Home

INTEGRATED WATER RESOURCES MANAGEMENT FOR

image

Contents

1. Point 1 2 amp 3 Salmo trutta fario Big Point 2 amp 3 Achondrostoma arcasii 4 Luciobarbus bocagei Big m m m 14000 10000 20000 12000 8000 8000 6000 10000 6000 4000 4000 5000 2006 2000 0 0 0 0 2 5 5 7 5 10 12 5 15 0 2 5 5 7 5 10 12 5 15 0 2 5 5 7 5 10 125 15 175 20 225 m s m s m s Point 1 2 amp 3 Salmo trutta fario Medium Point2 amp 3 Pseudochondrostoma duriense Big Point 4 Luciobarbus bocagei Medium m m m 8000 1999 40000 6000 6000 5000 30000 4000 4000 21 20000 2000 2000 7 10000 1000 0 0 0 0 2 5 5 7 5 10 12 5 15 0 2 5 5 7 5 10 12 5 15 0 2 5 5 7 5 10 125 15 175 20 225 m s m s m s Point 1 2 amp 3 Salmo trutta fario Small Point 2 amp 3 Pseudochondrostoma duriense Small Point 4 Luciobarbus bocagei Small m m m 6000 7000
2. 26 3 1 Development of the hydrological model 26 Seiad IntormatolpreBrocesslhB iia 26 3 12 2 rus tape scope 26 3 2 Development of the diffuse pollution evaluation model 32 2 2 1 normato preprocessing lao 32 3 2 2 Model 56 n Au ooo 33 3 3 Development of the water management mode l 35 221 Iplormatiomn Del OCS IN 35 3 9 2 Suay 35 3 4 Development of the water quality I 0d el u 38 Jnrornmaduoh preproCce55iDB soos omes crea waaka ves ttv co tt udo 38 221222 Model constructio usi onde edit 38 3 5 Development of the habitat model 40 3 5 1 Information preBrOCesSsllg quspaqa 40 3 5 2 Model construction n eU d 41 4 ResultsxnalvsiS ana discussion 42 4 1 Generation Of TUNo SORA 42 4 2 Generation of diffuse pollution 00000 43 4 3 Generation of series of f
3. p se T PPP ma s Tx NE d CS a ra q q OA k T LIN eS ni e 9 A PP o e 1 lt lt UA wak U l l c c MET a a a ST A o m P o F E s ET 500 400 stuH 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 1995 994 Date Figure 23 Comparison between the simulated stored volume yellow line and the measured volume blue columns in the reserovir of Santa Teresa from MAAA 2013 The calibration results are considered acceptable according to the graphics and provided that most data are introduced as fixed monthly values and not as time series This makes difficult to represent the variability of real water management throughout the calibration period Then the SIMGES model for the TWRS is ready to generate different result series Un gt Y Un O 2 Un cc Un H X cm 2 cC lt 3 4 Development of the water quality model 3 4 1 Information preprocessing This model is probably the most data demanding and also the mo
4. 200 Flow m3 s 100 0 100 75 N 1 50 Large Luciobarbus habitat 96 of total deficit 96 5 0 Dissolved oxygen mg L 10 S lt 7 mg L 0 5 of x lt VA pe x AN AM e oct 96 oct 97 oct 98 oct 99 oct 00 oct 01 oct 02 oct 03 oct 04 oct 05 oct 06 Figure 37 Simulation indicators of SIMGES CAUDECO and GESCAL for the QECO MAX scenario The results for this scenario show the impacts on the demands reliability resilience and vulnerability The reliability decreases due to the increasing number of deficit months This increase implies an increment of consecutive deficit months In addition the deficits raise and impact the vulnerability of the agricultural demands For example in this scenario supply deficits occur in a non deficit year 2000 in the INITIAL scenario During the summer months the deficits reach 46 47 of the required annual agricultural demand Although this value does not meet the minimum legal supply level 50 of the annual agricultural demand it is very close The degradation of the demands reliability benefits the habitat conditions and water quality For example in this scenario dissolved oxygen concentrations are greater than 5 8 mg L in most summers and are close to 5 5 mg L at critical time points In addition maximum ammonium concentrations of 1 mg
5. DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 30 Tormes 545 NUDO INIC 7 NUDOFINAL 36 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 31 Trasvase rio Lobos NUDO INIC 7 NUDOFINAL 12 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 ANNEX Additional information of the application to the Tormes Water Resources System CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 32 Tormes 545 c NUDO INIC 8 NUDOFINAL 37 1 O COSTE 0 0 PRIORIDAD 1 UMBRAL DEF 0 010 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 15 600 18 564 19 188 20 748 20 748 19 812 23 244 22 308 17 472 15 600 15 600 15 600 CAUD MAX 10000 000 10000 000 10000 000 10000 0
6. Water River dynamics management model gt Vegetation 8 4 riverbanks Water management model SIMGES Habitat suitability Biodiversit model M CAUDECO In rivers Water quality model GESCAL Figure 44 Diagram of the process for the assessment and valuation of Biodiversity 5 1 5 Other indicators As explained in the introduction there are other indicators that can be useful to globally assess the performance of a water resources system Moreover they can be derived from the IWRM methodology proposed 5 1 5 1 System of Environmental Economic Accounting for water The System of Environmental Economic Accounting for Water is the most extended hybrid accounting approach It shows in 12 tables the quantitative and qualitative flows existing in the hydrologic system and their connection with the economic system consistently with the System of National Accounts UNSD 1993 It is really difficult to apply these hybrid methodologies to a water resources system because the economical data is usually available at administrative scale but it is not compiled at hydrological scales Most of the values needed to fill the 12 tables can be obtained from the results of AQUATOOL modules The Flow Accounts include eight tables that present the physical flows of water between nature and economic uses the emissions of pollutants and the relation between water flows and the s
7. 2 5 0 0 2 0 5 15 KY J N AV X Be X J 0 5 z 0 0 oct 96 oct 97 oct 98 oct 99 oct 00 oct 01 oct 02 oct 03 oct 04 oct 05 oct 06 Figure 39 Simulation indicators of SIMGES CAUDECO and GESCAL for the OR scenario Figure 39 presents the Simulation Indicators for the OR scenario Relative to the QECO MAX scenario the deficit of demands is reduced to a level that meets the water law prescriptions EE Results analysis and discussion about reliabilities In terms of HTS many months remained at 100 However in some of the months of dry years the usable habitat is reduced to 60 of the maximum This value only falls to 50 in August and September of 2000 and it is acceptable according to the Spanish legislation Regarding water quality dissolved oxygen concentrations during most summers are greater than 5 8 mg L However in dry years dissolved oxygen approaches 4 mg L In these months ammonium concentrations reach 1 95 mgNH4 L which is acceptable because it is a punctual situation The other constituents do not present serious problems for aquatic species With this analysis it is demonstrated that the operation rule allows great habitat levels while maintaining the demand reliability In some years due to the application of the operation rule the habitat values are reduced to between 55 and 80 However these values still meet legislation Finally it is also interesting to notice that some years have
8. WIxII U Proposal for Ecosystem Services analysis The model GESCAL is suitable to quantify the water purification occurred in rivers and reservoirs It considers the effect of water management with the input of SIMGES and the water temperature is considered through its interaction with air temperature and thermal stratification in reservoirs Besides CARFU provides the entering pollutants concentration values Figure 43 presents the diagram for the assessment and valuation of the water purification service Point load discharges Water pollution model CARFU Water Water quality Pollutants reduction ificati aan rification model gt in rivers and gt diia m GESCAL lakes reservoirs lakes Water management model SIMGES Purification costs in downstream purification plants Water management Figure 43 Diagram of the process for the assessment and valuation of Water purification in rivers and lakes For the valuation of this WS it has to be considered that it reduces the necessity of water purification treatments before the use of the resource Thus one option is to value this pollution reduction as the cost of the equivalent artificial water treatment That means assigning to the WS in each river stretch or reservoir the value of reducing the concentrations of pollutants from the initial to final concentration But each water purification plant has different treatment costs depending on many factors The
9. Epilminion gt Inflow 4 4 4 444 55 sr AAA 5 ro N Point Load ss Y Y Y Y Y Y Y Y gy Hypolimnion Advection Flow G Connection Dispersion with aquifer Figure 6 Diagrams of rivers and reservoirs in GESCAL from Paredes 2004 The compounds considered by GESCAL are temperature dissolved oxygen nutrients cycle toxic pollutants and arbitrary constituents e g suspended solids Temperature can be obtained by the Edinger and Geyer approach 1965 or given as an input Dissolved oxygen can be considered with three degrees of complexity The simplest model only considers the relation between dissolved oxygen and carbonaceous biochemical oxygen demand CBOD One step more includes the nitrogen cycle and the most complex model also takes into account phosphorous and phytoplankton Figure 7 shows the complete dissolved oxygen model Toxic pollutants organic toxics and heavy metals are modelled together with suspended solids because of their high interaction Thus the evolution of concentrations in the sediment is also performed x A AAA Figure 7 Complete dissolved oxygen model in GESCAL from Paredes 2004 The water quality modelling in rivers is assumed to be stationary and one directional Then the resulting equation for the modelling of each constituent or pollutant is d d uO S 4 C q Cq S O dx ax V Materia
10. 12 COTA 0 00 N PRIORID 1 IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 29 DU Abastecimiento OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 111 0 107 0 111 0 111 0 100 0 111 0 107 0 111 0 107 0 111 0 111 0 107 COEF GARANTIAS GAR MENS 1 0 CRITERIO TIPO P H 15 0 A 30 0 CRIT TIPO UTAH DWR 1A 2 0 2A 3 0 10A 10 0 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 N TOMAS 1 TOMA 1 T DU Abastecimiento NUDO 58 DOT ANUAL 4 000 C ESCORR 0 80 C CONSUMO 0 20 ELEM RET 14 COTA 0 00 N PRIORID 1 IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 320 0 308 0 320 0 320 0 290 0 320 0 308 0 320 0 308 0 320 0 320 0 308 30 DU Ciudad Rodrigo OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 213 0 205 0 213 0 213 0 213 0 213 0 213 0 213 0 213 0 213 0 213 0 213 ANNEX Additional information of the application to the Tormes Water Resources System COEF GARANTIAS GAR MENS 1 0 CRITERIO TIPO P H M 15 0 30 0 CRIT TIPO UTAH DWR 1A 2 0 2A 3 096 10A 10 096 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 96 N TOMAS 1 TOMA 1 T DU Ciudad Rodrigo NUDO 67 DOT ANUAL 3 528 C ESCORR 0 80 C CONSUMO 0 20 ELEM RET 17 COTA 0 0
11. 2013 and ARIES Bagstad et al 2011 take into account the spatial variability of ecosystem services but they work with average values that cannot represent the influence of changing water management rules or the recovery time for damaged ecosystem services If both paradigms ES and IWRM are analysed independently the decisions could only point to nature protection or to demands fulfilling But as long as their relationship is so strong it is necessary to analyse them in an integrated way 2 3 Description of the Tormes Water Resources System The TWRS is a subsystem of the Duero River Basin District that spans from the source of the Tormes River basin to upstream of the Almendra reservoir This reservoir is located at the confluence of the Tormes River and the Duero River It has predominantly Mediterranean climate but also Continental due to its orographical isolation TORMES WATER RESOURCES SYSTEM Figure 10 Location of the TWRS With an area of 7 107 the main land cover is natural vegetation followed by agricultural land use water bodies and urban land use The total population is around 280 000 inhabitants from which more 160 000 live in the city of Salamanca The rest of populated areas have less than 15 000 inhabitants with an average of 200 inhabitants It is important to highlight that there are big Sites of Community Interest and Special Protection Areas for Birds both at the head and at the lower part o
12. 40 5 46 5 52 5 58 5 64 5 70 5 76 5 609 84 3 1 6 5 12 17 5 23 29 35 41 47 53 59 65 71 77 754 02 1295 496 1321 2 1572 48 1794 96 2001 78 2172 24 2343 42 2499 84 2659 86 2809 26 2939 22 3063 96 3183 84 3299 76 3422 16 1596 42 1815 3 2010 6 2188 8 2357 82 2513 52 2672 82 2821 14 2950 74 3074 94 3194 46 3310 2 3432 24 lt EXTRAC_CAUDALES gt lt NUMEROSERIES gt 3 lt G2S_FORMATO gt 4 G2S SERIES 235 2 4 29 330 330 330 3 1 5 7 12 101 18 23 5 29 5 35 5 41 5 47 5 53 5 59 5 65 5 71 5 77 5 879 12 1354 14 1619 46 1834 92 2019 42 2205 2372 22 2527 02 2685 6 2833 2 2962 26 3085 92 3205 08 3320 46 3442 32 r Tormes 545 c r Tormes 503_a r tormes 412 1 2 7 5 12 5 18 5 24 30 36 42 48 54 60 66 72 78 990 9 1384 92 1641 96 1854 2036 88 2221 38 2386 62 2540 7 2698 2 2845 08 2973 78 3096 9 3215 7 3330 72 3452 58 9491 44 9523 98 9556 38 9588 78 9621 9843 66 9874 98 9906 12 9937 26 9968 4 9999 10180 44 10210 14 10239 48 10268 82 10297 98 10327 14 10356 12 1 2 9 8 13 19 24 5 30 5 36 5 42 5 48 5 54 5 60 5 66 5 72 5 78 5 1078 56 1415 16 3 8 5 13 5 19 5 25 31 37 43 49 55 61 67 73 79 1131 48 1443 42 1646 396 1663 92 1872 9 2054 34 2237 58 2400 84 2554 2 2710 8 2856 96 2985 12 3107 88 3226 32 3340 98 3462 66 1891 62 2071 44 2253 42 2
13. 5 1 1 Freshwater production for economic uses Freshwater production is an example of linkages between provisioning and regulating services It is referred to the magnitude of runoff its distribution along time and the water recharge into aquifers All this is influenced by changes in land cover Hence these aspects can be assessed in each subbasin or in the whole river basin through the results of EVALHID A useful indicator would be the total runoff generated or the duo surface runoff recharge But in order to assign an economic value to freshwater it is necessary to relate it with a certain water use urban agricultural hydropower production aquaculture etc Then the performance of water management with SIMGES is required because its results provide the amount of water supplied to every demand unit in the water resources system Besides it is important to distinguish between the water sources given that each one requires a different infrastructure to be used The simplified diagram of the process is shown in Figure 41 Water demands Surface water Freshwater Water resources resources generated Water management production evaluation model m gt model for EVALHID Groundwater SIMGES economic resources generated uses Demand curves Exploitation costs Figure 41 Diagram of the process for the assessment and valuation of Freshwater production for economic uses EE Proposal for Ecosystem Services analysis The diffi
14. 56 16 57 6 58 32 58 5 57 96 57 6 57 24 57 24 7 5 12 5 18 5 24 30 36 42 48 54 60 66 72 78 3208 14 4805 64 5670 18 6470 28 7086 42 7702 38 8323 02 8836 2 9311 22 9762 48 1 2 5 3 8 8 5 13 13 5 19 19 5 24 5 25 30 5 31 36 5 37 42 5 43 48 5 49 54 5 55 60 5 61 66 5 67 72 5 73 78 5 79 30 6 32 4 46 98 47 7 50 22 50 58 52 92 53 1 54 54 54 9 55 08 56 34 56 52 57 6 57 78 58 32 58 32 58 32 58 32 57 96 57 96 57 6 57 42 57 24 57 24 57 24 57 24 1 2 5 3 8 8 5 13 13 5 19 19 5 24 5 25 30 5 31 36 5 37 42 5 43 48 5 49 54 5 55 60 5 61 66 5 67 72 5 73 78 5 79 3521 7 3752 64 4903 38 4997 7 5686 542 5751 18 6534 36 6599 16 7143 48 7200 18 7757 11 7811 1 8370 72 8418 42 8881 56 8926 56 9352 8 9394 56 9802 98 9843 12 3 5 14 20 25 5 31 5 37 5 43 5 49 5 55 5 61 5 67 5 73 5 79 5 34 38 48 24 50 94 53 1 54 18 55 08 56 52 57 78 58 32 58 32 57 78 57 42 57 24 57 24 3 5 9 14 20 25 5 31 5 37 5 43 5 49 5 55 5 61 5 67 5 73 5 79 5 3938 22 5087 52 5832 6662 52 7256 52 7864 92 8465 76 8971 02 9436 14 9883 08 10081 44 10120 5 10159 74 10198 98 10238 22 10277 64 10316 7 4 9 134 14 5 20 5 26 32 38 44 50 56 62 68 74 80 36 72 48 385 51 12 53 28 54 18 55 26 56 7 57 96 58 5 58 32 57 78 57 42 57 24 57 24 9 134 14 5 20 5 26 32 38 44 50 56 62 68 74 80 4119 48 5175 54 5911 2 6724 98 7312 8
15. 6 14 885 6 5 16 6 5 16 8059 2 8998 95 10373 86 10976 32 11527 89 12083 67 12583 05 13052 85 13508 55 13958 25 14383 82 14843 22 15259 77 15592 31 16018 53 16356 6 16720 63 17260 3 17888 6 18443 74 18957 27 19447 77 19868 39 20343 79 20756 21 20962 8 21161 33 21428 37 22346 95 BogaAlevinContiensa 274 0 5 7 17 6 1 7 48 17 5 3 2 8 18 1 1 2 5 3 3 9 4 4 5 5 KO 6 6 5 8 452 9 9 903 11 12 13 14 14 885 16 18 641 21 448 18142 87 20011 42 22590 29 23400 07 24080 37 24676 34 25226 44 25740 07 26141 43 26489 92 26853 91 27172 13 27426 06 27912 17 28161 11 28309 46 28455 91 28659 14 28548 79 28711 16 28840 38 28949 51 29076 11 29125 11 29132 74 29118 21 29102 05 29096 72 29003 34 BogaJuvenilContiensa 274 0 5 7 17 6 1 7 48 17 5 2 2 5 8 452 18 641 1 3 9 21 448 3 5 9 903 4 11 4 5 12 5 13 5 5 14 6 14 885 ANNEX Additional information of the application to the Tormes Water Resources System 6 5 16 0 11665 31 13455 46 15968 64 16860 16 17590 6418300 53 18910 7 19493 39 19990 21 20429 3 20857 05 21335 5321730 4622293 2622646 1122908 5923189 23583 2223681 63 24063 13 24433 39 24780 98 25097 89 25399 7 25676 18 25813 02 25943 54 26109 65 26728 38 BordalloAdultoContiensa 30 0 274 3 1 3 1 0 5 1 2 2 5 3 3 5 4 4 5 5 5 5 6 6 5 7 7 48 8 8 452 9 9 903 11 12 13 14 14 885 16 17 17 5 18 18 641 21 448 68157 7168343 97 68576 47 68607 58 68735 56 68
16. 638 28 1226 7 1577 16 1865 34 2106 72 2327 4 2524 32 2706 48 2876 58 3032 1 3184 92 3335 04 3478 86 3626 64 1 2 5 8 13 19 24 5 30 5 36 5 42 5 48 5 54 5 60 5 66 5 72 5 78 5 456 66 963 9 3 8 5 13 5 19 5 25 31 37 43 49 55 61 67 73 79 533 34 996 84 1247 381 1268 64 1500 48 1686 96 1364 26 2032 92 2202 48 2348 46 2498 04 2637 54 2760 48 2880 54 3003 48 3107 7 1 2 5 8 13 19 24 5 30 5 36 5 42 5 48 5 54 5 60 5 66 5 72 5 78 5 720 54 1263 42 1522 26 1702 08 1380 64 2047 68 2216 16 2361 6 2510 1 2649 06 2771 1 2890 98 3013 2 3116 88 8 5 13 5 19 5 25 31 37 43 49 55 61 67 73 79 799 2 1299 6 1583 705 1609 56 1891 62 2127 78 2346 84 2541 24 2722 68 2891 16 3046 32 3198 96 3348 36 3491 82 3638 7 1917 9 2147 76 2366 28 2558 16 2738 88 2905 56 3060 36 3213 3361 5 3504 42 3650 58 3 5 9 14 20 25 5 31 5 37 5 43 5 49 5 55 5 61 5 67 5 73 5 79 5 605 34 1029 06 1294 56 1543 14 1717 2 1896 3 2062 44 2229 48 2374 56 2522 52 2660 76 2782 44 2901 6 3022 74 3126 06 3 5 9 14 20 25 5 31 5 37 5 43 5 49 5 55 5 61 5 67 5 73 5 79 5 874 62 1335 06 1640 7 1943 82 2167 74 2385 2574 72 2754 9 2919 96 3074 4 3226 86 3374 82 3516 84 3662 28 4 9 134 14 5 20 5 26 32 38 44 50 56 62 68 74 80 667 8 1060 38 1318 68 1562 94 1733 22 1911 78 2076 84 2
17. 95 UNIVERSITAT Titulo del Irabajo Fin de Master INTEGRATED WATER RESOURCES MANAGEMENT FOR ECOSYSTEM SERVICES ASSESSMENT Intensificaci n RECURSOS H DRICOS Autor MOMBLANCH BENAVENT ANDREA Director es DR ANDREU VAREZ JOAQU N DR PAREDES ARQUIOLA JAVIER Fecha SEPTIEMBRE 2013 Departamento de Ingenier a Hidr ulica y Medio Ambiente Universitat Poli a de Va Camino de Vera s n 46022 Valencia Espa a T 34 963877610 F 34 963877618 mih t cnic lencia ma posgrado upv es http mihma upv es EN Hidr ulica y medio ambiente POLIT CNICA nm I DE VAL NCIA UNIVERSITAT POLIT CNICA DE VAL NCIA T tulo del Trabajo Fin de M ster INTEGRATED WATER RESOURCES MANAGEMENT FOR ECOSYSTEM SERVICES ASSESSMENT Autor MOMBLANCH BENAVENT ANDREA Tipo B x Lugar de Director JOAQUIN ANDREU ALVAREZ Realizaci n VALENCIA Codirector1 JAVIER PAREDES ARQUIOLA Codirector2 NOMBRE Y APELLIDOS Fecha de Tutor NOMBRE Y APELLIDOS Lectura SEPT 2013 Resumen Las tendencias actuales a nivel internacional y espec ficamente a nivel europeo avanzan hacia la gesti n sostenible y eficiente de los recursos naturales Esta corriente se plasma en la Directiva Europea Marco del Agua en las estrategias Europa 2020 y Estrategia de la UE sobre la Biodiversidad hasta 2020 y en el Plan para salvaguardar los recursos h dricos de Europa entre otros documentos oficiales La ev
18. ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 18 200 22 568 22 386 25 844 26 572 26 390 30 394 28 756 20 566 18 200 18 200 18 200 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 ACUIFERO 3 ACCION ELEM 1 CONTROL 2 VALOR CONEXI N 34 7 Transf Lateral 12 05 NUDO INIC 81 NUDOFINAL 82 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 ANNEX Additional information of the application to the Tormes Water Resources System CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 ACUIFERO 3 ELEM 1 N PARAMETRO CONTROL 2 VALOR CONEXI N 5 8 r Tormes 680 b g NUDO INIC 9 NUDOFINAL 39 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 ACUIFERO 4 ACCION ELEM 1 N PARAMETRO CONTROL 2 VALOR CONEXI N 15 9 f Transf Lateral 12 04 a 12 NUDO INIC 89 NUDO FINAL 90 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE
19. GAR MENS 0 0 CRITERIO TIPO P H M 30 0 A 15 0 CRIT TIPO DWR 1 50 0 2A 75 0 10A 100 0 CRIT IPH2008 DEMANDA URBANA 1m 8 10a 10 N TOMAS 1 TOMA 1 T DA 5007 ZR Elevaci n Aldea NUDO 6 DOT ANUAL 500 000 C ESCORR 0 19 C CONSUMO 0 61 ELEM RET 13 COTA 0 00 N PRIORID 10 IND RESTR 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 014 0 002 0 016 0 030 0 090 0 288 0 600 1 126 1 850 2 308 1 624 0 266 8 DA 5008 ZR Ejeme Galisancho OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 068 0 014 0 080 0 146 0 436 1 408 2 926 5 498 9 032 11 274 7 928 1 302 COEF GARANTIAS GAR MENS 1 096 CRITERIO TIPO P H M 15 0 30 0 CRIT TIPO UTAH DWR 1A 50 096 2A 75 0 10A 100 0 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 96 N TOMAS 1 TOMA 1 T DA 5008 ZR Ejeme Galisanch NUDO 26 DOT ANUAL 500 000 C ESCORR 0 65 C CONSUMO 0 24 ELEM RET 25 COTA 0 00 N PRIORID 1 IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 068 0 014 0 080 0 146 0 436 1 408 2 926 5 498 9 032 11 274 7 928 1 302 9 DA 5009 ZR Alba de Tormes OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 014 0 002 0 016 0 030 0 092 0 294 0 612 1 150 1 888 2 358 1 658 0 272 ACUIFERO RECARGADO 6 ACCION ELEM 1 COEF GARANTIAS ANNEX Additional in
20. OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 000 0 000 0 009 0 003 0 008 0 036 0 089 0 236 0 340 0 371 0 210 0 043 ACUIFERO RECARGADO 1 N ACCIONELEM 1 COEF GARANTIAS GAR MENS 1 096 CRITERIO TIPO P H M 15 0 A 30 0 CRIT TIPO UTAH DWR 1 50 0 2A 75 0 10A 100 0 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 96 N TOMAS 1 TOMA 1 T DA 5021 RP 22 Elevaci n MD NUDO 68 DOT ANUAL 1 444 C ESCORR 0 64 C CONSUMO 0 24 ELEM RET 16 COTA 0 00 N PRIORID 2 IND RESTR 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 000 0 000 0 009 0 003 0 008 0 036 0 089 0 236 0 340 0 371 0 210 0 043 22 DA 5022 RP Arroyo Pasiles OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 000 0 000 0 003 0 001 0 003 0 013 0 032 0 085 0 123 0 134 0 076 0 016 COEF GARANTIAS GAR MENS 1 0 CRITERIO TIPO P H M 15 0 A 30 0 CRIT TIPO DWR 1 50 0 2A 75 0 10A 100 0 CRIT IPH2008 DEMANDA URBANA 1m 8 10a 10 N TOMAS 1 TOMA 1 T DA 5022 RP Arroyo Pasiles NUDO 70 DOT ANUAL 0 513 C ESCORR 0 25 C CONSUMO 0 51 ELEM RET 16 COTA 0 00 N PRIORID 0 IND RESTR 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 000 0 000 0 003 0 001 0 003 0 013 0 032 0 085 0 123 0 134 0 076 0 016 23 5023 R o OCTUBR NOVIEM DICIEM
21. Rio Valmuza 518 520 NUDO INIC 11 NUDOFINAL 54 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 68 Agueda 522 b NUDO INIC 68 NUDOFINAL 77 COSTE O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 69 Agueda 522 c NUDO INIC 77 NUDOFINAL 69 COSTE O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 ANNEX Additional information of the application to the Tormes Water Resources System CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 70 Agueda 522 d NUDO INIC 69 NUDOFINAL 78 I O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 1000
22. Subbasin ID 57 Lmax 6 HBV 57 KO 0 13 HBV 57 K1 0 13 HBV 57 K2 0 HBV 57 Kperc 0 22 HBV 58 Beta 3 HBV 58 FC 180 HBV 58 Pwp 105 HBV 58 Lmax 6 HBV 58 KO 0 13 HBV 58 K1 0 13 HBV 58 K2 0 HBV 58 Kperc 0 22 HBV 59 Beta 3 HBV 59 FC 180 HBV 59 Pwp 105 HBV 59 Lmax 6 HBV 59 KO 0 13 HBV 59 K1 0 13 HBV 59 K2 0 HBV 59 Kperc 0 22 HBV 60 Beta 3 HBV 60 FC 180 HBV 60 Pwp 105 HBV 60 Lmax 6 HBV 60 KO 0 13 HBV 60 K1 0 13 HBV 60 K2 0 HBV 60 Kperc 0 22 HBV 61 Beta 3 HBV 61 FC 180 HBV 61 Pwp 105 HBV 61 Lmax 6 HBV 61 KO 0 13 HBV 61 K1 0 13 HBV 61 K2 0 HBV 61 Kperc 0 22 HBV 62 Beta 3 HBV 62 FC 180 HBV 62 Pwp 105 HBV 62 Lmax 6 HBV 62 KO 0 13 HBV 62 K1 0 13 HBV 62 K2 0 HBV 62 Kperc 0 22 HBV 63 Beta 3 HBV 63 FC 180 HBV 63 Pwp 105 HBV ANNEX Additional information of the application to the Tormes Water Resources System Subbasin ID 63 Lmax 6 HBV 63 KO 0 13 HBV 63 K1 0 13 HBV 63 K2 0 HBV 63 Kperc 0 22 HBV Table 2 Values for the parameters in all the subbasins CARFU Decay constants in all water bodies Initial concentrationcgop 10 mg L 0 01 kg m Initial concentrationphosphorus 0 2 mg L Kphosphorus 0 001 kg m Exceptions Water Water body r Tormes PUENTE CONGOSTO Comments 0 2 kg m E Santa EMBALSE DE Initial concentrations CBOD 2 mg L Phosphorus 0 02 mg L Teresa SANTA TERESA E EMBALSE DEL Almendra ALMENDRA Table 3 Exceptions in the decay constants and initial
23. and Ferrer J 2007 Modelo SIMGES para simulaci n de cuencas Manual de usuario Universidad Polit cnica de Valencia Espa a Andreu J Momblanch A Paredes J P rez M A and Solera A 2012 Potential role of standardized water accounting in Spanish basins In Godfrey J and Chalmers K eds International Water Accounting Effective Management of a Scarce Resource Edward Elgar Publishing Inc New York pp 123 138 Bagstad K J Villa F Johnson G W and Voigt B 2011 ARIES Artificial Intelligence for Ecosystem Services A guide to models and data version 1 0 ARIES report series n 1 Bain M B Haring A L Loucks D P Goforth R R and Mills K E 2000 Aquatic ecosystem protection and restoration advances in methods for assessment and evaluation Environmental Science amp Policy 3 89 98 Bazaraa M and Jarvis J 1977 Linear Programming and Network Flows John Wiley and Sons Inc New York Bergkamp G and Cross K 2006 Groundwater and ecosystems services towards their sustainable use In International Symposium on Groundwater Sustainability ISGWAS Alicante Spain Bergstr m S 1995 The HBV model In Singh V P ed Computer Models of Watershed Hydrology Water Resources Publications Highlands Ranch CO pp 443 476 DA References Bovee K D 1982 A guide to stream habitat analysis using the Instream Flow Incremental Methodology In U S Department of the Interior
24. compromising the sustainability of vital ecosystems as defined by the Global Water Partnership 2000 From these definitions it is clear that in order to cover so many water and ecosystems related aspects the use of integrative models is increasingly necessary In this thesis a methodology comprised of five coordinated modules is used to integrate aspects of water resources evaluation diffuse pollution evaluation water allocation water quality and habitat suitability for aquatic species These five modules are part of the AQUATOOL DSS Shell for integrated water planning and management AQUATOOL allows analysing the effect of multiple management alternatives and scenarios on the relevant variables in a river basin Thus it is easier to conduct tradeoff analysis risk evaluations and other useful processes which provide data for informed decision making Technically AQUATOOL is a geo referenced database system which provides a common interface data and results management tools for different modules directed to analyse the key aspects of river basins and water resources management These modules have been designed for more than 20 years following well established methodologies for water resources systems analysis Before presenting the IWRM methodology it is necessary to describe the modules which will be coupled Material and methods 2 1 1 Water resources evaluation The water resources evaluation models or continuous hydr
25. gueda 521 g Huebra 535 g Yeltes538 a gr Tormes 680 a gr Tormes 502 c gr Tormes 504 c g Transf Lateral 12 05 r Tormes 680 b g f Transf Lateral 12 04 a 12 05 r Tormes 545 b g f Transf lateral1 12 05 a 08 19 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 35 0 35 0 35 0 35 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 5 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 10 1 1 0 1 0 1 0 35 3 5 3 5 0 1 0 35 0 1 1 0 1 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 1 0 02 0 05 0 05 0 05 0 05 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 5 0 02 0 02 0 02 0 02 0 02 0 02 0 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 05 0 6 0 6 0 02 0 05 0 02 0 02 0 02 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 35 0 35 0 35 0 35 0 35 0 35 0 35 0 35 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 35 0 35 0 01 0 01 0 01 0 01 0 0
26. r Tormes 504_b NUDO INIC 50 NUDOFINAL 51 OCTUBR NOVIEM DICIEM COSTE O COSTE 0 0 ENERO FEBRERO MARZO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 ABRIL MAYO JUNIO JULIO AGOSTO 0 000 0 000 0 000 0 000 0 000 10000 000 10000 000 10000 000 10000 000 ABRIL MAYO JUNIO JULIO AGOSTO 0 000 0 000 0 000 0 000 0 000 10000 000 10000 000 10000 000 10000 000 ABRIL MAYO JUNIO JULIO AGOSTO 23 200 22 300 17 500 15 600 15 600 10000 000 10000 000 10000 000 10000 000 ABRIL MAYO JUNIO JULIO AGOSTO 0 000 0 000 0 000 0 000 0 000 10000 000 10000 000 10000 000 10000 000 ABRIL MAYO JUNIO JULIO AGOSTO 0 000 0 000 0 000 0 000 0 000 10000 000 10000 000 10000 000 10000 000 ABRIL MAYO JUNIO JULIO AGOSTO 0 000 0 000 0 000 0 000 0 000 10000 000 10000 000 10000 000 10000 000 ABRIL MAYO JUNIO JULIO AGOSTO 0 000 0 000 0 000 0 000 0 000 10000 000 10000 000 10000 000 10000 000 ABRIL MAYO JUNIO JULIO AGOSTO 0 000 0 000 0 000 0 000 0 000 ANNEX Additional information of the application to the Tormes Water Resources System CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 47 Tormes 505 a NUDOINIC 52 NUDOFINAL 53 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10
27. 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 3 C1 12 NUDO INIC 12 NUDOFINAL 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 A salidas sistema NUDO INIC 15 NUDOFINAL 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 5 r Tormes 614 a NUDOINIC 2 NUDOFINAL 16 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 6 Tormes 614 b NUDOINIC 16 NUDOFINAL 17 1 O COSTE 0 0 OCTUBR DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000
28. 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 7 r Tormes 614 c NUDO INIC 17 NUDOFINAL 3 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 8 r Tormes 615 NUDO INIC 3 NUDOFINAL 4 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE ANNEX Additional information of the application to the Tormes Water Resources System CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 9 r Corneja 624 NUDO INIC 18 NUDO FINAL 4 COSTE O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10 615 b NUDO 4 NUDOFINAL 19 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000
29. 0 000 0 194 0 068 0 186 0 794 1 965 5 197 7 506 8 171 4 626 0 951 ACUIFERO RECARGADO 1 ACCIONELEM 1 COEF GARANTIAS GAR MENS 1 096 CRITERIO TIPO P H M 15 0 A 30 0 CRIT TIPO UTAH DWR 1A 50 0 2A 75 0 10A 100 096 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 96 N TOMAS 1 TOMA 1 T DA 5019 ZR MI gueda NUDO 64 DOT ANUAL 32 017 C ESCORR 0 84 C CONSUMO 0 10 ELEM RET 19 COTA 0 00 N PRIORID 2 IND RESTR 0 ANNEX Additional information of the application to the Tormes Water Resources System OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 000 0 000 0 194 0 068 0 186 0 794 1 965 5 197 7 506 8 171 4 626 0 951 20 DA 5020 RP 12 Elevaci n MD OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 000 0 000 0 012 0 004 0 012 0 050 0 123 0 326 0 471 0 512 0 290 0 060 ACUIFERO RECARGADO 1 N ACCIONELEM 1 COEF GARANTIAS GAR MENS 1 096 CRITERIO TIPO P H M 15 0 30 0 CRIT TIPO UTAH DWR 1A 50 0 2A 75 0 10A 100 0 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 96 N TOMAS 1 TOMA 1 T DA 5020 RP 12 Elevaci n MD NUDO 66 DOT ANUAL 2 012 C ESCORR 0 22 C CONSUMO 0 51 ELEM RET 18 COTA 0 00 N PRIORID 2 IND RESTR 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 000 0 000 0 012 0 004 0 012 0 050 0 123 0 326 0 471 0 512 0 290 0 060 21 DA 5021 RP 22 Elevaci n MD
