ACC 36E with the MACRO system the process must be enabled and the data transferred back using node transfer schemes The only practical method of ADC transfer for the ACC 36E and the MACRO CPU is the automatic copy method This meth
13. data transfer process uses MI20 and MI21 MI68 to enable this function Since the I O nodes are used M1975 MI19 and the Ultralite I O node activation I variables must be set to appropriate values Using ACC 36E with UMAC MACRO 23 Accessory 36E MI20 The MI20 variable controls which of 48 possible data transfer operations are performed at the data transfer period set by MI19 MI20 is a 48 bit value each bit controls whether the data transfer specified by one of the variables MI21 through MI68 is performed Hex 0 0 0 0 0 0 0 0 0 0 0 F MI20 1 transfer MI21 MI20 3 transfer MI21 and MI22 MI20 SF transfer MI21 MI22 MI23 and MI24 MI21 through MI68 These variables are 48 bit addresses describing the transfer of data from the desired memory location to the MACRO Station I O node location This transfer can be done on a bit by bit basis but typically this data transfer process is done as a 24 bit transfer Hex Digit 1 2 3 4 5 6 7 8 9 10 11 12 Contents From From Register Address To Register To Register Address Register Format Code Format Code The first 24 bits six hex digits specify the address of the register on the Compact MACRO Station from which the data is to be copied the second 24 bits six hex digits specify the address on the Compact MACRO S
14. or causing electrical shorts When our products are used in an industrial environment install them into an industrial electrical cabinet or industrial PC to protect them from excessive or corrosive moisture abnormal ambient temperatures and conductive materials If Delta Tau Data Systems Inc products are directly exposed to hazardous or conductive materials and or environments we cannot guarantee their operation Accessory 36E Table of Contents INTRODUCTION 6osssscscstsecscssssseocsescossccsssoscssscescscossessanesasstsusasssessoscsesectnesassescesssssesassocoaseosdectesdssseasencseceoassussessesenasscteee 1 ACC 36E HARDWARE DESCRIPTION scssssssssssssscssecscsscssssscssenesscsessnessesnessssssssesssenessessessessssosesessossossesses 3 CONDECION Saen ane aeeai a E EE EE EE E E EE e E STERE 3 Ple e A E A a A E e E AA 3 ITT RERNE ANET E E E E A N E E A E A A EN 3 P E a E E E T E E A E A A seaeeemneey 3 IBI e E E E E A A A AR 3 ACC 36E Layout Diagram with DB15 Option sssessesesssssesesreesssresrestrtessrsteeresrerrssentessesteetesreetesrerrserteserrreserreeresret 3 ACC 36E Layout Diagram with Terminal Block Option cece eee cee eseecseeceeeeeeeeeeeeeseeceeeeeeeeeesseeeseseaeeeeeaeenaes 4 E gt POM UUM PO ts te cicceteasusessdesecesssgsucacicesneassdusags a seduce os isudeaiduasusd ghaeasa users dba yesgctica EEEE EER 4 Address Select DIP Switch SW Lissccsccssssusdassassesiceevecsdeseateasesedeesscsnesyvienstersaestaassevseducsp
15. 07842B ICO 7 7 X 07842C X 07842D X 07842E X 07842F ICO 10 10 X 078430 X 078431 X 078432 X 078433 ICO 11 11 X 078434 X 078435 X 078436 X 078437 IC1 2 18 X 079420 X 079421 X 079422 X 079423 IC1 3 19 X 079424 X 079425 X 079426 X 079427 IC1 6 22 X 079428 X 079429 X 07942A X 07942B C1 7 23 X 07942C X 07942D X 07942E X 07942F C1 10 26 X 079430 X 079431 X 079432 X 079433 C1 11 27 X 079434 X 079435 X 079436 X 079437 IC2 2 34 X 078420 X 07A421 X 07A422 X 07A423 IC2 3 35 X 07A424 X 07A425 X 07A426 X 07A427 IC2 6 38 X 07A428 X 07A429 X 07A42A X 07A42B IC2 7 39 X 07A42C X 07A42D X 07A42E X 07A42F IC2 10 42 X 07A430 X 07A431 X 07A432 X 07A433 IC2 11 43 X 07A434 X 07A435 X 07A436 X 07A437 IC3 2 50 X 07B420 X 07B421 X 07B422 X 07B423 IC3 3 51 X 07B424 X 07B425 X 07B426 X 07B427 IC3 6 54 X 07B428 X 07B429 X 07B42A X 07B42B IC3 7 55 X 07B42C X 07B42D X 07B42E X 07B42F IC3 10 58 X 07B430 X 07B431 X 07B432 X 07B433 IC3 11 59 X 07B434 X 07B435 X 07B436 X 07B437 To read the inputs from the MACRO Station of the first 24 bit I O node address of node 2 X COAO point an M variable to the Ultralite or Turbo Ultralite I O node registers to monitor the inputs M980 gt X COA0 0 24 M1980 gt X 078420 0 24 Ultralite node2 address Turbo Ultralite MACRO ICO node 2 address
16. 15 USING ACC 36E WITH UMAC MACRO Q cssssssscsssssssscssnsscescscssssssenessesnsssesssssesssssnsssssnescesssssesssssnessessosenees 17 Enabling MACRO ADC Transfer ee ceesecsseesceeeeeceseeecesecaeeseeseesecsaeeeesscsaeceseecaeesecneeseesaeeeesaecatesaeeesaesaeeeeeneeeees 17 INIT OS Teana cP cbs satatatc chs ne beat aeeean sa E E E E E EE E A e EE 17 VET OS AET E A A E E E E E A R A R T 17 ATO SO E A E NA E E E E T E A A E E 17 MACRO Data Transfer Fundamentals ccsceeseesesceseescesecseesecsceseceaeceeesecaeesecneeseesaeeeeaecateseeseeseesaseeeaesaeeeseneeeees 18 MACRO Station I O Node Transfer AAAreSSCS ccccsccscseseesseseensesecuseuscuseesesecseesecaseseeacesesaeeceesesaeeaaesesensaeeneeas 18 PMAC2 Ultralite I O Node ACAreSS S ssccsccesccesceeseeesceseeesecsecunecasecsceeseesseesseseeeaeeeseceaeceaeeeaecaeeeaeeeaeeeseeeneeeeeesees 19 PMAC2 Turbo Ultralite I O Node Addresses c ccsccesecececesceseeeseeeseesseeseeeseesesceuseceseceaeceaecaecaceeaeesseceeenseeeeseaees 19 MACRO I O NODE DATA TRANSFER csccsscssssesssccsesscescscssscssenesscsneecesssssesesssnessssnessesssssossssessssssssssssessosenees 21 Automatic Transfer sssri cs sics tase eaheasescbsedyepahin sacs Taea Saee tate aaiae En R pubsordes san cdhesbesbeei eiee mg tbeabeodebedeaspeaseteceet 21 MIIS ae oae sta ast so a E att aievst tate e e a E ES cia Mees 21 INETT TB Meee Noi case ats aa ade es Ee sss dae E a E E et awceres 22 VLD TDs Soho E oe ae
