Home
SERVICE MANUAL 300 WATT SINGLE INPUT ELECTRONIC
Contents
1.
2. 2333 vss FRE PAE 7117222777 Hoo H 556 3 Lu xn pe bo Da es ba 551 2 m TT T NEAT ET T 999 e ett SA 7 7 0555 T 566655 css IE Q 0044442220 8 emere S O of n on cien ala o e IRS1sl o 911 p556 R51 i e 66441 66 31 ool o 00000000 551 Sou 9 9990 Sao diio Sel 055 gt 271 5 0503 0558 1555 inne feo 9312 24 to Joy lelo a 7551 EE elle Hoo 4 elei vii oooo f 00000000 O tj unin 5504 lalate 55e 00000000 9 0 ooooooooon ALLY ooo 29 pid 97 010 sisi 0305
3. 51 General Froubleshooting esee 51 Transient Generator Erequency 5 d d ea ia reu p 51 Togele orPulse Modes t ate eed cut 51 Trigger Circuit Troubleshooting Figure 3 8 sese te tee etu be de eee 53 Overcurrent Circuit Troubleshooting Figure 3 9 sss ener enne nene nennen nennen nnns 55 Overpower Circuit Troubleshooting Figure 3 10 esses eere ener nnns 56 Post Repair Calibration e eee de Eee cult ie cents adv RS 57 EEPROM ere eee vite e e c i tee te et 57 Disassembly Procedures eene ed APER I E NC Ree 58 AC Receptacle statements mtt om tides a IR 58 M teat 58 Front Pane eo ttt dT do ve RUE D adel alana eet rep ie uet ec ee 59 Keypad eos eed datei dentes o meritos sulco sa aet adie d Mn aN Meth of 59 LCD Display and octo tea Genie E I ORE Ie e RR Nee e 59 Line E 59 PG Bo td e aS Ce 60 2 ione rre eae ae mtt rre art ee 60 Principles OF Operation 61 Introdu
4. eae vnd 7 S Seheniallos P E REIR e Secondary Interface ooo ever hie itte ts ense restat dive rese 26 61 Selflest societe tU V CI ON me eint ntium re 27 Signature analysls x sk eerte m EP e quet tiet a RENE 30 SIE W CIRCUITS eu ete eee I LE AM 14 45 63 NIE RED M 61 T 56 64 Testequipment m RR 9 21 PEE ee 31 HEIC 27 EI 10 11 32 TTransient ciITeuit Ree e Ca utente eonim 14 51 Troubleshooting S coe Lo en eA eee e Oe aeu MES 21 ERE RU qu pe phia ni D 64 U Unregulated ans sete Re RE AN Ro Dente tan Ra ata ete ee SAR AM 64 V erento e M M E ed 9 94 Agilent Sales and Support Office For more information about Agilent Technologies test and measurement products applications services and for a current sales office listing visit our web site http www agilent com find tmdir You can also contact one of the following centers and ask for a test and measurement sales representative U
5. d O0 0100 0 325 000000000000000000090 R4 0000000000 T 20 9 0505 0311 9380 y e E2i8 e e fR22 i e 0000000000 e R2139 I 4 S 3 2 TT 2902900990 V Gees Ss a U310 418 0204 J553 al 00900000 5555055 E 2 5 IS 99990900000 o 55 555 5 559555955599555 1 4 0313 00000000 66 5 ge possess RS 2510 o TP201 um o 0000000 0TIR349 55555000 0 90000000 9 9 6 lolx 900000000 45 n e Jcs2iLe 313 ps ee gg 9201 99 9 557 15464 2103126 000000000 j 0000000000 ele 03 Oleg Xs in in 9314 9 0306 HD 051 0HE Jd Xo 4 db Otel le 0000000 1 558 9 ej 322 302 201 9201 gt 9 9 e pRz ge CURSE 5301 9 e0306 4 348 Riser o 3 2 318 R209 TB201 e C23 o oe R241 e C331 9900
6. RCK LOW C312 1000 R309 047 15u 50 R308 AV 75K 45301 YR302 SPCLR 1 SPCLR ig CLR 55 a CS6 SDC0 5000 18 ACLR lt SDC2 50 3 DAC_REF TRANS_EN 45 50 42 P_TRIG PULSE_EN SDC6 Sen SD 6 13 STATZEN 5002 sper FSEL2 EDI EE TRIG_EN 11 VOLT_FLT PORT 5 C325 0 1 560 16 0505 LCLR RO 00113 5000 UNRES 1290 10 _ 5061 at 61 S 5062 7 se 80632 2 ss STAT_EN EN 14044 8 Y 50 0 7 TOGGLE PULSE_EN ia Kal sjaj HIGH FSELO FSEL1 FSEL2 TOGGLE TRANS_EN TRANS_EN 50 1 51 Z 5 sa SD 0 7 5 55 SA_EN XTP30 1 lt 7 30 2 START TRANS_EN 30 3 STOP 30 4 SKP lt TP30 5 5 5 lt 50 6 5 STX XTP30 7 0 18 15U 50 51 CS3 CS4 RCK_LOW RCK HI SPCLR 8 Figure 6 1 6060B 6063B Electronic Load Schematic Sheet 3 of 6 e 1 cso H L UXFER TRIG_EN gt SPCLR C gt 54 SDBCO 7
7. 14 CC Mod PARI aom ERE Ea Ee EM tain edite Pod teaser er pter T aoo 15 C Mode Powetr ie bey ute et EUER bs E then tUe uc 15 Troubleshooting 21 Introduction ome Oe Rete adea 21 Test Equipment Required eR CREE DEDERE SER EO tab gay m E e ERE d 21 Overall Troubleshooting Procedures her RE eR RP Bacco Ne 21 Sequence and Error Messages eise an e eR e REO RR 22 Primary Interface wey 22 Secondary Interface eR REINO nie RO te A E INE eie Ee nieto 26 Test Points ono cio rd AS genie et Pe tei oe pH AMT pete sto Pp tribue 27 Signature Analysis vcs cete eei cede e e RE e e Pe ede e eat ede vie de a e RR ete tele 31 Firmware tre n TR DEBET 31 Test Header Jumper Positioris 32 Test Setup for Signature Analysts Ao aac ite aoa de 33 DAC Circuits Troubleshooting Figure 3 3 o esae en e RU a 43 Slew Circuit Troubleshooting Figure 3 4 45 CC CV CONTROL CIRCUIT TROUBLESHOOTING Figure 3 5 enne nennen 46 Input Power Stages Troubleshooting Figure 3 6 50 Transient Generator Troubleshooting Figure 3 7
8. Report No Date Model Serial No Agilent 6063B Options Firmware Rev Special Notes Customer Tested by Ambient temperature Relative humidity Line frequency Hz nominal Description AC Source DC Voltmeter Oscilloscope Power Source Power Source Current Probe Current Shunt Test Equipment Used Model No Agilent 3458 0 Agilent 54504A Agilent 6032A Agilent 6035A Guildline 9230 15 Trace No Cal Due Date 19 PERFORMANCE TEST RECORD Agilent 6063B ELECTRONIC LOAD Page 2 of 2 Model Agilent 6063B Report No Date Test Description Minimum Maximum Measurement Specification Specification Uncertainty CONSTANT CURRENT MODE TESTS 10 Ampere Range Programming and Readback High Current 10A Front Panel Display Low Current 1A Front Panel Display 1 Ampere Range Programming and Readback High Current 1A Front Panel Display Low Current 0 1A Front Panel Display Voltage Programming and Readback High Voltage 240V Front Panel Display Low Voltage 3V Front Panel Display Low Resistance Range Resistance 24Q Resistance 1Q Middle Resistance Range Resistance 500Q Resistance 24Q High Resistance Range Resistance 2000Q Resistance 240Q Fast Slew Transient Slew Rate 0 08 15 Slew Rate 0 0042 15 Current 10A 20 9 975 Aout 0 022 0 9885 Aour 0 011 0
9. 555 5 5 5 6555 14 7K 955 5 4 R553 6 49K J554 2 RED 554 1 J554 3 BLUE 10U REF 7501 11 9551 16 SPCLR 0501 16 T8 50 0501 15 14K 15 OPTO_PCLR C503 e 0 1 500 PCLR lt 2 1 Figure 6 1 6060B 6063B Electronic Load Schematic Sheet 1 of 6 TRIG OUT 59 5 6 R215 4 5 1K 1 1 5 2 TRIG 9210 R214 R214 lt R214 R204 2 1 244 10K 10K OPTO_PCLR CSP4 6 TRIG 1K 18 8 0215 16 14 J203 10 Dcso 12 1205 13 5 V 19 TLRST 04 9 Deve TRIGLTCH 065 7 Je05 11 14645 R203 5 lt J203 7 lt J203 9 1K lt J203 8 C203 lt J203 12 1203 1 50 TU Jens 25 TP201 1 50 PCLR J203 4 TP201 2 TP201 9 CSP0 9209
10. NO 5 s t H31N3 310400 0393 5357109 319490 U31N3 NO asd 8 ZEN 35 319501 2 0 06 ZN 0 Figure 3 7 Transient Generator Troubleshooting 52 During the pauses use a logic probe to make the following checks Toggle Mode Pulse Mode U313 3 LO U313 4 HI U312 3 LO U313 14 toggling U316 9 11 14 LO U315 13 toggling U316 12 HI After the pause press Continue to generate the next trigger CHECKOUT TABLE RESULT use scope use logic probe FRONT PANEL TRANS_EN U316 U313 U313 5 8 ACTION signal 11 12 2 12 15 11 16 19 Negative Negative pulse pulse every every 0 5ms 0 01ms Negative Negative Positive pulse pulse pulse every every 105 when 0 5ms TRAN ON pressed 100Hzsq Negative Negative Negative Positive Positive wave pulse pulse pulse pulse pulse every 5ms every when when when 100 5 FREQ and and and ENTER ENTER ENTER Negative pulse when TRAN ON pressed Negative pulse when FREQ and ENTER pressed pressed pressed Negative Negative pulse pulse every 5ms every 100us Trigger Circuit Troubleshooting Figure 3 8 pressed The Electronic Load can receive an internal trigger command via the GP IB or an external trigger signal IN via connector TB201 Either
11. TURNON UNREG IPROG eil gt 150 C11 5 R26 5a 51 1K 51 1K db y 047 500 Qi 500 Qi Qi Diti R17 8 01 4072 R18 8 01 MC24022P R20 5 MC34072P pe hata F1 IPN R10 F2 R11 7 R12 4 m 8 25K 1 2 8 250 e 5 V L 21 5 062A L 21 5 062A 21 5 062A S12 C71 4 C72 C74 Boe DID wx P err bed m 478 P 1N645 E 1N645 1N645 F12 ale R104 1000 14 3 O C15 3 33K cop 150 Ns 509 15 lt 64 R33 R34 R36 Re 10K 10K 10K 330PF 1000 150 159 14 R29 C57 C13 R30 R31 R32 51 1 51 1K 51 1K od 51 1K 0 1 500 ple 02 015 50 08 Ret 8105 MC34072P Ree 8105 34072 R23 894 3 ING R47 R13 5 2 R14 F6 08997 Ris A 8 25K 1 1 8 25K 8 25K L 0 21 5 062A 5 5 56 21 5 062A 4 C75 noe ie R168 025 a 1M 14645 1M 22 14645 1000 1000 gt 14 1800PF 103 Fia 1000 eis 18 047 509 15v R39 R6 050 AS IN BUS v 7022 MON 50UAC HEATSINK 11 i E5090 354 c MOUNTING IMON R77 HOLES E513 5 014 2 2 e 1 Figure 6 1 6060B 6063B Electronic Load Schematic Sheet 6 of 6 2 27 45 40 39 11 10 8 9 14 13 21 22 25 23 26 20 12 17 18 IMON ADJUST
12. 125W RESISTOR 5 11K 1 125W RESISTOR 0 CWM RESISTOR 14K 1 125W RESISTOR 2 15 1 125W RESISTOR 51 1K 1 125W RESISTOR 0 CWM RESISTOR 150K 0 1 125W RESISTOR 60K 0 1 125W RESISTOR 300K 0 1 125W RESISTOR 10K 0 1 125W RESISTOR 12 5K 0 1 125W RESISTOR 10K 0 1 125W RESISTOR 12 5K 0 1 125W RESISTOR 1 78K 1 125W RESISTOR 42 2K 1 125W RESISTOR 45 3K 1 125W RESISTOR 47 5K 1 125W RESISTOR 45 3K 1 125W RESISTOR 576 1 125W RESISTOR 51 1K 1 125W RESISTOR 36 5K 1 125W RESISTOR 5 11K 1 125W RESISTOR 2 15K 1 125W RESISTOR 1 5K 41 125W RESISTOR 20K 0 1 125W RESISTOR 2 222K 0 1 1W RESISTOR 5 11 1 125W 69 Table 5 3 Agilent 6060B 6063B Parts List Electrical continued _______ EE Designation Number 0699 0486 RESISTOR 2K 0 1 1W 0698 3450 RESISTOR 42 2K 41 125W 0757 0458 RESISTOR 51 1K 1 125W 0698 6629 RESISTOR 60K 0 1 125W 0698 6620 RESISTOR 150K 0 1 125W 0757 0442 RESISTOR 10K 1 125W 0698 6629 RESISTOR 60K 0 1 125W 0698 6620 RESISTOR 150K 0 1 125W 0757 0463 RESISTOR 82 5K 1 125W 0757 0442 RESISTOR 10K 1 125W 0757 0444 RESISTOR 12 1K 1 125W 0757 0442 RESISTOR 10K 1 125W 0698 3226 RESISTOR 6 49K 1 125W 0757 0463 RESISTOR 82 2K 41 125W 0757 0442 RESISTOR 10K 1 125W 0757 0458 RESISTOR 51 1K 1 125W 0811 3574 RESISTOR 3 9 1 5W 0811 1760 RESISTOR 4 3 5 2W 0757 0427 RESISTOR 1 5K 1 125W 0698 6360 RESISTOR
13. 217 5 7339 pulsing 217 6 OOOO pulsing J217 8 U367 217 9 805P 217 10 7339 pulsing J217 11 805P 217 12 73F5 U217 13 0367 4 4 4 4 4 GG ee ee 38 Table 3 8 Secondary Interface S A Test No 1 Description These signatures check secondary microprocessor U301 and latches U302 and U330 The signatures are valid for U301 firrnware revisions Rev 02 01 Use the test setup described in Test Setup for S A Signatures 5V signature H82C U301 U302 U330 5V U301 7 4 9 21 39 U302 20 U330 20 Common U301 1 U302 10 U330 10 SPCLR U301 6 5V U302 1 5V U330 1 5V 4 MHz U301 2 3 1 MHz U301 40 SD 7 U301 30 HO83 U302 8 HO83 U330 8 HO83 SD 6 U301 31 IUUO U302 7 1000 U330 7 1000 SD 5 U301 32 8A16 U302 13 8A16 U330 13 8A16 SD 4 U301 33 834A U302 14 834A U330 14 834A SD 3 U301 34 PO7O U302 4 PO7O U330 4 PO7O SD 2 U301 35 U93A U302 3 U93A U330 3 U93A SD 1 U301 36 AP48 U302 18 AP48 U330 18 AP48 SD 0 U301 37 UFOA U302 17 UFOA U330 17 UFOA U301 8 5V U302 2 6A19 U330 2 1ACH U301 10 H82C U302 5 AUHI U330 5 H82C U301 11 5V U302 6 OCH8 U330 6 U301 12 U302 9 H210 U330 9 64PC U301 13 2447 U302 11 9457 U330 11 H82C pulsing U301 14 A264 U302 12 3505 U330 12 U746 U301 15 OUPA U302 15 CIH7 U330 15 746A U301 16 HHC8 U302 16 A9H8 U330 16 46AH U301 17 41UA U302 19 P921 U330 19 6
14. 310 14 8 16 310 18 H083 G J310 11 355F G J310 1 51AH 4 310 2 310 5 989 310 6 486 J310 9 57 310 12 310 15 8HF6 310 16 CCU8 310 19 50P3 4 4 4 4 4 CG 310 17 1000 U314 14 U314 7 U316 12 8986 U316 11 51 U312 4 6P1A U312 5 A989 U312 6 486A J312 7 FH57 U312 10 UIAC U312 11 8HF6 312 12 CCU8 312 13 50P3 U U U353 5 9 11 0000 pulsing 41 Table 3 11 Secondary Interface S A Test No 4 Description These signatures check readback DAC 10322 slew rate decoder 0305 and analog switch U317 The signatures are valid for U301 firmware versions Rev A 02 01 Use the test setup described in Test Setup for S A Signatures 15 15V 5V Common 12VREF SD 0 SD 1 SD 2 SD 3 SD 4 SD 5 SD 6 SD 7 WRI WR2 B1 B2 XFER SDB 0 SDB 1 SDB 2 SDB 3 SDB 4 SDB 5 SDB 6 SDB 7 SLWI SLW2 SLW3 SLW4 CLK TOGGLE 42 U322 20 U322 1 3 10 12 U322 8 U322 7 UFOA U322 6 AP48 322 5 U93A J322 4 070 J322 16 834A J322 15 8A16 J322 14 1UUO J322 13 H083 U322 2 18 U322 17 19 HCA7 U305 1 20 U305 10 U305 3 F592 U305 4 F3P2 U305 7 4461 U305 8 5UA2 J305 13 H82C J305 14 H82C 305 17 6AOC J305 18 H82C J305 2 OU8C 7305 5 1187 J305 6 7 88 J305 9
15. 07 1 14V when the OP condition is false Pulses when the OP condition is true See Figure 3 10 G3 012 17 0 167 X Input Voltage 6060B 0 0418 X Input Voltage 6063B 2 NOT USED D12 cath OC circuit control 13V when OC condition false normal 8V when OC condition is rue Q11 E OC circuit control 10V when OC condition is false normal OV when unregulated or when OC condition is true D19 K Input Power 5V when turned when turned off Stage Turn on 42 01 1 Input Power 6 3V approx with full rated input current Stage 1 0 5V approx with the input off 43 QI 1 Input Power 5 4V approx with full rated input current Stage 1 4 0V approx with 10 rated input current 2 5V approx at zero input current U14 1 Input Power 1 25V for at full input current Stage 1 05 1 IMON 10 02V at full input current 30 Signature Analysis The easiest and most efficient method of troubleshooting microprocessor based instruments is signature analysis S A The S A technique is similar to signal tracing with an oscilloscope in linear circuits Part of the microcomputer memory is dedicated to signature analysis and a known bit stream is generated to stimulate as many nodes as possible within the circuit However because it is virtually impossible to analyze a bit stream with an oscilloscope a signature analyzer is used to compress the bit stream into a four character signature By comparing signat
16. 50V C214 0180 0405 CAP FXD 8 10 20V C215 216 0160 5422 CAP FXD 0 047 20 50V C217 218 0160 4832 CAP FXD 0 01 10 100V C301 0180 0405 CAP FXD 1 8 10 20V C302 0160 5422 CAP FXD 0 047uF 20 50V C303 304 0160 4807 CAP FXD 33pF 5 100V C305 0160 5422 CAP FXD 0 047uF 20 50V C306 0160 4835 CAP FXD 0 1uF 10 50V C307 0160 6579 CAP FXD 2200pF 2 5 100V C310 0160 4835 CAP FXD 0 10 50V C312 0160 5349 CAP FXD 200pF 5 100V C314 317 0160 5422 CAP FXD 0 047uF 20 50V C320 322 0160 4835 CAP FXD 0 14 10 50V C323 324 0160 5422 CAP FXD 0 047 20 50V C325 0160 4835 CAP FXD 0 14 10 50V C326 329 0160 5422 CAP FXD 0 047uF 20 50V C330 0160 4787 CAP FXD 22pF 5 100V C331 337 0160 5422 CAP FXD 0 047uF 20 50V C339 0160 4787 CAP FXD 22pF 5 100V C340 342 0160 5422 CAP FXD 0 047uF 20 50V C344 345 0160 5422 CAP FXD 0 047uF 20 50V C348 0160 4787 CAP FXD 22pF 5 100V C349 0160 5422 CAP FXD 0 047uF 20 50V C350 0160 4822 CAP FXD 1000pF 5 100V C352 0160 4820 CAP FXD 1800pF 5 100V C353 354 0160 5422 CAP FXD 0 047uF 20 50V C355 0160 4833 CAP FXD 0 022uF 10 100V C355 0160 4831 CAP FXD 4700pF 10 100V C356 0160 4791 CAP FXD 10 5 100V Table 5 3 Agilent 6060B 6063B Parts List Electrical continued o Badii i REMO MN Designation Number C357 0160 4820 CAP FXD 1800pF 5 100V C358 0160 4829 CAP FXD 680pF 10 100V C370 0160 4832 CAP FXD 0 01 10 100V C501 0180 2980 CAP FXD 1000uF 2
17. 8PCU J305 11 CCF9 J305 16 98H4 U317 13 0317 4 0317 12 0317 5 0317 8 OU8C 0317 9 1187 0317 16 7P88 0317 1 8PCU Table 3 12 Secondary Interface S A Test No 5 Description These signatures check the chip select IC U304 and the status readback IC U303 The signatures are valid for U301 firmware revisions Rev A 02 01 Use the test setup described in the Test Setup for S A Signatures 5V J303 16 U304 6 16 Common J303 8 U304 5 8 SD 0 1303 10 UFOA U304 1 2447 SD 1 1303 13 AP48 304 2 A264 SD 2 303 9 U93A J304 3 OUPA SD 3 J303 1 P070 CSO J303 4 6 12 14 P921 CSI J303 11 H82C CS2 303 3 H82C CS3 J303 7 H82C CS4 J303 15 H82C CS5 STAT_EN 3303 5 RCK LOW RCK STB 04 15 57A2 04 14 1UPU 04 13 CCF9 04 12 4 4 4 04 10 9457 4 4 GUC CG Geter 3 3 3 3 3 3 3 3 3 04 4 HHC8 DAC Circuits Troubleshooting Figure 3 3 These circuits generate the SLEW signal which controls the input power stages This analog signal is produced by the combined outputs from the main DAC amplifier U320 U326 and the transient DAC amplifier U321 U325 The DACs amplifiers convert the data on bus lines SDBO 7 into analog signals The HIGH signal active LO from the transient generator see Figure 3 7 closes switch U309 causing the output of the transient DAC amplifier to be combined with the outp
18. 92 EEA EE E E AE 93 Introduction Scope This manual contains information for troubleshooting and repairing the Agilent Technologies 6060B and 6063B Electronic Load to the component level Replaceable parts lists and circuit diagrams are also provided Verification procedures are included to aid in determining the performance level either before or after repair Calibration procedures and specifications for the Electronic Load are included in the Operating Manual Related Documents The following documents shipped with each Electronic Load are referenced in this manual Document Relevant Information Agilent 6060B 6063B Operating Manual Agilent Part No Calibration procedures local amp specifications 5951 2826 remote operation Electronic Load Family Programming Reference Guide SCPI programming status reporting Agilent Part No 06060 90005 It is assumed that you are familiar with or can obtain the information in the above documents Firmware Revisions Some information in this manual and S A signature analysis information in particular is associated with specific versions of the Electronic Load firmware Each Electronic Load returns the revision number of its primary interface firmware in response to the IDN query Both primary and secondary interface ROMs have a label that also specifies the firmware revision See Signature Analysis in Chapter 3 Manual Revisions Agilent instruments
