Home
        Implementación de un control digital mediante Linealización
         Contents
1.                                                                                                                                                                                                                                                                                                                                                                                                                                                      vs NOISE VOLTAGE  FREQUENCY OVER A 10 SECOND PERIOD  60 1000  Vpp  5     f   0 1 to 10 Hz  50 TS0         25  C  500  40      250          30        gt   p       250  20 z     500  10   750  0    1000  10 100 1k 10k 0 2 4 6 8 10  f   Frequency     Hz t  Time  s  Figure 51 Figure 52  INTEGRATED NOISE VOLTAGE TOTAL HARMONIC DISTORTION PLUS NOISE  vs vs  FREQUENCY FREQUENCY  100 AAA Di 1  Calculated Using    Vpp 5V  Ideal Pass Band Filter 2 TA   25      Lower Frequency   1 Hz          25  C 2 AL 100   amp  0 1      10 S  5 Ay   100  2  a     0 01         Ay   10  E    Ay   1  5 0 001 V      2     a  0 1   0 0001  1 10 100 1k 10k 100 k 100 1k 10k 100 k  f  Frequency     Hz f     Frequency     Hz  Figure 53 Figure 54         5 TEXAS  INSTRUMENTS    POST OFFICE BOX 655303    DALLAS  TEXAS 75265 43    TLC227x  TLC227xA    Advanced LinCMOS    RAIL TO RAIL    OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TYPICAL CHARACTERISTICS    GAIN BANDWIDTH PRODUCT    vs  SUPPLY VOLTAGE    f   10 kHz         10       CL   100 pF        
2.                                                                                                                          Parameter Symbol Limit Values Unit  12 MHz Clock Variable Clock  1 t        23 5 MHz to 12 MHz  min    max  min  max   System Clock Timing  ALE to CLKOUT fLLSH 543   Tte ci     40   ns  CLKOUT high time tSHSL 127     21         40     ns  CLKOUT low time tSLSH 793     1016      40    ns  CLKOUT low to ALE tSLLH 43 123 tcLcL     40           40 ns  high  AC Characteristics  cont d   Parameter Symbol Limit Values Unit  16 MHz Clock Variable Clock  1 t          3 5 MHz to 16 MHz  min    max  min  max   System Clock Timing  ALE to CLKOUT fLLSH 398   Tte ci     40     ns  CLKOUT high time tSHSL 85     211        40     ns  CLKOUT low time tSLSH 585     10           40    ns  CLKOUT low to ALE tsLLH 23 103            40              40 ns  high  Semiconductor Group 321    SIEMENS SAB 80C517 80C537                            CLKOUT  PSEN            Programm Memory Access Data Memory Access    RD  WR      MCTOO794       System Clock Timing    Semiconductor Group 322       SIEMENS SAB 80C517 80C537       ROM Verification Characteristics        25       5               5V   10   Vss 20V                                                                       Parameter Symbol Limit values Unit  min max    ROM Verification  Address to valid data fAVQV     48 tci cL ns  ENABLE to valid data t ELQV   48   CLCL ns  Data float after ENABLE  1     7 0 48 tci cL ns  Oscillator 
3.                                                             10 100 1k 10k  CL   Load Capacitance     pF    Figure 40    INVERTING LARGE SIGNAL PULSE RESPONSE  5                                              0  0 1 2 3 4 5 6 7 8 9  t  Time   us  Figure 42    t Data at high and low temperatures are applicable only within the rated operating free air temperature ranges of the various devices        40    35 TEXAS    INSTRUMENTS    POST OFFICE BOX 655303 9 DALLAS  TEXAS 75265    Vo   Output Voltage     V    Vo   Output Voltage     V    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TYPICAL CHARACTERISTICS    INVERTING LARGE SIGNAL PULSE RESPONSE  5          Vpp   5V  4        10       C    100 pF  3 Ta   25  C  Ay   1                                                    0 1 2 3 4 5 6 7 8 9  t  Time     us    Figure 43    VOLTAGE FOLLOWER  LARGE SIGNAL PULSE RESPONSE                                                             0 1 2 3 4 5 6 7 8 9  t  Time     us    Figure 45      5 TEXAS  INSTRUMENTS    Vo   Output Voltage     V    Vo   Output Voltage     V    VOLTAGE FOLLOWER  LARGE SIGNAL PULSE RESPONSE                                              0 1 2 3 4 5 6 7 8 9  t  Time     us    Figure 44    INVERTING SMALL SIGNAL PULSE RESPONSE    2 65    2 6    2 55    2 5    2 45    2 4    Vpp 5V  RL   10 ko   C    100 pF       TA   25  C  Ay   1                                                 0 0 5 1 1 5 2
