Home
2 l ` “5i 5
Contents
1. 1_ 9 L LIU FIGURE 3 U2B J ond K ATL f LLUN LSL LSL Sours 9 0 Tu u LLL U LL 00 h Gaunt ann FIGURE 4 CK EDGE i Le 5 FIC 5 4 132 142 1 METHOD AND APPARATUS FOR REPRODUCING A MUSICAL PRESENTATION BACKGROUND OF THE INVENTION Automated musical instruments have been known for many years Automation of keyboard actuations has been accomplished in the piano organ carillon etc when the keyboard actuations are translated to perfora tions in a paper tape which constitutes a storage me dium and then these recorded actuations are used to actuate the instrument to produce the music In punched paper memories such as the player piano or organ there is typically one channel for each key on the piano or organ keyboard In the electrification of such instruments the changeable memories of various types have been used For example in Cooper U S Pat No 3 380 026 magnetic core elements are used as memory devices into which are read the condition of a plural ity of actuator elements such as the stops or coupler switches of an organ These stored actuations are read out at selected times to reactuate the actuator elements and reproduce the stored musical information Inexpen sive magnetic tape cassettes are disclosed in the prior art as in Schmoyer U S Pat No 3 388 716 and in
2. En glund U S Pat No 3 604 299 both of which disclose multiplex recording of key switch actuations one of which is a frequency multiplexing scheme whereas the other is a time division multiplexing scheme Various forms of encoding systems have been utilized as for example in Peterson U S Pat No 3 683 096 a recur ring frame of pulses has one pulse therein for each of the key switches of the musical instrument and a pulse mod ifier is utilized for modifying in a predetermined manner a specific pulse in each frame and these modified pulses are thereafter decoded In Wheelwright U S Pat No 3 771 406 the key switch actuations are encoded into a five bit binary code which is loaded into a shift register for a parallel to a serial conversion and in Maillet U S Pat No 3 789 719 key switch actuations are loaded directly into a shift register which for a piano would have 88 stages one for each key and additional ones for the other controls of the unit and a key pulse is gener ated by the last stage of the shift register and these pulses along with the clock pulse are recorded directly upon the tape for subsequent playback Finally in Vin cent U S Pat No 3 905 267 the keyboard switch actu ations are passed through a multiplexer to serialize the key switch actuations which are then encoded in a bi phase level encoder best shown in FIG 6 and the waveforms of FIG 7 of U S Pat No 3 905 267 The bi phase level data may be
3. further encoded to provide a double density encoding shown in the waveform dia grams of FIG 9 of U S Pat No 3 905 167 which is subsequently recorded upon a magnetic tape played back decoded and demultiplexed for subsequent reactu ation of the piano keyboard With respect to all prior art encoding and decoding schemes they all have serious drawbacks because they appear to be attempts to apply modern electronic tech nology electronic player pianos but have failed to really grasp or apply the technology in such a way as to make it compatible with the playing back of recorded music In some prior art systems if the tape recorder is stopped while notes are being played the last notes played may be held on which is undesirable at best and may cause damage to the system Moreover there are several places that will cause wrong notes to be struck 5 10 20 25 30 35 40 45 50 55 60 65 2 in a musical system In all cases striking the wrong note sounds much worse than striking no note at all The first problem is that when the recorder is started or when the electronics are first powered on there is no syn chronization of the internal electronic counters to the data that is recovered from the recorder until the first sync code is received If this is permitted to happen it can cause wrong notes to be struck at the beginning of replay The second problem is of more serious conse quence depending on t
4. succeeding period The edge that occurs due to a one on the middle of the bit ceil is ignored due to the timing and delay which comes about from the adjustments of the capacitors and resistors described above The edge is then utilized to clock the CLK or clock input to D flip flop 0 18 and the D pulse is applied to the D input of edge detector U 18 with the output thereof shown in FIG 5 The negative edge of the D pulse is used to store the output of 0 18 into the input register of the 20 25 30 35 40 45 50 55 60 65 8 eight bit input register U 19 The NRZ data is recov ered as shown in FIG 5 The NRZ data at the Q output of U 18 may be supplied to a shift register not shown for transposition purposes if desired Referring now to the retriggerable monostable multi vibrator U 4 as long as the positive going edges occur in less than the predetermined time the monostable is reset and begins timing out again If due to a slow tape speed data dropout or recorder stopping or no infor mation being recorded on the tape e g a blank tape no edge occurs in the D pulse input of retriggerable data detector U 4 and the device times out and clears the syne counter constituted by integrated circuits U 10A and U 10B and the input register both of which prevent notes from being struck or held in a closed state The timing shown in FIG 6 is adjusted to just longer than the expected time between the positive goin