17. 2 M1004 gt X C0AS5 8 12 M1004 gt X 078425 8 12 ADC5 Y 204 0 12 X COA6 8 12 M1005 gt X COA6 8 12 M1005 gt X 078426 8 12 ADC6 Y 205 0 12 X COA7 8 12 M1006 gt X C0A7 8 12 M1006 gt X 078427 8 12 Now the M variables defined can be used to process the data in the PMAC Ultralite M174 The MI174 variable specifies the registers used in A D transfer between one to two MACRO Nodes It will transfer the upper A Ds three at a time to three 16 bit nodes The upper four bits are set to zero The individual digits are specified as follows Digit Valid Values Description 1 1 2 Specifies the number of nodes to be used 2 0 Reserved for future use 3 6 COAI1 Node 2 COA5 MACRO Station X Address of MACRO I O node first of Node 3 COA9 Node 6 three 16 bit registers COAD Node 7 COB1 Node 10 COB5 Node 11 7 0 Reserved for future use 8 0 Reserved for future use 9 12 200 205 MACRO Station Y A D Address Bits 12 23 When this function is active the MACRO Station copies values from the Y Address specified in digits 9 12 into X Address specified in digits 3 6 three at a time up to a total of six The move to the specified node address assumes it to be the first X memory 16 bit node register MI74 Example Transfer the A D converter channels 9 through 14 using MI74 1174 20C0A9000200 A
18. 5 8 12 S M4 gt X 78425 8 12 S8 schannel 3 node transfer ADC4 M5 gt X S COA6 8 12 S M5 gt X 78426 8 12 S channel 3 node transfer ADC5 M6 gt X SCOA7 8 12 S M6 gt X 78427 8 12 S channel 3 node transfer ADC6 M7 gt X SCOA0 0 12 S M7 gt X 78420 0 12 S channel 2 node transfer ADC7 M8 gt X C0A4 0 12 S M8 gt X 78424 0 12 S schannel 3 node transfer ADC8 M9 gt X S COA9 8 12 S M9 gt X 78429 8 12 S channel 6 node transfer ADC9 M10 gt X SCOAA 8 12 S M10 gt X 7842A 8 12 S channel 6 node transfer ADC10 M11 gt X SCOAB 8 12 S M11 gt X 7842B 8 12 S schannel 6 node transfer ADC11 M12 gt X SCOAD 8 12 8S M12 gt X 7842D 8 12 S schannel 7 node transfer ADC12 M13 gt X SCOAE 8 12 S M13 gt X 7842E 8 12 S channel 7 node transfer ADC13 M14 gt X SCOAF 8 12 S M14 gt X 7842F 8 12 S channel 7 node transfer ADC14 M15 gt X SC0A8 0 12 S M15 gt X 78428 0 12 S channel 6 node transfer ADC15 M16 gt X SCOAC 0 12 S M16 gt X 7842C 0 12 S channel 7 node transfer ADC16 Using ACC 36E with UMAC MACRO 27 Accessory 36E 28 Using ACC 36E with UMAC MACRO Accessory 36E ACC 36E PINOUTS TB1 4 pin Terminal Block Pin Symbol Function Description 1 GND Common Digital Ground 2 5V Input External Supply 3 12V Input External Supply 4 12V Input External Supply DB15 Breakout Option J1 ADC1 through ADC4 DB15 Connector
19. 7 Y 0206 0 12 ADC15 Y 0206 12 12 ADC8 Y 0207 0 12 ADC16 Y 0207 12 12 ACC 36E Servo Feedback Use Example for MACRO Using 4 axis servo at the MACRO Station the fourth axis closes the servo loop on A D converted value The information is sent from ADC1 at MACRO Station Y 0200 0 12 to the encoder conversion table entry number four MSO MI123 at the station Conversion table entry fifth MSO MI124 will be the mask and the result The information is sent to the Ultralite conversion table based on MSO MI104 MI104 should contain the address of the fifth entry of the conversion table 14 MSO MI987 1 ENABLES A D INPUTS MSO M1I988 0 unipolar inputs MSO MI989 S 9800 board address on backplane MSO M1I123 200200 feeding ANAIOO information into the end of MS0 MI124 000FFF MACRO station conversion table with parallel MS0 MI104 14 Y word data no filtering conversion method the conversion table result will be in X 14 of the MACRO station This information will be sent to the Ultralite s encoder conversion table fourth encoder entry as a parallel word By default the position and velocity loop address should be correct 26 Using ACC 36E with UMAC MACRO Accessory 36E ACC 36E Configuration Example for Non Turbo and Turbo Ultralite Base Address 8800 Using ADC Automatic Read Method PMAC2 Ultralite Turbo PMAC2 Ultra
20. If more I O registers are available then the three 16 bit registers could be used also If more are needed then the ADC 16 bit registers for the current loop feedback could be used to transfer the information back to the Ultralite when the axis node being used is not in PWM mode Note Remember if there is only one master Ultralite in the system then node 14 could be used for I O transfer two 24 bit registers and six 16 bit registers The following example uses two nodes with multiple reads and with address dip switch settings set for 9800 M960 gt X S COA0 0 24 uses node 7 24 bit register M961 gt X SCO0OA4 0 24 uses node 10 24 bit register M72 gt X 0701 0 24 8 for non turbo Ultralite ms0 mi975 SCCC ms0 mil9 4 ms0 mi20 3 ms0 mi987 1 ms0 mi988 0 ms0 mi989 S 9800 define timer M72 for non turbo Ultralite define timer 151 for turbo Ultralite open plc10 clear cmd ms0 121 780200E8COA0 ADC1 and ADC9 cmd ms0 122 780201E8CO0OA4 ADC2 and ADC10 timer 100 8388608 110 non turbo Ultralite while timer gt 0 endwhile P601 m960 amp SO000FFF P60 9 M960 amp SFFF000 S51000 P602 m961 amp S000FFF P610 M961 SFFF000 1000 cmd ms0 121 780202E8COA0 ADC3 and ADC11 cmd ms0 122 780203E8COA4 ADC4 and ADC12 timer 100 8388608 110 non turbo Ultralite while timer gt 0 endwhile P603 M960 amp SOQO00FFF P611 M960 am
21. Input Analog Input 15 12 ADC16 Input Analog Input 16 13 Open N A 14 AGND Common Ground 15 12V Output Negative supply This common point is connected to the digital ground of the UMAC board The supply voltages are for output from the board to supply the sensors connected to ACC 36E The drawn current should not exceed 0 5 A Terminal Block Option Top Connector TB1 Top ADC1 through ADC4 Pin Symbol Function Description 1 ADC1 Input Analog Input 1 2 ADC1 Input Analog Input 1 3 ADC2 Input Analog Input 2 4 ADC2 Input Analog Input 2 5 ADC3 Input Analog Input 3 6 ADC3 Input Analog Input 3 7 ADC4 Input Analog Input 4 8 ADC4 Input Analog Input 4 9 NC NC 10 NC NC 11 AGND Input Output Common reference for ADC1 ADC4 12 AGND Input Output Common reference for ADC1 ADC4 ACC 36E Pinouts 31 Accessory 36E Connector TB2 Top ADC5 through ADC8 6 ADC7 Input AnalogInput 7 i 8 ADCs Input Analog Input 8 pO pio NC NC ef Connector TB3 Top Power Supply Outputs Symbol 15V from UMAC power supply Fused 172 A NC 15V from UMAC power supply Fused 1 2 A AGND Input Output Common reference for ADC1 ADC16 aa Terminal Block Option Bottom Connector TB1 Bottom ADC9 through ADC12 Pin Symbol