4.                                              Parameter Symbol Limit Values Unit  16 MHz Clock Variable Clock  1 t ci cL   3 5 MHz to 16 MHz  min max  min  max   External Data Memory Characteristics  RD pulse width   RLRH 275                  100    ns  WR pulse width               275            100    ns  Address hold after ALE  1 Axo 90     214     35    ns  RD to valid data in   RLDV   148                 165  ns  Data hold after RD fRHDX 0     0     ns  Data float after RD IRHDZ   55   214     70 Ins  ALE to valid data in fLLDV     350   815 0      150 ins  Address to valid data in  tAypy     398     9tctcL  165   ns  ALE to WR or RD fU WI  138  238        50           50      WR or RD high to ALE             23 103            40          40 ns  high  Address valid to WR tAVWL 120     4            130    ns  Data valid to WR tavwx 13                50     ns  transition  Data setup before WR taywu 288     7             150    ns  Data hold after WR tWHOX 13              50     ns  Address float after RD   az   0   0 ns  Semiconductor Group 316    SIEMENS SAB 80C517 80C537                   ALE             Port 0             Port 2   8   15   8   15       MCTO0790       Program Memory Read Cycle                  ALE                                            RD N           Faval                teupz                                             40   7           V N        40 47       RI      LAA AN Data In 1777 from PCL                                    Port 2 P2 0 P2 7 or 
5.                            Example  The carry flag is cleared  Output port 1 has been written with the value 34    001101005   The instructions  SETB C  SETB   1 0  will leave the carry flag set to 1 and change the data output on port 1 to 35y   001101015    SETB C  Operation  SETB   C      1  Encoding  11010011  Bytes  1  Cycles  1  SETB bit  Operation  SETB   bit      1  Encoding  1101 0010 bit address  Bytes  2  Cycles  1    Semiconductor Group 240    SIEMENS Instruction Set       SJMP rel  Function     Description     Example     Operation     Encoding     Bytes   Cycles     Short jump    Program control branches unconditionally to the address indicated  The branch  destination is computed by adding the signed displacement in the second  instruction byte to the PC  after incrementing the PC twice  Therefore  the range of  destinations allowed is from 128 bytes preceding this instruction to 127 bytes  following it     The label  RELADR   is assigned to an instruction at program memory location  01234  The instruction    SJMP  RELADR    will assemble into location 01004  After the instruction is executed  the PC will  contain the value 01234     Note     Under the above conditions the instruction following SUMP will be at 1024   Therefore  the displacement byte of the instruction will be the relative offset  0123y   01024    21    In other words  an SUMP with a displacement of OFEy would be a  one instruction infinite loop     SJMP              PC    2   PC       PC    rel 