19. Refer to the parts list for the model 6063B values 80 Table 6 2 Schematic Diagram Inter Sheet Signal Connections fed Signal Sheet and Coordinates _ _ __ 2 me Ier aaa IT e mi p sew OW me 1 eS oe cP Ga Tr CTI IIT m I pem 175 mr NUS peee a RN 2222202 20 a cc 2 m peemem mee A analog digital nx signal origin 81 Table 6 2 Schematic Diagram Inter Sheet Signal Connections continued Sheet and Coordinates EEA 1 1 111 eee me eem mL 8 D quw 5 emememmemms T quw muy may epe Tes ma eran ee a un pm _ me quepe VMON Input voltage monitor
20. TP301 6 d Turnon the signature analyzer and use the signature analyzer probe to take signatures at the applicable IC test points given in the S A Test Table e Upon completion of the S A tests return jumpers RTP201 and or RTP301 to their normal operating positions of TP201 and TP301 as follows see Figure 3 2 RPT201 between TP201 7 and TP201 8 RTP301 between TP301 3 and TP301 4 33 34 TE 201 PRIMARY INTERFACE TESTS TP381 SECONDARY INTERFACE TESTS CLOCK START SEE TABLES 3 4 THRU 3 11 SA_MODE SA_GATE CSP 2 CSP4 CSP6 PRIMARY TEST HEADER JUMPER 201 SHOWN IN SA MODE POSITION REFER TO SA TABLES 3 4 THRU 3 7 STOP GROUND 2 SECONDARY TEST HEADER JUMPER RTP3 1 SHOWN IN SA MODE POSITION REFER TO SA TABLES 3 8 THRU 3 12 Figure 3 2 Test Headers Test Setup for Signature Analysis Table 3 4 Primary Interface S A Test No 1 Description These signatures check primary microprocessor U203 ROM U205 and RAM U206 The signatures are valid for ROM 0205 firmware revision Rev A 02 01 Use the test setup described in Test Setup for S A Connect signature analyzer s CLOCK input to U207 11 Signal Signature 0203 ROM U205 RAM U206 Gates 5V U961 U203 4 7 21 U205 28 U206 28 14 Common U203 1 9 10 4 MHz U203 2 3 1 MHz U203 40 U206 26 PLCR U203 6 A 0 8799 A 1 HF40 AQ 9375 A 3 48PF A 4 FF8U A 5 PUCP A 6 84C9 A 7 25H3 A 8 5
21. ee COUPLED U306 7 C SLW 0 0002 U306 7 SLEW RATE 9 C SLW 0 0833 U306 1 SLEW RATE 11 C SLW 0 4167 Figure 3 4B Slew Circuits Troubleshooting for 6063B 48 SA WAVEFORM SA WAVEFORM 100uS DIV U308 1 SA WAVEFORM SA WAVEFORM ES Tit Tt Ed Ieee NURSE BE mee ImS DIV U308 7 027 028 ANODE Figure 3 5 CC CV Control Circuits Troubleshooting 49 Input Power Stages Troubleshooting Figure 3 6 There are eight identical input power stages connected in parallel Figure 3 6 shows one of the eight This stage consists primarily of a power FET in quad array 1 a monitor amplifier U14 and an error amplifier U1 Schematic details are shown on Figure 6 1 sheet 6 To troubleshoot the input power circuits place the Electronic Load in the S A mode by connecting the jumpers in test headers TP201 and TP301 in the S A mode positions see Figure 3 2 The waveform shown in Figure 3 6 at the output of the error amplifier can only be generated in the S A mode Check that this waveform appears at the output of the error amplifier in each input power stage Refer toFigure 6 1 sheet 6 to locate the output pin of each error amplifier Checking each stage may isolate the problem to a specific stage If the problem is isolated to a specific stage turn the S A mode off remove jumpers and check
22. from a GP IB controller or from the load s front panel The primary interface interprets commands from the GP IB or from the front panel keypad to control the load s input current The primary interface also processes measurement and status data received from the input power circuits via the secondary interface circuits This data may be read back to the controller over the GP IB and or displayed on the load s front panel The primary interface contains an EEPROM electrically erasable programmable memory which stores the load s GP IB address and model number as well as constants used in calibrating the load the EEPROM is non volatile allowing it to retain stored information after power is cycled off and on The load is calibrated over the GP IB using the calibration commands see Chapter 6 in the Operating Manual Certain load operations can be initiated by an external trigger TRIG IN signal or an internal trigger GP IB trigger command The primary interface sends the trigger to the secondary interface to initiate the applicable operations The trigger external or internal is also routed out TRIG OUT signal of the primary interface so it can be used to trigger an external scope or DVM Front Panel Most of the remote operations that can be performed via the GP IB can also be performed from the load s front panel The front panel contains an ac line ON OFF switch an LCD display and a keypad The LCD display consists of an alphanumeric disp
23. 3 13 Ifthe signatures are correct an amplifier or switch is probably defective The waveforms at the bottom of Figure 3 4 are generated when various slew rates are programmed These waveforms check the operation of the slew circuit switches U317 They are not generated in the S A mode To generate these waveforms turn the S A mode off remove jumpers and program 3 different slew rates 001 0 5 and 2 5 A us from the front panel as shown in the following sequence Use a scope with delayed sweep to verify the waveforms shown for slew rate in Figure 3 4 MODE CURR CURR 5 Tran Level 10 Freq 80 Dcycle 50 Tran on off Slew 001 Slew Rate 1 Slew 5 Slew Rate 9 6060B Slew 2 5 Slew Rate 11 only The three slew rates programmed from the front panel toggle all four switches in the slew circuit Refer to the following table if you need to check the state of the switches for a specific slew rate Remember that the front panel is programmed in microseconds Note that when the SLW signal is LO the switch is closed when the SLW signal is HI the switch is open If the slew rate tests check out and a problem still exists troubleshoot the CC CV control circuits as described in the next section 45 SLEW RATE SWITCH SETTINGS Refer to Module Operating Manual for Slew Rate Steps Slew Rate SLWI SLW2 SLW3 SLW4 1 HI HI LO HI 2 HI LO LO HI 3 LO HI LO HI 4 HI HI HI HI 5 HI LO HI HI 6 LO HI HI HI 7 HI HI LO
24. 330pF 5 100V 0160 4835 CAP FXD 0 14 10 50V 0160 4833 CAP FXD 0 022 10 100V 0160 4831 CAP FXD 4700pF 10 100V 0160 5422 CAP FXD 0 047uF 20 50V 0160 4832 CAP FXD 0 01 10 100V 0160 4833 CAP FXD 0 022 10 100V 0160 4833 CAP FXD 0 022 10 100V 0160 5166 CAP FXD 0 015 20 100V 0160 4833 CAP FXD 0 022uF 10 100V 0160 4835 CAP FXD 0 1uF 10 50V 0160 4832 CAP FXD 0 01 10 100V 0160 5349 CAP FXD 200pF 5 100V 0160 4805 CAP FXD 47pF 5 100V 0160 4807 CAP FXD 33pF 5 100V 0160 4787 CAP FXD 22pF 5 100V 0160 4807 CAP FXD 33pF 5 100V 0160 4787 CAP FXD 22pF 5 100V 0160 4807 CAP FXD 33pF 5 100V 0160 4787 CAP FXD 22pF 5 100V 0160 4807 CAP FXD 33pF 5 100V 66 Table 5 3 Agilent 6060B 6063B Parts List Electrical continued 9 NEN MEE Designation Number C75 0160 4787 CAP FXD 22pF 5 100V C75 0160 4807 CAP FXD 33pF 5 100V C76 0160 4787 CAP FXD 22pF 5 100V C76 0160 4807 CAP FXD 33pF 5 100V C77 0160 4787 CAP FXD 22pF 5 100V C77 0160 4807 CAP FXD 33pF 5 100V C78 0160 4787 CAP FXD 22pF 5 100V C78 0160 4807 CAP FXD 33pF 5 100V C79 0160 4821 CAP FXD 1200pF 5 100V C201 0160 5422 CAP FXD 0 047uF 20 50V C202 0160 4808 CAP FXD 470pF 5 100V C203 0160 4800 CAP FXD 120pF 5 100V C204 0160 5422 CAP FXD 0 047uF 20 50V C205 206 0160 4807 CAP FXD 33pF 5 100V C207 211 0160 5422 CAP FXD 0 047 20 50V C212 0160 4800 CAP FXD 120pF 5 100V C213 0160 5422 CAP FXD 0 047uF 20
25. 51 Ri TESOL o o o 19 24 16 15 Figure 6 2 Main Circuit Board Component Locations Manual Backdating This section describes changes that must be made to the manual so that it applies to instruments with serial numbers lower than those listed on the title page Look in the following table for the serial number of your instrument and make only those changes listed for your instrument Note that for some changes you may be instructed to update the instrument if certain components are being replaced during repair Serial Prefix 3119A 3326A 3436A 92 6060B Serial Number 00101 00775 00776 01205 01206 02435 6063B Serial Number 00101 00256 00257 00306 00307 00391 00392 01016 Changes 1 3 1 2 Change 1 Make the following changes in Table 5 3 Change A1 60608 main board to p n 06060 60023 6063B main board to p n 06063 60023 U202 to p n 1820 2549 U203 to p n 1820 3367 U205 to p n 06063 80002 U301 to p n 1820 7673 Delete C218 0 01uF p n 0160 4832 R222 353 10M p n 0699 1797 R220 10K p n 0757 0442 R221 300 100 p n 0757 0401 R601 NETWORK RES p n 1810 0278 U219 IC MC74HC373N p n 1820 2998 In Table 5 4 delete ferrite bead kit Change 2 Make the following changes in Table 5 3 Change A1 60608 main board to p n 06060 60022 60638 main board to p n 06063 60022 Delete U201 p n 1820 6045 U200 p n 1820 6170 C601 047uF p n 0160 5422 Add U201 p n 1LH4 00
26. 76 Agilent Part Number 06063 60001 5020 2693 5063 3473 5060 3193 06060 60052 0360 0378 06632 80002 8120 4944 06060 80001 06060 40001 3101 2862 1510 0134 06060 80015 06060 60022 06063 60022 0515 1114 0515 1285 2190 0585 3050 0892 0380 0181 3050 0003 06060 20001 06060 20004 06060 20005 0515 1374 0380 1999 0515 0210 0340 1217 06060 00003 0535 0082 0535 0031 0380 0643 2190 0586 1205 0743 1400 0307 06060 00001 0515 1114 0515 0155 2190 0629 5063 4827 Table 5 3 Agilent 6060B 6063B Parts List Electrical continued Reference Designation Description FRONT PANEL ASSEMBLY PC BOARD keypad LCD DISPLAY WIRE KIT main board to J551 ac receptacle WIRE KIT J551 to chassis ground TERMINAL SOLDER LUG ground lug AC CABLE ASSY 5551 to J553 CABLE ASSY LCD display to main board CABLE RIBBON keypad to main board KEYPAD SWITCH ON OFF FRONT PANEL OPTION 020 BINDING POST CABLE ASSEMBLY 8 AWG red black Table 5 4 Agilent 6060B 6063B Parts List Mechanical Reference Part Number Designators Description MAIN BOARD MAIN BOARD SCREW MACH M4 X 0 710MM LG heatsink to A1 board SCREW MACH M3 5 X 0 6 35MM LG fan to heatsink WASHER LK HLCL fan WASHER FL METALLIC fan SPACER 75 IN fan WASHER FL NONMETALLIC fan HEAT SINK Q2 HEAT SINK 01 SPACER STRIP between heat sinks SCREW MACH M4 X 0 7 30MM LG heatsink to A1 board ST
27. A 1 1 VMONR Voltage monitor comparator output D wm es VOLT Over or reverse voltage fault state D 10 10 volts reference 3D ii 12 12 volts reference A analog D digital nx signal origin 82 Table 6 3 Schematic Diagram Intra Sheet Signals Sanat tation 0 CALIOCK Sofware cibano Ilse cet 2 6 Keyboard readback ip sea 2 30 98 Keyboard diver chipset arver chip seai 2 89 EON povero dse E ee 5 lezm mwd 2 88 N N NI NINI N 02 Hu Pena owen a Par Fs rises SAGTE N N NIN SA MODE Primary mode whey 2 3 m mese Teram ROEN 2 0 PTRIGOUT Tigger out le EmbleCVmede E FFSELO __ Transient generator frequency 3 FFSELT Transient generator freque
28. D TYPE POS EDGE TRIG COM IC CNTR CMOS HC BIN SYNCHRO IC GAL programmed IC FF CMOS HC D TYPE POS EDGE TRIG IC FF CMOS HC J K BAR POSEDGE TRIG IC GAL programmed ANALOG SWITCH PIN IC GATE CMOS HC NOR QUAD 2 INP IC FF CMOS HC D TYPE POS EDGE TRIG COM D A 12 BIT 20 CERDIP CMOS D A 8 BIT 20 PLASTIC CMOS D A 12 BIT 20 CERDIP CMOS IC OP AMP LOW BIAS H IMPD DUAL 8 PIN IC OP AMP PRCN 8 PIN DIP IC COMPARATOR QUAD 16 PIN DIP IC OP AMP PRCN 8 PIN DIP IC V RGLTR V REF FXD 9 95 10 05V 8 DIP IC FF CMOS HC D TYPE POS EDGE TRIG COM IC OP AMP PRCN DUAL 8 PIN DIP ANALOG SWITCH PIN IC COMPARATOR PRCN DUAL 8 PIN DIP IC V RGLTR LM7805 5V with heatsink IC V RGLTRV REF ADJ 2 5 36V IC V RGLTR LM317 ADJ 1 2 45V with heatsink IC V RGLTR LM337 ADJ 1 2 45V with heatsink IC V RGLTR LM7805 5V with heatsink IC COMPARATOR PRCN DUAL 8 PIN DIP IC V RGLTR V REF ADJ 2 5 36V 8 DIP DIODE VOLTAGE SUPPRESSOR 75V DIODE VOLTAGE SUPPRESSOR 300V DIODE ZNR 16V 5 PD IW IR 5UA DIODE ZNR IN821 6 2V 5 DO 7 PD 4W DIODE ZNR 9 1V 5 DO 35 PD 4W TC 069 DIODE ZNR 7 5V 5 PD IW IR 10UA DIODE ZNR 9 1V 5 DO 35 PD 4W TC 069 DIODE ZNR 16V 5 PD IW IR SUA CRYSTAL QUARTZ 4 0000 MHZ CHASSIS FAN ASSEMBLY with CABLE FUSE METRIC 5A 250V for 100 120 VAC line FUSE METRIC 25A 250V for 220 240 VAC line AC POWER RECEPTABLE LINE FILTER MATING PLUG FOR TB301 control connector MATING PLUG FOR 201 trigger BINDING POST 75
29. E506 TP201 102 CSP 1 R217 riag 0212 201 11 5 2 11 11 10 201 12 gt 5 naoz 10K gt J203 6 201 13 5 4 9 15701 01 ACOSN 201 14 CSP5 14102 J203 16 TP201 15 gt CSP 6 12105 05 12 TP201 16 gt CSP2 04 201 7 GATE 5 05 05 TP201 8 2 06 06 ee ACOSN TP201 3 gt SA MODE D J203 15 201 5 gt CAL_LOCK TRIGEN 0212 201 4 74HC273 2 201 6 50 8 J203 5 C209 450 FICOSN 17 28 BOTE R201 5 12 500 40 5 6K 4200 UCC J201 16 B8 12 31 007 _ 002 13 32 16 006 1201 15 02 H2 2210107 0155 0055 J201 14 6 06 5 0106 Daa DC J201 13 BS 05 3510105 0355 5035 0207 1201 4 B4 04 3 3510104 0415 5055 5 4 C201 J201 3 85 0384 2510105 051 515 J201 2 Be 0255 380102 0610 5075 1004 047 J201 1 B1 5110101 07 Sov TE XTRL EXTRL H 30 5i 8 gt AC15 28 2 R1 815 PD2 RS1 g U207 14 29 214 RSO 202 1 2 A13 C601 5148 5 acie 3112 RxD INT IX 6004 Acti 321 44 TxD TRIG FF 33 RCCRQ S B 202 346 59 19 22 0008 gt 50 15707 11 pace 1201 12 REN Sg REN EP 23 lt J202 4 J201 9 IFCHS ss Ift csPe EIP R220 0208 J202 6 J201 7 NRFD
30. GEN PURP General Purpose Tantalum Integrated Circuit Temperature Coefficient Machine Thin Film Metal Oxide With How To Order Parts You can order parts from your local Agilent Technologies sales office refer to the list at the end of this manual for the office nearest you when ordering parts include the following information Agilent part number Description of the part Quantity desired Electronic Load model number Agilent 6060B 65 Table 5 3 Agilent 6060B 6063B Parts List Electrical AN Designation Number 06060 60024 MAIN BOARD 06063 60024 MAIN BOARD 0160 4820 CAP FXD 1800pF 5 100V 0160 5098 CAP FXD 0 22uF 10 50V 0160 4833 CAP FXD 0 022uF 10 100V 0160 2569 CAP FXD 0 02uF 20 2 kV 0160 5422 CAP FXD 0 047uF 20 50V 0160 4834 CAP FXD 0 047uF 10 100V 0160 5422 CAP FXD 0 047uF 20 50V 0160 4834 0 047uF 10 1WV 0150 0052 CAP FXD 0 05uF 20 400V 0160 7024 CAP FXD 2 0uF 10 100V 0160 7369 CAP FXD 10 400V 0160 4831 CAP FXD 4700pF 10 100V 0160 4835 CAP FXD 0 1uF 10 50V 0160 4830 CAP FXD 2200pF 10 100V 0160 5422 CAP FXD 0 047uF 20 50V 0160 4800 CAP FXD 120pF 5 100V 0160 4048 CAP FXD 0 022 20 0160 5422 CAP FXD 0 047 20 50V 0160 5469 CAP FXD 10 50V 0160 4048 CAP FXD 0 022uF 20 0160 5422 CAP FXD 0 047uF 20 50V 0160 4801 CAP FXD 100pF 5 100V 0160 4831 CAP FXD 4700pF 10 100V 0160 5422 CAP FXD 0 047uF 20 50V 0160 4810 CAP FXD
31. R201 1810 0560 NETWORK RES 16 DIP 5 6K OHM X 8 R202 0698 3359 RESISTOR 12 7K 1 125W Table 5 3 Agilent 6060B 6063B Parts List Electrical continued e Nee Designation Number R203 204 0757 0280 RESISTOR 1K 1 125W R205 0757 0442 RESISTOR 10K 1 125W R208 0698 3633 RESISTOR 390 5 2W MO R209 0698 3644 RESISTOR 5 1K 5 2W MO R210 0757 0280 RESISTOR 1 125W TF R214 1810 0280 NETWORK RES 10 SIP 10 0 OHM X 9 R215 0698 3644 RESISTOR 5 1K 5 2W MO R217 219 0757 0442 RESISTOR 10K 1 125W R220 0757 0442 RESISTOR 10K 1 125W R221 0757 0401 RESISTOR 100 1 125W R222 0699 1797 RESISTOR 10M 1 25W R300 301 0757 0401 RESISTOR 100 1 125W R302 0698 3430 RESISTOR 21 5 1 125W R303 0698 4486 RESISTOR 24 9K 1 125W R304 0757 0280 RESISTOR 1K 1 125W R305 0698 4503 RESISTOR 66 5K 1 125W R306 0698 6320 RESISTOR 5K 0 1 125W R307 0698 0085 RESISTOR 2 61K 1 125W R308 0757 0462 RESISTOR 75K 1 125W R309 0698 6320 RESISTOR 5K 0 1 125W R310 311 0698 8827 RESISTOR 1M 1 125W R312 0757 0465 RESISTOR 100K 41 125W R313 0757 0449 RESISTOR 20K 1 125W R314 0757 0465 RESISTOR 100K 41 125W R315 0698 0085 RESISTOR 2 61K 1 125W R316 0699 0924 RESISTOR 11K 0 1 125W R317 318 0757 0438 RESISTOR 5 11K 1 125W R319 320 0698 6360 RESISTOR 10K 0 1 125W R321 322 0757 0438 RESISTOR 5 11K 41 125W R323 324 0698 6360 RESISTOR 10K 0 1 125W R325 327 0757 0438 RESISTOR 5 11K 1 125W R328 0757 0442 R
32. RES MODE any range U309 9 CR Low level in RES MODE low ohm range High level in CURR VOLT or RES middle or high ohm range MODE 3 U309 1 Low level in RES MODE middle or high ohm range High level in CURR VOLT or RES low ohm range MODE TB301 9 High level with PORTO ON programmed Low level with PROTO OFF programmed 5 U329 4 10 V Ref 10V 9 95 to 10 05V U331 7 12V Ref 12V 11 28 to 11 44V U8 5 IPROG Under normal operating conditions input is regulated measurement should be approximately 0 1V X Iin 6060B 0 67V X Iin 60638 With input unregulated or disconnected the measurement will be OV in CURR Mode 0 9V in VOLT or RES MODE D17 cath 14V when OV condition is false normal 13V when OV condition is true U10 1 CC Loop Gain control 15V when input voltage is more than 2 5V 15V when input voltage is less than 2 5V 60 NOT USED 29 Table 3 3 Test Points continued Test Point Measurement and Conditions Number U9 8 Low level when the high current range or the middle resistance range is programmed High level when the low current range the low resistance range or the high resistance range is programmed 833 U5 7 0 167 X Input Voltage 6060B 0 0418 X Input Voltage 6063B G3 D11 cath 0 9V full rated voltage input to 6V zero volts input when the OP condition is false Pulses when the OP condition is true See test point 99