5. 4B each latch circuit L1 L2 LN receives the data bits on their respective data input terminals D terminal 13 from the 8 bit input register U19 Fig 4A which delays the data one bit time The data is supplied serially in the storage units of the latch circuits Li L2 As the data is sent counters 014 015 FIG 4B and the 4 line to 16 line converter US set the storage place in the latch circuits for each bit Thus the counter 1 counter 2 and counter 4 output bits CTR1 CTR2 and CTR4 determine which place a bit is to be stored in a group of eight so that as each latch circuit is enabled the data bits issuing from the 8 bit input reigster delayed one bit at a time are stored in the latch circuits with the outputs of the 4 line to 16 line converter 05 of FIG 4B A total of 16 groups times 8 per group which makes 128 channels with the first group being selected by the one output terminal of 05 and as indicated in FIG 4B see paragraph 3 5 6 Data Transfer of the Teledyne Service Manual Thus each of the latch circuits L stores the musical information contained in a data cell of the 128 bit time frame Driver transistor AND gates DG one for each key on the keyboard receive as one input a signal from the latch or storage circuits L The second input to the driver transistor AND gate DG is a sequence of pulses which are pulse width modulated according to the in formation stored in expression and pedal control latch cir
6. The circuit portion of FIGS 4A and 4B which is most significant for this aspect of this invention is block U 4 which is the retriggerable data detector The output of retriggerable monostable multivibrator circuit U 4 stays high as indicated in the waveform diagram from the Q output terminal 9 for a time deter mined by the values of feedback capacitor 38 and resis tor 39 A diode 38D is used to discharge the capacitor 38 In the beginning pulses are applied from the tape recorder output circuit which are amplified by transis tors and Q2 and their associated resistor networks and applied as an input to optical couple U 1 This opti cal coupling circuit U 1 is conventional having as an output thereof a square wave which is applied as an input to transistor amplifier 40 The output of transistor amplifier 40 is the bi phase space encoded data The edges trigger the non retrig gerable monostable multivibrator U 3 and the length of time the Q output of this multivibrator is high is deter mined by capacitor 45 and resistors 46 and 47 resistor 46 being adjusted so that the D pulse output is three quarters the bit time of the information With the bi phase space mark code described above when the first zero the data occurs monostable begins to trigger on the edge that exists at the end of the bit cell As noted earlier there is a transition at the beginning of every bit period which is the same as the end of the bit cell for the
7. U 11B NAND gate is high a register clear pulse clears all output regis ters to thereby prevent any keys notes from being played Therefore until both JK flip flops U 10A and U 10B outputs are high one there cannot be any notes played or struck NAND gate U 13A output load holds the bit counters U 14 and 0 15 to all ones count which in turn is detected by NAND gate U 9 When the incoming data from U 18 is shifted through the eight bit input register U 19 and contains no sync code the NAND gate U 6 detects same and sync detect output becomes low When the outputs of NAND gates U 6 and U 9 are low as well as the Q output of JK flip flop U 10B and the data detector of U 4 is high the next pulse the D pulse at Q of U 3 is coupled through resis tor R 11 and diode CR 2 and delayed by capacitor 38 and clocks U 10A and U 10B as weil as clocking the bit counter which has been released by U 13A load 27 output At this time the J and K outputs of flip flop U 10A are zero and the J and K outputs of U 10B are one and the CLK changes U 10B Q to a one and inverted Q to a zero The bit counter U 14 U 15 continues to count 9 until it counts 128 counts and returns to all ones again If the data is correct and the retriggerable data detector U 4 blank output stays high the sync code is again in the eight bit register U 19 U 6 and U 9 detect the sync time again together which allows U 10A J to go to a one and the U 10A K to zero wh
8. United States Patent Campbell 54 75 731 21 22 51 52 58 56 3 539 701 11 1970 Milde METHOD AND APPARATUS FOR REPRODUCING A MUSICAL PRESENTATION Inventor Joseph M Campbell Lewisburg Tenn Assignee Teledyne Industries Inc Los Angeles Calif Appl No 681 093 Filed Apr 28 1976 Int 1 2 10 1 00 G10G 3 04 ATSC 84 115 84 462 84 DIG 29 Field of Search 84 1 02 1 03 1 28 84 115 461 462 DIG 29 References Cited U S PATENT DOCUMENTS 84 1 28 3 647 929 3 1972 Milde Jr se 84 1 02 X BIPHASE SPACE MARK ENCODER MULTIPLEXER lt gt lt gt amp gt 55 4 amp RECORD 11 4 132 142 45 Jan 2 1979 OTHER PUBLICATIONS Service Manual for Teledyne Piano Recorder Player Model 1 Assembly No ATL 3288 Oct 20 1975 Assembly Instruction for Teledyne Piano Recorder Player Model 1 Assembly No ATL 3288 Jul 10 1975 Primary Examiner Stanley J Witkowski Attorney Agent or Firm Jim Zegeer 57 ABSTRACT There is disclosed a method and apparatus for repro ducing a musical presentation wherein musical data from such presentation such as keyboard actuations of a keyboard type musical instrument is encoded and stored in a code which has information contained in the transitions only and the sense and