6.                    90  5 3 3  Preparaci  n de aca o                    dias 90  a iy as      e eet oed sh eredi a ates 90  3 5  Conclusiones    ree tbe e Hed e Leiva dee tarius sen e dece i eed 9   ATIC KOS ep RD                             M    1   Resultados experimentales    cedet eet one ote eben ated HE e eben   1 1  PACT MOM A                1 1  A1 2   Arranque del convertidor a media                                                                                     Al l    1 3   Arranque del convertidor a plena Catga     ooonccnnnconoccconcnnonnconccnonccconocnna corn ncnn nono Al 3  AT 4s Rizado de laantenssdados unes densi teo bud diia Al 5    1 5   Funci  n Tensi  n Comente   1 5  A1 6   Perturbaciones de                                              Al 7  PDT Conclusiones                      1 9  A Codigo del programas  ue                                    eue               AS   M anal de pr  cticas        tto ads      1    A3 1   Utilizaci  n del programa PrOVIEWIZ                 1       2   Utilizaci  n del programa dia di   A3 10  A3 3   Descripci  n de los Jumpers de configuraci  n                  sse A3 13  A3 4   Situaci  n de los Jumpers de configuraci  n                     esses A3 15  A3 5   Realizaci  n de un cable de comunicaciones                       sss A3 21        Mejora del programa  uade tec orti rl eec tne p   elei yere acie ee hein A4 1  As T mtroduc ELON sasn en eee      atenta cete ee Tamia sea E alata   4 1  AAD Codigo del programai ad
7.                 Chi  2 00V    10Jul 2003  911 60   10 50 20    Figura   1 6  Intensidad y tensi  n en el arranque a plena carga     Como se pueden observar en las gr  ficas de la tensi  n e intensidad de arranque son  muy parecidas a la gr  fica de tensi  n e intensidad obtenida en el laboratorio     La gr  fica obtenida en el laboratorio se puede observar que una vez estabilizado el  arranque  se obtiene una tensi  n en el canal 2 de unos 18 4 V  obtenida mediante un  mult  metro  es pr  cticamente igual que la tensi  n simulada  tambi  n que el tiempo de  estabilizaci  n  tanto en la sefial obtenida en el laboratorio como en la simulaci  n es de  unos 25 mseg  Tambi  n el sobrepico del arranque es pr  cticamente igual     En cuanto a la intensidad pasa lo mismo que en el caso anterior  Ha aumentado en  relaci  n a la carga       1 4 9  Anexo 1  Resultados experimentales    Control mediante Linealizaci  n Entrada Salida       1 4   Rizado de la intensidad     La siguiente gr  fica  figura A1 7  presenta el rizado de la corriente donde se puede  ver la frecuencia de conmutaci  n que son unos 140 useg  unos 7 kHz             Tek Ejec  Ll   Disparado  I Em                 lA  192mV         100mV                          t       10Jul 2003        38 1600ms 11 41 24    Figura   1 7  Rizado de la corriente     A1 5   Funci  n Tensi  n corriente     Tek Deten           Convertidor apagado       1  4  4  4     n    4   SI 5 00V     2 soomv   P40 0ms    Chl    1 50    10jul 2003   11
8.                Percentage of Amplifiers     96       Percentage of Amplifiers     96                                                    0 0   5  4  3  2  1 0 1 2 3 4 5  5  4  3  2  1 0 1 2 3 4 5             Temperature Coefficient     uV   C          Temperature Coefficient     uV  C  Figure 7 Figure 8    t Data at high and low temperatures are applicable only within the rated operating free air temperature ranges of the various devices        vy TEXAS  INSTRUMENTS    POST OFFICE BOX 655303    DALLAS  TEXAS 75265 31    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    Percentage of Amplifiers     96              ljo  Input Bias and Input Offset Currents     pA       TYPICAL CHARACTERISTICS    DISTRIBUTION OF TLC2274 INPUT OFFSET  VOLTAGE TEMPERATURE COEFFICIENTT    128 Amplifiers From  2 Wafer Lots   Vpp   2 5 V   N Package   TA   25  C to 125  C                                                  5  4  3  2  1 0 1 2 3 4 5               Temperature Coefficient     uV   C    Figure 9    INPUT BIAS AND INPUT OFFSET                   VS  FREE AIR TEMPERATURE    Vpp    2 5 V  Vic 0  Vo 0   Rs 2500                                        p        0 HA     25 45 65 85 105 125    TA   Free Air Temperature       C    Figure 11    Percentage of Amplifiers     96    DISTRIBUTION OF TLC2274 INPUT OFFSET  VOLTAGE TEMPERATURE COEFFICIENTt    128 Amplifiers From  2 Wafer Lots   Vpp   2 5 V   N Package   TA   25  C
