Home
Imo 3-Screw and CIG Gear Pump Installation, General Maintenance
Contents
1. CE Original Instructions Imo 3 Screw and CIG Gear Pump Installation General Maintenance and Troubleshooting Manual Manual No SRMOOTO un wamm WARNING These instructions should be read thoroughly by all personnel involved with pump operation prior to pump installation general maintenance or troubleshooting 1 About This Document This manual e Is part of and applies to all Imo and CIG Pump Models Series e Provides instructions for safe and appropriate methods for pump installation general maintenance and troubleshooting e Should be used in conjunction with CE Safety and Operation Manual SRM00100 and individual pump Product Service Manual 1 1 Target Groups Operating Company e Keep manual available at site of operation of equipment including for later use e Ensure personnel read and follow instructions in manual and other applicable documents especially all safety instructions and warnings e Observe any additional rules and regulations referring to your system Qualified Personnel e Read observe and follow these manual and other applicable documents Fitters Operators especially all safety instructions and warnings 1 2 Other Applicable Documents Product Service Manual Detailed instructions assembly drawing and parts lists specific to pump series and size Safety and Operation Manual General information about safety and operation of Imo three screw SRMO00100 and CIG pump
2. Figure 7 Fluid Trap and Foot Valve Arrangements for Vertical Pumps NOTE Material damage caused by dry running or severe cavitation Ensure suction line and pump is filled properly before pump start up Fill suction line and pump before pump start up 3 6 4 Suction Strainer or Filter 10 Material damage caused by debris in piping entering pump Before connecting pump to system flush all system piping thoroughly to remove debris accumulated during fabrication storage and installation Imo pumps are not for flushing Ensure suction line between suction strainer and pump is clean Pump life is related to liquid cleanliness Suction strainers or filters should be installed in all systems to prevent entry of large contaminants into pump Purpose of a suction strainer or filter is for protection of internal pumping elements It should be installed immediately ahead of inlet port This location should provide for easy cleaning or replacement of strainer element 1 Install a strainer or filter in suction pipe Ensure size and capacity of strainer or filter is adequate to prevent having to clean or replace elements too frequently General guidelines for strainer sizing are as follows Liquid Use Mesh Size Relatively clean viscous liquids over 5000 SSU 10 to 12 mesh screens or those with about 1 16 inch 1 5 mm openings Relatively clean light liquids such as distillate 100 to 200 mesh screens fuels hydraulic oil
3. Apply preservative to all bare metal parts on outside of pump Material Damage Due To Inappropriate Treatment for Storage Material damage can result due to improper storage 1 Seal all openings with blank flanges blind plugs or plastic covers Be sure storage room meets following conditions Dry Frost free Vibration free Dust free 3 Turn shaft once a month 4 Make sure shaft and bearing change their rotational position in the process 2 2 3 Removing Preservative Only Necessary for Pumps Treated for Storage NOTE High Water Pressure or Spray can Damage Bearing Do not clean bearing areas with water or steam jet Choose cleaning agent according to application Remove preservative from all bare internal parts of pump Dispose of cleaning agents in accordance with local regulations For storage times in excess of 6 months Replace elastomeric parts made of EP rubber EPDM Check all elastomeric parts O rings shaft seals for proper elasticity and replace if necessary TARD 2 3 Disposal Risk of Poisoning and Environmental Damage by Pumped Liquid or Ou Use personal protective equipment when carrying out any work on pump Prior to disposal of pump Collect and dispose of any escaping pumped liquid or oil in accordance with local regulations Neutralize residue of pumped liquid in pump Dispose of pump in accordance with local regulations 3 Installation For pumps in explosion ha
4. and light lube oils Heavy crude oils 5 to 6 mesh strainer screens or those with or about 1 8 inch 3 mm openings Relatively clean distillate fuels in high pressure For three screw pumps 25 micron absolute filters fuel supply systems For gear pumps 10 micron absolute filters Table 4 General Guidelines for Strainer or Filter Sizing 2 Monitor strainer filter by installing appropriate gages or instrumentation Pressure drop across a dirty strainer must not allow inlet pressure to fall below NPIPR on Valves ex Pressure Gage 3 T eae a lt Pressure Gage E gp ey Rm Strainer Figure 8 Ideal Strainer Arrangement 3 6 5 System Filtration For systems that recirculate pumped liquid install downstream pressure or return side filtration Downstream filters may also be required to protect components such as servo valves in hydraulic systems or high pressure fuel nozzles and flow dividers in fuel oil supply systems for gas turbines System s most contamination sensitive component determines its liquid cleanliness requirement Liquid and Condition Recommended Downstream Filter Size Fuel oil light lube oil hydraulic oil other relatively low High efficiency 10 micron absolute or finer filter viscosity thin liquids Extreme operating conditions or harsh environments High efficiency 10 micron absolute or finer filter Clean viscous
5. chamber can be vented in situations where the inlet pressure is above atmospheric by opening the inlet and discharge valves and then loosening the seal vent plug to allow the suction pressure to push out the air in the seal chamber until oil flows from it Risk of damage to equipment pump and seal lubing and venting Failure to prime pump with liquid before starting may lead to pump damage Failure to fill and vent seal chamber as above may result in damage to seal at startup 4 Open bleed port at high point in system and vent trapped air until a solid stream of liquid emerges where practical 5 Close bleed port 6 Ensure that no pipe connections are leaking 4 1 4 Intermediate Drive Lubrication Some pump units include intermediate gearboxes or other devices between pump and driver When these devices are present lubrication is required Add lubricant to specified level per device manufacturer s recommendations before start up 4 1 5 Heating Jackets Pump may require heating before start up Heating is typically accomplished with steam heat transfer fluid or electric heat strips Pump may be fitted with a heating jacket If electric heating is used Fill jacket with appropriate heat transfer fluid prior to start up Maximum permissible pressure in a heating jacket is 150 psi gage unless operating instructions specify otherwise 4 1 6 Shaft Seal Quenching Fluid Application Apply steam to seal at least 30 minutes