33. circuits are referenced to chassis ground while the secondary interface and input power circuits are reference to load common Neither of the load s input terminals or can exceed 240Vdc from ground The trigger signal is also transferred from the primary interface via an optical isolator The trigger signal can be used to control data transfers into the DAC circuits and can also be used in transient operation Secondary Interface The secondary interface circuit translates the serial data received from the primary interface into a parallel data bus and other control signals The data bus and control signals are sent to the power control circuits to control the input power stages in accordance with the programmed parameters Status and measurement information is also read back to the GP IB controller and or the front panel display via the secondary and primary interfaces DACs and Slew Rate Control Programmable main and transient DAC circuits convert the programmed data into an analog signal PROG that controls the conduction of the input power stages Depending upon the mode of operation the main DAC circuit converts the programmed value of current resistance or voltage into an analog signal to control the input power stages The conversion can be initiated by a GP IB command or by a trigger GP IB or external The transient DAC circuit and a programmable generator allow transient operation in the selected mode Transient operation ca
34. may exist even with the power cable removed To avoid injuries always disconnect power discharge circuits and remove external voltage sources before touching components DO NOT SERVICE OR ADJUST ALONE Do not attempt internal service or adjustment unless another person capable of rendering first aid and resuscitation is present DO NOT EXCEED INPUT RATINGS This instrument may be equipped with a line filter to reduce electromagnetic interference and must be connected to a properly grounded receptacle to minimize electric shock hazard Operation at line voltages or frequencies in excess of those stated on the line rating label may cause leakage currents in excess of 5 0 mA peak SAFETY SYMBOLS Instruction manual symbol the product will be marked with this symbol when it is necessary for the user to refer to the A instruction manual refer to Table of Contents 7 Indicates hazardous voltages Indicate earth ground terminal The WARNING sign denotes a hazard It calls attention to a procedure practice or the like which if not correctly performed or adhered to could result in personal injury Do not proceed beyond a WARNING sign until the indicated conditions are fully understood and met The CAUTION sign denotes a hazard It calls attention to an operating procedure or the like which if not correctly CAUTION performed or adhered to could result in damage to or destruction of part or all of the product Do not proceed beyond
35. that you connect the DMM or oscilloscope common to the proper circuit common Measurements at test points Q through are referenced to test point primary chassis common Measurements at test points 9 through are referenced to test point secondary common 27 Table 3 3 Test Points Test Point Measurement and Conditions Number Connect meter or scope common to test point Q when taking measurements at test points Q through 7 U502 2 Primary Chassis ground Q Q501 10 5V primary bias 5V 4 8 to 5 2V 3 D503 cath 13V primary bias 13V 13 to 17 Vdc rectifiers OPTO CIR Held low OV for approximately 80ms at power on and then goes high 0501 15 5V 2 G Q501 3 PCLR Goes high for approximately 8015 at power and then goes low Q501 9 PCLR Held low for approximately 80ms at power on and then goes high 2 0501 6 At power holds the EEPROM s clock off to protect against accidental data write when power is initially applied Connect meter common to test point when taking measurements at test points 9 through C557 Secondary common 9 cseo 5V secondary bias 5V 4 8 to 5 2V 9 557 15 secondary bias 15 1 1 558 15V secondary bias 2 D554 cath 26V secondary bias 23V to 29V rectifiers 3 0551 12 SPCLR M Held low for approximately 80ms at power on and then goes high C556 Fan voltage Press the front panel b
36. the test points through that correspond with applicable circuit points in the defective stage Use the measurement conditions specified in Table 3 3 Also check the applicable fuses in the specific stage As shown in Figure 3 6 fuses 1 and F9 are used by stage 1 If all stages have a problem check test points 2 see Table 3 3 Also check voltage suppressor VR9 and diode D14 which are connected across the and INPUT terminals Make sure that SENSE switch S1 on the rear panel is set to the LCL position if remote sensing is not being used SA WAVEFORM EE MS 0154 ES GR nd io 2 5 UNREG 011 11 TURNON QS D Q1G 2 1 l 1 Figure 3 6 Input Power Stages Troubleshooting 50 Transient Generator Troubleshooting Figure 3 7 The transient generator U310 U316 allows the input power stages to switch between two load levels It produces the HIGH control which is sent to the DAC circuits to switch the transient DAC output Troubleshooting the transient circuit consists of performing the general troubleshooting procedures if the transient circuit will not perform any functions or performing the frequency or toggle pulse mode troubleshooting if there is a problem in those areas General Troubleshooting First check the data bus and internal clock Use signature analysis to check the SD 0 7 dat
37. trigger can be used in triggering a preset level current voltage or resistance value or in triggering a pulsed or toggles transient operation Troubleshooting the trigger circuit consists of running programs that generate trigger pulses and then making sure that the signal lines shown in Figure 3 8 toggle in the direction indicated If a signal line does not toggle where indicated the gate or IC that generates that signal is probably defective The arrows on Figure 3 8 indicate the signal line activity when using a logic probe and running the programs Connect TP201 4 to TP301 2 see Figure 3 2 before troubleshooting this circuit This provides a common ground across isolation for the logic probe The first program continuously toggles all signal lines labeled TRIG when the program is run Use the logic probe to confirm this see Figure 3 8 53 PROGRAM 1 10 OUTPUT 705 TRAN MODE PULS 20 OUTPUT 705 TRIG SOUR BUS 30 OUTPUT 705 TRG 40 WAIT 5 50 GO TO 30 60 END The second program is used to toggle the lines labeled ON_LEV and as well as the ON_TRIG lines on Figure 3 8 when the program is run However the lines do not toggle continuously as in program 1 but only at specific points in the program The ON_RUN signal lines toggle once at the beginning of the program The ON_TRIG lines all toggle when CONTINUE is pressed after the first pause in the program The ON_LEV lines all toggle when CONTINUE is pressed a
38. type DIAG CAL 28 5000 voltage for soft over power DIAG CAL 29 5200 current for soft over power RST reset factory default state CURR SLEW 0 167E6 turn on slew rate ESAV 0 to location 0 CAL 0 turn calibration mode off Disassembly Procedures The following disassembly procedures are listed in alphabetical order Before proceeding with any disassembly disconnect the ac power cord remove the four cover screws and remove the cover Then proceed to the applicable disassembly procedure Refer to Figure 5 1 for the location of the Electronic Load s mechanical components AC Receptacle 1 Record the color code and location of each wire connected to the ac receptacle 2 Disconnect the push on connectors from the receptacle terminals 3 Unsolder the ground wire 4 Release the locking tabs by pressing them inward against the body of the receptacle and remove the receptacle Fan 1 Remove the six screws securing heatsink cover and remove heatsink cover 2 Disconnect the fan cable from J554 3 Remove the two screws securing the fan to the main heat sinks and remove the fan 58 Front Panel 1 Remove the two front feet 2 Disconnect the keypad cable from J203 the LCD display cable from J202 and the power cable from J553 Note When reconnecting the front panel display and keypad cables be sure to line up the cable stripes as indicated on the main board 3 Remove the grounding nut behind the
39. 0 35V C502 0180 0376 CAP FXD 0 47uF 10 35V C503 0160 4835 CAP FXD 0 1uF 10 50V C504 0160 4787 CAP FXD 22pF 5 100V C506 507 0160 4835 CAP FXD 0 1uF 10 50V C551 552 0160 4281 CAP FXD 2200pF 20 250V C553 0160 4259 CAP FXD 0 22uF 10 C554 0180 3458 CAP FXD 4700 30 10 50V C555 0180 3298 CAP FXD 2200 30 10 50V C556 0180 4136 CAP FXD 10uF 10 20V CS57 558 0180 3804 CAP FXD 47uF 20 35V C559 0160 4787 CAP FXD 22pF 5 100V C560 0180 4131 CAP FXD 4 7uF 10 35V C561 0180 0376 CAP FXD 0 47 310 35V C562 0160 4835 CAP FXD 0 1uF 10 50V C601 0160 5422 CAP FXD 0 047 20 50V D9 13 1901 0033 DIODE GEN PRP 180V 200MA DO 35 D14 1901 0731 DIODE PWR RECT 400V 1A D16 28 1901 0033 DIODE GEN PRP 180V 200MA D29 32 1901 0880 DIODE GEN PRP 200MA D35 1901 0880 DIODE GEN PRP 200MA D36 1901 0033 DIODE GEN PRP 180V 200MA D202 1901 0033 DIODE GEN PRP 180V 200MA D204 1901 0033 DIODE GEN PRP 180V 200MA D300 1901 0880 DIODE GEN PRP 200MA D303 1901 0033 DIODE GEN PRP 180V 200MA D304 1901 0033 DIODE GEN PRP 180V 200MA D306 1901 0033 DIODE GEN PRP 180V 200MA D308 1901 0033 DIODE GEN PRP 180V 200MA D310 313 1901 0033 DIODE GEN PRP 180V 200MA D501 504 1901 0731 DIODE PWR RECT 400V 1A D505 1901 0033 DIODE GEN PRP 180V 200MA D551 555 1901 0731 DIODE PWR RECT 400V 1A D556 1901 0033 DIODE GEN PRP 180V 200MA DO 35 Fl 8 2110 0757 FUSE SUBMINIATURE 063A 125V F9 16 2110 0697 FUSE SUBMINIATURE 15A 32 V F9 16 2110 0685 FUSE SUBMINIATURE 7A 12
40. 0 R175 1 5 R139 R133 1 5 ieoopr s ANN 5 14K 8112 Te 1K 4 54072 SEE 031 ae NE ues C70 AN 47 5K 013 012 4 54072 2107 ge R134 2 R135 lt 12 7K 2 4 R157 iss V R128 E W UNREG AA 50 R41 1 78K CC PROG gt R91 y Be 100U D27 2 y3 Uc 1 1N645 RNG H H gt 7 4 2706P 06211 7 P 2 15K ZND37 SN SPCLR IMON L 1000 5 R116 R92 TURNON E B 5 5 150 120 REF R118 106 R74 500 oh 0 suy me Tset Ut IPROG 4 0 U gt 6 R79 5 AM isla 105 FO lt H R83 2 12 C3 ACLR UNREG c 1 aa 12 1K vE V C61 R115 R85 18 13 255 6 49k R119 2 R121 069 1000 E 10K 47 C31 100U 5 047 500 5 5 A s r8 R93 Li d e 500 15U C UNREG R76 ROG 4 34072P gt E 1 W IN IN 047 M V 8 2 6 4 5 2 ii Figure 6 1 6060B 6063B Electronic Load Schematic Sheet 5 of 6 82 5K
41. 0 9 amps The front panel Prot annunciator should also be on 15 16 Press Meter display indicating that an overpower condition exists and the Electronic Load is in power limit Let the Electronic Load continue running Within three minutes the Electronic Load should turn its input off and the display should show 5 OP indicating protection shutdown IF THE OVERPOWER CIRCUIT DOES NOT TURN THE LOAD OFF WITHIN THREE MINUTES STOP THE TESTS AND TROUBLESHOOT THE OVERPOWER CIRCUITS Immediately press The PS display should blink and the input will remain shut down indicating that protection shutdown is latched Wait approximately one minute and press again This time the load should turn on with only OP displayed Reduce the power source output to 20 volts 6060B or 35 volts 60638 The display should change to indicating that the protection shutdown and overpower conditions are cleared PERFORMANCE TEST RECORD Agilent 6060B ELECTRONIC LOAD Page 1 of 2 Test Facility Report No Date Customer Tested by Model Serial No Options Agilent 6060B Ambient temperature Relative humidity Line frequency Firmware Rev Hz nominal Special Notes Q FW NYE Description AC Source DC Voltmeter Oscilloscope Power Source Power Source Current Probe Current Shunt Current Shu
42. 01 Change 3 In Table 5 3 delete R600 INDEX A AC receptacle sce uie utentes mint 58 B Bi s supplies eee 21 61 Binding ted ttis etae tecti ettet obe vede eee 59 Calibration oe Reo Dea eve bra oa ee D ERO m ROO c oaa RIT dites 57 CC mode test oontra te ree Pea peti indo 10 COCV control niet he eb e e B ate Oi E ade tee E ad 63 Chassis mounted components nee ERR GE SEU 78 CRimode test E reato d RR 12 Current M 55 ot ea Rd dee id So OS a de tede ees 11 D DAC circuits m 43 61 Disassembly serrer hene EU E i ae Ad 58 E EEPROM hn tme c on n nem nh d 57 61 Electrostatic discharge devisees I ee e Ret bate Cine i diee e e e 8 21 ETTOFANESSABES een tubers weit ate 7 22 External ci etel i OP aae a be RD ETE ER 61 F rur EM 28 58 Federal supply x RR eR REI eo ee ERREUR Rt 65 PETS Ore RH DEG CREER 50 60 64 REAA SITO ev LC D DOE UCM MU A I EU EL IUE 7 31 Front Pasa o
43. 02 0000000000 0000 92 00000000 12 R2 re R2014 000000000 2 N eo ese 0598 929 lo qd Use 696600000 U210 R1 19 n 0 Sooo 0000000000 55555555 9990000000 0000000 Soc as Sin sol o T T 55556000000 o C210 e 050 m 9 aes 4203 8214 0000000000000 FAME TEPPER TPES R7 387 0000 o 4645 4 gt Markl 24 ra AN s oooooooo TP30 55 0205 00000000 oo Le 9215 2 22211125555 90 5 Rl U212 E 05555555 00000000000000 0000000 504 8 4 ro vis V dalo T 25142 C000 TS ooooooooo 000000 0000 0000 9000000 5555555001 9209 9206 0 6 35 2 oe 9518 94 FB 0000000000 0020000 00000000 R6 111 R102 ezia R300 0000000 TOOOOOOOOOOOOO 9 54 00000000 U216 R601 0999 0000000000000000000E e R2iB e boo 6o099000ll So E ssse nue 7 00000000000000000090 l IN O O N 0501 556 O D E e U217 203 5 33 PNS 2
44. 10K 0 1 125W 0698 6533 RESISTOR 12 5K 0 1 125W 0757 0462 RESISTOR 75K 1 125W 0757 0270 RESISTOR 249K 1 125W R92 0698 0083 RESISTOR 1 96K 41 125W R92 0698 3153 RESISTOR 3 83K 1 125W R93 0698 0083 RESISTOR 1 96K 1 125W R93 0698 3153 RESISTOR 3 83K 1 125W R94 0757 0449 RESISTOR 20K 1 125W R95 0757 0280 RESISTOR 1K 1 125W R96 8159 0005 RESISTOR 0 CWM R96 0698 6620 RESISTOR 150K 0 1 125W R98 0698 3160 RESISTOR 31 6K 1 125W R99 0757 0280 RESISTOR 1K 1 125W R100 0811 3574 RESISTOR 3 9 1 5W R100 0811 1760 RESISTOR 4 3 5 2W R101 104 1810 1261 NETWORK RES 16 DIP R105 0698 6360 RESISTOR 10K 0 1 125W R105 0698 6320 RESISTOR 5K 0 1 125W R106 0698 3572 RESISTOR 60 4K 1 125W R107 0698 3359 RESISTOR 12 7K 41 125W R107 0757 0438 RESISTOR 5 11K 1 125W R108 0757 0438 RESISTOR 5 11K 1 125W R109 0757 0449 RESISTOR 20K 1 125W R110 0698 3160 RESISTOR 31 6K 41 125W R112 0698 3156 RESISTOR 14 7K 41 125W R113 0757 0442 RESISTOR 10K 1 125W R114 0757 0447 RESISTOR 16 2K 1 125W 70 Table 5 3 Agilent 6060B 6063B Parts List Electrical continued ER Designation Number R115 0757 0416 RESISTOR 511 1 125W R116 0757 0472 RESISTOR 200K 1 125W R117 0698 6360 RESISTOR 10K 0 1 125W R117 0698 6320 RESISTOR 5K 0 1 125W R118 121 0757 0442 RESISTOR 10K 1 125W R122 0757 0280 RESISTOR 1K 1 125W R123 1810 1274 NETWORK RES 10 SIP R124 0757 0447 RESISTOR 16 2K 1 125W R
45. 12 PCLR ee pores C204 C216 215 207 C210 211 p ACS RESET i J201 12 815 2418323 SA MODE pco 601 2214 7047 17 042 047 042 047 047 04 27512 5 10K 500 500 509 509 509 509 509 gs 0554 gt C213 10k 003 5 04 6 1 Dis 25 1 047 D6 8 1 PCLR D 504 007 9 TRIG C214 1 2 PCLR TRIG 00 1 1 8 20V 4 000 7 V 50 Figure 6 1 6060B 6063B Electronic Load Schematic Sheet 2 of 6 MODB UCC 22 NE xTAL1 Pao E C3 UMONR 15 52 71 IMONR RESET C CCUTST 030 TMONR 68 11 206 16 IRQ PD4 CU EN PDS RxD E i i 18 PAS NNV PD2 10K 5 7 PB 5047 C354 H L 8 D S PC6 PB6 7 30 SD 5 UXFER PC5 PBS RNG gt ppa 5 50 4 042 5 pcs 32 8033 500 4 33 SDca sa 2 2 1 3 34 SD 1 11 51 2 55 _ 50602 52 CLK so PCO PBO 5 Di 01 SLW1 E 2 02 SLW2 03 03 5 45 D4 04 5 44 SDBC0 7 38 05 95 06 12 02 08 74HC273 SDC 0 7 TOGGLE 16 19
46. 125 0757 0439 RESISTOR 6 81K 41 125W R126 0757 0440 RESISTOR 7 5K 1 125W R127 1810 1260 NETWORK RES 10 SIP 20 0K OHM X 9 R128 8159 0005 RESISTOR 0 CWM R128 0698 3456 RESISTOR 287K 1 125W R129 0698 3160 RESISTOR 31 6K 1 125W R130 132 0683 0475 RESISTOR 4 7 5 25W R133 0699 0924 RESISTOR 0 1 125W R134 0757 0436 RESISTOR 4 32K 41 125W R135 0757 0438 RESISTOR 5 11K 1 125W R136 0757 0449 RESISTOR 20K 1 125W R137 138 0757 0442 RESISTOR 10K 1 125W R139 0698 4479 RESISTOR 14K 1 125W R140 0757 0441 RESISTOR 8 25K 1 125W R141 0699 0486 RESISTOR 2K 1 1W R141 0757 0317 RESISTOR 1 33K 1 125W R142 143 0757 0472 RESISTOR 200K 41 125W R144 0757 0412 RESISTOR 365 1 125W R144 0757 0401 RESISTOR 100 41 125W R145 0757 0439 RESISTOR 6 81K 1 125W R145 0757 0429 RESISTOR 1 82K 1 125W R146 153 0757 0465 RESISTOR 100K 1 125W R154 0698 8827 RESISTOR 1 125W R155 2100 3282 RESISTOR TRMR 25K 10 R156 0683 1065 RESISTOR 10M 5 25W R157 0757 0439 RESISTOR 6 81K 1 125W R158 0757 0279 RESISTOR 3 16K 1 125W R159 0757 0405 RESISTOR 162 1 125W R161 0757 0274 RESISTOR 1 21K 1 125W R162 169 0698 8827 RESISTOR 1 125W R170 0698 8913 RESISTOR 1 5M 1 125W R171 0698 0064 RESISTOR 9 31K 41 125W R172 0757 0464 RESISTOR 90 9K 41 125W R175 0698 8913 RESISTOR 1 5M 1 125W R176 0698 4536 RESISTOR 340K 1 125W R177 0757 0459 RESISTOR 56 2K 1 125W R177 0757 0458 RESISTOR 51 1K 1 125W
47. 21 17 41 Table 3 10 Secondary Interface S A Test No 3 Description These signatures check transient generator IC s U310 through U316 The signatures are valid for U301 Signatures 5V 0311 20 0310 20 Common 0311 10 0310 10 SD 0 SD 1 SD 2 SD 3 SD 4 SD 5 SD 6 SD 7 RCK LOW RCK HI OE OE QI Q2 Q3 Q4 Q5 Q6 Q7 Q8 J313 2 FU49 J313 3 98H4 313 4 746A 313 6 H82C 313 7 H8HH 313 9 0000 313 11 CIH7 313 14 82 7313 15 FU49 313 17 40UU J313 18 0000 J313 19 C1H7 4 4 4 4 4 Ge Ge Ge ere Ci J312 2 H82C J312 3 P9H3 J312 9 H82C J312 14 FU49 J312 15 FU49 J349 1 5 8 16 10350 1 U311 3 UFOA U311 4 AP48 U311 7 U93A U311 8 070 U311 13 834A U311 14 8A16 U311 17 1000 U311 18 083 U311 11 UP15 U311 1 8986 U311 2 6P1A U311 5 A989 U311 6 486A U311 9 FH57 U311 12 U311 15 8HF6 U311 16 CCU8 U311 19 50P3 U351 13 U352 2 4 6 12 14 J316 1 8 J316 2 3505 J316 3 H210 J316 9 98H4 J316 14 P9H3 J316 15 H82C 315 1 H82C 315 5 H82C 315 9 0006 315 10 H8HH 315 11 H82C 315 13 H82C U314 1 40UU U3 14 2 H82C 314 3 314 4 H82C 3 3 3 U U J314 10 H82C 14 12 H82C U314 13 4000 U 0313 20 0312 16 U316 6 7 8 0313 10 0312 68 U316 4 5 18 310 3 UFOA 310 4 48 310 7 310 8 P070 310 13 834