9. ata bit stream detecting the loss of at least one musical data bit in said recovered data bit stream and preventing the playing of any further notes immedi ately upon detection of loss of said at least one bit 2 The invention defined in claim 1 wherein said data stream is in relative time frames each time frame con taining its own sequence of musical information bits and frame sync bits in data cells the further step of detecting at least more than one set of said frame sync bits and causing the resumptiion of re creating said musical presentation upon detection of said at least more than one set of frame sync bits 3 The method defined in claim 1 including the step of detecting decrease in the rate of said serial data stream and 4 132 142 11 preventing the playing of any further notes upon detection of said decrease in rate 4 In a method of preventing the playing of erroneous notes due to the transmission of digital data containing data bits in data cells each data cell having a beginning and an ending said data bits corresponding to the actua tion or non actuation of the controls of a musical instru ment comprising the steps of assigning each musical note to a data cell locating a timing signal transition at the beginning of 10 each data cell and between said beginning and ending of said data cell locating a signal transition or non transition in each said data cell according to the actuation or
10. beginning of every bit period However a one is represented by no phase shift i e a zero crossing at the middle of or interbit the bit period On the other hand a zero in contrast is represented by 180 phase shift no transition or zero crossing at the middle of interbit the bit period The exact opposite of the bi phase space or mark is shown in line C of FIG 2 wherein a transition occurs at the beginning of every bit period as in the case of the bi phase space encoding scheme but in this case the representations of the one and the zero is exactly the reverse of that shown for the bi phase space Thus in either the bi phase space or the bi phase mark the sense of the transition is ignored and conveys no information whatever and it is the presence in the case of the bi phase mark or absence in the case of the bi phase space of a transition which determines the data In accordance with the preferred practice of the present invention the bi phase space or mark encoding format is utilized since in this case the predominant number of data bits is in the zero format so that the data stream looks essentially like all zeros and if a data dropout loss of sync etc occur the system immediately picks up playing zeros e g not striking any notes Some texts and literature may identify a bi phase mark code as bi phase space and vise versa and some identify the code as frequency doubling or w
11. bit ENCODING FIGS 3A and 3B It will be noted that the output of the selection circuit U 1 is in time frames with the data being in non return to zero code format This data FIG 5a is applied as one input to the encoding circuit As discussed earlier in the recording of keyboard music the information is highly weighted with zeros that is there are no key closures and therefore according to this invention the code is such that for a slow recorder the data ones and zeros would all look like zeros As shown at page 42 of the Telemetry Standards Document 106 71 the bi phase space code has as zeros information the wide spacing between transitions The information is con tained in the transitions only and not in the direction or sense of the transition as in the bi phase level code Therefore the data may be inverted and still be satisfac torily recovered If a dropout occurs the data detector immediately regains phasing without errors as discussed later herein The circuit utilized to generate the code is shown in FIG 3B and has a NAND gate U 4C which receives the NRZ data from the multiplexer circuit 12 The NRZ data is gated in NAND gate U 4C at the clock rate to generate the JK inputs to flip flop U 2B The 2x clock is applied as one input of U 2B and the output of gate U 4C are applied as inputs to produce and generate the bi phase space mark data This data is applied to an output follower circuit which is not he
12. ca pacitor C1 This is applied to pin 13 of U 2D so that pin 11 thereof will go low and pin 6 of U 2B goes high At the next transition the small b shown in the wave form diagram leading into pin 9 of U 2C pin 5 of U 2B will go low and pin 4 remains high momentarily so that a negative going pulse appears at pin 6 of U 2B Each time a transition occurs another pulse is produced These pulses are supplied to pin 5 of the monostable multivibrator U 3 and each time pin 5 of the multivibra tor goes from zero to high the ouptut pin of the multivi brator will go high The multivibrator U 3 begins to time out when set by RC resistors 46 47 and capacitor 45 The time out is set to be three quarter bit time Once U 3 has timed out pin 6 of the multivibrator U 3 returns to zero ready to be re set Multivibrator U 3 then pro duces one output for each bit DATA DROPOUT DETECTOR As described earlier and with reference to FIG 6 if a dropout of data occurs in the tape recording there can be a loss of sync which causes wrong notes to be struck during the frame of data in which the dropout occurs and this can be quite disconcerting to the listener The same disconcerting playing of notes can occur if the tape recorder is stopped while notes are being played The objective of this portion of applicant s invention is to sense or detect the dropout of data so as to prevent the playing of undesirable notes and or avoid damage to the system