6. of death due to electric shock Have all electrical work carried out by qualified electricians only Risk of injury due to accidental contact with running pump hot pump parts or electrical connections Do not touch running pump Do not carry out any work on running pump Stop pump and allow pump to cool down completely before starting any work Isolate motor from its supply voltage and secure it against being switched back on again before all assembly and maintenance work Shut wire or chain and lock all valves in pump inlet outlet piping If applicable shut off any steam or other fluid supply lines to pump Risk of injury and poisoning due to hazardous pumped liquids Use personal protective equipment when carrying out any work on pump Stop pump and allow it to cool down completely before starting any work Make sure pump is depressurized Empty pump and safely collect pumped liquid Dispose of it in accordance with environmental rules and requirements 5 2 1 Antifriction Bearings NOTE Material damage caused by continued running with rough or worn bearings Replace bearings when worn or damaged 1 As a precautionary measure replace antifriction bearing every 2 years recommended 2 Replace bearings immediately if rough operation or increased bearing temperature is detected 3 When grease or oil fittings are provided lubricate bearings 5 2 2 Mechanical Seals Gaskets and O rings Mecha
7. Lifting and Transportation no0000nnneenaannnnnosannnnnnornnnnnnrnnnnnnnennnnnnne 2 2 Storage PUMPS ANd Spare Hate 2 221 KEAUMENUTOF SlOlaGe a sirien eono 222 DVOVAGC EE 2 2 3REMOVING Preservative ENEE RI EE 3 Installation SE la Feat AON EE 3 1 1 Preparing Mi E UE e NET E 3 1 2 Preparing Mounting Surface cccccccssesecceeeceessseeeeseeeeseeeesseesasseeeesseeas 3 1 3 Foundations and Bedplates srira eaaa AREARE ASA A 3 1 4 Removing Preservative EEN 3 1 5 Installing heat Insulation on Humpe EE e EE E ETS le Le En UE 3 4 Preparation for Alignment ccccccscscccceceesseeeeeeceseseeeeceeseaeeeeesseeaaeeeeeseaeageeeeeeesegs FANNS EE 3 5 1 Flexible Shall Couplings vai cocserasevcnoncetavnancnotedeokaiedddaeePndedataadierdanrasleonenelds 3 5 2 Aligning Foot Mounted Pumps and Drivers n nnannnnnaannnnnannnnnennnnennnnnnnnne 3 5 3 Aligning Flange Mounted Pumps and Drivers nnna0annnonaannnnnennnnnnnnnnennnne 3 4 4 Belts ANd Sheaves 1 0 0 ccccceecccecccsessseeeeceeeesseceeeseaeaaeeeeeeseaaaaeeeesseeseeeeesseaeas OO PIDING ANON E E 25 3 6 1 Specifying Supports and Flange Connections soeannseeennnnneennnessnnnnnn EE SO EU dei le EE 10 3 6 4 Suction Strainer and Elter 11 20 SYS LOMA NMA ON EE 12 9600 Ouer Filtra tO EEN 12 af GONG GUNG I ler 12 3 7 1 Keeping PIPES Cean 12 3 7 2 Installing SUCTION PIPING cccceeccccececseseeceeeceeeeeeceeeesee
8. Observe operating instructions of manufacturer Make sure factory setting of pressure relief valve meets requirements of system Do not allow safety valve return to flow directly back into suction pipe Connect relief valve in pump discharge line as close to pump as possible with no other valves between pump and relief valve Set relief valve as low as practical E E on Relief Valve Kei A SS Figure 6 Proper Relief Valve Return Line Arrangement 3 6 3 Suction Line Suction line should be designed so pump inlet pressure measured at pump inlet flange is greater than or equal to minimum required pump inlet pressure also referred to as Net Positive Inlet Pressure Required or NPIPR 1 Suction line length should be as short as possible 2 Suction line diameter should be equal to or larger than pumps inlet size 3 All joints in suction line MUST be tight and sealed If pump cannot be located below liquid level in reservoir position suction line or install a foot valve so liquid cannot drain from pump while it is shut down When pump is mounted vertically with drive shaft upward or mounted horizontally with inlet port opening other than facing upward a foot valve or liquid trap should be installed in suction line to prevent draining _ Filling fi i Port Filling Port Foot We Liquid Trap BE Valve
9. To avoid air pockets For inlet piping run pipes with a continuous downward slope to pump 3 7 3 Installing Discharge Pipe 1 Remove port covers from pump Install discharge pipe 3 7 4 Ensuring Stress Free Pipe Connections Piping installed and cooled down NOTE Material damage due to distorted pump casing Ensure that all pipes are stress free when connected to pump Disconnect pipe connecting flanges from pump Check whether pipes can be moved freely in all directions within expected range of expansion Nominal diameter less than 6 inch 150 mm by hand Nominal diameter greater than 6 inch 150 mm with a small lever 1 Make sure flange surfaces are parallel 2 Reconnect pipe flanges to pump 3 8 Shaft packing and Seal Leakage Pump should be installed so any leakage from shaft packing or shaft seal does not become a hazard Packing leakage should be about 8 to 10 drops minute A small amount of liquid may also leak from mechanical or lip seals usually less than or equal to 10 drops hour Provisions should be made to collect leakage from packing or shaft seals Risk of injury and poisoning due to hazardous pumped liquids Safely collect any leaking pumped liquid then discharge and dispose of it in accordance with environmental regulations 1 Provide equipment for collecting and discharging leaking liquids 2 Ensure free discharge of leaking liquids 12 3 9 Quenched shaft seals Some pu