22. Station copies values from the Y Address specified in digits 9 12 into X Address specified in digits 3 6 one at a time up to a total of two The move to the specified node address assumes it to be the X memory of a 24 bit node register MI175 Example Transfer the A D converter channels 7 8 15 and 16 using MI75 I175 20C0A0000206 A D A D MACRO Node Ultralite Turbo Ultralite Channel Location Address M Variable M Variable ADC7 Y 206 0 12 X COAO0 0 12 M1007 gt X COAO 0 12 M1007 gt X 078420 0 12 ADC8 amp Y 207 0 12 X C0A4 0 12 M1008 gt X C0A4 12 12 M1008 gt X 078424 0 12 ADC15 Y 206 12 12 X COA0 12 12 M1015 gt X COAO0 0 12 M1015 gt X 078420 12 12 ADC16 Y 207 12 12 X C0A4 12 12 M1016 gt X COB1 12 12 M1016 gt X 078424 12 12 Self Configured Data Transfer via the I O Nodes The MACRO Station also transfers data back to the Ultralite from any MACRO station memory location This function is useful for reading the 12 bit A D converters and transferring data from either Gate1B or Gate 2B which are not transferred automatically or any other location for verification or troubleshooting purposes PMAC MACRO IC Gate at Ultralite or Turbo MACRO Station Gate 2B Any MACRO Station Memory Location COAO COA1 COA2 COA3 COA4 COA5 COA6 COA7 COA8 COA9 COAA COAB COAC COAD COAE COAF C0B0 C0B1 COB2 COB3 COB4 COB5 COB6 COB7 The
23. anual ADC read method Using ACC 36E with UMAC Turbo PMAC Accessory 36E Enabling Turbo UMAC ADC Transfer Automatic ADC Read Method Just like the standard Turbo PMAC2 the Turbo UMAC allows the use of the automatic copy feature to simplify the reading of the A D converted data Using this method to read the data allows the use of this data for both data acquisition and closing servo loops To enable the feature 15060 15061 15076 and 15081 15096 must be set as specified in the Turbo PMAC Software Reference manual Up to 32 ADCs or 16 ADC pairs can be read in this fashion The data from the ADC returns to the PMAC memory address as a 24 bit word The lower 12 bits contain ADCO through ADC7 and the upper 12 bits of this word will contain the data from channels ADC8 through ADC15 The data is copied automatically as follows I Variable Low ADC Result High ADC Result ACC 36E 15061 Y 003400 ADC1 Y 003401 ADC9 lst 15062 Y 003402 ADC2 Y 003403 ADC10 lst 15063 Y 003404 ADC3 Y 003405 ADC11 lst 15064 Y 003406 ADC4 Y 003407 ADC12 lst 15065 Y 003408 ADC5 Y 003409 ADC13 lst 15066 Y 00340A ADC6 Y 00340B ADC14 lst 15067 Y 00340C ADC7 Y 00340D ADC15 lst 15068 Y 00340E ADC8 Y 00340F ADC16 lst 15069 Y 003410 ADC1 Y 003411 ADC9 2nd 15070 Y 003412 ADC2 Y 003413 ADC10 2nd 15071 Y 003414 ADC3 Y 003415 ADC11 2nd 15072 Y
24. ariables M101 amp M102 in the above example The data written into the Conversion Channel Select M variable determines both the input channel and the conversion type unipolar Vs bipolar as shown in the following table Base Address Selected Analog Polarity Single ended Range Differential Range4 Input Input Channels2 volts volts 0 1 amp 9 Unipolar 0 to 20 0 to 10 1 2 amp 10 Unipolar 0 to 20 0 to 10 2 3 amp 11 Unipolar 0 to 20 0 to 10 3 4 amp 12 Unipolar 0 to 20 0 to 10 4 5 amp 13 Unipolar 0 to 20 0 to 10 5 6 amp 14 Unipolar 0 to 20 0 to 10 6 7 amp 15 Unipolar 0 to 20 0 to 10 7 8 amp 16 Unipolar 0 to 20 0 to 10 8 1 amp 9 Bipolar 10 to 10 5 to 5 9 2 amp 10 Bipolar 10 to 10 5 to 5 10 3 amp 11 Bipolar 10 to 10 5 to 5 11 4 amp 12 Bipolar 10 to 10 5 to 5 12 5 amp 13 Bipolar 10 to 10 5 to 5 13 6 amp 14 Bipolar 10 to 10 5 to 5 14 7 amp 15 Bipolar 10 to 10 5 to 5 15 8 amp 16 Bipolar 10 to 10 5 to 5 1The base address is selected using CS10 1 The value in this column would be the value given to M100 in the above example 2 Channels 9 to 16 are applicable only when Option 1 is installed 3 For single ended wiring use ADCx input and AGND return 4 For differential wiring use ADCx and ADCx inputs 14 Using ACC 36E with UMAC Turbo PMAC Accessory 36E Reading Data through PLC Programs for Manual
25. as 32 Connector TB2 Bottom ADC13 through ADC16 cccsccesseesesseesseeseeesecesecesecaaecacecaceesceeeeeeeeeenaeeeeeseceaeenaeenaeente 33 Connector TB3 Bottom Power Supply Outputs csccccccsceesceeseeeeeeeecesecesecesecaecacecaceeaeeeseeeeeeeeaeeeeseseasenaeenaeenes 33 JCAL 20 Pin Header Connector for ADC Calibration at Factory Only ec eceseseseceseceeesecneeeecseeeeeesecaeeseeneeaees 33 ii Table of Contents Accessory 36E INTRODUCTION UMAC s Accessory 36E ACC 36E is an analog data acquisition board capable of converting 16 analog input signals The basic ACC 36E board is populated for 16 channels of analog input The Analog to Digital Converter ADC units used in ACC 36E are the MAX180 monolithic devices manufactured by Maxim Integrated Products These devices have 12 bit resolution with 1 2 LSB linearity specification For more details on the ADC chips refer to the data sheet published by the manufacturer Document 19 3950 Rev 0 6 91 Complete 8 Channel 12 Bit Data Acquisition Systems Maxim Integrated Products 120 San Gabriel Drive Sunnyvale CA 94086 Phone 408 737 7600 The Accessory 36E s design features make it an ideal analog data acquisition board for monitoring and collecting signals from a variety of sensors and transducers By using simple M variable assignments the converted data may be used in PLC programs for monitoring and data collection purposes The A D converter c