13. cuits EPL EXPRESSION A low frequency 200 Hz oscillator 70 supplies pulses to a pair of pulse width modulatable one shot monostable multivibrators 71 and 72 for the bass and 4 132 142 20 25 30 35 40 45 55 60 65 10 treble keys respectively The pulses from oscillator 70 have their minimum width set by a variable resistor 73 which thus sets the minimum width of the pulses from multivibrators 71 and 72 Each multivibrator 71 and 72 has its timing set by capacitors 74 and 75 respectively in conjunction with resistors 76 80 for the bass theme and resistors 81 85 for the treble theme Combinations of resistors 76 80 and combinations of resistors 81 85 are selected by the information contained in counter bits CTR 1 CTR 4 which have been stored in expression and pedal control latch circuits U 20 0 21 which are enabled by two successive outputs line 13 and line 14 from the four line to sixteen line converter U 5 This stores the treble and bass expression bits in latch circuits 1 and EPL 2 along with the soft and sustain pedal conrols It will be noted that the latter are also pre vented from being actuated on data dropout loss of sync etc by a Register Clear signal at U 17B and U 17D The stored bits are used to vary the number of resistors R76 R80 and R81 R85 which are essentially binary weighted in circuit with timing capacitors 74 and 75 respectively to thereby vary the chargin
14. direction of such transitions are ignored This avoids several major draw backs of bi phase level code previously disclosed in the prior art because the 1 phase of the signal need not be maintained and 2 bi phase level code cannot be recovered following a dropout until a 1 0 or a 0 1 transi tion occurs There is also disclosed a data dropout detection system for assuring that the wrong music is not played 13 Claims 8 Drawing Figures DEMULTIPLEXER 4 132 142 Jan 2 1979 Sheet 1 of 6 U S Patent So 0 55389 3 1003 XM oz gt re 5 gp 5 523 we Saco w Ke Eo FIC I 39905 CUVOEASH 91039 BIT 8 FRAME COUNTER gt gt gt e 0 RECORDER T00 SLOW TIMING RECORDER STOP NO DATA RECORDED yom DROPOUT S D PULSE U EA 5 aa E 0 BLANK b FIC 6 4 132 142 Jan 2 1979 Sheet 2 of 6 U S Patent lt 3080238 OL 1 Bran Yan oe AN AN ll ll 0 05 15 25 65 5 ss osl 25 es 6 Wt pis 1 5 wn nn ane ane acre 4 132 142 Jan 2 1979 Sheet 3 of 6 U S Patent Das y yX 6 ELS 15 6051 9 5 1151 82S 62S 08S lt l
15. e or mark en coder 14 and then recorded on a tape in tape recorder 15 It will be appreciated that tape recorder 15 is con ventional in all material respects and need not be dis closed or described in any detail herein It can be the same as is disclosed in any of the prior art patents re ferred to earlier herein for recording digital data on tape or as shown in the included Service and Installation Manuals Such tapes may be recorded beforehand by known or accomplished artists or in home recordings or rere cordings of punched paper rolls etc In the case of recording made by stars performers and the like these recordings may be sold separately and apart from the recording system per se That is to say a tape may be encoded and the strings of a piano for example struck or actuated by hammers or the like in exactly the same manner as an accomplished artist would be on a piano which is set up for playback operation only in the man ner illustrated in FIGS 4A and 4B hereof In other words one need not equip a piano for the record func tion disclosed herein On playback by the tape recorder 15 the bi phase space or mark data appears at the output of a read head and is fed through correcting networks and ampli fiers to recover the digital signal The data from the read head is approximately a sine wave but the output from the amplifier on line 16 is a square wave signal Moreover the signal from the read head has encoded
16. g edge of the D pulse If the edge does not occur during the ex pected time the output drops and clears the system THE SYNC COUNTER As discussed earlier FIGS 4A and 4B if there is a loss of synchronization wrong notes can be struck by the musical instrument which can be quite disconcert ing The prior systems sensed these sync codes and automatically reset In accordance with the present invention to insure that at power on and at the start of a tape recorder or after a data dropout on the tape no wrong notes are struck a sync counter has been utilized to count three sync codes before allowing any note to be struck these would be the three sync sequences in the bit assignment chart at bit positiions 121 128 This counter is reset by the output of data detector circuit U 4 line 48 labeled Blank that detects if there is data dropout on the tape or the tape recorder is running at the wrong speed or that the power has just been turned on This syne counter constituted basically by inte grated JK flip flop circuits U 10A and U 10B also al lows for the possibility that the sync code could possi bly occur randomly in the data information and rejects the false sync The retriggerable data detector circuit U 4 has a blank output which clears the counter to a zero count if there is not any data being received at power on if the tape dropout occurs or if tape speed variations exist If the Q output of U 10A or U 10B is zero