10. according to pumped liquid Emptied gt Close suction side and pressure side fittings Removed from motor gt Isolate motor from its power supply and secure it against unauthorized switch on Put into storage gt Follow storage instructions Tab 8 Measures to be taken if pump is shut down Characteristics of Pumped Duration of Shutdown Liquid Solidify gt Flush pump gt Flush pump Solidifying freezing gt Heat up or empty pump gt Empty pump and containers non corrosive and containers Remains liquid Remains liquid gt Empty pump and containers SHEI gt Treat pump and containers with preservative Table 9 Measures Depending on Characteristics of Pumped Fluid Solidifying freezing gt Heat up or empty pump gt Empty pump and containers corrosive and containers gt Treat pump and containers with preservative 18 4 3 Start Up Following a Shutdown Period 1 If pump is shut down for over 6 months take following measures before starting it up again Replace elastomer seals O rings shaft seal rings Replace antifriction bearings If necessary replace motor bearing 2 Carry out all steps in Operation section 4 above 4 4 Operating Stand By Pump Stand by pump filled and bled Operate stand by pump at least once a week 5 Maintenance For pumps in explosion hazard areas see additional ATEX instructions SRM00097 Trained service technicians are available for fitting and repair wor
11. cal Seals Gaskets Cmgs 21 2S FACING EE 21 5 2 A Fillers and Strainers E 21 SZ O ell E EE 22 920 Cleaning UMD EE 22 El 22 5 3 1 Returning Pump to Manufacture 00annnnnnnannnnnnnennnnnnnennnnnnennnnnni 22 9 02 REMOVING F UMD EE 23 9 9 0 OGNI CINO PUMP TE 23 4 Ordeno SANG Ir AINS sec8 eebe ee 23 6 eet ei Le OUI Le DEE 24 6 1 PUMP WIANUNCUOMS EE 24 6 2 Relief Valve Malfunctions A 26 596 Accredited by the Council National Accreditation Program for Accreditation RvA Rr CERT FICATION Colfax Corporation Imo Pump 1710 Airport Rd Monroe NC 28110 USA Phone 1 704 289 6511 E mail CustomerCare ColfaxCorp com Internet http www imo pumps com Oe Wi Ie W HP id W lhe Fe lt gt zenith FAIRMOUNT Com PURES ALLWEILER Portland Valve S Pumps Pumps HOUTTUIN 27
12. component to manufacturer At manufacturer s premises Flush pump and decontaminate if it was used for hazardous pumped liquids At manufacturer s premises for Return complete pump not disassembled to manufacturer warranty repairs Table 10 Measures for Returning Pump 5 3 2 Removing Pump Pump depressurized Pump completely empty flushed and decontaminated Electrical connections disconnected and motor secured against being switched on again Pump cooled down Coupling guard removed On couplings with spacer piece Spacer piece removed Auxiliary systems shut down Depressurized and emptied Unhook pressure lines gages Risk of injury during disassembly Secure pressure side gate valve against accidental opening Depressurize locking pressure system if available Wear protective gloves as components can become very sharp through wear or damage Remove spring loaded components carefully e g mechanical seal as components can be ejected by spring tension Observe manufacturer s specifications e g for motor coupling mechanical seal blocking pressure system drive shaft drives belt drive etc 1 Observe following during removal Mark precise orientation and position of all components before dismounting them Remove parts without cocking 2 Remove pump 5 3 3 Servicing Pump Refer to product service manual for specific pump for pump disasembly and reassembly 5 4 Ordering Spare Parts For trouble free r
13. d tested for functionality Pump prepared filled and bled properly Pump and motor rotation checked Sufficient filling level in container minimum immersion depth Risk of injury due to running pump or hot pump parts Do not touch the running pump Ensure that the coupling guard is attached Do not carry out any work on running pump Stop pump and allow pump to cool down completely before starting any work 16 Risk of injury and poisoning due to pumped liquid spraying out Use personal protective equipment when carrying out any work on pump Risk of cavitation when throttling down suction flow rate Fully open the suction side fitting and do not use it to adjust flow rate NOTE Material damage due to excessive pressure Do not operate pump while pressure side fitting is closed NOTE Material damage caused by dry running Make sure pump is filled properly Open pressure side fitting Open suction side fitting Switch on motor and make sure it is running smoothly Make sure minimum pumping pressure is above 40 psig Make sure differential pressure across pump is at least 40 psi Listen for unusual noise or vibration After first load under pressure and at operating temperature check pump is not leaking SE 4 1 9 Shaft Packing Stuffing Box Leakage Pumps with packing type seals must be checked to ensure packing gland is not too tight Excessive gland pressure on packing will cause a scored shaft over
14. d to impose strains on pump casing including allowing for expansion and contraction due to pressure and temperature changes Ensure all return lines in recirculating systems end well below liquid surface in reservoir Install shut off valves in both suction and discharge lines to hydraulically isolate pump for service or removal 3 6 2 Relief Valve Always use relief valves to protect pumps from overpressure Three screw and CIG series pumps are positive displacement types They will deliver or attempt to deliver flow regardless of back pressure on unit Failure to provide pump overpressure protection can cause pump or driver malfunction and rupture of pump or piping some low pressure pump models include built in safety relief valves They are intended only for emergency operation NOT for system control Extended operation of relief valves in these pumps could lead to pump damage or failure Risk of death or injury due to pump rupture or pipe rupture Provide pump overpressure protection to prevent pump or driver malfunction and rupture of pump or piping Risk of injury due to excessive pressure Do not set relief valve higher than maximum pressure rating of pump including pressure accumulation at 100 bypass Material damage due to temperature rise caused by return lines piped back to pump inlet Bypass liquid from relief pressure and flow control valves should be returned to source tank reservoir etc not pump inlet
15. e with aligning procedure as if pump were foot mounted 3 If bracket design includes adequate room check shaft alignment with dial indicators with both pump and driver mounted onto bracket If this is not possible align bracket to driver shaft then attach pump to bracket Acceptable alignment has been attained when FIM Full Indicator Movement is less than or equal to 0 005 inch 0 12 mm for face angularity and rim parallelism readings at or near coupling outer diameter while rotating both shafts together one full turn 360 4 After pump bracket driver is installed into system and after piping is connected to pump recheck shaft alignment Adjust shaft alignment if necessary Driver f Ges Mounting Bracket 3 oY Uy A Dial Indicator 1 f Ee a SS AC Z A Locating bore A must be concentric to driver shaft centerline within 0 002 0 05 mm inch FIM Mounting surface B must be perpendicular to driver shaft centerline within 0 002 inch 0 05 mm FIM Figure 5 Alignment of Flange Mounted Pumps 3 5 4 Belts and Sheaves Contact manufacturer to determine if a particular pump can be belt driven Risk of injury due to personnel contact with rotating couplings sheaves chains shafts and or keyways Ensure all coupling set screws and bolts are tight and coupling gap is properly set Install guards over couplings and shaft to protect personnel Material damage caused by improper use of be