26. asnssoupdesabansabebitbsaseveesscspisnnanenues 4 UMAC Turbo Switch Settings ccscsccsssescssecssesecsseesesssenssecscesscscscesecssescesasenesasensesecasessesesscesaesasenesaseneeascaseseeneeess 5 MACRO Station Switch Settings ccccsccesscesecesecssecesessecesecscecaeeeseeeseeeseeeeeeeesesecesecesecaecsaecsaecaeeaesesaeeeeeeeeeeeeeeneesees 5 Power Supply Connection UB i s asssi seisseaeepesciseosiseseusnsaeseuscduessastsbenstessdasenysdaesediscbhosbnshisenealsnsoibsbbebsesevseduesnasniannedtee 6 Connection to Analog Signal cc ccessesssecsseesceseeecesecseesecaeesecseesecsaecesssecaeeeeaecaeesecnessecsacenesaessesaeeeasaesaeeaesneeseseaeeess 6 Power Supply Requirement 2 0ic i scpecdeenasheseesedeceuovensezseneanctacosuptbuesosecsdspsnnobassodeebiosonsbtasesdeesdesptoebseretieetaconehttueneies 6 Power REQUITEMONIS emesan eiaa R E A EEE Soodeabasisisnbiedunnsodatesssessamedssie ssededengesdundedsessoancresneseswess ents 6 a E10 A a AEE T E A T E 6 Adjustment Pots s in oerien seian Res ETE EE ea E RE a EE EE inori RE R EEEE EE nia 6 Hardware Address Limitations csccecsssscsseeceecseesecseeeecacsceecsaeceessccaeesecseeseesaeeeeaecaeesecseeseesaeeesaesaeesesaeeeeenaeeess 6 UMAC Card TYPES sia aaee ienee a a asea ea eE e eS EE e aare aTe Ee E E eaae E E sea E 7 Chip Select Addresses oeiras enaena eeoa E a eee a araa aeae aae Aaaa Or ae SA o E aS r ES Nee aE rN Ai 7 Addressine Conflicts issn na R E R E R jeige dogloedbeteasstucte
27. atic method using MACRO variables MI173 MI174 and MI J175 or transferring the data using the standard I O transfer method lt MACRO Station Gate 2B Ultralite MACRO IC ACC 6E or ACC 1E with Option MACRO Station I O Node Transfer Addresses Node s Node 24 bit Node 16 bit upper 16 bits Transfer Addresses Transfer Addresses 2 X COA0 X COA1 X COA2 X COA3 3 X COA4 X CO0A5 X COA6 X COA7 6 X COA8 X COA9 X COAA X COAB T X C0AC X COAD X COAE X COAF 10 X COBO X COBI1 X COB2 X COB3 11 X C0B4 X C0B5 X C0B6 X C0B7 18 Using ACC 36E with UMAC MACRO Accessory 36E PMAC2 Ultralite I O Node Addresses Node Node 24 bit Node 16 bit upper 16 bits Transfer Addresses Transfer Addresses 2 X COA0 X COA1 X COA2 X COA3 3 X COA4 X COA5 X COA6 X COA7 6 X COA8 X COA9 X COAA X COAB 7 X COAC X COAD X COAE X COAF 10 X COBO X COB1 X COB2 X COB3 11 X COB4 X COB5 X COB6 X COB7 PMAC2 Turbo Ultralite l O Node Addresses MACRO User Node 24 bit Node 16 bit upper 16 bits IC Node Node Transfer Addresses Transfer Addresses ICO 2 2 X 078420 X 078421 X 078422 X 078423 ICO 3 3 X 078424 X 078425 X 078426 X 078427 ICO 6 6 X 078428 X 078429 X 07842A X
28. between one to two MACRO nodes It transfers the lower A Ds three at a time to three 16 bit nodes The upper four bits are set to zero The individual digits are specified as follows Digit Valid Values Description 1 Specifies the number of nodes to be used 2 el Reserved for future use 3 6 COA1 Node 2 COA5 MACRO Station X Address of MACRO I O node first of Node 3 COA9 Node 6 three 16 bit registers COAD Node 7 C0B1 Node 10 COB5 Node 11 7 o Reserved for future use 8 o Reserved for future use 9 12 200 205 MACRO Station Y A D Address Bits 00 11 When this function is active the MACRO Station copies values from the Y Address specified in digits 9 12 into X Address specified in digits 3 6 three at a time up to a total of six The move to the specified node address assumes it to be the first X memory 16 bit node register Using ACC 36E with UMAC MACRO 21 Accessory 36E MI73 Example Transfer the first six A D converter channels channels 1 6 using MI73 1173 20C0A1000200 A D A D MACRO Node Ultralite Turbo Ultralite Channel Location Address M Var M Var ADC1 Y 200 0 12 X COA1 8 12 M1001 gt X COA1 8 12 M1001 gt X 078421 8 12 ADC2 Y 201 0 12 X CO0A2 8 12 M1002 gt X COA2 8 12 M1002 gt X 078422 8 12 ADC3 Y 202 0 12 X C0A3 8 12 M1003 gt X C0A3 8 12 M1003 gt X 078423 8 12 ADC4 Y 203 0 12 X C0A5 8 1
29. bles must be defined as signed integers For unipolar signals 0 to 20V single ended or 0 to 10V differential define them as unsigned For example if the base address is at Y 78C00 assuming CS 10 is used then define the three M variables as follows For bipolar signals M1000 gt Y 78C00 24 M variable for Conversion Channel Select M1001 gt Y 78C00 0 12 s M variable for Read Data for channels 1 to 8 M1002 gt Y 78c00 12 12 s M variable for Read Data for channels 9 to 16 For unipolar signals M1000 gt Y 78c00 24 M variable for Conversion Channel Select M1001 gt Y 78c00 0 12 u M variable for Read Data for channels 1 to 8 M1002 gt Y 78C00 12 12 u M variable for Read Data for channels 9 to 16 Note The address Y 78C00 is the same for all three M variables In addition the third M variable in this case M1002 is needed only if the ACC 36E board has Option 1 installed Using ACC 36E with UMAC Turbo PMAC 13 Accessory 36E Data Acquisition for Manual Read Method By writing into the ADC registers pointed to by Conversion Channel Select M variable M1000 in the previous example the analog to digital conversion process is initialized This process takes a few microseconds and because of the processing speed of Turbo a small delay may be necessary after initializing the ADC process Afterwards the converted data may be read through the Read Data M v