17. g rate of the capacitors according to the combination of resis tors which have been in effect connected in circuit with a capacitor 74 or 75 to thereby vary the width of the pulses established by U 22A for bass effects and U 22B for treble effects The bass effect pulse width pulses are supplied to the group of driver transistor AND gates DG B for the bass notes solenoid control as the second input thereto and the treble effect pulse width modulated pulses are sup plied to the driver transistor AND gates DG T for the treble note solenoid control transistors If the sync pulse sequence is detected and there has been no loss of sync data dropout etc as described above the musical notes stored in the latch circuits are played It will now be seen how the invention accomplishes its various objects and the various advantages of the invention will likewise be apparent While the invention has been described and illustrated herein by reference to certain preferred embodiments it is to be understood that various changes and modifications may be made in the invention by those skilled in the art without depart ing from the inventive concept the scope of which is to be determined by the appended claims What is claimed is 1 In a method of recovering musical signals from a serial musical data bit stream for the re creation of a musical presentation comprising the steps of recovering the said musical signals from said serial musical d
18. he code used because if in the middle of the replay the tape has a dropout the elec tronics lose the sync and wrong notes are struck In any fast scan multiplex system all notes that are on at the time of the dropout may be shifted either up or down the scale until the sync code is recovered again Finally accidental detection of a wrong sync code due to noise misadjustment of controls or the data information con tained in the sync code causes the playing of wrong music because of the improper synchronization According to the present invention a data detector is provided which has a retriggerable monostable multivi brator The output of this retriggerable monostable multivibrator stays high after a positive going edge is applied to the input for a time determined by an RC timing circuit As long as the positive going edges occur in less than the predetermined time the monostable multivibrator is reset and begins timing out again Thus if due to a slow tape speed data dropout recorder stopping or no information recorded on the tape no edge occurs so the device times out and clears the sync counter and the input register both of which prevent notes from being struck or being held in a closed state To insure that power is on at the start of the tape record or after data dropout of the tape that no wrong notes are struck I provide a sync counter which counts three sync codes before allowing any note to be struck This sync counter a
19. he re creation of a musical presentation in the form of serial binary data bits re corded in discrete time frames on a storage medium the improvement comprising means for scanning in the serial order stored the binary data bits detector means connected to said means for scanning for detecting the loss of one data bit and means controlled by said detector means for prevent ing the playing of any further portions of said musi cal presentation upon said detector means detect ing the loss of one data bit 10 In an electronic keyboard musical instrument having selectively actuatable key switch devices means for scanning said key switch devices and producing sequential frames of time division multiplexed electrical signals from the musical information represented by the 15 20 25 30 35 45 50 55 60 65 12 selectively actuated condition of said keys and netic tape storage medium biphase encoding means for encoding said time division multiplexted signals and means for recording said biphase encoded time division multiplexed signals on said magnetic tape storage me dium as magnetic flux transitions improvement in said biphase encoding means which comprises means for generating a repeating series of musical data cells each data cell being delineated from an adjoining musical data cell by a sharp timing signal transition and each data cell carrying a predeter mined note according to the actuati
20. idth NRZ 1 eg see Digital Magnetic Tape Recording for Computer Applications by L G Sebestyen Chapman and Hall 1973 MULTIPLEXING Referring now to FIGS and each of the key switches is designated by the numerical 5 1 S 2 S 80 there being eight such switches in a module each switch having an isolation and blocking diode associ ated therewith such diodes being labeled CR 1 and associated with switch S 1 and CR 80 is associated with switch 5 80 etc These key switches are multiplexed in ten groups of eight and integrated circuit selector 0 1 each integrated circuit element is fully identified in the Service Manual selects them one at a time sequen tial order until eight are selected The selector circuit 0 1 has as its inputs clock 2 clock 4 and clock 8 inputs from seven stage counter U 6 The input to this counter is the clock input and it comes from a clock circuit 30 Timer circuit 30 contains a conventional oscillator which with a two stage counter on its output stage so that the output is clock and clock divided by two The clock signals CLK are applied as the inputs to termi nal i a seven stage counter U 6 which in effect is a binary decimal decoder having its coded outputs on its output terminals 3 4 5 and 6 respectively applied to the input terminals 20 21 22 and 23 of one of sixteen select circuit U 5 Select circuit U 5 has terminals 1 17 and the first ten outputs are