30. 00000000000000000000000000000000000000 250 25 0 2500 2500 250 E Santa Teresa E Villagonzalo E Almendra E Riolobos E Iruefia E gueda 000000 000000 Ox geno disuelto Conducciones r tormes 642 r tormes 412 a C1 12 salidas sistema r Tormes 614 a r Tormes 614 b r Tormes 614 c r Tormes 615 a r Corneja 624 r Tormes 615 b r Tormes 615 cr Tormes 615 d r Tormes 615 Tormes 615 f r Tormes 568 a r Tormes 568 br Tormes 568 cr Tormes 568 dr Tormes 568 er Tormes 569 ar Tormes 569 br Tormes 569 cr Tormes 569 d r Tormes 569 e r Tormes 569 f r Tormes 569 g r Tormes 682 a r Tormes 682 b r Tormes 682 c r Tormes 545 a Trasvase r o Lobos r Tormes 545 c r Tormes 546 b r Tormes 546 c r Tormes 546 a r Tormes 680 c r Tormes 680 d r Tormes 680 r Tormes 502 a r Tormes 502 b r Tormes 503 a r Tormes 503 c r Tormes 503 d r Tormes 503 b r Tormes 504 a r Tormes 504 br Tormes 505 ar Tormes 505 br Tormes 505 cr Tormes 505 dr Tormes 505 e Huebra 513 b Huebra 513 c Huebra 513 a gueda 687 gueda 626 a gueda 626 b Agad n 617 gueda 606 gueda 626 c gueda 522 a Arroyo Pasiles 607 gueda 524 gueda 525 Aravalle 643 Yeltes 538 586 Rio Valmuza 518 520 Agueda 522 b Agueda 522 c Agueda 522 d Agueda 523 a Agueda523 b Yeltes538 b Rec Lluvia 12 03 Transf Lateral 12 03 a 12 05 Rec Lluvia 12 05 Rec Lluvia 12 02 Rec Lluvia 12 04 f Transf lateral b 12 04 a 12 05 f Rec Lluvia 12 01 f Transf Lateral2 12 05 a 08 19
31. 01 0 01 0 4 0 4 0 01 0 01 0 01 0 01 0 01 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 Embalses E Santa Teresa E Villagonzalo E Almendra E Riolobos E Irue a E gueda 0 1 0 1 0 1 0 1 0 1 0 1 000000 111111 0 02 0 02 0 02 0 02 0 02 0 02 0 01 0 01 0 01 0 01 0 01 0 01 0 02 0 02 0 02 0 02 0 02 0 02 0 001 0 001 0 001 0 001 0 001 0 001 0 1 0 1 0 1 0 1 0 01 0 01 0 001 0 001 0 001 0 001 0 001 0 001 Datos Generales Elementos Conducciones r tormes 642 r tormes 412 a C1 12 salidas sistema r Tormes 614 a r Tormes 614 b r Tormes 614 c r Tormes 615 a r Corneja 624 r Tormes 615 b r Tormes 615 cr Tormes 615 dr Tormes 615 Tormes 615 f r Tormes 568 a r Tormes 568 br Tormes 568 cr Tormes 568 dr Tormes 568 er Tormes 569 ar Tormes 569 br Tormes 569 cr Tormes 569 d r Tormes 569 e r Tormes 569 f r Tormes 569 g r Tormes 682 a r Tormes 682 b r Tormes 682 c r Tormes 545 a Trasvase r o Lobos r Tormes 545 c r Tormes
32. 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 22 Tormes 569 c NUDO INIC 28 NUDOFINAL 29 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 23 r Tormes 569 d NUDO INIC 29 NUDOFINAL 30 I O COSTE 0 0 OCTUBR DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 ANNEX Additional information of the application to the Tormes Water Resources System 24 Tormes 569 e NUDO INIC 30 NUDO FINAL 31 I O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 25 Tormes 569 f NUDO INIC 31 NUDOFINAL 32 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL M
33. 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 37 r Tormes 680 d NUDO INIC 40 NUDOFINAL 41 I O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 38 r Tormes 680 e NUDO INIC 41 NUDOFINAL 42 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 39 Tormes 502 a ANNEX Additional information of the application to the Tormes Water Resources System NUDO INIC 42 NUDOFINAL 43 1 COSTE O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 40 Tormes 502 b NUDO INIC 43 NUDOFINAL 44 OCTUBR NOVIEM DICIEM COSTE COSTE 0 0 ENERO FEBRERO MARZO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000
34. 13 HBV 7 K1 0 13 HBV 7 K2 0 HBV 7 Kperc 0 22 HBV 8 Beta 3 HBV 8 FC 180 HBV 8 Pwp 105 HBV 8 Lmax 6 HBV 8 KO 0 13 HBV 8 K1 0 13 HBV 8 K2 0 HBV 8 Kperc 0 22 HBV 9 Beta 3 HBV 9 FC 180 HBV 9 Pwp 105 HBV 9 Lmax 6 HBV 9 KO 0 13 HBV 9 K1 0 13 HBV 9 K2 0 HBV 9 Kperc 0 22 HBV 10 Beta 3 HBV 10 FC 180 HBV 10 Pwp 105 HBV 10 Lmax 6 HBV 10 KO 0 13 HBV 10 K1 0 13 HBV 10 K2 0 HBV 10 Kperc 0 22 HBV 11 Beta 3 HBV 11 FC 180 HBV 11 Pwp 105 HBV ANNEX Additional information of the application to the Tormes Water Resources System Subbasin ID 11 Lmax 6 HBV 11 KO 0 13 HBV 11 K1 0 13 HBV 11 K2 0 HBV 11 Kperc 0 22 HBV 12 Beta 3 HBV 12 FC 180 HBV 12 Pwp 105 HBV 12 Lmax 6 HBV 12 KO 0 13 HBV 12 K1 0 13 HBV 12 K2 0 HBV 12 Kperc 0 22 HBV 13 Beta 3 HBV 13 FE 180 HBV 13 Pwp 105 HBV 13 Lmax 6 HBV 13 KO 0 13 HBV 13 K1 0 13 HBV 13 K2 0 HBV 13 Kperc 0 22 HBV 14 Beta 3 HBV 14 FC 180 HBV 14 Pwp 105 HBV 14 Lmax 6 HBV 14 KO 0 13 HBV 14 K1 0 13 HBV 14 K2 0 HBV 14 Kperc 0 22 HBV 15 Beta 3 HBV 15 FC 180 HBV 15 Pwp 105 HBV 15 Lmax 6 HBV 15 KO 0 13 HBV 15 K1 0 13 HBV 15 K2 0 HBV 15 Kperc 0 22 HBV 16 Beta 3 HBV 16 FC 180 HBV 16 Pwp 105 HBV 16 Lmax 6 HBV 16 KO 0 13 HBV 16 K1 0 13 HBV 16 K2 0 HBV 16 Kperc 0 22 HBV 17 Beta 3 HBV 17 FC 180 HBV 17 Pwp 105 HBV ANNEX Additional information of the application to the Tormes Water Resources System Subbasin ID 17 Lmax 6 HBV 17 KO 0 13 HBV 17 K1 0 13 HBV 17 K2 0 HBV 17 Kper
35. 17 90 COEF PROD GWH HM3 M 2080E 02 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD OBJ 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 11 CH Agueda NUDO TOMA 64 NUDO VERTIDOS 66 CAUD MAX 51 840 CAUD MIN 0 000 PRIORIDAD 1 EMBALSE E gueda COTA DE CENTRAL 30 00 COTA MIN TURB 605 00 COEF PROD GWH HM3 M 2320E 02 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD OBJ 4 800 4 800 4 800 4 800 4 800 4 800 4 800 4 800 4 800 4 800 4 800 4 800 12 CH Puerto Seguro NUDO TOMA 71 NUDO VERTIDOS 72 CAUD MAX 2 074 CAUD MIN 0 000 PRIORIDAD 1 CENTRAL FLUYENTE SALTO BRUTO 88 00 COEF PROD GWH HM3 M 2080 02 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD OBJ 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 KK K K OK a K K K K K K K K K K K K K APORT INTERMEDIAS KKK K K K K K K K K K K K K K K K K K K K K K K K NO NOMBRE NUDO ENTRADA N COLUMNA APORTACION 1 AN Cab Tormes Barco Avila 1 1 2 ANE Sta Teresa 5 3 3 AN Rio Valmuza 11 6 4 ANE Almendra 10 8 5 AN Rio Almar 8 5 6 AN Rio Alhandiga 6 4 7 AN Tormes confl con Duero 15 9 8 AN r o Corneja 18 2 9 V Babilafuente 13 13 10 V Junta Compensacion UR 3R 39 14 11 V Kimberly Clark 44 15 12 V Villamayor de Armu a 45 16 13 Tormes confluencia con Valm 54 7 14 V Piedrahita 18 18 15 V G
36. 2500 12 2000 ad 8 1500 6 1000 4 500 2 0 T 1 0 Si S U B V S 2 5 5 E gt yg e S S S 8 S 8 S8 8 4S3 8 8 S S 8 83 8 35 2 0 4 2 lt 5 5 5 lt g EE ROEA Simpa EvalHid ROEA Simpa EvalHid Figure 15 Comparison graphics between the gauged flows and the results of SIMPA T mez model and EVALHID HBV model Figure 16 presents the comparison graphics between the measured and simulated flows by EVALHID at ROEA 2085 where the simulated flows include the effect of snow melting and the measured flows are in natural regime In contrast Figure 17 shows the same comparison at ROEA 2088 where the simulated flows include the river management influence performed by SIMGES because the measured flows are in altered regime EE Application to the Tormes Water Resources System Hm Monthly 150 1 i Ii AMAN IDA MM 1 O O m O O c W m s O O m s I O O m I O O O da m s I co 92 Q Q 79 Q Q G Q m e O o O Q G G G 6 G 6 E S K E A FR e lt i oroeS 2973979vo9v9995959o2039 95294539 S 603 8 8 65 5 855255 amp S 55 5 5 5525 6568 o S 8 S amp o S 2 9 5 5 85 5 5603 8959 SS o S Z s S S
37. 4 1 1 Adulto 2 1 Juvenil 3 1 Alev n 4 1 Freza lt MASAS gt 3 235 1 1 Tormes 545 274 1 1 r Tormes 503 a 29 1 1 tormes 412 lt BIOPERIODOS gt 7 1 CP Alevines 0 0 0 0 0 0 0 1 1 1 1 1 2 CP Juveniles 1 1 1 1 1 1 1 0 0 0 0 0 3 CP Adultos 1 1 1 1 1 1 1 1 1 1 1 1 4 SL Alevines 0 0 0 0 1 1 1 1 0 0 0 0 5 SL Juveniles 0 0 0 0 0 1 1 1 1 1 1 0 6 SL Adultos 1 1 1 1 1 1 1 1 1 1 1 1 7 SL Freza 0 1 1 1 1 0 0 0 0 0 0 0 Curvas HPU 31 BermejuelaAdultoAlmendra 169 29 4 1 3 1 0 0 5 1 1 5 2 2 5 3 3 5 4 4 5 5 5 5 5 58 6 6 5 7 7 5 8 8 5 9 9 134 9 5 10 10 5 11 11 5 12 12 101 12 5 13 13 5 14 14 5 15 15 5 16 16 5 17 17 5 18 18 5 19 19 5 20 20 5 21 21 25 21 5 22 22 5 23 23 5 24 24 5 25 25 5 26 26 5 27 27 5 28 28 5 29 29 5 30 30 5 31 31 5 22 32 5 33 33 5 34 34 5 35 35 5 36 36 5 37 37 5 38 38 5 39 39 5 40 40 5 41 41 5 42 42 5 43 43 5 44 44 5 45 45 5 46 46 5 47 47 5 48 48 5 49 49 5 50 50 5 51 51 5 52 52 5 53 53 5 54 54 5 55 55 5 56 56 5 57 57 5 58 58 5 59 59 5 60 60 5 61 61 5 62 62 5 63 63 5 64 64 5 65 65 5 66 66 5 67 67 5 68 68 5 69 69 5 70 ANNEX Additional information of the application to the Tormes Water Resources System 70 5 76 5 745 38 71 77 963 36 1305 1941333 62 1573 92 1763 64 1945 26 2087 64 2209 32 2337 48 2467 44 2610 54 2713 32 2808 36 2885 22 2963 88 3039 66 1592 28 1780 92 1953 36 2099 34 2218 14 2348 46 2480 4 2621 52 2721 9
38. 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 ANNEX Additional information of the application to the Tormes Water Resources System 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 238 0 585 0 585 0 585 0 585 0 585 0 585 0 585 0 585 0 238 0 238 0 238 0 238 0 238 0 238 0 585 0 238 0 585 0 238 0 585 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 45 0 45 0 45 0 45 0 45 0 45 0 45 0 45 0 4 0 4 0 4 0 4 0 4 0 4 0 45 0 4 0 45 0 4 0 45 000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000 000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000 Embal
39. 47 990 24 870 15 350 14 480 22 690 46 460 65 860 91 390 129 750 156 230 141 510 86 980 TABLA COTA SUPERFICIE VOLUMEN COTA m 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 78 000 SUPERF Ha 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 387 000 VOLUM Hm3 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 13 880 5 Irue a NUDO 61 NUDO VERTIDOS 61 NUMERO PRIORIDAD 1 COEF FORMULA INFILTRACION A 0 0000E 00 B 0 0000E 00 C 0 1000E 01 MAX SUELTAS CONTROLADAS 1000 00 VOLUMEN INICIAL 0 00 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOL MAXIMO 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 VOL OBJET 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 VOL MINIMO 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 EVAP mm 88 890 55 370 48 890 36 310 45 620 59 550 62 300 71 280 106 330 120 080 126 970 106 150 TABLA COTA SUPERFICIE VOLUMEN COTA m 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000 10 000 100 000 SUPERF Ha 0 000 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000 100 000 VOLUM Hm3 0 000 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000 110 000 6 E gueda NUDO 64 NUDO VERTIDOS 64 NUMERO PRIORIDAD 1 COEF FORMULA INFILTRACION A 0 0000E 00 B 0 0000E 00 C 0 1000E 01 MAX SUELTAS CONTROLADAS 1000 00 VOLUMEN INICIAL 12 00 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO AB
40. 5 64 5 70 5 76 5 216 826 927 1155 78 1412 46 1636 92 1798 56 1972 26 2146 5 2295 72 2449 8 2587 14 2716 56 2838 24 2963 88 3070 26 1 1 6 5 12 17 5 23 29 35 41 47 53 59 65 71 77 271 98 860 04 1185 48 1434 6 1645 47 1815 3 1987 02 2160 18 2308 86 2462 4 2600 28 2727 72 2849 04 2973 96 3079 62 BarboJuvenilAlmendra 169 0 29 0 5 6 11 5 17 22 5 28 5 34 5 40 5 46 5 52 5 58 5 64 5 70 5 76 5 354 78 1 1 6 5 12 17 5 23 29 35 41 47 53 59 65 71 77 447 84 1111 702 1146 78 1474 74 1785 06 2063 52 2267 64 2473 56 2658 24 2832 12 2990 16 3143 34 3295 26 3439 98 3590 46 1509 66 1812 06 2074 5 2287 62 2490 48 2674 62 2847 06 3004 02 3157 2 3308 58 3452 94 3602 52 1 1 5 7 12 101 18 23 5 29 5 35 5 41 5 47 5 53 5 59 5 65 5 71 5 77 5 329 58 897 66 1213 74 1457 28 1654 02 1332 04 2001 96 2174 58 2322 18 2474 46 2613 42 2738 7 2859 84 2983 86 3088 98 2 1 5 7 12 101 18 23 5 29 5 35 5 41 5 47 5 53 5 59 5 65 5 71 5 77 5 543 06 1186 56 1543 68 1838 88 2085 48 2307 6 2507 4 2690 64 2861 82 3018 06 3171 06 3321 9 3465 9 3614 76 3 2 7 5 12 5 18 5 24 30 36 42 48 54 60 66 72 78 395 1 932 22 1242 1478 52 1670 22 1847 88 2017 8 2188 62 2335 32 2486 16 2625 66 2749 68 2870 1 2993 76 3098 34 7 5 12 5 18 5 24 30 36 42 48 54 60 66 72 78
41. 546 b r Tormes 546 c r Tormes 546 a r Tormes 680 c r Tormes 680 d r Tormes 680 e r Tormes 502 a r Tormes 502 b r Tormes 503 a r Tormes 503 c r Tormes 503 d r Tormes 503 b r Tormes 504 a r Tormes 504 br Tormes 505 ar Tormes 505 br Tormes 505 cr Tormes 505 dr Tormes 505 e Huebra 513 b Huebra 513 c Huebra 513 a gueda 687 gueda 626 a gueda 626 b Agad n 617 gueda 606 gueda 626 c gueda 522 a Arroyo Pasiles 607 gueda 524 gueda 525 Aravalle 643 Yeltes 538 586 Rio Valmuza 518 520 Agueda 522 b Agueda 522 c Agueda 522 d Agueda 523 a Agueda523 b Yeltes538 b Rec Lluvia 12 03 Transf Lateral 12 03 a 12 05 Rec Lluvia 12 05 Rec Lluvia 12 02 Rec Lluvia 12 04 f Transf lateral b 12 04 a 12 05 f Rec Lluvia 12 01 f Transf Lateral2 12 05 a 08 19 gueda 521 Huebra 535 Yeltes538 gr Tormes 680 a gr Tormes 502 c gr Tormes 504 c g Transf Lateral 12 05 r Tormes 680 b g f Transf Lateral 12 04 a 12 05 r Tormes 545 b g f Transf lateral1 12 05 a 08 19 121211111111111111111111222221111111111111111112222111111111111111111 11110000011112212101021 000000000000000000000000000000000000000000000000000000000000000000010 00000000000000000000000 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 3340 18086 1000 10
42. 63 Ciudad Rodrigo OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 000 0 000 0 000 0 000 0 000 0 002 0 004 0 010 0 015 0 016 0 009 0 002 ACUIFERO RECARGADO 1 ACCION ELEM 1 ACUIFERO BOMBEO 1 ACCION ELEM 1 Q MAX BOMBEO 0 100 PARAM CONT O UMBRAL 0 000 COEF GARANTIAS GAR MENS 1 0 ANNEX Additional information of the application to the Tormes Water Resources System CRITERIO TIPO P H M 15 0 A 30 0 CRIT TIPO UTAH DWR 1A 50 0 2A 75 0 10 100 0 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 96 N TOMAS 1 TOMA 1 Toma Bomb MAS 63 Ciudad Rodri NUDO 66 DOT ANUAL 0 058 C ESCORR 0 00 C CONSUMO 0 75 ELEM RET 0 COTA 0 00 N PRIORID 1 IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 38 Bomb MAS 59 San Esteban OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 000 0 000 0 020 0 007 0 020 0 084 0 207 0 548 0 791 0 861 0 487 0 100 ACUIFERO RECARGADO 2 N ACCION ELEM 1 ACUIFERO BOMBEO 2 N ACCION ELEM 1 Q MAX BOMBEO 0 870 PARAM CONT O UMBRAL 0 000 COEF GARANTIAS GAR MENS 1 0 CRITERIO TIPO P H 15 0 A 30 0 CRIT TIPO UTAH DWR 1 50 0 2A 75 0 10A 100 0 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 96 N TOMAS 1 TOMA 1 f Toma Bomb MAS 59 San Esteb NUDO 74 DOT ANUAL 3 12
43. 70 76 82 41 81 49 32 52 02 53 64 54 36 55 8 57 06 58 14 58 5 58 14 57 6 57 42 57 24 57 24 5 58 11 16 5 22 28 34 40 46 52 58 64 70 76 82 6202 8 8127 11767 86 11803 32 11838 6 11873 52 11908 44 11943 18 11977 56 12011 76 12045 96 12079 98 12113 82 12147 48 BogaDueroAlevinAlmendra 169 29 2 3 1 1 0 0 5 1 1 5 2 2 5 3 3 5 4 4 5 5 5 5 5 58 6 6 5 7 7 5 8 8 5 9 9 134 9 5 10 10 5 11 11 5 12 12 101 12 5 13 13 5 14 14 5 15 15 5 16 16 5 17 17 5 18 18 5 19 19 5 20 20 5 21 21 25 21 5 22 22 5 23 23 5 24 24 5 25 25 5 26 26 5 27 27 5 28 28 5 29 29 5 30 30 5 31 31 5 32 32 5 33 33 5 34 34 5 35 35 5 36 36 5 37 37 5 38 38 5 39 39 5 40 40 5 41 41 5 42 42 5 43 43 5 44 44 5 45 45 5 46 46 5 47 47 5 48 48 5 49 49 5 50 50 5 51 51 5 52 52 5 53 53 5 54 54 5 55 55 5 56 56 5 57 57 5 58 58 5 59 59 5 60 60 5 61 61 5 62 62 5 63 63 5 64 64 5 65 65 5 66 66 5 67 67 5 68 68 5 69 69 5 70 70 5 71 71 5 72 72 5 73 73 5 74 74 5 75 75 5 76 76 5 77 77 5 78 78 5 79 79 5 80 80 5 81 81 5 82 0 1389 42 1725 3 2108 52 2472 3 2873 16 3163 5 3417 48 3647 34 3842 1 3996 9 4150 98 4173 3584290 84 4431 96 4565 34 4696 92 4824 54 4948 02 5068 98 5100 5775186 88 5302 62 5416 92 5527 08 5637 42 5748 3 5770 8075859 72 5970 42 6078 24 6183 54 6285 42 6382 62 6478 56 6572 16 6662 52 6751 44 6839 28 6926 04 7013 52 7099 74 7185 42 7269 84 7355 7 7440 48 7481 88 7523 28 7606 98 7688 7 7769 16 7849 26 7928 82 8008 38 8086 86 8164 98 8243 1 8321 94 8400 78 8478 36
44. 8555 04 8630 82 8705 52 8779 5 8852 94 8925 12 8996 04 9066 06 9135 9202 14 9268 02 9333 36 9397 62 9461 7 9525 42 9588 6 9652 32 9714 96 9777 42 9839 34 9900 54 9961 92 10022 94 10084 32 10145 52 10206 36 10266 48 10324 62 10382 4 10440 54 10498 32 10556 1 10614 6 10673 1 10731 2410789 2 10847 34 10904 94 10962 18 11019 06 11075 58 11132 1 11188 4411244 6 11300 7611356 9211413 2611469 06 11524 32 11579 76 11635 02 11689 92 11744 82 11799 5411854 0811908 8 11963 1612017 7 12072 4212126 6 12180 9612234 9612289 5 12343 86 12398 04 12452 22 12506 22 12560 22 12613 68 12666 96 12720 24 12773 52 12826 8 12879 9 12933 12986 1 13039 02 13091 76 13144 32 13196 16 13248 18 13299 84 13351 68 13403 7 13455 18 13506 66 13557 96 13608 9 13659 48 13709 88 13759 74 13809 6 13859 28 13908 78 13958 28 14007 06 14055 48 14103 54 14151 42 14198 94 14245 92 14293 08 14339 7 14385 96 14432 22 14478 12 14524 2 14569 92 14615 46 BordalloAdultoAlmendra 169 29 3 1 3 1 0 0 5 1 1 5 2 2 5 3 3 5 4 4 5 5 5 5 5 58 6 6 5 7 7 5 8 8 5 9 9134 9 5 10 10 5 11 11 5 12 12 101 12 5 13 13 5 14 14 5 15 15 5 16 16 5 17 17 5 18 18 5 19 19 5 20 20 5 21 21 25 21 5 22 22 5 23 23 5 24 24 5 25 25 5 26 26 5 27 27 5 28 28 5 29 29 5 30 30 5 31 31 5 32 32 5 33 33 5 34 34 5 35 35 5 36 36 5 37 37 5 38 38 5 39 39 5 40 40 5 41 41 5 42 42 5 43 43 5 44 44 5 45 45 5 46 46 5 47 47 5 48 48 5 49 49 5 50 50 5 51 51 5 52 52 5 53 53 5 54 54 5 55 55 5 56 56 5 57 57 5 58 58 5 59 59 5 60 60 5 61 61 5 62 62 5
45. B Water regulation Water purification Cultural Services Nonmaterial benefits abtained from ecosystems Spiritual and religious B Recreation and ecotourism B Aesthetic inspirational Educational Sense of place A Cultural heritage Determinants and Constituents of Well being Security m Ability to live in an environmentally clean and safe shelter m Ability ta reduce vulnerability to ecological shocks and stress Basic Material for a Good Life B Ability to access resources to earn income and gain a FREEDOMS livelihood AND CHOICE Health m Ability to be adequately nourished m Ability ta be free from avoidable disease E Ability to have adequate and Clean drinking water B Ability to have clean air m Ability ta have energy to keep warm and coal Good Social Relations B Opportunity to express aesthetic and recreational values associated with ecosystems m Opportunity to express cultural and spiritual values associated with ecosystems B Opportunity to observe study and learn about ecosystems Figure 40 Services provided by ES and their linkages with human welfare from MEA 2003 Since 2009 the Common International Classification of Ecosystem Services CICES EEA 2013 is under development Its goal is to propose a new standard classification of ecosystem services that is consistent with the accepted categorisations and allows easy translation of statistic
46. CAUD MAX 0 030 0 000 0 000 0 000 0 000 0 000 0 040 0 160 0 200 0 250 0 220 0 100 33 DP Gestiones e Inversiones Gra OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 5 520 5 520 5 520 5 520 5 520 5 520 5 520 5 520 5 520 5 520 5 520 5 520 COEF GARANTIAS GAR MENS 1 0 CRITERIO TIPO P H M 15 0 A 30 0 CRIT TIPO UTAH DWR 1A 50 0 2A 75 0 10A 100 096 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 96 N TOMAS 1 TOMA 1 T DP Gestiones e Inversiones G NUDO 27 DOT ANUAL 70 000 C ESCORR 0 95 C CONSUMO 0 05 ELEM RET 6 COTA 0 00 N PRIORID 1 IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE ANNEX Additional information of the application to the Tormes Water Resources System CAUD MAX 5 520 5 520 5 520 5 520 5 520 5 520 5 520 5 520 5 520 5 520 5 520 5 520 34 DP Las Veguillas OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 COEF GARANTIAS GAR MENS 1 0 CRITERIO TIPO P H M 15 0 A 30 0 CRIT TIPO UTAH DWR 1A 50 0 2A 75 0 10A 100 0 CRIT IPH2008 DEMANDA URBANA 1m 8 10a 10 N TOMAS 1 TOMA 1 T DP Las Veguillas NUDO 24 DOT ANUAL 10 000 C ESCORR 0 95 C CONSUMO 0 05 ELEM RET 5 COTA 0 00 N PRIORID 1 IND RESTR 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD
47. CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 ACUIFERO 6 N ACCION ELEM 1 N PARAMETRO CONTROL 2 VALOR CONEXION 5 10 Tormes 545 b NUDO INIC 36 8 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 ACUIFERO 6 ACCION ELEM 1 CONTROL 2 VALOR CONEXI N 94 11 f Transf lateral1 12 05 a 08 NUDO INIC 88 NUDOFINAL 91 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 ACUIFERO 4 ELEM 1 N PARAMETRO CONTROL 2 VALOR CONEXI N 85 K K K OK K K K K K K K K K K K K K K K K DEMANDAS CONSUNTIVAS KK KOK K K CE K CK K CK CE K CE K K K K CE CK CE K K K K 1 DA 5001 RP Cabecera R o Torm OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 016 0 002 0 013 0 020 0 048 0 1
48. Calibration graphics for phosphorus at ICA 088 Finally it is important to highlight that this model was built for the DRBA as a part of a consulting contract by the Group of Water Resources Enginering of the Research Institute for Water and Environmental Engineering Currently a specifica calibration process in being conducted but at this point it is considered to be ready to generate waste load series 3 3 Development of the water management model 3 3 1 Information preprocessing This model needs mean monthly data about demands and their returns reservoirs capacity bathymetry and evaporation rates the capacities of rivers and conductions etc These data are available in the databases of the DRBA But others like the aquifers discharge rates or the management rules have to be adjusted in the calibration process The runoff series entering the TWRS from the basin headings and the tributaries are available from EVALHID at daily scale But they have to be monthly accumulated to be used by SIMGES 3 3 2 Model construction In this case the model comes from the Water Plan Office of the DRBA which used it to develop the annex about allocation and reserve of water resources of the last RBMP MAAA 2013 Hence the model is complete and calibrated The surface water bodies considered in the model are the ones forming the TWRS until Almendra reservoir The aquifers are introduced in the model to represent the groundwater res
49. Federal and State River Forecast Center U S National Weather Service and California Department of Water Resources Sacramento pp 204 Capra H Pascal B and Souchon Y 1995 A new tool to interpret magnitude and duration of fish habitat variations Regulated Rivers Research amp Management 10 281 289 Cheslack E F and Jacobsen A S 1990 Integrating the instream flow incremental methodology with a population response model Rivers 1 264 288 References Clough J 2012 AQUATOX Release 3 1 Modeling environmental fate and ecological effects in aquatic ecosystems Volume 1 User s manual United States Environmental Protection Agency Washington Conder A L and Annear T C 1987 Test of weighted usable area estimates derived from a PHABSIM model for instream flow studies on trout streams North American Journal of Fisheries Management 7 339 350 Cook B R and Spray C J 2012 Ecosystem services and integrated water resource management Different paths to the same end Journal of Environmental Management 109 93 100 Costanza R D Arge R Groot R D Farber S Grasso M Hannon B Limburg K Naeem S O Neill R V Peruelo J Raskin R G Sutton P and Belt M V D 1997 The value of the world s ecosystem services and natural capital Nature 387 253 260 Cox B A 2003 A review of currently available in stream water quality models and their applicability for simulating dissolved o
50. L occur which is considered as the acceptable threshold for all types of aquatic life The habitat conditions in the QECO MAX scenario are excellent and always exceed 70 of the maximum usable habitat A set of intermediate scenarios which combine different environmental flow levels at different basin points can be established between INITIAL and QECO MAX scenarios To summarise the possible effects of environmental flows several simulations were performed by increasing the environmental flows from O to 100 of the maximum at increments of EE Results analysis and discussion 10 To present these results it is important to use easy to understand indicators and graphics that synthesise all the information needed for informed decision making They should explicitly show the gains and losses in each objective Figure 38 shows the Tradeoff Indicators trends at point 4 In this case the Tradeoff Indicators include the following the maximum percentage of the total agricultural water demand deficit MADf the maximum ammonium concentration and the minimum dissolved oxygen concentration during the simulation period and the percentage to the maximum WUA that corresponds to the 80 percentile of the HTS for the most affected species the large Luciobarbus bocagei This last indicator represents the WUA which is exceeded 80 of the time during the simulation period Lafayette and Loucks 2003 of deficit amp Large Luciobarbus HDC
51. MENS 1 0 CRITERIO TIPO P H 15 0 A 30 0 CRIT TIPO UTAH DWR 1A 50 0 2 75 0 10 100 0 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 N TOMAS 1 TOMA 1 T DA 5005 RP R o Corneja NUDO 18 DOT ANUAL 9 838 C ESCORR 0 49 C CONSUMO 0 33 ELEM RET 3 COTA 0 00 ANNEX Additional information of the application to the Tormes Water Resources System N PRIORID 1 IND RESTR 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 016 20 003 0 018 0 033 0 099 0 319 0 662 1 245 2 045 2 552 1 795 0 295 6 DA 5006 ZR La Maya OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 086 0 016 0 100 0 180 0 542 1 744 3 626 6 814 11 194 13 972 9 826 1 614 COEF GARANTIAS GAR MENS 1 0 CRITERIO TIPO P H M 15 0 A 30 0 CRIT TIPO UTAH DWR 1A 50 0 2A 75 0 10 100 0 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 96 N TOMAS 1 TOMA 1 T DA 5006 ZR La Maya NUDO 5 DOT ANUAL 500 000 C ESCORR 0 33 C CONSUMO 0 48 ELEM RET 13 COTA 0 00 N PRIORID 1 IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 086 0 016 0 100 0 180 0 542 1 744 3 626 6 814 11 194 13 972 9 826 1 614 7 DA 5007 ZR Elevaci n Aldearr OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 014 0 002 0 016 0 030 0 090 0 288 0 600 1 126 1 850 2 308 1 624 0 266 COEF GARANTIAS
52. The calibration of the model is conducted adjusting the priorities of the demands the target volumes in reservoirs and introducing operation rules among other actions Thereafter the results of the model have to be compared with real measures in key elements of the system The figures presented below belong to the Duero RBMP They show this comparison for the flow in a river stretch for the period October 1980 to September 2006 and the volume stored in Santa Teresa from October 1994 to September 2006 In this last graphic are also depicted future scenarios for the horizons 2015 2021 and 2027 but the calibration scenario is represented by the yellow line EE Application to the Tormes Water Resources System Flowsinthe Tormes River at Salamanca Gauged flow Simulated flow 700 600 500 y3uou wuH s007 das vooz 3ny 00c Inr 00z unr TOOZ eN 000z 1dy 666T 48lA 8661 q9J 166 66 2 766 661 190 lt 66 4 5 T66T 3NY 066T Inf 686T un 886T AelN L861 4dy 986T 4eW 867 9 5 v8er uer 2861 10 T86T AON 0861 120 Figure 22 Comparison between the simulated flow yellow and the gauged flow blue in the Tormes River at Salamanca from MAAA 2013 Final stored volume in the reservoir of Santa Teresa Measured volume Simulated volume 600 m w r Ma k A s UNUM SS nT __ 5 a UU P C lt
53. Tradeoff nd icators mg L 100 90 80 70 60 50 40 30 20 10 Env Flow O o O o o O O O O m3 s 9 o9 yr y gt gt o E Maximum percentage of annual deficit of agricultural demands 96 Percentile 8096 of Big Luciobarbus Habitat Duration Curves 96 Maximum ammonium concentration mg L Minimum dissolved oxygen concentration mg L Figure 38 Tradeoff Indicators with respect to the minimum environmental flows at point 4 Remarkably the 80 percentile indicator of habitat remains constant until the flow rate reaches level 3 1 20 m s Thereafter it begins to increase linearly In addition the maximum ammonium concentrations strongly decrease at the first environmental flow step This decrease indicates that an environmental flow at or above step 3 should be chosen According to the MADf for the irrigation demands small incremental changes occur in the first steps However this indicator rapidly increases as the flow rate increases up to 3 6 m s This type of figure can help decision makers and stakeholders in the negotiation and establishment of environmental flows that maintain equilibrium among the systems essential components Results analysis and discussion ra Arguably the QECO MAX scenario implies a loss of agricultural water demand reliability which could lead to social and legal problems Based on this situation the objective is to maintain a high environmental flow
54. concentrarions of CARFU Initial concentrations CBOD 2 mg L Phosphorus 0 025 mg L 0 001 kg m KPhosphorus 0 005 kg m SIMGES Model features N NUDOS SISTEMA FISICO 98 N DE EMBALSES 6 N TRAMOS RIO TIPO 1 73 N TRAMOS RIO TIPO 2 8 N TRAMOS RIO TIPO 3 11 N CONDUCCIONES TIPO 4 0 N CONDUCCIONES TIPO 5 0 N APORTACIONES INTERMEDIAS 34 N DEMANDAS CONSUNTIVAS 41 N DEMANDAS NO CONSUNTIVAS 12 N RECARGAS ARTIFICIALES N ACUIFEROS N BOMBEOS ADICIONALES 26 N RETORNOS 0 0 N GRUPOS ISOPRIORITARIOS 7 N INDICADORES DE RESTRICCION 0 ANNEX Additional information of the application to the Tormes Water Resources System K K OK K K K K K K KOK CE K K GR K K K K EMBALSES KOK CE K CE K KKK K CK CE CK CE CK CE CK CE CE CK K K 1 E Santa Teresa NUDO 5 VERTIDOS 5 NUMERO PRIORIDAD 5 COEF FORMULA INFILTRACION A 0 0000E 00 B 0 0000E 00 C 0 0000E 00 MAX SUELTAS CONTROLADAS 1000 00 VOLUMEN INICIAL 431 00 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOL MAXIMO 450 000 450 000 371 000 371 000 371 000 391 000 451 000 450 000 450 000 450 000 450 000 450 000 VOL OBJET 450 000 450 000 371 000 371 000 371 000 391 000 451 000 450 000 450 000 450 000 450 000 450 000 VOL MINIMO 50 000 50 000 50 000 50 000 50 000 50 000 50 000 50 000 50 000 50 000 50 000 50 000 EVAP mm 67 130 45 970 29 440 24 880 33 560 5
55. dels Ecosistemes pot ajudar a preservar ecosistemes sans impulsant decisions efectives sobre els recursos naturals A m s la Gesti Integrada de Recursos Hidrics recolzada per Sistemes Suport a la Decisi permet considerar m ltiples variables d un sistema de recursos h drics dins de lobjectiu m s ampli del desenvolupament sostenible En aquest treball es proposa una metodologia per a la Gesti Integrada de Recursos H drics i s aplica al Sistema de Recursos H drics del Riu Tormes en Espanya Aquesta consta de cinc models encadenats per a l avaluaci dels recursos h drics i la contaminaci difusa la gesti de l aigua la modelaci de la qualitat de l aigua i l avaluaci de I habitat tots ells integrats en el Sistema Suport la Decisi AQUATOOL Es proposa una analisi de compensaci per a presentar l evoluci de la qualitat de l aigua la satisfacci de les demandes i la disponibilitat d habitat front a la variaci de caudals ecologics en diversos punts del sistema Els resultats s analitzen mitjan ant grafiques que poden ser facilment compreses pels decisors i els actors interessats donant suport a decisions consensuades i informades Es proposa una metodolog a per a integrar l avaluaci dels Serveis dels Ecosistemes i la Gesti Integrada de Recursos H drics que es desenvolupara en futurs treballs Aquesta uni comporta l enriquiment de la metodologia per a la Gesti Integrada de Recursos H drics afegint l an lisi
56. during wet and normal years so that in drought years the impact is not fully absorbed by the agricultural demands This can be achieved by reducing the environmental requirements and the water quality levels Therefore an operation rule is defined to reduce the releases from Villagonzalo dam OR scenario This operation rule decreases the environmental flows in the final stretch when the Santa Teresa reservoir inflows are below a threshold These types of operation rules are commonly used in water system management and are easily understood by managers and stakeholders However the problem is complex because the inflow threshold has to be defined for each month The operation rule selected is defined in the Duero Drought Management Plan as follows when the monthly inflows into the Santa Teresa reservoir in the last four months are below the 85 percentile of the historical data then the environmental flow at Salamanca is reduced from 6 to 3 m s With this method it is possible to maintain an optimal environmental situation where the environmental requirements are only reduced during drought periods This last scenario provides intermediate results what helps to balance all the aspects analysed 200 A Flow m3 s v v lt b Large Luciobarbus habitat un o rs E of total deficit 96 5 0 Dissolved oxygen mg L
57. environmental flows in complex water resources systems Case study the Duero River Basin Spain River Research and Applications 29 4 451 468 Paredes Arquiola J Solera A Andreu J and Lerma N 2013a Herramienta EvalHid para la evaluaci n de recursos h dricos Manual T cnico v1 0 Grupo de Ingenier a de Recursos H dricos Universitat Politecnica de Valencia Paredes Arquiola J Solera A Martinez Capel F Momblanch A and Andreu J 2013b Integrating water management habitat modelling and water quality at basin scale and environmental flow assessment case study of Tormes River Spain Hydrological Science Journal in press Ruiz J M 1998 Desarrollo de un Modelo Hidrol gico Conceptual Distribuido de Simulaci n continua integrado con un sistema de informaci n geogr fica PhD Thesis Universitat Politecnica de Valencia References w Solera A 2003 Herramientas y m todos para la ayuda a la decisi n en la gesti n sistem tica de recursos h dricos Aplicaci n a las cuencas de los r os Tajo y J car PhD Thesis Universitat Polit cnica de Val ncia Spangenberg J H and Settele J 2010 Precisely incorrect Monetising the value of ecosystem services Ecological Complexity 7 327 337 Stalnaker C Lamb B L Henriksen J Bovee K and Bartholow J 1995 The Instream Flow Incremental Methodology A Primer for IFIM National Biological Service U S Department of Interior Str
