Home
        ACC-36E_____________________________16 Channel 12
         Contents
1.                                                                                      M164  gt D S00CC  motor 1 offset position register  1   32 Ix08     M264  gt D S014C  motor 2 offset position register  1   32 Ix08     M364  gt D S 01CC  motor 3 offset position register  1   32 Ix08     M464  gt D S024C  motor 4 offset position register  1   32 Ix08     M564  gt D  02CC  motor 5 offset position register  1   32 Ix08     M664  gt D  034C  motor 6 offset position register  1   32 Ix08     M764  gt D S03CC  motor 7 offset position register  1   32 Ix08     M864  gt D  044C  motor 8 offset position register  1   32 Ix08     M5061  gt Y 5003400 12 12 u  channel 0 A to D as unipolar  M5062  gt Y 5003402 12 12 u  channel 1 A to D as unipolar  M5063  gt Y 5003404 12 12 u  channel 2 A to D as unipolar  M5064  gt Y 5003406 12 12 u  channel 3 A to D as unipolar  M5065  gt Y 5003408 12 12 u  channel 4 A to D as unipolar  M5066  gt Y 500340A 12 12 u  channel 5 A to D as unipolar  M5067  gt Y 500340C 12 12 u  channel 6 A to D as unipolar  M5068  gt Y  00340E 12 12 u  channel 7 A to D as unipolar                                              A PLC could be written to read the ADC into the position offset registers at power up   OPEN PLC 25 CLEAR                                                    15111 1000 8388608 1i10 71000 msec delay to ensure data is read properl  While  i5111 gt 0  endwhile   M164 m5061 32 1i108  set power on position offset to m5061 for mtr   M264 m5062 32 1i108  set 
2.                                                              Chip UMAC Turbo DIP Switch SW1 Position  Select Address 6 5 4 3 2 1  Y  78C00 03 ON ON ON ON ON ON  CS10 Y  79C00 03 ON ON ON OFF ON ON  Y  7AC00 03 ON ON OFF ON ON ON  Y  7BC00 03 ON ON OFF OFF ON ON  Y  78D00 03 ON ON ON ON ON OFF  CS12 Y  79D00 03 ON ON ON OFF ON OFF  Y  7AD00 03 ON ON OFF ON ON OFF  Y  7BD00 03 ON ON OFF OFF ON OFF  Y  78E00 03 ON ON ON ON OFF ON  CS14 Y  79E00 03 ON ON ON OFF OFF ON  Y  7AE00 03 ON ON OFF ON OFF ON  Y  7BE00 03 ON ON OFF OFF OFF ON  Y  78F00 03 ON ON ON ON OFF OFF  CS16 Y  79F00 03 ON ON ON OFF OFF OFF  Y  7AF00 03 ON ON OFF ON OFF OFF  Y  7BFO0 03 ON ON OFF OFF OFF OFF  MACRO Station Switch Settings  Chip 3U Turbo DIP Switch SW1 Position  Select   PMAC Address 6 5 4 3 2 1  Y  8800 ON ON ON ON ON ON  CS10 Y  9800 ON ON ON OFF ON ON  Y  A800 ON ON OFF ON ON ON  Y  B800 ON ON OFF OFF ON ON    FFEO    Y  8840 ON ON ON ON ON OFF  CS12  Y  9840 ON ON ON OFF ON OFF  Y  A840 ON ON OFF ON ON OFF  Y  B840 ON ON OFF OFF ON OFF    FFE8    Y  8880 ON ON ON ON OFF ON  CS14  Y  9880 ON ON ON OFF OFF ON  Y  A880 ON ON OFF ON OFF ON  Y  B880 ON ON OFF OFF OFF ON    FFFO    Y  88C0 ON ON ON ON OFF OFF  CS16  Y  98C0 ON ON ON OFF OFF OFF  Y  A8C0 ON ON OFF ON OFF OFF  Y  B8CO ON ON OFF OFF OFF OFF  Note  The default setting is All Closed position                    Hardware Description                         Accessory 36E       Power Supply Connection TB1       If ACC 36E is installed on the UB
3.                                                              Pin   Symbol Function   Description   1  ADC1 Input  Analog Input  1   2  ADC2 Input  Analog Input  2   3  ADC3 Input  Analog Input  3   4  ADC4 Input  Analog Input  4   5 Open N A   6 AGND Common   Ground      7  12V Output   Positive supply        8 AGND Common   Ground      9  ADC1 Input  Analog Input  1   10  ADC2 Input  Analog Input  2   11  ADC3 Input  Analog Input  3   12  ADC4 Input  Analog Input  4   13 Open N A   14 AGND Common   Ground      15  12V Output Negative supply     This common point is connected to the digital ground of the UMAC board     The supply voltages are for output from the board to supply the sensors  connected to ACC 36E  The drawn current should not exceed 0 5A                    ACC 36E Pinouts    29    Accessory 36E       J2     ADC5 through ADC8  DB15 Connector                                                        Pin   Symbol Function   Description  1  ADCS5 Input  Analog Input  5  2  ADC6 Input  Analog Input  6  3  ADC7 Input  Analog Input  7  4  ADC8 Input  Analog Input  8  5 Open N A  6 AGND Common   Ground     7  12V Output   Positive supply  8 AGND Common   Ground     9  ADC5 Input  Analog Input  5  10  ADC6 Input  Analog Input  6  11  ADC7 Input  Analog Input  7  12  ADC8 Input  Analog Input  8  13 Open N A  14 AGND Common   Ground     15  12V Output   Negative supply                        This common point is connected to the digital ground of the UMAC board       The sup
4.     10V range  4 ANAIO03 Input Analog Input 3 0 10V or    10V range  5 ANAI04 Input Analog Input 4 0 10V or    10V range  6 ANAIO5 Input Analog Input 5 0 10V or    10V range  7 ANAI06 Input Analog Input 6 0 10V or    10V range  8 ANAIO7 Input Analog Input 7 0 10V or    10V range  9 ANAI08 Input Analog Input 8 0 10V or    10V range  10 ANAIO09 Input Analog Input 9 0 10V or    10V range  11 ANATIO Input Analog Input 10 0 10V or    10V range  12 ANAII1 Input Analog Input 11 0 10V or    10V range  13 ANATI2 Input Analog Input 12 0 10V or    10V range  14 ANATI3 Input Analog Input 13 0 10V or    10V range  15 ANAT14 Input Analog Input 14 0 10V or    10V range  16 ANATI5 Input Analog Input 15 0 10V or    10V range  17 REF1  Input Reference to AGND  18 REF 2  Input Reference to AGND  19 AGND Common   20 AGND Common                                     ACC 36E Pinouts    33    
5.     Then these M variable definitions  M980 or M1980  can be used to monitor the inputs for either the  Ultralite or Turbo Ultralite respectively        Using ACC 36E with UMAC MACRO 19    Accessory 36E          20    Using ACC 36E with UMAC MACRO    Accessory 36E       MACRO I O NODE DATA TRANSFER    The data transfer from the ACC 6E to the MACRO Station transfer nodes can be achieved using three  methods           1  The first method uses MACRO I variables to transfer the A D data information directly to the  MACRO I O node addresses automatically    2  The second method uses the MACRO I O data transfer method    3  The third method uses the encoder conversion table on the MACRO station to transfer the data for  servo loop closure     Automatic Transfer   The automatic data transfer uses MACRO Station I variables to send the information from the ACC 36E  to the MACRO Station I O node address  Once the information is at the MACRO Station node address    the information is used at the PMAC Ultralite  There are three MACRO Station I variables to set up this  automatic transfer     MSn MI173 Up to six 12 bit transfers for A D inputs 1 8  MSn MI174 Up to six 12 bit transfers for A D inputs 9 16  MSn MI175 Up to four 12 bit transfers for A D inputs 1 16  must be consecutive        Use these MI variables to send A D information to the node addresses automatically  as described in the  following paragraphs     MI173   The MI173 variable specifies the registers used in A D transfer 
6.    USER MANUAL    Accessory 36E               DELTA TAU    Ny Data Systems  Inc     NEW IDEAS IN MOTION    Single Source Machine Control Power    Flexibility    Ease of Use  21314 Lassen Street Chatsworth  CA 91311    Tel   818  998 2095 Fax   818  998 7807    www deltatau com    Copyright Information     2003 Delta Tau Data Systems  Inc  All rights reserved     This document is furnished for the customers of Delta Tau Data Systems  Inc  Other uses are  unauthorized without written permission of Delta Tau Data Systems  Inc  Information contained  in this manual may be updated from time to time due to product improvements  etc   and may not  conform in every respect to former issues     To report errors or inconsistencies  call or email     Delta Tau Data Systems  Inc  Technical Support  Phone   818  717 5656   Fax   818  998 7807   Email  support  deltatau com   Website  http   Awww deltatau com          Operating Conditions   All Delta Tau Data Systems  Inc  motion controller products  accessories  and amplifiers contain  static sensitive components that can be damaged by incorrect handling  When installing or  handling Delta Tau Data Systems  Inc  products  avoid contact with highly insulated materials   Only qualified personnel should be allowed to handle this equipment     In the case of industrial applications  we expect our products to be protected from hazardous or  conductive materials and or environments that could cause harm to the controller by damaging  components