21. ile U 10B J and K go to one When the U 10A and U 10B are clock they both change states so as U 10A Q is one and U 10B is zero The register clear Reg Clr signal stays high and the keys are still not allowed to play After 128 more counts U 10B J is high and upon clocking U 10B Q becomes a one and the register clear becomes a zero thus allowing the notes to be struck In essence then the system requires two complete frames of 128 bits before any notes may be struck after any disturbance causing the data detector or sync detect NAND gate to indicate a malfunction As indicated earlier the count ing of two frames of sync pulses is illustrated in the context of Vincent U S Pat No 3 905 267 DEMULTIPLEX AND LATCH The bit counters U 14 and U 15 along with the 8 bit input register U 19 demultiplex the serial data stream from the Q output terminals of U 18 Each succeeding bit is sequentially shifted into shift register U 19 and then transferred to latch circuits L 1 L 2 L N corre sponding to the number of modules 10 in this case containing key switches S 1 S 80 Bit counter outputs CTR 8 CTR 16 CTR 32 and CTR 64 are supplied to 4 line to 16 line converter U 5 so that upon the output lines thereof appear in sequence enabling pulses for each of the latch circuits L Bit counter outputs CTR 1 CTR 2 CTR 4 are the unit select inputs to expression and pedal latch circuits EPL 1 and EPL 2 U 20 and U 21 As shown in FIG
22. llows for the posssibility that a sync code could possibly occur randomly in the data infor mation and rejects the false sync code In essence this requires two complete frames of data to be occurred before any notes may be struck after any disturbance causes the data detector or sync detector gates to indi cate a malfunction In the bi phase level coded waveform as disclosed in the Vincent patent there are two significant drawbacks the first of which is that the phase of the signal must be maintained by the system if it be recorded on tape and secondly if a dropout occurs the 1 0 relationship cannot be recovered until a 1 0 or 0 1 transition occurs in the NRZ waveform What actually occurs in the playing of music is that all zeros no music become all ones all notes being played This also occurs during the stop ping and starting of the recorder I have discerned that a number of the problems in volved in coding systems for musical performances are that the bi phase level code requires transition to occur in both position and sense so that in the playing of mu sic all zeros no music become all ones all notes being played 1 have determined that the problem with this coding scheme is that in the recording of keyboard music the information is highly weighted with zeros no key closures and therefore in accordance with the invention a code used for a slow recorder is such that the data ones and zeros would look like all
23. non actuation respectively of said controls 5 In a method of preventing the playing of erroneous notes due to the transmission of digital data contained in data cells as defined in claim 4 the improvement wherein said data to be transmitted is recorded on mag netic tape and said signal transitions or non transitions are magnetic flux transitions and non transitions 6 Improvements in a magnetic tape playback appara tus for the re creation of a musical presentation encoded in time frames of a serial data bit stream on a magnetic tape means for reading said magnetic tape and causing the playing of the musical notes of said musical presen tation in said time frames of said serial data bit stream to re create a recorded musical presenta tion first means connected to said means for read ing for detecting the loss of at least one data bit in said serial data bit stream and second means operative on said first means detecting loss of a data bit for preventing the playing of any further notes in the re creation of said musical pre sentation 7 The invention defined in claim 6 including means for resuming the re creation of said musical presentation upon detection of at least two successive of said time frames 8 The invention in claim 6 wherein a change in the rate of said serial data stream constitutes said loss of at least one data bit and said means for detecting detects said change in rate 9 In apparatus for t
24. o the keys of said electrically operated music producing keyboard means to reproduce the music as re corded 12 The invention defined in claim 11 including means for preventing the playing of any notes on loss of any data in any one time frame 13 The invention defined in claim 10 wherein said means for generating a repeating series of time frames includes means for generating a sequence of synchroniz ing bits at a selected position therein to constitute a synchronizing signal counter means connected to said reading means for counting at least two sets of synchronizing bits and means controlled by said counter means for prevent ing the playing of any notes by said music produc ing means until a continuous sequence of two sets of synchronizing bits occurs in at least two suc ceeding time frames 55 g A