58. fish invertebrates and aquatic plants but they do not refer the results to habitat availability indicators Material and methods Instream flow Weighted Usable Area Flow curve 20000 m s 400 15000 300 10000 200 5000 100 0 dH T oct 96 oct 97 98 99 oct 00 01 oct 02 ct 03 04 oct 05 06 oct 07 oct 08 Habitat studies bia Berods gt Species Size i Oct Nov Dec Feb i Mar Apr E June July Aug i Sept Habitat Time Series Squalius iSmall 75 50 Other outputs 4 Habitat Duration Curves 25 Cumulated Habitat Time Series Other habitat availability indicators oct 96 97 oct 98 99 oct 00 oct 01 02 oct 03 oct 04 05 06 07 oct 08 Figure 8 Diagram of the process to obtain Habitat Time Series with CAUDECO After this process CAUDECO provides the HTS and the HDC for each species and size class at each studied river stretch In order to facilitate the global analysis of results CAUDECO allows accumulating the results in different ways according to the user s preference It can accumulate the different size classes of the same species in a river stretch providing one result per species per river stretch e g HTS of the Brown trout in the lower stretch of the river Tormes Also it can accumula
59. in the water management model The growndwater in the TWRS is considered to have low influence on the total runoff In fact the main part of the recharge into the aquifers beneath the TWRS comes from zones located outside the studied system That is why in order to simplify the model the groundwater drainage points coincide with the surface drainage points According to this reasoning Figure 12 presents the subbasins selected to obtain the total runoff EE Application to the Tormes Water Resources System Figure 12 Subbasins where EVALHID provides the total runoff The next step is the selection of the hydrological model for each subbasin that should be based on the knowledge of the rainfall runoff proceses in the basin and the level of detail required for the results Another option is building the three available models in EVALHID and choose the one which better represents the real hydrology after the calibration In this application the breakdown of results needed is low Then the SAC SMA model in dismissed also because of the high number of parameters that make the calibration more difficult The T mez model performance is known because it has been used in other models e g SIMPA Ruiz 1998 So finally the model applied is the HBV Apart from that it is necessary to decide whether a snow model is necessary or not and which of the two available models would be preferable Consistently with the hydrological model selected the
60. is bad the demands will try to find an alternative water source but if it is not possible the water will have to be more intensively treated before its use rising costs Results analysis and discussion ram On the whole the decisions about the waste water treatments influence the quality of available resources and the suitability of habitat conditions in water bodies Waste load kg 70 60 50 40 30 Figure 28 CBOD waste load series resulting from the application of CARFU Waste load kg Figure 29 Phosphorus waste load series resulting from the application of CARFU According to Figure 28 the subbasin which generates higher loads of CBOD is AN 526 Caballeruelo In the case of phosphorus loads it is AN 519 Tormes hasta Almendra This does not mean that the higher concentrations are in those subbasins In fact the concentration of CBOD in the first water body is under 0 9 mg L and the phosphorus in the second water body is under 0 0014 mg L in all the simulated period The investments in waste water treatments should be focused in the areas with higher concentrations otherwise the water purification treatments downstream would have to be more intense mE Results analysis and discussion 4 3 Generation of series of flows in rivers stored volumes in reservoirs and other results The flow series in rivers are necessary as inputs for the modules GESCAL and CAUDECO Besides the stor
61. monthly demand and occur during the summers of 1997 and 1998 respectively Thus an annual deficit of demands of 9 87 occurred although their reliability is inside the limits established by Spanish legislation In these periods also the habitat suitability is affected In many months the usable habitat is close to 100 of the maximum Hence the river flows potentially provide very good habitats for these fish However in many years the potential habitat is reduced dramatically to less than 50 in September October and November That is because in these months water is not released from the reservoirs since irrigation demands are low In addition the simulation model tends to store water in Santa Teresa reservoir for the future which reduces river flows Additionally in these periods the water quality is poor during these months due to the reduced flow For example ammonium concentrations reach more than 6 mgNHy L and dissolved oxygen levels drop to 1 mg L In 1998 the most critical year dissolved oxygen concentrations were less than 1 mg L Thus aquatic life would be very difficult at any WUA level The same graphic for the QECO MAX scenario see Figure 37 presents totally different results From this it is clear that the decisions made about water management deeply influence all the variables of the system and that this kind of figures are very useful to identify the changes Results analysis and discussion ram 400
62. multiobjectiu tradicional del subministrament a les demandes i caudals ecologics altres variables interessants per a la presa de decisions com la producci d aigua l emmagatzematge en aquifers l autodepuraci de l aigua i la biodiversitat Palabras clave Integrated Water Resources Management Ecosystem Services Assessment Tradeoff analysis Decision Support Systems AQUATOOL GENERAL INDEX o 1 tie Research frate OE sau ma ma usasapa 1 12 Need tor Ecosystem Services andl SIS susti u AS 2 1 3 Objectives ana scope of the restar nia 4 1 4 Structure and content of the Master s Thesis 5 2 Material ana methods V fama 6 2 1 Methodology for Integrated Water Resources Management 6 21 1 Water reso rces valu ugl Olun a i n 7 2 12 DITUse pollution evaludtiOD xa ye pcr A ak d 11 21 5 Water IVAN AS Smeg sce v aeta de buta Et are S a 13 21014 Mater quality Modeling a tee Pu ded pt OL a Uo uns 16 2 L 5 HAD at evaluation ss 18 2 CONNECHON or the MOde Sissi nas 21 2 2 Integration of the Ecosystem Services Analysis and the Integrated Water Resources 22 2 3 Description of the Tormes Water Resources 23 3 Application to the Tormes Water Resources
63. proposal is to use the costs of the nearest water purification plant downstream the studied water body because it would have to carry out the purification task if this WS did not exist 5 1 4 Biodiversity Biodiversity is the variability among living organisms It includes diversity within and among species and diversity within and among ecosystems MEA 2003 Biodiversity is the source of food and genetic resources and it is intimately linked to the production of other Proposal for Ecosystem Services analysis environmental services Specifically in river systems the biodiversity is referred to aquatic flora and fauna and to riverbank vegetation It is well known that habitat modification is leading to changes in biodiversity In fact one of the highest ranking threats for biodiversity reduction is habitat destruction and fragmentation Hof et al 2011 In relation to aquatic life enhanced river flows can improve habitat conditions and restore a diverse fish fauna reflective of a healthy riverine ecosystem Bain et al 2000 Besides water quality has significant influence on aquatic biodiversity On the other hand riverbank vegetation is also affected by river flows Garc a Arias et al 2012 and water quality although the lack of longitudinal continuity and extension are important factors too The habitat availability in rivers can be assessed with CAUDECO which reflects the water management influence performed using
64. reservoirs Figure 42 shows the diagram of the assessment and valuation process for this WS Models of aquifers Water resources Water Groundwater evaluation model volume dd storage EVALHID aquifers Pumping capabilities Average cost of near dams Figure 42 Diagram of the process for the assessment and valuation of Water storage in aquifers 5 1 3 Water purification in rivers and lakes Changing water quality affects many aspects of human well being and benefits and or costs accrue to different groups of beneficiaries at varying spatial and temporal scales Keeler et al 2012 Ecosystems can help to filter out and decompose wastes introduced into inland water ecosystems Then rivers lakes and reservoirs can be considered as natural water treatment plants due to their self purification capacity The WS water purification in rivers and lakes is influenced by circulating flows in rivers and by the stored volume and residence stage in lakes and reservoir That means that the water management is a key factor in the water purification WS Moreover water temperature plays an important role in the speed of decomposition and in the dilution processes The diffuse pollution entering the system is also relevant because the natural recovery capacity of water quality is not the same with all levels of pollution That is due to the affection to ecosystems that cannot develop and work properly with high levels of contamination
65. snow N 1 is chosen because it is set out in the HBV model This model is applied to the subbasins corresponding to the drainage point 1 because they generate the runoff from snow melting in spring and this has to be included in the resulting runoff series To build the HBV model in all the subbasins of the TWRS and the snow N 1 model in the heading subbasins the first set of parameters and the initial values of the state variables are assigned the default values defined in EVALHID Subsequently an automatic calibration Application to the Tormes Water Resources System gt process is performed using the Shuffled Complex Evolution Algorithm SCEUA Duan et al 1992 This is an extremely stable optimisation algorithm for the calibration of rainfall runoff models M nera and Franc s 2009 The optimisation process is based on the average of several target functions Nash Sutcliffe Y Q t Q t Y n y q t Q Y 1 Nash Sutcliffe of the neperian logarithm Y mna t In Q t F 1 gt I Q t e In Q t e 1 Pearson ATS Qn t y t OQ ais y Symmetric measure of the adjustment between the average simulation and the average observation 1 05 Q sim These target functions evaluate the statistical similarity between the results of the model a
66. solutions Biological Conservation 139 235 246 Wilson M A and Carpenter S R 1999 Economic Valuation of Freshwater Ecosystem Services in the United States 1971 1997 Ecological Applications 9 3 772 783 References ram Wurbs R 1993 Reservoir system simulation and optimisation models Journal of Water Resources Planning and Management 119 4 455 472 s a References 9 ANNEX Additional information of the application to the Tormes Water Resources System EVALHID Model features Subbasin ID 1 Hmax 0 Snow N 1 1 C 3 Snow N 1 1 Beta 3 HBV 1 FC 180 HBV 1 Pwp 105 HBV 1 Lmax 6 HBV 1 KO 0 13 HBV 1 K1 0 13 HBV 1 K2 0 HBV 1 Kperc 0 22 HBV 2 Beta 3 HBV 2 FC 180 HBV 2 Pwp 105 HBV 2 Lmax 6 HBV 2 KO 0 13 HBV 2 K1 0 13 HBV 2 K2 0 HBV 2 Kperc 0 22 HBV 3 Beta 3 HBV 3 FC 180 HBV 3 Pwp 105 HBV 3 Lmax 6 HBV 3 KO 0 13 HBV 3 K1 0 13 HBV 3 K2 0 HBV 3 Kperc 0 22 HBV 4 Beta 3 HBV 4 FC 180 HBV 4 Pwp 105 HBV 4 Lmax 6 HBV 4 KO 0 13 HBV 4 K1 0 13 HBV 4 K2 0 HBV 4 Kperc 0 22 HBV 5 Beta 3 HBV 5 FC 180 HBV 5 Pwp 105 HBV 5 Lmax 6 HBV 5 KO 0 13 HBV ANNEX Additional information of the application to the Tormes Water Resources System Subbasin ID 5 K1 0 13 HBV 5 K2 0 HBV 5 Kperc 0 22 HBV 6 Hmax 0 Snow N 1 6 C 3 Snow N 1 6 Beta 3 HBV 6 FC 180 HBV 6 Pwp 105 HBV 6 Lmax 6 HBV 6 KO 0 13 HBV 6 K1 0 13 HBV 6 K2 0 HBV 6 Kperc 0 22 HBV 7 Beta 3 HBV 7 FC 180 HBV 7 Pwp 105 HBV 7 Lmax 6 HBV 7 KO 0
67. some of their results have been presented in sections 4 3 4 4 and 4 5 However to understand the dynamic interactions between the models it is better to present the results of all the models together for each scenario To do so a set of Simulation Indicators is selected to represent in a simple way the evolution of the different objectives analysed It includes the temporal evolution of the percentage of agricultural demand deficits as an indicator of water management the dissolved oxygen and ammonium concentrations as indicators of water quality and the HTS of the most affected species large Luciobarbus bocagei at point 4 as an ecological indicator Figure 36 shows the Simulation Indicators at point 4 over the simulation period without defining any environmental flows in the system INITIAL EE Results analysis and discussion 400 200 f L Flow m3 s j 100 x 4 d 7 75 50 y 4 4 e Large Luciobarbus habitat 96 E of total deficit 96 V 50 l A Dissolved oxygen mg L 2 5 4 0 0 4 0 mg L 2 0 x A _ X X xb E 0 0 A x es oct 96 oct 97 oct 98 oct 99 oct 00 oct 01 oct 02 oct 03 oct 04 oct 05 oct 06 Figure 36 Simulation indicators of SIMGES CAUDECO and GESCAL for the INITIAL scenario In this scenario the deficits of demands are 30 and 60 of the
68. the management of complex water resources systems with surface and groundwater storage intake transport artificial recharge use and consumption elements The model admits any configuration so it can be used for any water resources system scheme The user defines the user diagram through the AQUATOOL interface which is a non conservative flow network Internally SIMGES assigns closing nodes and extends all the elements in arcs and nodes to ensure that the hydraulic performance and the management of each element are adequate From this results an internal flow network conservative and more complex than the one defined by the user This is the network really managed by the model In the simulation optimisation process first the water management strategy is defined through operation rules provided by the users of the model Then for each time step of the Material methods simulation the flow network algorithm determines the flows in the system trying to satisfy multiple objectives deficit minimization maximum adaptation to the reservoir target volume curves and the hydropower production objectives The Out of Kilter algorithm Bazaraa 1977 optimises the flow network which has the following target function Minimise Tz Tz Tao Tag Tas Too Tow Tra Tg where Tg is the term due to the reservoirs state Ta to Tas are terms due to the conductions of 5 different types Tpc is a term due to
69. they are the main pollutants coming from urban effluents Finally the daily flow series generated in each water body are available from EVALHID But they have to be monthly accumulated to be used by CARFU 3 2 2 Model construction In order to link this model with the water quality model the results have to be provided at the drainage points considered in the water quality model which in turn coincide with the ones used in EVALHID see Figure 12 and SIMGES Hence it is necessary to identify the water bodies where the waste loads are introduced as inputs of the water quality model This is done defining final water bodies in the accumulation process and associating each of them to a receiving water body in GESCAL After that it is necessary to quantify the degradation constants for each of the simulated compounds CBOD and phosphorus in every modelled water body as well as the initial concentrations in all water bodies From the experience with the stationary model previously used in the DRBA the values of the parameters and the initial concentrations are established It is assumed that these values provide quite good results In order to see whether the obtained results with CARFU are also satisfactory it is necessary to compare validate the modelling results with measured data The Integral Network of Water Quality ICA in Spanish provides monthly measurements for many water quality indicators including CBOD and phosphor
70. 0 N PRIORID ND RESTR O OCTUBR DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 294 0 294 0 294 0 294 0 294 0 294 0 294 0 294 0 294 0 294 0 294 0 294 31 DI Planta Bioetanol OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 066 0 066 0 066 0 066 0 066 0 066 0 066 0 066 0 066 0 066 0 066 0 066 COEF GARANTIAS GAR MENS 0 096 CRITERIO TIPO P H M 30 0 A 15 0 CRIT TIPO UTAH DWR 1A 50 0 2A 75 0 10A 100 096 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 96 N TOMAS 1 TOMMA 1 T DI Pl Bioetanol NUDO 13 DOT ANUAL 30 000 C ESCORR 0 80 C CONSUMO 0 20 ELEM RET 1 COTA 0 00 N PRIORID 20 IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 066 0 066 0 066 0 066 0 066 0 066 0 066 0 066 0 066 0 066 0 066 0 066 32 DI Zona Salamanca OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 COEF GARANTIAS GAR MENS 0 0 CRITERIO TIPO P H M 30 0 A 15 0 CRIT TIPO UTAH DWR 1 50 0 2A 75 0 10A 100 0 CRIT IPH2008 DEMANDA URBANA im 8 10a 10 N TOMAS 1 TOMA 1 T DI Zona Salamanca NUDO 9 DOT ANUAL 31 000 C ESCORR 0 80 C CONSUMO 0 20 ELEM RET 10 COTA 0 00 N PRIORID 20 IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE
71. 0 0 000 0 000 0 000 10000 000 10000 000 10000 000 10000 000 ABRIL MAYO JUNIO JULIO AGOSTO 0 000 0 000 0 000 0 000 0 000 10000 000 10000 000 10000 000 10000 000 ABRIL MAYO JUNIO JULIO AGOSTO 0 000 0 000 0 000 0 000 0 000 10000 000 10000 000 10000 000 10000 000 ABRIL MAYO JUNIO JULIO AGOSTO 0 000 0 000 0 000 0 000 0 000 10000 000 10000 000 10000 000 10000 000 ABRIL MAYO JUNIO JULIO AGOSTO 0 000 0 000 0 000 0 000 0 000 10000 000 10000 000 10000 000 10000 000 ABRIL MAYO JUNIO JULIO AGOSTO 0 000 0 000 0 000 0 000 0 000 10000 000 10000 000 10000 000 10000 000 ABRIL MAYO JUNIO JULIO AGOSTO 0 000 0 000 0 000 0 000 0 000 10000 000 10000 000 10000 000 10000 000 ABRIL MAYO JUNIO JULIO AGOSTO 0 000 0 000 0 000 0 000 0 000 10000 000 10000 000 10000 000 10000 000 ANNEX Additional information of the application to the Tormes Water Resources System OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 17 Tormes 568 NUDOINIC 6 NUDOFINAL 24 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10
72. 0 0 072 0 217 0 700 1 455 2 734 4 491 5 605 3 942 0 647 COEF GARANTIAS GAR MENS 1 0 CRITERIO TIPO P H M 15 0 A 30 0 CRIT TIPO UTAH DWR 1A 50 0 2 75 0 10 100 0 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 N TOMAS 1 TOMA 1 T DA 5003 RP R o Aravalle NUDO 73 DOT ANUAL 21 607 C ESCORR 0 54 C CONSUMO 0 30 ELEM RET 24 COTA 0 00 N PRIORID O IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 034 0 007 0 040 0 072 0 217 0 700 1 455 2 734 4 491 5 605 3 942 0 647 4 DA 5004 RP R o Tormes OCTUBR DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOL DEM 0 021 0 004 0 025 0 045 0 135 0 434 0 903 1 697 2 788 3 480 2 447 0 402 COEF GARANTIAS GAR MENS 0 0 CRITERIO TIPO P H 30 0 A 15 0 CRIT TIPO UTAH DWR 1A 50 0 2A 75 0 10A 100 0 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 N TOMAS 1 TOMA 1 T DA 5004 RP R o Tormes NUDO 3 DOT ANUAL 14 100 C ESCORR 0 57 C CONSUMO 0 28 ELEM RET 3 COTA 0 00 N PRIORID 10 IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 021 0 004 0 025 0 045 0 135 0 434 0 903 1 697 2 788 3 480 2 447 0 402 5 DA 5005 RP R o Corneja OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 016 0 003 0 018 0 033 0 099 0 319 0 662 1 245 2 045 2 5552 1 795 0 295 COEF GARANTIAS GAR
73. 0 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 71 Agueda 523 a NUDO INIC 78 NUDOFINAL 79 I O COSTE 0 0 PRIORIDAD 1 UMBRAL DEF 0 010 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 2 500 2 500 2 500 2 500 2 500 2 500 2 500 2 500 2 500 2 500 2 500 2 500 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 72 Agueda523 b NUDO INIC 79 NUDOFINAL 71 1 COSTE O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 73 Yeltes538 b NUDOINIC 80 NUDOFINAL 59 COSTE O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 1 Rec Lluvia 12 03 NUDO INIC 83 81 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 1000
74. 0 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 COEF FORMULA INFILTRACION A 0 0000E 00 B 0 1000E 01 C 0 1000E 01 ACUIFERO 3 N ACCION ELEM 1 2 Transf Lateral 12 03 a 12 05 NUDO INIC 82 NUDOFINAL 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 COEF FORMULA INFILTRACION A 0 0000E 00 B 0 1000E 01 C 0 1000E 01 ACUIFERO 4 ACCION ELEM 1 3 Rec Lluvia 12 05 NUDO INIC 844 NUDO FINAL 85 ANNEX Additional information of the application to the Tormes Water Resources System OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 COEF FORMULA INFILTRACION A 0 0000E 00 B 0 1000E 01 C 0 1000E 01 ACUIFERO 4 ELEM 1 4 Rec Lluvia 12 02 NUDO INIC 86 NUDOFINAL 76 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10
75. 0 14000 5000 60000 12000 4000 50000 10000 3000 40000 8000 p 30000 6000 20000 4000 1000 10000 2000 0 0 0 0 2 5 5 7 5 10 12 5 15 0 2 5 5 7 5 10 12 5 15 0 2 5 5 7 5 10 125 15 175 20 225 m s m s m s Point 1 2 amp 3 Salmo trutta fario Small 2 amp 3 Squalius carolitertii Big Point 4 Pseudochondrostoma duriense Big m m m 10000 80000 20000 8000 60000 guod 6000 40000 10000 4000 2000 20000 5000 0 0 0 0 2 5 5 7 5 10 12 5 15 0 2 5 5 7 5 10 12 5 15 0 2 5 5 7 5 10 125 15 175 20 225 m s m s m s Point 2 amp 3 Luciobarbus bocagei Big Point 2 amp 3 Squalius carolitertii Small Point 4 Pseudochondrostoma duriense Medium m m m 25000 5000 50000 20000 4000 40000 3000 30000 15000 2000 20000 10000 1000 10000 5000 0 0 0 0 2 5 5 7 5 10 12 5 15 0 2 5 5 7 5 10 12 5 15 0 2 5 5 7 5 10 125 15 175 20 225 m s m s m s I Point 2 amp 3 Luciobarbus bocagei Medium Point 4 Squalius carolitertii Big m m 70000 60000 25000 50000 20000 40000 15000 30000 10000 20000 5000 10000 0 0 0 2 5 5 7 5 10 12 5 15 0 2 5 5 7 5 10 125 15 175 20 225 m s m s Point 2 amp 3 Luciobarbus bocagei Small Point 4 Squalius carolitertii Small m m 10000 80000 8000 60000 6000 40000 4000 do a 20000 0 T T T 0 T 0 2 5 5 7 5 10 12 5 15 0 2 5 5 7 5 10 125 15 175 20 225 m s m s Figure 26 WUA Flow curves for all the species and size classes considered in the TWRS Ap
76. 0 3338 100 2621 12811 17100 3349 2279 1489 4298 882 100 5221 3979 100 1891 526 75 100 2533 75 100 1179 25 2633 75 2100 5 2716 43 100 1399 100 1000 4029 100 13803 6233 3379 100 300 1643 1741 1730 100 976 3811 5791 100 7634 3846 2300 100 1987 21320 5494 8949 1000 1000 1000 1000 1000 1000 1000 1000 17940 12349 1000 1000 28317 6634 6000 5594 4445 11235 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 43178 10000 3863 3411 5739 1000 2514 1000 1000 1000 50 50 50 5 50 5 50 50 50 50 50 50 50 10 5 50 50 5 50 10 5 50 5 50 50 50 50 5 50 5 50 50 5 50 50 50 5 10 50 50 50 5 10 50 50 5 50 50 50 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 222222222222222222222222222222222222222222222222222222222222222222222 22222222222222222222222 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 065 0 065 0 065 0 065 0 065 0 065 0 065 0 065 0 18 0 18 0 18 0 18 0 18 0 18 0 065 0 18 0 065 0 18 0 065 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0 43 0
77. 00 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 33 Tormes 546 b NUDO INIC 13 NUDOFINAL 14 I O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 34 r Tormes 546 c NUDO INIC 14 NUDOFINAL 38 I O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 35 Tormes 546 NUDO INIC 37 NUDOFINAL 13 I O COSTE 0 0 OCTUBR DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 36 Tormes 680 c NUDO 39 NUDOFINAL 40 1 O COSTE 0 0 OCTUBR DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX
78. 00 12 30560 88 30742 26 30842 34 30964 73 31065 4 31144 32 31246 74 31320 51 31335 29 31411 23 31442 91 31466 17 31539 2 31602 75 31660 16 31703 55 31761 1 31806 89 BogaAdultoVillagonzalo 25 0 235 6 1 3 1 0 1 0 5 1 1 5 2 2 5 2 8 3 2 3 5 4 4 5 5 5 5 5 918 6 6 5 6 861 7 7 5 8 8 5 9 10 15 422 65 982 38 1707 51 2300 64 2798 92 3312 75 3664 07 4038 52 4271 43 4635 4 4935 47 5213 5456 43 5660 32 5696 45 5937 25 6083 59 6144 18 6314 01 6476 93 6634 65 6764 61 6999 67 7782 11 BogaAlevinVillagonzalo 25 0 235 6 3 1 1 0 1 0 5 1 1 5 2 2 5 2 8 3 2 3 5 4 4 5 5 5 5 5 918 6 6 5 6 861 7 7 5 8 8 5 9 10 15 4718 63 6852 18 8285 72 9190 6 9896 15 10408 54 10653 7 10950 07 11147 33 11419 06 11626 22 11789 24 11945 72 12076 38 12110 04 12233 71 12291 19 12324 95 12388 15 12460 74 12525 25 12562 34 12590 52 12549 25 BogaJuvenilVillagonzalo 25 0 235 6 2 2 1 0 1 0 5 1 1 5 2 2 5 2 8 3 2 3 5 4 4 5 5 5 5 5 918 6 6 5 6 861 7 7 5 8 8 5 9 10 15 2600 51 4262 05 5518 53 6367 15 7061 71 7640 38 7953 96 8344 13 8610 68 9001 51 9331 04 9624 37 9899 9 10119 38 10164 61 10400 24 10539 18 10608 82 10798 4 10993 4 11169 5411314 29 11589 68 12586 44 BogaDueroAdultoVillagonzalo ANNEX Additional information of the application to the Tormes Water Resources System 24 235 2 1 3 1 0 0 1 0 5 1 1 5 2 2 5 2 8 3 2 3 5 4 5 5 5 5 918 6 6 5 6 861 7 7 5 8 8 5 9 10 15 0 425 18 939 27 1595 79 2136 85 2597 35 3073 07 3392 09 3737 23 3953 49 4296 6 4
79. 000 11 r Tormes 615 c NUDO INIC 19 NUDOFINAL 20 I O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 12 r Tormes 615 d NUDO INIC 20 NUDOFINAL 21 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 13 Tormes 615 e NUDO INIC 21 NUDOFINAL 22 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 14 Tormes 615 f NUDO INIC 22 NUDOFINAL 5 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 15 Tormes 568 NUDOINIC 5 NUDOFINAL 23 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 16 Tormes 568 b NUDO INIC 23 NUDOFINAL 6 1 O COSTE 0 0 0 000 0 00
80. 000 COEF FORMULA INFILTRACION A 0 0000E 00 B 0 1000E 01 C 0 1000E 01 ACUIFERO 1 N ACCION ELEM 1 8 f Transf Lateral2 12 05 a 08 NUDO INIC 91 NUDOFINAL 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 COEF FORMULA INFILTRACION A 0 0000E 00 B 0 1000E 01 C 0 1000E 01 ACUIFERO 5 ELEM 1 1 gueda 521 g ANNEX Additional information of the application to the Tormes Water Resources System NUDO INIC 66 NUDOFINAL 67 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 ACUIFERO 1 N ACCION ELEM 1 N PARAMETRO CONTROL 2 VALOR CONEXI N 10 2 Huebra 535 g NUDO INIC 76 NUDOFINAL 59 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 ACUIFERO 1 ELEM 1 N PARAM
81. 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 52 Huebra 513 b NUDO INIC 58 NUDOFINAL 57 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 53 Huebra 513 c NUDO INIC 57 NUDO FINAL O I COSTE O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 54 Huebra 513 a NUDO INIC 59 NUDOFINAL 58 I O COSTE 0 0 ANNEX Additional information of the application to the Tormes Water Resources System OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 55 Agueda 687 NUDO INIC 60 NUDOFINAL 61 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO J
82. 000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 18 Tormes 568 d NUDO INIC 24 NUDOFINAL 25 I O COSTE 0 0 OCTUBR DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 19 Tormes 568 e NUDO INIC 25 NUDOFINAL 26 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 20 Tormes 569 a NUDO INIC 26 NUDOFINAL 27 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 21 Tormes 569 b NUDO INIC 27 NUDOFINAL 28 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX
83. 000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 COEF FORMULA INFILTRACION A 0 0000E 00 B 0 1000E 01 C 0 1000E 01 ACUIFERO 2 N ACCION ELEM 0 5 Rec Lluvia 12 04 NUDO INIC 88 NUDO FINAL 89 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 COEF FORMULA INFILTRACION A 0 0000E 00 B 0 1000E 01 C 0 1000E 01 ACUIFERO 6 N ACCION ELEM 1 6 f Transf lateral b 12 04 a NUDO INIC 90 NUDOFINAL 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 COEF FORMULA INFILTRACION A 0 0000E 00 B 0 1000E 01 C 0 1000E 01 ACUIFERO 4 ELEM 1 7 f Rec Lluvia 12 01 NUDO INIC 87 NUDOFINAL 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000
84. 000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 48 Tormes 505 b NUDO INIC 53 NUDOFINAL 54 1 O COSTE 0 0 OCTUBR DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 49 r Tormes 505 c NUDO INIC 54 NUDOFINAL 55 COSTE O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 50 Tormes 505 NUDO INIC 55 NUDOFINAL 56 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 51 r Tormes 505 e NUDO INIC 56 NUDOFINAL 10 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0
85. 002 04 2002 07 2002 10 2002 04 2003 07 2003 10 2003 01 2004 04 2004 07 2004 c w m 74 oc q 7 0c y 174 0c 74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Measured Simulated Figure 25 Comparison between the simulated CBOD concentrations red and the measured concentration blue in the Tormes River at Contiensa WQCS from MAAA 2013 The results are considered acceptable according to the graphics It has to be taken into account that the water quality model error includes errors in the flows estimation by SIMGES and the errors of the WQCS measurements This linked to the high number of parameters to calibrate makes difficult to obtain a good adjustment throughout the calibration period Then the GESCAL model for the TWRS is ready to generate different result series Application to the Tormes Water Resources System FUE 3 5 Development of the habitat model 3 5 1 Information preprocessing In the TRWS previous studies defined the WUA flow curves for different size classes of the most relevant fish species in the river Garc a de Jal n and Lurue a 2000 INFRAECO 2009 as depicted in Figure 26
86. 09 26 5 58 11 16 5 22 28 34 40 46 52 58 64 70 76 82 2133 2437 2 2953 8 5 58 11 16 5 22 28 34 40 46 52 58 64 70 76 82 3578 4 ANNEX Additional information of the application to the Tormes Water Resources System BarboAlevinAlmendra 169 0 169 0 3720 96 3732 3 3844 62 3855 6 29 1 0 5 1 6 6 5 11 5 12 17 17 5 22 5 23 28 5 29 34 5 35 40 5 41 46 5 47 52 5 53 58 5 59 64 5 65 70 5 71 76 5 77 23 4 20 34 43 02 44 1 49 5 49 68 52 2 52 38 53 82 53 82 54 54 54 54 55 8 55 98 57 24 57 42 58 32 58 32 58 5 58 5 58 14 58 14 57 6 57 6 5742 57 24 57 24 57 24 BogaDueroAdultoAlmendra 29 2 0 5 1 6 6 5 11 5 12 17 17 5 22 5 23 28 5 29 34 5 35 40 5 41 46 5 47 52 5 53 58 5 59 64 5 65 70 5 71 76 5 77 1998 36 2430 36 4510 447 4600 26 5427 18 5508 72 6271 2 6338 34 6939 36 6969 06 7535 16 7591 32 8177 04 8226 18 8699 22 8744 94 9184 68 9226 98 9640 98 9681 48 3743 82 3755 34 3766 68 3778 02 3789 18 3800 34 3811 5 3 1 5 7 12 101 18 23 5 29 5 35 5 41 5 47 5 53 5 53 5 65 5 71 5 77 5 25 02 45 18 49 753 52 56 53 82 54 72 56 16 57 42 58 32 58 5 57 96 57 6 57 24 57 24 1 1 5 7 12 101 18 23 5 29 5 35 5 41 5 47 5 53 5 59 5 65 5 71 5 77 5 2857 68 4705 38 5589 18 6404 94 7028 64 7646 94 8274 96 8790 66 9269 1 9721 98 1 2 7 5 12 5 18 5 24 30 36 42 48 54 60 66 72 78 29 88 46 26 50 04 52 74 54 54 72
87. 1 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 1 0 1 0 02 0 02 0 02 0 02 0 02 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 ANNEX Additional information of the application to the Tormes Water Resources System 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 001 0 1 0 1 0 001 0 001 0 001 0 001 0 001 0 01 0 01 0 1 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 1 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0
88. 10000 000 10000 000 10000 000 10000 000 41 r Tormes 503 a NUDO INIC 45 NUDOFINAL 46 PRIORIDAD 1 UMBRAL DEF 0 010 OCTUBR NOVIEM DICIEM COSTE COSTE 0 0 ENERO FEBRERO MARZO SEPTIE CAUD MIN 15 600 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 15 600 18 600 19 200 20 700 20 700 19 800 42 Tormes 503 NUDO INIC 47 NUDOFINAL 48 I COSTE O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 43 r Tormes 503 d NUDO INIC 48 NUDOFINAL 49 1 COSTE O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 44 r Tormes 503 b NUDO INIC 46 NUDO FINAL 47 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 45 r Tormes 504_a NUDO INIC 49 NUDOFINAL 50 1 COSTE O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 46