7.   003416  ADC4  Y  003417  ADC12  2nd  15073 Y  003418  ADC5  Y  003419  ADC13  2nd  15074 Y  00341A  ADC6  Y  00341B  ADC 14  2nd  15075 Y  00341C  ADC7  Y  00341D  ADC15  2nd  15076 Y  00341E  ADC8  Y  00341F  ADC16  2nd                   For the ACC 36E  15060 controls the number of pairs of multiplexed A D converters that are processed  and de multiplexed into individual registers  If I5060 is set to 0  none of these A D converters is  processed automatically     If 15060 is set to a value greater than zero  it specifies the number of pairs of ADCs in the automatic  processing ring  Each phase clock cycle  one pair is processed and the values copied into image registers  in RAM     15061 through  5076 control the addresses of the multiplexed A D converters read in the A D ring table   as enabled by 15060  These I variables contain offsets from the starting Turbo PMAC address  078800  where these ADCs can reside  The base address of the ACC 36E will be defined by the SW1 setting     15081 through  5096 contain the convert codes written to the multiplexed A D converters that are read in  the A D ring table  as enabled by 15060  The convert codes control which of the multiplexed ADCs at the  address is to be read  and the range of the analog input for that ADC        10 Using ACC 36E with UMAC Turbo PMAC    Accessory 36E       15081 15096 are 24 bit values  represented by six hexadecimal digits  Legitimate values are in the format   00000n  where n can take any hex value fro
8.   MACRO UMAC Turbo MACRO   Select Type A Card   Type A Card Type B Card Type B Card   10  078C00  FFEO or  8800  078C00   079C00  8800  9800   07AC00   07BC00  A800  B800   12  078D00  FFE8 or  8840  078D00   079D00  8840  9840   07AD00   07BD00  A840  B840   14  078E00  FFFO or  8880  078E00   079E00  8880  9880   07AE00   07ECO0  A880  B880   16  078F00  88C0  078F00   079F00  88C0  98C0   07AF00   07BFO0  A8C0  B8C0                                  Addressing Conflicts  When using only the Type A or Type B UMAC cards in an application  make sure the individual cards  are set to the addresses as specified in the manual to avoid potential addressing conflicts     If using both Type A and Type B UMAC cards in the rack  be aware of the possible addressing conflicts   If using the Type A card on a particular Chip Select  CS10  CS12  CS14  or CS16  then do not use a Type  B card with the same Chip Select address unless the Type B card is a general I O type  If the Type B card  is a general I O type  then the Type B card will be the low byte card at the Chip Select address and the  Type A card s  will be setup at the middle byte and high byte addresses     Type A and Type B Example 1  ACC 11E and ACC 36E  If using an ACC 11E and ACC 36E  both cards cannot use the same Chip Select because the data from  both cards will be overwritten by the other card     Type A and Type B Example 2  ACC 11E and ACC 65E   For this example  the two cards are allowed to share the same Chip Select be
9.  4 pin terminal block  which provides the connection for power supply inputs to ACC 36E when  it is used in a standalone configuration  Do not use this connector when the card is sitting on the 3U rack     ACC 36E Layout Diagram with DB15 Option             J1 TOP J2       P3                         P1                         J2 BOTTOM J1          Hardware Description 3    Accessory 36E       ACC 36E Layout Diagram with Terminal Block Option                                                                                       OP o O  L I  4 TB1 top TB3 TB2 top  ji top  P3    El    P1    TB1  a BOTTOM  E TB2BOTTOM TB3 TB1 Bottom  T     T  T L     a oy L  E Point Jumper  Jumper  Config   Description Settings Default  El 1 2 Turbo PMAC MACRO 1 2 for 3U Turbo PMAC and Set by factory  Select MACRO CPU    2 3 for legacy MACRO CPU  before 6 00    For legacy MACRO Stations  P N 602804 100 through 602804 104                       Address Select DIP Switch SW1       The switch two  SW1  settings will allow selection of the starting address location for the first encoder   Encoders 2 through 8 will follow in descending order from the address selected by the S2 switch  The  following two tables show the dip switch settings for both the UMAC Turbo and the MACRO Station        4 Hardware Description    Accessory 36E       UMAC Turbo Switch Settings                                                                                                                                                
10.  D A D MACRO Node Ultralite Turbo Ultralite  Channel Location Address M Var M Var  ADC9 Y  200  12 12 X  COA9 8 12 M1009  gt X  COA9 8 12 M1009  gt X  078429 8  12  ADC10 Y  201 12 12 X  COAA 8 12 M1010  gt X  COAA 8 12 M1010  gt X  07842A 8  12  ADCI11 Y  202 12 12 X  C0AB 8 12 M1011  gt X  C0AB 8 12 M101 1  gt X  07842B 8 12  ADC12 Y  203 12 12 X  COB1 8 12 M1012  gt X  COB1 8 12 M1012  gt X  07842D 8 12  ADC13 Y  204 12 12 X  COB2 8 12 M1013  gt X  COB2 8 12 M1013  gt X  07842E 8 12  ADC14 Y  205 12 12 X  COB3 8  12 M1014  gt X  COB3 8 12 M1014  gt X  07842F 8 12                Now the M variables defined can be used to process the data in the PMAC Ultralite        22    Using ACC 36E with UMAC MACRO                      Accessory 36E       M1175    The MI175 variable specifies the registers used in A D transfer between one to two MACRO nodes  It  transfers the upper and lower A Ds to a 24 bit node with a maximum of two 24 bit nodes  The individual  digits are specified as follows                                         Digit   Valid Values Description  l  1 2 Specifies the number of nodes to be used   2  0  Reserved for future use   3 6  C0A0  Node 2    COA4 MACRO Station X Address of MACRO I O node 24 bit   Node 3    COA8  Node 6   register   COAC  Node 7    COBO   Node 10    COB4  Node 11   7 0  Reserved for future use   8 0  Reserved for future use   9 12  200      207 MACRO Station Y A D Address  Bits 00     23                  When this function is active  the MACRO 
11.  Function Description  1 ADC9  Input Analog Input  9  2 ADC9  Input Analog Input  9   3 ADC10  Input Analog Input  10  4 ADC10  Input Analog Input  10   5 ADC11  Input Analog Input  11  6 ADCI1  Input Analog Input  11   7 ADC12  Input Analog Input  12  8 ADC12  Input Analog Input  12   9 NC NC  10 NC NC  11 AGND Input Output   Common reference for ADC9 ADC12  12 AGND Input Output   Common reference for ADC9 ADC12                      32    ACC 36E Pinouts    Accessory 36E       Connector TB2 Bottom     ADC13 through ADC16                                                                   Pin   Symbol Function Description  1 ADC13  Input Analog Input  13  2 ADC13  Input Analog Input  13   3 ADC14  Input Analog Input  14  4 ADC14  Input Analog Input  14   5 ADC15  Input Analog Input  15  6 ADC15  Input Analog Input  15   7 ADC16  Input Analog Input  16  8 ADC16  Input Analog Input  16   9 NC NC  10 NC NC  11 AGND Input Output   Common reference for ADC13 ADC16  12 AGND Input Output   Common reference for ADC13 ADC16          Connector TB3 Bottom     Power Supply Outputs       JCAL 20 Pin Header Connector  for ADC Calibration at Factory Only                                                                                WARNING   This header is not pin for pin compatible with the PMAC2 JANA port   Pin   Symbol Function Description Notes   1 ANAIO0 Input Analog Input 0 0 10V or    10V range  2 ANAIO1 Input Analog Input 1 0 10V or    10V range  3 ANAIO2 Input Analog Input 2 0 10V or
12.  Read Method       For example  convert channels 4 and 10 as unipolar inputs and read channels 1 and 9 as bipolar in the  PLC 10 program     M100   gt  Y    78c00 24  M variable for Conversion Channel Select  M101   gt  Y    78c00 0 12 u  M variable for Read Data for channels 1 to 8  M102   gt  Y    78c00 12 12 u  M variable for Read Data for channels 9 to 16  OPEN PLC 10                                                                                                                CLEAR   M100 3  convert channel 4 as unipolar also converts channel 12   15112 1   while  15112 gt 0    endwhile   P104 M101  P100 now contains converted channel 4 data   15112 1   while  15112 gt 0    M100 1  convert channel 10 as unipolar  also converts channel 2   15112 1   while  15112 gt 0    P110 M102  P100 now contains converted channel 10 data   M100 8  convert channels 1 and 9 as bipolar   15112    while  15112 gt 0    P101 M101  P101 now contains converted channel 1 data   P109 M102  P109 now contains converted channel 9 data   CLOSE       Using ACC 36E with UMAC Turbo PMAC 15    Accessory 36E          16    Using ACC 36E with UMAC Turbo PMAC    Accessory 36E       USING ACC 36E WITH UMAC MACRO    To use the data from the analog to digital converters on the ACC 36E with the MACRO system  the  process must be enabled and the data transferred back using node transfer schemes  The only practical  method of ADC transfer for the ACC 36E and the MACRO CPU is the automatic copy method  This  meth