25. on or non actuation of one of said selectively actuatable key switch devices each time frame containing a serial sequence of musical data cells there being a timing signal transitions at the beginning of each musical data cell and the presence or absence of one addi tional signal transition proximate the center of each musical data cell respectively constitutes the mu sical information corresponding to the actuation or non actuation of said key switches respectively so that the predominant number of musical data cells are in a zero format wherein the data stream has the effect of essentially all zeros and no musical notes stored therein if a data dropout occurs and record ing signal transitions on said magnetic tape in the form of magnetic flux transitions whereby the tim ing signal transitions and musical actuated key switch information are constituted solely by mag netic flux transitions on said tape respectively 11 A playback system for the magnetic tape storage medium defined in claim 10 comprising reading means for detecting said magnetic flux transi tions recorded on said magnetic tape to produce a serial stream of encoded musical data bits decoding means for decoding the encoded musical data bits demultiplexing means for demultiplexing and storing the decoded musical data bits electrically operated music producing keyboard means having selectively actuatable keys and means for applying the stored data as decoded t
26. re relevant and this signal is the signal that is applied to the input terminals of the recorder for shap ing and recording upon magnetic tape See the Service Manuai forming a part hereof Thus as the artist plays the music upon the keyboard the keyboard switches S 1 S 80 are closed and scanned at a selected clock rate This data is then multi plexed by the multiplexing arrangement described ear lier herein to provide an NRZ data which is gated in NAND gate U 4C to generate the JK inputs to flip flop U 2B The 2x clock from timer 39 FIG 5b clocks the flip flop and the Q input of U 2B is the bi phase space code FIG 5b which is tape recorded It is of course not necessary that the musical data originate with a keyboard for example a punched paper piano roll can be converted to tape form by a brush hole sensing arrangement with the brushes scanned as if they were the key switches S 1 S 80 THE DECODER FIGS 4A and 4B The decoder is shown in FIG 4 and includes the EDGE detection circuit utilizing U 2 of FIGS 4A and 4B the D Pulse monostable U 3 and the decoder using U 18 The four exclusive OR gates of U 1 and the delay generated by capacitor Ci generate a narrow 4 132 142 7 spike called EDGE as shown in FIG 4 Referring to FIG 4A when a zero is present at pin 9 of U 2C pin 8 thereof will be high which places a high at pin 2 of U 2A and its output pin 3 will go high delayed by
27. rgan piano etc and each output or switch actuation is indicated by a single line 11 1 through 11 N the num ber of such output lines corresponding to the number of key switch actuations to be sensed and recorded for example eighty keys in one embodiment disclosed herein the sustain and loud pedals of an eighty eight key piano may be sensed A sequence of synchro nizing bits from sync generator 10 S is provided on line 11 5 A multiplexer 12 scans or looks at each individual line 11 1 11 S in a times sequence which constitutes frames Thus the key switch sustain and loud pedal 35 40 45 50 55 60 65 4 actuations are sensed by the digital multiplexer 12 one at a time and in a generally sequential fashion How ever if no transpositions are contemplated it is not necessary that they be sequentially examined it being evident from the description given in connection with FIGS 3A and 3B that they may be looked at or scanned in groups and in any fashion or order the only criteria being that the position of the particular switch in its scan time be maintained in the entire system The timing source T is shown in FIG 3B and is described in the section hereafter entitled Multiplexing The multiplexer thereby translates the parallel data of the key switch actuations to a serial data stream along its output line 13 This data is then encoded to a bi phase space or mark signal in bi phase spac
28. t lt lt lt 4 lt 4 a gt CIHO GLUI 9149 OBO 11 0684 Wad 1405 98 0 4 132 142 Jan 2 1979 Sheet 4 of 6 U S Patent 8 leu _ 810 ASt 390 NOUS vi TWNOIS 2 es 0193130 38 WP 284 U S Patent Jan 2 1979 Sheet 5 of 6 4 132 142 ENABLE RI Y DATA FROM 8 BIT REGISTER SOLENOID DRIVE ASSY U 19 F 2 E ae LJ 56 G A A D A A D D DE ooo a gr 5 QN gt lt Uzi 459 ENABLE DE CLEAR va 0 FIGA 6 8 4 05 BASS THEME _ 76 83 oy INS 5 106 BASS INT 7 CRA FROM U 5 6 107 BASS INT2 78 CRD R30 R6 1088455 INT3 19 CRG 80 CR THEME 8h CRB D 06 emeen 8 09 1 200 EXP B BASS 70 DC 00 EXP CTR I EPC QI 5 14 TREBLE 3 84 Ril TREBLE 4 FROM 0 5 0 1501 FIG 46 SEND KEY SOLENOIDS U S Patent Jan 2 1979 Sheet 6 of 6 4 132 142 eT NZ 0