16. eeeeeeeeseeaeeeeeeseaaes 13 3 7 3 Installing Discharge Piping ccccccseeccceceeeeeeeseeeeeeeeeeeeeeeseeaeeeeseeeeeees 13 3 7 4 Ensuring Stress Free Pipe Connections 00annnnnn0annnnnnennnennnnenneneenene 13 3 8 Shaft Packing and Seal Leakage nnn0000nnnnoo0annnnnnnnnnnnnennnnnnrnrrnnnnnrernnn 13 3 9 Quenched Shat S6alS esee ER E 13 EE 14 3 11 Ideal Installation for Pumps Located Above Liquid Level 14 3 12 EIS CWICal E eeler le EE 14 ula 1 CONMECING ele EE 14 A Operaio BEE 15 4 1 Putting PUMP in Operation cceceseescccecseeeeeeceeeeeeeteeeeeeetseaeeeeeeeeeeeeeens 15 4 1 1 Removing Preservative ccccccssssceccsessseeceeeeseeeceeaseesessanseeess 15 4 1 2 Protective le 15 AS FP MMNG ANG BICCOING EE 15 4 1 4 Intermediate Drive Lubrication ccccceeeecceceeeeeeeeeseeeeeeeeaeeeees 16 e dc Peang J ACK E 16 4 1 6 Shaft Seal QUENCHING Flug 16 4 1 7 Checking Rotation Direction ccccccccccecesseeeeeeeseeeeeeeeeeeaaeeees 16 e Ni Re ll a Orsan 17 4 1 9 Shaft Seal LCaKaGe nocie ae sede teil ea ee 18 4 1 10 Thermal Shock and Operating Temperature Limits 18 7 ed Pt Mei ae Ki EE 19 4 2 SMUG DOWN PUND E 19 4 3 Start up Following a Shutdown Herno 20 4 4 Operating Standby Humpe 20 E Te Na EE 20 Dell SSC HOM WEE 20 MEET 20 5 2 1 Antifriction Bearings cccccccsessseeceeeceeesseeeeeeeeeeseeeceeeeseeeeeseaaas 21 5 2 2 Mechani
17. en shipped disassembled to prevent coupling damage during shipping and handling When not supplied by manufacturer coupling shaft and or belt guards conforming to 2006 42 EC must be installed during pump operation For pumps shipped on baseplates without drivers 1 Install and tighten each coupling half on driver and pump shafts 2 Place driver on baseplate and set proper distance between shafts and coupling hubs 3 Locate driver so pump and driver shafts are in axial alignment For pumps driven through separate gear box or other device first align device relative to pump then align driver relative to device For belt driven pumps Final alignment of pump and driver should take place after unit is secured to foundation If baseplate is to be grouted this should be completed before final alignment Material damage caused by lateral shifting of baseplate Grouting is recommended to prevent lateral shifting of baseplate A baseplate designed specifically for this purpose is required Risk of injury due to personnel contact with rotating couplings belts sheaves chains shafts and or keyways Ensure all coupling set screws and bolts are tight and coupling gap is properly Install guards over couplings and shaft to protect personnel Ensure all coupling set screws and bolts are tight and coupling gap Is properly set 3 5 Alignment All pump and driver assemblies must be aligned after site installation and at regular main
18. eplacement in event of faults keep a supply of complete spare pumps or repair kits available on site recommended Parts that can be replaced can be found in pump parts list in pump specific manual Purchase of repair kits is preferred over selecting individual parts in order to prevent overlooking necessary components or mixing worn parts with new parts Minor Repair Kits are used to repair leaking seals bad bearings and items required for re assembly after teardown Minor Kits include pump shaft seals packing and all O rings gaskets and bearings Major Repair Kits are sufficient to rebuild completely worn out pumps to as new condition Major Repair Kits include all parts found in Minor Repair Kits plus all major internal parts subject to wear Have following information ready to hand when ordering spare parts Pump type Pump number Year of manufacture Part number Designation Quantity 6 0 Troubleshooting 6 1 Pump Malfunctions If malfunctions occur that are not specified in following table or cannot be traced to specified causes please consult manufacturer 2 Itten zs pen Inspect all system components System component malfunction Correct any malfunctions Ensure that suction and discharge lines are open and all valves are in proper positions Check reservoir oil level and fill as required Pump not primed or vented Vent air from pump Ensure driver is not overloaded For belt drives ensure belt
19. f foundations Larger pumps must be mounted to baseplates and foundations Make sure foundation or baseplate meets following conditions Level and resting on smooth flat surface It is recommended that pumps and their drivers be mounted on common baseplates 3 1 4 Removing Preservative If pump is to be put into operation immediately after setup and connection Remove preservative prior to setup 3 1 5 Installing Heat Insulation on Pump Only necessary in high temperature applications with heater in tank or where temperature of pumped fluid at startup could be 50 F greater than pump temperature NOTE Material damage on bearing or shaft seal due to overheating Only install heat insulation on pump casing not on shaft end cover Install insulation properly according to manufacturers instructions 3 2 Setup 1 If pump is set up in vertical position install pump unit with pump bracket on cover of tank or stand 2 If pump is set up in horizontal position Install pump unit with mounting feet on a level surface Ensure that seal leak detection hole points down Ensure seal vent connection faces up 3 3 Installing driver Only necessary if pump unit is assembled on site Material damage caused by knocks and bumps Keep coupling halves properly aligned when slipping them on Do not knock or hit any components of pump 3 4 Preparation for alignment On horizontal pump driver assemblies shaft couplings are oft