30. cause the ACC 65E is a general purpose I O Type B card The only restriction in doing this is that the ACC 65E must be considered the low byte addressed card and the ACC 11E must be jumpered to either the middle or high bytes jumper E6A E6H Hardware Description 7 Accessory 36E Hardware Description Accessory 36E USING ACC 36E WITH UMAC TURBO PMAC Reading the analog data through ACC 36E is a simple procedure There are two methods to use to read the analog inputs write PLCs that monitor the ACC 36E board or use UMAC s automatic ADC register read feature The A D converter chips used on this accessory multiplex the data and therefore UMAC must address each channel to read them The automatic ADC read simply addresses each ADC and copies the value into a pre defined memory address This copy is done every phase 110 usec by default clock for two ADC channels Manually address the ADC chip and copy the values into memory locations using the manual ADC read method The automatic read feature in UMAC is a simple process which allows reading the analog signals as feedback devices or for normal data acquisition by having M variables pointing to memory locations which contain the information received by the automatic read feature The following block diagram shows the analog data flow for servo feedback and user programs The following block diagram shows the information flow from ACC 36E to the user programs using the m
31. ced to 078800 000400 S078CO00 15063 S000400 ADC2 and ADC10 are referenced to 078800 000400 078C00 15064 S000400 ADC3 and ADC11 are referenced to 078800 000400 078C00 15065 S000400 ADC4 and ADC12 are referenced to 078800 000400 078C00 I15066 000400 ADC5 and ADC13 are referenced to 078800 000400 S078CO00 15067 000400 ADC6 and ADC14 are referenced to 078800 000400 078C00 I5068 000400 ADC7 and ADC15 are referenced to 078800 000400 S078CO00 15081 S000000 ADCO unipolar ADC8 is unipolar 15082 S000001 ADC1 unipolar ADC9 is unipolar T15083 S000002 ADC2 unipolar ADC10 is unipolar T15084 S000003 ADC3 unipolar ADC11 is unipolar T5085 S00000C ADC4 bi polar ADC12 is bi polar T5086 SO00000D ADC5 bi polar ADC13 is bi polar I15087 00000E ADC6 bi polar ADC14 is bi polar I15088 00000F ADC7 bi polar ADC15 is bi polar M5061 gt Y 5003400 12 12 u channel 0 A to D as unipolar M5062 gt Y 5003402 12 12 u channel 1 A to D as unipolar M5063 gt Y 5003404 12 12 u channel 2 A to D as unipolar M5064 gt Y 5003406 12 12 u channel 3 A to D as unipolar M5065 gt Y S003408 12 12 8s channel 4 A to D as bipolar M5066 gt Y S00340A 12 12 s channel 5 A to D as bipolar M5067 gt Y 00340C 12 12 s channel 6 A to D as bipolar M5068 gt Y 00340E 12 12 s channel 7 A to D as bipolar M5081 gt Y 003401 12 12 u channel 8 A to D as unipolar M5082 gt Y 5003403 12 12 u channel 9 A to D as unipolar M5083 gt Y 5003405 12 12 u chann
32. e ADC transfer from the address dip switch setting For example if the switch settings specified 8800 as the address setting set MI989 equal to 8800 to properly read the ADC inputs Example At MACRO Station 0 transfer ADC channels 0 1 2 3 8 9 10 and 11 as unipolar and channels 4 5 6 7 12 13 14 and 15 as bipolar from address setting 8800 MS0 MI987 1 enable ADC transfer MSO MI988 SF0 ADC channels 0 1 2 3 8 9 10 and 11 as unipolar and channels 4 5 6 7 12 13 14 and 15 as bipolar MSO MI989 S8800 address dip switch set to 8800 Using ACC 36E with UMAC MACRO 17 Accessory 36E The data from the ADC will come back to the MACRO Station memory address as a 24 bit word The lower 12 bits will contain ADCO through ADC7 and the upper 12 bits of this word will contain the data from channels ADC8 through ADC15 The data is copied automatically as follows Channel Location Channel Location ADCO Y 0200 0 12 ADC8 Y 0200 12 12 ADC1 Y 0201 0 12 ADC9 Y 0201 12 12 ADC2 Y 0202 0 12 ADC10 Y 0202 12 12 ADC3 Y 0203 0 12 ADCI1 Y 0203 12 12 ADC4 Y 0204 0 12 ADC12 Y 0204 12 12 ADC5 Y 0205 0 12 ADC13 Y 0205 12 12 ADC6 Y 0206 0 12 ADC14 Y 0206 12 12 ADC7 Y 0207 0 12 ADCI15 Y 0207 12 12 MACRO Data Transfer Fundamentals For the ACC 36E there are two methods to transfer the data back to the PMAC Ultralite an autom
33. el 10 A to D as unipolar M5084 gt Y S5003407 12 12 u channel 11 A to D as unipolar M5085 gt Y S5003409 12 12 s channel 12 A to D as bipolar Using ACC 36E with UMAC Turbo PMAC 11 Accessory 36E M5086 gt Y S00340B 12 12 s channel 13 A to D as bipolar M5087 gt Y S00340D 12 12 s channel 14 A to D as bipolar M5088 gt Y S00340F 12 12 s channel 15 A to D as bipolar Note To start the automatic data transfer process save and restart the 3U Turbo PMAC and then read the M variables associated with the ADC channel ACC 36E Servo Feedback Use Example for UMAC Turbo To process the A D information in the encoder conversion table do the following For this example ADCO will be processed from location Y 3400 12 12 in the ECT as a parallel unsigned entry and it is assumed that the ninth entry of the encoder conversion table ECT is available 18008 203400 read location Y 3400 ECT location 3509 IT8009 S00CO00C read 12 bits shifted 12 bits from Y 3400 ECT location 350A The axis to be used is specified by x Set Ix03 350A position feedback address Set Ix04 S 350A velocity feedback address ACC 36E Power On Position for Turbo PMAC2 As of September 27 2000 Delta Tau firmware does not support upper 12 bit word power on position reads However the position register can be forced to read the appropriate power on value using the position offset register