89. 105 HBV 38 Lmax 6 HBV 38 KO 0 13 HBV 38 K1 0 13 HBV 38 K2 0 HBV 38 Kperc 0 22 HBV 39 Beta 3 HBV 39 FC 180 HBV 39 Pwp 105 HBV 39 Lmax 6 HBV 39 KO 0 13 HBV 39 K1 0 13 HBV 39 K2 0 HBV 39 Kperc 0 22 HBV 40 Hmax 0 Snow N 1 40 C 3 Snow N 1 40 Beta 3 HBV 40 FC 180 HBV 40 Pwp 105 HBV ANNEX Additional information of the application to the Tormes Water Resources System Subbasin ID 40 Lmax 6 HBV 40 KO 0 13 HBV 40 K1 0 13 HBV 40 K2 0 HBV 40 Kperc 0 22 HBV 41 Beta 3 HBV 41 FC 180 HBV 41 Pwp 105 HBV 41 Lmax 6 HBV 41 KO 0 13 HBV 41 K1 0 13 HBV 41 K2 0 HBV 41 Kperc 0 22 HBV 42 Beta 3 HBV 42 FE 180 HBV 42 Pwp 105 HBV 42 Lmax 6 HBV 42 KO 0 13 HBV 42 K1 0 13 HBV 42 K2 0 HBV 42 Kperc 0 22 HBV 43 Beta 3 HBV 43 FC 180 HBV 43 Pwp 105 HBV 43 Lmax 6 HBV 43 KO 0 13 HBV 43 K1 0 13 HBV 43 K2 0 HBV 43 Kperc 0 22 HBV 44 Beta 3 HBV 44 FC 180 HBV 44 Pwp 105 HBV 44 Lmax 6 HBV 44 KO 0 13 HBV 44 K1 0 13 HBV 44 K2 0 HBV 44 Kperc 0 22 HBV 45 Hmax 0 Snow N 1 45 C 3 Snow N 1 45 Beta 3 HBV 45 FC 180 HBV 45 Pwp 105 HBV 45 Lmax 6 HBV 45 KO 0 13 HBV 45 K1 0 13 HBV 45 K2 0 HBV 45 Kperc 0 22 HBV 46 Hmax 0 Snow N 1 ANNEX Additional information of the application to the Tormes Water Resources System Subbasin ID 46 C 3 Snow N 1 46 Beta 3 HBV 46 FC 180 HBV 46 Pwp 105 HBV 46 Lmax 6 HBV 46 KO 0 13 HBV 46 K1 0 13 HBV 46 K2 0 HBV 46 Kperc 0 22 HBV 47 Beta 3 HBV 47 FC 180 HBV 47 Pwp 105 HBV 47 Lmax 6 HBV 47 KO 0 13 HBV
90. 121122223333333444466666666666717787899999999 10 10 10 10 10 10 10 13 13 13 14 14 14 14 14 14 14 14 14 14 1 13 10 14 14 14 14 14111111111 14 13 1319 1018171 111111111111111111111111111111111111111111111111111111111111111111111 11111111111111111111111 E Santa Teresa Villagonzalo E Almendra Riolobos Irue a E gueda 112020 20 20 471111 20 20 20 20 20 20 111111 111111 Contaminantes de 1er Orden 111 Conductividad r tormes 642 r tormes 412 a C1 12 salidas sistema r Tormes 614 a r Tormes 614 b r Tormes 614 cr Tormes 615 a r Corneja 624 r Tormes 615 br Tormes 615 cr Tormes 615 Tormes 615 er Tormes 615 fr Tormes 568 a r Tormes 568 br Tormes 568 cr Tormes 568 dr Tormes 568 er Tormes 569 ar Tormes 569 br Tormes 569 cr Tormes 569 d r Tormes 569 e r Tormes 569 f r Tormes 569 g r Tormes 682 a r Tormes 682 b r Tormes 682 c r Tormes 545 a Trasvase r o Lobos Tormes 545 c r Tormes 546 b Tormes 546 cr Tormes 546 a r Tormes 680 Tormes 680 Tormes 680 e r Tormes 502 a r Tormes 502 b r Tormes 503_a r Tormes 503 c r Tormes 503 d r Tormes 503_b r Tormes 504 Tormes 504 br Tormes 505 ar Tormes 505 br Tormes 505 cr Tormes 505 Tormes 505 e Huebra 513 b Huebra 513 c Huebra 513 gueda 687 gueda 626 a gueda 626 b Agad n 617 gueda 606 gueda 626 c gueda 522 a Arroyo Pasiles 607 gueda 524 gueda 525 Aravalle 643 Yeltes 538 586 Rio Valmuza 518 520 Agueda 522 b Ag
91. 20 NUDO VERTIDOS 21 CAUD MAX 71 280 CAUD MIN 0 000 PRIORIDAD 15 CENTRAL FLUYENTE SALTO BRUTO 20 50 COEF PROD GWH HM3 M 2320 02 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD OBJ 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 3 Santa Teresa NUDO TOMA 5 NUDOVERTIDOS 23 CAUD MAX 132 192 CAUD MIN 0 000 PRIORIDAD 15 EMBALSE E Santa Teresa COTA DE CENTRAL 0 00 COTA MIN TURB 833 05 COEF PROD GWH HM3 M 2000E 02 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD OBJ 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 4 CH Villagonzalo NUDO TOMA 7 NUDO VERTIDOS 36 CAUD MAX 129 600 CAUD MIN 0 000 PRIORIDAD 15 EMBALSE E Villagonzalo COTA DE CENTRAL 0 00 COTA MIN TURB 795 00 COEF PROD GWH HM3 M 2360E 02 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD OBJ 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 5 CH Salto de la Flecha NUDO TOMA 13 NUDO VERTIDOS 14 CAUD MAX 77 760 CAUD MIN 0 000 PRIORIDAD 15 CENTRAL FLUYENTE SALTO BRUTO 4 00 COEF PROD GWH HM3 M 2546E 02 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD OBJ 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 6 NUDO TOMA 40 NUDO VERTIDOS 41 CAUD MAX 51 840 CAUD MIN 0 000 P
92. 22292222 222 2222212212222 22271111 B Rai f ioiifbisbifsiksisfbisbifsisiifbisshsfssssbsif Habitat suitability Water quality model model CAUDECO GESCAL Habitat Time Series Water quality in rivers reservoirs AMA FUMA o J WU Q Medium Luciobarbus Ammonium vonzEST22222Hz20n5ncuncnnzzonons2s2565 55558528288 88 88 S gees sae BRS FRR SEBS SER ee ao RFR Scenario and trade off analysis for DECISION MAKING Figure 9 Diagram of the Integrated Water Resources Management methodology 2 2 Integration of the Ecosystem Services Analysis and the Integrated Water Resources Management Part I As noted by Cook and Spray 2012 the definition of IWRM and ES are very similar because they are both focused on the influence of water and land management on ecosystems Those concepts are not linked just by their definitions In fact water resources management determines the state of some ES like water purification in rivers and lakes or aquatic biodiversity and ES like nutrients retention by the landscape or water production for economic uses have a direct influence in the water resources systems functioning Nevertheless the existent tools for ES analysis do not take into account the water resources management at least in a dynamic way in time Specific software like INVEST Tallis et al Er Material and methods
93. 242 62 2387 16 2535 3 2672 1 2793 6 2912 22 3032 46 3135 42 9 134 14 5 20 5 26 32 38 44 50 56 62 68 74 80 941 76 1370 16 1670 94 1969 2 2187 72 2403 36 2591 46 2770 92 2934 18 3088 08 3240 72 3387 78 3529 26 3674 16 4 5 9 5 15 21 26 5 32 5 38 5 44 5 50 5 56 5 62 5 68 5 74 5 80 5 727 02 5 10 15 5 21 25 27 33 39 45 51 57 63 69 75 81 775 98 1069 015 1092 6 1342 62 1582 38 1749 78 1927 26 2091 06 2255 94 2399 76 2548 08 2683 44 2804 94 2922 84 3041 82 3144 6 4 5 9 5 15 21 26 5 32 5 38 5 44 5 50 5 56 5 62 5 68 5 74 5 80 5 1000 98 1367 46 1601 28 1765 98 1942 2 2105 1 2269 26 2412 18 2560 86 2694 6 2816 28 2933 1 3051 36 3153 96 10 15 5 21 25 27 33 39 45 51 57 63 69 75 81 1055 52 1379 326 1404 36 1700 46 1993 68 2207 52 2421 36 2608 02 2786 58 2948 22 3101 94 3254 4 3400 92 3541 68 3685 86 1729 8 2017 62 2227 86 2438 82 2624 76 2801 88 2962 26 3115 8 3268 08 3413 88 3553 92 3697 56 5 5 10 5 16 21 5 27 5 33 5 39 8 45 5 51 5 57 5 63 5 69 5 75 5 81 5 820 62 1124 82 1390 32 1618 92 1782 1956 96 2119 14 2282 4 2424 6 2574 2705 58 2827 44 2943 54 3060 9 3163 14 5 5 10 5 16 21 5 27 5 33 5 39 5 45 5 51 5 57 5 63 5 69 5 75 5 81 5 1105 02 1439 28 1757 7 2040 84 2247 66 2456 28 2641 5 2817 2976 12 3129 48 3281 58 3427 02 3566 16 37
94. 32 3018 96 3094 02 5 13 1705 5 1920 42 2064 6 2181 06 2301 3 2442 78 2576 7 2696 76 2792 34 2872 08 2944 62 3025 98 5 5 14 75 5 81 5 1299 78 1554 12 1724 4 1937 16 2076 3 2191 14 2313 54 2454 84 2587 86 2704 86 2800 62 2878 74 2951 1 3032 82 6 14 885 76 82 1745 1 2200 5 2325 6 2599 2 2957 4 6 5 16 9861 11 10334 6210892 4411380 4 11877 42 12378 73 12879 85 13371 15 15156 02 15518 58 15916 66 16499 65 17214 67 17739 52 18161 65 18558 15 1 1 2 5 3 3 5 4 4 5 5 5 5 6 6 5 8 452 9 9 903 11 12 13 14 14 885 16 18 641 21 448 7800 28 8770 69 9507 67 10215 6910809 2111265 9311621 5 12054 48 12301 88 13338 33 13668 26 13839 19 14002 34 14207 16 13554 89 13755 35 14013 66 14253 52 14587 83 14784 45 14894 62 14955 95 15009 03 15083 6 15365 76 BarboJuvenilContiensa 2 4 0 5 7 17 1 1 7 48 17 5 2 2 8 18 2 2 5 8 452 18 641 1 3 9 21 448 3 5 9 903 4 11 4 5 12 5 13 5 5 14 6 14 885 30545 78 32122 47 35189 06 36145 65 36769 66 37328 43 37811 31 38302 14 38718 92 39053 47 39334 1 39631 11 39932 34 40607 11 40844 94 41021 49 41214 15 41471 51 41173 99 41426 88 41658 5141873 7 42079 12 42207 61 42314 68 42363 63 42405 58 42463 73 42574 43 BogaAdultoContiensa 30 0 30 0 30 0 274 0 5 7 17 6 1 7 48 17 5 1 2 8 18 3 2 5 8 452 18 641 1 3 9 21 448 3 5 9 903 4 11 4 5 12 5 13 5 5 14
95. 415 06 2567 52 2723 4 2868 84 2996 46 3118 86 3236 94 3351 24 3472 74 3 5 9 14 20 25 5 31 5 37 5 43 5 49 5 55 5 61 5 67 5 73 5 79 5 1170 18 1471 14 1685 7 1910 52 2088 54 2268 9 2429 28 2580 84 2736 2880 72 3007 98 3129 66 3247 56 3361 32 3482 82 4 9 134 14 5 20 5 26 32 38 44 50 56 62 68 74 80 1199 7 1497 78 1707 66 1929 24 2105 28 2284 2 2443 5 2594 16 2748 42 2892 42 3019 32 3140 64 3258 3371 4 3492 9 4 5 9 5 15 21 26 5 32 5 38 5 44 5 50 5 56 5 62 5 68 5 74 5 80 5 1236 78 9653 22 5 10 15 5 21 25 27 33 39 45 51 57 63 69 75 81 1263 42 1504 534 1522 98 1729 8 1947 96 2122 2 2299 5 2457 72 2607 3 2760 66 2904 12 3030 48 3151 44 3268 44 3381 66 3502 8 1751 94 1966 14 2138 94 2314 26 2471 94 2620 62 2772 9 2915 82 3041 82 3162 24 3278 88 3391 74 3512 7 9685 44 10029 6 5 5 10 5 16 21 5 27 5 33 5 39 5 45 5 51 5 57 5 63 5 69 5 75 5 81 5 1290 6 1547 82 1773 9 1984 14 2155 68 2328 84 2485 8 2633 76 2784 96 2927 52 3052 98 3173 04 3289 32 3401 82 3522 78 ANNEX Additional information of the application to the Tormes Water Resources System 5 58 11 16 5 22 28 34 40 46 52 58 64 70 76 82 2646 9 2797 2 3411 9
96. 47 K1 0 13 HBV 47 K2 0 HBV 47 Kperc 0 22 HBV 48 Beta 3 HBV 48 FC 180 HBV 48 Pwp 105 HBV 48 Lmax 6 HBV 48 KO 0 13 HBV 48 K1 0 13 HBV 48 K2 0 HBV 48 Kperc 0 22 HBV 49 Hmax 0 Snow N 1 49 C 3 Snow N 1 49 Beta 3 HBV 49 FC 180 HBV 49 Pwp 105 HBV 49 Lmax 6 HBV 49 KO 0 13 HBV 49 K1 0 13 HBV 49 K2 0 HBV 49 Kperc 0 22 HBV 50 Beta 3 HBV 50 FC 180 HBV 50 Pwp 105 HBV 50 Lmax 6 HBV 50 KO 0 13 HBV 50 K1 0 13 HBV 50 K2 0 HBV 50 Kperc 0 22 HBV 51 Beta 3 HBV 51 FC 180 HBV 51 Pwp 105 HBV 51 Lmax 6 HBV 51 KO 0 13 HBV ANNEX Additional information of the application to the Tormes Water Resources System Subbasin ID 51 K1 0 13 HBV 51 K2 0 HBV 51 Kperc 0 22 HBV 52 Beta 3 HBV 52 FC 180 HBV 52 Pwp 105 HBV 52 Lmax 6 HBV 52 KO 0 13 HBV 52 K1 0 13 HBV 52 K2 0 HBV 52 Kperc 0 22 HBV 53 Hmax 0 Snow N 1 53 C 3 Snow N 1 53 Beta 3 HBV 53 FE 180 HBV 53 Pwp 105 HBV 53 Lmax 6 HBV 53 KO 0 13 HBV 53 K1 0 13 HBV 53 K2 0 HBV 53 Kperc 0 22 HBV 54 Beta 3 HBV 54 FC 180 HBV 54 Pwp 105 HBV 54 Lmax 6 HBV 54 KO 0 13 HBV 54 K1 0 13 HBV 54 K2 0 HBV 54 Kperc 0 22 HBV 55 Beta 3 HBV 55 FC 180 HBV 55 Pwp 105 HBV 55 Lmax 6 HBV 55 KO 0 13 HBV 55 K1 0 13 HBV 55 K2 0 HBV 55 Kperc 0 22 HBV 56 Beta 3 HBV 56 FC 180 HBV 56 Pwp 105 HBV 56 Lmax 6 HBV 56 KO 0 13 HBV 56 K1 0 13 HBV 56 K2 0 HBV 56 Kperc 0 22 HBV 57 Beta 3 HBV 57 FC 180 HBV 57 Pwp 105 HBV ANNEX Additional information of the application to the Tormes Water Resources System
97. 5 C ESCORR 0 00 C CONSUMO 0 75 ELEM RET 23 COTA 0 00 N PRIORID 1 IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 39 Bomb MAS 52 La Armu a OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 041 0 008 0 048 0 086 0 257 0 827 1 719 3 231 5 308 6 625 4 659 0 765 ACUIFERORECARGADO ACCION ELEM 1 ACUIFERO 3 ACCION ELEM 1 Q MAX BOMBEO 6 700 PARAM CONT O UMBRAL 0 000 COEF GARANTIAS GAR MENS 1 096 CRITERIO TIPO P H 15 0 A 30 0 CRIT TIPO UTAH DWR 1A 50 0 2A 75 0 10A 100 0 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 96 N TOMAS 1 TOMA 1 f Toma Bomb MAS 52 La Armu a NUDO 82 DOT ANUAL 0 000 C ESCORR 0 00 C CONSUMO 0 75 ELEM RET O COTA 0 00 N PRIORID 1 IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 40 Bomb MAS 52 Alba Tormes Pe ar OCTUBR DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 022 0 004 0 026 0 047 0 140 0 451 0 938 1 763 2 895 3 614 2 541 0 417 ACUIFERO RECARGADO 6 N ACCION ELEM 1 ACUIFERO BOMBEO 6 ACCION ELEM 1 Q MAX BOMBEO 4 000 PARAM CONT O UMBRAL 0 000 COEF GARANTIAS GAR MENS 1 096 CRITERIO TIPO P H M 15 0 A 30 0 C
98. 6 2816 1 2891 88 2970 72 3046 5 BarboAdultoContiensa 30 0 30 0 30 0 274 0 5 7 17 7027 15 1 1 7 48 17 5 8048 07 71 5 77 5 1148 22 1366 92 1610 28 1798 2 1963 48 2110 32 2227 14 2359 62 2493 72 2632 14 2730 78 2823 48 2898 54 2977 56 3053 52 1 2 8 18 9407 87 13894 43 14368 35 14686 8 18855 31 19227 35 19532 45 19679 35 19805 91 19970 23 20540 53 BarboAlevinContiensa 274 0 5 7 17 435 42 1 1 7 48 17 5 1294 72 4832 77 6593 47 3 2 8 18 72 78 1331 28 1396 8 1626 3 1814 58 1985 04 2120 04 2236 5 2371 32 2506 5 2643 12 2739 6 2830 68 2905 02 2984 76 3060 72 3 2 5 8 452 18 641 72 5 78 5 1359 36 1429 2 73 79 1366 56 1458 9 1629 427 1641 78 1831 68 2000 88 2129 76 2246 22 2383 38 2518 92 2653 02 2748 42 2837 88 2911 68 2991 6 3067 74 1 3 9 21 448 1849 32 2015 1 2140 2 2256 3 2395 26 2530 98 2662 56 2757 6 2844 9 2918 52 2998 62 3074 4 3 5 9 903 73 5 79 5 1327 32 1486 26 1655 64 1867 5 2029 14 2151 36 2266 56 2406 96 2542 68 2671 38 2766 78 2851 92 2925 3005 46 3080 88 4 11 74 80 1301 58 1512 36 1669 86 1884 96 2042 1 2161 98 2277 72 2418 84 2554 2 2680 02 2775 42 2858 76 2931 66 3012 3 3087 54 4 5 12 74 5 80 5 1306 98 75 81 1295 82 1518 438 1535 04 1687 86 1902 6 2053 44 2171 88 2289 6 2430 72 2565 36 2688 48 2783 88 2865 6 2938
99. 6 7918 56 8513 1 9014 04 9477 54 9923 04 3822 48 4 5 5 9 5 10 15 15 5 21 21 25 26 5 27 32 5 33 38 5 39 44 5 45 50 5 51 56 5 57 62 5 63 68 5 69 74 5 75 80 5 81 38 52 40 14 48 78 48 96 51 3 51 66 53 46 53 46 54 18 54 36 55 44 55 44 56 88 56 88 57 96 58 14 58 5 58 5 58 32 58 32 57 78 57 78 57 42 57 42 57 24 57 24 57 24 57 24 4 5 5 9 5 10 15 15 5 21 21 25 26 5 27 32 5 33 38 5 39 44 5 45 50 5 51 56 5 57 62 5 63 68 5 69 74 5 75 80 5 81 4255 2 4373 1 5198 261 5260 32 5988 06 6061 5 6786 54 6848 64 7368 3 7423 74 7971 84 8024 22 8559 9 8606 52 9056 7 9099 72 9518 58 9559 44 9962 82 10002 6 3833 46 5 5 10 5 16 21 5 27 5 33 5 39 5 45 5 51 5 57 5 63 5 69 5 75 5 81 5 41 58 49 14 51 84 53 46 54 36 55 62 57 06 58 14 58 5 58 14 57 78 57 42 57 24 57 24 5 5 10 5 16 21 5 27 5 33 5 39 5 45 5 51 5 57 5 63 5 69 5 75 5 81 5 4493 34 5344 38 6132 78 6909 66 7479 36 8076 06 8653 14 9142 2 9600 3 10042 02 10355 76 10394 82 10434 24 10473 84 10513 62 10553 22 10592 82 10632 42 10671 6610710 9 10749 96 10789 02 10828 08 10866 96 10905 84 10944 72 10983 42 11022 12 11060 6411098 8 11136 78 11174 76 11212 92 11250 9 11288 88 11326 68 11364 3 11401 56 11438 82 11475 9 11512 8 11549 52 11586 42 11623 14 11659 86 11696 04 11732 04 ANNEX Additional information of the application to the Tormes Water Resources System 5 58 11 16 5 22 28 34 40 46 52 58 64
100. 6 640 65 810 78 530 101 130 121 760 120 190 86 920 TABLA COTA SUPERFICIE VOLUMEN COTA m 832 700 842 700 847 700 852 700 857 700 862 700 867 700 872 700 880 450 885 700 SUPERF Ha 0 000 80 000 240 000 395 000 590 000 910 000 1420 000 1680 000 2100 000 2579 000 VOLUM Hm3 0 000 4 000 12 000 27 860 52 000 90 000 150 000 225 000 371 212 496 000 2 E Villagonzalo NUDO 7 NUDO VERTIDOS 7 NUMERO PRIORIDAD 5 COEF FORMULA INFILTRACION A 0 0000E 00 B 0 0000E 00 C 0 0000E 00 MAX SUELTAS CONTROLADAS 1000 00 VOLUMEN INICIAL 5 90 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOL MAXIMO 5 900 5 900 5 900 5 900 5 900 5 900 5 900 5 900 5 900 5 900 5 900 5 900 VOL OBJET 5 900 5 900 5 900 5 900 5 900 5 900 5 900 5 900 5 900 5 900 5 900 5 900 VOL MINIMO 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 EVAP mm 49 160 25 480 15 720 14 830 23 250 47 600 67 480 93 630 132 930 160 060 144 980 89 120 TABLA COTA SUPERFICIE VOLUMEN COTA m 794 300 795 300 796 300 798 300 799 300 800 300 801 100 802 300 803 300 804 300 SUPERF Ha 0 000 8 000 17 000 36 000 48 000 62 000 78 000 104 000 132 600 208 000 VOLUM Hm3 0 000 0 100 0 280 0 770 1 122 1 700 2 472 3 415 4 500 5 914 3 E Almendra NUDO 10 NUDO VERTIDOS 10 NUMERO PRIORIDAD 5 COEF FORMULA INFILTRACION A 0 0000E 00 B 0 0000E 00 C 0 0000E 00 MAX SUELTAS CONTROLADAS 1000 00 VOLUMEN INICIAL 1139 00 OCTUBR NOVIEM DICIEM
101. 63 63 5 64 64 5 65 65 5 66 66 5 67 67 5 68 68 5 69 69 5 70 70 5 71 71 5 72 72 5 73 73 5 74 74 5 75 75 5 76 76 5 77 77 5 78 78 5 79 79 5 80 80 5 81 81 5 82 0 1695 24 2086 56 2422 62 2705 22 2980 08 3169 08 3344 58 3488 58 3606 66 3705 66 3803 94 3818 2543893 4 3987 72 4072 5 4156 2 4236 48 4313 34 4389 3 4408 7894462 02 4534 38 4607 28 4678 02 4747 32 4815 36 4828 9954882 86 4950 18 5016 24 5080 86 5143 5 5204 52 5263 56 5321 52 5378 4 5434 2 5488 74 5542 74 5597 28 5651 46 5705 1 5758 2 5811 66 5864 4 5890 23 5916 06 5968 08 6019 02 6069 24 6119 1 6168 6 6217 92 6266 7 6315 12 6363 54 6411 96 6460 38 6508 26 6556 14 6602 94 6648 84 6694 56 6740 1 6785 28 6829 74 6873 66 6917 22 6959 88 7002 7043 76 7084 98 7126 02 7167 06 7207 92 7248 96 7289 28 7329 42 7369 38 7408 98 7448 4 7487 82 7527 06 7566 12 7605 18 7643 7 7681 14 7718 58 7756 02 7792 92 7829 82 7866 9 7903 8 7940 7 7977 24 8013 96 8050 5 8086 68 8122 86 8158 68 8194 5 8230 32 8265 78 8301 42 8336 88 8372 52 8407 8 8442 72 8477 64 8512 56 8547 12 8581 68 8616 06 8650 44 8684 82 8719 2 87534 8787 78 8822 16 8856 18 8890 2 8924 4 8958 42 8992 26 9026 1 9059 94 9093 78 9127 26 9160 74 9194 04 9227 34 9260 64 9293 94 9327 06 ANNEX Additional information of the application to the Tormes Water Resources System 9360 18 9393 12 9426 24 9459 9717 48 9749 16 9780 84 9812 52 10060 02 10090 26 10120 32 10150 2 10385 1 BordalloAlevinAlmendra 169 0 29 0 5 6 11 5 17 22 5 28 5 34 5
102. 64 0 285 0 505 0 980 1 252 1 002 0 245 COEF GARANTIAS GAR MENS 0 0 CRITERIO TIPO P H M 30 0 A 15 0 CRIT TIPO UTAH DWR 1A 50 0 2A 75 0 10A 100 0 CRIT IPH2008 DEMANDA URBANA 1m 8 10a 10 N TOMAS 1 TOMA 1 T DA 5001 RP Cabecera R o To NUDO 1 DOT ANUAL 5 000 C ESCORR 0 50 C CONSUMO 0 32 ELEM RET 2 COTA 0 00 N PRIORID 10 IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 016 0 002 0 013 0 020 0 048 0 164 0 285 0 505 0 980 1 252 1 002 0 245 2 DA 5002 RP R o Tormes Alto ANNEX Additional information of the application to the Tormes Water Resources System OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 031 0 006 0 036 0 065 0 196 0 632 1 315 2 471 4 059 5 067 3 563 0 585 COEF GARANTIAS GAR MENS 1 0 CRITERIO TIPO P H 15 0 A 30 0 CRIT TIPO UTAH DWR 1A 50 0 2A 75 0 10 100 0 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 N TOMAS 1 TOMA 1 T DA 5002 RP R o Tormes Alto NUDO 2 DOT ANUAL 20 672 C ESCORR 0 58 C CONSUMO 0 27 ELEM RET 24 COTA 0 00 N PRIORID 1 IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 031 0 006 0 036 0 065 0 196 0 632 1 315 2 471 4 059 5 067 3 563 0 585 3 DA 5003 RP R o Aravalle OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 034 0 007 0 04
103. 72 94 208 66 252 10 882 COEF GARANTIAS GAR MENS 0 0 CRITERIO TIPO P H M 30 0 15 0 CRIT TIPO UTAH DWR 1A 50 0 2A 75 0 10A 100 0 CRIT IPH2008 DEMANDA URBANA 1m 8 10a 10 N TOMAS 1 TOMA 1 T DA 5011 ZR Babilafuente Vi NUDO 7 DOT ANUAL 500 000 C ESCORR 0 47 C CONSUMO 0 37 ELEM RET 9 COTA 0 00 N PRIORID 10 IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 576 0 112 0 676 1 218 3 648 11 760 24 450 45 950 75 472 94 208 66 252 10 882 12 DA 5012 ZR Florida Li bana OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 036 0 006 0 042 0 074 0 222 0 716 1 490 2 800 4 600 5 740 4 038 0 664 ACUIFERO RECARGADO 3 ACCION ELEM 1 COEF GARANTIAS GAR MENS 0 096 CRITERIO TIPO P H 30 0 A 15 0 CRIT TIPO DWR 1A 50 0 2A 75 0 10A 100 0 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 96 N TOMAS 1 TOMA 1 T DA 5012 ZR Florida Li bana NUDO 42 DOT ANUAL 500 000 C ESCORR 0 26 C CONSUMO 0 51 ELEM RET 11 COTA 0 00 N PRIORID 1 IND RESTR O ANNEX Additional information of the application to the Tormes Water Resources System OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 036 0 006 0 042 0 074 0 222 0 716 1 490 2 800 4 600 5 740 4 038 0 664 13 DA 5013 ZR Villamayor OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOST
104. 8 19 C1 12 Tormes 504 g Transf Lateral 12 05 Tormes 680 b g salidas sistema Transf Lateral 12 04 a 12 05 Tormes 545 b f Transf lateral1 12 05 08 19 r Tormes 614 Tormes 614 b Tormes 614 c Tormes 615 a Corneja 624 r Tormes 615 b Tormes 615 c ANNEX Additional information of the application to the Tormes Water Resources System Tormes 615 d r Tormes 615 Tormes 615 f Tormes 568 a Tormes 568 b Tormes 568 c Tormes 568 d r Tormes 568 e Tormes 569 a Tormes 569 b Tormes 569 c Tormes 569 d Tormes 569 e Tormes 569 f r Tormes 569 g r Tormes 682 a r Tormes 682 b r Tormes 682 c r Tormes 545 a Trasvase r o Lobos r Tormes 545 c 546 b Tormes 546 Tormes 546 a Tormes 680 Tormes 680 Tormes 680 e r Tormes 502 a r Tormes 502 b r Tormes 503 a r Tormes 503 c r Tormes 503 d r Tormes 503 b r Tormes 504 a Tormes 504 b Tormes 505 a Tormes 505 b Tormes 505 Tormes 505 d 505 e Huebra 513 b Huebra 513 Huebra 513 gueda 687 gueda 626 a gueda 626 b Agad n 617 gueda 606 gueda 626 c gueda 522 a Arroyo Pasiles 607 gueda 524 gueda 525 Aravalle 643 Yeltes 538 586 Rio Valmuza 518 520 Agueda 522 b Agueda 522 c Agueda 522 d Agueda 523 a Agueda523 b Yeltes538 b 112011111111111111111111111111120111111111111111111111111111111111201 111111202020202020202020111201120120120 2
105. 814 36 68888 22 68913 62 68925 81 68938 68 68941 37 68867 23 68725 18 68790 43 68715 59 68687 51 68646 67 68605 37 68407 99 68281 4 68111 85 67903 19 67652 7467410 68 67081 98 66919 41 66751 91 66557 79 65451 71 BordalloAlevinContiensa 30 0 274 3 3 1 1 0 5 1 2 2 5 3 3 5 4 4 5 5 5 5 6 6 5 7 7 48 8 8 452 9 9 903 11 12 13 14 14 885 16 17 17 5 18 18 641 21 448 76546 92 76979 12 77076 77021 41 77018 16 76975 87 76913 12 76820 99 76684 81 76521 82 76345 89 76121 66 75939 98 75713 81 75516 88 75342 59 75151 83 74897 33 74705 05 74421 25 74173 65 73884 46 73634 14 73363 3 73064 54 72911 76 72784 98 72617 02 71983 58 BarboAdultoVillagonzalo 25 0 235 1 1 3 1 0 1 0 5 1 1 5 2 2 5 2 8 3 2 3 5 4 4 5 5 5 5 5 918 6 6 5 6 861 7 7 5 8 8 5 9 10 15 288 98 642 92 1223 76 1777 52 2241 59 2690 8 2983 45 3302 63 3504 64 3815 61 4071 25 4306 16 4506 64 4665 4692 54 4860 6 4949 81 4990 15 5086 59 5170 63 5239 69 5275 51 5320 1 5474 85 BarboAlevinVillagonzalo 25 0 235 1 3 1 1 0 1 0 5 1 1 5 2 2 5 2 8 3 2 3 5 4 4 5 5 5 5 5 918 6 6 5 6 861 7 7 5 8 8 5 9 10 15 610 68 5299 82 7665 41 8647 98 9348 9888 10180 35 10441 76 10584 77 10697 92 10703 02 10679 83 10707 47 10713 84 10703 72 10681 47 10612 64 10589 33 10597 72 10618 34 10600 68 10587 59 10443 19 9921 14 BarboJuvenilVillagonzalo 25 0 235 1 2 2 1 0 1 0 5 1 1 5 2 2 5 2 8 3 2 3 5 4 4 5 5 5 5 5 918 6 6 5 6 861 7 7 5 8 8 5 9 10 15 26036 32 27758 3428851 2629547 7 30040 37 304
106. 855 16 5094 85 5296 65 5332 79 5573 46 5719 69 5780 41 5951 61 6117 72 6278 56 6409 2 6648 31 7461 76 BogaDueroAlevinVillagonzalo 25 235 2 3 1 1 0 0 1 0 5 1 1 5 2 2 5 2 8 3 2 3 5 4 4 5 5 5 5 5 918 6 6 5 6 861 7 7 5 8 8 5 9 10 15 0 74466 1 74487 0174589 5 74682 0774782 2974833 9374839 8 74814 2774775 6174691 8 74578 78 74432 63 74272 78 74130 28 74102 47 73910 88 73773 9 73722 03 73533 75 73341 17 73156 62 72980 78 72589 70475 95 BermejuelaAdultoVillagonzalo 25 235 4 1 3 1 0 0 1 0 5 1 1 5 2 2 5 2 8 3 2 3 5 4 4 5 5 5 5 5 918 6 6 5 6 861 7 7 5 8 8 5 9 10 15 0 2042 36 3675 13 4915 38 5812 14 6596 63 7070 67 7291 06 7534 58 7690 05 7931 76 8154 59 8393 54 8626 61 8792 49 8823 71 9029 21 9173 62 9235 87 9398 93 9517 17 9639 13 9753 4 9994 47 10614 5 BordalloAdultoVillagonzalo 24 235 3 1 3 1 0 0 1 0 5 1 1 5 2 2 5 2 8 3 2 3 5 4 5 5 5 5 918 6 6 5 6 861 7 7 5 8 8 5 9 10 15 0 80269 59 79960 87 79627 23 79334 79 79076 46 78821 29 78642 58 78390 04 78184 81 77830 61 77058 88 76639 04 76261 86 76192 75 75707 75 75375 35 75244 39 74789 72 74345 1 73917 08 73549 98 72857 36 70455 21 BordalloAlevinVillagonzalo 25 235 3 3 1 1 0 0 1 0 5 1 1 5 2 2 5 2 8 3 2 3 5 4 4 5 5 5 5 5 918 6 6 5 6 861 7 7 5 8 8 5 9 10 15 0 54879 2154876 92 54751 87 54565 91 54328 13 54088 76 53957 8 53803 5453696 45 53559 64 53451 58 53356 9653268 53194 18 53180 45 53085 61 53020 32 52994 7452906 8 52815 5 52734 0752649 45 52423 83 51092 76 TruchaAdultoVillagonz
107. AL 0 00 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE REC LLUVIA 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 6 12 04 Detr tico Alba Tormes PeTIPO 2 MODELO UNICELULAR PARAM CONTROL BOMBEO O UMBRAL 0 0000E 00 COEFTE DE DESAGUE 0 1350E 00 VOLUMEN INICIAL 0 00 Operation rule Type Monthly variable curve evaluated at the begining of each the month Based on the state of runoff o AN Cab Tormes Barco Avila o Ap Aravalle o AN r o Corneja o Sta Teresa Number of months to accumulate 4 Month Volume Restriction coefficient January 2400 Additional information of the application to the Tormes Water Resources System Month Volume Restriction coefficient o 2 0 March 29404000 April 343 0 May 24 o0 June 0 July IE O August IT 0 September 60 05 October 3 0 November 72 0 December IE 0 Table 4 Operation rule values GESCAL Model features Simulacion calidad del sistema Escenario de c lculo Datos generales de Contaminantes 031100 Temperatura tormes 642 gueda 521 Rec Lluvia 12 03 Transf Lateral 12 03 a 12 05 Rec Lluvia 12 05 Rec Lluvia 12 02 Huebra 535 g Rec Lluvia 12 04 Yeltes538 Tormes 680 f Transf lateral b 12 04 a 12 05 tormes 412 a Tormes 502 c g f Rec Lluvia 12 01 f Transf Lateral2 12 05 0
108. AYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 26 Tormes 569 NUDO 32 NUDOFINAL 33 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 27 Tormes 682 NUDO INIC 33 NUDOFINAL 34 I O COSTE 0 0 OCTUBR DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 28 Tormes 682 b NUDO INIC 34 35 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 29 r Tormes 682 c NUDO INIC 35 NUDOFINAL 7 1 O COSTE 0 0 OCTUBR
109. All the reservoirs are modelled as continuous stirred tank reactors That is considering one layer throughout the year The calibration is conducted adjusting the water quality parameters Thereafter the results of the model have to be compared with real measures in key sites of the system Figure 24 and Figure 25 are presented in the Duero RBMP They show this comparison for dissolved oxygen and CBOD at the WQCS of Contiensa for the period October 1996 to September 2004 EY Application to the Tormes Water Resources System Dissolved oxygen 14 147 T ara Aa Ain 10 mg l 4 4 01 10 1996 01 01 1997 01 04 1997 01 07 1997 01 10 1997 01 01 1998 01 04 1998 01 07 1998 01 10 1998 01 01 1999 04 1999 07 1999 10 1999 01 2000 04 2000 07 2000 10 2000 01 01 2001 04 2001 07 2001 10 2001 01 2002 04 2002 07 2002 10 2002 01 01 2003 01 04 2003 01 07 2003 01 10 2003 01 01 2004 01 04 2004 01 07 2004 4 e edo 4 4 44 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Measured Simulated Figure 24 Comparison between the simulated dissolved oxygen concentrations red and the measured concentration blue in the Tormes River at Contiensa WQCS from MAAA 2013 CBOD 14 mg l 996 997 997 997 997 998 998 998 998 999 999 999 999 2000 4 4 4 4 4 4 4 44 sn 10 2001 01 2
110. ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 000 0 000 0 008 0 003 0 007 0 032 0 079 0 209 0 302 0 328 0 186 0 038 COEF GARANTIAS ANNEX Additional information of the application to the Tormes Water Resources System GAR MENS 1 0 CRITERIO TIPO P H M 15 0 A 30 0 CRIT TIPO UTAH DWR 1A 50 0 2 75 0 10A 100 0 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 N TOMAS 1 TOMA 1 T DA 5023 RP R o gueda Bajo NUDO 71 DOT ANUAL 1 266 C ESCORR 0 25 C CONSUMO 0 50 ELEM RET 15 COTA N PRIORID 2 IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO SEPTIE CAUD MAX 0 00 JULIO AGOSTO 0 000 0 000 0 008 0 003 0 007 0 032 0 079 0 209 0 302 0 328 0 186 0 038 24 DU Ab Barco de vila OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 031 0 031 0 031 0 031 0 031 0 031 0 031 0 031 0 031 0 031 0 031 0 031 COEF GARANTIAS GAR MENS 0 0 CRITERIO TIPO P H 30 0 A 15 0 CRIT TIPO UTAH DWR 1A 2 0 2A 3 0 10A 10 0 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 6 N TOMAS 1 TOMA 1 T DU Barco de vila NUDO 1 DOT ANUAL 0 400 C ESCORR 0 80 C CONSUMO 0 20 ELEM RET 4 COTA 0 00 N PRIORID 1 IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO SEPTIE CAUD MAX 0 031 0 031 0 031 0 031 JULIO AGOSTO 0 031 0 031 0 031 0 031 0 031 0 031 0 031 0 031 25 DU Ab Guijuelo OC
111. ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOL MAXIMO 2586 340 2586 340 2586 340 2586 340 2586 340 2586 340 2586 340 2586 340 2586 340 2586 340 2586 340 2586 340 VOL OBJET 2586 340 2586 340 2586 340 2586 340 2586 340 2586 340 2586 340 2586 340 2586 340 2586 340 2586 340 2586 340 VOL MINIMO 173 505 173 505 173 505 173 505 173 505 173 505 173 505 173 505 173 505 173 505 173 505 173 505 EVAP mm 952 230 57 460 50 730 37 680 47 340 61 800 64 650 73 960 110 330 124 600 131 750 110 150 TABLA COTA SUPERFICIE VOLUMEN COTA m 540 000 640 000 658 000 676 000 685 000 694 000 703 000 712 000 721 000 730 000 SUPERF Ha 0 000 347 000 1050 000 1538 000 1920 000 2555 000 3342 000 4483 000 5884 000 7940 000 ANNEX Additional information of the application to the Tormes Water Resources System VOLUM Hm3 0 000 173 500 310 090 532 180 687 750 889 180 1154 520 1506 640 1973 120 2586 350 4 E Riolobos NUDO 12 NUDO VERTIDOS 12 NUMERO PRIORIDAD 5 COEF FORMULA INFILTRACION A 0 0000E 00 B 0 0000E 00 C 0 0000E 00 MAX SUELTAS CONTROLADAS 1000 00 VOLUMEN INICIAL 10 00 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOL MAXIMO 13 870 13 870 13 870 13 870 13 870 13 870 13 870 13 870 13 870 13 870 13 870 13 870 VOL OBJET 13 870 13 870 13 870 13 870 13 870 13 870 13 870 13 870 13 870 13 870 13 870 13 870 VOL MINIMO 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 EVAP mm
112. ETRO CONTROL 2 VALOR CONEXI N 30 3 Yeltes538 a g NUDO INIC 74 NUDOFINAL 80 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 ACUIFERO 1 N ACCION ELEM 1 N PARAMETRO CONTROL 2 VALOR CONEXION 60 4 r Tormes 680 a g NUDO INIC 38 NUDOFINAL 9 PRIORIDAD 1 UMBRAL DEF 0 010 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 20 000 20 000 20 000 20 000 20 000 20 000 20 000 20 000 20 000 20 000 20 000 20 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 ACUIFERO 3 ACCION ELEM 1 CONTROL 2 VALOR CONEXI N 30 5 Tormes 502 c g NUDO INIC 44 NUDOFINAL 45 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 ACUIFERO 3 ELEM 1 N PARAMETRO CONTROL 2 VALOR CONEXI N 30 6 Tormes 504 c g NUDO INIC 51 NUDO FINAL 52 PRIORIDAD 1 UMBRAL DEF 0 010 OCTUBR NOVIEM DICIEM
113. MAX 2 000 2 000 2 000 2 000 2 000 2 000 2 000 2 000 2 000 2 000 2 000 2 000 35 DP Zorita OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 5 070 5 070 5 070 5 070 5 070 5 070 5 070 5 070 5 070 5 070 5 070 5 070 COEF GARANTIAS GAR MENS 1 0 CRITERIO TIPO P H M 15 0 A 30 0 CRIT TIPO UTAH DWR 1 50 0 2A 75 0 10A 100 0 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 96 N TOMAS 1 TOMA 1 T DP Zorita NUDO 29 DOT ANUAL 80 000 C ESCORR 0 95 C CONSUMO 0 05 ELEM RET 7 COTA 0 00 N PRIORID 1 IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 5 070 5 070 5 070 5 070 5 070 5 070 5 070 5 070 5 070 5 070 5 070 5 070 36 DP Zorita Alba de Tor OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 4 140 4 140 4 140 4 140 4 140 4 140 4 140 4 140 4 140 4 140 4 140 4 140 COEF GARANTIAS GAR MENS 1 096 CRITERIO TIPO P H 15 0 A 30 0 CRIT TIPO UTAH DWR 1A 50 0 2A 75 0 10A 100 0 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 96 N TOMAS 1 TOMA 1 T DP Zorita Alba de T NUDO 34 DOT ANUAL 60 000 C ESCORR 0 95 C CONSUMO 0 05 ELEM RET 8 COTA 0 00 N PRIORID 1 IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 4 140 4 140 4 140 4 140 4 140 4 140 4 140 4 140 4 140 4 140 4 140 4 140 37 Bomb MAS
114. O SEPTIE VOLDEM 0 020 0 004 0 024 0 042 0 126 0 406 0 846 1 590 2 612 3 260 2 292 0 376 ACUIFERO RECARGADO 3 N ACCION ELEM 1 COEF GARANTIAS GAR MENS 1 0 CRITERIO TIPO P H 15 0 A 30 0 CRIT TIPO UTAH DWR 1A 50 0 2 75 0 10 100 0 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 N TOMAS 1 TOMA 1 T DA 5013 ZR Villamayor NUDO 45 DOT ANUAL 500 000 C ESCORR 0 25 C CONSUMO 0 56 ELEM RET 11 COTA 0 00 N PRIORID 1 IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 020 0 004 0 024 0 042 0 126 0 406 0 846 1 590 2 612 3 260 2 292 0 376 14 DA 5014 ZR Zorita OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 022 0 004 0 026 0 046 0 136 0 440 0 916 1 722 2 830 3 532 2 484 0 408 ACUIFERO RECARGADO 3 N ACCION ELEM 1 COEF GARANTIAS GAR MENS 1 0 CRITERIO TIPO P H 15 0 A 30 0 CRIT TIPO UTAH DWR 1A 50 0 2 75 0 10 100 0 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 N TOMAS 1 TOMA 1 T DA 5014 ZR Zorita NUDO 46 DOT ANUAL 500 000 C ESCORR 0 57 C CONSUMO 0 30 ELEM RET 11 COTA 0 00 N PRIORID 1 IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 022 0 004 0 026 0 046 0 136 0 440 0 916 1 722 2 830 3 532 2 484 0 408 15 DA 5015 ZR Campo de Ledesma OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO
115. Proposal for Ecosystem Services analysis 5 2 2 Back to the water body The above methodology would not be totally resourceful if it just provides the values of WS in a complete river basin The interesting aspect is to know the contribution of each subbasin river stretch reservoir etc to the total value of a certain WS This allows classifying the elements by their importance for WS production Consequently the post processing modules necessary to apply the WS analysis methodology should include a final process to assign a part of the WS value to each element that makes it up back to the water body The difficulty of this process depends on the number of models chained to assess the WS For the water storage in aquifers it is immediate to share out the total economic value into all the subbasins proportionally to their recharge contribution On the other hand the water purification in rivers and lakes is calculated as the difference in concentrations at the beginning and end of each one Then the value of the WS in all river stretches and reservoirs or lakes is proportional do this pollution reduction In the case of freshwater production for economic uses the water generated in a subbasin is subsequently managed in the water resources system Hence the relation between the producing subbasin and the final water use that assigns an economic value to the water resource is not so easily traceable It is necessary to bind the total econo