20. for at least 30 minutes prior to start up This will assure pump will not be thermally shocked and will have a uniform temperature distribution throughout before it is run e Unless approved by Imo liquids entering pump inlet must not be hotter than 225 F 107 C nor colder than 0 F 18 C for pumps with Iron or Babbitt lined steel rotor housings The upper limit for pumps with bronze rotor housings is 180 F 82 C 17 Material damage caused by thermal shock Never exceed thermal shock limit or minimum maximum allowable pump or liquid temperature without specific approval from Imo Pump Differences in metallurgy and their respective coefficients of thermal expansion could cause distortion of part parts resulting in breakdown condition External pump insulation and heating jacket or heat tracing is recommended in high temperature applications to maintain pump at liquid temperature 4 1 11 Switching Off Risk of injury due to hot pump parts Use personal protective equipment when carrying out any work on pump 1 Switch off motor 2 After initial start up check all tie bolts and tighten them if necessary 4 2 Shutting Down Pump Risk of injury and poisoning due to hazardous pumped liquid Safely collect any leaking pumped liquid and dispose of it in accordance with environmental rules and requirements Take following measures whenever pump is shut down Shut down for a prolonged period gt Take measures
21. g set screws and bolts are tight and coupling gap is properly set 3 5 2 Aligning Foot Mounted Pumps and Drivers 7 Feet Figure 2 Foot Mounted Pump To install foot mounted pump and driver 1 Install pump and driver onto baseplate after installing appropriate coupling halves on pump and driver shafts 2 Perform alignment of pump and driver shafts using dial indicators Acceptable alignment has been attained when FIM Full Indicator Movement is less than or equal to 0 005 inch 0 12 mm for face angularity and rim parallelism readings at or near coupling outer diameter while rotating both shafts together one full turn 360 Dial Indicator Dial Indicator rz Dt re y X4 A y A Ev S D Se A S Ee 4 _ A lt 7 X2 Figure 3 Coupling and Hub Alignment 3 5 3 Aligning Flange Mounted Pumps and Drivers Mounting Flange N ay Figure 4 Flange Mounted Pump Material Damage Due To Shaft Misalignment Do not assume bracket will automatically align pump and driver shafts Design bracket to obtain and maintain required alignment as well as to support pump weight plus any residual piping forces If a right angle foot bracket is used 1 Mount pump onto bracket and tighten pump to bracket mounting bolts 2 Bracket base is in effect pump feet Continu
22. ger arises due to electric power 3 Install an EMERGENCY STOP 4 Startup Operation and Shutdown See Atex instructions for pumps in explosion hazard areas 13 In closed or recirculating systems Check liquid level in tank before and after start up to be sure it is within operating limits 2 If initial liquid level is low or if it drops as system fills during start up or pumping operations add sufficient clean liquid to tank to bring liquid to its normal operating level 3 Check condition of liquid regularly Follow supplier s recommendations for maintaining liquid and establishing when liquid is to be changed 4 Control temperature of liquid Liquid should not fall below its minimum allowable viscosity that occurs at maximum operating temperature 5 Ensure that maximum viscosity at cold start up does not cause pump inlet pressure to fall below minimum required value 4 1 Putting Pump Into Service 4 1 1 Removing Preservative On pumps treated for storage remove preservative 4 1 2 Protective Devices Automatic shutdowns emergency switches and similar controls should be part of pumping system They are generally supplied by system supplier or user Risk of death or injury due to accidental contact with rotating parts Install covers or guards over bracket openings on flange mounted pumps Install covers or guards over couplings and shafts on foot mounted pumps Install covers or guards over sheaves gears c
23. hains belts or other type drives Risk of injury and material damage due to blocked discharge line Provide adequate relief protection to avoid danger to personnel and catastrophic failure Before start up ensure all protective covers and guards are in place Check all valves especially those that are manually operated to be sure they are in proper position Ensure suction and discharge line are not blocked Pressure relief valves supplied by manufacturer are pre set Make sure safety valve on system side meets requirements of pump 4 1 3 Filling and Bleeding Pump and Seal Chamber Risk of injury and poisoning due to hazardous pumped liquids Safely collect any leaking pumped liquid and dispose of it in accordance with environmental rules and requirements Risk of injury due to hot pumped liquids Avoid skin contact when operating temperatures exceed 140 F 60 C 1 Pour some liquid to be pumped into fill point priming point in system or directly into pump suction port 2 Rotate pump slowly by hand until rotors or gears pumping elements are wet and suction line is as full of liquid as possible 14 Priming Point s A Figure 11 Priming Point Fill Point 3 Fill seal chamber with pumped liquid to ensure mechanical seal does not start dry This can be done by removing seal vent set screw and pouring fluid into seal chamber vent before opening pump inlet Alternately the seal
24. heating and rapid breakdown of packing Keep gland nuts only finger tight After new packing has been installed gland nuts should be tightened evenly but only tight enough to seat packing rings properly Then loosen gland nuts and re tighten finger tight Final adjustment should allow a leakage of approximately 10 drops per minute while pump is operating Leakage is necessary to lubricate packing Provide a place for safe draining and disposal of leakage 4 1 10 Thermal shock and operating temperature limits Material damage caused by thermal shock or operation outside of temperature limits Do not operate outside of minimum or maximum allowable pump or liquid temperature limits Do not expose equipment to thermal shock Use insulation heating jacket or heat tracing to maintain pump at liquid temperature in high temperature applications e During start up as well as during operation thermal shock temperature of liquid entering pump relative to pump body temperature should be within 50 F 28 C e Unless approved by Imo maximum rate of temperature change during pump heating or cooling should be about 15 F minute 872 C minute for pump with iron or Babbitt lined steel rotor housing and 3 F 1 7 C for pumps with bronze lined housings e A pump used in a system where fluid is heated or cooled more than 50 F from pump ambient temperature before pump is started up should be preheated or cooled and temperature maintained