34. hese 12 turn pots are located at the top edge of the printed circuit board From left to right R4 is for Channel 1 R8 is for channel 2 etc and R36 is for channel 9 R40 is for channel 10 etc R65 and R67 pots are the voltage reference adjustment pots for the two ADC chips these are factory preset and should not be readjusted In addition R66 and R68 are the digital offset pots for the two ADC chips Hardware Address Limitations Some of the older UMAC I O accessories might create a hardware address limitation relative to the newer series of UMAC high speed I O cards The ACC 36E would be considered a newer high speed I O card The new I O cards have four addresses per chip select CS10 CS12 CS14 and CS16 This enables these cards to have up to 16 different addresses The ACC 9E ACC 10E ACC 11E and ACC 12E all have one address per chip select but also have the low byte middle byte and high byte type of addressing scheme and allow for a maximum of twelve of these I O cards 6 Hardware Description Accessory 36E UMAC Card Types UMAC Card Number of Category Maximum Card Type Addresses of cards ACC 9E ACC 10E ACC 11E 4 General IO 12 A ACC 12E ACC 65E ACC 66E ACC 67E 16 General IO 16 B ACC 68E ACC 14E ACC 28E ACC 36E ACC 59E 16 ADC and DAC 16 B ACC 53E ACC 57E ACC 58E 16 Feedback Devices 16 B Chip Select Addresses Chip UMAC Turbo
35. hips used on this accessory multiplex the data and therefore PMAC must address each channel to read them Delta Tau has created automatic data transfers for both the 3U Turbo PMAC and the MACRO Station This automatic method reads addresses for each channel and places the converted data automatically in memory locations accessible by the user For UMAC Turbo Firmware 1 936 and above 16 channels may be read to specified UMAC memory locations automatically These registers can be monitored using M Variables or read into UMAC s encoder conversion table for servo feedback control Introduction I Accessory 36E Introduction Accessory 36E ACC 36E HARDWARE DESCRIPTION Connectors Refer to the layout diagram in this section for the location of the connectors on the board P1 This connector is used for interface to UMAC s processor bus via the backplane of the 3U rack The signals that are brought in through this connector are buffered on board J1 J4 Through these connectors the analog signals are brought into ACC 36E In addition the 12 to 15V power supplies are brought out These power supplies may be used in situations where a separate supply unit is not available for the analog transducers Note The two fuses limit the current drawn to 0 5A on each supply line P3 Caution Do not use this connector This is a 20 pin header that is used for factory calibration TB1 This is a
36. iestuiegeress 7 Type A and Type B Example 1 ACC 11E and ACC 36E eeescessesscssesscssesseeseeseeseeasesecuceeeesseeeeeaeeseesecaaeeeenaseneeeees 7 Type A and Type B Example 2 ACC 11E and ACC O5E ccccceccescssscssesecnesseeseescesecasesecueeeeceseeeceaecaeesecaaeeeseaseneeeees 7 USING ACC 36E WITH UMAC TURBO PMAC csssssssssssssscescscssscssssessssnsesesssssesessensssssnescesseesesessssessssnssseseoes 9 Enabling Turbo UMAC ADC Transfer Automatic ADC Read Method cccceeceesceeeceseceseceseceeeeeeeeseeeeeeeeeaes 10 3U Turbo PMAC Data Acquisition Example ceceeecsseeccesecceeceeeeceeeecsaeceeesecaeesecnecaeeaecneeseesaeeeesaecateaeeaeeatenee 11 ACC 36E Servo Feedback Use Example for UMAC Turb0 cece ecesesssesscneeeeceseeecaecesesecaeesecnaeeeesaeeeeeaeaeeneeaeens 12 ACC 36E Power On Position for Turbo PMAC2 0 0 eecsesccseeeecsseseessecseesecneeseesaeecesaecatesecaeesesnaeeesaeeaeaesaeeseeneens 12 Manual ADC Read Method with UMAC Turbo oo eee ceeecesecesecsseceecaeecaeeeaeseeeeeeeeeeeseeesecsaecsaeenaesaesaeeeaeeeaes 13 M Variable Definitions for Manual Read Method 0 cceeeeeeesceeecsseeeeesecseeseceeeeecsaeseeeeesaeeecaecaeeeeeneesaesaeeeeeneeeees 13 Data Acquisition for Manual Read Method 0 0 0 eesscssseceseseeseeeecseeecaecaeesecaeesecsaenesaecasesecaeesesnaseeesaeeeeeaesateseeneens 14 Reading Data through PLC Programs for Manual Read Method 0 cccecsecessesceseeseeseceeeeceeeeeseeneseecaeeeteeeeaeeeaees
37. lite Description 1995 30 16840 4030 Master and Ring Control Setup 1996 SFCFFF 16841 SFCFFF Node Activation Control 11000 S0033 170 0033 Enables nodes for automatic copying 11002 0033 171 0033 Node Protocol Type 11003 32 178 32 Master slave communications timeout 179 32 Master master communications timeout 11001 100 I80 100 Ring Check Period 11004 2 181 2 maximum Sync Packet count 11005 2 182 2 minimum Sync Packet count pPRARKERKEKRAAAKEKAAUCOMALIC T70 transfer methods XK KKKKKKKK KK KKK ms0O m119 4 enable node transfer ms0 m1975 SCCC enable I O channels ms0 mI987 1 enable automatic copy of ADC registers ms0 mI988 SFF sets either bipolar unipolar this example bipolar ms0 m1I989 S8800 sets the copying from specified incoming ADC address ms0O mI173 20C0A1000200 sets up the nodes 2 3 transfer to the Ultralite ms0O mI175 S20COQA0000206 sets up the nodes 10 11 transfer to the Ultralite M Variables for the Ultralite PMAC2 Ultralite Turbo PMAC2 Ultralite Description M1 gt X SCOA1 8 12 S M1 gt X 78421 8 12 8 channel 2 node transfer ADC1 M2 gt X SCOA2 8 12 S M2 gt X 78422 8 12 8S channel 2 node transfer ADC2 M3 gt X C0A3 8 12 S M3 gt X 78423 8 12 S channel 2 node transfer ADC3 M4 gt X SCOA
38. m zero through F The channels can be set as either unipolar or bipolar but can only be set in pairs The group pairs for the channels are listed below Channel Pairs ADCO amp ADC8 ADCI amp ADC9 ADC2 amp ADC10 ADC3 amp ADC11 ADC4 amp ADC12 ADCS amp ADC13 ADC6 amp ADC14 ADC7 amp ADCI15 For the ACC 36E with a Turbo UMAC the n value determines which of the inputs ANAIO0 to ANAIO7 and ANA8 to ANA15 and how it is to be converted according to the following formulas n ANAI n ANAT 8 r OV to 20V unipolar input for channels n and n 8 10V to 10V bipolar input for channels n and n 8 For example to read ANAIO2 from ACC 36E and ANAI10 from ACC 36E option 1 both as 10V inputs into the first slot in the ring then n would be set to A 10 so 15081 would be set to 00000A 3U Turbo PMAC Data Acquisition Example Set up the Turbo UMAC to read channels 0 1 2 3 8 9 10 and 11 as unipolar converted signals and read channels 5 6 7 8 12 13 14 and 15 as bipolar signals Assume the switch settings are set for a base address of 078C00 78800 400 I5060 8 copy 8 ADC pairs 15061 S000400 DCO and ADC8 are referenced to 078800 S 000400 078C00 I5062 S000400 ADC1 and ADC9 are referen