116. R scenario Figure 32 Dissolved oxygen concentration in mg L at the study point 4 in the different management scenarios Ammonium at Point 4 mg L MV SA WAY D INITIAL scenario scenario OR scenario Figure 33 Ammonium concentration in mg L at the study point 4 in the different management scenarios Results analysis and discussion EE The evolution of dissolved oxygen and ammonium concentrations are presented in Figure 32 and Figure 33 Mostly due to dilution effects the water quality is better in QECO MAX scenario The dissolved oxygen concentrations are always over 5 mg L and the ammonium is under 1 mg L except in punctual situations However the water quality conditions are poor in INITIAL scenario with concentrations which do not allow any kind of aquatic life The dissolved oxygen reaches values of 2 mg L or even less and the ammonium rises to 7 mg L going up to 3 mg L quite often Successfully the conditions in OR scenario accomplish the legal prescriptions for water quality most of the time and just breaks them in punctual situations like drought periods 4 5 Generation of habitat time series CAUDECO is run using the results from SIMGES in the three different environmental flows scenarios resulting 35 HTS and 35 HDC for each scenario This is one HTS and one HDC for each species and size class at each studied point In order to reduce the number of results and to obtain a re
117. RIL MAYO JUNIO JULIO AGOSTO SEPTIE VOL MAXIMO 22 431 22 431 22 431 22 431 22 431 22 431 22 431 22 431 22 431 22 431 22 431 22 431 VOL OBJET 8 000 8 000 8 000 8 000 8 000 8 000 8 000 8 000 8 000 8 000 8 000 8 000 VOL MINIMO 5 000 5 000 5 000 5 000 5 000 5 000 5 000 5 000 5 000 5 000 5 000 5 000 EVAP mm 70 960 33 460 28 460 23 600 34 450 54 560 69 630 92 640 152 360 172 060 166 950 118 640 TABLA COTA SUPERFICIE VOLUMEN COTA m 605 000 607 000 609 000 613 000 619 000 623 000 627 000 631 000 632 000 635 000 SUPERF Ha 0 000 7 000 14 000 30 000 57 000 79 000 105 000 132 000 140 000 177 000 VOLUM Hm3 0 000 0 200 0 400 1 300 3 700 6 400 9 380 14 300 15 700 22 431 KK K K K K K K K K K K K K K K K K K K K K K K K K CONDUCCIONES KK K K K K K K K K K K K K K K K K K K K K K K K K ANNEX Additional information of the application to the Tormes Water Resources System 1 r tormes 642 NUDO INIC 1 NUDOFINAL 2 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 2 r tormes 412 a NUDO INIC 10 NUDOFINAL 15 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000
118. RIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 60 gueda 626 c NUDO INIC 63 NUDOFINAL 64 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 61 gueda 522 NUDO INIC 67 NUDOFINAL 68 1 0 COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 ANNEX Additional information of the application to the Tormes Water Resources System 62 Arroyo Pasiles 607 NUDOINIC 70 NUDOFINAL 69 I O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 63
119. RIORIDAD 1 CENTRAL FLUYENTE SALTO BRUTO 2 36 COEF PROD GWH HM3 M 2420 02 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD OBJ 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 7 CH Valverd n NUDO TOMA 47 NUDO VERTIDOS 48 CAUD MAX 77 760 CAUD MIN 0 000 PRIORIDAD 15 CENTRAL FLUYENTE SALTO BRUTO 4 00 COEF PROD GWH HM3 M 2360 02 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD OBJ 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 8 CH Almenara NUDO TOMA 50 NUDO VERTIDOS 51 CAUD MAX 34 992 CAUD MIN 0 000 PRIORIDAD 15 CENTRAL FLUYENTE SALTO BRUTO 2 68 COEF PROD GWH HM3 M 2000 02 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD OBJ 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 9 CH Ledesma ANNEX Additional information of the application to the Tormes Water Resources System NUDO TOMA 55 NUDO VERTIDOS 56 CAUD MAX 103 680 CAUD MIN 0 000 PRIORIDAD 15 CENTRAL FLUYENTE SALTO BRUTO 5 35 COEF PROD GWH HM3 M 2340E 02 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD OBJ 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 10 CH Molino de Andr s NUDO TOMA 62 NUDO VERTIDOS 63 CAUD MAX 64 800 CAUD MIN 0 000 PRIORIDAD 1 CENTRAL FLUYENTE SALTO BRUTO
120. RIT TIPO UTAH DWR 1A 50 0 2A 75 0 10A 100 0 ANNEX Additional information of the application to the Tormes Water Resources System CRIT IPH2008 DEMANDA URBANA 1m 8 10a 10 N TOMAS 1 TOMA 1 f Toma Bomb MAS 52 Alba Torm NUDO 90 DOT ANUAL 14 487 C ESCORR 0 00 C CONSUMO 0 75 ELEM RET O COTA 0 00 N PRIORID 1 IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 41 Bomb MAS 52 acuifero profundo OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 011 0 002 0 013 0 023 0 070 0 226 0 469 0 881 1 448 1 807 1 271 0 209 ACUIFERO RECARGADO 3 N ACCION ELEM 1 ACUIFERO BOMBEO 4 N ACCION ELEM 1 Q MAX BOMBEO 1 900 PARAM CONT O UMBRAL 0 000 COEF GARANTIAS GAR MENS 1 0 CRITERIO TIPO P H M 15 0 A 30 0 CRIT TIPO UTAH DWR 1A 50 0 2A 75 0 10 100 0 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 96 N TOMAS 1 TOMA 1 f Toma Bomb MAS 52 acu fero NUDO 84 DOT ANUAL 0 000 C ESCORR 0 00 C CONSUMO 0 75 ELEM RET 0 COTA 0 00 N PRIORID 1 IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 KK K OK K K K K K K K K K K K K K K K K K K K K K RETORNOS KKK K K K K K K K K K K K K K K K K K K K K K K K NO NOMBRE NUDO
121. Ret PI Bioetanol 14 Ret RP Cabecera R o Tormes 2 Ret RP R o Tormes y R o Corne 4 Ret DU Barco de vila 17 Ret DP Las Veguillas 25 Ret DP Gestiones e Inversiones 28 Ret DP Zorita 30 Ret DP Zorita Illana Alba de 35 Ret Aguas Abajo del Almar 13 Ret Salamanca El Mar n 43 DWM Q gt O 11 Ret ag abajo Salamanca 52 12 Ret ag arriba Almendra 56 13 Ret AgAbStaTeresa 24 14 Ret Abastecimiento 57 15 Ret RP R o gueda Bajo 72 16 Ret RP 22 Elevaci n MD gueda 69 17 Ret Ciudad Rodrigo 68 18 Ret RP 12 Elevaci n MD gueda 67 19 Ret ZR MI gueda 68 20 Ret RP R o Agad n 64 21 Ret RP Cabecera R o gueda 61 22 Ret RP Cabecera R o Yeltes 74 23 Retorno Bomb MAS 59 59 24 Ret R o Tormes Alto 16 25 Ret Ejeme Galisancho 32 26 Ret E Villagonzalo 7 ANNEX Additional information of the application to the Tormes Water Resources System K K K K GE K OK K K K K K CENTRALES HIDROELECTRICAS K K K CE CE CK CE K CE K CK K CK CE CK CE CK CE CE CK K 1 CH Villarino NUDO TOMA 10 NUDO VERTIDOS 15 CAUD MAX 602 640 CAUD MIN 0 000 PRIORIDAD 15 CENTRAL FLUYENTE SALTO BRUTO 402 17 COEF PROD GWH HM3 M 2540 02 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD OBJ 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 2 San Fernando NUDO
122. S zo gt gt gt Z 22520 gt gt gt gt Z gt gt Z gt gt Z 22520 gt gt Gauged 2085 EVALHID Annual ace Average year 1200 100 90 1000 80 800 70 60 1 he N 40 30 200 20 T T T T T T 0 o 6 db o 5 5 de db aO X A ae ab Y ah a ob o b gt PP E P 4 Cf CIS Oct Dec Jan Feb Mar June July Aug Sept EENHGauged2085 M EVALHID Gauged 2085 IW EVALHID Figure 16 Calibration graphics for ROEA 2085 Monthly Ay Mies Annual Oct Nov Dec Jan Feb Mar Apr May June July Aug Sept MA Gauged 2088 E EVALHID SIMGES Gauged2088 EVALHID SIMGES Figure 17 Calibration graphics for ROEA 2088 Finally the validation is performed in the period from October 2000 to September 2006 at the calibration point ROEA 2088 because it receives the flows from all the modelled subbasins Then the EVALID model for the TWRS is ready to generate runoff series This model was built for the DRBA as a part of a consulting contract by the Group of Water Resources Enginering of the Research Institute for Water and Environmental Engineering Application to the Tormes Water Resources System 3 2 Developmen
123. SEPTIE VOLDEM 0 003 0 001 0 003 0 006 0 017 0 056 0 117 0 219 0 360 0 450 0 316 0 052 COEF GARANTIAS GAR MENS 0 096 CRITERIO TIPO P H M 30 0 A 15 0 CRIT TIPO UTAH DWR 1A 50 0 2A 75 0 10A 100 0 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 96 N TOMAS 1 TOMA 1 T DA 5015 ZR Campo Ledesma NUDO 10 DOT ANUAL 1 600 C ESCORR 0 25 C CONSUMO 0 56 ELEM RET O COTA 0 00 N PRIORID 10 IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 003 0 001 0 003 0 006 0 017 0 056 0 117 0 219 0 360 0 450 0 316 0 052 16 DA 5016 RP Cabecera R o Yelt OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 000 0 000 0 028 0 010 0 027 0 116 0 285 0 749 1 084 1 183 0 673 0 138 ACUIFERO RECARGADO 2 N ACCION ELEM 1 ANNEX Additional information of the application to the Tormes Water Resources System COEF GARANTIAS GAR MENS 1 0 CRITERIO TIPO P H M 15 0 A 30 0 CRIT TIPO UTAH DWR 1A 50 0 2A 75 0 10A 100 0 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 96 N TOMAS 1 TOMA 1 T DA 5016 RP Cabecera R o Ye NUDO 75 DOT ANUAL 4 675 C ESCORR 0 70 C CONSUMO 0 19 ELEM RET 22 COTA 0 00 N PRIORID 1 IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 000 0 000 0 028 0 010 0 027 0 116 0 285 0 749 1 084 1 183 0 673 0 138 17 DA 5017 RP Cabecera Rio Ague OCTUBR NO
124. SIMGES Despite the fact that in the presented application water quality is not included in the habitat suitability analysis GESCAL can provide the pollutants concentrations that affect the target species In order to evaluate the riverbank vegetation state external models are needed which provide the relation between circulating flows in rivers with the dynamic of vegetation Garc a Arias et al 2012 Finally it is important to highlight the relation between riparian vegetation and the temperature of water in rivers due to the effect of shadow Again there is not an AQUATOOL module available to quantify it but in case it was the results could be used as temperature series in GESCAL In this case the valuation is even more difficult that in the previous WS While the costs of maintaining biodiversity are known restrictions which lead to opportunity costs management costs and transaction costs TEEB 2008 the benefits are so wide that are almost impossible to account They include food production genetic pool conservation aesthetic and cultural values etc Hence further research is needed to propose a rigorous valuation method for these two versions of biodiversity in rivers Figure 44 presents the diagram for the evaluation of the WS biodiversity Note that only the result referred to aquatic fauna in rivers can be already assessed not valuated with the presented IWRM methodology Proposal for Ecosystem Services analysis
125. TUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO SEPTIE VOLDEM 0 228 0 228 0 228 0 228 0 228 0 228 0 228 0 228 0 228 0 228 0 228 0 228 COEF GARANTIAS GAR MENS 0 0 CRITERIO TIPO P H 30 0 A 15 0 CRIT TIPO DWR 1A 2 0 2A 3 0 10A 10 0 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 N TOMAS 1 TOMA 1 T DU Ab Guijuelo NUDO 5 DOT ANUAL 30 000 C ESCORR 0 80 C CONSUMO 0 20 ELEM RET 13 COTA JULIO AGOSTO 0 00 N PRIORID 10 IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 500 0 500 0 500 0 500 0 500 0 500 0 500 0 500 0 500 0 500 0 500 0 500 26 DU Ab Ledesma OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO SEPTIE VOLDEM 0 008 0 008 0 008 0 008 0 008 0 008 0 008 0 008 0 008 0 008 0 008 0 008 COEF GARANTIAS GAR MENS 0 0 CRITERIO TIPO P H 30 0 15 0 CRIT TIPO DWR 1A 2 0 2A 3 0 10A 10 0 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 N TOMAS 1 TOMA 1 T DU Ab Ledesma JULIO AGOSTO NUDO 55 DOT ANUAL 30 000 C ESCORR 0 80 C CONSUMO 0 20 ELEM RET 12 COTA 0 00 N PRIORID 1 IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO SEPTIE CAUD MAX JULIO AGOSTO 0 010 0 010 0 010 0 010 0 010 0 010 0 010 0 010 0 010 0 010 0 010 0 010 ANNEX Additional information of the application to the Tormes Water Resources System 27 DU Ab Salam
126. UNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 56 gueda 626_a NUDO INIC 61 NUDOFINAL 62 1 0 COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 57 gueda 626 b NUDO INIC 62 NUDOFINAL 63 1 0 COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 58 Agadon 617 NUDO INIC 65 NUDOFINAL 64 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 59 Agueda 606 NUDO INIC 64 NUDOFINAL 66 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO AB
127. VIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 000 0 000 0 012 0 004 0 011 0 048 0 118 0 312 0 451 0 491 0 278 0 057 COEF GARANTIAS GAR MENS 1 0 CRITERIO TIPO P H M 15 0 A 30 0 CRIT TIPO DWR 1A 50 0 2A 75 0 10A 100 0 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 96 N TOMAS 1 TOMA 1 T DA 5017 RP Cabecera R o g NUDO 60 DOT ANUAL 2 000 C ESCORR 0 33 C CONSUMO 0 44 ELEM RET 21 COTA 0 00 N PRIORID O IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 000 0 000 0 012 0 004 0 011 0 048 0 118 0 312 0 451 0 491 0 278 0 057 18 DA 5018 RP R o Agad n OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 000 0 000 0 014 0 005 0 013 0 058 0 143 0 377 0 545 0 593 0 336 0 069 COEF GARANTIAS GAR MENS 1 0 CRITERIO TIPO P H M 15 0 A 30 0 CRIT TIPO UTAH DWR 1A 50 0 2A 75 0 10A 100 0 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 96 N TOMAS 1 TOMA 1 T DA 5018 RP R o Agad n NUDO 65 DOT ANUAL 2 300 C ESCORR 0 25 C CONSUMO 0 50 ELEM RET 20 COTA 0 00 N PRIORID 0 IND RESTR 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 000 0 000 0 014 0 005 0 013 0 058 0 143 0 377 0 545 0 593 0 336 0 069 19 DA 5019 ZR MI gueda OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 000
128. _ a 2 J al ec 4 W az y p gt E AC ot OX 602 3 where c is a mass concentration vector for each of the determinants t is time x y and z are spatial coordinates v and w are the corresponding velocity components x and e are turbulent diffusion coefficients in the directions x y and z respectively and Ac represents the internal transformations of pollutants and constituents This last term can be represented through first order decay kinetics or more complex formulations The module for water quality modelling in the DSS AQUATOOL is GESCAL Paredes 2004 It simulates the water quality evolution for a whole water resources system in an integrated way Although the water quality is considered in all the elements of the simulation models runoff returns from demands etc the physical chemical processes are only taken into account in rivers and reservoirs or lakes GESCAL uses the results of flows in rivers and volumes in reservoirs from the SIMGES module together with the Leopold and Maddock 1953 or the Manning equation Manning 1891 in order to obtain the hydraulic conditions needed to run the quality evolution The hydraulic in reservoirs can be modelled as Continuous Stirred Tank Reactor or as a two layer model with the epilimnion and the hipolimnion EE Material and methods Diffused y Y X P e pollution aS O s
129. a para la Gesti n Integrada de Recursos H dricos a adiendo al an lisis multiobjetivo tradicional del suministro a las demandas y caudales ecol gicos otras variables interesantes para la toma de decisiones como la producci n de agua el almacenamiento en acu feros la autodepuraci n del agua y la biodiversidad Current trends at international level and specifically at European level advance towards sustainable and efficient management of natural resources This current is expressed in the European Water Framework Directive the strategies Europe 2020 and EU biodiversity strategy to 2020 and in A Blueprint to safeguard Europe s Water Resources among other official documents The Ecosystem Services Assessment can help preserving healthy ecosystems underpinning effective natural resource decisions Besides Integrated Water Resources Management supported by Decision Support Systems allows considering multiple variables of a water resources system inside the broader objective of sustainable development Departamento de Ingenier a Hidr ulica y Medio Ambiente Universitat Polit cnica de Val ncia Camino de Vera s n 46022 Valencia Espa a T 34 963877610 F 434 963877618 mihma posgrado upv es http mihma upv es In this work a methodology for Integrated Water Resources Management is proposed and applied to the Tormes Water Resources System in Spain It consists of five chained models that stand for water resourc
130. ahler A N 1952 Dynamic basis of geomorphology Geological Society of America Bulletin 63 923 938 Tallis H T Ricketts T Guerry A D Wood S A Sharp R Nelson E Ennaanay D Wolny S Olwero N Vigerstol K Pennington D Mendoza G Aukema J Foster J Forrest J Cameron D Arkema K Lonsdorf E Kennedy C Verutes G Kim C K Guannel G Papenfus M Toft J Marsik M Bernhardt J and Griffin R 2013 INVEST 2 5 4 User s Guide The Natural Capital Project Stanford T mez J R 1977 Modelo Matem tico de trasformaci n precipitaci n escorrent a Asociacion de Investigacion Industrial Electrica ASINEL Madrid Tharme R E 2002 A global perspective on environmental flow assessment emerging trends in the development and application of environmental flow methodologies for rivers In Proceedings of the International Conference on Environmental Flows for River Systems incorporating the 4th International Ecohydraulics Symposium Cape Town South Africa TEEB The Economics of Ecosystems amp Biodiversity 2010 Mainstreaming the Economics of Nature A synthesis of the approach conclusions and recommendations of TEEB Brussels European Commission UN United Nations 1987 Report of the World Commission on Environment and Development General Assembly Resolution 42 187 11 December 1987 Retrieved 2007 04 12 E References UN EC IMF OECD WB United Nations European Commission I
131. al information between different applications Table 1 shows the last version available of CICES With respect to the MEA both classifications are very similar in essence although the last one is more detailed and includes the supporting category into the regulating category Proposal for Ecosystem Services analysis CICES for ecosystem accounting Section Division Group Class Provisioning Nutrition Biomass Cultivated crops Plants and algae from in situ aquaculture Water Materials Biomass Fibres and other materials from plants algae and animals for direct use or processing Materials from plants algae and animals for agricultural use Water Surface water for non drinking purposes Energy Biomass based energy sources energy Regulation amp Mediation of Mediation by Maintenance waste toxics biota plants and animals nuisances by micro organisms algae plants and animals ecosystems by ecosystems Dilution by atmosphere freshwater and marine ecosystems Mediation of Mass flows flows Liquid flows Gaseous air flows Maintenance of Lifecycle Pollination and seed dispersal physical maintenance chemical habitat and Maintaining nursery populations and habitats biological gene pool conditions protection Pest and disease Pest control control Disease control Soil formation Weathering processes and m m Decomposition and fixing processes composition Water Chemical conditio
132. alo 25 235 5 1 6 1 0 0 1 0 5 1 1 5 2 2 5 2 8 3 2 3 5 4 4 5 5 5 5 5 918 6 6 5 6 861 7 75 8 8 5 9 10 15 0 536 42 1487 22 2833 76 3962 71 4926 86 5712 47 6140 64 6758 83 7232 46 8074 16 8751 06 9325 35 9845 38 10252 4810320 5210776 9511058 11191 7911567 2611984 49 12368 33 12665 51 13184 92 14980 07 TruchaAlevinVillagonzalo 25 235 5 3 4 1 0 0 1 0 5 1 1 5 2 2 5 2 8 3 2 3 5 4 4 5 5 5 5 5 918 6 6 5 6 861 7 7 5 8 8 5 9 10 15 0 2071 79 4101 22 5251 16 5633 92 5841 35 6018 25 6102 24 6180 45 6207 33 6230 13 6189 32 6152 97 6111 6074 4 6064 75 6016 11 5956 63 5936 69 5875 16 5854 6 5832 91 5799 43 5746 08 5720 52 TruchaFrezaVillagonzalo 25 235 5 4 7 1 0 0 1 0 5 1 1 5 2 2 5 2 8 3 2 3 5 4 4 5 5 5 5 5918 6 6 5 6 861 7 7 5 8 8 5 9 10 15 0 1889 71 3479 3 5267 12 6327 22 7084 58 7681 36 8011 47 8366 28 8579 03 8861 43 9121 6 9349 37 9560 9 9713 79 9740 27 9917 15 10014 61 10051 43 10169 23 10286 86 10379 26 10440 16 10524 75 10534 14 TruchaJuvenilVillagonzalo 25 235 5 2 5 1 0 0 1 0 5 1 1 5 2 2 5 2 8 3 2 3 5 4 4 5 5 555 5918 6 6 5 6 861 7 7 5 8 8 5 9 10 15 0 1184 36 2745 46 4011 75 4754 15 5294 87 5770 82 6008 8 6278 61 6454 59 6702 37 6893 7 7049 13 7189 05 7287 93 7308 32 7423 33 7474 52 7505 4 7572 61 7641 04 7688 21 7711 24 7758 25 7909 73 ANNEX Additional information of the application to the Tormes Water Resources System BarboAdultoAlmendra 169 0 29 0 5 6 11 5 17 22 5 28 5 34 5 40 5 46 5 52 5 58
133. aluaci n de los Servicios de los Ecosistemas puede ayudar a preservar ecosistemas sanos impulsando decisiones efectivas sobre los recursos naturales Adem s la Gesti n Integrada de Recursos H dricos apoyada por Sistemas Soporte a la Decisi n permite considerar multiples variables de un sistema de recursos h dricos dentro del objetivo m s amplio del desarrollo sostenible En este trabajo se propone una metodolog a para la Gesti n Integrada de Recursos H dricos y se aplica al Sistema de Recursos H dricos del R o Tormes en Espa a Esta consta de cinco modelos encadenados para la evaluaci n de los recursos h dricos y la contaminaci n difusa la gesti n del agua la modelaci n de la calidad del agua y la evaluaci n del h bitat todos ellos integrados en el Sistema Soporte a la Decisi n AQUATOOL Se propone un an lisis de compensaci n para presentar la evoluci n de la calidad del agua la satisfacci n de las demandas y la disponibilidad de h bitat frente a la variaci n de caudales ecol gicos en diversos puntos del sistema Los resultados se analizan mediante gr ficos que pueden ser f cilmente entendidos por los decisores y los actores interesados apoyando decisiones consensuadas e informadas Se propone una metodolog a para integrar la evaluaci n de los Servicios de los Ecosistemas y la Gesti n Integrada de Recursos H dricos que se desarrollar en futuros trabajos Esta uni n conlleva el enriquecimiento de la metodolog
134. anca OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 2 083 2 009 2 083 2 083 1 887 2 083 2 009 2 083 2 009 2 083 2 083 2 009 COEF GARANTIAS GAR MENS 0 0 CRITERIO TIPO P H 30 0 A 15 0 CRIT TIPO UTAH DWR 1A 2 0 2A 3 0 10A 10 0 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 N TOMAS 2 TOMA 1 T DU Ab Salamanca NUDO 9 DOT ANUAL 22 500 C ESCORR 0 80 C CONSUMO 0 20 ELEM RET 10 COTA 0 00 N PRIORID 1 IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 1 904 1 837 1 904 1 904 1 725 1 904 1 837 1 904 1 837 1 904 1 904 1 837 TOMA 2 T DU Salamanca desde Villagon NUDO 7 DOT ANUAL 2 200 C ESCORR 0 80 C CONSUMO 0 20 ELEM RET 10 COTA 0 00 N PRIORID 1 IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 179 0 172 0 179 0 179 0 162 0 179 0 172 0 179 0 172 0 179 0 179 0 172 28 DU Abastec golf Zarapicos y D OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 COEF GARANTIAS GAR MENS 0 0 CRITERIO TIPO P H 30 0 15 0 CRIT TIPO DWR 1A 2 0 2A 3 0 10A 10 0 CRIT IPH2008 DEMANDA URBANA 1m 8 96 10a 10 N TOMAS 1 TOMA 1 T DU Abastecimiento golf Za NUDO 47 DOT ANUAL 0 000 C ESCORR 0 80 C CONSUMO 0 20 ELEM RET
135. and possibly others will be designed and applied Also the economic valuation methods and the process to share out the results back to the elements that generate them will be proposed and tested The focus will be on conducting the research towards more problem driven rather than tool driven because ultimately the success of WS valuation will be judged on how well it facilitates real world decision making and the conservation of natural capital Liu et al 2010 Conclusions 7 Acknowledgments The autor would like to thank the Spanish Ministry of Economy and Competitiveness for its financial support through the projects SCARCE Consolider Ingenio 2010 CSD2009 00065 and NUTEGES VI Plan Nacional de I D I 2008 2011 CGL2012 34978 Besides show gratitude to the European Commission for financing the projects SIRIUS FP7 SPACE 2010 1 262902 DROUGHT R amp SPI programa FP7 ENV 2011 282769 and ENHANCE FP7 ENV 2012 308438 Acknowledgments I 8 References Allan J A 1993 Fortunately there are Substitutes for Water Otherwise our Hydro political Futures would be Impossible In Priorities for Water Resources Allocation and Management Personal communication at Southampton University United Kingdom Andreu J Capilla J and Sanchis E 1996 AquaTool a generalized decision support system for water resources planning and operational management Journal of Hydrology 177 269 291 Andreu J Solera A Capilla J
136. anificaci n hidrol gica BOE n9 229 del 22 septiembre 2008 Mor n Tejeda E Ceballos Barbancho A and Llorente Pinto J M 2010 Hydrological response of Mediterranean headwaters to climate oscillations and land cover changes The Mountains of Duero River basin Central Spain Global and Planetary Change 72 1 2 39 49 I References Mouelhi S Michel C Perrin C and Andr assian V 2006 Linking stream flow to rainfall at the annual time step the Manabe bucket model revisited Journal of Hydrology 328 283 296 M nera J C and Franc s F 2009 Integraci n del modelo TETIS en el sistema de alarma temprana DELFT FEWS para predicci n de avenidas en tiempo real en algunas cuencas de la CH del J car Jornadas de Ingenier a del Agua Madrid Nehring R B and Anderson R M 1993 Determination of population limiting critical salmonid habitats in Colorado streams using the Physical Habitat Simulation System Rivers A 1 1 19 Parasiewicz P 2008 Habitat time series analysis to define flow augmentation strategy for the Quinebaug River Connecticut and Massachusets USA River Research and Applications 24 453 458 Paredes J 2004 Integraci n de la modelaci n de la calidad del agua en un sistema de ayuda a la decisi n para la gesti n de recursos h dricos PhD Thesis Universitat Polit cnica de Val ncia Paredes Arquiola J Martinez Capel F Solera A and Aguilella V 2011 Implementing
137. asins coincide from the top view Then it provides the underground runoff at the surface drainage points Though if this is far from reality or there are specific groundwater models available the user can define EE Material and methods underground drainage points where EVALHID calculates the percolation Next these percolations are used as inputs for the independent groundwater models Model data file Apo_Modelos inp Settings file Apo_Config inp PET file Hydrological ww Apo_Etp inp model File of files Precipitation file PERA A A O Temperature file ipo Temp inp i E 12 1 Labelsfile Apo_Config inp Partial results Accumulated Percolations file Runoff file results file Apo Aportacion sal wes Apo Resul acum sal Apo Infiltra sal Apo Resul parciales sal Figure 4 Diagram of files in EVALHID Paredes Arquiola et al 2013a 2 1 2 Diffuse pollution evaluation Natural water bodies are subject to waste loads from point sources and diffuse or nonpoint sources which impair the water quality The point sources are usually inventoried and quantified by the river basin authorities as they require express authorisation They come from municipalities industries etc and are poured out into surface water bodies normally rivers By contrast the nonpoint sources are more difficult to identify and estimate as they are caused by agric
138. c 0 22 HBV 18 Beta 3 HBV 18 FC 180 HBV 18 Pwp 105 HBV 18 Lmax 6 HBV 18 KO 0 13 HBV 18 K1 0 13 HBV 18 K2 0 HBV 18 Kperc 0 22 HBV 19 Beta 3 HBV 19 FE 180 HBV 19 Pwp 105 HBV 19 Lmax 6 HBV 19 KO 0 13 HBV 19 K1 0 13 HBV 19 K2 0 HBV 19 Kperc 0 22 HBV 20 Beta 3 HBV 20 FC 180 HBV 20 Pwp 105 HBV 20 Lmax 6 HBV 20 KO 0 13 HBV 20 K1 0 13 HBV 20 K2 0 HBV 20 Kperc 0 22 HBV 21 Beta 3 HBV 21 FC 180 HBV 21 Pwp 105 HBV 21 Lmax 6 HBV 21 KO 0 13 HBV 21 K1 0 13 HBV 21 K2 0 HBV 21 Kperc 0 22 HBV 22 Beta 3 HBV 22 FC 180 HBV 22 Pwp 105 HBV 22 Lmax 6 HBV 22 KO 0 13 HBV 22 K1 0 13 HBV 22 K2 0 HBV 22 Kperc 0 22 HBV 23 Hmax 0 Snow N 1 23 C 3 Snow N 1 23 Beta 3 HBV ANNEX Additional information of the application to the Tormes Water Resources System Subbasin ID 23 FC 180 HBV 23 Pwp 105 HBV 23 Lmax 6 HBV 23 KO 0 13 HBV 23 K1 0 13 HBV 23 K2 0 HBV 23 Kperc 0 22 HBV 24 Beta 3 HBV 24 FC 180 HBV 24 Pwp 105 HBV 24 Lmax 6 HBV 24 KO 0 13 HBV 24 K1 0 13 HBV 24 K2 0 HBV 24 Kperc 0 22 HBV 25 Beta 3 HBV 25 FC 180 HBV 25 Pwp 105 HBV 25 Lmax 6 HBV 25 KO 0 13 HBV 25 K1 0 13 HBV 25 K2 0 HBV 25 Kperc 0 22 HBV 26 Hmax 0 Snow N 1 26 C 3 Snow N 1 26 Beta 3 HBV 26 FC 180 HBV 26 Pwp 105 HBV 26 Lmax 6 HBV 26 KO 0 13 HBV 26 K1 0 13 HBV 26 K2 0 HBV 26 Kperc 0 22 HBV 27 Beta 3 HBV 27 FC 180 HBV 27 Pwp 105 HBV 27 Lmax 6 HBV 27 KO 0 13 HBV 27 K1 0 13 HBV 27 K2 0 HBV 27 Kperc 0 22 HBV 28 Beta 3 HBV 28 FC 180 HBV 28 Pwp 105 HBV 28 Lma
139. cal river stretch where the results of the application will be analysed Material and methods ra 3 Application to the Tormes Water Resources System 3 1 Development of the hydrological model 3 1 1 Information preprocessing Independently of the hydrological model used the climatic data needed are precipitation maximum and minimum temperatures From Herrera et al 2012 there are 50 year high resolution daily gridded datasets which are proper for this study The period covered by the data is from January 1950 to March 2008 As explained in the previous section EVALHID applies the hydrological models in a semi distributed way Then the spatial data has to be obtained at the centroid of each subbasin To do so the square inverse distance method is used obtaining the average value for the climatic variables in each subbasin In order to calculate the Potential Evapotranspiration PET the Hargreaves method is applied Hargreaves and Samani 1982 Hence it is necessary to have the incoming extraterrestrial solar radiation In this case the temporal series are obtained with the sole input of temperature data latitude and the Julian day to estimate incoming solar energy Duffie and Beckman 1980 3 1 2 Model construction The flow series are provided by EVALHID at the drainage points defined by the user Given that the purpose of the series is to feed the SIMGES module the drainage points have to match with those considered
140. culty that initially presents the analysis of this WS is the valuation The value of water for the different economic uses is not a fixed value but changes with the supplied volume according to the demand curves These curves have to be obtained in complex specific studies and vary depending on many aspects like income market etc Moreover the costs associated to the use of the resource should be included For instance groundwater has to be pumped and surface water is stored in reservoirs also groundwater usually needs less purification treatments before its use than surface water But deciding which costs should be consider and how to calculate them is not a trivial issue it requires a deep economic analysis AQUATOOL counts with an economic module called ECOGES that allocates water in a water resources system maximising the economic benefit This module will be used as a basis for the economical valuation of water according to its use 5 1 2 Water storage in aquifers Although this is not a WS separately considered in the presented frameworks it is relevant in certain water resources system where runoff is very changing and due to technical economical social or environmental determinants it is not possible to build a reservoir Big and hydraulically slow aquifers are considered underground reservoirs that nature places at humans disposal One of the critical functions of groundwater as a provisioning service is its storage and ret
141. d are added Quen and Meni respectively Finally considering a first order kinetics for the degradation of pollutants and the intakes and returns caused by water demands the output flows and loads are calculated Q and respectively This process is repeated for a whole river system from upstream to downstream following the stream order Strahler 1952 until the final water bodies defined For each water body the equations are the following M M 2M gt i n Q E Quen gt Q j j i E k L E M m Qui where is the pollutant load at the entrance is the load of the discharges in the water body coming from databases ji is the sum of the loads entering from upstream water bodies Q is the flow at the entrance Qge is the flow generated in the S Material and methods subbasin corresponding to the water body coming from a Rainfall Runoff model 30 0 1 is the sum of the flows entering from upstream water bodies M is the output load Q is the output flow Qaetri represents the balance between intakes and returns in the water body k is the degradation constant for the considered pollutant and L is the length of the water body The process presented above is performed by CARFU a new module of the DSS AQUATOOL which is linked to a Geographic Information System It is developed based on a previous stationary model used by the Duero River Bas