25. irty suction strainer Clean the suction strainer Relief valve chatter or leakage Check discharge relief valve pressure setting Re adjust repair or replace relief valve Check pump and driver alignment Correct alignment as required Inspect pump wearing parts Replace as required Heavy rubbing of internal pump parts 23 Check for loose or mis positioned coupling Mechanical problem Check for bent or broken shafts Check for worn bearing Replace or repair as necessary Collect samples of liquid and test for foreign matter Fluid contains abrasive foreign Reduce downstream filter ratings in re circulating matter systems do not exceed NPIPR If necessary replace liquid in re circulating systems ET Remove any water from reservoir Find source and eis e prevent further contamination ump Wear Sr EEN Check pump and driver alignment Correct alignment as g required Check liquid level in reservoir and correct as required Insufficient liquid Remove any suction line obstructions Clean or replace strainer or filter element Fluid more viscous than specified Heat fluid to proper viscosity and or design temperature Pump suction and or discharge lines Ensure suction and discharge lines are open and closed or blocked remove obstructions if present Check pump and driver alignment Correct alignment as required Inspect pump wearing parts Replace as required Excessive pump s
26. is not slipping For variable speed drivers or variable speed intermediate devices ensure proper speed is set Incorrect pump rotation Correct direction of rotation Supply suction pipe pump or suction Clean supply suction pipe pump or suction strainer strainer blocked or encrusted Remove any blockage Wear of rotors and or housings Replace worn rotors gears and or housings System bypass problem Check all system bypass valves including relief valve Repair or replace as required Insufficient inlet pressure Clean supply suction pipe pump or suction strainer Remove any blockage Loss of Flow or Low pump speed Low Capacity Verify suction line valve is locked open Suction line closed blocked or Inspect suction line especially joints Remove any leaking obstruction and repair any leaks Loss of Clean strainer or replace filter Ensure suction lines are full of liquid EEN Check all system bypass valves including relief valve y YP p Repair or replace as required Excessive Check pump and driver alignment Correct alignment as or Unusual Misalignment required Noise or Vibration Restricted suction line Clean the supply suction pipe Remove any blockage Ensure pump is vented Ensure suction lines are full of liquid Air in system Check reservoir oil level and fill as required Check all lines flanges joints and connections for leakage Repair as necessary D
27. k Present pumped liquid certificate DIN safety data sheet or MSDS sheet when requesting service 5 1 Inspections Inspection intervals depend on operating conditions of pump Risk of injury due to accidental contact with running pump or hot pump parts Do not touch running pump Do not carry out any work on running pump Stop pump and allow pump to cool down completely before starting any work Risk of injury and poisoning due to hazardous pumped liquids Use personal protective equipment when carrying out any work on pump 1 Check at appropriate intervals Temperature of roller bearings Normal operating conditions unchanged Pressure relief valve is working 2 For trouble free operation always ensure following No dry running No leaks No cavitation Suction side gate valves open Unclogged and clean filters Sufficient pump ingress pressure No unusual running noises or vibrations No excessive leakage at shaft seal Foundation and hold down bolts tight 5 2 Maintenance Pump environment operating conditions and intervals between bearing checks all effect antifriction bearing service life Antifriction bearings are designed for greater than 2 years service life when operation conditions are within permissible range Mechanical seals are subject to natural wear which strongly depends on operating conditions Therefore general statements regarding their service life cannot be made 19 Risk
28. liquids in moderate environment 25 micron nominal filter Water thin low lubricity or unusually large number of Contact manufacturer contaminants Table 5 Downstream Filter Recommended Sizing system builder determines filter size dirt holding capacity by amount and size of contamination expected to be produced by system and other external contamination sources by allowable pressure drop across filter and by acceptable frequency for cleaning and replacing filter elements 3 6 6 Outlet Piping Outlet piping should be sized to accommodate pump s flow rate while minimizing pipe friction losses Outlet piping should be designed to prevent gas and air pockets Piping downstream of pump should include a vent at highest point in system to allow air to escape during priming 11 3 Connecting pipes 3 1 Keeping pipes clean Material damage caused by debris in piping entering pump Before connecting pump to system flush all system piping thoroughly to remove debris accumulated during fabrication storage and installation Do not use Imo pumps for flushing Ensure suction line between suction strainer and pump is clean 1 Flush all pipe parts and fittings prior to assembly 2 Ensure no flange seals protrude inward 3 Remove any blank flanges plugs protective foils and or protective paint from flanges 4 On welded pipes remove welding beads 3 7 2 Installing Suction Pipe 1 Remove port covers from pump 2
29. lt drive Use belt drive ONLY on pumps specifically designed for this purpose Do not belt drive pumps with ratings in excess of 600 psi differential pressure without manufacturer approval Material damage caused by improperly installed belt drive Properly select align and tension belts and sheaves to minimize belt wear eliminate possibility of belt turnover in sheave grooves and avoid excessive side load on pump shaft Properly tension belts to avoid noise and overheating of sheaves Properly tension belts to avoid bearing failure shaft failure or reduced bearing life Use adjustable slide rails mounted under driver for proper belt tensioning Check belt tension frequently during first 24 to 48 hours of run in operation Follow belt drive manufacturer s recommendations for alignment of sheaves and belt tension settings 3 6 Piping and Valves 3 6 1 Specifying supports and flange connections Material damage due to excessive forces and torques exerted by piping on pump Do not exceed permissible values of flange loads according to pump outline drawing See EN ISO 14847 and API 676 Calculate pipe forces taking all possible operating condition into account Cold warm Empty full Depressurized pressurized Positional changes of flanges Ensure pipe supports have permanent low friction properties and do not seize up due to corrosion Ensure piping connected to pump is independently supported and not allowe