39. od copies the ADC channels automatically from the ACC 36E to MACRO Station memory locations The following sections will describe both of these topics in detail Note The MACRO Station must have firmware version 1 15 or greater to read the ADCs from the ACC 36E Enabling MACRO ADC Transfer To enable the MACRO ADC transfer properly set three MI variables M1987 MI988 and MI989 at the MACRO Station These three variables tell the MACRO Station to copy the multiplexed data to pre set memory locations in the MACRO Station MI987 When the MI987 variable is set to 1 it will enable the automatic ADC transfer If MI987 is set to zero the ADC transfer will not take place MI988 The MI988 variable controls whether the optional on board A D converters are set up for unipolar 0 to 20V or bipolar 10 to 10V inputs M1988 consists of eight bits each bit controls the setup of a pair of A D converters A value of 0 in the bit sets up the A D converters for unipolar inputs a value of 1 in the bits sets up the A D converters for bipolar inputs The following table shows which bits of MI988 control which A D converters MI998 Bit Hex Bit 1 ADC 2 ADC Value 0 1 ANAIO0 ANAI08 1 2 ANAIO1 ANAI09 2 4 ANAIO2 ANATIO 3 8 ANAIO03 ANATI1 4 10 ANAI04 ANATI2 5 20 ANAIO5 ANATI3 6 40 ANAI06 ANAITI4 7 80 ANAIO7 ANATI5 MI989 MI989 specifies the memory location to start th
40. p SFFF000 S51000 P604 M961 amp S000FFF P612 M961 amp SFFF000 1000 cmd ms0 121 780204E8COA0 ADC5 and ADC13 cmd ms0 122 780205E8COA4 ADC6 and ADC14 timer 100 8388608 110 non turbo Ultralite while timer gt 0 endwhile P605 M960 amp SO00FFF P613 M960 amp SFFF000 S1000 P606 M961 amp 000FFF P614 M961 amp SFFF000 S51000 cmd ms0 121 780206E8COA0 ADC7 and ADC15 cmd ms0 122 780207E8COA4 ADC8 and ADC16 Using ACC 36E with UMAC MACRO 25 Accessory 36E timer 100 8388608 110 while timer gt 0 endwhile P607 M960 amp SO00FFF P615 M960 amp SFFF000 1000 P608 M961 amp S000FFF P615 M961 amp SFFF000 1000 Close Using ACC 36E for Data Acquisition for MACRO This example uses the I O transfer method This method transfers data from any MACRO station memory location to the I O transfer node This could be done on a bit by bit basis or as a 24 bit transfer For ACC 36E the ADC locations are found at locations Y 0200 through Y 0207 These 24 bit registers contain the information for two channels of data The lower 12 bits contain ADC value for channel 1 8 and the upper 12 bits contains the ADC value for channels 9 16 ADC1 0200 0 12 ADC9 Y 0200 12 12 ADC2 0201 0 12 ADC10 Y 0201 12 12 ADC3 Y 0202 0 12 ADC11 Y 0202 12 12 ADC4 Y 0203 0 12 ADC12 Y 0203 12 12 ADC5 Y 0204 0 12 ADC13 Y 0204 12 12 ADC6 Y 0205 0 12 ADC14 Y 0205 12 12 ADC
41. ply voltages are for output from the board to supply the sensors connected to ACC 36E The drawn current should not exceed 0 5A J3 ADC9 through ADC12 DB15 Connector Pin Symbol Function Description 1 ADC9 Input Analog Input 9 2 ADC10 Input Analog Input 10 3 ADC11 Input Analog Input 11 4 ADC12 Input Analog Input 12 5 Open N A 6 AGND Common Ground 7 12V Output Positive supply 8 AGND Common Ground 9 ADC9 Input Analog Input 9 10 ADC10 Input Analog Input 10 11 ADC11 Input Analog Input 11 12 ADC12 Input Analog Input 12 13 Open N A 14 AGND Common Ground 15 12V Output Negative supply This common point is connected to the digital ground of the UMAC board xK The supply voltages are for output from the board to supply the sensors connected to ACC 36E The drawn current should not exceed 0 5A 30 ACC 36E Pinouts Accessory 36E J4 ADC13 through ADC16 DB15 Connector Pin Symbol Function Description 1 ADC13 Input Analog Input 13 2 ADC14 Input Analog Input 14 3 ADC15 Input Analog Input 15 4 ADC16 Input Analog Input 16 3 Open N A 6 AGND Common Ground 7 12V Output Positive supply 8 AGND Common Ground 9 ADC13 Input Analog Input 13 10 ADC14 Input Analog Input 14 11 ADC15
42. power on position offset to m5062 for mtr2 M364 m5063 32 1i108 set power on position offset to m5063 for mtr3 M464 m5064 32 1i108 set power on position offset to m5064 for mtr4 12 Using ACC 36E with UMAC Turbo PMAC Accessory 36E M564 m5065 32 1i108 set power on position offset to m5065 for mtr5 M664 m5066 32 1108 set power on position offset to m5066 for mtr M764 m5067 32 1i108 set power on position offset to m5067 for mtr7 M8 64 m5068 32 1i108 set power on position offset to m5068 for mtr8 Disable plc25 close Manual ADC Read Method with UMAC Turbo When using the manual ADC read method address the ADC channel and then copy the contents of the ADC register into a UMAC memory location usually an M variable This can be accomplished using a PLC If writing a PLC program to monitor the data first define up to three M variables for each ACC 36E board Once the M variables have been defined UMAC s PLC programs may be used to initialize the analog to digital conversion process M Variable Definitions for Manual Read Method Define two M variables for an eight channel ACC 36E and three M variables for an ACC 36E with its Option 1 A 24 bit wide unsigned integer M variable must be pointed to the base address of the board Next define two more M variables each 12 bits wide and pointed to the same base address For bipolar signals 10 to 10V single ended and 5V to 5V differential these M varia