142. dad 0 Descripci n de los indicadores Curvas de Modulacion 14 oct nov dic ene feb mar abr may jun jul ago sep Ctte 111111111111 1 Barco de vila 12 1 7 7 5 2 3 7 4 9 6 7 7 8 10 7 15 7 19 5 20 6 16 6 2 Puente Congosto 12 7 8 5 5 3 9 4 6 7 3 8 7 12 3 17 3 20 8 21 4 17 5 3 Embalse de Santa Teresa 20 12 7 5 6 5 7 18 9 11 9 15 6 19 3 21 2 21 8 22 4 Embalse de El Milagro 14 9 7 4 7 3 5 2 6 2 8 6 11 2 15 7 20 1 22 3 24 5 22 5 Encinas de Arriba 14 8 10 2 7 2 5 76 7 39 4 11 8 14 3 15 1 16 2 16 5 6 Azud de Villagonzalo 15 3 9 6 6 6 5 8 5 6 7 8 10 6 13 1 18 5 19 8 19 7 17 6 7 Salamanca Abastecimiento 14 6 10 4 6 9 5 9 6 4 10 3 12 15 3 19 7 19 9 21 7 18 1 8 Salamanca El Mar n 15 6 10 7 6 9 6 2 6 4 9 5 12 2 15 9 20 3 21 1 21 9 18 3 9 Contiensa 15 10 7 7 1 6 3 6 6 10 12 8 16 3 20 7 21 9 22 6 18 5 10 Embalse de La Almendra Sayago 15 4 13 5 10 8 8 8 7 8 9 1 12 15 8 19 8 22 6 23 1 18 2 11 Embalse de la Almendra 15 2 13 3 11 6 12 5 13 4 17 3 21 7 22 7 25 5 26 4 25 6 22 7 Huebra 17 10 48 6 76 5 96 8 13 11 12 14 77 17 74 20 54 20 5 21 19 Agueda 15 2 9 8 6 2 5 12 6 8 9 6 11 44 15 04 19 51 22 07 21 42 19 24 ANNEX Additional information of the application to the Tormes Water Resources System CAUDECO Model features lt CAUDECO gt lt ARCHIVO_DATOS gt titulo 1 titulo2 lt ESPECIES gt 6 1 1 Barbo 2 1 BogaDuero 3 1 Bordallo 4 1 Bermejuela 5 1 Trucha 6 1 Boga ETAPAS
143. e European Commission published A Blueprint to safeguard Europe s Water Resources EC 2012 in response to the diverse problems that should be addressed for water resources management in the different member states Differently from the European Water Framework Directive EP 2000 it admits that common criterion and policies for water planning and management cannot be applied to so unalike climatic contexts like those existent in the EU The Blueprint stresses key aspects like efficiency and governance improvements in water resources management Besides it states that there are information gaps and errors in the dissemination and integration of the information for decision making Introduction a In line with proposed future actions to address these problems the Blueprint for Europe s water resources recognises that water accounting provides basic information to support decision making and action in water resources management Consequently a proposed action consists of the development of the CIS Guidance on water accounts and ecological flow during 2014 According to the abovementioned communications the European Environment Agency developed the Common International Classification of Ecosystem Services It contributes to the revision of the System of Environmental Economic Accounting UN EC IMF OECD WB 2003 an accounting methodology which links physical and economic data This framework was particularised to water resourc
144. e evapotranspiration and precipitation to the hourly scale model SAC SMA Burnash et al 1973 that tries to represent the details of the hydrological cycle through the division of the soil in 5 different tanks and 16 parameters But in the end the success of a hydrological model in a specific basin deeply depends on the data availability and quality It is very important to count on adequate data which cover a long period to successfully calibrate and validate the models EVALHID Paredes Arquiola et al 2013a is a module integrated in the DSS AQUATOOL which allows the development of three types of continuous rainfall runoff models to assess the available water resources in complex river basins These models are 1977 It is a conceptual model with four parameters that divides the soil in two zones non saturated and saturated For each time step the water from precipitation is stored in the upper part of the soil The portion not Material and methods zo evapotranspirated the surplus is distributed as surface runoff and recharge Aquifers are represented with unicellular models where the discharge is proportional to the stored volume The parameters are the maximum storage capacity in the soil the coefficient for surplus generation the maximum infiltration and the discharge rate of the aquifer 1 Precipitation Evapotranspiration ET Surface Runoff Asup Soil moisture H Volume stored in aqui
145. ed Fish and Wildlife Service Instream Flow Information Paper 12 Washington D C Bovee K D 1988 Use of the instream flow incremental methodology to evaluate the influence of microhabitat variability on trout populations in four Colorado streams In Proceedings of the Western Division of the American Fisheries Society Albuquerque New Mexico Bovee K D Newcomb T J and Coon T G 1994 Relations between habitat variability and population dynamics of bass in the Huron River Michigan National Biological Survey Biological Report 21 pp 63 Bovee K D Lamb J M Bartholow C B Stalnaker J Taylor J and Henriksen J 1998 Stream habitat analysis using the instream flow incremental methodology In U S Geological Survey ed Biological Resources Division Information and Technology Report Boyd J and Banzhaf S 2007 What are ecosystem services The need for standardized environmental accounting units Ecological economics 63 616 626 Brauman K A Daily G C Duarte T K E and Mooney H A 2007 The Nature and Value of Ecosystem Services An Overview Highlighting Hydrologic Services In Annual Reviews ed Annual review of Environment and Resources Budyko M I 1958 The heat balance of the earth s surface U S Dept of Commerce Washington Burnash R J C Ferral R L and McGuire R A 1973 A generalized streamflow simulation system Conceptual modeling for digital computers Technical Report Joint
146. ed volume series are inputs of the module GESCAL In turn SIMGES needs the runoff series generated using EVALHID at the defined drainage points The management of a river system has big impact on other aspects of the water resources system First of all water resources allocation decisions influence all the uses of the basins including the environmental requirements A key step in this allocation process is the setting of environmental flows to maintain the desired ecological conditions Equally important is the influence of river flows on water quality through dilution of pollutants and on the self purification capacity of rivers In short water management has an effect on the satisfaction of economic uses the suitability of habitat conditions in water bodies and on the water quality In order to illustrate the above statements several scenarios are simulated First the SIMGES model is run from October 1996 to September 2007 which is the period of study without establishing any environmental flow This is considered the INITIAL scenario Furthermore several simulations are conducted with different environmental flow regimes In QECO MAX scenario the environmental flows in the points established in the RBMP are set at the maximum level of the legal range at every studied point That is the flows are the ones which provide the 8096 of the maximum WUA Finally OR scenario also considers the maximum environmental flows but applies an operati
147. ention for domestic industrial and agricultural uses Bergkamp and Cross 2006 So not only the groundwater resource should be considered as a freshwater resource for economic uses but the service of storing it for free underground This service is affected by alterations that change the water storage potential of the system such as the conversion of wetlands or the replacement of forests with croplands or croplands with urban areas Again this WS can be assessed through the results of a water resources evaluation model like EVALHID Apart from that a specific model for the aquifer is needed in order to relate the recharge and pumping to the exploitable stored volume along the time In this case the valuation should be based on the cost of a substituting infrastructure that is a reservoir with the same storage capacity But frequently because an aquifer is under the ground surface it is difficult to know the real storage capacity of an aquifer Also the Proposal for Ecosystem Services analysis exploitable water volume depends on the recharge the aquifer receives and is limited by the pumping capabilities To do things more difficult the cost of building a dam widely varies with respect to the typology of dam embankment dam arch dam gravity dam etc its magnitude the features of the site where it is built among other determinants A rough approach would be to consider the average cost per unit of volume stored in near
148. entive payments and voluntary payments Brauman et al 2007 More simple but not less useful is the selection of alternatives about land uses change demands satisfaction etc which accomplish the legislation and satisfy all the stakeholders that maximise the WS Another approach would be the optimisation of water treatment costs through the maximisation of the self purification capacity of the river or the maximisation of water resources availability analysing the influence of land uses on the different water cycle variables Provided that sometimes data is uncertain and more in the case of distant future this kind of methodology presents an opportunity to test effects of uncertainty Wainger et al 2010 Then the possibilities that the linkage of IWRM and ES brings are very broad and will be demonstrated in future research METHODOLOGY Water resources aqe FOR WATER ul evaluation model aaen in aquifers SERVICES ANALYSIS ee System of Environmental Economic Accounting I for water I Freshwater production Water management Diffuse pollution model SEE model for economic SIMGES CARFU Habitat suitability Water quality Biodiversity del purification mode in rivers CAUDECO GESCAL i EM I ERE ME dE MM Scenario and trade off analysisfor DECISION MAKING Figure 45 Diagram of the Methodology for Water Services Analysis
149. er Planning in River Basins Journal of Water Resources Planning and Management 127 4 272 276 Keeler B L Polasky S Brauman K A Johnson K A Finlay J C O Neill A Kovacs K and Dalzell B 2012 Linking water quality and well being for improved assessment and valuation of ecosystem services Proceedings of the National Academy of Sciences 109 18619 18624 Lafayette D and Loucks D P 2003 Developing habitat suitability criteria for water management A case study International Journal of River Basin Management 4 283 295 Le Maitre D C Milton S J Jarmain C Colvin C A Saayman 1 and Vlok J H J 2007 Linking ecosystem services and water resources landscape scale hydrology of the Little Karoo Frontiers in Ecology and the Environment 5 5 261 270 Leopold L B and Maddock T J 1953 Hydraulic geometry of stream channels and some physiographic implications U S Geological Survey Professional Paper 252 pp 55 Lindstrom G Johansson B Persson M Gardelin M and Bergstr m S 1997 Development and test of the distributed HBV 96 hydrological model Journal of Hydrology 201 272 288 Liu S Constanza R Farber S and Troy A 2010 Valuing ecosystem services theory practice and the need for a transdisciplinary synthesis Ecological Economics Reviews 1185 54 78 References Loucks D 1995 Developing and implementing decision support systems A critique and a challenge Wate
150. ertain zone of a reservoir or delivering water through certain conduction are established and used in the optimisation problem SIMGES works at monthly scale it applies continuity for the surface subsystem and offers several aquifer models for the groundwater simulation The results of the model include the evolution of all the relevant variables for water management at monthly and annual scale Material and methods supply to demands volume stored in reservoirs hydropower production etc the mean values for the simulation period and indicators about the supply reliabilities and vulnerabilities as well as the reliability of minimum flows usually called environmental flows 2 1 4 Water quality modelling Water quality models are tools that simulate the evolution of constituents and pollutants in water elements They are usually classified according to the natural system to which they are applied rivers lakes estuaries etc Other classifications attend to the temporal dynamics spatial dimensions the mechanistic or empiric focus of processes the processes considered etc The mechanistic or process based models simulate the changes in water quality in a natural system by attempting to represent the processes that occur in the real system Thus they are based on physical and chemical principles Cox 2003 The basic equation in which these models are backed is the equation for solute transport
151. es evaluation diffuse pollution evaluation water management water quality modelling and habitat evaluation all they integrated in the Decision Support System AQUATOOL A tradeoff analysis is proposed to present the evolution of water quality satisfaction of demands and habitat availability as environmental flows change in several points of the water resources system The results are analysed through graphics that can be easily understood by decision makers and stakeholders supporting sound and informed decisions A methodology to integrate Ecosystem Services Assessment and Integrated Water Resources Management is proposed here and will be developed in further research This union entails the enrichment of the methodology for Integrated Water Resources Management adding to the traditional analysis of supply to demands and environmental flows other interesting variables to take decisions like freshwater production water storage in aquifers water purification and biodiversity to the multipurpose analysis Les tendencies actuals a nivell internacional i especificament a nivell europeu avancen cap a la gesti sostenible i eficient dels recursos naturals Aquesta corrent es plasma en la Directiva Europea Marco del Agua en les estrategies Europa 2020 y Estrategia de la UE sobre la Biodiversidad hasta 2020 i al Plan para salvaguardar los recursos h dricos de Europa entre altres documents oficials L avaluaci dels Serveis
152. es into the System of Environmental Economic Accounting for Water UNSD 2007 with the aim of improving water control and governance Other concepts like the Water Footprint WF are also interesting to work towards sustainable development The WF accounts for the total volume of water needed to produce goods and services consumed by a person state or industry Hoekstra 2012 Therefore it includes both the real water and the virtual water Allan 1993 required to produce the consumed products However as stated by Andreu et al 2012 the water accounting can be a useful tool to improve transparency in water management but other tools and methodologies are needed to manage scarce water resources in semi arid and arid regions This requires Decision Support Systems DSS like AQUATOOL DSS Shell Andreu et al 1996 to analyse in an integrated and dynamic way the distribution of water resources the influence of management rules or the assessment of the effects of infrastructures and other measures 1 2 Need for Ecosystem Services analysis The ES are the conditions and processes through which natural ecosystems and the species that make them up sustain and fulfil human life Daily 1997 A simpler definition given by the Millennium Ecosystem Assessment MEA 2005 states the ES as the benefits people obtain from ecosystems Noteworthy examples of ES are purification of air and water attenuation of droughts and floods cycling and
153. ever as stated by Costanza 2008 multiple classification systems are needed for different purposes because ecosystem goods and services whether intermediate services or final services are all contributors to the end of human well being Currently the most broadly accepted classification is the proposed in the Millennium Ecosystem Assessment MEA 2003 It considers four main categories of ES as presented in Figure 40 that include both final products and processes It is promoted by many international organisations like the United Nations or the World Bank This ES assessment framework is supported by The Economics of Ecosystems and Biodiversity initiative which aims to promote a better understanding of the true economic value of ecosystem services and to offer economic tools that take proper account of this value TEEB 2010 Proposal for Ecosystem Services analysis Ecosystem Services SUPPORTING SERVICES Services necessary for the production of all other ecosystem services Soil formation E Nutrient cycling m Primary production Provisioning gt Services Products obtained from ecosystems m Food B Fresh water y Fuelwood m Fiber N Biochemicals X E Genetic resources EI oF E M gt Regulating l Services AN Benefits obtained M from regulation of ecosystem processes m Climate regulation Disease regulation
154. f the basin Figure 11 shows a simplified diagram of the TWRS that includes its main elements This is a multipurpose water supply system in which agricultural urban and hydropower account for Material and methods ER the majority of water demand Aquaculture and industrial demands are less important The total demand is 38 9 Hm year for urban supply and 319 5 Hm year for irrigation supply From these amounts approximately 80 is surface water and 20 is groundwater in both types of demands There are several reservoirs in the system but only Santa Teresa reservoir has hyper annual regulatory capacity maximum storage 496 Hm The average watershed resources amount to approximately 1 312 4 Hm year Almendra Reservoir City of Salamanca LaArmu a aquifer Salamanca urban WQCS discharge Villagonzalo Reservoir River Fish farm discharge 14 Santa Teresa Reservoir I Reservoir Aquifer Runoff Urbandemand Irrigation demand Discharge Water Quality Station Control point Tormes headwaters Figure 11 Simplified diagram of the TWRS The water quality is generally good in most river segments Upstream of Santa Teresa dam the effects of human activities on the water are negligible In the middle part of the river from Santa Teresa dam to Villagonzalo dam the pressures come from diffuse pollution of agricultural activities and urban discharges Though water quali
155. fers Underground Ag V x runorr Figure 1 Diagram of the T mez model Hydrologiska Byr ns Vattenbalansavdelning model HBV Bergstr m 1995 It is a conceptual model developed by the Swedish Meteorological and Hydrological Institute Nevertheless the variation made by the Hydraulic Engineering Institute of the University of Stuttgart Lindstr m et al 1997 is the most used The model has 8 parameters and divides the phases of the hydrological cycle in four modules snow soil moisture and effective rainfall evapotranspiration and runoff These modules are related with two tanks The upper tank generates the surface runoff and the interflow while the lower tank generates the base flow Liquid water ayy Surface bs runoff Evapotranspiration Figure 2 Diagram of the HBV model Material and methods It works at daily or monthly scale and the input data needed are precipitation and temperature series and long term estimations for temperature and monthly average evapotranspiration The general water balance applied by the model follows the equation P E Q SP SM UZ LZ lakes where P is the precipitation E represents the evapotranspiration Q the runoff SP the snow pack SM the soil moisture UZ the upper groundwater zone Z the lower groundwater zone and akes the lakes volume Sacramento soil moisture accounting SAC SMA Burnash et al 1973 It is a continuous physically based soil
156. formation of the application to the Tormes Water Resources System GAR MENS 1 0 CRITERIO TIPO P H M 15 0 A 30 0 CRIT TIPO DWR 1A 50 0 2A 75 0 10 100 0 CRIT IPH2008 DEMANDA URBANA 1m 8 10a 10 N TOMAS 1 TOMA 1 T DA 5009 ZR Alba de Tormes NUDO 32 DOT ANUAL 500 000 C ESCORR 0 25 C CONSUMO 0 52 ELEM RET 26 COTA 0 00 N PRIORID 1 IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 014 0 002 0 016 0 030 0 092 0 294 0 612 1 150 1 888 2 358 1 658 0 272 10 DA 5010 ZR Almar y Vega de A OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 044 0 008 0 052 0 092 0 278 0 898 1 866 3 506 5 758 7 188 5 054 0 830 ACUIFERO RECARGADO 6 N ACCION ELEM 1 COEF GARANTIAS GAR MENS 1 0 CRITERIO TIPO P H 15 0 A 30 0 CRIT TIPO DWR 1A 50 0 2A 75 0 10A 100 0 CRIT IPH2008 DEMANDA URBANA 1m 8 10a 10 N TOMAS 1 TOMA 1 T DA 5010 ZR Almar y Vega de NUDO 7 DOT ANUAL 500 000 C ESCORR 0 14 C CONSUMO 0 61 ELEM RET 9 COTA 0 00 N PRIORID 1 IND RESTR O OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MAX 0 044 0 008 0 052 0 092 0 278 0 898 1 866 3 506 5 758 7 188 5 054 0 830 11 DA 5011 ZR Babilafuente Vil OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE VOLDEM 0 576 0 112 0 676 1 218 3 648 11 760 24 450 45 950 75 4
157. gueda 524 NUDO INIC 71 NUDOFINAL 72 I O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 64 Agueda 525 NUDO INIC 72 NUDOFINAL 1 O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 65 Aravalle 643 NUDO INIC 73 NUDOFINAL 16 COSTE O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 66 Yeltes 538 586 NUDO INIC 75 NUDOFINAL 74 I O COSTE 0 0 OCTUBR NOVIEM DICIEM ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIE CAUD MIN 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 CAUD MAX 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 67
158. in Agency DRBA that works with average values By contrast CARFU applies the above equations at monthly scale providing time series of pollutants which can be used as inputs for more detailed water quality models of regulated rivers 2 1 3 Water management Models for water resources management allow the allocation of the available resources among the different demands in a water resources system Hence they are crucial in complex systems with diverse water sources and competing demands where the resolution of the allocation problem is not trivial Loucks 1995 There are different types of water management models according to the mathematical models they use their capabilities and the criteria used for the water allocation On one hand the simulation models explore the effect of the established operation rules and other variables controllable or not on the mathematical model results through indicators of the state of the system They help to plan the development of water resources systems and to determine their most convenient management foreseeing the possible impacts of every plan or operation policy Loucks 2000 By contrast the optimisation models can freely change the value of the studied variables to obtain the best management rules for the system Thus optimisation requires less information for the control of the system than simulation but the analysis of results to extract conclusions is more complex Solera 2003 Howeve
159. in the summer months of the driest years On the contrary QECO MAX scenario implies much more deficits because a big part of the available water resources are required to fulfil the environmental flows Those deficits do not comply with the legislation about agricultural demands as they almost reach 50 of the annual demand in the hydrologic years 1997 1998 and 1999 2000 and represent more than 100 of the annual demand the first 10 years of the simulation Again OR scenario presents an intermediate situation and accomplish the reliability thresholds established Results analysis discussion 4 4 Generation of water quality series in rivers and reservoirs GESCAL is run using the results from CARFU and SIMGES in the three different environmental flows scenarios The water quality in regulated rivers relies on the waste water management and water resources management But at the same time it has an effect on water management because of the requirements of the different demands about chemical composition of water resources Besides it influences the habitat suitability for aquatic species given that they cannot develop properly or can even die if for instance the dissolved oxygen is under 2 3 mg L or the ammonium level is higher than 1 2 mg L Dissolved oxygen at Point 4 mg L 14 12 D AR W H A WAAL W NI AMI AAA MM V W y Y NC Y V Y A Y NITIAL scenario QECO MAX scenario O
160. ironmental flow criterion established by the Spanish legislation From Figure 34 it can be seen that in many months the usable habitat is close to 10096 of the maximum thus the river flows potentially provide very good habitat for these fish However in most years of INITIAL scenario the potential habitat is reduced dramatically to less than 3096 in August September and October Then this scenario does not accomplish the legal prescriptions Nevertheless in QECO MAX scenario the usable habitat levels are excellent and always exceed 7096 of the maximum usable habitat Finally in many months of OR scenario the HTS remain at 10096 This value only falls below the threshold of 5096 in August and September of 2000 but this is acceptable in drought conditions according to the Spanish law as explained before 4 6 General analysis The results presented above for the different chained models show that an increase in the environmental flows improves the water quality and the habitat suitability while it is detrimental to the supply to agricultural demands If a similar scenario analysis was conducted with the water resources evaluation model the results would show that a reduction in runoff leads to supply failures Apart from that due to the reduction of river flows water quality and habitat availability would also worsen In the case of the diffuse Results analysis and discussion ra pollution evaluation model if the waste loads increase
161. l and methods HE where E represents dispersion C concentration C concentration at the beginning of the river stretch x length velocity V volume qe inflow 9 outflow Sa diffuse pollution 55 sources or sinks The differential equations particularised to the different constituents are solved with a finite difference approach requiring fragmentation of the river into differential elements The water quality modelling in reservoirs is considered dynamic and continuously stirred in each of the defined layers Then the resulting equations for the modelling of each constituent or pollutant are Mo Q C C XS d Q4 C E C 252 where V represents volume of the layer C concentration C inflow concentration t time Q inflows at each time step Q outflows at each time step S sediment flux S sources or sinks E17 dispersion coefficient between layers Sub index 1 indicates values at the epilimnion and 2 at the hipolimnion To solve this system of differential equations the Runge Kutta method is used As GESCAL uses the results of SIMGES it also works at monthly scale The global results of the model include the initial and final concentration at the end of each river stretch and the final concentration in reservoirs On the other hand users can demand for partial results which provide the spatial evolution of constituents in the selected river stretches and the temporal evo
162. low autumn and winter inflows Thus the OR is activated But if the spring inflows are high and the situation improves then the operation rule is unnecessary Results analysis and discussion ra 5 Proposal for Ecosystem Services analysis As it has been demonstrated the proposed and applied methodology offers many possibilities for decision making but it does not take into account other relevant aspects related to environmental sustainability and the benefits that people obtain from it Linking the ES assessment to the IWRM results provides a new standpoint more integrative about the effects of different actuations in a river basin The ES considered in the revised studies are different depending on the authors Boyd and Banzhaf 2007 noted that the lack of a standardized definition and measurement of ES is problematic The divergence is mainly due to the existence of two currents of thought based on the service that has to be valued Some authors support that only the final products can be considered Boyd and Banzhaf 2007 Wallace 2007 while others believe that the processes that produce the final products have to be also included in the assessment Brauman et al 2007 Fisher and Turner 2008 The real distinction between final ES and processes is that the former are generally tangible entities described in terms of amount while the latter are operations and reactions and generally described in terms of rates Wallace 2007 How
163. lows in rivers stored volumes in reservoirs and other T M RR 45 4 4 Generation of water quality series in rivers and reservoirs 47 4 5 Generation of habitat time series 48 4506 yy eS 49 5 Proposal for Ecosystem Services analysis 56 5 1 Ecosystem Services and other indicators to be assessed 59 5 1 1 Freshwater production for economic uses 60 5 1225 Water storage Nadu S 5 ew 61 5 1 3 Water purification in rivers and 62 Ea Qaqata saus anh 63 515 OtMerindic ato Serge IT 65 5 2 Methodology for Ecosystem Services analysis 66 5 2 1 Integration of Ecosystem Services analysis and Integrated Water Resources Mana ce mentir ala 66 5 22 BACK TO thewater a 68 oe Conclusions Menus 69 T Acknowledgements san 71 ge References ZZ ind 72 9 ANNEX Additional information of the application to the Tormes Water Resources System 1 Introduction 1 1 Research framework Europe 2020 EC 2010 is the growth st
164. lution of the constituents in reservoirs 2 1 5 Habitat evaluation The most broadly accepted method to design environmental flow regimes in rivers is the hydro biological Instream Flow Incremental Methodology IFIM Bovee 1982 Bovee et al 1998 Dunbar et al 1998 Tharme 2002 One of the tools included in IFIM the Physical Habitat Simulation Method PHABSIM Milhous et al 1981 evaluates the habitat suitability based on the hydraulics generating response functions of habitat indicators for each target species and size class a study site e g Weighted Usable Area WUA Flow curves These Material methods curves are the result of combining a fluvial hydraulic model and the preference curves of the aquatic species Despite the fact that the elaboration of the hydraulic model and the preference curves require significant simplifications the usefulness of PHABSIM has been proved in many applications Stalnaker 1979 Gowan 1985 Conder and Annear 1987 Bovee 1988 Nehring and Anderson 1993 Bovee et al 1994 Gallagher and Gard 1999 After determining the WUA Flow curves and knowing the flows series in the river IFIM calculates the Habitat Time Series HTS This result can be used as a production function Milhous 1983 to create a model for potential population Waddle 1998 or to identify stressful situations for the aquatic fauna Cheslack and Jacobsen 1990 A useful indicator which can be obtained f
165. ment aspect which affects the runoff series is the soil use Basically it changes the proportion of surface runoff percolation and evapotranspiration For instance a soil covered with natural vegetation has higher evapotranspiration and generates less surface runoff than urban soils but the former generates more percolation Apart from that all subbasins do not generate the same amount of water resources due to their climatic features geology and topography Besides there are subbasins that do not recharge exploitable aquifers or do not contribute to regulated rivers Then there are more strategic subbasins than others but note that the concept strategic can be understood from the point of view of economic water uses or from the river ecosystems side As an example in a non regulated river it is important that the upstream subbasins generate enough flow for the river ecosystems but this is not significant for the economic uses which are mainly fed from regulated rivers According to the above facts it can be assured that land use planning influences the amount of available water resources the place where they are generated and their distribution between surface and ground water EE Results analysis and discussion Flow Hm VEI NEP NAAA ATA VAT MAN AP A CADENA Voy VV Vy y Figure 27 Annual runoff series resulting from the application of EVALHID Figure 27 shows the runoff series res
166. mic value of the water supplied to a demand with the different sources that serve it each river stretch reservoir and aquifer and accumulate the value by water source This can be difficult because frequently upstream reservoirs feed the downstream ones and aquifers also share resources by lateral transfers Finally the accumulated economic value in each source has to be related with the subbasins that generate the water resource For more complex WS like biodiversity in rivers the process becomes noticeably difficult because it is not trivial to know which proportion of the total value is due to the water management or to the water quality for example A complete proposal and implementation of the back to water body will be developed in further research Proposal for Ecosystem Services analysis 6 Conclusions Current trends at international level and specifically at European level advance towards sustainable and efficient management of natural resources It is not a matter of protectionism over nature but the idea of knowing how nature works and where ts services are more productive to minimise the damage caused by humans development and to take advantage of the benefits they bring This current is expressed in the European Water Framework Directive the strategies Europe 2020 and EU biodiversity strategy to 2020 and in A Blueprint to safeguard Europe s Water Resources among other official docume