30. mps include quenched mechanical shaft seals For these pumps a low pressure stream of steam or nitrogen is supplied from an external source to atmospheric side of seal faces Quenching is used in selected seal applications to e Heat or cool seal area e Prevent build up of coke formations by excluding oxygen e Flush away undesirable material build up around dynamic seal components lf quenched mechanical seals are part of pump assembly 1 Determine quench connection size and port locations 2 Supply an appropriate seal quench stream 3 10 Gages 1 Monitor pumps operating conditions with easily readable pressure and temperature gages 2 Gages should be placed as close as possible to pumps inlet and outlet flanges 3 11 Idealized Installation for Pumps Located Above Liquid Level Figure 9 Vertical Mounted Pump Filling Port 4 Outlet E Inlet Same as Figure 10a E t K Same as Figure 10a Seal or Package Leakage Drain Line Figure 10 Horizontal Mounted Pump 3 12 Electrical Connection Risk of death due to electric shock Have all electrical work carried out by qualified electricians only 3 12 1 Connecting motor Verify electrical requirements for driver match electrical supply with respect to voltage number of phases and terminal connections Follow instructions of motor manufacturer 1 Connect motor according to connection diagram supplied by motor manufacturer 2 Make sure no dan
31. ng pump Stop pump and allow to cool down completely before starting any work Isolate motor from its supply voltage and secure it against being switched back on again before all assembly and maintenance work Shut wire or chain and lock all valves in pump inlet outlet piping If applicable shut off any steam or other fluid supply lines to pump WARNING Risk of injury and poisoning due to hazardous pumped liquids Use personal protective equipment when carrying out any work on pump Stop pump and allow to cool down completely before starting any work Make sure pump is depressurized Empty pump and safely collect pumped liquid Dispose of it in accordance with environmental rules and requirements WARNING Risk of injury due to heavy components Pay attention to component weight Lift and transport heavy components using suitable lifting gear Set down components safely and secure them against overturning or rolling away 5 3 1 Returning Pump to Manufacturer 21 Manufacturer provides maintenance as well as overhaul and a test facility in event user prefers to return pumps to factory for inspection or overhaul Pumps that have been factory overhauled are normally tested and warranted as new for a period of one year from date of shipment Take necessary measures depending on required repair work as listed in table below when returning pump to manufacturer At customer s premises Return defective
32. nical seals have functional leaks 1 Ensure pump installation allows periodic replacement of shaft seals gaskets or O rings 2 Ensure all connections involving shaft seals auxiliary seals gaskets or O rings are tight 3 If leakage is more than 10 drops per hour per seal shut down equipment and repair or replace necessary parts 9 2 3 Packing Repack pump when all packing gland travel is exhausted or when packing gland is damaged 5 2 4 Filters and Strainers Clean or replace all filter and strainer elements when dirty or clogged 9 2 5 Alignment Check and correct alignment of pump and its driver at least every 6 months Check more frequently if system experiences vibration or large variations in temperature 20 5 2 6 Cleaning Pump NOTE 5 3 Bearing damage caused by high water pressure or spray water Do not clean bearing areas with a water or steam jet Clean large scale grime from pump Repairs Manufacturer maintains a staff of trained service personnel that can provide pump installation pump start up maintenance overhaul and troubleshooting supervision as well as installation and maintenance training A DANGER Risk of death due to electric shock Have all electrical work carried out by qualified electricians only A DANGER Risk of injury due to accidental contact with running pump hot pump parts or electrical connections Do not touch running pump Do not carry out any work on runni
33. od and load eyebolt of motor Never fasten lifting gear onto motor eyebolt unless used as a safety device against tipping over for units with a high center of gravity Do not stand under suspended loads Fasten lifting gear as shown in following illustration Max 90 O Min 60 s o lt i Se Max OU Max 90 E F i S kat F Fi Min 60 ke e x m O SS Wm if i lt j S Figure 1 Lifting Illustration 2 2 Storage Pumps and Spare Parts 2 2 1 Treatment For Storage 2 2 1 1 From factory pump is delivered with protective covers in or over all openings and with internals filled with oil or with PL 2 unless specified otherwise by customer order 2 2 1 2 If pumps are to be stored in other than a clean warm or dry environment or if they are to be stored for more than six months follow below procedure 1 2 3 4 5 6 7 8 2 2 2 Storage NOTE Set pump down so that pressure side flange is higher than suction side flange Close suction side flange with a blank flange Fill pump with preservative e g PL 2 or equivalent Turn shaft slowly in opposite direction of pump s indicated rotation Continue filling and turning until preservative escapes from pressure flange without bubbles Close pressure side flange with a blank flange Renew preservative every 6 months if necessary
34. peed Reduce pump speed to design limits Check for loose or mis positioned coupling bent or Mechanical problem broken shafts or worn bearing Replace or repair as necessary Excessive Heavy rubbing of internal pump Power parts Usage 6 2 Relief Valve Malfunctions Malfunction Cause See Pumping Spring worn out Install new spring Pressure Install new valve cone Drops Valve seat leaks Vent air from pump Spring tension too high Relieve the pressure on the spring by turning the adjusting screw then reset the pressure relief valve Pressure Relief Valve Remove the pressure relief valve Does Not Foreign particles in the valve Clean the internal parts Open Install the pressure relief valve Ge operating temperature too Consult the manufacturer Ig Pressure Spring has no or insufficient tension Reset pressure relief valve Relief Valve Install new valve cone Does Not Valve seat leaks RE Close Vent air from pump Measure the excess pressure with the fitting on the pressure side closed Reset the pressure relief valve opening pressure 10 higher than the operating pressure Pressure Relief Valve Pressure relief valve rattles Rattles TABLE OF CONTENTS Page 24 1 About this Document 2 US NK e E Ee 12 Other EE Ee EIERE ee UR ge ale owes AlCl 10 8 2 EE 2 Transport SlOlade al 1S HOSA EE ZN CAINS dE 2 1 1 Unpacking and Inspection ON elen 2 1 2 Safe