48. 3 TABLE 3 3 FIG 6 1 SHEET 1 SEE ERROR CODE TRELE 3 2 FOR TROUBLESHOOTING INFORMATION EEPROM 211 MUST BE INITIALIZED SEE INITIALIZATION TURN OFF LORD AND REMOVE TOP COVER MAKE SURE THAT JUMPER RTP381 IS INSTALLED BETWEEN TP381 3 AND TP381 4 CNORMALY STORAGE POSITION SEE FIGS 3 2 AND 5 3 MOVE JUMPER TO NORMAL OPERATING POSITION TURN ON LOAD AND START OVER FIG 6 1 SHEET 1 TURN ON LORD AND CHECK FOR 5 RT TEST POINT CONNECT METER COMMON TO TEST POINT 1 SUPPLY SEE TEST POINTS 1 THROUGH IN TRELE 3 3 FND FIG 6 1 SHEET 1 REMOVE TOP COVER TURN ON LORD AND TROUBLESHOOT 1 SECONDARY BIAS SUPPLY SEE TEST POINTS S THRU IN TRELE 3 3 AND FIG 6 1 SHEET 12 SERIAL DATA LINES SEE TEST POINTS IN TRELE 3 3 PND FIG 6 1 SHEET PERFORM SECONDARY SA SEE TRBLES 3 8 THRU 3 11 Figure 3 1 Overall Troubleshooting Flowchart Sheet 1 of 3 23 24 PERFORM VERIFICATION TESTS IN CHPPTER Ges NO TURN OFF LORD AND REMOVE TURN OFF LORD AND REMOVE COVER CONNECT JUMPER BETWEEN COVER CONNECT JUMPER BETWEEN TP381 1 AND TP3 1 2 FOR SR 1 1 AND TP381 2 FOR SA MODE SEE FIGURE 3 2 TURN MODE SEE FIGURE 3 2 TURN ON LOAD ON LOAD CHECK SA WAVEFORM Ub CIPROG SIGNAL SEE FIG 3 5 WAVEFORM YES TROUBLESHOOT INPUT POWER WAVEFORM ves STRGES SEE FIG 3 6 RT 13 7 Ok 028 OR U18 DEFECTIVE NO NO CHECK
49. 34 U212 3 6873 U212 13 1716 U212 11 99AP 4 5 U U U U U G c 4 4 4 4 Gere 4 U210 Keypad Receiver Connect CLOCK to TP201 13 CSP4 4 OOOO pulsing 0601 0703 0703 5 cal lock when low 0703 press keypad ADDRESS 07C3 07U3 press keypad INPUT 0772 07U3 press keypad LOCAL 07C3 0703 press keypad VOLT O7UC 07U3 press keypad RECALL 07C3 common 0703 if CAL LOCK low 0000 pulsing 0601 pulsing 4 4 4 4 4 4 4 4 4 Gee eee Table 3 7 Primary Interface S A Test No 4 Description These signatures check the operation of the primary trigger circuits The signatures are valid for ROM U205 firmware revision Rev A 02 01 Use the test setup described in Test Setup for S A Connect the signature analyzer s CLOCK input to TP201 11 Signatures 5 V signature 7339 U202 5 OOOO pulsing U207 13 OOOO pulsing U207 12 7339 pulsing U209 2 73F6 U2 0209 4 1427 U209 5 73F5 U209 11 7339 pulsing U215 3 7339 pulsing U215 7 OOOO pulsing Connect Test Point Q prirnary cornrnon to Test Point secondary common for the U215 7 signature See Test Point Locations Figure 6 2 J216 4 7339 pulsing J216 5 7339 pulsing 216 6 7339 pulsing U U U 217 1 OOOO pulsing 217 2 73F6 J217 3 7339 pulsing 217 4 7339
50. 399 IC FF CMOS HC D TYPE POS EDGE TRIG COM 1820 2228 IC LCH CMOS NAND R S QUAD 1820 3079 IC DCDR CMOS HC BIN 3 TO 8 LINE 1820 3399 IC FF CMOS HC D TYPE POS EDGE TRIG COM 1826 1845 IC OP AMP PRCN DUAL 8 PIN DIP 1826 1317 IC OP AMP LOW NOISE 8 PIN DIP 1826 0962 IC OP AMP LOW BIAS H IMPD DUAL 8 PIN 4 4 4 8 9 Ul Ul Ul Ul Ul U2 U2 U2 U2 2 2 2 2 01 02 03 04 05 06 07 4 4 4 Ge eee 1 2 4 4 4 4 4 4 4 4 4 4 4 Greene 74 Table 5 3 Agilent 6060B 6063B Parts List Electrical continued Description Designation U309 1826 0850 U310 311 1820 3082 312 1820 6774 313 5080 2137 J314 1820 3081 315 1820 3172 316 5080 2121 317 1826 0850 J318 1820 2924 7319 1820 3399 320 1826 1488 321 1826 1068 322 1826 1488 J323 325 1826 0962 1826 1081 1826 1370 1826 1081 1826 1369 1820 3399 1826 1845 1826 0850 1826 0412 5060 2948 1826 1343 5060 2942 5060 2943 5060 2948 1826 0412 1826 1343 VR9 1901 1284 VR9 0837 0277 VRIO 1902 0783 VRII 1902 0761 VR12 1902 0957 VR201 202 1902 0799 VR301 302 1902 0957 VR303 304 1902 0783 Y201 301 0410 1944 4 ex GOG m a NN N m 06060 00001 1 06632 60002 2110 0803 2110 0817 1252 0029 0360 2345 1252 1488 1510 0134 Agilent Part Number ANALOG SWITCH PIN IC FF CMOS HC
51. 3B 98 85mV 0 9885A and 101 15mV 1 0115 d Check the low current range as follows 1 Press Range 6 9 then CURR 6 Range 0 9 then CURR 1 Eme 2 Wait 10 seconds then record the DMM and front panel display readings DMM reading should be between 6060B 59 19mV 5 919A and 60 81mV 6 081A 6063B 98 85mV 0 9885 and 101 15mV 1 0115A 3 Press CORR O 0 1 i 4 Wait 10 seconds and record DMM and front panel display readings DMM reading should be between 6060B 9 24mV 0 924 and 10 76mV 1 076 6063B 8 985mV 89 85A and 11 015mV 110 15 CV Mode Test This test verifies that the Electronic Load operates in the CV Mode and that the voltage programming and readback to the front panel display are within specifications For each DMM reading the corresponding front panel display should be equal to 6060B DMM reading DMM reading X 0 0005 0 045 6063B DMM reading DMM reading X 0 0010 0 150 Note that if the test readings significantly disagree with the specified values or no readings can be recorded perform the CV MODE TEST troubleshooting procedures in Figure 3 1 in Chapter 3 If the readings are out of tolerance calibrate the voltage range see Chapter 6 in the Operating Manual a Connect the Electronic Load power supply Agilent 6035A or equivalent and
52. 3P5 A 9 1558 A 10 CAA3 A 11 PACH A 12 1249 13 ICIH A 14 U872 A 15 8F8F G 03 13 03 14 03 15 03 16 03 17 03 18 03 19 03 20 03 29 03 28 03 27 03 26 03 25 03 24 03 23 03 22 4 4 4 4 4 4 4 4 4 C 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 GEG vee muc Cue CC Ci CU GU C Ci CC C C oie Ci 4 D 0 7805 D 1 8P29 D 2 U864 D 3 3P59 D 4 44A9 D 5 03 32 D 6 8PUC 03 31 D 7 2794 7203 30 203 37 203 36 203 35 203 34 2 2 2 4 4 4 4 4 03 33 4 4 IO DII 4 4 4 GC Cee occ Greve C GE unstable U203 11 2177 U203 12 4A22 U203 38 C67U U205 20 U218 12 9H41 Y206 20 U216 11 4UIP U207 2 U216 13 U204 5 4AP2 U207 4 U204 4 C383 U207 3 U216 12 U218 6 35 Table 3 5 Primary Interface S A Test No 2 Description These signatures check the GP IB talker listener IC U202 The signatures are valid for ROM U205 firmware revision Rev A 02 01 Use the test setup described in Test Setup for S A Connect the signature analyzer s CLOCK input to TP201 11 Signatures 202 1 7339 pulsing 202 2 202 3 1 MHz E clock 202 4 PLCR 202 5 pulsing 202 6 202 7 7339 5V J202 8 common J202 9 7339 pulsing 202 10 OOOO pulsing 202 11 U202 12 57 U202 13 OSAC U202 14 167U U202 15 A83P
53. 5 NRED ETAN 10K J202 J201 8 NDRC DBT Lo J202 10 J201 6 DAV DAVES 27 DAV B 0205 225 5065 73 470PF lt J202 12 4201 5 EDI 55101 CLK TS EP 5 Ap 19 222 50 50175101 e 1007 lt J202 14 4201 11 ATN PCLR 26 20 M 10 205 4102 594 202 16 4201 10 SRQ C218 EP 22 PD4 05 05 lt J202 15 R W 27 7 ACB OE D 2 8 751613 C600 GND 554 7 PD3 0045 1104 94 lt J202 13 GND 20 0219 22 9 05 05 lt J202 11 01 esac MEER 822 1908 pa 18 DC7 5c65 LA 565 1456 06 100 1000 4 R 6 85 17 0 6 06 066 17 1000 02 D 07 lt 1202 7 C217 Do 1 822 3 3c25 15106 pe 14 0652 6199 R We 0622 Genoese 7 PCLR Dti 8 8 1210990 8726 8 2 12105 05115 00404 54 74HC273 J202 3 D2 13 24 9 001 R8 acz 9 8 0 3 D3 J201 23 01 062 13 24 869 04 04 PCLR lt J202 1 J201 24 1000 15 210121 _ 80102 pcs 151002 992 g 9 os Li 10K 5501555 50 D C4 16 a11 25 11 5 45 15005 810 23 aanta 5 p2 061 pco 2101 59 3501 21 005 17 __ 24222 151004 11 5 2 for p 0 00 DO R221 E D 6 18 1 0652 005
54. 503 12U REF 1 DGND C3 TMONR TOOOPF 1000 lt IMONE ANA lt IMONR 16 13 07 509 C370 15U 01 71057 150 C353 047 500 120 REF IMON UMON gt R319 C332 042 500 R341 IMON 5 11 UR303 1N645 16U UMON S 78501 1 5 CIH TB301 2 IMON e 78301 5 UMON 9 78501 4 R301 AAA TB301 5 COM 100 ctD EXT PROG e TB201 6 TB301 7 VOLT_FLT gt TB301 8 PORT gt I o TB301 9 o 8501 10 RLY COM R302 21 5 Figure 6 1 e 1 6060B 6063B Electronic Load Schematic Sheet 4 of 6 8 2 6 5 4 5 e 1 45 e s A UMON gt R131 C67 R141 22 1744 047 R105 022 2K R136 500 109 2 R53 51 C24 pat ds lz cr A 1 1 047 16 ee 1000 500 i 11 L 06211 15 S P qa D 0 p 7I 10 5 4 C40 I 028 150 ees 047 1 150 500 K 1N645 150 R170 50
55. 5V J201 1252 0268 CONN RECT MICRORBN 24 CKT 24 CONT J202 203 1251 4927 CONN POST TYPE 100 PIN SPCG 16 CONT J553 1252 0056 CONN POST TYPE 156 PIN SPCG 4 CONT J554 1252 0063 CONN POST TYPE 100 PIN SPCG 3 CONT 14 32 9170 1499 5 2 ea 9170 1499 mounted each end of R1 R8 sense resistors 68 Table 5 3 Agilent 6060B 6063B Parts List Electrical continued Description Reference Agilent Part Designation Number 1858 0137 1855 0819 1855 0386 1854 0635 1853 0281 1858 0054 1858 0054 1858 0054 06060 80014 0811 3845 0698 3430 0757 0441 0757 0458 0757 0442 0757 0278 0698 5089 0698 3160 1810 0316 0698 0084 0757 0439 0757 0438 8159 0005 0698 4479 0698 0084 0757 0458 8159 0005 0698 6620 0698 6629 0698 6332 0698 6360 0698 6533 0698 6360 0698 6533 0757 0278 0698 3450 0698 4496 0757 0457 0698 4496 0698 4457 0757 0458 0757 0455 0757 0438 0698 0084 0757 0427 0698 6630 0699 0620 0757 0438 TRANSISTOR FET ASSEMBLY TRANSISTOR FET ASSEMBLY TRANSISTOR 2N4392 N CHAN D MODE TRANSISTOR NPN SI TRANSISTOR PNP 2N2907A TRANSISTOR ARRAY TRANSISTOR ARRAY TRANSISTOR ARRAY RESISTOR 0 050 42 6W RESISTOR 0 3 1 RESISTOR 21 5 1 125W RESISTOR 8 25K 1 125W RESISTOR 51 1K 1 125W RESISTOR 10K 41 125W RESISTOR 1 78 1 125W RESISTOR 33K 1 125W RESISTOR 31 6K 1 125W NETWORK RES 16 DIP 10 0K OHM X 8 RESISTOR 2 15 21 125W RESISTOR 6 81K 1
56. 7 volts to 0 8 volts At an input of 65 volts 6060B 260 volts 6063B diode D13 turns on and holds U8 6 at 0 8 volts and limits the maximum input current capability to less than 11 amps 60608 2 amps 6063B When the input voltage reaches 75 volts 6060B 287 volts 6063B the OV circuit goes to 13V and pulls IPROG low more negative via diode D17 The input power stages will now attempt to sink more current and decrease the input voltage If the combination of input voltage and current power is greater than the power stages can sink when OV condition occurs the overpower circuit see next page will override the OV circuit and limit the maximum current capability of the load The 15VX bias voltage is a delayed bias derived from the normal 15V supply When the load is first turned on 15V is not present and U8 6 is at common potential This causes Q11 to conduct pulling IPROG high Q12 is also on connecting to the 15V bias When 15VX comes Q12 turns off causing U8 6 to go more negative than U8 5 This turns off 011 allowing IPROG to go negative 11 supplies 011 collector current once 15VX is available To troubleshoot the current limit circuit check test points Q2 G3 and using the measurement conditions and readings specified in Table 3 3 SPCLR CIRCUIT OVERPOWER CIRCUIT OVERVOLTAGE CIRCUIT 4 4 De CC CIRCUIT neg Figure3 9 Overcurrent Circuit
57. 9885 Aour 0 011 0 0899 Aour 0 010 CONSTANT VOLTAGE MODE TESTS 239 59 Vour 0 390 2 876 Vour 0 153 TRANSIENT SLEW TEST 10 025 Aout 0 022 1 0115 Aout 0 011 1 0115 Aour 0 011 1 101 Aour 0 010 240 408 Vour 0 390 3 1236 Vour 0 153 CONSTANT RESISTANCE MODE TESTS Troubleshooting Most of the troubleshooting procedures given in this chapter are performed with power applied and protective covers removed Such maintenance should be performed only by service trained personnel who are aware of the hazards for example fire and electrical shock CAUTION This instrument uses components which can be damaged or suffer serious performance degradation as of result of ESD electrostatic discharge Observe the standard anti static precautions to avoid damage to the components Introduction This chapter provides troubleshooting and repair information for the Agilent 6060B and 6063B Electronic Loads Before attempting to troubleshoot the Electronic Load ensure that the problem is with the load itself and not with an associated circuit power source or power line The verification tests in Chapter 2 enable this to be determined without removing the covers from the Electronic Load Overall troubleshooting procedures are provided to isolate a problem to a functional area of circuitry Once a problem has been isolated to a functional area additional troubleshooting procedures are given to isolate the problem to the defect
58. AH2 U301 18 9986 U301 19 7 U301 20 0620 U301 22 unstable U301 23 0000 U301 24 77UA U301 25 U301 26 927H U301 27 15C4 U301 28 3PAF U301 29 4234 U318 11 12 U318 13 14 H82C 39 Table 3 9 Secondary Interface S A Test No 2 Description These signatures check main DAC U320 transient DAC U321 and secondary data bus B latches U319 The signatures are valid U301 firmware revisions Rev A 02 01 Use the test setup described in Test Setup for S A Signatures U319 U320 U321 U319 20 5V U320 20 15V U321 20 15V Common 7319 10 U320 1 3 10 12 18 U321 1 3 10 12 18 SPCLR SD 0 SD 1 SD 2 SD 3 SD 4 SD 5 SD 6 SD 7 SDB 0 SDB SDB 2 08 3 SDB 4 SDB 5 SDB 6 SDB 7 40 U319 1 5V U319 7 UFOA U319 4 AP48 U319 8 U93A U319 3 PO7O U319 17 834A U319 14 8A16 U319 18 1000 U319 13 HO83 U319 6 F592 U319 5 F3P2 J319 9 4461 319 2 SUA2 7319 16 63AU 7319 15 17C1 J319 19 J319 12 P635 U319 11 40 3 U320 7 F592 U320 6 F3P2 U320 5 4461 U320 4 5UA2 U320 16 63AU U320 15 17C1 U320 14 6AOC U320 13 P635 J320 2 57A2 320 17 41AH U320 19 0620 U318 1 U318 2 9986 U318 8 64PC 4 4 4 4 CVG Creve OG 321 7 F592 321 6 F3P2 321 5 4461 321 4 5UA2 321 16 63AU 321 15 1721 321 14 6AOC 321 13 P635 321 2 IUPU 3
59. ANDOFF HEX 33 MM LG M4 0 X 0 7 THD heatsink SCREW MACH M4 X 0 7 8MM LG FETS to heatsink INSULATOR THRM CNDCT for left heatsink BUS BAR NUT HEX W LKWR bus bar to pc board NUT HEX W LKWR M3 X 0 5 2 4MM THK Ref GPIB STANDOFF HEX GP IB connector WASHER LK HLCL J201 THERMAL INTERFACE PAD QI Q2 to heatsink TIE WRAP ac cable CHASSIS SCREW MACH M4 X 0 710MM LG pc board to chassis amp safety ground SCREW MACH MS X 0 8 12MM LG bus bar to binding post LOCKWASHER binding post Ferrite bead kit Reference Part Number Designators 0535 0020 3050 1320 06060 00006 0515 0896 06060 20003 0515 1655 06060 00002 0515 1117 5062 3702 0515 1132 5041 8819 5041 8820 06060 80010 5041 8801 06063 60001 3050 0003 0535 0082 0515 1655 5040 5448 06060 40002 5001 6733 0590 0534 5001 0538 06060 80016 06063 80003 0515 0155 2190 0629 0535 0020 3050 1320 5001 6737 06060 40003 1400 0308 5951 2826 06060 90005 06060 80012 9211 6168 Table 5 4 Agilent 6060B 6063B Parts List Mechanical continued Description NUT binding post WASHER SPRING STEEL binding post BRACKET heatsink SCREW MACH M4 X 0 710MM LG heatsink bracket amp spacer COVER SAFETY RTBI SCREW MACHINE ASSEMBLY M4 X 0 7 12MM LG safety cover amp front frame to ground COVER SCREW MACH 5 X 0 8 10MM LG cover to left side STRAP HANDLE ASSEMBLY SCREW MACH 5 X 0 8 10MM L
60. DMM as shown in Figure 2 2 Take care in making connections so that contact resistance voltage drop will not affect the readings Figure 2 2 Test Setup B b Pres then 60608 s 9 60638 6 emer 11 Set power supply for 6060B 61V and 5A 6063B 250V and 1A Record the DMM and front panel display readings DMM reading should be between 6060B 59 890V and 60 110V 6063B 239 59V and 240 408V Note that the Electronic Load s CV annunciator is on Press Enter f Record the DMM and front panel display readings DMM reading should be between 6060B 2 947V and 3 053V 6063B 2 876V and 3 123V CR Mode Test This test verifies that the Electronic Load operates in the CR Mode and that the resistance programming is within specifications The programmed resistance values are checked by recording the voltage across the current monitor resistor and the input voltage voltage across the Electronic Load s input terminals and then calculating the resistance value as follows Load resistance Input voltage voltage across resistor resistor value Note if the calculation significantly disagrees with the specified range of values perform the CR MODE TEST troubleshooting procedures in Figure 3 1 in Chapter 3 If the calculation is out of tolerance calibrate the applicable resistance range see Chapter 6 in the Operating Manual a 12 Connect the Electronic Load power supply Agilent 6032A 6035A or equi
61. ESISTOR 10K 1 125W R329 0757 0416 RESISTOR 511 1 125W R330 331 0757 0472 RESISTOR 200K 1 125W R332 0757 0280 RESISTOR 1K 1 125W R333 1810 0280 NETWORK RES 10 SIP 10 0K OHM X 9 R334 0698 0084 RESISTOR 2 15K 1 125W R335 0698 3382 RESISTOR 5 49 1 125W R335 0698 3279 RESISTOR 4 99 1 125W R336 0698 4443 RESISTOR 4 53K 41 125W R337 0757 0280 RESISTOR 1K 1 125W R338 0699 0924 RESISTOR 11K 0 1 125W R339 340 0698 6360 RESISTOR 10K 0 1 125W R341 0757 0438 RESISTOR 5 11K 1 125W R342 0757 0449 RESISTOR 20K 1 125W R343 0698 4443 RESISTOR 4 53 1 125W 72 Table 5 3 Agilent 6060B 6063B Parts List Electrical continued Designation Number R344 0757 0449 RESISTOR 20K 1 125W R345 0699 0924 RESISTOR 11K 0 1 125W R346 0698 6533 RESISTOR 12 5K 0 1 125W R347 0757 0438 RESISTOR 5 11K 1 125W R348 0698 8827 RESISTOR 1M 1 125W R349 1810 0280 NETWORK RES 10 SIP 10 0K OHM X 9 R350 0757 0442 RESISTOR 10K 1 125W R351 352 0698 3633 RESISTOR 390 5 2W R353 0699 1797 RESISTOR 10M 1 25W R357 0757 0442 RESISTOR 10K 1 125W R358 0757 0465 RESISTOR 100K 1 125W R359 0699 1254 RESISTOR 536K 1 125W R359 0698 3215 RESISTOR 499K 1 125W R361 362 0757 0442 RESISTOR 10K 1 125W R501 0757 0436 RESISTOR 4 32K 1 125W R502 0698 4443 RESISTOR 4 53K 1 125W R503 0757 0442 RESISTOR 10K 1 125W R504 0757 0280 RESISTOR 1K 1 125W R505 0757 0472 RESISTOR 200K 1 125W R506 0757 0438
62. G strap handle STRAP HANDLE CAP front STRAP HANDLE CAP rear LABEL REAR PANEL FOOT FRONT PANEL ASSEMBLY WASHER NON MATALIC LCD display NUT W LOCKW ASHER front panel ground SCREW MACH 4 0 7 12MM LG front panel to chassis WINDOW LCD display FRONT PANEL FRAME SCREENED FRONT PANEL NUT SELF THREADING LCD display amp keypad SIDE TRIM NAMEPLATE front panel identification NAMEPLATE front panel identification FRONT PANEL OPTION 020 SCREW MACH M5x0 8 12MM LG cable to binding post LOCKWASHER binding post NUT binding post WASHER SPRING STEEL binding post SCREENED FRONT PANEL LABEL PANEL binding post CABLE TIE W5 MISCELLANEOUS OPERATING MANUAL 6060B 6063B PROGRAM GUIDE FLOATER SHIPPING CARTON 77 78 5551 Figure 5 1 Chassis Mounted Component Locations Diagrams Introduction This chapter contains the schematic diagrams test point location diagram component location diagrams and related tabular information useful for maintenance of the Electronic Load For wiring connections to external equipment see the Operating Manual Schematic Diagram Figure 6 1 is the schematic diagram foldout sheets of the Electronic load Notes that apply to all of the schematic sheets are given in Table 6 1 The circled numbers on the schematic sheets show the location of test points used in troubleshooting