167. moisture accounting model with 16 parameters It is designed to be used on basins with a response time higher than 12 hours The model considers two main zones connected with percolation At the same time the upper zone is divided in two zones the evapotranspiration zone and the free water zone in which water can either percolate or became runoff The lower zone is divided into two more zones the semi saturated zone and the saturated zone or aquifer The aquifer is in turn divided in two tanks to better represent the behaviour of real aquifers Evapotranspiration A gt o a 2 queer A AA ee fees ee ee Direct Runoff Infiltration Percolation Baseflow A Subsurface Outflow Figure 3 Diagram of the SAC SMA model from Burnash et al 1973 Material and methods Apart from these three modes EVALHID counts with two snow routines which can be used together with all the above mentioned hydrological models Snow N 1 It is a one parameter model which classifies the precipitation in snow or rainfall using a threshold T usually 0 C If the air temperature is above the threshold precipitation is considered directly as runoff otherwise it is accumulated in the snow pack The existent snow pack melts becoming runoff above the threshold temperature or grows below it The input for the hydrologic models is the sum of rainfall and runoff from snow melting This is the snow model set
168. movement of nutrients generation and preservation of soils pollination of crops etc Holdren and Ehrlich 1974 Ehrlich and Ehrlich 1981 Daily et al 1997 m Introduction The possibility of substituting these natural services with artificial processes is too remote and unlikely and the related costs would be unaffordable Costanza et al 1997 Brauman et al 2007 Thinking in an extreme example if all the vegetation in a river basin was replaced for other uses it would be necessary to substitute its function for floods mitigation by building protection structures The costs of construction maintaining and operation of these structures could be much higher than the economic benefits obtained with the change in the land use On the other hand if a river loses its auto depuration capacity due to ecosystems degradation the costs of water treatments would increase In this sense the ES assessment can help analysing the tradeoffs between preserving healthy ecosystems and affecting them to the cause of economic growth changes in water allocation agricultural expansion etc underpinning effective natural resource decisions Wallace 2007 Monetary valuation can be a powerful tool for assessment and policy making because it provides a common metric with which to make comparisons Brauman et al 2007 An accurate management of ecosystems would imply considering the utilitarian links between people and ecosystems but also the i
169. n of freshwaters conditions Chemical condition of salt waters Atmospheric Global climate regulation by reduction of Proposal for Ecosystem Services analysis CICES for ecosystem accounting Division Group Class composition greenhouse gas concentrations and climate Micro and regional climate regulation experiential seascapes in different environmental settings environmental settings Intellectual and representative interactions Entertainment Aesthetic Spiritual and or Symbolic emblematic Sacred and or religious Other cultural Existence outputs Bequest Cultural Physical and intellectual interactions with biota ecosystems and land seascapes Spiritual symbolic and other interactions with biota ecosystems and land seascapes Table 1 Updated version of CICES Version 4 3 from EEA 2013 In this research only the ES related to freshwater are considered and among them those which can be derived from the IWRM methodology are presented They can be named as Water Services WS The classification proposed is based on the above classifications but limited to the requirements for decision making in the IWRM field In further research the usefulness and viability of calculating other ES will be studied 5 1 Ecosystem Services and other indicators to be assessed Here only the outline of the WS assessment and valuation is presented The development and applicati
170. nd the observed flows in the gauging stations But there are some flow series resulting from EVALHID which do not have a corresponding gauging station or that are affected by the river management Hence to calibrate them it is necessary to use the data from gauging stations downstream the drainage points which are normally affected by the management of the river system In order to make the results comparable with the measured data there are two possibilities The first one is the restoration of the gauged series to the natural regime to allow their comparison with the results of the model The second option selected in this case is the modification of the natural flows resulting from the model to the altered x Application to the Tormes Water Resources System regime This can be done introducing the EVALHID series as inputs to the SIMGES model of the TWRS In this way simulating the real conditions of the system management the resulting flows in the rivers of the model are comparable with the gauged flows what makes the calibration process possible Figure 13 shows the calibration process for the flow series generated by EVALHID Gauged flow series available Comparison target functions Figure 13 Calibration process diagram for EVALHID The above described process is conducted using the results from the hydrological model HBV in all the subbasins grouped in seven regions with the same values for the parameters
171. nternational Monetary Fund Organisation for Economic Co operation and Development World Bank 2003 Handbook of National Accounting Integrated Environmental and Economic Accounting 2003 United Nations New York UNESCO United Nations Educational Scientific and Cultural Organization 1999 Sustainability criteria for water resources systems Working group M IV Cambridge University Press Cambridge UNSD United Nations Statistic Division 1993 System of National Accounts 1993 United Nations Statistics Division New York UNSD United Nations Statistic Division 2007 System of Environmental Economic Accounting for Water United Nations Statistic Division New York Vigerstol K L and Aukema J E 2011 A comparison of tools for modeling freshwater ecosystem services Journal of Environmental Management 92 2403 2409 Waddle T J 1992 A method for instream flow water management Ph D dissertation Colorado State University Waddle T J Blazkova S Stalnaker C B and Novicky O 1998 Integrating microhabitat and macrohabitat U S Geological Survey Biological Research Division and Water Research Institute Press Praha Wainger L A King D M Mack R N Price E W and Maslin T 2010 Can the concept of ecosystem services be practically applied to improve natural resource management decisions Ecological Economics 69 978 987 Wallace K J 2007 Classification of ecosystem services Problems and
172. ntos de depuraci n Contaminaci n Elementos de retorno Conductividad Solidos Fosforo DBO OD Norg Nh4 No3 1872 25 1 11 27 5 6 08 3 0 23 8 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 483 048 50 2 785 56 238 5 37 3 10 918 17 917 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 72 33 1 1 308 1 5 317 3 0 383 1 7 72 33 1 0 1 1 5 317 3 0 383 1 7 1 1 1 1 1 1 1 1 868 107 200 5 345 209 308 5 428 3 25 14 13 216 1 1 1 1 1 1 1 1 912 2 200 7 76 344 3 552 3 38 68 10 026 718221 1231 75 2 34 gt P P P P E F P gt I P PPP E E F L P P I E I P PPP P E FE E PP PP P gt P Tomas Conductividad Solidos Fosforo DBO OD Norg Nh4 No3 1 1 1 1 P PR I HP I HP P PPP P P E E P gt P PPP P H H H HB H H HB H HB H P PPP P E E gt P gt P PP P P PP P P gt ANNEX Additional information of the application to the Tormes Water Resources System el aa se Debt d dud dq ebd aed d pepe deb eded ded dude letal 101 sa E ad Sp q aq aps dd dd d dps 444 41 1 1 1 1 1 1 1 baa Nes oq si a dat qaquq alaq PP eise deed eel Llap ellas dll del 4 4 d Spells Added s Esq i q qO Al 2151 11 Indicadores de Alarma de Cali
173. ntrinsic value of nature as integral factors of decision making MEA 2003 That is not only the use value has to be considered when valuing the ES also the non use value option value bequest value and existence value that people give to ES should be included in the total value However some authors Daily et al 2000 Farber et al 2002 Spangenberg and Settele 2010 claim that calculated value of ecosystems and their services is not a robust figure because it varies with the valuation method applied or with people s preferences Despite the importance of ES to conduct sustainable growth when making decisions about natural ecosystems they are poorly valued by society and frequently the current trends of development do not take them into proper account Then an explicit accounting of ES and the effects of different interventions on them is a first step to make more informed decisions Daily 2000 In this sense integrative science can help providing tools such as scenario analysis Brauman et al 2007 Actually there are several tools for ES modelling Vigerstol and Aukema 2011 although some consider that current models fall short of the needs and expectations of decision makers Keeler et al 2012 More specifically referring to water issues Cook and Spray 2012 noted that there is an implementation gap between theoretical and practical application of ES and other related concepts like IWRM Introduction E 1 3 Objecti
174. nts However recent research has found that appropriate and feasible methodologies for promoting environmental policy are lacking Liu et al 2010 In this sense the ES assessment can help preserving healthy ecosystems underpinning effective natural resource decisions Wallace 2007 Besides IWRM supported by DSS allows considering multiple variables of a water resources system inside the broader objective of sustainable development In the present work a methodology for IWRM has been described and applied It consists of five chained models that stand for water resources evaluation diffuse pollution evaluation water management water quality modelling and habitat evaluation in a water resources system The fact that all the models are integrated in the DSS AQUATOOL facilitates the results transfer and allows massive simulations which are useful to perform analysis scenarios The application to the Tormes Water Resources System has illustrated the connection among the models and the possible tradeoff analyses that can be conducted The implementation of all the models has highlighted the huge volume of data needed to calibrate and run them In this case the advantage is that the Duero River Basin Agency is already using some of the models SIMGES and GESCAL and has carried out the specific studies and data acquisition necessary to apply the others too Equally important is the fact that all these data has been lend for the purpose
175. of this research The tradeoff analysis carried on presents the evolution of water quality satisfaction of demands and habitat availability as environmental flows change in several points of the water resources system The result is a graphic that can be easily understood by decision Conclusions ra makers and stakeholders supporting sound and informed decisions That is important because as highlighted by Wallace 2007 successful decision making requires identifying and involving those who should be represented in the evaluation process IWRM and hydrologic ES are closely related because they analyse the influence of water and land management on ecosystems A methodology to integrate both aspects has been proposed here and will be developed in further research It consists on assessing the evolution of several WS calculating their economic value and assigning them to the place where they are produced using results from the IWRM methodology that has been demonstrated This union entails the enrichment of the methodology for IWRM adding to the analysis of supply to demands and environmental flows other interesting variables to take decisions like freshwater production water storage in aquifers water purification and biodiversity to the multipurpose analysis Apart from that it has been suggested to include the water accounting and the WF as complementary indicators In further research the final methods to assess the above WS
176. ola J Strassburg References LE B Yu D and Balmford A 2008 Ecosystem services and economic theory Integration for policy relevant research Ecological Applications 18 2050 2067 Gallagher S P and Gard M F 1999 Relationship between chinook salmon Oncorhynchus tshawytscha redd densities and PHABSIM predicted habitat in the Merced and Lower American rivers California Canadian Journal of Fisheries and Aquatic Sciences 56 570 577 Garc a Arias A Franc s F Ferreira T Egger G Mart nez Capel F Gar fano G mez V Andr s Dom nech Politti E Rivaes R Rodr guez Gonz lez P M 2012 Implementing a dynamic riparian vegetation model in three European river systems Ecohydrology 6 4 635 651 Garcia de Jalon D and Lurue a J 2000 Estudio para la determinaci n de caudales m nimos en varios tramos de la cuenca del Tormes y del Alberche provincia de vila Technical Report of the Universidad Polit cnica de Madrid for Junta de Castilla y Le n Garc a Hern ndez J Jordan F Dubois J and Boillat J L 2007 Routing System Il Flow modelling in hydraulic systems Communications du Laboratoire de Constructions Hydrauliques Ecole Polytechnique F d rale de Lausanne ISSN 1661 1179 Global Water Partnership 2000 Integrated Water Resources Management Global Water Partnership Technical Advisory Committee Background Paper no 4 Gowan C 1985 Does the IFIM have biological
177. ological models reproduce to a certain extent the hydrological cycle in a river basin Their main aim is to assess the available water resources to feed water management models Hence the relevant processes in these models are different from the ones considered in the hydrological models for rainfall events In the continuous hydrological models the basic data is precipitation and the main result is total runoff in the river basin broken down in surface runoff at the drainage points and underground runoff into river stretches Apart from that these models usually reproduce evapotranspiration infiltration soil water storage and percolation although the detail of the results basically depends on the equations and the spatial discretisation used The temporal step is often monthly or daily at the most In general there are several classifications with different selection criterion for both types of rainfall runoff models According to the kind of equations used they can be classified as deterministic physically based conceptual and empirical or probabilistic models Depending on the way they take into account spatial variability of parameters and variables they can be considered aggregated distributed or semi distributed models With respect to the vertical performance of the hydrological cycle there is a huge range of models from the simplest annual scale model of Budyko 1958 which considers that the runoff is an exponential function of th
178. on of this methodology will be conducted in further research As it has been mentioned in the introduction some authors believe that economic valuation of ES is not a robust figure because it varies with the valuation method applied or with people s preferences But economic valuation allows presenting the results in a comparable language understood by everybody that is economical units or money Since policy decisions are often evaluated through cost benefit assessments an economic analysis helps to make ecosystem service research operational Fisher et al 2008 With this information the comparison between economic net profits of interventions in water resources systems Proposal for Ecosystem Services analysis can be directly compared with the gains or losses in WS Referring to the variability of economic value according to social preferences it should not be considered a weakness but the real reflection of people s priorities at certain time like market prices do In fact decision makers are part of society and if the importance of ecosystems is not well considered they are not going to take them into account although an ES analysis shows unbeatable results Then in this proposal for WS analysis the valuation is included But more important than valuation is the selection of proper indicators and tradeoff graphics that clarify the results for decision making This will be also one of the targets of forthcoming research
179. on rule that reduces them to the 5096 in drought periods Figure 30 and Figure 31 show some results of the simulations with SIMGES comparing the three management scenarios On one hand it can be seen that the low flows at point 4 are the highest in QECO MAX scenario due to the establishment of the maximum environmental flow regime while they are the lowest in INITIAL scenario In contrast the high flows are a bit lower in QECO MAX scenario because it is necessary to release more water from reservoirs in order to fulfil the environmental flows and consequently the reserves are inferior On the other hand the flow in OR scenario can be considered as a mixture of the other two Results analysis and discussion ra Flowsat Point 4 m s Pr A ae SS po A HN a lt t l B P if N o Oct 96 Feb 97 Jun 97 Oct 97 Oct 98 Feb 99 Jun 99 Oct 99 Jun 00 Oct 00 Feb 01 Jun 01 Oct 01 INITIAL scenario QECO MAX scenario OR scenario Figure 30 Flow series in m s at the study point 4 in the different management scenarios Deficit of agricultural demands B INITIAL scenario QECO MAX scenario H OR scenario Figure 31 Total deficit of agricultural demands in with respect to the total monthly agricultural demand in the different management scenarios Regarding the deficits of agricultural demands in INITIAL scenario they are well supplied and only have deficit
180. ounts for the water transfers from other water resources systems The direct Green WF measures the water consumed by plants from the non saturated zone of soil The direct Grey WF is defined as the volume required to dilute the pollutants from the different water uses down to the standard quality levels That is the direct Grey WF involves the polluted water returned after its use instead of the consumed water SIMGES can provide the direct Blue WF as the difference between the supply to demands and their returns The real evapotranspiration obtained from EVALHID is the direct Green WP Finally the direct Grey WF can be derived from the results of GESCAL with a simple calculation of the dilution water volume 5 2 Methodology for Ecosystem Services analysis 5 2 1 Integration of Ecosystem Services analysis and Integrated Water Resources Management Part II The result of the previous discussion about WS analysis and complementary indicators and their linkage to the proposed IWRM methodology is captured in Figure 45 It can be seen that every single model contributes to the calculation of a WS or other indicator Proposal for Ecosystem Services analysis There are diverse analyses that can be conducted backed on the above methodology It can be used to prioritise the protection of regions in the water resources system or to develop policy mechanisms like government ownership or control of land government regulations government inc
181. oupling models dedicated to river basins and water resources management based on IWRM will be designed and applied to the Tormes Water Resources System TWRS in the Duero River Basin District in Spain The period of analysis will be from October 1996 to September 2007 which includes a critical period related to a drought event The potential of jointly analysing different aspects of a water resources system will be exemplified Some indicators and graphics will be proposed to synthesise all the relevant information for decision making which explicitly show the gains and losses of each objective in diverse scenarios Second the potential ES that can be obtained from the results of the chained models will be analysed With this information a preliminary set of ES and other indicators will be suggested according to their usefulness for decision making Finally all these indicators will be gathered in the proposal of a new tool for ES anlysis to be developed in the PhD backed MA Introduction on the IWRM methodology This final tool will allow the integration of classical aspects of water management like the satisfaction of water demands and environmental flows with the sustainable management of the territory of the basins adding new variables related with ES to the multipurpose analysis 1 4 Structure and content of the Master s Thesis This document is structured in the likeness of a scientific paper First the introduction se
182. ource used by demands but not with the purpose of modelling the aquifer functioning or Application to the Tormes Water Resources System the relationship with surface water bodies In order to accomplish the environmental flows requirements four minimum flow regimes are established three downstream Santa Teresa Villagonzalo and Almendra reservoirs and another downstream the discharge point of the waste water treatment plant of the city of Salamanca Seventeen urban demands are considered from which five use groundwater resources Their total demand amounts 38 9 The agricultural demands sum 319 5 Hm divided into thirty irrigation areas There are twelve hydropower stations along the Tormes River with a mean annual productivity of 0 002314 GWh Hm m Aquaculture is also a relevant activity in the system and its effect is introduced in the model as six different water demands Finally all the industrial demands are grouped in one With respect to the supply priority to demands the urban and industrial demands have the higher priorities to ensure their total satisfaction Next the agricultural demands are served and finally the water demands for aquaculture Other management rule is the restriction for hydropower generation in Santa Teresa reservoir which regulates the TWRS under drought conditions In this reservoir the monthly target volumes for storage correspond to the mean stored volumes for the period 1991 to 2006
183. out in the HBV model Snow N 2 It allows partially classifying precipitation in rainfall and snow according to a separation factor depending on the air temperature and two temperature thresholds Then for the same time step there can be rainfall which directly becomes runoff and snow which is accumulated in the snow pack The snow melting is defined using a third temperature threshold so finally the model has three parameters This is the snow model developed by the cole Polytechnique F d rale de Lausanne for the software Routing System Il Garcia Hernandez et al 2007 More information about the models can be found in Annex I Although all the aforementioned models are aggregated EVALHID allows their implementation in subbasins resulting in a semi distributed model for the whole basin Given that each subbasin has different features and available data EVALHID admits to select the model that better represents the behaviour of each subbasin The results of surface runoff are obtained in each subbasin but only presented in the drainage points selected by the user What EVALHID does is to provide the surface runoff at the drainage point as the sum of the runoff generated in the subbasins draining to it There is no propagation of the flow because EVALHID considers that the response time of each subbasin is negligible compared with the time step used Mouelhi et al 2006 EVALHID considers that the river basins and the underground b
184. plication to the Tormes Water Resources System The WUA flow curves at point 4 were obtained in a river reach at Ba os de Ledesma Salamanca where the fish species were Luciobarbus bocagei Pseudochondrostoma duriense and Squalius carolitertii For the first species there were curves for three size classes For the other two species there were only two curves size classes At points 2 and 3 the nearest WUA flow curves that were developed in a river reach at Villagonzalo de Tormes Salamanca are applied There the fish species were Salmo trutta fario Luciobarbus bocagei Achondrostoma arcasii Pseudochondrostoma duriense and Squalius carolitertii The curves for the first species are available in four size classes There are three curves available by size class for Luciobarbus bocagei one for Achondrostoma arcasii and two for the last two species Finally the curves for Salmo trutta fario were applied at point 1 Apart from the WUA flow curves it is necessary to have the flows in the studied river segments This information comes directly from SIMGES 3 5 2 Model construction The construction of CAUDECO modules is quite simple It consists in relating the different species and size classes with the water bodies the WUA flow curves and the bioperiods In this case the results are obtained in of the maximum HPU Then for the WUA flow curves that do not present a maximum value of WUA it is necessary to define it Here this WUA val
185. presentative value for the analysis of the habitat suitability for the relevant aquatic species in the region the results are accumulated by size class and species using the minimum accumulation option Then there is one accumulated HTS and HDC at each studied river stretch for each scenario that shows the usable area of the most restrictive species size class in each month Habitat Time Series at Point 4 96 A hi MY Wu YAA Le im Ne o WIB N EI lt E 50 w U gt I d U ot MW o Oct 96 Feb 97 Oct 97 Feb 98 NITIAL scenario QECO MAX scenario OR scenario Figure 34 Habitat time series in of the maximum weighted usable area of the most restrictive species size class at the study point 4 in the different management scenarios EE Results analysis and discussion Before analysing the HTS it is necessary to clarify that the environmental flow regime must guarantee that the available usable area for the most restrictive species in each studied point is between 50 and 80 of the maximum in every month Only under drought conditions it is acceptable to reduce the minimum threshold to 30 of the maximum usable area WUA flow curve 600 100 500 400 300 T 200 100 30 Environmental flow m s m om o o d Figure 35 Example of the env
186. r Tormes 568_a r Tormes 568_b r Tormes 568 cr Tormes 568 dr Tormes 568 er Tormes 569 ar Tormes 569 br Tormes 569 cr Tormes 569 d r Tormes 569 e r Tormes 569 f r Tormes 569 g r Tormes 682 a r Tormes 682 b r Tormes 682 c r Tormes 545 a Trasvase r o Lobos r Tormes 545 c r Tormes 546 b r Tormes 546 cr Tormes 546 a r Tormes 680 c r Tormes 680 d r Tormes 680 e r Tormes 502 a r Tormes 502 b r Tormes 503 a r Tormes 503 c r Tormes 503 d r Tormes 503 b r Tormes 504 a r Tormes 504 br Tormes 505 ar Tormes 505 br Tormes 505 cr Tormes 505 dr Tormes 505 e Huebra 513 b Huebra 513 c Huebra 513 a gueda 687 gueda 626 a gueda 626 b Agad n 617 gueda 606 gueda 626 c gueda 522 a Arroyo Pasiles 607 gueda 524 gueda 525 Aravalle 643 Yeltes 538 586 Rio Valmuza 518 520 Agueda 522 b Agueda 522 c Agueda 522 d Agueda 523 a Agueda523 b Yeltes538 b Rec Lluvia 12 03 Transf Lateral 12 03 a 12 05 Rec Lluvia 12 05 Rec Lluvia 12 02 Rec Lluvia 12 04 f Transf lateral b 12 04 a 12 05 f Rec Lluvia 12 01 f Transf Lateral2 12 05 a 08 19 gueda 521 g Huebra 535 g Yeltes538 a gr Tormes 680 a gr Tormes 502 c gr Tormes 504 c g Transf Lateral 12 05 r Tormes 680 b g f Transf Lateral 12 04 a 12 05 r Tormes 545 b g f Transf lateral1 12 05 a 08 19 00000000000000000000000000000000000000000000000000000000000000000000 000000000000000000000000 00000000000000000000000000000 25000 250000 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 2
187. r combining the adherence and flexibility of simulation models and the efficient exploration of mathematical optimisation models provides improved results Wurbs 1993 The main types of mathematical models to control the flows distribution in the water system are balance of water linear programming and flow networks The first one can be only used Material and methods E for simulation while the others can be used for both simulation and optimisation purposes Flow networks are computer efficient versions of linear programming They can solve problems stated as networks of arcs and nodes with certain characteristics The usual formulation is as follows Ms Ma Minimise X i J Subject to gt x 0 1 m k 1 l SX Su i j 1 m jj gt where x represents the flow between nodes i and j c represents the cost of transport of a unit of flow l is the minimum flow limit in the arc ij and is the maximum flow limit in the same arc A network flow problem can be solved with a conventional linear programminsg algorithm However the special structure of a flow network allows the use of more efficient algorithms which significantly reduce the computing time and permits to study bigger problems with more variables and restrictions The module SIMGES Andreu et al 2007 of the DSS AQUATOOL is a simulation optimisation model based on a flow network algorithm It solves
188. r Resources Bulletin 31 571 582 Loucks D 2000 Sustainable water resources management Water international 25 1 3 10 Manning R 1891 On the flow of Water in Open Channels and Pipes Transactions Institute of Civil Engineers of Ireland vol 20 pp 161 209 Dublin MEA Millennium Ecosystem Assessment 2003 Ecosystems and human well being A framework for assessment In Island Press ed Ecosystems and human well being World Resources Institute MEA Millennium Ecosystem Assessment 2005 Ecosystems and human well being Systhesis In Island Press ed Ecosystems and human well being World Resources Institute Milhous R T Wegner D L and Waddle T J 1981 User s Guide to the Physical Habitat Simulation System FWS OBS 81 43 Office of Biological Services United States Fish and Wildlife Service Washington Milhous R T 1983 Instream flow values as a factor in water management In Proceedings of Symposium on Regional and State Water Resources Planning and Management American Water Resources Association Washington MAAA Ministerio de Agricultura Alimentaci n y Medio Ambiente 2013 Real Decreto 478 2013 de 21 de junio por el que se aprueba el Plan Hidrol gico de la parte espa ola de la Demarcaci n Hidrogr fica del Duero BOE n 149 MARM Ministerio de Medio Ambiente y Medio Rural y Marino 2008 Orden ARM 2656 2008 de 10 de septiembre por la que se aprueba la instrucci n de pl
189. rategy established in the European Union EU for the coming decade It involves objectives on employment research and innovation climate and energy education and combating poverty To achieve these goals the defined economic and social growth has to be smart sustainable and inclusive After the launch of this strategy the EU has developed numerous complementary documents focused on the different target aspects In 2011 the European Commission published the EU biodiversity strategy to 2020 EC 2011 It aims to struggle against biodiversity loss and to enhance an efficient and green economy It considers the Ecosystem Services ES assessment as a powerful tool to assign an economic value to nature and the services it provides This can help decision makers to determine the best use of scarce ecological resources by providing information about benefits and maintaining costs creating a common language revealing the opportunities to work with nature emphasizing the urgency of action and generating information for designing policy incentives for environmental protection TEEB 2010 Currently the Mapping and Assessment of Ecosystems and their Services in Europe one of the key actions of the EU Biodiversity Strategy to 2020 is being developed The initial methodological work on biophysical mapping and assessment is expected to be delivered by 2014 Also fitting into the overall resource efficiency objective of Europe 2020 th