13.  data transfer process uses MI20 and MI21 MI68 to enable this function  Since the I O nodes are  used  M1975  MI19  and the Ultralite I O node activation I variables must be set to appropriate values        Using ACC 36E with UMAC MACRO    23          Accessory 36E       MI20   The MI20 variable controls which of 48 possible data transfer operations are performed at the data  transfer period set by MI19  MI20 is a 48 bit value  each bit controls whether the data transfer specified  by one of the variables MI21 through MI68 is performed                                                                          Hex 0 0 0 0 0 0 0 0 0 0 0 F  MI20    1  transfer MI21   MI20    3  transfer MI21 and MI22   MI20   SF   transfer MI21  MI22  MI23  and MI24                               MI21 through MI68   These variables are 48 bit addresses describing the transfer of data from the desired memory location to  the MACRO Station I O node location  This transfer can be done on a bit by bit basis  but typically  this  data transfer process is done as a 24 bit transfer     Hex Digit   1 2 3 4 5 6 7 8 9 10 11 12  Contents From From Register Address To Register To Register Address  Register Format Code   Format Code                                                                   The first 24 bits  six hex digits  specify the address of the register on the Compact MACRO Station from  which the data is to be copied  the second 24 bits  six hex digits  specify the address on the Compact  MACRO S
14.  or causing electrical shorts  When our products are used in an industrial  environment  install them into an industrial electrical cabinet or industrial PC to protect them  from excessive or corrosive moisture  abnormal ambient temperatures  and conductive materials   If Delta Tau Data Systems  Inc  products are directly exposed to hazardous or conductive  materials and or environments  we cannot guarantee their operation     Accessory 36E       Table of Contents    INTRODUCTION 6osssscscstsecscssssseocsescossccsssoscssscescscossessanesasstsusasssessoscsesectnesassescesssssesassocoaseosdectesdssseasencseceoassussessesenasscteee 1  ACC 36E HARDWARE DESCRIPTION             scssssssssssssscssecscsscssssscssenesscsessnessesnessssssssesssenessessessessssosesessossossesses 3  CONDECION Saen ane aeeai a E EE EE EE E E EE e E STERE 3  Ple e A E A a A E e E AA 3  ITT RERNE ANET E E E E A N E E A E A A EN 3  P E a E E E T E E A E A A seaeeemneey 3  IBI e E E E E A A A AR 3  ACC 36E Layout Diagram with DB15 Option       sssessesesssssesesreesssresrestrtessrsteeresrerrssentessesteetesreetesrerrserteserrreserreeresret 3  ACC 36E Layout Diagram with Terminal Block Option    cece eee cee eseecseeceeeeeeeeeeeeeseeceeeeeeeeeesseeeseseaeeeeeaeenaes 4  E gt  POM UUM PO ts te cicceteasusessdesecesssgsucacicesneassdusags a seduce os isudeaiduasusd ghaeasa users dba yesgctica EEEE EER 4  Address Select DIP Switch SW Lissccsccssssusdassassesiceevecsdeseateasesedeesscsnesyvienstersaestaassevseducsp
15. 07842B   ICO  7 7 X  07842C X  07842D  X  07842E  X  07842F   ICO  10 10 X  078430 X  078431  X  078432  X  078433   ICO  11 11 X  078434 X  078435  X  078436  X  078437   IC1  2 18 X  079420 X  079421  X  079422  X  079423   IC1  3 19 X  079424 X  079425  X  079426  X  079427   IC1  6 22 X  079428 X  079429  X  07942A  X  07942B   C1  7 23 X  07942C X  07942D  X  07942E  X  07942F   C1  10 26 X  079430 X  079431  X  079432  X  079433   C1  11 27 X  079434 X  079435  X  079436  X  079437   IC2  2 34 X  078420 X  07A421  X  07A422  X  07A423   IC2  3 35 X  07A424 X  07A425  X  07A426  X  07A427   IC2  6 38 X  07A428 X  07A429  X  07A42A  X  07A42B   IC2  7 39 X  07A42C X  07A42D  X  07A42E  X  07A42F   IC2  10 42 X  07A430 X  07A431  X  07A432  X  07A433   IC2  11 43 X  07A434 X  07A435  X  07A436  X  07A437   IC3  2 50 X  07B420 X  07B421  X  07B422  X  07B423   IC3  3 51 X  07B424 X  07B425  X  07B426  X  07B427   IC3  6 54 X  07B428 X  07B429  X  07B42A  X  07B42B   IC3  7 55 X  07B42C X  07B42D  X  07B42E  X  07B42F   IC3  10 58 X  07B430 X  07B431  X  07B432  X  07B433   IC3  11 59 X  07B434 X  07B435  X  07B436  X  07B437                               To read the inputs from the MACRO Station of the first 24 bit I O node address of node 2  X  COAO    point an M variable to the Ultralite or Turbo Ultralite I O node registers to monitor the inputs     M980  gt X  COA0 0 24  M1980  gt X  078420 0  24     Ultralite node2 address    Turbo Ultralite MACRO ICO node 2 address   
16. 15  USING ACC 36E WITH UMAC MACRO   Q           cssssssscsssssssscssnsscescscssssssenessesnsssesssssesssssnsssssnescesssssesssssnessessosenees 17  Enabling MACRO ADC Transfer    ee ceesecsseesceeeeeceseeecesecaeeseeseesecsaeeeesscsaeceseecaeesecneeseesaeeeesaecatesaeeesaesaeeeeeneeeees 17  INIT OS Teana cP cbs satatatc chs ne beat aeeean sa E E E E E EE E A e EE 17  VET OS AET E A A E E E E E A R A R T  17  ATO SO E A E NA E E E E T E A A E E 17  MACRO Data Transfer Fundamentals             ccsceeseesesceseescesecseesecsceseceaeceeesecaeesecneeseesaeeeeaecateseeseeseesaseeeaesaeeeseneeeees 18  MACRO Station I O Node Transfer AAAreSSCS       ccccsccscseseesseseensesecuseuscuseesesecseesecaseseeacesesaeeceesesaeeaaesesensaeeneeas 18  PMAC2 Ultralite I O Node ACAreSS   S      ssccsccesccesceeseeesceseeesecsecunecasecsceeseesseesseseeeaeeeseceaeceaeeeaecaeeeaeeeaeeeseeeneeeeeesees 19  PMAC2 Turbo Ultralite I O Node Addresses       c ccsccesecececesceseeeseeeseesseeseeeseesesceuseceseceaeceaecaecaceeaeesseceeenseeeeseaees 19  MACRO I O NODE DATA TRANSFER            csccsscssssesssccsesscescscssscssenesscsneecesssssesesssnessssnessesssssossssessssssssssssessosenees 21  Automatic  Transfer sssri cs sics tase eaheasescbsedyepahin sacs  Taea Saee tate aaiae En R pubsordes san cdhesbesbeei eiee mg tbeabeodebedeaspeaseteceet 21  MIIS ae oae sta ast so a E att aievst tate e e a E ES cia Mees  21  INETT TB Meee Noi case ats aa ade es Ee sss dae E a E E et awceres 22  VLD TDs Soho E oe ae 
17. 2 M1004  gt X  C0AS5 8  12 M1004  gt X  078425 8 12  ADC5 Y  204 0 12 X  COA6 8 12 M1005  gt X  COA6 8  12 M1005  gt X  078426 8 12  ADC6 Y  205 0 12 X  COA7 8 12 M1006  gt X  C0A7 8  12 M1006  gt X  078427 8  12                            Now the M variables defined can be used to process the data in the PMAC Ultralite     M174    The MI174 variable specifies the registers used in A D transfer between one to two MACRO Nodes  It  will transfer the upper A Ds  three at a time  to three 16 bit nodes  The upper four bits are set to zero   The individual digits are specified as follows                                         Digit   Valid Values Description  1  1 2 Specifies the number of nodes to be used   2  0  Reserved for future use   3 6  COAI1  Node 2    COA5 MACRO Station X Address of MACRO I O node first of   Node 3    COA9  Node 6     three 16 bit registers   COAD  Node 7    COB1   Node 10    COB5  Node  11   7 0  Reserved for future use   8 0  Reserved for future use   9 12  200      205 MACRO Station Y A D Address  Bits 12     23           When this function is active  the MACRO Station copies values from the Y  Address specified in digits 9      12 into X  Address specified in digits 3   6  three at a time  up to a total of six  The move to the  specified node address assumes it to be the first X  memory 16 bit node register     MI74 Example   Transfer the A D converter channels 9 through 14 using MI74                                            1174    20C0A9000200  A
18. 5 8 12 S M4  gt X  78425 8 12 S8 schannel 3 node transfer  ADC4  M5  gt X S COA6 8 12 S M5  gt X  78426 8 12 S  channel 3 node transfer  ADC5  M6  gt X SCOA7 8 12 S M6  gt X  78427 8 12 S  channel 3 node transfer  ADC6  M7  gt X SCOA0 0 12 S M7  gt X  78420 0 12 S  channel 2 node transfer  ADC7  M8  gt X  C0A4 0 12 S M8  gt X  78424 0 12 S schannel 3 node transfer  ADC8  M9  gt X S COA9 8 12 S M9  gt X  78429 8 12 S  channel 6 node transfer  ADC9  M10  gt X SCOAA 8 12 S M10  gt X  7842A 8 12 S  channel 6 node transfer  ADC10  M11  gt X SCOAB 8 12 S M11  gt X  7842B 8 12 S schannel 6 node transfer  ADC11  M12  gt X SCOAD 8 12 8S M12  gt X  7842D 8 12 S schannel 7 node transfer  ADC12  M13  gt X SCOAE  8 12 S M13  gt X  7842E 8 12 S  channel 7 node transfer  ADC13  M14  gt X SCOAF 8 12 S M14  gt X  7842F 8 12 S    channel 7 node transfer  ADC14  M15  gt X SC0A8 0 12 S M15  gt X  78428 0 12 S    channel 6 node transfer  ADC15  M16  gt X SCOAC 0 12 S M16  gt X  7842C 0 12 S    channel 7 node transfer  ADC16                   Using ACC 36E with UMAC MACRO    27    Accessory 36E          28    Using ACC 36E with UMAC MACRO    Accessory 36E       ACC 36E PINOUTS          TB1  4 pin Terminal Block                                         Pin   Symbol Function   Description  1 GND Common   Digital Ground  2  5V Input External Supply  3  12V Input External Supply  4  12V Input External Supply                DB15 Breakout Option       J1     ADC1 through ADC4  DB15 Connector             