43. ssc csnseessasdavicsecessss segs nia o e a E boateusecuicsesaysacevdsiacds ued CE ERETO E ESEE 29 JI ADC through ADC4 DB15 Connector esccceeccessseceseessecsenceenseceseeeesseceuceecsseceeaeeesaecseneeeaaeceeeeeeaaeceeeeeenaeeees 29 J2 ADCS through ADC8 DB15 Connector o c cccccesccesecssceseeseesseesseeseesseescescenseeesecaeceaecaaecaaecaeeeseeeeeeeneeereeaees 30 J3 ADC9 through ADC12 DB15 Connector eeccceesccessceesseceeneeenseceseeeesseceeneeeaseceeeeeesaeceeneeeaaeceeeeeeaaeceeeeeeaaeeeee 30 J4 ADCI3 through ADC16 DBIS Connector o ccceescccessceessecesceensecesneeesseceeneeeaaeceseeeesaeceeneeeaaeceeeeeesaeceeeeeenaeeeee 31 Terminal Block Option lOp isi siceiscs secs socstesoeerseostasuss nennen in aiino e a n E aE ai o era iS 31 Connector TBI Top ADC through ADC4 ososeesnsseseessseessessesesreeresrsrensrsressesesnresesreesesreeseseesesrentssreeressesrenesee 31 Connector TB2 Top ADCS through ADCS ccsccescesseesseesseeeeeseeseeeeecesecsecuaecaaecaaecaeeeseeeseeeaeeseeeaeeeseeeeeeeaecnaeenae 32 Connector TB3 Top Power Supply Outputs 1 sccssccsseesseessesseeseeesecesecesecsecaaecaeecaaeeseeeseeeaeeseeeseeeeceeecnaeeaeenae 32 Terminal Block Option Bottom cccecceeccesecesecesecececseecseeeneeceeseeesecaeceecsaeeaecnaecaaecaeecaeseneseneseeeeeeeneeeeeeeeaees 32 Connector TBI Bottom ADC9 through ADC12 eececccscesseesseeseesseeescesecescesecesecaecaecaecaeecaeeeaeeeaeeeseneneneeeeaeen
44. tas cols at ovee elects bate A E A E tees nceteatast shee aaa 23 Self Configured Data Transfer via the I O NO S sssssssssesecssesscuseesenseescseceeesecaceecuaeecesaeeeessecaeeaceaeseseaseneeaees 23 VET ON A Ptaces einen sts E T aetbasgncte E E E E ce Mares 24 MI21 through MIS cccscccseesseesceeseneccesecesecsecuncsecuseceaecssecssecseeeseesceessesseesecseceaecaeceaecaeeseseeceeeeneneeeeeeaeeeaeenes 24 ACC 36E Self Configured Data Acquisition Example for MACRO ou eeeeeeceseeeceseceeesesaeceeesecaeeseeneeeessaeeeeaeens 25 Table of Contents i Accessory 36E Using ACC 36E for Data Acquisition for MACRO cc ceesessssecseeeeceseseceaeeeeesecaeeseesecaeeseeneeeesaeceesaecaeeaesnaeeeeeaees 26 ACC 36E Servo Feedback Use Example for MACRO cecesessssesssesecseeeecseeecaececesecaeesesneesecsaeeeeaecaesaeenaeaeenaees 26 ACC 36E Configuration Example for Non Turbo and Turbo Ultralite ec ee ceeeeseseeeeceeeeeceaeeeessecaeeeeneneeeeaees 27 M Variables for the Ultralite ccecccscssccssssssesesscssecssesecseeeesseeseeseeseesecaeesecsseesesaeeseesecaeeseesaeecesaeeaeeaecaeesessaeeeseaseaeegs 27 ACC 36E PINOUT wsssisssscisccssssessccsacicccscsisssessesacssasacssesstosassoossosvesebasssebsssessseniseseeseossebavascseausacanasadsecisasaesebsscdavarassoea 29 TB1 4 pin Terminal BIOCK 0 cee ceccceseceesceceeeeesseceeeeeenaeceeeeesaeceeeeecsaecesneeesaecesneessaeceeeseaaeceeeeeaaeceeesenaeceeneeenaeeees 29 DB15 Break outiO ptosis sscideis
45. tation to which the data is to be copied In each set of six hex digits the last four hex digits specify the actual address The first two digits eight bits specify what portion of the address is to be used The following table shows the 2 digit hex format codes and the portions of the address that each one selects Code X or Y Bit Width Bit Range Notes 40 Y 8 0 7 48 Y 8 8 15 50 Y 8 16 23 54 Y 12 0 11 Lower 12 bit ADC registers 60 Y 12 12 23 Upper 12 bit ADC registers 64 Y 16 0 15 6C Y 16 8 23 16 bit MACRO Servo Node Registers 78 Y 24 0 23 24 bit MACRO Servo Node Registers BO X 8 0 7 B8 X 8 8 15 CO X 8 16 23 C4 X 12 0 11 D0 X 12 12 23 D4 X 16 0 15 DC X 16 8 23 16 bit MACRO I O Node Registers E8 X 24 0 23 24 bit MACRO I O Node Registers Example MI21 780200E8C0A0 copies 24 bit data from Station address Y 0200 to X C0A0 24 Using ACC 36E with UMAC MACRO Accessory 36E ACC 36E Self Configured Data Acquisition Example for MACRO If ACC 36E is used in conjunction with I O accessories ACC 3E ACC 9E ACC 10E ACC 12E or ACC 13E use the three 16 bit read write method 48 bit per node of I O transfer This will free up the 24 bit I O registers for the 16 channels of A D The 24 bit I O registers could then be mapped back 12 bits at a time and the six 24 bit registers can be used to read 12 ADCs
46. us backplane both the 5V supply and the 15V supplies are brought in through the bus For standalone operations the terminal block TB1 should be used The power supply requirements are approximately 100mA for each of the three supplies Connection to Analog Signal The analog signals are brought in from J1 through J4 For a single ended connection using ADCx and GND the voltage range should be from zero to 20V for unipolar signals and 10V to 10V for bipolar signals For a differential connection using ADCx and ADCx the voltage range should be between 0 to 10V for unipolar signals and 5V to 5V for bipolar signals In addition the 15V power supply is brought out through this connector Note The two fuses limit the current drawn to 0 5A on each supply line For single ended inputs ground the complimentary signals Power Supply Requirements ACC 36E draws approximately 100mA for each of its three supply voltages 12V 12V and 5V Power Requirements 5V 12V 12V Other 24V etc 100mA 100mA 100mA N A Note Since the analog inputs are not optically isolated on this board the 12V supply to this board should not be from the same supply that is used for the UMAC s optically isolated analog outputs DACs ACC 36E Fuse Manufacturer Specification Little Fuse 125V 0 5A Adjustment Pots There are 16 analog offset adjustment pots T

Download Pdf Manuals

image

Related Search

Related Contents

  Samsung 23 Liter  Trendnet TFC-110MSCE network media converter  SunTone Database Platforms Design Guide  vattention    THS 710 & THS 720 TekScope™ User Manual  HD6159, HD6158  english 1 Proper use, warranty 2 Safety instructions  Valueline VLSP40100B200 coaxial cable  

Copyright © All rights reserved.
Failed to retrieve file