63. HIGH gt SDCO 2 gt 55 H L R D 1 9319 V 190 8 5000 7 6 SDB CO 41 4 01 5 5 1 8 9 SDB 2 04 0412 SDB 3 05 05 16 5084 De 0613 SDB S 5006 18 19 space 5002 1308 508 7 724 73 10 159 20 SDB 0 7 VEG SDB 1 6 bt Kis SDB 2 5 02 SDBCz 4 5 1603 04 1 508 7 508 6 508 5 508 4 SDB 3 SDBC2 SDB 1 508 02 R358 UMON 52 150 100 R357 10K ra _ 1 2 C327 042 500 XFER UREF 0111 5 RFB 0110 2 019 1 IOUT1 018 0 DI 016 015 014 ts DGND R340 10K 1 VREF R342 R346 10U REF DRC REF R343 50805 15 4 53 SDB 6 14 50802 13 05 UZ21 UREF UREF OUT2 DGND AGND 10 5 15 VJ d D A 0504 14645 R318 AAA EXT PROG 5 11 D303 1N645 C331 15 047 159 C326 552 500 R348 2047 Ti8ooPF FIN m 500 1000 WRI 18 4 19 81 88 V 17 2 CCD 17 wer 120 REF 150 5 se 13 0111 3 RFB 5006 14 5005 15 0110 2 019 1 10071 5004 16 5003 018 0 DI IOUT2 502 BI SDC1 6 DIS AGND R329 R330 5000 2
64. INP DOWN 1 followed by INPUT DWN Finally the Err annunciator will turn on Depressing the O blue shift key followed by the key will cause ERROR 330 to be displayed Depressing these keys a second time will cause ERROR 240 to be displayed The error code number that appeared for 2 seconds could be one of the following ERROR 104 EEPROM checksum failure ERROR 105 Main DAC tolerance is high ERROR 106 Main DAC tolerance is low ERROR 107 Transient DAC tolerance is high ERROR 108 Transient DAC tolerance is low If error UNKNOWN is displayed the EEPROM U211 must be initialized Table 3 2 Selftest Error Code Error Description The primary microprocessor U203 read write test to the GP IB talker listener chip U202 failed The primary microprocessor U203 test of the internal trigger lines failed Secondary microprocessor U301 internal RAM failure Secondary microprocessor U301 internal ROM failure or thermistor RT 551 missing or open Secondary microprocessor U301 internal timer failure EEPROM U211 checksum error Main DAC circuit U320 U326 zero or full scale point is above the high tolerance level Main DAC circuit U320 U326 zero or full scale point is below the low tolerance level Transient DAC circuit U321 U325 zero or full scale point is above the high tolerance level Transient DAC circuit U321 U325 zero or full scale point is below the low tolerance level Test P
65. LO 8 HI LO LO LO 9 LO HI LO LO 10 HI HI HI LO 11 HI LO HI LO 12 LO HI HI LO CC CV CONTROL CIRCUIT TROUBLESHOOTING Figure 3 5 Depending upon which operating mode and range in the CR mode is selected either the CC or the CV loop controls the conduction of the input power stages If the CC or CR middle and high ranges only mode is selected the EN signal goes low connecting the SLEW signal to the CC control circuit 0308 U6 If the CV or low range only mode is selected the EN signal goes low connecting the SLEW signal to the CV control circuit 0308 U13 The overvoltage OV circuit U10 D17 is also shown on Figure 3 5 When an OV condition is detected the OV circuit generates a negative signal on the PROG signal line via diode D17 which causes the input power stages to increase current flow to attempt to limit input voltage R64 and D18 latch the OV circuit on When activated the OV circuit overrides the CC and CV control circuits Normally the output of U10 7 is held high by the positive bias on input U10 5 This bias is controlled by the output of inverting amplifier U12 7 the output of which varies from 0 to 10 volts as the voltage at the input terminals varies from zero to the rated input voltage When the voltage at the input terminals exceeds the load s rated input the output of U12 7 pulls input U10 5 less positive until 010 5 is less positive than U10 6 This causes the output of U10 7 to go low g
66. MPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE EXCLUSIVE REMEDIES THE REMEDIES PROVIDED HEREIN ARE THE CUSTOMER S SOLE AND EXCLUSIVE REMEDIES AGILENT TECHNOLOGIES SHALL NOT BE LIABLE FOR ANY DIRECT INDIRECT SPECIAL INCIDENTAL OR CONSEQUENTIAL DAMAGES WHETHER BASED ON CONTRACT TORT OR ANY OTHER LEGAL THEORY ASSISTANCE The above statements apply only to the standard product warranty Warranty options extended support contracts product maintenance agreements and customer assistance agreements are also available Contact your nearest Agilent Technologies Sales and Service office for further information on Agilent Technologies full line of Support Programs Copyright 2000 Agilent Technologies Inc All rights Reserved SAFETY SUMMARY The following general safety precautions must be observed during all phases of operation service and repair of this instrument Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design manufacture and intended use of the instrument Agilent Technologies assumes no liability for the customer s failure to comply with these requirements BEFORE APPLYING POWER Verify that the product is set to match the available line voltage and the correct fuse is installed GROUND THE INSTRUMENT This product is a Safety Class 1 instrument provided with a protective earth terminal To minimize shock hazard the ins
67. PC 3101 2828 SWITCH SL DPDT STD 5A 250VAC PC 3101 2828 SWITCH SL DPDT STD 5A 250VAC PC 9100 4718 XFMR PWR 100 120 220 240V IEC 950 9100 4719 XFMR PWR 100 120 220 240V IEC 348 0360 2312 TERMINAL BLOCK 4 TERM 039 IN SQUARE 0360 2348 TERMINAL BLOCK 10 TERM 039 IN SQUARE 1251 4927 CONN POST TYPE 100 PIN SPCG 16 CONT 1251 4926 CONN POST TYPE 100 PIN SPCG 8 CONT 1826 1533 IC OP AMP H SLEW RATE DUAL 8 PIN DIP 1826 2252 IC OP AMP LOW NOISE DUAL 8 PIN DIP 1826 0138 IC COMPARATOR GP QUAD 14 PIN DIP 1826 1533 IC OP AMP H SLEW RATE DUAL 8 PIN DIP 1826 0850 ANALOG SWITCH PIN 1826 0962 IC OP AMP LOW BIAS H IMPD DUAL 8 PIN 1826 1370 IC COMPARATOR QUAD 16 PIN DIP 1826 0346 IC OP AMP GP DUAL 8 PIN DIP 1826 0962 IC OP AMP LOW BIASH IMPD DUAL 8 PIN 1826 2252 IC OP AMP LOW NOISE DUAL 8 PIN DIP 1820 6170 IC GPIB transceiver 75160N 1820 6045 IC GPIB transceiver 75161N 1821 1740 IC GPIB talker listener 1821 3617 IC 8 BIT CMOS MPU W 128 RAM I O IMHz 1820 5978 IC DCDR CMOS AC BIN 3 TO 8 LINE 06063 80004 IC ROM Programmed 1818 3183 IC 64K SRAM 15 NS CMOS 1820 2921 IC INV CMOS HC HEX J208 209 1820 3399 IC FF CMOS HC D TYPE POS EDGE TRIG COM 1820 3297 IC DRVR CMOS HC BUS OCTL 1818 4932 IC 1K EEPROM 250 NS CMOS 1820 4053 IC INV CMOS HC HEX 1990 0996 OPTO ISOLATOR LED IC GATE IF 10MA MAX 1820 3298 IC GATE CMOS HC OR QUAD 2 INP 1820 2922 GATE CMOS HC NAND QUAD 2 INP 1820 3098 IC GATE CMOS HC NOR TPL 3 INP 1820 2998 IC MC74HC373N 5080 2516 IC MPU Masked 1820 3
68. RESISTOR 5 11K 1 125W R507 0698 8827 RESISTOR 1 125W R508 0757 0472 RESISTOR 200K 1 125W R509 0757 0280 RESISTOR 1K 1 125W R510 0757 0442 RESISTOR 10K 1 125W R511 0757 0420 RESISTOR 750 1 125W R512 513 0757 0455 RESISTOR 36 5K 1 125W R514 0698 8672 RESISTOR 243 4 0 1 125W R515 516 0698 0085 RESISTOR 2 61K 1 125W R517 0698 8672 RESISTOR 243 4 0 1 125W R551 0698 0085 RESISTOR 2 61K 1 125W R552 0698 8672 RESISTOR 243 4 0 1 125W R553 0698 3226 RESISTOR 6 49K 1 125W R555 0698 3156 RESISTOR 14 7K 1 125W R556 0757 0442 RESISTOR 10K 1 125W R557 558 0757 0436 RESISTOR 4 32K 1 125W R563 564 0757 0436 RESISTOR 4 32K 1 125W R565 0757 0442 RESISTOR 10K 1 125W R566 567 0757 0472 RESISTOR 200K 1 125W R568 0757 0280 RESISTOR IK 1 125W R569 0698 8827 RESISTOR 1M 1 125W R570 0757 0436 RESISTOR 4 32K 1 125W R571 0698 0084 RESISTOR 2 15K 1 125W R572 0757 0420 RESISTOR 750 1 125W R573 0757 0442 RESISTOR 10K 1 125W R574 575 0757 0455 RESISTOR 36 5K 1 125W R576 577 0757 0458 RESISTOR 51 1K 1 125W Table 5 3 Agilent 6060B 6063B Parts List Electrical continued EE Ne Designation Number R600 0698 8827 RESISTOR 1M 1 125W R601 1810 0278 NETWORK RES 10 SIP 3 3K OHM X 9 RT201 0837 0412 THERMISTOR TUB WITH AXL LEADS 10K OHM RT551 0837 0397 THERMISTOR CYL CHIP 10K OHM RTP201 301 1258 0209 JUMPER REMOVABLE 2 POSITION 250 IN 3101 3012 SWITCH SL DPDT STD 3A 125VAC
69. SA WAVEFORM RT 1386 CHECK SA WAVEFORM RT U30B 1 SEE FIG 3 4 SEE FIG 3 5 WAVEFORM YES FIG 3 5 PND Nero YES muc At 1 PROBABLY DEFECTIVE FIG 3 8 NO NO CHECK SA WAVEFORM AT 13 7 6 SEE FIG 3 4 OR 4348 DEFECTIVE WAVER Of YES TROUBLESHOOT SLEW RT 7 6 OK CIRCUITS FIG 3 4 CHECK SA WAVEFORM AT 6 SEE FIG 3 3 YES OR U331 DEFECTIVE TROUBLESHOOT DAC CIRCUITS FIG 3 3 Figure 3 1 Overall Troubleshooting Flowchart Sheet 2 of 3 IGENERATOR FIG 3 7 AND SLEW CIRCUIT FIG 3 4 TROUBLESHOOT CIRCUIT FIG CHECK WAVEFORM AT TP 21 8 CONNECT SCOPE COMMON TO 3 18 201 SEE FIG 3 2 CHECK PRIMARY INTERFACE BUS F DRESS DECODERS CHIP SELECT ETC SEE TABLES 3 4 THROUGH 3 7 Figure 3 1 Overall Troubleshooting Flowchart Sheet 3 of 3 25 If part 1 passes selftest the test continues and checks the read write cycles and the internal trigger circuit If these tests pass the secondary interface selftest are performed If the read write or internal trigger test fails the front panel displays ERROR x for two seconds then normal voltage current will be displayed and the Err annunciator will turn on Depressing the blue shift key followed by the key will cause ERROR 330 to be displayed If ERROR 4 was display
70. SERVICE MANUAL 300 WATT SINGLE INPUT ELECTRONIC LOADS Agilent Technologies Model 6060B and 6063B For instruments with serial numbers Agilent 6060B US37350101 and up Agilent 6063B US37350101 and up For instruments with higher serial numbers a change page may be included 2 e Agilent Technologies Agilent Part No 5951 2828 Printed in USA Microfiche Part No 5951 2829 Edition 2 February 2000 CERTIFICATION Agilent Technologies certifies that this product met its published specifications at time of shipment from the factory Agilent Technologies further certifies that its calibration measurements are traceable to the United States National Bureau of Standards to the extent allowed by the Bureau s calibration facility and to the calibration facilities of other International Standards Organization members WARRANTY This Agilent Technologies hardware product is warranted against defects in material and workmanship for a period of three years from date of delivery Agilent Technologies software and firmware products which are designated by Agilent Technologies for use with a hardware product and when properly installed on that hardware product are warranted not to fail to execute their programming instructions due to defects in material and workmanship for a period of 90 days from date of delivery During the warranty period Agilent Technologies will at its option either repair or replace products which prove to be defective Agil
71. Troubleshooting 55 Overpower Circuit Troubleshooting Figure 3 10 This circuit limits the power sinking capability of the load to either one to two minutes or 50 milliseconds depending on the temperature of the heatsink assembly The circuit monitors the input voltage and current to determine if an overpower condition exists The circuit consists of amplifier U12 the four comparators U7 and summing resistor pack R123 Signal levels representing the input voltage and current are summed with the 12V reference voltage via resistors to determine if an overpower condition exists The signal levels are scaled to allow different combinations of voltage and current to be compared e g high voltage low current high current low voltage etc If the load is operating in overpower and the EPU bit is false the load may operate in overpower for up to two minutes until the EPU bit goes true If EPU is true the load will only operate in the overpower state for 50 milliseconds before going to power shutdown The EPU bit bit 9 setting is dependent on the temperature of the heatsink assembly To check the status of EPU bit send the string STAT CHAN COND When the overpower circuit is active limiting input power capability the comparator circuit becomes a relaxation oscillator and its output voltage at test point G2 will go between 14V and OV see waveform on Figure 3 10 12V REF Figure 3 10 Overpower Circuit Troubles
72. U202 16 69 1 J202 17 205A U202 18 1427 U202 19 H6C9 J202 20 OOOO common J202 21 23UH 202 22 54A6 J202 23 80AO 202 24 7339 202 25 7339 202 26 7339 J202 27 713F 202 28 7692 202 29 202 30 1253 J202 31 338F 202 32 5363 202 33 6314 202 34 7C2U 7202 35 7435 202 36 7339 202 37 7339 202 38 7339 J202 39 7435 202 40 7339 5 4 4 4 Ge eel CIC 4 4 4 4 4 4 4 4 4 4 4 4 CC C Cic CC C Cc eC C C C Glee eer C 4 36 Table 3 6 Primary Interface S A Test No 3 Description These signatures check the front panel interface IC s U208 U209 U210 and U212 The signatures are valid for 0205 firrnware revision Rev A 02 01 Use the test setup described in Test Setup for S A Connect the signature analyzer s CLOCK input to the chip select line of the IC under test as specified below U208 U212 Drivers Connect CLOCK to U207 11 Signatures 208 3 209 17 U210 18 7 05 208 7 209 0210 16 8P29 208 4 J209 14 J210 14 U864 208 8 209 13 210 12 3P59 208 13 209 8 U210 9 44A9 208 14 J210 7 C4P4 209 4 U210 5 8PUC 209 3 U210 3 2794 4 4 N E 4 CLG J209 1 0961 5V 209 10 J OOOO common 0961 U209 11 U961 U28H 2171 1687 899A 1233 762C 85F9 J208 19 5255 6199 3C52 U212 1 5 9 U212 5 62C5 U212 9 23
73. When working on the Electronic Load observe all standard anti static work practices These include but are not limited to e Working at a static free station such as a table covered with static dissipative laminate or with an Agilent 9300 0797 conductive table mat e Using a conductive wrist strap such as Agilent 9300 0969 or Agilent 9300 0970 Grounding all metal equipment at the station to a single common ground Connecting low impedance test equipment to static sensitive components only when those components have power applied to them e Removing power from the Electronic Load before removing or installing components Verification Introduction This chapter contains test procedures that check the operation and calibration of the Agilent 6060B and 6063B Electronic Loads The tests are performed from the front panel and can be used to determine which circuits are faulty when troubleshooting There are some transient trigger and pulse functions that require a GP IB controller and will not be verified with manual testing from the front panel The following tests will verify with a high level of confidence that the Electronic Load is operating properly without testing all of its capabilities At the end of this chapter are performance record tables where actual measured values can be recorded Test Equipment Required Table 2 1 lists the test equipment required to perform the tests in this chapter Test setups for the tests are sho
74. a CAUTION sign until the indicated conditions are fully understood and met DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT Because of the danger of introducing additional hazards do not install substitute parts or perform any unauthorized modification to the instrument Return the instrument to an Agilent Technologies Sales and Service Office for service and repair to ensure that safety features are maintained Instruments which appear damaged or defective should be made inoperative and secured against unintended operation until they can be repaired by qualified service personnel Table of Contents INtrOduction 7 SCOPE er d 7 Related Documents pee hie ieee did 7 Firmware Revisions o ERO pO auis uda eae ean ipa 7 Manual Revisions ER 7 Safety ConsIderdtlOlss a E cU ELI 8 Irene ABI 8 MOuviicum m 9 Introduction RS eoe 9 Test Equipment Required ee Wee RE 9 CGC Mode Test zn cete Rt EE EE E RR eR 10 Mode Fest a 11 Mode ME o 12 Transient Operation and Slew Circuit Test e gesendet de EG ERR A C e RU
75. a admi eo 5 61 H CATS SR MET CETT Nas ee 60 63 G gress MCI 58 61 InittalrzatiOn z 57 Input pOWer ode mt ER Reb RES EE eT eno ERG 50 64 Int r sheet Connections orte rn eee Ree EH een eA pen d ee tei eee 79 82 Tritra sheet connections ieu ab nee dee lu bete 79 84 Isol tors WE ENT EN e e RUE E REG 61 K LCD display 59 59 M Manual tates ele 7 0 2 eiin tede aede eie EEE EE E ER 21 COV CT CUNT eME 55 64 ENE TNA EEEE EERTE 56 64 P BARRA e oA Mee ROSA RRR AA Me BA Re hon eA 15 PARES 65 76 omnee oe eve ea ie teeth i Ere 60 limit seen ee diede 15 56 Primary interface eee ee to td 22 61 Protection rr rer rm eee eso hein 64 R Readback ecd RD nodal n uote dni 64 Related doc imernts 4 352 ce RE e
76. a lines at U310 and U311 see Table 3 10 Check for the presence of the IMHz clock signal at U313 1 U312 1 U316 13 and U315 4 12 see Figure 3 7 Next perform the front panel actions indicated in the Checkout table using a scope and logic probe to monitor the results Make sure that the unit is at the factory default setting of 1000Hz 50 duty cycle Transient Generator Frequency If the transient generator will not change frequency press TRAN ON on the front panel and program the transient frequencies according to the FSEL table Check FSEL inputs at U316 1 2 3 with a logic probe Check the lus pulse intervals at U312 14 and U316 14 with a scope FSEL TABLE Front Panel FSEL INPUTS interval between 1s pulses Frequency 0 1 2 U312 14 U316 14 10000Hz LO LO LO LO 50us 1000Hz HI LO LO 10us 500 5 100Hz LO HI LO 100us 5ms 10Hz HI HI LO 1118 50ms 1Hz LO LO HI 10ms 500ms Toggle or Pulse Modes To check the transient generator in toggle and pulse modes run the following program 10 LOOP 20 OUTPUT 705 TRAN ON TRAN MODE TOGG 30 DISP TRAN MODE TOGG 40 PAUSE 50 OUTPUT 705 TRAN MODE PULS 60 DISP TRAN MODE PULS 70 PAUSE 80 END LOOP 90 END 51 330 4 330 NVHL HOIH NO HDIH N3NYUL NO 3GON 319901 319901 27484 NOILOSTAS 4 1 1383 01354 ONILLAS