19. 7 Y  0206 0 12 ADC15 Y  0206 12 12  ADC8 Y  0207 0 12 ADC16 Y  0207 12 12    ACC 36E Servo Feedback Use Example for MACRO       Using 4 axis servo at the MACRO Station  the fourth axis closes the servo loop on A D converted value     The information is sent from ADC1 at MACRO Station  Y  0200 0 12  to the encoder conversion table  entry number four  MSO  MI123  at the station  Conversion table entry fifth  MSO  MI124  will be the  mask and the result  The information is sent to the Ultralite conversion table based on MSO  MI104                                      MI104 should contain the address of the fifth entry of the conversion table   14     MSO MI987 1  ENABLES A D INPUTS    MSO M1I988 0  unipolar inputs   MSO MI989 S 9800  board address on backplane   MSO M1I123  200200  feeding ANAIOO information into the end of  MS0 MI124  000FFF  MACRO station conversion table with parallel  MS0 MI104  14  Y word data  no filtering conversion method                           the conversion table result will be in X  14   of the MACRO station    This information will be sent to the Ultralite   s encoder conversion table  fourth encoder entry  as a  parallel word  By default  the position and velocity loop address should be correct        26 Using ACC 36E with UMAC MACRO    Accessory 36E       ACC 36E Configuration Example for Non Turbo and Turbo Ultralite                                        Base Address   8800   Using ADC Automatic Read Method  PMAC2 Ultralite   Turbo PMAC2 Ultra
20. If more I O registers are  available  then the three 16 bit registers could be used also  If more are needed  then the ADC 16 bit  registers for the current loop feedback could be used to transfer the information back to the Ultralite   when the axis node being used is not in PWM mode        Note    Remember  if there is only one master  Ultralite  in the system  then node 14 could  be used for I O transfer  two 24 bit registers and six 16 bit registers         The following example uses two nodes with multiple reads and with address dip switch settings set for   9800        M960  gt X S COA0 0 24  uses node 7 24 bit register  M961  gt X SCO0OA4 0 24  uses node 10 24 bit register  M72  gt X  0701 0 24 8  for non turbo Ultralite  ms0 mi975 SCCC   ms0 mil9 4   ms0 mi20 3   ms0 mi987 1   ms0 mi988 0   ms0 mi989 S 9800    define timer M72  for non turbo Ultralite   define timer 151   for turbo Ultralite             open plc10 clear                                                                                  cmd  ms0 121  780200E8COA0  ADC1 and ADC9   cmd  ms0  122  780201E8CO0OA4   ADC2 and ADC10  timer 100   8388608 110   non turbo Ultralite  while  timer gt 0  endwhile   P601 m960 amp SO000FFF P60 9 M960 amp SFFF000 S51000  P602 m961 amp S000FFF P610 M961  SFFF000  1000  cmd  ms0  121  780202E8COA0   ADC3 and ADC11   cmd  ms0  122  780203E8COA4   ADC4 and ADC12  timer 100   8388608 110   non turbo Ultralite  while  timer gt 0  endwhile   P603 M960 amp SOQO00FFF P611 M960 am
21. Input  Analog Input  15   12  ADC16 Input  Analog Input  16   13 Open N A   14 AGND Common   Ground      15  12V Output Negative supply      This common point is connected to the digital ground of the UMAC board     The supply voltages are for output from the board to supply the sensors  connected to ACC 36E  The drawn current should not exceed 0 5 A                 Terminal Block Option  Top        Connector TB1 Top     ADC1 through ADC4                                                             Pin     Symbol   Function   Description  1 ADC1  Input Analog Input  1  2 ADC1  Input Analog Input  1   3 ADC2  Input Analog Input  2  4 ADC2  Input Analog Input  2   5 ADC3  Input Analog Input  3  6 ADC3  Input Analog Input  3   7 ADC4  Input Analog Input  4  8 ADC4  Input Analog Input  4   9 NC NC  10 NC NC  11 AGND   Input Output   Common reference for ADC1 ADC4  12 AGND   Input Output   Common reference for ADC1 ADC4                   ACC 36E Pinouts    31    Accessory 36E       Connector TB2 Top     ADC5 through ADC8      6   ADC7    Input   AnalogInput 7  i    8   ADCs   Input  Analog Input 8      pO  pio   NC  NC  ef    Connector TB3 Top     Power Supply Outputs    Symbol   15V from UMAC power supply Fused  172 A     NC        15V from UMAC power supply Fused  1 2 A   AGND Input Output   Common reference for ADC1 ADC16 aa    Terminal Block Option  Bottom           Connector TB1 Bottom     ADC9 through ADC12                                                          Pin   Symbol
22. Station copies values from the Y  Address specified in digits 9    12 into X  Address specified in digits 3   6 one at a time  up to a total of two  The move to the specified  node address assumes it to be the X  memory of a 24 bit node register     MI175 Example   Transfer the A D converter channels 7  8  15  and 16 using MI75                                         I175    20C0A0000206  A D A D MACRO Node Ultralite Turbo Ultralite  Channel Location Address M Variable M Variable  ADC7 Y  206 0  12 X  COAO0 0  12 M1007  gt X  COAO 0 12 M1007  gt X  078420 0 12  ADC8 amp  Y  207 0  12 X  C0A4 0  12 M1008  gt X  C0A4  12 12 M1008  gt X  078424 0 12  ADC15 Y  206 12 12 X  COA0 12 12 M1015  gt X  COAO0 0 12 M1015  gt X  078420 12 12  ADC16 Y  207 12 12 X  C0A4 12 12 M1016  gt X  COB1 12 12 M1016  gt X  078424  12 12             Self Configured Data Transfer via the I O Nodes  The MACRO Station also transfers data back to the Ultralite from any MACRO station memory location   This function is useful for reading the 12 bit A D converters and transferring data from either Gate1B or   Gate 2B  which are not transferred automatically  or any other location for verification or troubleshooting    purposes                PMAC MACRO  IC Gate at  Ultralite or Turbo            MACRO Station  Gate 2B       Any MACRO Station  Memory Location       COAO  COA1  COA2  COA3  COA4  COA5  COA6  COA7  COA8 COA9  COAA  COAB  COAC COAD  COAE  COAF  C0B0 C0B1  COB2  COB3   COB4  COB5  COB6  COB7    The
23. anual ADC read method        Using ACC 36E with UMAC Turbo PMAC    Accessory 36E       Enabling Turbo UMAC ADC Transfer  Automatic ADC Read Method   Just like the standard Turbo PMAC2  the Turbo UMAC allows the use of the automatic copy feature to  simplify the reading of the A D converted data  Using this method to read the data allows the use of this  data for both data acquisition and closing servo loops  To enable the feature  15060  15061 15076  and  15081 15096 must be set as specified in the Turbo PMAC Software Reference manual  Up to 32 ADCs or  16 ADC pairs can be read in this fashion     The data from the ADC returns to the PMAC memory address as a 24 bit word  The lower 12 bits  contain ADCO through ADC7 and the upper 12 bits of this word will contain the data from channels       ADC8 through ADC15  The data is copied automatically as follows                                                                       I Variable   Low ADC Result High ADC Result ACC 36E  15061 Y  003400  ADC1  Y  003401  ADC9  lst  15062 Y  003402  ADC2  Y  003403  ADC10  lst  15063 Y  003404  ADC3  Y  003405  ADC11  lst  15064 Y  003406  ADC4  Y  003407  ADC12  lst  15065 Y  003408  ADC5  Y  003409  ADC13  lst  15066 Y  00340A  ADC6  Y  00340B  ADC14  lst  15067 Y  00340C  ADC7  Y  00340D  ADC15  lst  15068 Y  00340E  ADC8  Y  00340F  ADC16  lst  15069 Y  003410  ADC1  Y  003411  ADC9  2nd  15070 Y  003412  ADC2  Y  003413  ADC10  2nd  15071 Y  003414  ADC3  Y  003415  ADC11  2nd  15072 Y