35. prior to pump start up to ensure seal area is thoroughly heated Quenching steam should be saturated at about 4 to 7 psi 275 to 480 mBar gage Apply nitrogen quenching fluid just prior to pump start up 4 1 7 Checking Rotation Direction Be sure pump is filled and bled Be sure coupling is installed Be sure pump shaft and driver are aligned Be sure pump turns freely by hand SE Risk of death due to rotating parts Use personal protective equipment when carrying out any work on pump Keep an adequate distance from rotating parts NOTE Material damage caused by dry running Make sure the pump is filled properly Material damage caused operating pump in reverse direction Make rotation direction matches direction of rotation arrow 1 Check rotation direction arrow cast on pump casing or located on rotation nameplate on pump to determine intended direction of rotation Ensure rotation direction arrow is not confused with inlet or outlet flow direction arrows Outlet A Rotation SEH Arrow Fig 12 Rotation Arrow Location Switch motor on and immediately off again Make sure motor turns in direction indicated by pump rotation arrow If rotation is different swap motor electrical connections to swap phases Recheck motor rotation oe hy 4 1 8 Switching On Pump set up and connected properly Motor set up and connected properly All connections stress free and sealed All safety equipment installed an
36. s SRMO00100 ATEX additional instructions Operation in explosion hazard areas SRMO00092 If Applicable Order data sheet Technical specifications conditions of operation 1 3 Warnings Symbols amp Consequences of Ignoring Them Risk Level Consequences of Disregarding Warning A DANGER Immediate Acute Risk Death Serious Bodily Harm A WARNING Potential Acute Risk Death Serious Bodily Harm A CAUTION Immediate Hazardous Situation Minor Bodily Harm Material Damage NOTE ae Potentially Hazardous Situation Minor Bodily Harm Material Damage 2 Transport Storage and Disposal 2 1 Transport Pump weights are clearly and durably marked on pump nameplate 2 1 1 Unpacking and Inspection on Delivery 1 Unpack pump unit upon delivery and inspect it for transport damage 2 Report any transport damage to manufacturer immediately 3 Leave protective covers on all openings until just prior to attaching system piping 4 Dispose of packaging material according to local regulations 2 1 2 Safe Lifting and Transportation Death or crushing of limbs caused by falling or overturning loads Use properly rated lifting devices appropriate for total unit weight Ensure unit s center of gravity is located between lifting points Use spreader bars as necessary to ensure load is properly distributed Take precautions to prevent slippage of slings and hooks For vertical transport Provide a securing rope between ho
37. tenance intervals This applies to factory mounted units new or rebuilt because factory alignment is often disturbed during shipping and handling Flexible couplings shall be used to connect pump to its driver unless otherwise specified by manufacturer Objective of any aligning procedure is to align shafts not align coupling hubs by using methods that cancel out any surface irregularities shaft end float and eccentricity Material damage due to shaft misalignment At operating temperatures above 65 C 175 F pumps require hot alignment after pump and driver reach normal operating temperatures Re check final alignment after all piping is connected to pump 3 5 1 Flexible Shaft Couplings Flexible couplings are intended to provide a mechanically flexible connection for two aligned shaft ends Flexible couplings are not intended to compensate for major angular or parallel shaft misalignment Allowable misalignment varies with type of coupling Any improvement in alignment beyond coupling manufacturer s minimum specification will extend pump mechanical seal or packing coupling and driver service life by reducing bearing loads and wear Material damage due to shaft misalignment Establish and maintain proper alignment to obtain proper operation and maximum life Align pump to driver shaft alignment in accordance with pump s alignment requirement regardless of coupling manufacturer s stated limits Ensure all couplin
38. zard areas see ATEX additional instructions SRM00092 Material damage due to distortion or passage of electrical current in bearing Do not make any structural modifications to pump or pump unit Do not carry out any welding work on pump unit or pump casing Material damage caused by dirt Do not remove any port covers until immediately before connecting pipes to pump to prevent ingestion of contamination particles 3 1 Setup Preparation 3 1 1 Preparing Installation Site Ensure installation site meets following conditions Pump is freely accessible from all sides Pump is near liquid source and preferable placed so pump centerline is below liquid surface Sufficient space for routine visual inspection onsite service and maintenance and pump replacement For large units ample overhead clearance should be provided to allow for lifting device maneuvering Pump is not exposed to external vibrations damage to bearings Frost protection 3 1 2 Preparing Mounting Surface Be sure mounting surface meets following conditions Level Clean no oil dust or other impurities Capable of bearing weight of pump unit and all operating forces Pump is stable and cannot tip over 3 1 3 Foundations and Baseplates Foundations and baseplates must be designed and installed so pump and driver alignment can be maintained at all times Small pumps may be mounted on baseplates or directly to existing floors that meet criteria o
Download Pdf Manuals
Related Search
Related Contents
INSTALLATION MANUAL ZyXEL PES-1014 User's Manual Antena de TV para Interiores con Luz Nocturna Trekstor Data Station microdisk 20GB Copyright © All rights reserved.
Failed to retrieve file