77. ag next to SPCLR in area 7D indicates that this signal is coming from another sheet By referring to Table 6 2 you can find that SPCLR originates on sheet 1 and is also applied to sheets 3 4 and 5 79 Test Point Locations Figure 6 2 is a foldout diagram that illustrates the location of 45 test points on the main circuit board The test points are described in Table 3 3 and are used in various troubleshooting procedures provided in Chapter 3 Component Location Diagram Figure 6 2 is a foldout diagram that will aid you in locating electrical components on the main board assembly The diagram is divided into a numerical matrix of columns and rows Table 5 4 gives the part number and description of each electrical part Table 6 1 Schematic Diagram Notes 1 All resistors are in ohms 1 1 8 W unless otherwise specified 2 All capacitors are in microfarads unless otherwise specified 3 All unmarked capacitors are 0 0471 4 An asterisk negates a signal name For example CS2 appears on the schematic as CS2 5 Signal lines that are terminated by flags continue on other sheets see Table 6 2 Note that flags do not indicate signal flow direction SPCLR 6 Unterminated signal lines simply go to another location of same schematic sheet see Table 6 3 The following is an example of such a signal TRIG 7 Values of resistors and capacitors that are enclosed by a heavy rectangle L apply to model 6060B only
78. are identified by a two part ten character serial number such as 2847A 00101 The first five characters e g 2847A are the serial prefix which is the same for all identically made instruments The last five digits e g 00101 is a unique serial number assigned to each instrument If a significant design change is made the prefix changes but the last five numbers continue in sequence This manual was written for Electronic Loads with the same serial prefix and with serial numbers equal to or higher than the ones shown on the title page If the prefix number of your Electronic Load is higher than the one on the title page then the Electronic Load was made after publication of the manual and may have hardware and or firmware differences not covered in this manual If there are such differences they are documented in one or more Manual Changes sheets sent with the manual Safety Considerations The Electronic Load is a Safety Class 1 instrument that has a protective earth terminal Refer to the Safety Summary page at the beginning of this manual for a summary of general safety procedures and the meaning of safety symbols in the manual and on the Electronic Load Electrostatic Discharge The Electronic Load has components that can be damaged by ESD electrostatic discharge Failure to CAUTION observe standard anti static practices can result in serious degradation of performance even when complete failure does not occur
79. cessor via the readback DAC as previously described The OC circuit limits the load s input current to a value within its rating The circuit is set at a value slightly above the current rating of the supply The circuit is also activated to limit input current when an overpower condition occurs and at power turn on In addition the load allows the user to define a current protection limit in software see Operating Manual Turn On Clear Circuit This circuit ensures that the input stages are held off non conducting when power is initially turned on After the load s circuits have stabilized the input power stages are turned on This circuit also generates the signal to clear the OV circuit as described above Input Power Stages There are eight input power stages connected in parallel Each stage consists mainly of a power FET an error amplifier and an input current monitor amplifier Each FET is connected across the load s and INPUT terminals along with a 15A fuse and current monitoring resistor Depending upon the value of the IPROG signal from the CC CV control circuits and the value of the input current the error amplifier in each stage produces an error signal which will cause each FET to increase or decrease current flow The eight input power FET stages are controlled in accordance with the selected mode of operation In the CC mode the input power stages will sink a current in accordance with the programmed value of current regar
80. ction cR nee ne ente eg aioe can se REM 61 IJEES PHI REPERI PR 61 Primary Interface 61 Front Panel iet Saeed ENS Soh 61 Isolator S 63 Secondary Interface Ed MUNI E RI kde 63 DACs and Slew Rat Control eet ca 63 COCV Control cM 63 Protection Circuits gu ERE CU ENG EG e RE dO VERUS 64 Sonet ever eret este 64 Input POWERS LAG CS es eet MR wy satay van gure cei t E pi LA dest Eu cute 64 Replaceable 65 da MALA E T EA 65 HOw Order Parts 4 A unio bh Ge Ae ES et A 65 79 Introduction iet ct ete estere RR Mo ee EE 79 Schematic Diagram x RT ede e e Riad hn ete ena aiat 79 Inter Sheet Connect ons ES REUS 79 Intra Sheet 79 MO CAtIONS Ys ERR T 80 Component Location Dia gratin aad Ae 80 Manual Backdating
81. d by the primary microprocessor 0203 and starts when the primary clear PCLR signal goes false High First the RAM ROM and the microprocessor s internal timer selftests are performed If any of these tests fail the front panel display will probably remain blank The failure can be detected by measuring a square wave on the SA GATE line at TP201 8 see Figure 3 2 The type of failure is indicated as follows 10Hz square wave indicates a RAM failure 100Hz square wave indicates a ROM failure 1KHz square wave indicates an internal timer failure Square waves will not have a 50 duty cycle It is also possible for a selftest failure to lock up the microprocessor and cause a blank front panel display and no error square wave to appear on the SA line If lock up occurs try to isolate the problem by performing the Primary Interface S A Tests or by replacing U203 22 TURN OFF LORD DISCONNECT POWER SOURCE FROM LORD S INPUT TERMINALS MAKE SURE THE SENSE SWITCH ON LORD S REPR IS IN THE LCL POSITION TURN ON LORD lt gt YES TURN OFF LORD AND REMOVE TOP COVER MAKE SURE THAT JUMPER IS INSTALLED BETWEEN AND TP201 8 NORMAL STORAGE POSITION SEE FIGS 3 2 AND 5 3 MOVE JUMPERS TO NORMAL POSITIONS TURN ON LOAD AND START OVER TURN OFF LORD AND REMOVE TOP COVER TURN ON LORD AND TROLIBLESHOOT SUPPLY PND SPEED CONTROL CIRCUIT SEE Test POINTS aw
82. d e 9 R77 9 306 Lo i d oooooooooo MM 99 o a D lols 99 99 ELS unos oA 9 9 uS Dill 61 6666000 ola 09990 odo T 24 2424 25 999 7777 00000000 50 con ero DMM IMON A a TNI v 2 299 g 7 05 olo IN Mns usas RUN Ne es bs m 9540 Q12 joo Ore oz 500005005 Ll lale 4 0000 Ede 00000000 2 4454 22250 2252455 9T 9999909 21122122226 ETT A 222 E RE a 0000 oo b Lese fay 0509 D D U321 0331 015 1 444 R1 25 leol 5555554 o 00000000 9000 510000000000 0050 211 a 41 9000 TT 297799 ayl mj 9 SIR L oo xiyol 01 5 0326 0520 IN 4655544 2 4242 6 5555 5555555555 7 ro 9 o Q usos le abel S ox i i R8 5 9 fran 9319 2000000000 o 0000000000 coed Rios 54 5 J2
83. dless of the input voltage In the CR mode the input power stages will sink a current linearly proportional to the input voltage in accordance with the programmed resistance value In the CV mode the input stages will attempt to sink enough current to control the source voltage to the programmed voltage level The UNREG signal which is sent back to the secondary processor indicates if the power input stages are unregulated The TURN ON signal is held off low at power on to prevent the input stages from conducting as previously described 64 Replaceable Parts Introduction Tables 5 3 lists the electrical components and Table 5 4 lists the mechanical components for the Agilent 6060B and 6063B Electronic Loads These tables provide the following information e Reference designation see Table 5 1 Agilent part number Description of part see Table 5 2 Refer to Figures 5 1 and 6 2 for component locations Table 5 1 Reference Designators Assembly Removable Terminal Block Blower Removable Jumper Capacitor Switch Diode Transformer Fuse Terminal Block Terminal Jack Terminal Binding Post Mechanical Part Test Pin Terminal Plug Integrated Circuit Transistor Voltage Regulator Thermal Resistor Cable Assembly Oscillator ov m ocow AL Aluminum Polyester CC Carbon Composition Power Dissipation CER Ceramic Polypropylene DIP Dual In Line Package Power DPDT Double Pole Double Throw Rectifier FXD Fixed Single In Line Package
84. e equal to 6060B DMM reading in amps DMM reading in amps X 0 0005 0 065 6063B DMM reading in amps DMM reading in amps X 0 0012 0 010 If the test readings significantly disagree with the specified values or no readings can be recorded perform the CC MODE TEST troubleshooting procedures in Figure 3 1 in Chapter 3 If the readings are out of tolerance calibrate the applicable current range see Chapter 6 in the Operating Manual a Connect the Electronic Load power supply Agilent 603 1 6032 or equivalent DMM and the 0 010 ohm 60608 or 0 100 ohm 60638 current monitor resistor as shown in Figure 2 1 OSCILLOSCOPE CURRENT MONITOR RESISTOR ELECTRONIC LORD Figure 2 1 Test Setup A b Turn on the Electronic Load c Check the high amp current range as follows 10 Press MODE ner then s ener 60638 0 2 Turn on power supply and set for 6060B 5V and gt 60A 6063B 5V and gt 10A 3 Wait 30 seconds and then record the DMM and front panel display readings DMM reading should be between 6060B 598 7mV 59 865 and 601 3mV 60 135 6063B 997 5mV 9 975A and 1 002 V 10 025 Note that the Electronic Load s CC annunicator is on 4 Press CURR 0 Eme 5 Wait 30 seconds then record the DMM and front panel display readings DMM reading should be between 6060B 9 24mV 0 924A and 10 761mV 1 076A 606
85. ed for 2 seconds the read write test failed If ERROR 5 was displayed for 2 seconds the internal trigger test failed Secondary Interface The turn on selftest sequence of the secondary microprocessor consists of two parts 1 The selftest is performed by the secondary microprocessor U301 and starts when the secondary power clear SPCLR signal goes false High Any secondary failures are reported to the primary interface The secondary microprocessor will first check its internal RAM ROM and timer If one of these tests fail selftest is halted and the following will be displayed ERROR 101 RAM failure ERROR 102 ROM failure ERROR 103 Timer failure It is possible for a secondary RAM ROM or Timer failure to lock up the secondary processor and no secondary error number is reported If this occurs try to isolate the problem by performing the Secondary Interface S A 2 26 If part 1 passes selftest the test continues by checking the secondary EEPROM which stores the load s GP IB address and model number as well as the constants used in calibrating the load Next the operation and accuracy of the main and transient DACS are tested If these tests pass the volts amps readings will appear on the display indicating that the selftest has been successfully completed see Chapter 3 in the Operating Manual If the EEPROM or any of the DAC tests fail the front panel displays ERROR xxx for 2 seconds then
86. ed from the factory If the main PC board assembly or the EEPROM chip U211 is replaced the load must be reinitialized with the proper constants by programming the following commands in the order indicated After it has been initialized the Electronic Load must be recalibrated as described in Chapter 6 of the Operating Manual DIAG CAL 28 17804 DIAG CAL 29 17804 voltage for soft over power current for soft over power 6060B CAL 1 turn calibration mode on CAL INIT 60 60 initialize default calibration parameters CAL SAVE store calibration constants in EEROM DIAG CAL 0 6060 model number DIAG CAL 1 16901 model number suffix and GP IB address 5 DIAG CAL 21 0 initial SRE value DIAG CAL 22 0 initial ESE value DIAG CAL 23 1 initial PSE value DIAG CAL 26 1 module width 6060 1 CHANNEL DIAG CAL 27 1 module type RST reset factory default state CURR SLEW 1 0E6 turn on slew rate SAV 0 to location 0 CAL 0 turn calibration mode off 57 6063B CAL 1 turn calibration mode on CAL INIT 240 60 initialize default calibration parameters CAL SAVE store calibration constants in EEROM DIAG CAL 0 6063 model number DIAG CAL 1 16901 model number suffix and GP IB address 5 DIAG CAL 21 0 initial SRE value DIAG CAL 22 0 initial ESE value DIAG CAL 23 1 initial PSE value DIAG CAL 26 1 module width 6063 1 CHANNEL DIAG CAL 27 1 module
87. ed in the S A mode Removing RTP201 takes the microprocessor out of the S A mode 5 and 6 With jumper RTP201 installed between these pins the primary interface microprocessor will ignore calibration commands providing security against unauthorized calibration With RTP201 removed the microprocessor will respond to calibration commands 7 and 8 S A gate test points normal operating storage position for RTP201 9 thru 16 Test points for the chip select signals CSPO through CSP7 As shipped from the factory jumper RTP201 is installed between TP201 pins 7 and 8 Both of these pins are connected to the primary S A gate signal which is used as the start stop signal when taking signatures during primary S A testing See Test Setup for S A Secondary Test Header Description TP301 Pins 1 and 2 With jumper RTP301 installed between these pins the secondary microprocessor is placed in the S A mode Removing RTP301 takes the microprocessor out of the S A mode 3 and 4 S A gate test points normal operating storage position for RTP301 5 7 With RTP301 installed between these pins the secondary microprocessor will skip selftest at power on With RTP301 removed the selftest will be performed 6 Connected to secondary common 8 5V secondary test point As shipped from the factory jumper RTP301 is installed between pins 3 and 4 Both of these pins are connected to the secondary S A gate signal which is used as the star
88. enerating the negative signal on the PROG line To troubleshoot the CV or CC circuits place the Electronic Load in the S A mode by connecting the jumpers in test headers TP201 and TP301 in the S A mode positions see Figure 3 2 The waveforms shown in Figure 3 5 can only be generated when S A mode is on If the waveforms are correct but a problem exists troubleshoot the input power stages as described in the next section If the waveforms are incorrect turn off the S A mode remove jumpers and check that the CC and CV switches in U340 are operating properly Ifthe ENor EN input is LO the applicable switch should be closed You can use S A Table 3 10 to check the EN or EN signals Next check test points through G2 using the measurement conditions specified in Table 3 3 Also check test points 2 and 12V ref If both the CC and CV control loops have problems there may be another circuit affecting the CC and CV circuits Troubleshoot the input power stages current limit and power limit circuits as described in subsequent sections 46 SA WAVEFORM SA WAVEFORM 1 5 01 07 6 04 V DIV AC COUPLED SLEW RATE 1 10m8 Dtv 0306 1 SLEW 9 C SLW 0 5 SLEW RATE 11 1045 DIV V306 1 C SLW 2 5 Figure 3 4A Slew Circuits Troubleshooting for 6060B 47 SA WAVEFORM SA WAVEFORM 1mS DIV fmS Dtv 4307 6 U306 7
89. ent Technologies does not warrant that the operation of the software firmware or hardware shall be uninterrupted or error free For warranty service with the exception of warranty options this product must be returned to a service facility designated by Agilent Technologies Customer shall prepay shipping charges by and shall pay all duty and taxes for products returned to Agilent Technologies for warranty service Except for products returned to Customer from another country Agilent Technologies shall pay for return of products to Customer Warranty services outside the country of initial purchase are included in Agilent Technologies product price only if Customer pays Agilent Technologies international prices defined as destination local currency price or U S or Geneva Export price If Agilent Technologies is unable within a reasonable time to repair or replace any product to condition as warranted the Customer shall be entitled to a refund of the purchase price upon return of the product to Agilent Technologies LIMITATION OF WARRANTY The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by the Customer Customer supplied software or interfacing unauthorized modification or misuse operation outside of the environmental specifications for the product or improper site preparation and maintenance NO OTHER WARRANTY IS EXPRESSED OR IMPLIED AGILENT TECHNOLOGIES SPECIFICALLY DISCLAIMS THE I
90. eshooting If the unit has failed selftest by reporting an error 105 108 at turn on and no problem can be found using S A the IMON adjustment may be at fault Refer to POST REPAIR CALIBRATION and perform the IMON Adjustment Also check if the switches in U309 are operating properly Turn off the S A mode by removing the jumpers Now check test points 2 3 using the measurement conditions specified in Table 3 3 A switch should close when the applicable test point is a Low level If the switches are operating properly check test points IMON 5 10V and 32 If all signatures and test points check out the DAC or amplifier that is generating the incorrect waveform is probably faulty Slew Circuit Troubleshooting Figure 3 4 This circuit consists primarily of three operational amplifier stages U306 and U307 and four analog switches U317 The four switches determine the slew rate by selecting loop gain and response time combinations The switches are controlled by the SLW1 SLW4 signals to provide 12 slew rates To troubleshoot the slew circuit place the Electronic Load in the S A mode by connecting the jumpers in test headers TP201 and TP301 in the S A mode positions see Figure 3 2 The S A waveforms at the top of Figure 3 4 can only be generated when the S A mode is on If the S A waveforms are incorrect check SDBO 7 data inputs to U305 and the SLW signal outputs from U305 using S A Table