24. ariables  M101  amp  M102 in the above example   The data written into the Conversion Channel Select M   variable determines both the input channel and the conversion type  unipolar Vs bipolar  as shown in the  following table                                                                                      Base Address   Selected Analog   Polarity   Single ended Range    Differential Range4  Input  Input Channels2  volts   volts    0 1 amp 9 Unipolar 0 to 20 0 to 10  1 2  amp  10 Unipolar 0 to 20 0 to 10  2 3  amp  11 Unipolar 0 to 20 0 to 10  3 4 amp 12 Unipolar 0 to 20 0 to 10  4 5  amp  13 Unipolar 0 to 20 0 to 10  5 6 amp  14 Unipolar 0 to 20 0 to 10  6 7  amp  15 Unipolar 0 to 20 0 to 10  7 8  amp  16 Unipolar 0 to 20 0 to 10  8 1 amp 9 Bipolar  10 to 10  5 to 5  9 2  amp  10 Bipolar  10 to 10  5 to 5  10 3  amp  11 Bipolar  10 to 10  5 to 5  11 4 amp  12 Bipolar  10 to 10  5 to 5  12 5  amp  13 Bipolar  10 to 10  5 to 5  13 6  amp  14 Bipolar  10 to 10  5 to 5  14 7  amp  15 Bipolar  10 to 10  5 to 5  15 8  amp  16 Bipolar  10 to 10  5 to 5   1The base address is selected using CS10   1   The value in this column would be the value given to M100   in the above example    2 Channels 9 to 16 are applicable only when Option 1 is installed    3 For single ended wiring  use ADCx input and AGND return    4 For differential wiring use ADCx and ADCx  inputs              14 Using ACC 36E with UMAC Turbo PMAC    Accessory 36E       Reading Data through PLC Programs for Manual
25. as 32  Connector TB2 Bottom     ADC13 through ADC16        cccsccesseesesseesseeseeesecesecesecaaecacecaceesceeeeeeeeeenaeeeeeseceaeenaeenaeente 33  Connector TB3 Bottom     Power Supply Outputs       csccccccsceesceeseeeeeeeecesecesecesecaecacecaceeaeeeseeeeeeeeaeeeeseseasenaeenaeenes 33  JCAL 20 Pin Header Connector  for ADC Calibration at Factory Only           ec eceseseseceseceeesecneeeecseeeeeesecaeeseeneeaees 33       ii Table of Contents    Accessory 36E       INTRODUCTION          UMAC   s Accessory 36E  ACC 36E  is an analog data acquisition board capable of converting 16 analog  input signals  The basic ACC 36E board is populated for 16 channels of analog input  The Analog to   Digital Converter  ADC  units used in ACC 36E are the MAX180 monolithic devices manufactured by  Maxim Integrated Products  These devices have 12 bit resolution with   1 2 LSB linearity specification   For more details on the ADC chips  refer to the data sheet published by the manufacturer     Document 19 3950  Rev 0  6 91   Complete  8 Channel  12 Bit Data Acquisition Systems  Maxim Integrated Products   120 San Gabriel Drive   Sunnyvale  CA 94086   Phone   408  737 7600    The Accessory 36E   s design features make it an ideal analog data acquisition board for monitoring and  collecting signals from a variety of sensors and transducers  By using simple M variable assignments  the  converted data may be used in PLC programs for monitoring and data collection purposes     The A D converter c
26. asnssoupdesabansabebitbsaseveesscspisnnanenues 4  UMAC Turbo Switch Settings        ccscsccsssescssecssesecsseesesssenssecscesscscscesecssescesasenesasensesecasessesesscesaesasenesaseneeascaseseeneeess 5  MACRO Station Switch Settings       ccccsccesscesecesecssecesessecesecscecaeeeseeeseeeseeeeeeeesesecesecesecaecsaecsaecaeeaesesaeeeeeeeeeeeeeeneesees 5  Power Supply Connection UB  i    s asssi seisseaeepesciseosiseseusnsaeseuscduessastsbenstessdasenysdaesediscbhosbnshisenealsnsoibsbbebsesevseduesnasniannedtee 6  Connection to Analog Signal          cc ccessesssecsseesceseeecesecseesecaeesecseesecsaecesssecaeeeeaecaeesecnessecsacenesaessesaeeeasaesaeeaesneeseseaeeess 6  Power Supply Requirement     2    0ic i scpecdeenasheseesedeceuovensezseneanctacosuptbuesosecsdspsnnobassodeebiosonsbtasesdeesdesptoebseretieetaconehttueneies 6  Power REQUITEMONIS emesan eiaa R E A EEE Soodeabasisisnbiedunnsodatesssessamedssie ssededengesdundedsessoancresneseswess ents 6  a E10  A a AEE T E A T E 6  Adjustment Pots s  in oerien seian Res ETE EE ea E RE a EE EE inori RE R EEEE EE nia 6  Hardware Address Limitations           csccecsssscsseeceecseesecseeeecacsceecsaeceessccaeesecseeseesaeeeeaecaeesecseeseesaeeesaesaeesesaeeeeenaeeess 6  UMAC Card TYPES sia aaee ienee a a asea ea eE e eS EE e aare aTe Ee E E eaae E E sea E 7  Chip Select Addresses oeiras enaena eeoa E a eee a araa aeae aae Aaaa Or ae SA o E aS r ES Nee aE rN Ai 7  Addressine Conflicts issn na R E R E R jeige dogloedbeteasstucte
27. atic  method using MACRO variables MI173  MI174  and MI J175 or transferring the data using the standard  I O transfer method                      lt         MACRO Station  Gate 2B    Ultralite  MACRO IC       ACC 6E or  ACC 1E with Option        MACRO Station I O Node Transfer Addresses                            Node s  Node 24 bit Node 16 bit  upper 16 bits   Transfer Addresses   Transfer Addresses   2 X  COA0 X  COA1  X  COA2  X  COA3  3 X  COA4 X  CO0A5  X  COA6  X  COA7  6 X  COA8 X  COA9  X  COAA  X  COAB  T X  C0AC X  COAD  X  COAE  X  COAF  10 X  COBO X  COBI1  X  COB2  X  COB3  11 X  C0B4 X  C0B5  X  C0B6  X  C0B7                               18 Using ACC 36E with UMAC MACRO    Accessory 36E       PMAC2 Ultralite I O Node Addresses                                                                                                                                  Node Node 24 bit Node 16 bit  upper 16 bits   Transfer Addresses   Transfer Addresses   2 X  COA0 X  COA1  X  COA2  X  COA3   3 X  COA4 X  COA5  X  COA6  X  COA7   6 X  COA8 X  COA9  X  COAA  X  COAB   7 X  COAC X  COAD  X  COAE  X  COAF   10 X  COBO X  COB1  X  COB2  X  COB3   11 X  COB4 X  COB5  X  COB6  X  COB7   PMAC2 Turbo Ultralite l O Node Addresses   MACRO User Node 24 bit Node 16 bit  upper 16 bits   IC Node Node Transfer Addresses   Transfer Addresses   ICO  2 2 X  078420 X  078421  X  078422  X  078423   ICO  3 3 X  078424 X  078425  X  078426  X  078427   ICO  6 6 X  078428 X  078429  X  07842A  X  
28. between one to two MACRO nodes  It  transfers the lower A Ds  three at a time  to three 16 bit nodes  The upper four bits are set to zero  The  individual digits are specified as follows           Digit   Valid Values Description    1 Specifies the number of nodes to be used   2 el  Reserved for future use     3 6  COA1  Node 2    COA5 MACRO Station X Address of MACRO I O node first of   Node 3    COA9  Node 6     three 16 bit registers     COAD  Node 7    C0B1   Node 10    COB5  Node  11   7  o    Reserved for future use   8  o    Reserved for future use   9 12  200      205 MACRO Station Y A D Address  Bits 00    11                          When this function is active  the MACRO Station copies values from the Y  Address specified in digits 9    12 into X  Address specified in digits 3     6  three at a time  up to a total of six  The move to the  specified node address assumes it to be the first X  memory 16 bit node register        Using ACC 36E with UMAC MACRO 21    Accessory 36E                                  MI73 Example    Transfer the first six A D converter channels  channels 1 6  using MI73    1173    20C0A1000200   A D A D MACRO Node Ultralite Turbo Ultralite  Channel Location Address M Var M Var   ADC1 Y  200 0 12 X  COA1 8 12 M1001  gt X  COA1 8 12 M1001  gt X  078421 8 12  ADC2 Y  201 0 12 X  CO0A2 8 12 M1002  gt X  COA2 8  12 M1002  gt X  078422 8 12  ADC3 Y  202 0 12 X  C0A3 8 12 M1003  gt X  C0A3 8  12 M1003  gt X  078423 8 12  ADC4 Y  203 0 12 X  C0A5 8 1
29. bles must be defined as  signed integers  For unipolar signals  0 to  20V single ended or 0 to  10V differential   define them as  unsigned  For example  if the base address is at Y  78C00  assuming CS 10 is used   then define the three  M variables as follows     For bipolar signals    M1000  gt Y  78C00 24  M variable for Conversion Channel Select  M1001  gt Y  78C00 0 12 s  M variable for Read Data for channels 1 to 8  M1002  gt Y  78c00 12 12 s  M variable for Read Data for channels 9 to 16                         For unipolar signals   M1000  gt Y  78c00 24  M variable for Conversion Channel Select   M1001  gt Y  78c00 0 12 u  M variable for Read Data for channels 1 to 8  M1002  gt Y  78C00 12 12 u  M variable for Read Data for channels 9 to 16                                        Note    The address Y  78C00 is the same for all three M variables  In addition  the third  M variable  in this case M1002  is needed only if the ACC 36E board has Option  1 installed           Using ACC 36E with UMAC Turbo PMAC 13    Accessory 36E       Data Acquisition for Manual Read Method       By writing into the ADC registers pointed to by Conversion Channel Select M variable  M1000 in the  previous example   the analog to digital conversion process is initialized  This process takes a few  microseconds  and because of the processing speed of Turbo  a small delay may be necessary after  initializing the ADC process  Afterwards  the converted data may be read through the Read Data M   v