190. rmes 504 a r Tormes 504 br Tormes 505 ar Tormes 505 br Tormes 505 cr Tormes 505 Tormes 505 e Huebra 513 b Huebra 513 c Huebra 513 a gueda 687 gueda 626 a gueda 626 b Agad n 617 gueda 606 gueda 626 c gueda 522 a Arroyo Pasiles 607 gueda 524 gueda 525 Aravalle 643 Yeltes 538 586 Rio Valmuza 518 520 Agueda 522 b Agueda 522 c Agueda 522 d Agueda 523 a Agueda523 b Yeltes538 b Rec Lluvia 12 03 Transf Lateral 12 03 a 12 05 Rec Lluvia 12 05 Rec Lluvia 12 02 Rec Lluvia 12 04 f Transf lateral b 12 04 a 12 05 f Rec Lluvia 12 01 f Transf Lateral2 12 05 a 08 19 gueda 521 g Huebra 535 g Yeltes538 a gr Tormes 680 a gr Tormes 502 c gr Tormes 504 c g Transf Lateral 12 05 r Tormes 680 b g f Transf Lateral 12 04 a 12 05 r Tormes 545 b g f Transf lateral1 12 05 a 08 19 00000000000000000000000000000000000000000000000000000000000000000000 000000000000000000000000 ANNEX Additional information of the application to the Tormes Water Resources System 00000000000000000000000000000 25000 250000 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 2500000000000000000000000000000000000000 25 0 25 0 2500 2500 250 Santa Teresa Villagonzalo Almendra Riolobos Irue a gueda 000000 000000 Fosforo r tormes 642 r tormes 412_a C1 12 salidas sistema r Tormes 614_a r Tormes 614_b r Tormes 614 cr Tormes 615_a r Corneja 624 r Tormes 615_b r Tormes 615_c r Tormes 615_d r Tormes 615_e r Tormes 615_f
191. rom the HTS is the Habitat Duration Curve HDC which shows the percentage of time that a certain WUA value is exceeded Other habitat suitability indexes are the Continuous Under Threshold index Capra et al 1995 or the Uniform Continuous Under Threshold index Parasiewicz 2008 which provide the periods where the WUA is under an established threshold CAUDECO Paredes Arquiola et al 2011 is a module of the DSS AQUATOOL that jointly evaluates environmental flows and water resources management scenarios It uses the series of flows in rivers resulting from SIMGES and combines them with the WUA Flow curves and the bioperiods to generate the HTS and the HDC This process is directed though the equation HTS t WUA F t BIOP t Long Y c t i 1 where HTS t is the value of the HTS in the time t WUA F t is the value of WUA for the flow F t in the time t BIOP t is a function which defines whether the species is present in the time t Long is the length of the river stretch only used if the WUA values are given in m m and the term 5k c t represents the influence of different water constituents or pollutants on the habitat suitability Figure 8 shows graphically the process to obtain the HTS excluding the water quality It is due to the fact that usually there is not enough data to practically apply this term There are models like AQUATOX Clough 2012 that consider the effect of pollutants on aquatic ecosystems including
192. see Figure 14 Then seven calibration points from the Official Gauging Stations Network ROEA in Spanish are used ROEA 2085 ROEA 2081 ROEA 2149 ROEA 2084 ROEA 2086 ROEA 2087 and ROEA 2088 The total period with gauged data spans from October 1950 to September 2006 Nevertheless the gauged flows are not available for all this period in all the stations and the calibration period is adapted for each gauging station The six last years of data are used for validation It is obvious that the calibration has to be performed from upstream to downstream This means that to calibrate the flows generated at a drainage point it is necessary to calibrate the upstream models first Application to the Tormes Water Resources System Drainage Point 1 Drainage Point 2 Point EN Drainage Point 4 NE Drainage Point 5 Drainage Point 6 Drainage Point 7 Left over subbasins Figure 14 Groups of subbasins for calibration and gauging stations Comparing the results obtained with EVALHID using the HBV model with the results of SIMPA using T mez it is observed that the HBV model represents better the historical data see Figure 15 Thus the HBV model is going to be used in all the subbasins of the TWRS This comparison is done in the period from October 1980 to September 2000 Hm Embalse de Santa Teresa Embalse Santa Teresa
193. ses E Santa Teresa E Villagonzalo E Almendra E Riolobos E Irue a E gueda 111111 000000 000000 111111 111111 111111 30 90 30 30 30 30 111111 111111 111111 111111 000000 111111 Datos de elementos de contaminaci n difusa 9 NumConducc Conductividad Solidos Fosforo DBO OD Norg Nh4 No3 r Tormes 568 b 16 0 0 0 42 22 0 656 7 931 3 366 32 522 r Tormes 568 c 17000 11 735 0 205 2 051 0 191 14 052 r Tormes 569 b 21000 17 148 0 29 60 64 19 198 r Tormes 546 c 34000 10000000000 r Tormes 680 c 36 000 1000000 0000 r Tormes 680 d 370001000000 0000 r Tormes 680 e 38 000 1000000 0 0 0 r Tormes 680 a g 88000 10000000000 r Tormes 680 b g 96 000 1000000 0000 Fluios de Sedimento en embalse 1 NumEmb Conductividad Solidos Fosforo DBO OD Norg Nh4 No3 100000000 Datos Condiciones Iniciales Acuiferos Conductividad Solidos Fosforo DBO OD Norg Nh4 No3 400 5 0 0001 2 8 0 0001 0 0001 20 400 5 0 001 2 8 0 001 0 001 20 439 5 0 0001 2 8 0 001 0 001 31 752 5 0 001 2 8 0 001 0 001 65 00000000 ANNEX Additional information of the application to the Tormes Water Resources System 400 5 0 001 2 8 0 001 0 001 20 Embalses Conductividad Solidos Fosforo DBO OD Norg Nh4 No3 00000000 00000000 00000000 00000000 00000000 00000000 Conductividad Solidos Fosforo DBO OD Norg Nh4 No3 00000000 00000000 00000000 00000000 00000000 00000000 Eleme
194. significance Instream Flow Chronicle Colorado State University Fort Collins Colorado October 2 3 1 Hargreaves G H and Samani Z A 1982 Estimation of potential evapotranspiration Journal of Irrigation and Drainage Division Proceedings of the American Society of Civil Engineers 108 223 230 Herrera S Guti rrez J M Ancell R Pons M R Frias M D and Fernandez J 2012 Development and Analysis of a 50 year high resolution daily gridded precipitation dataset over Spain Spain02 International Journal of Climatology 32 74 85 Hoekstra A Y 2012 Water Footprint Accounting In Godfrey J and Chalmers K eds International Water Accounting Effective Management of a Scarce Resource Edward Elgar Publishing Inc New York pp 58 75 References Hof C Ara jo M B Jetz W and Rahbek C 2011 Additive threats from pathogens climate and land use change for global amphibian diversity Nature 480 516 519 Holdren J P and Ehrlich P R 1974 Human population and the global environment American Scientist 62 282 292 INFRAECO 2009 Estudio de Caudales Ecol gicos en Masas de Agua Superficiales en la Demarcaci n del Duero Fase 1 Evaluaci n del H bitat Acu tico en masas estrat gicas Rhyhabsim Technical Report of the Universidad Polit cnica de Madrid for Junta de Castilla y Le n Ito K Xu Z Jinno K Kojiri T and Kawamura A 2001 Decision Support System for Surface Wat
195. st difficult to calibrate It requires information about the hydraulics in all the river stretches and conductions as well as the water quality parameters for the diverse compounds modelled The first data come from detailed hydraulic models and the water quality parameters need to be calibrated It is also necessary to have series of pollutants concentrations in runoff for all the modelled compounds In this case the waste load series for CBOD and phosphorus come from CARFU and using the flow series from EVALHID are transformed into pollutants concentrations series The series for the rest of constituents are estimated from WQCS near the drainage points or in low altered subbasins they are assumed as series of natural concentrations Although the temperature of water is not modelled it is considered in the dynamics of the compounds Temperature curves are provided in every river stretch and reservoir These curves come from nearby WQCS 3 4 2 Model construction In this case the model comes from the Water Plan Office of the DRBA which used it to develop the annex about environmental objectives of the last RBMP Hence the model is complete and calibrated The model considers the evolution of dissolved oxygen CBOD nitrates and ammonium it uses specific sources and sewers for each of them Moreover phosphorus conductivity and suspended solids are modelled as arbitrary constituents with a first order kinetics for their degradation
196. t of the diffuse pollution evaluation model 3 2 1 Information preprocessing The main input of CARFU is the shape file of water bodies for the TWRS which is available at the DRBA mapping repository This map includes information about the water bodies lengths which are needed to perform the pollutants decay The flow order in the river network is defined using a Geographic Information System Thereafter the associated information for each water body includes the origin and destiny water bodies This allows accumulating the pollutants loads from upstream to downstream as established by the equations of CARFU In this application the available data is only referred to point loads The database of waste water discharges from urban and industrial demands in the TWRS is continuously filled and updated by the DRBA This database includes the load of pollutants discharged the water volume returned and the associated water body which receives the spill Figure 18 shows the location of the inventoried waste loads in the TWRS Industnal Aquaculture Urban Figure 18 Inventoried waste load discharges in the TWRS The constituents modelled should be the same considered in the GESCAL model dissolved oxygen CBOD nitrates ammonium phosphorus conductivity and suspended solids see pen Application to the Tormes Water Resources System 3 4 1 But in this case the only compounds considered are CBOD and Phosphorous because
197. te the different species in a river stretch providing one result per river stretch e g HTS in the lower stretch of the river Tormes Besides it can accumulate the results in different river stretches providing one result per species e g HTS of the Brown Trout for the entire Tormes river system Regarding the mathematic expressions used to accumulate the results there are two options available in CAUDECO the weighted average accumulation and the accumulation by minimum Given that the results can be obtained in m or in of the maximum WUA value for the species and size class each accumulation option presents two formulations which are presented below for the HTS The accumulated HDC are obtained from the accumulated HTS Weighted average accumulation it sums the results applying the weights defined by the user for each size class species or river stretch EE Material and methods HTS m o7 Y HTS m HTS S p max HTS m 100 Accumulation by minimum it takes the minimum value of the results to accumulate for each time step HTS m min HTS m HTS 96 min HTS The advantage of the accumulations is that they provide a reduced number of results which allow identifying the critical points that require a deeper analysis 2 1 6 Connection of the models The proposed methodology links the models above described in order to analyse the effects of the management of the ri
198. the consumptive demands Tpy is a term due to non consumptive demands Tra is a term due to artificial recharges and Tg is a term due to additional pumping The results are subject to the mass conservancy restrictions and the physical limits of transport of conductions storage in reservoirs and other elements This optimisation is improved with an iterative process of the network resolution what allows improving the quality of the simulation of non linear processes such as leakages evaporation and surface and groundwater relationships More information about the model can be found in Annex I The possibilities that SIMGES brings to define the management rules of the system are broad and allow the representation of the functioning of complex real water resources systems In the reservoirs different zones can be defined establishing the monthly curves for the minimum target and maximum volumes Furthermore there are priority numbers to state the inter reservoir relationships For demands the target supply and the priority numbers can also be defined In conductions the minimum and maximum flows can be limited and priority numbers define the relationship among them Finally alarm indicators can be defined as restrictions to supply or flows in conductions conditioned to a certain volume in a reservoir or sum of reservoirs or to a natural runoff or sum of natural runoffs With this information the dummy costs or benefits of storing water in a c
199. this affects the water quality and in some cases the management rules to avoid excessive water purification costs After all having knowledge about the water cycle and water resources management it is easy to roughly deduce the consequences of a certain change in the water resources system But in the actual framework of climate change which implies a reduction in runoff and more intense droughts in Spain according to Mor n Tejeda et al 2010 and higher environmental awareness translated into tougher laws for environmental flows and water quality the questions to answer are really complex The difficult thing is to analyse the tradeoffs between the different aspects considered with the aim of finding an intermediate solution Besides it can be interesting to develop more complex scenarios which imply more than one change in the system at the same time In this case it is not simple to guess the interactions between the diverse facets analysed Here is where the proposed methodology for IWRM can play an important role The concatenation of the five models allows quantifying target variables in order to find a solution which matches all the legal specifications and satisfies the stakeholders An important application of this methodology is the optimisation of actual water management to produce the best feasible environmental flows in realistic water management scenarios with water right constraints in the river basin The scenarios and
200. ts the basis for the research and its added value with respect to the current state of the art Second the material and methods are presented that is methodologies software and data Third the case of application to de TWRS is developed to exemplify the proposed method After that the results are analysed to extract conclusions about the potential of the method for decision making Then the future research lines are drafted and backed on the current research And finally the conclusions state the deductions and reasoning of the research Introduction 2 Material and methods 2 1 Methodology for Integrated Water Resources Management As population grows and other water demanding sectors develop the issue of water allocation has become more complex Andreu et al 2012 This is why simulation models need to be adapted to consider the sustainable management of water resources UNESCO 1999 Loucks 2000 Ito et al 2001 inside the broader objective of sustainable development UN 1987 This has brought about simulation models to evolve towards new approaches like DSS experts systems collaborative planning and management and dynamic decision systems among others Solera 2003 In line with the abovementioned concepts the IWRM is a process which promotes the coordinated development and management of water land and related resources in order to maximise the resultant economic and social welfare in an equitable manner without
201. ty is slightly affected by these pressures But the major environmental pressures are concentrated downstream of the Villagonzalo dam including several urban and industrial discharges from the city of Salamanca These environmental pressures modify the physical properties of the water and the chemical concentrations in the water from downstream of Villagonzalo dam to the EE Material and methods Water Quality Control Site WQCS at Contiensa In this section of the river the water quality worsens and strongly depends on the river flow Thus the segment between Salamanca city and the Contiensa WQCS is considered the most critical in the TRWS Although low flows are not a serious problem in the Duero River Basin the management plan of the 90s defined the environmental flows as 10 of the mean annual inflow The new RBMP MAAA 2013 improves the ecological status in water bodies through the definition of new environmental flows based on biological aspects The river segments selected for this study regarding their relevance in the aforementioned problems are located near Contiensa WQCS Point 4 and just downstream of Villagonzalo dam Point 3 Two more points were analysed to obtain a global view of the river system performance one between Santa Teresa and Villagonzalo reservoirs Point 2 and another upstream of Santa Teresa reservoir Point 1 These four points are identified in Figure 11 and Point 4 is located in the most criti
202. ue corresponds to the percentile 20 of the average daily flows in natural regime of the historical series at each studied point The accumulation option selected is the accumulation by minimum This model does not require calibration because it does not use any parameter In fact it just connects the biological information WUA flow curves and bioperiods with the circulating flows Moreover the biological information has been validated by their creators Application to the Tormes Water Resources System ram 4 Results analysis and discussion In order to link all the models they are run for a common period October 1996 to September 2007 in consecutive order First EVALHID generates the runoff series which are then used by CARFU and SIMGES Then the simulations with GESCAL and CAUDECO can be conducted Finally all the results can be analysed together to obtain relevant information for decision making see Figure 9 In this application to the TRWS because point 4 is critical decision making should be mainly based on the analysis of its results 4 1 Generation of runoff series The flow series are necessary as inputs for the modules CARFU and SIMGES It is important to highlight that CARFU needs the flow series for each water body Then it is required to choose the option of partial results generation in EVALHID which provides the different temporal results of the state variables for all the modelled subbasins The basin manage
203. ueda 522 c Agueda 522 d Agueda 523 a Agueda523 b Yeltes538 b Rec Lluvia 12 03 Transf Lateral 12 03 a 12 05 Rec Lluvia 12 05 Rec Lluvia 12 02 Rec Lluvia 12 04 f Transf lateral b 12 04 a 12 05 f Rec Lluvia 12 01 f Transf Lateral2 12 05 a 08 19 gueda 521 g Huebra 535 g Yeltes538 a gr Tormes 680 a gr Tormes 502 c gr Tormes 504 c g Transf Lateral 12 05 r Tormes 680 b g f Transf Lateral 12 04 a 12 05 r Tormes 545 b g f Transf lateral1 12 05 a 08 19 00000000000000000000000000000000000000000000000000000000000000000000 000000000000000000000000 00000000000000000000000000000 5000 250000 250 250 250 250000000000000000000 000000000000000000000000000 250000 2500 250 E Santa Teresa E Villagonzalo E Almendra E Riolobos E Iruefia E gueda 000000 000000 Solidos r tormes 642 r tormes 412 a C1 12 salidas sistema r Tormes 614 a r Tormes 614 b r Tormes 614 c r Tormes 615 a r Corneja 624 r Tormes 615 b r Tormes 615 cr Tormes 615 d r Tormes 615 Tormes 615 f r Tormes 568 a r Tormes 568 br Tormes 568 cr Tormes 568 dr Tormes 568 er Tormes 569 ar Tormes 569 br Tormes 569 cr Tormes 569 d r Tormes 569 e r Tormes 569 f r Tormes 569 g r Tormes 682 a r Tormes 682 b r Tormes 682 c r Tormes 545 a Trasvase r o Lobos r Tormes 545 c r Tormes 546 b r Tormes 546 c r Tormes 546 a r Tormes 680 c r Tormes 680 d r Tormes 680 r Tormes 502 a r Tormes 502 b Tormes 503 a r Tormes 503 c r Tormes 503 d r Tormes 503 b r To
204. uijuelo 5 10 16 Alba de Tormes 7 12 17 V Terradillos Urb El Encinar 7 11 18 Ap Tramo Bajo Huebra 57 27 19 Ap Cabecera gueda 60 19 20 Ap Emb gueda 65 20 21 Ap Pasiles 70 21 22 Bajo 72 22 23 Ap Aravalle 73 28 24 Tenebrilla 74 24 25 Ap Yeltes 75 23 26 Ap Arganza 76 25 27 Ap Huebra 76 26 28 Vert Enusa 77 29 29 VertYeltes 80 30 ANNEX Additional information of the application to the Tormes Water Resources System 30 Inf Lluvia 12 03 83 0 31 Inf Lluvia 12 05 84 0 32 Inf Lluvia 12 02 86 0 33 Inf Lluvia 12 01 87 0 34 Inf Lluvia 12 04 88 0 ACUIFEROS K OK OK K K K K K K OK K 1 12 01 Detr tico de Ciudad RodrTIPO 2 MODELO UNICELULAR PARAM CONTROL BOMBEO O UMBRAL 0 0000E 00 COEFTE DE DESAGUE 0 7500E 01 VOLUMEN INICIAL 0 00 2 12 02 Detr tico San Esteban TIPO 2 MODELO UNICELULAR PARAM CONTROL BOMBEO O UMBRAL 0 0000E 00 COEFTE DE DESAGUE 0 8500E 01 VOLUMEN INICIAL 0 00 3 12 03 Detr tico de La Armu a TIPO 2 MODELO UNICELULAR PARAM CONTROL BOMBEO O UMBRAL 0 0000E 00 COEFTE DE DESAGUE 0 9500E 01 VOLUMEN INICIAL 0 00 4 12 05 Detr tico Profundo SalamTIPO 2 MODELO UNICELULAR PARAM CONTROL BOMBEO O UMBRAL 0 0000E 00 COEFTE DE DESAGUE 0 2500E 01 VOLUMEN INICIAL 0 00 5 08 19 Detr tico Profundo Los ATIPO 4 MODELO DEPOSITO PARAM CONTROL BOMBEO O UMBRAL 0 0000E 00 VOLUMEN INICI
205. ulting from the simulation in all the subbasins It does not include the legend of the series because is almost impossible to distinguish them But it can be seen that there is a subbasin that generates the most proportion of flow This is the heading subbasin in which the snow model is implemented called AN 511 Cab Tormes Barco Avila Consequently any intervention in this subbasin has to take into account the influence on the water resources of the TWRS 4 2 Generation of diffuse pollution series The diffuse pollution series are necessary as inputs for the module GESCAL In turn CARFU needs the runoff series generated using EVALHID in all the water bodies In this case where only the urban point loads have been considered the result of the model the water quality of runoff is affected by the waste water poured into rivers upstream the drainage points This means the volume of water processed in waste water treatment plants WWTP and the pollutants removed by them suspended solids CBOD nutrients etc There are legal prescriptions for the water quality of the effluents of WWTP which finally alter the water quality of runoff This affects the aquatic species that require certain chemical conditions in water to survive But apart from that the water quality of runoff also influences the water management because of the requirements of the different demands with respect to the quality of the water resource If the water quality
206. ultural fertilizers or land drainage But the distinction between the two types of waste loads sources is not absolute EPA 1985 For example if the location of the urban discharges is not well known they can be considered as diffuse discharges linearly distributed along river stretches This can be the case of non regulated rivers in the heads of river basins The models for diffuse pollution evaluation consider different waste loads and study their influence on natural water systems As there are more detailed models for water quality modelling these models are usually used to analyse diffuse pollution in non regulated water bodies The process followed is shown in Figure 5 Material and methods mcg Loads to downstream water body 9 Point and water diffuse Degradation i bodies loads C3 Load pe y VES Results inputs Intakes and Pollutants Final water ud returns concentrations body I for regulated water bodies gm Natural NO runoff Flow to downstream water body Figure 5 Diagram of the waste loading evaluation process adapted from MAAA 2013 Each water body considered as a river stretch receives the flows and loads from the upstream water bodies gt Q j i and 23M ji respectively Then inside the water body the corresponding flow generated and loads poure
207. upply and use costs hybrid tables The physical tables can be derived from the results of SIMGES the emissions tables from GESCAL and CARFU but the economical information of the hybrid tables cannot be directly obtained The Asset Accounts are two and they show the available water resources and the flows between them which is information that results from EVALHID and SIMGES Finally the Quality Accounts can be Proposal for Ecosystem Services analysis mostly completed with information from GESCAL but the Valuation Accounts need external economic information 5 1 5 2 Water footprint Formally the total WF of a territory like a river basin is the direct and indirect water consumed inside its boundaries That is the liquid water consumed direct WF and the water needed to produce the goods consumed indirect WF Furthermore this consumption can be analysed from the point of view of the consumer or the producer To do things worse in can be internal water resources come from the territory or external water resources come from other territories Then this is a concept that has to be clearly defined before its use because depending on the purpose or the data available it can include different concepts Here only the direct WF of a water resources system can be assessed According to the above statement the direct Blue WF is referred to the freshwater consumed by the different water uses the external direct Blue WF acc
208. us The stations presented in Figure 19 are used for this validation in the period from January 2000 to September 2005 Application to the Tormes Water Resources System 3 Figure 19 Stations of the Integral Network of Water Quality used for validation Figure 20 and Figure 21 present the comparison graphics between the measured and simulated loads for CBOD and phosphorus by CARFU at ICA 088 respectively It is evident the similarity between the simulated series of CBOD and phosphorus This is because the degradation law used to model both compounds is the same except for the degradation constant value It should be noted that due to the degradation law used which is very simple the calibration results are acceptable but not excellent The Pearson s correlation coefficient amounts 0 5432 for the CBOD and 0 4261 for the phosphorus Measured ICA088 6CARFU Figure 20 Calibration graphics for CBOD at ICA 088 Application to the Tormes Water Resources System Phosphorus MW ili U O Dd Ad u Gana 3 TN E Feb 04 maa gt S a EA Aug o5 aaa 02 w Oct 00 Dec 00 Feb 01 Apr 01 Jun 01 Aug 01 Oct 01 Dec 01 Feb 02 Jun 02 Aug 02 Oct 02 Dec 02 Feb 03 Apr 03 Jun 03 Aug 03 Oct 03 03 wa Apr 04 Jun 04 Apr 05 Jun 05 WA Measured ICA088 6CARFU Figure 21
209. ventional Pollutants in Surface and Ground Water EPA 600 6 85 002a Ehrlich P R and Ehrlich A H 1981 Extinction Ballantine New York EC European Commission 2010 Europe 2020 A strategy for smart sustainable and inclusive growth European Commission 3 3 2010 COM 2010 2020 final Brussels EC European Commission 2011 Our life insurance our natural capital an EU biodiversity strategy to 2020 European Commission 5 2011 COM 2011 244 final Brussels EC European Commission 2012 A Blueprint to Safeguard Europe s Water Resources European Commission 14 11 2012 COM 2012 673 final Brussels EEA European Environment Agency 2013 CICES 2013 Towards a Common International Classification of Ecosystem Services http cices eu EU European Parliament 2000 Directive 2000 60 EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy Official Journal L 327 22 12 2000 Belgium Farber S C Costanza R and Wilson M A 2002 Economic and ecological concepts for valuing ecosystem services Ecological Economics 41 375 392 Fisher B and Turner R K 2008 Ecosystem services Classification for valuation Biological Conservation 141 1167 1169 Fisher B Turner K Zylstra M Brouwer R Groot R D Farber S Ferraro P Green R Hadley D Harlow J Jefferiss P Kirkby C Morling P Mowatt S Naidoo R Paav
210. ver basin and water resources on the relevant aspects of the system Figure 9 shows the information flow through the different models It makes evident that the management of the river basin impacts on the available water resources and the water quality of runoff Moreover water resources allocation decisions impact all the basin uses including the environmental uses and the water quality Paredes Arquiola et al 2013b With this methodology it is easy to conduct tradeoff analyses that help to balance the different significant issues in a whole river basin In this research we are going to show the influence of different environmental flow regimes on water quality and habitat suitability Paredes Arquiola et al 2013b But the new methodology presented here also allows relating changes in the land uses of the river basin to for instance changes in water quality or habitat suitability maintaining the same management rules So the potential of the effective linkage of these tools is very broad Material and methods EM i e INTEGRATED Water resources WATER RESOURCES evaluation model 8 EVALHID METHODOLOGY mJ k 1 WATER Water management Diffuse pollution RESOURCES model evaluation model SIMGES CARFU Pollutants load into water bodies Flows in rivers Phosphorus AGERE LEE DELL ULL LEE LEE LOU ULT 1111507511 222
211. ves and scope of the research The main objective of this thesis is to propose a methodology for the combination of ES assessment and IWRM that will be developed in further research PhD The aim is to advance towards the integration of the diverse requirements of the existing legislation about water resources management MARM 2008 EC 2012 and in a broader sense about basins management EP 2000 There are many ES to value but lots of them are referred to science fields very far from water resources management e g crop pollination carbon sequestration terrestrial biodiversity wave and wind energy models or aesthetic quality Thus the focus of this thesis will be on analysing the ES related with freshwater even though some of them are produced by terrestrial ecosystems Brauman et al 2007 e g nutrients retention by vegetation freshwater production etc This is reasonable considering that the water availability in river systems in quantity and quality deeply relies on the state of the surrounding territory In fact Le Maitre et al 2007 support that soils are a key factor in ecosystem productivity like water flow regulation and water quality This group of ecosystem services has been named as hydrologic ES Brauman et al 2007 or freshwater ES Wilson 1999 Vigerstol and Aukema 2011 among others But from now on in this thesis it will be referred to as ES for simplicity Along this thesis first a methodology for c
212. x 6 HBV 28 KO 0 13 HBV 28 K1 0 13 HBV 28 K2 0 HBV ANNEX Additional information of the application to the Tormes Water Resources System Subbasin ID 28 Kperc 0 22 HBV 29 Beta 3 HBV 29 FC 180 HBV 29 Pwp 105 HBV 29 Lmax 6 HBV 29 KO 0 13 HBV 29 K1 0 13 HBV 29 K2 0 HBV 29 Kperc 0 22 HBV 30 Beta 3 HBV 30 FC 180 HBV 30 Pwp 105 HBV 30 Lmax 6 HBV 30 KO 0 13 HBV 30 K1 0 13 HBV 30 K2 0 HBV 30 Kperc 0 22 HBV 31 Beta 3 HBV 31 FC 180 HBV 31 Pwp 105 HBV 31 Lmax 6 HBV 31 KO 0 13 HBV 31 K1 0 13 HBV 31 K2 0 HBV 31 Kperc 0 22 HBV 32 Beta 3 HBV 32 FC 180 HBV 32 Pwp 105 HBV 32 Lmax 6 HBV 32 KO 0 13 HBV 32 K1 0 13 HBV 32 K2 0 HBV 32 Kperc 0 22 HBV 33 Beta 3 HBV 33 FC 180 HBV 33 Pwp 105 HBV 33 Lmax 6 HBV 33 KO 0 13 HBV 33 K1 0 13 HBV 33 K2 0 HBV 33 Kperc 0 22 HBV 34 Beta 3 HBV 34 FC 180 HBV 34 Pwp 105 HBV 34 Lmax 6 HBV 34 KO 0 13 HBV 34 K1 0 13 HBV 34 K2 0 HBV 227 ANNEX Additional information of the application to the Tormes Water Resources System Subbasin ID 34 Kperc 0 22 HBV 35 Beta 3 HBV 35 FC 180 HBV 35 Pwp 105 HBV 35 Lmax 6 HBV 35 KO 0 13 HBV 35 K1 0 13 HBV 35 K2 0 HBV 35 Kperc 0 22 HBV 36 Beta 3 HBV 36 FC 180 HBV 36 Pwp 105 HBV 36 Lmax 6 HBV 36 KO 0 13 HBV 36 K1 0 13 HBV 36 K2 0 HBV 36 Kperc 0 22 HBV 37 Beta 3 HBV 37 FC 180 HBV 37 Pwp 105 HBV 37 Lmax 6 HBV 37 KO 0 13 HBV 37 K1 0 13 HBV 37 K2 0 HBV 37 Kperc 0 22 HBV 38 Hmax 0 Snow N 1 38 C 3 Snow N 1 38 Beta 3 HBV 38 FC 180 HBV 38 Pwp
213. xygen in lowland rivers The Science of the Total Environment 314 316 335 377 Daily G C ed 1997 Nature s Services Societal dependence on natural ecosystems Washington DC Island Press Daily G C Alexander S Ehrlich P R Goulder L Lubchenco J Matson P A Mooney Postel S Schneider S H Tilman D and Woodwell G M 1997 Ecosystem services Benefits supplied to human societies by natural ecosystems Issues in Ecology Washington Daily G C 2000 Management objectives for the protection of ecosystem services Environmental Science Policy 3 333 339 Duan Q Sorooshian S and Gupta V 1992 Effective and efficient global optimization for conceptual rainfall runoff models Water Resources Research 28 4 1015 1031 Duffie J A and Beckman W A 1980 Solar Engineering of Thermal Processes John Wiley amp Sons New York References Dunbar M J Gustard A Acreman M C and Elliott C R N 1998 Overseas approaches to setting river flow objectives Institute of Hydrology Wallingford and Environment Agency United Kingdom R amp D Technical Report W6 161 pp 83 Edinger J E and Geyer J C 1965 Heat exchange in the environment Department of Sanitary engineering and Water resources Research Project No 49 The John Hopkins University Baltimore Maryland EPA Environmental Protection Agency 1985 Water Quality Assessment A Screening Procedure for Toxic and Con

Download Pdf Manuals

image

Related Search

Related Contents

Users Manual - stephen  取扱説明書    報時付掛時計 取扱説明書  Operating Instructions Submersible drainage pump  L`Oeuf, l`Homme et le Serpent Un puissant rayon de lumière vint lui  

Copyright © All rights reserved.
Failed to retrieve file