91. front panel 4 Ifthe Electronic Load has optional front panel binding posts remove the two screws securing the bus wires to the front panel binding posts 5 Remove the two small plastic covers on the sides of the front panel 6 Remove two screws securing front panel to chassis and remove the front panel Keypad 1 Remove the front panel 2 Remove the six nuts securing the keypad to the front panel and remove the keypad pc board 3 The keypad comes out when the pc board is removed CAUTION The keypad cable connector located on the keypad pc board is fragile Only remove the cable from the board if replacing the board or cable When reinstalling the cable be sure to line up the cable stripe over the hole marked with a square LCD Display and Window 1 Remove the front panel 2 Remove the two nuts securing the LCD display to the front panel and remove the LCD display 3 display window comes out when the display is removed CAUTION The display cable connector located on the back of the display is fragile Only remove the cable from the display if replacing the display or cable When reinstalling the cable be sure to line up the cable stripe over the hole marked with a square Line Switch 1 For easier access to the switch remove front panel 2 Record the color code and location of each wire connected to the switch 3 Disconnect the wires from switch terminals 4 Release the locking tabs by pressing them
92. fter the second pause in the program PROGRAM 2 10 OUTPUT 705 CURR LEV TRIG 5 20 OUTPUT 705 TRIG SOUR BUS 30 PAUSE 40 OUTPUT 705 TRG ON TRIG 50 PAUSE 60 OUTPUT 705 CURR 1 ON LEV 70 END You can also use S A Table 3 7 to check operation of the primary trigger circuit NOTE ARROWS INDICATE DIRECTION OF PULSES FROM FROM u33e s 08321 18 TRIG 4 TRIG EN FROM 0228 2 Figure 3 8 Trigger Circuit Troubleshooting 54 Overcurrent Circuit Troubleshooting Figure 3 9 This circuit limits the maximum current the load can sink for different input voltage and or power conditions The primary components in this circuit are amplifier U8 and transistors Q11 and Q12 At power the secondary power clear SPCLR signal provides a High level via D9 to drive U8 7 Low turning Q11 on With Q11 turned on IPROG goes High less negative and turns off the input power FETs load will not sink current When the input voltage is about 6 3V 60608 40V 60638 or lower diode D6 is forward biased causing voltage divider R58 R72 R59 and R42 to hold U8 6 at approximately 7V This clamps the maximum input current capability between 45 and 66 amps 6060B 10 and 11 amps 6063B As the input voltage increases from 6 3 to 65 volts 6060B 40 to 260 volts 6063B diode D16 is reversed biased and the input voltage will appear across the voltage divider This causes the voltage at U8 6 to decrease from
93. he Electronic Load resistance The result should be between 6060B 24 1 and 39 6 ohms 6063B 433 and 590 ohms 4 Then press Exe 1 6063B emer 5 Measure the voltage across the monitor resistor and across the input terminals then calculate the Electronic Load resistance The result should be between 6060B 0 989 and 1 011 ohms 6063B 23 75 and 24 25 ohms Check the high ohms range as follows 1 Press aue i 9 9 Cite CREST 1 2 9 v RES 1 1 2 9 then RES 2 9 9 2 Set power source for 6060B 60V and 6A 6063B 240V and 2A 3 Measure the voltage across the monitor resistor and across the input terminals then calculate the Electronic Load resistance Calculation should be between 6060B 61 1 and 3243 ohms 6063B 1247 and 5037 ohms 4 Then press RES Exe 1 6063B RES 6 5 Measure the voltage across the monitor resistor and across the input terminals then calculate the Electronic Load resistance The result should be between 6060B 10 9 and 13 3 ohms 6063B 223 and 259 ohms _ 3 Transient Operation and Slew Circuit Test This test verifies transient and slew circuit operation The slew circuits cannot be calibrated If slew rise time and or fall time are not within specifications or the slew circuits are inoperative perform either the Transient Generator Troubles
94. hooting Troubleshooting the power limit circuit consists of checking test points G2 85 and using the measurement conditions and readings specified in table 3 3 Also check the 12V reference the U7 comparator resistor pack R123 and temperature monitor circuit RT551 0327 56 Post Repair Calibration Calibration is required annually and whenever certain components are replaced If certain control circuit components US U6 U13 U306 308 U320 323 U325 U326 U329 U331 are replaced the Electronic Load must be recalibrated as described in Chapter 6 of the Operating Manual If any input power stage component see Figure 6 1 sheet 6 is replaced the Current Monitor IMON circuit must be recalibrated The IMON adjustment procedure is as follows a Turn load off disconnect any connections to the input terminals remove top cover b Connect DMM between the IMON adjustment test points shown on Figure 6 2 Turn Electronic Load on and adjust R155 see Figure 6 2 for a reading of 0 0 5 millivolts on the DMM If the serial EEPROM chip U211 is replaced the Electronic Load must be initialized first and then recalibrated EEPROM Initialization Serial EEPROM chip U211 stores the Electronic Load s GP IB address and model number as well as other constants These constants are required to program the load correctly and to calibrate the load The load was initialized the EEPROM programmed with the proper constants before the load was shipp
95. hooting or the Slew Circuit Troubleshooting in Chapter 3 a Use the test setup of Figure 2 1 except connect an oscilloscope across the 0 100 current monitor resistor in place of the DMM Set power supply for 6060B 10V and 10A 6063B 10V and 15A b Recall the factory default values by pressing Rel 7 c Select the low current range by pressing Range 6 Eme d Setup transient operation by pressing then 60608 S 6063B A E 9 Set the slew rate by pressing ____ blue shift key then 6060 o LJ o then Tran on off 6063B 0 hen Tran f Adjust the oscilloscope for a single rise or fall time display Use delayed sweep The rise time when measures from 10 to 90 or the fall time when measured from 90 to 10 should be between 60 and 100uUs Note that the Electronic Load s Tran annunciator is on 20us DIV 6060B SLEW 0 05 6063B SLEW 0 083 g Set the slew rate by pressing blue shift key then 60605 0 LJ 0 0 Enter then 6063B 9 LJ 0 9 Enter then 6 0 Enter h Adjust the oscilloscope for a single rise or fall time display Use delayed sweep The rise time when measures from 10 to 90 or the fall time when measured from 90 to 10 should be between 1 2 and 2 0ms 14 CC Mode PARD Test CC mode PARD periodic and random deviations is specified as the rms inpu
96. inward against the body of the switch and remove the switch 59 Heat Sinks Follow the same procedure for each heat sink 1 Remove the six screws securing the heatsink cover and remove the cover 2 Remove the fan 3 Remove the two screws securing the heat sink to the pc board 4 Remove the three screws securing Q1 or Q2 to the heat sink and remove the heat sink Note When reinstalling the heat sink remember to install the plastic spacer between the heatsinks PC Board 1 Remove the six screws securing the heatsink cover and remove the cover 2 Disconnect the keypad cable from J203 the display cable from J202 and the power cable from J553 3 Disconnect push on connectors from the ac receptacle record the color code and location of each wire connected to receptacle 4 Remove the two screws securing the bus bars to the binding posts 5 Remove the two hex standoffs securing the GP IB receptacle to the chassis 6 Remove the two quick disconnect terminal blocks 7 Remove the five screws securing the pc board to the bottom of the chassis and remove the pc board FETs Q1 and Q2 Power FETs Q1 and Q2 are comprised of subassemblies containing four FETs each f any one of the four FETs fail the entire subassembly must be replaced 1 For easier access to subassemblies remove the six screws securing the heatsink cover and remove the cover 2 Cutthe leads three from each FET close to the FET bodies 3 Remove the
97. ive component s If a component is found to be defective replace it and then conduct the verification tests given in Chapter 2 Note that when certain components are replaced the load must be recalibrated see Post Repair Calibration later in this chapter If the serial EEPROM chip U211 is replaced the Electronic Load must be initialized before it is recalibrated See EEPROM Initialization later in this chapter Chapter 5 in this manual lists all of the replaceable parts for the Electronic Load Test Equipment Required Table 3 1 lists the test equipment required to troubleshoot the Electronic Load Recommended models are listed Overall Troubleshooting Procedures Overall troubleshooting procedures for the Electronic Load are given in the flowchart of Figure 3 1 The procedures first ensure that an ac input failure or bias supply failure are not causing the problem and that the load passes the turn on selftest no error messages The normal turn on selftest indications are described in Chapter 3 of the Operating Manual If the load passes selftest Figure 3 1 directs you to perform the front panel verification procedures in Chapter 2 to determine if any load function s are not calibrated or are not operating properly If the load passes the front panel verification tests Figure 3 1 checks to see if the load can be programmed from a GP IB controller If the load fails any of the tests you are directed to the applicable troubleshooting
98. lay and status annunciators The LCD normally displays the load s actual input voltage and input current or the computed power value When programming from the front panel keypad the function being programmed and the present value will be displayed The annunciators give GP IB and Electronic Load status information The keypad allows control of the load s system functions as well as control the load s input Note that the load s GP IB address must be set via the front panel it cannot be set via the GP IB Detailed instructions on using the front panel are given in the Operating Manual 61 078 79IJ JHL YANN 5 9318120559 SI WOW NI SOLON 5 TOYLNOD 3 7051405 3189 MJS 329 4831NI 0402 15 ONIWHHYDONd sna 73 1183JHd 550191051 NOWWOD 0807 2140415373 01 932434333 Adans OU AMBHIMU UUdA3 ONY ABSI 19033 3OU JH3J1NI Yd OH ENOO 05 4701 SISSHHO OL 9354343433 Figure 4 1 Agilent 6060A Electronic Load Block Diagram 62 Isolators Data is transferred serially between the primary interface and the secondary interface via optical isolators As described above the primary interface
99. lue shift key and then the 9 key and note the word FAN appears on the display Now press the number key 0 3 specified below press key and take the measurement Repeat this procedure for each fan speed FAN 0 14 7V 0 8 FAN 1 10 7 0 6V FAN 2 12 8V 0 8 FAN 3 9 7V 0 5 5 U213 7 SRX SRX Secondary receive serial data line Toggles between 0 and 5V U214 3 STX STX Secondary transmit serial data line Toggles between 0 and 5V U308 1 CV PROG In VOLT MODE 10V with full rated voltage programmed 0 5V with 3 volts programmed 6060B or with 12 volts programmed 6063B In CURR MODE or RES MODE middle and high ohm ranges 13V In RES MODE low ohm range lt 1V 28 Table 3 3 Test Points continued Test Point Measurement and Conditions Number U308 7 CC PROG In CURR MODE 10V with full rated current programmed In VOLT MODE RES MODE low ohm range or with INPUT OFF 0 5V In RES MODE middle and high ohm ranges 0 to 10V depending upon resistance value programmed U316 10 TRANS High level with transient operation programmed on TRAN ON Low level with transient operation programmed off TRAN OFF U331 1 SLEW In CURR MODE 10V with full rated current programmed with zero current programmed In VOLT MODE 10V with full rated voltage programmed with zero voltage programmed U309 8 DAC_REF Low level in CURR or VOLT MODE High level in
100. ncy sebi 3 ae OY pt Pme 5 7272 ee analog D digital nx signal origin 83 Table 6 3 Schematic Diagram Intra Sheet Signals continued 505152 Cip selee decoder E E _ up Stew iret swich conor SUN Swisscom swich conor 7 Secondary cieutpoweron ler Embesswheh E STB EmecipsderdeskrD 3 Er rvs ip SA start stop D input for 1 0 range Voltage monitor to Etnies A VREF Voltage reference for DACs A Electrical connection n o Input Input e Overvoltage reference Vo UNREG UNREG Input to overshoot circuits A Input A Input A A analog D digital nx signal origin aK 2l lo o a 28 8 5 7D 4B 84 C551 T2200PF 250U SH a csse 2200PF 2504 C553 22 2500 gt 7553 4 LINE SWITCH REAR VIEW 5040 5 5 5 552 2 555 1
101. nited States Agilent Technologies Test and Measurement Call Center P O Box 4026 Englewood CO 80155 4026 tel 1 800 452 4844 Canada Agilent Technologies Canada Inc 5150 Spectrum Way Mississauga Ontario 5GI tel 1 877 894 4414 Europe Agilent Technologies Test amp Measurement European Marketing Organisation P O Box 999 1180 AZ Amstelveen The Netherlands tel 31 20 547 9999 Japan Agilent Technologies Japan Ltd Measurement Assistance Center 9 1 Takakura Cho Hachioji Shi Tokyo 192 8510 Japan tel 81 426 56 7832 fax 81 426 56 7840 Technical data is subject to change Latin America Agilent Technologies Latin American Region Headquarters 5200 Blue Lagoon Drive Suite 950 Miami Florida 33126 U S A tel 305 267 4245 fax 305 267 4286 Australia New Zealand Agilent Technologies Australia Pty Ltd 347 Burwood Highway Forest Hill Victoria 3131 tel 1 800 629 485 Australia fax 61 3 9272 0749 tel 0 800 738 378 New Zealand fax 64 4 802 6881 Asia Pacific Agilent Technologies 24 F Cityplaza One 1111 King s Road Taikoo Shing Hong Kong tel 852 3197 7777 fax 852 2506 9284
102. nt Test Equipment Used Model No Trace No Agilent 3458A 0 Agilent 54504A Agilent 6031A Agilent 6032A Guildline 9230 15 Guildline 9230 100 Cal Due Date 17 PERFORMANCE TEST RECORD Agilent 6060B ELECTRONIC LOAD Page 2 of 2 Model Agilent 6060B Report No Date Test Description Minimum Maximum Measurement Specification Specification Uncertainty CONSTANT CURRENT MODE TESTS 60 Ampere Range Programming and Readback High Current 60A Front Panel Display Low Current 1A Front Panel Display 6 Ampere Range Programming and Readback High Current 6A Front Panel Display Low Current 1A Front Panel Display Voltage Programming and Readback High Voltage 60V Front Panel Display Low Voltage 3V Front Panel Display Low Resistance Range Resistance 1 Q Resistance 0 05Q Middle Resistance Range Resistance 30Q Resistance 1 Q High Resistance Range Resistance 120 2 Resistance 1202 Fast Slew Transient Slew Rate 0 05 15 Slew Rate 2 5 A us Current 10A 18 59 865 Aour 0 095 0 924 Aout 0 065 5 919 Aout 0 068 0 924 Aout 0 065 CONSTANT VOLTAGE MODE TESTS 59 890 Vour 0 075 2 947 Vour 0 046 TRANSIENT SLEW TEST 60 135 Aour 0 095 1 076 Aour 0 065 6 081 Aour 0 068 1 076 Aour 0 065 60 110 Vour 0 075 3 053 Vour 0 046 CONSTANT RESISTANCE MODE TESTS PERFORMANCE TEST RECORD Agilent 6063B ELECTRONIC LOAD Page 1 of 2 Test Facility
103. o the selected mode and the programmed value of current or resistance A range control signal is sent to the CC control circuit to provide the proper scaling for the low and high current ranges or the middle and high resistance ranges If the CV or CR low resistance range mode is selected the CV loop controls the conduction of the input power stages according to the selected mode and the programmed value of voltage or resistance 63 Protection Circuits The load includes overvoltage OV overpower OP overcurrent OC and overtemperature OT protection The OV circuit takes control of the input power stages when an overload condition occurs If the input voltage exceeds 75V the overload circuit will cause the input stages to increase current flow in order to limit the input voltage The OV circuit does not turn off the input power stages An OV signal is sent back to the microprocessor to indicate the status of the circuit The OV circuit is reset by the microprocessor when a Reset or a Protection Clear command is executed or when power is cycled The OP circuit limits the current drawn by the input power stages when an overpower condition occurs Once the power has been returned to a safe operating area the circuit allows the current to rise again An OP signal is sent back to the microprocessor to indicate the status of the circuit A thermistor located near the input power heat sinks provides the temperature signal OT to the micropro
104. oints Use Primary S A Test Tables 3 4 and 3 6 to check address and data lines Use Primary S A Test Table 3 7 to check the primary trigger circuit Then refer to Trigger Circuit Troubleshooting and Figure 3 8 Replace U301 Check RT 551 replace U301 Replace U301 Create a checksum by programming CAL MODE ON CAL SAVE then turn power on If error code 104 does not appear again calibrate the load as described in the Operating Manual If error code 104 does appear again check the EEPON line test point 7 in Table 3 3 If is ok use S A Table 3 6 to check the data input and output lines to U211 Refer to DAC Circuits Troubleshooting and Figure 3 3 Same as above Same as above Same as above Table 3 3 lists test points that are referred to in many of the troubleshooting procedures Each test point is identified by a circled number e g D the circuit point e g U308 1 and signal name e g CV PROG The Measurement and Conditions column describes the signal that should be measured and the conditions e g operating mode required to make the measurement The circuit locations of the test points are shown on the foldout schematic diagrams Figure 6 1 sheets 1 through 6 and on some of the troubleshooting diagrams Figures 3 3 through 3 10 All of the test points are located on the main circuit board as shown on foldout diagram Figure 6 2 Note When taking measurements make sure