30. cause the ACC 65E is a  general purpose I O Type B card  The only restriction in doing this is that the ACC 65E must be  considered the low byte addressed card and the ACC 11E must be jumpered to either the middle or high  bytes  jumper E6A E6H         Hardware Description 7    Accessory 36E          Hardware Description    Accessory 36E       USING ACC 36E WITH UMAC TURBO PMAC          Reading the analog data through ACC 36E is a simple procedure  There are two methods to use to read  the analog inputs  write PLCs that monitor the ACC 36E board or use UMAC   s automatic ADC register  read feature     The A D converter chips used on this accessory multiplex the data and therefore  UMAC must address  each channel to read them  The automatic ADC read simply addresses each ADC and copies the value  into a pre defined memory address  This copy is done every phase  110 usec by default  clock for two  ADC channels  Manually address the ADC chip and copy the values into memory locations using the  manual ADC read method     The automatic read feature in UMAC is a simple process which allows reading the analog signals as  feedback devices or for normal data acquisition by having M variables pointing to memory locations  which contain the information received by the automatic read feature  The following block diagram  shows the analog data flow for servo feedback and user programs     The following block diagram shows the information flow from ACC 36E to the user programs using the  m
31. ced to  078800    000400  S078CO00   15063 S000400  ADC2 and ADC10 are referenced to  078800  000400   078C00  15064 S000400  ADC3 and ADC11 are referenced to  078800  000400   078C00  15065 S000400  ADC4 and ADC12 are referenced to  078800  000400   078C00  I15066  000400  ADC5 and ADC13 are referenced to  078800  000400  S078CO00  15067  000400  ADC6 and ADC14 are referenced to  078800  000400   078C00  I5068  000400  ADC7 and ADC15 are referenced to  078800  000400  S078CO00  15081 S000000  ADCO unipolar ADC8 is unipolar   15082 S000001  ADC1 unipolar ADC9 is unipolar   T15083 S000002  ADC2 unipolar ADC10 is unipolar   T15084 S000003  ADC3 unipolar ADC11 is unipolar   T5085 S00000C  ADC4 bi polar ADC12 is bi polar   T5086 SO00000D  ADC5 bi polar ADC13 is bi polar   I15087  00000E  ADC6 bi polar ADC14 is bi polar   I15088  00000F  ADC7 bi polar ADC15 is bi polar   M5061  gt Y 5003400 12 12 u  channel 0 A to D as unipolar  M5062  gt Y 5003402 12 12 u  channel 1 A to D as unipolar  M5063  gt Y 5003404 12 12 u  channel 2 A to D as unipolar  M5064  gt Y 5003406 12 12 u  channel 3 A to D as unipolar  M5065  gt Y S003408 12 12 8s  channel 4 A to D as bipolar  M5066  gt Y S00340A 12 12 s  channel 5 A to D as bipolar  M5067  gt Y  00340C 12 12 s  channel 6 A to D as bipolar  M5068  gt Y  00340E 12 12 s  channel 7 A to D as bipolar  M5081  gt Y  003401 12 12 u  channel 8 A to D as unipolar  M5082  gt Y 5003403 12 12 u  channel 9 A to D as unipolar  M5083  gt Y 5003405 12 12 u  chann
32. e ADC transfer from  the address dip switch setting   For  example  if the switch settings specified  8800 as the address setting  set MI989 equal to  8800 to  properly read the ADC inputs     Example  At MACRO Station 0  transfer ADC channels 0  1  2  3  8  9  10  and 11 as unipolar and  channels 4  5  6  7  12  13  14  and 15 as bipolar from address setting  8800     MS0 MI987 1  enable ADC transfer   MSO MI988 SF0  ADC channels 0 1 2 3 8 9 10  and 11 as unipolar  and   channels 4 5 6 7 12 13 14  and 15 as bipolar  MSO MI989 S8800  address dip switch set to  8800          Using ACC 36E with UMAC MACRO 17    Accessory 36E       The data from the ADC will come back to the MACRO Station memory address as a 24 bit word  The  lower 12 bits will contain ADCO through ADC7 and the upper 12 bits of this word will contain the data  from channels ADC8 through ADC15  The data is copied automatically as follows                                                                                         Channel Location Channel Location  ADCO Y  0200 0 12 ADC8 Y  0200 12 12  ADC1 Y  0201 0 12 ADC9 Y  0201 12 12  ADC2 Y  0202 0 12 ADC10 Y  0202 12 12  ADC3 Y  0203 0 12 ADCI1 Y  0203 12 12  ADC4 Y  0204 0 12 ADC12 Y  0204 12 12  ADC5 Y  0205 0 12 ADC13 Y  0205 12 12  ADC6 Y  0206 0 12 ADC14 Y  0206 12 12  ADC7 Y  0207 0 12 ADCI15 Y  0207 12 12                      MACRO Data Transfer Fundamentals    For the ACC 36E  there are two methods to transfer the data back to the PMAC Ultralite  an autom
33. el 10 A to D as unipolar  M5084  gt Y S5003407 12 12 u  channel 11 A to D as unipolar  M5085  gt Y S5003409 12 12 s  channel 12 A to D as bipolar   Using ACC 36E with UMAC Turbo PMAC 11    Accessory 36E                                                    M5086  gt Y S00340B 12 12 s  channel 13 A to D as bipolar   M5087  gt Y S00340D 12 12 s  channel 14 A to D as bipolar   M5088  gt Y S00340F 12 12 s  channel 15 A to D as bipolar  Note    To start the automatic data transfer process  save and restart the 3U Turbo PMAC  and then read the M variables associated with the ADC channel     ACC 36E Servo Feedback Use Example for UMAC Turbo          To process the A D information in the encoder conversion table  do the following  For this example   ADCO will be processed from location Y  3400 12 12 in the ECT as a parallel unsigned entry  and it is  assumed that the ninth entry of the encoder conversion table  ECT  is available     18008  203400  read location Y  3400  ECT location  3509    IT8009 S00CO00C  read 12 bits shifted 12 bits from Y  3400  ECT   location  350A    The axis to be used is specified by x                 Set Ix03  350A  position feedback address  Set Ix04 S 350A  velocity feedback address    ACC 36E Power On Position for Turbo PMAC2          As of September 27  2000  Delta Tau firmware does not support upper 12 bit word power on position  reads  However  the position register can be forced to read the appropriate power on value using the  position offset register 
34. hese 12 turn pots are located at the top edge of the printed  circuit board  From left to right  R4 is for Channel 1  R8 is for channel 2  etc   and R36 is for channel 9   R40 is for channel 10  etc        R65 and R67 pots are the voltage reference adjustment pots for the two ADC chips  these are factory  preset and should not be readjusted   In addition  R66 and R68 are the digital offset pots for the two ADC  chips     Hardware Address Limitations   Some of the older UMAC I O accessories might create a hardware address limitation relative to the newer  series of UMAC high speed I O cards  The ACC 36E would be considered a newer high speed I O card   The new I O cards have four addresses per chip select  CS10  CS12  CS14  and CS16   This enables  these cards to have up to 16 different addresses  The ACC 9E  ACC 10E  ACC 11E  and ACC 12E all  have one address per chip select but also have the low byte  middle byte  and high byte type of  addressing scheme and allow for a maximum of twelve of these I O cards           6 Hardware Description    Accessory 36E                                                                         UMAC Card Types  UMAC Card Number of Category Maximum   Card Type  Addresses   of cards   ACC 9E   ACC 10E  ACC 11E  4 General IO 12 A   ACC 12E   ACC 65E  ACC 66E  ACC 67E  16 General IO 16 B   ACC 68E  ACC 14E   ACC 28E  ACC 36E  ACC 59E 16 ADC and DAC 16 B   ACC 53E  ACC 57E  ACC 58E 16 Feedback Devices 16 B   Chip Select Addresses   Chip UMAC Turbo 
35. hips used on this accessory multiplex the data and therefore PMAC must address  each channel to read them  Delta Tau has created automatic data transfers for both the 3U Turbo PMAC  and the MACRO Station  This automatic method reads addresses for each channel and places the  converted data automatically in memory locations accessible by the user     For UMAC Turbo Firmware 1 936 and above  16 channels may be read to specified UMAC memory  locations automatically  These registers can be monitored using M Variables or read into UMAC   s  encoder conversion table for servo feedback control        Introduction I    Accessory 36E          Introduction    Accessory 36E       ACC 36E HARDWARE DESCRIPTION          Connectors       Refer to the layout diagram in this section for the location of the connectors on the board     P1    This connector is used for interface to UMAC   s processor bus via the backplane of the 3U rack  The  signals that are brought in through this connector are buffered on board     J1 J4   Through these connectors  the analog signals are brought into ACC 36E  In addition  the     12 to 15V  power supplies are brought out  These power supplies may be used in situations where a separate supply  unit is not available for the analog transducers        Note    The two fuses limit the current drawn to 0 5A on each supply line        P3       Caution    Do not use this connector        This is a 20 pin header that is used for factory calibration     TB1    This is a