29. therein the clock data which must be recovered and used in the demultiplexing operation The time recov ery bit dropout sync counter bit and frame counter circuitry is shown in FIGS 4A and 4B and described in detail in the section entitled The Decoder which recovers the timing signals The Data Dropout Detec tor which detects the bit dropout Sync Counter for counting frames of sync pulses and the demultiplex and latch circuit The bi phase space or mark decoder circuit 17 de codes the incoming data on line 16 and applies same to demultiplexer 18 which distributes the data to the ap propriate control channels in the storage and solenoid actuator circuits 19 The playback logic shown in FIGS and 3B also decodes the expression bits and provides bass and treble outputs to control the volume of play Referring now to FIG 2 the waveforms of a se quence of data bits 10110001101 are shown in three different bi phase encoding schemes the first of which is shown in line A of FIG 2 namely the bi phase level encode scheme As disclosed in the above referenced Telemetry Publication this bi phase level or split phase Manchester 180 a one is represented by a 1 0 and a zero is represented by a 0 1 Thus the sense of 4 132 142 5 the transition as well as the position thereof represents data In the bi phase space or mark shown in line B of FIG 2 there is a transition at the
30. used as enable signals on output lines 31 0 through 31 9 Thus each of the mod ules containing switches S 1 5 80 is enabled or strobed one at a time The clock pulses clock 2 clock 4 and clock 8 from terminals 9 11 and 12 of U 6 are applied to the input terminals 9 10 and 14 of integrated circuit U and in conjunction with the 12 volt supply and resistors R 3 R 10 sequentially sample each of the switches via their blocking diodes CR 1 80 cordingly there appears on the output terminai of inte grated circuit U 1 a series of pulses and in the disclosed 20 30 40 45 60 65 6 embodiment there will be one hundred and twenty eight bit periods within a given time frame the time it takes for a pulse to activate output terminal 17 of one of select circuits U 5 The bit assignments are shown on Chart 1 of the Service Manual bit positions 89 104 are not used and bit position 116 is not used along with bit positions 119 and 120 As shown on the bit assign ment chart the sustain and soft pedals occupy bit posi tions 117 and 118 in the frame whereas the bit 105 109 and 111 115 are used to activate the bass theme and bass theme intensity levels and the treble theme and treble intensity controls respectively Finally bit positions 121 128 are assigned to the synchronizing bits which are generated when a strobe pulse appears on pin 17 of U 5 the zero at bit position 127 is a check
31. veform for convenience the data bits in each bit period or cell are shown at the top and bottom of FIG 5 and FIG 6 is a waveform diagram of the D Pulse FIGS 4A and 4B illustrating various problems which 20 25 can occur in the playback of a recorded musical presen tation and FIG 6 6 is a waveform diagram of the blank pulse corresponding thereto DETAILED DESCRIPTION Attached hereto and incorporated herein as an inte gral part of the disclosure of this specification is the Service Manual for Teledyne Piano Recorder Player Model PP 1 Assembly Number 3288 ATL 3263 a pub lication of the assignee hereof and sometimes referred to hereinafter as Service Manual Attached hereto and incorporated herein as an inte gral part of this specification is the Assembly Instruc tion for Teledyne Piano Recorder Player Model PP 1 Assembly Number ATL 3288 Document Number ATL 3262 a publication of the assignee hereof and sometimes referred to hereinafter as Installation Man ual The above publications describe in detail a specific and preferred embodiment of an electronic player piano incorporating the invention defined in the claims hereof as made and sold by the assignee hereof Referring now to FIG 1 the keyboard of a piano is designated by the numeral 10 and constitutes the key board pedal data source It could be any musical key board source instrument such as a harpsicord carillon o
32. zeros The bi phase or mark code as disclosed at page 42 of the Telemetry Standards Document 106 71 a portion of which is reproduced in FIG 2 hereof has as zeros information the wide spacing between transitions 4 132 142 3 There is always a transition at the beginning of each bit period which can be recovered as the self clocking portion of the code The information is therefore con tained only in the interbit transitions and not in the direction and sense of transition as in the bi phase level code Moreover the data may be inverted and still be satisfactorily recovered If a data dropout occurs the data detector can immediately regain correct phasing without errors The above and other objects advantages and features of the invention will become more apparent when con sidered in light of the accompanying drawings wherein DESCRIPTION OF THE DRAWINGS FIG 1 is a block diagram of an electronic record and player system for musical instruments FIGS 2 6 and are a sequence of waveform diagrams taken from page 42 of Telemetry Standards Document 106 71 FIGS 3A and 3B taken together are a detailed sche matic of the key switch scanning and encoding system incorporating the invention FIGS 4A and 4B taken together are a detailed sche matic of the playback electronics FIGS 5 0 are illustrative waveform diagrams with the various points in FIGS 3A 3B 4A and 4B indi cated to the right of each wa
Download Pdf Manuals
Related Search
Related Contents
m oka induction JVC FS-M3 User's Manual お子様向け冊子 「おふろだいすき!」PDF版の見方とプリント方法 EDUR 6640 in / EDFX 6740 in User Manual 7.2 V DA302D 9.6 V DA392D 12V DA312D 簡易版(日本語) Copyright © All rights reserved.
Failed to retrieve file