105. procedure Signature analysis S A is used to troubleshoot the load s primary and secondary interface circuits The S A mode is also used to generate waveforms which are used to troubleshoot the analog circuits In addition a list of test points with signal measurement information is provided to help you troubleshoot 21 Table 3 1 Test Equipment Required for Troubleshooting Purpose Recommend Model GP IB Controller Communicate with the load via the GP IB Agilent 9825 Series 85 Series 200 300 Signature Analyzer Test most of the primary and secondary circuits Agilent 5005A B Digital Voltmeter Check various voltage levels Agilent 3455A or 3456A Power Source Provide required input bias GP IB Board Agilent 6032A 6035A Logic Probe Check data bus lines Agilent 545A Oscilloscope Check waveforms and signal levels Agilent 1741A Clip Leads Connect IC pins together AP Products No LTC Selftest Sequence and Error Messages The turn on selftest sequence consists of tests on both the primary GP IB and secondary Electronic Load interface circuits If the load fails the selftest the input will remain disabled and the display should indicate the type of failure Table 3 2 lists all of the selftest error codes that can appear on the front panel display and provides the appropriate troubleshooting information Primary Interface The turn on selftest sequence of the primary microprocessor consists of two parts 1 The selftest is performe
106. put It can also be caused by an input short circuit in another component on the board Firmware Revisions The primary interface ROM chip U205 and the secondary microprocessor chip U301 are identified with labels that specify the revision of the Electronic Load s firmware The signatures given in Primary S A Tables 3 4 through 3 7 are valid for ROM chip U205 firmware revision Rev A 02 01 You can also identify the revision of the U205 firmware using the IDN query in the program listed below 10 OUTPUT 705 IDN 20 ENTER 705 30 DISP L 40 END The computer will display the Electronic Load Agilent part number and the firmware revision of the U205 primary ROM chip The signatures given in Secondary S A Tables 3 8 through 3 12 are valid for secondary interface microprocessor chip U301 revision Rev A 02 01 Note that the 0301 revision is only identified by the label it cannot be read back using the DN query 31 Test Header Jumper Positions The Electronic Load contains two test headers connectors TP201 and TP301 with jumper positions for signature analysis testing and for other functions as described below The test headers are located on the main circuit board see Figure 6 3 and are accessible when the top cover is removed Primary Test Header TP201 Pins Description 1 and 2 5V primary interface test points 3 and 4 With jumper RTP201 installed between these pins the primary interface microprocessor is plac
107. see Chapter 3 Circuit functions are also identified on each sheet as follows Sheet 1 AC Input DC Bias Supplies and Fan Speed Control Sheet 2 Primary Interface GP IB Interface Microprocessor RAM ROM Front Panel Interface Sheet 3 Secondary Interface Transient Generator and Slew Rate Control Sheet 4 Main Transient and Readback DACs Sheet 5 CV CC Control OV OC OF and Turn on Circuits Sheet 6 Input Power Stages 8 The block diagram description in Chapter 4 shows the functional relationship of the schematic diagram sheets and provides a general description of circuit operation Inter Sheet Connections Table 6 2 shows all signals that are common to more than one sheet of the schematic The signal mnemonics are listed alphabetically and to aid you in locating each signal the sector coordinates on the sheets where the signal is located are given Coordinates in a box indicate the origin of the signal For example CS1 which selects the Transient DAC originates at U304 coordinates of sheet 3 and is applied to U321 coordinates 7C of sheet 4 Intra Sheet Connections Table 6 3 shows all the signals that appear in more than one place on any given sheet The table is organized first by sheet number and then alphabetically under each number For example on sheet 3 SPCLR secondary power on clear is applied as follows Coordinates Circuit Coordinates Circuit 1B U340 6D U302 5D U330 7D U301 The fl
108. t current in a frequency range 20Hz to 10Mhz This test checks CC Mode PARD a Connect the Electronic Load power supply Agilent 6032A or equivalent DMM and current probe as shown in Figure 2 3 Set power supply for 10V and gt 10A b Turn the load s ac power off then on s Pes 6 d DMM reading should be less than 6060B 4mA rms 6063B rms CURRENT PROBE PROBE AMPLIFIER DMM 1 POWER ELECTRONIC SUPPLY LOAD Figure 2 3 Test Setup C CC Mode Power Limit This test verifies that the Electronic Load s power limit circuit is operating properly If the results specified in steps d through 1 are not obtained troubleshoot the circuits as described in Overpower Circuits Troubleshooting in Chapter 3 CAUTION If the overpower circuit does not turn the load off within three minutes after performing step d stop the tests and troubleshoot the overpower circuits a Connect the Electronic Load and the power source as shown in Figure 2 2 b Turn on the Electronic Load and run for approximately five minutes with no power being dissipated no input power Then Press Enter then 6060B 0 Eme 60638 a Turn set the power supply for 6060B 34volts and 18mps 6063B 45volts and 13mps The Electronic Load s front panel should indicate approximately 6060B 33 volts and between 13 and 17 amps 6063B 45 volts and between 7 2 and 1
109. t stop signal when taking signatures during secondary S A testing See Test Setup S A 32 Test Setup for Signature Analysis Figure 3 2 illustrates the primary TP201 and secondary TP301 test header connections required to perform the S A Tests given in Tables 3 4 through 3 12 The following is a description of the test setup a Turn off the Electronic Load and gain access to the main circuit board by removing the top cover see Disassembly Procedures Make sure that the Electronic Load is turned off before continuing with the test setup b To test the primary interface use the following test setup 1 Connect jumper RTP201 in the S A position SA MODE across pins 3 and 4 of the primary test header TP201 see Figure 3 2 2 Setup and connect the signature analyzer s CLOCK START STOP and GND inputs as follows Signature Analyzer Edge Input Setting TP201 Connection CLOCK _ Connections are listed for each specific test see Tables 3 4 thru 3 7 START lt TP201 7 STOP ED 3 201 8 GND TP201 6 test the secondary interface use the following test setup 1 Connect jumper RTP301 in the S A position SA across pins 1 and 2 of the primary test header TP301 see Figure 3 2 2 Set up and connect the signature analyzer s CLOCK START STOP and GND inputs as follows Signature Analyzer Edge Input Setting TP301 Connection CLOCK EE m TP301 7 START a TP301 3 STOP 2 NC TP301 4 GND
110. three screws securing the subassembly to the heat sink and remove the subassembly 4 Unsolder the 12 cut leads from the PC board and clean the corresponding mounting holes Note When replacing the subassembly be sure to apply heat conducting grease to the back of the subassembly 60 Principles Of Operation Introduction Figure 4 1 is a block diagram illustrating the major circuits contained within the Electronic Load Each block on the diagram identifies the schematic diagram sheet where the circuits are shown in detail The schematic diagram Figure 6 1 consists of fold out sheets which are located in Chapter 6 at the end of this manual The following paragraphs give a general description of these circuits refer to Figure 4 1 Bias Supplies The Electronic Load contains a primary bias supply and a secondary bias supply The primary supply is referenced to chassis ground and provides dc bias voltages and start up signals to operate the primary interface The secondary supply is referenced to load common and provides dc voltages to operate the secondary interface DAC circuits and the input power stages A fan power speed control circuit also referenced to load common receives control signals from the secondary interface which vary the speed of the fan depending upon temperature conditions Primary Interface This block of circuitry provides the interface between the user and the Electronic Load It allows the user to control the load
111. trument chassis and cabinet must be connected to an electrical ground The instrument must be connected to the ac power supply mains through a three conductor power cable with the third wire firmly connected to an electrical ground safety ground at the power outlet For instruments designed to be hard wired to the ac power lines supply mains connect the protective earth terminal to a protective conductor before any other connection is made Any interruption of the protective grounding conductor or disconnection of the protective earth terminal will cause a potential shock hazard that could result in personal injury If the instrument is to be energized via an external autotransformer for voltage reduction be certain that the autotransformer common terminal is connected to the neutral earth pole of the ac power lines supply mains FUSES Only fuses with the required rated current voltage and specified type normal blow time delay etc should be used Do not use repaired fuses or short circuited fuseholders To do so could cause a shock or fire hazard DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE Do not operate the instrument in the presence of flammable gases or fumes KEEP AWAY FROM LIVE CIRCUITS Operating personnel must not remove instrument covers Component replacement and internal adjustments must be made by qualified service personnel Do not replace components with power cable connected Under certain conditions dangerous voltages
112. ures of the IC under test to the correct signatures for each node faults can usually be isolated to one or two components Signature analysis tests are provided for most of the digital circuits in the primary and secondary interface circuits of the Electronic Load There are four primary interface S A tests given in Tables 3 4 through 3 7 and five secondary interface tests given in Tables 3 8 through 3 12 Refer to Firmware Revisions for information about the valid firmware revisions for the signature analysis tables References are made to the appropriate S A test table from the troubleshooting flow charts or procedures The following general rules apply to signature analysis testing of the primary and secondary interface circuits 1 Be sure to use the correct test setup connections for the specific test See Test Setup for Signature Analysis 2 Note the signatures for 5V and common IC being examined If an incorrect signature is the same as that of Vcc or common that pin or point in the circuit is probably shorted to Vcc or ground 3 Iftwo pins have identical signatures they are probably shorted together 4 If two signatures are similar it is only a coincidence 5 Ifa signature is incorrect at an input pin but is correct at its source output of previous IC check for printed circuit track or soldering problems 6 An incorrect signature at an output could be caused by a faulty component producing the out
113. uses the input power stages to switch between two load levels Transient operation can be programmed at a continuous rate or can be triggered programmed trigger or an external trigger signal to produce a transient pulse or to switch between two load levels Programmable slew rate control circuits allow a controlled transition from one load setting to another An external programming signal can also be used to control conduction of the input power stages in the CC or CV mode A 0 to 10V external programming signal corresponds to the 0 to full scale input rang in the CC or CV mode The external signal is combined with the programmed values from the main and transient DAC circuits A readback DAC circuit returns the input current input voltage and heatsink temperature values to the secondary microprocessor The DAC circuit along with a comparator circuit are controlled by the secondary microprocessor to successively approximate the value of the monitored signal to 12 bit resolution The readback DAC and comparator circuit also return a test signal to the microprocessor during self test to determine if the DAC circuits are operating properly CC CV Control Depending upon which operating mode and range in the CR mode is selected either the CC or the CV loop controls the conduction of the input power stages If the CC or CR middle or high resistance ranges only mode is selected the CC loop controls the conduction of the input power stages according t
114. ut from the main DAC amplifier The resulting SLEW signal is sent to the input power control circuit via inverting amplifier U324 and the slew circuits see Figure 3 4 The SLEW signal is also read back to microprocessor U301 via comparator U327 Readback DAC amplifier U322 U328 converts the data on bus lines 5 0 7 into a reference signal that allows the microprocessor to successively approximate the value of the SLEW signal The SLEW readback signal is used during selftest to determine if the DACs are operating properly To troubleshoot the DAC circuits place the Electronic Load in the S A mode by connecting the jumpers in test headers TP201 and TP301 in the S A mode positions see Figure 3 2 The waveforms shown in Figure 3 3 can only be generated when the S A mode is on First check that the S A waveforms shown on Figure 3 3 are correct If these waveforms are not correct check the 500 7 data bus lines to the readback DAC U322 using S A Tables 3 10 and 3 13 Next check the SDBO 7 data lines to the main 0320 and transient 0321 DACs using S A Table 3 9 If there is a problem on the data lines S A should isolate the problem to the faulty component 43 SA WAVEFORM SA WAVEFORM 2v 01V 05 5 0323 1 0319 508 8 7 DECODER ImSec Div U326 6 MICRO PROC SA WAVEFORM 1mSec Div 0 5 5 Div U328 6 U325 1 Figure 3 3 DAC Circuits Troubl
115. valent and the 0 100 ohm current monitor resistor as shown in Figure 2 1 Use the DMM to measure the voltage across the monitor resistor and across the Electronic Load s input terminals Check the low ohm range as follows 1 Press _Enter_ then 6060 Range 0 L 9 Eme RES 6063B Range Emer RES Ener 2 Turnon power source and set for 6060B 15V and 10 9A 6063B 15V and 1 82A For the low ohm range test the power supply will operate in the current limit mode 3 Measure the voltage across the monitor resistor and across the input terminals then calculate the Electronic Load resistance The result should be between 6060B 0 984 and 1 016 ohms 6063B 23 6 and 24 4 ohms Note that the Electronic Load s CR annunciator is on 4 Then press RES 0 L Enter 60638 RES Enter 5 Measure the voltage across the monitor resistor and across the input terminals then calculate the Electronic Load resistance The result should be between 6060B 0 0416 and 0 0584 ohms 6063B 0 792 and 1 208 ohms Check the middle ohms range as follows 1 Press i 6 RES 3 9 6063B Range Emer RES 5 0 0 Eme 1 2 Set power supply for 6060B 10 9V and 15A 6063B 44V and 4A 3 Measure the voltage across the monitor resistor and across the input terminals then calculate t
116. wn in Figures 2 1 through 2 3 Make sure the sense switch on the rear of the load is set to the LCL position since local sensing is used in all of the test setups Use adequate wire gauge when making connections see Chapter 3 in the Operating Manual Note The Electronic Load must pass the selftest at power turn on before the following tests can be performed If the unit fails selftest refer to the overall troubleshooting procedures in Figure 3 1 in Chapter 3 Table 2 1 Test Equipment Required for Verification Required Characteristics Recommended Model 120V 60A Source 0 to 20V 0 to 120A Agilent 6031A or equivalent 0 to 60 V 0 to SOA Agilent 6032A or equivalent 0 to 500 V 0 to 5 Agilent 6035A or equivalent Current Monitor 0 10 ohms 15A Guideline 9230 15 Resistor 0 04 25W Current Monitor 0 010 ohms 100A Guideline 9230 100 Resistor 0 04 100W Digital Voltmeter dc accuracy of 0 01 Agilent 3455A 3456A or 3458A 6 digit readout Current Probe with Sensitivity of 10 mV to SOMHz with Tektronix A6302 probe AM503 probe amplifier Amplifier and Power less than 300 of noise to 5 2 and 501 probe power supply Supply Oscilloscope Sensitivity 1mV Agilent 54504 Bandwidth 20MHz CC Mode Test This test verifies that the Electronic Load operates in the CC Mode and that the current programming and readback to the front panel display are within specifications For each DMM reading the front panel display should b
Download Pdf Manuals
Related Search
Related Contents
DO-3 REV.B.qxp User Guide Brush CnMemory Airy 500GB France - Michelin Gorenje BO71ORAX リリース詳細 基礎的な運転操作(PU 運転) 操 作 LA-RAK TOURING RACK TOURING RACK 理工学研究所第 4 実験室 X 線装置予約システム Copyright © All rights reserved.
Failed to retrieve file