36. iestuiegeress 7  Type A and Type B Example 1  ACC 11E and ACC 36E     eeescessesscssesscssesseeseeseeseeasesecuceeeesseeeeeaeeseesecaaeeeenaseneeeees 7  Type A and Type B Example 2  ACC 11E and ACC O5E    ccccceccescssscssesecnesseeseescesecasesecueeeeceseeeceaecaeesecaaeeeseaseneeeees 7  USING ACC 36E WITH UMAC TURBO PMAC           csssssssssssssscescscssscssssessssnsesesssssesessensssssnescesseesesessssessssnssseseoes 9  Enabling Turbo UMAC ADC Transfer  Automatic ADC Read Method             cccceeceesceeeceseceseceseceeeeeeeeseeeeeeeeeaes 10  3U Turbo PMAC Data Acquisition Example    ceceeecsseeccesecceeceeeeceeeecsaeceeesecaeesecnecaeeaecneeseesaeeeesaecateaeeaeeatenee 11  ACC 36E Servo Feedback Use Example for UMAC Turb0         cece ecesesssesscneeeeceseeecaecesesecaeesecnaeeeesaeeeeeaeaeeneeaeens 12  ACC 36E Power On Position for Turbo PMAC2 0 0    eecsesccseeeecsseseessecseesecneeseesaeecesaecatesecaeesesnaeeesaeeaeaesaeeseeneens 12  Manual ADC Read Method with UMAC Turbo oo    eee ceeecesecesecsseceecaeecaeeeaeseeeeeeeeeeeseeesecsaecsaeenaesaesaeeeaeeeaes 13  M Variable Definitions for Manual Read Method    0      cceeeeeeesceeecsseeeeesecseeseceeeeecsaeseeeeesaeeecaecaeeeeeneesaesaeeeeeneeeees 13  Data Acquisition for Manual Read Method 0 0 0    eesscssseceseseeseeeecseeecaecaeesecaeesecsaenesaecasesecaeesesnaseeesaeeeeeaesateseeneens 14  Reading Data through PLC Programs for Manual Read Method  0         cccecsecessesceseeseeseceeeeceeeeeseeneseecaeeeteeeeaeeeaees 
37. lite Description  1995  30 16840  4030 Master and Ring Control Setup  1996 SFCFFF 16841 SFCFFF Node Activation Control  11000 S0033 170  0033 Enables nodes for automatic copying  11002  0033 171  0033 Node Protocol Type  11003 32 178 32 Master slave communications timeout   179 32 Master master communications timeout   11001 100 I80 100 Ring Check Period  11004 2 181 2 maximum Sync Packet count  11005 2 182 2 minimum Sync Packet count                               pPRARKERKEKRAAAKEKAAUCOMALIC                                                                               T70 transfer methods        XK KKKKKKKK KK KKK                                                                                                                   ms0O m119 4  enable node transfer   ms0 m1975 SCCC  enable I O channels   ms0 mI987 1  enable automatic copy of ADC registers   ms0 mI988 SFF  sets either bipolar unipolar  this example   bipolar   ms0 m1I989 S8800  sets the copying from specified incoming ADC address   ms0O mI173    20C0A1000200  sets up the nodes 2 3 transfer to the   Ultralite   ms0O mI175   S20COQA0000206  sets up the nodes 10 11 transfer to the   Ultralite   M Variables for the Ultralite   PMAC2 Ultralite Turbo PMAC2 Ultralite Description   M1  gt X SCOA1 8 12 S M1  gt X  78421 8 12 8  channel 2 node transfer  ADC1  M2  gt X SCOA2 8 12 S M2  gt X  78422 8 12 8S  channel 2 node transfer  ADC2  M3  gt X  C0A3 8 12 S M3  gt X  78423 8 12 S  channel 2 node transfer  ADC3  M4  gt X SCOA
38. m zero through F  The channels can be set as either unipolar  or bipolar but can only be set in pairs  The group pairs for the channels are listed below                 Channel Pairs    ADCO  amp  ADC8  ADCI  amp  ADC9  ADC2  amp  ADC10  ADC3  amp  ADC11       ADC4  amp  ADC12  ADCS  amp  ADC13  ADC6  amp  ADC14  ADC7  amp  ADCI15                For the ACC 36E with a Turbo UMAC  the n value determines which of the inputs ANAIO0 to ANAIO7  and ANA8 to ANA15 and how it is to be converted  according to the following formulas     n   ANAI       n   ANAT  8         r       OV to  20V unipolar input for channels n and n 8   10V to  10V bipolar input for channels n and n 8    For example  to read ANAIO2 from ACC 36E and ANAI10 from ACC 36E option 1  both as    10V  inputs  into the first slot in the ring  then n would be set to  A  10   so 15081 would be set to  00000A     3U Turbo PMAC Data Acquisition Example       Set up the Turbo UMAC to read channels 0  1  2  3  8  9  10  and 11 as unipolar converted signals and  read channels 5  6  7  8  12  13  14  and 15 as bipolar signals  Assume the switch settings are set for a  base address of  078C00   78800    400                                                                                                                                                                                       I5060 8  copy 8 ADC pairs   15061  S000400 DCO and ADC8 are referenced to  078800   S 000400   078C00   I5062 S000400  ADC1 and ADC9 are referen
39. od copies the ADC channels automatically from the ACC 36E to MACRO Station memory  locations  The following sections will describe both of these topics in detail              Note    The MACRO Station must have firmware version 1 15 or greater to read the ADCs  from the ACC 36E     Enabling MACRO ADC Transfer   To enable the MACRO ADC transfer  properly set three MI variables  M1987  MI988  and MI989  at the  MACRO Station  These three variables tell the MACRO Station to copy the multiplexed data to pre set  memory locations in the MACRO Station     MI987  When the MI987 variable is set to 1  it will enable the automatic ADC transfer  If MI987 is set to zero   the ADC transfer will not take place     MI988   The MI988 variable controls whether the optional on board A D converters are set up for unipolar  0 to    20V  or bipolar   10 to  10V  inputs  M1988 consists of eight bits  each bit controls the setup of a pair  of A D converters  A value of 0 in the bit sets up the A D converters for unipolar inputs  a value of 1 in  the bits sets up the A D converters for bipolar inputs           The following table shows which bits of MI988 control which A D converters                                   MI998 Bit   Hex Bit 1  ADC 2    ADC  Value   0 1 ANAIO0 ANAI08  1 2 ANAIO1 ANAI09  2 4 ANAIO2 ANATIO  3 8 ANAIO03 ANATI1  4 10 ANAI04 ANATI2  5 20 ANAIO5 ANATI3  6 40 ANAI06 ANAITI4  7 80 ANAIO7 ANATI5                               MI989   MI989 specifies the memory location to start th
40. p SFFF000 S51000  P604 M961 amp S000FFF P612 M961 amp   SFFF000  1000  cmd  ms0  121  780204E8COA0   ADC5 and ADC13   cmd  ms0  122  780205E8COA4   ADC6 and ADC14  timer 100   8388608 110   non turbo Ultralite  while  timer gt 0  endwhile   P605 M960 amp SO00FFF P613 M960 amp SFFF000 S1000  P606 M961 amp  000FFF P614 M961 amp SFFF000 S51000  cmd  ms0 121  780206E8COA0   ADC7 and ADC15   cmd  ms0  122  780207E8COA4   ADC8 and ADC16                      Using ACC 36E with UMAC MACRO    25    Accessory 36E          timer 100   8388608 110   while  timer gt 0  endwhile          P607 M960 amp SO00FFF P615 M960 amp SFFF000  1000  P608 M961 amp S000FFF P615 M961 amp SFFF000  1000  Close    Using ACC 36E for Data Acquisition for MACRO       This example uses the I O transfer method  This method transfers data from any MACRO station  memory location to the I O transfer node  This could be done on a bit by bit basis or as a 24 bit transfer   For ACC 36E  the ADC locations are found at locations Y  0200 through Y  0207  These 24 bit  registers contain the information for two channels of data  The lower 12 bits contain ADC value for  channel 1 8 and the upper 12 bits contains the ADC value for channels 9 16                                               ADC1     0200  0 12 ADC9 Y  0200 12 12  ADC2     0201 0 12 ADC10 Y  0201 12 12  ADC3 Y  0202 0 12 ADC11 Y  0202 12 12  ADC4 Y  0203 0 12 ADC12 Y  0203 12 12  ADC5 Y  0204 0 12 ADC13 Y  0204 12 12  ADC6 Y  0205 0 12 ADC14 Y  0205 12 12  ADC
41. ply voltages are for output from the board to supply the sensors  connected to ACC 36E  The drawn current should not exceed 0 5A              J3     ADC9 through ADC12  DB15 Connector                                                        Pin   Symbol Function   Description   1  ADC9 Input  Analog Input  9  2  ADC10 Input  Analog Input  10  3  ADC11 Input  Analog Input  11  4  ADC12 Input  Analog Input  12  5 Open N A   6 AGND Common   Ground    7  12V Output   Positive supply      8 AGND Common   Ground    9  ADC9 Input  Analog Input  9  10  ADC10 Input  Analog Input  10  11  ADC11 Input  Analog Input  11  12  ADC12 Input  Analog Input  12  13 Open N A  14 AGND Common   Ground     15  12V Output Negative supply                          This common point is connected to the digital ground of the UMAC board     xK  The supply voltages are for output from the board to supply the sensors  connected to ACC 36E  The drawn current should not exceed 0 5A                    30    ACC 36E Pinouts    Accessory 36E       J4     ADC13 through ADC16  DB15 Connector                                                                          Pin   Symbol Function   Description   1  ADC13 Input  Analog Input  13   2  ADC14 Input  Analog Input  14   3  ADC15 Input  Analog Input  15   4  ADC16 Input  Analog Input  16   3 Open N A   6 AGND Common   Ground    7  12V Output Positive supply     8 AGND Common   Ground    9  ADC13 Input  Analog Input  13   10  ADC14 Input  Analog Input  14   11  ADC15 
42. power on position offset to m5062 for mtr2  M364 m5063 32 1i108  set power on position offset to m5063 for mtr3  M464 m5064 32 1i108  set power on position offset to m5064 for mtr4       12 Using ACC 36E with UMAC Turbo PMAC    Accessory 36E                M564 m5065 32 1i108  set power on position offset to m5065 for mtr5  M664 m5066 32 1108  set power on position offset to m5066 for mtr    M764 m5067 32 1i108  set power on position offset to m5067 for mtr7  M8 64 m5068 32 1i108  set power on position offset to m5068 for mtr8                   Disable plc25  close    Manual ADC Read Method with UMAC Turbo       When using the manual ADC read method  address the ADC channel  and then copy the contents of the  ADC register into a UMAC memory location  usually an M variable   This can be accomplished using a  PLC  If writing a PLC program to monitor the data  first define up to three M variables for each ACC   36E board  Once the M variables have been defined  UMAC   s PLC programs may be used to initialize  the analog to digital conversion process     M Variable Definitions for Manual Read Method       Define two M variables for an eight channel ACC 36E and three M variables for an ACC 36E with its  Option 1  A 24 bit wide unsigned integer M variable must be pointed to the base address of the board   Next define two more M variables each 12 bits wide and pointed to the same base address  For bipolar  signals   10 to  10V single ended and  5V to  5V differential   these M varia
43. ssc csnseessasdavicsecessss segs nia o e a E boateusecuicsesaysacevdsiacds ued CE ERETO E ESEE 29  JI     ADC  through ADC4  DB15 Connector    esccceeccessseceseessecsenceenseceseeeesseceuceecsseceeaeeesaecseneeeaaeceeeeeeaaeceeeeeenaeeees 29  J2     ADCS through ADC8  DB15 Connector  o   c cccccesccesecssceseeseesseesseeseesseescescenseeesecaeceaecaaecaaecaeeeseeeeeeeneeereeaees 30  J3     ADC9 through ADC12  DB15 Connector      eeccceesccessceesseceeneeenseceseeeesseceeneeeaseceeeeeesaeceeneeeaaeceeeeeeaaeceeeeeeaaeeeee 30  J4  ADCI3 through ADC16  DBIS Connector  o   ccceescccessceessecesceensecesneeesseceeneeeaaeceseeeesaeceeneeeaaeceeeeeesaeceeeeeenaeeeee 31  Terminal Block Option  lOp  isi siceiscs secs socstesoeerseostasuss nennen in aiino e a n E aE ai o era iS 31  Connector TBI Top     ADC  through ADC4    ososeesnsseseessseessessesesreeresrsrensrsressesesnresesreesesreeseseesesrentssreeressesrenesee 31  Connector TB2 Top     ADCS through ADCS      ccsccescesseesseesseeeeeseeseeeeecesecsecuaecaaecaaecaeeeseeeseeeaeeseeeaeeeseeeeeeeaecnaeenae 32  Connector TB3 Top     Power Supply Outputs        1   sccssccsseesseessesseeseeesecesecesecsecaaecaeecaaeeseeeseeeaeeseeeseeeeceeecnaeeaeenae 32  Terminal Block Option  Bottom               cccecceeccesecesecesecececseecseeeneeceeseeesecaeceecsaeeaecnaecaaecaeecaeseneseneseeeeeeeneeeeeeeeaees 32  Connector TBI Bottom     ADC9 through ADC12     eececccscesseesseeseesseeescesecescesecesecaecaecaecaeecaeeeaeeeaeeeseneneneeeeaeen
44. tas cols at ovee elects bate A E A E tees nceteatast shee aaa 23  Self Configured Data Transfer via the I O NO S        sssssssssesecssesscuseesenseescseceeesecaceecuaeecesaeeeessecaeeaceaeseseaseneeaees 23  VET ON A Ptaces einen sts E T aetbasgncte E E E E ce Mares 24  MI21 through MIS         cccscccseesseesceeseneccesecesecsecuncsecuseceaecssecssecseeeseesceessesseesecseceaecaeceaecaeeseseeceeeeneneeeeeeaeeeaeenes 24  ACC 36E Self Configured Data Acquisition Example for MACRO ou    eeeeeeceseeeceseceeesesaeceeesecaeeseeneeeessaeeeeaeens 25       Table of Contents i    Accessory 36E       Using ACC 36E for Data Acquisition for MACRO    cc ceesessssecseeeeceseseceaeeeeesecaeeseesecaeeseeneeeesaeceesaecaeeaesnaeeeeeaees 26  ACC 36E Servo Feedback Use Example for MACRO    cecesessssesssesecseeeecseeecaececesecaeesesneesecsaeeeeaecaesaeenaeaeenaees 26  ACC 36E Configuration Example for Non Turbo and Turbo Ultralite    ec ee ceeeeseseeeeceeeeeceaeeeessecaeeeeneneeeeaees 27  M Variables for the Ultralite     ccecccscssccssssssesesscssecssesecseeeesseeseeseeseesecaeesecsseesesaeeseesecaeeseesaeecesaeeaeeaecaeesessaeeeseaseaeegs 27  ACC 36E  PINOUT wsssisssscisccssssessccsacicccscsisssessesacssasacssesstosassoossosvesebasssebsssessseniseseeseossebavascseausacanasadsecisasaesebsscdavarassoea 29  TB1  4 pin Terminal BIOCK        0 cee ceccceseceesceceeeeesseceeeeeenaeceeeeesaeceeeeecsaecesneeesaecesneessaeceeeseaaeceeeeeaaeceeesenaeceeneeenaeeees 29  DB15 Break outiO ptosis sscideis 
45. tation to which the data is to be copied  In each set of six hex digits  the last four hex digits  specify the actual address  The first two digits  eight bits  specify what portion of the address is to be  used     The following table shows the 2 digit hex format codes and the portions of the address that each one  selects                                                                 Code X or Y Bit Width   Bit Range   Notes    40 Y 8 0 7    48 Y 8 8 15    50 Y 8 16 23    54 Y 12 0 11 Lower 12 bit ADC registers    60 Y 12 12 23 Upper 12 bit ADC registers    64 Y 16 0 15    6C Y 16 8 23 16 bit MACRO Servo Node Registers    78 Y 24 0 23 24 bit MACRO Servo Node Registers   BO X 8 0 7    B8 X 8 8 15    CO X 8 16 23    C4 X 12 0 11    D0 X 12 12 23    D4 X 16 0 15    DC X 16 8 23 16 bit MACRO I O Node Registers   E8 X 24 0 23 24 bit MACRO I O Node Registers                            Example   MI21  780200E8C0A0  copies 24 bit data from Station address Y  0200 to X  C0A0             24 Using ACC 36E with UMAC MACRO          Accessory 36E       ACC 36E Self Configured Data Acquisition Example for MACRO       If ACC 36E is used in conjunction with I O accessories ACC 3E  ACC 9E  ACC 10E  ACC 12E  or  ACC 13E  use the three 16 bit read write method  48 bit per node  of I O transfer  This will free up the  24 bit I O registers for the 16 channels of A D  The 24 bit I O registers could then be mapped back 12  bits at a time  and the six 24 bit registers can be used to read 12 ADCs  
46. us backplane  both the  5V supply and the   15V supplies are brought  in through the bus  For standalone operations  the terminal block TB1 should be used  The power supply  requirements are approximately 100mA for each of the three supplies     Connection to Analog Signal       The analog signals are brought in from J1 through J4  For a single ended connection  using ADCx and  GND   the voltage range should be from zero to 20V for unipolar signals and  10V to  10V for bipolar  signals  For a differential connection  using ADCx and ADCx    the voltage range should be between 0  to 10V for unipolar signals and  5V to 5V for bipolar signals  In addition  the   15V power supply is  brought out through this connector        Note    The two fuses limit the current drawn to 0 5A on each supply line  For single   ended inputs  ground the complimentary signals        Power Supply Requirements       ACC 36E draws approximately 100mA for each of its three supply voltages   12V   12V and  5V    Power Requirements                                           5V 12V  12V Other  24V  etc    100mA 100mA 100mA N A  Note    Since the analog inputs are not optically isolated on this board  the  12V supply to  this board should not be from the same supply that is used for the UMAC   s  optically isolated analog outputs  DACs      ACC 36E Fuse             Manufacturer   Specification  Little Fuse 125V   0 5A                            Adjustment Pots    There are 16 analog offset adjustment pots  T
    
Download Pdf Manuals
 
 
    
Related Search
    
Related Contents
UK Clinical Product List - bioMérieux United Kingdom & Ireland  My Bridge Bidding and Scoring Pad User Manual V1.1  SCA3000 Demonstrator User Manual  ~上手に節電するために - 日立の家電品    Copyright © All rights reserved. 
   Failed to retrieve file