9.          1000 0000 rel  address                         Semiconductor Group 241    SIEMENS Instruction Set       SUBB A   lt src byte gt     Function     Description     Example     Subtract with borrow    SUBB subtracts the indicated variable and the carry flag together from the  accumulator  leaving the result in the accumulator  SUBB sets the carry  borrow   flag if a borrow is needed for bit 7  and clears C otherwise   If C was set before  executing a SUBB instruction  this indicates that a borrow was needed for the  previous step in a multiple precision subtraction  so the carry is subtracted from the  accumulator along with the source operand   AC is set if a borrow is needed for bit  3  and cleared otherwise  OV is set if a borrow is needed into bit 6 but not into bit 7   or into bit 7 but not bit 6     When subtracting signed integers OV indicates a negative number produced when  a negative value is subtracted from a positive value  or a positive result when a  positive number is subtracted from a negative number     The source operand allows four addressing modes  register  direct  register   indirect  or immediate     The accumulator holds           11001001 p   register 2 holds 544  01010100p   and  the carry flag is set  The instruction    SUBB A2    will leave the value 744  01110100p  in the accumulator  with the carry flag and AC  cleared but OV set     Notice that O0C9y minus 544 is 75 4  The difference between this and the above  result is due to the  borrow 
10.          54  7 2 1 3 Baud Rates of Serial Channel 0                                     54  7 2 1 4 New Baud Rate Generator for Serial Channel 0                        58  fire  Oel IO THO T           tae dab echec aC c HA Re dice Sos aur to qi rod 61  7 2 2 1 Operating Modes of Serial Interface 1                                61    Semiconductor Group 5    SIEMENS 80C517 80C537       Table of Contents Page  7 2 2 2 Multiprocessor Communication Feature                              63  7 2 2 3 Baud Rates of Serial                1                                    63  7 2 2 4 New Baud Rate Generator for Serial Channel 1                        64  7 2 3 Detailed Description of the Operating Modes                          66  7 2 3 1 Mode 0  Synchronous Mode  Serial Interface 0                         66  7 2 3 2 Mode 1 Mode B  8 Bit UART  Serial Interfaces 0 and 1                   67  7 2 3 3 Mode 2  9 Bit UART  Serial Interface 0                               68  7 2 3 4 Mode 3   Mode A  9 Bit UART  Serial Interfaces 0        1                  68  7 3        and mMer D cuca ie rec AE OA we mec E a e rele as 76  Poole Mode uos    cut sodes ate Pos S enr dta pL      owt eae 79  Sur MOOG a Pure eR DE Fco bud le ate roo cbr dta Ded ontario a wat an  80  LS Mode 2 OS duce paa ate bu Poo S ein dta ORAL uos eara awit ane 81  KIA ModE d csi res          el ae tit le ba Poo Sar       awit ata 82  7 4 IA E A                             Erbe Sc aca M e ce Mod 83  7 4 1 Function and C
11.          EE 68 83 8D F8 A4 2    FE 22 C2 D1 C2 DS EE 38 E7                8   97 02 D1 D2 DS 12 81 C6 EC 38 E7 85 B2 D1 12 81                     CE 12 81  1 38 D1 83 12 81 C6 30 05 83 12 81 CE    AB      Boose        22 BC 88 GE BE 88 32 EF 8D F8 84 28 D2 26 FF AD               Figura A3 18  Opciones de los puertos del PC     En la siguiente figura tenemos las opciones de velocidad de transferencia del  programa desde el PC hasta el microcontrolador     PRACTICA HEX   Hex For W95 98 NT   0 80Beta  lol xj    File Edit View   Tools Help    D zc   4 Read Alt L    008000  82 XE Alt     8088018  FF Write Alt 5  668626  FF                        008030  FF ae  888050  FF xecute  668656  FF Autoexec           668676  FF  888888  FF        Port              1  1  1  888868  FF   Quit Autoexec     1  1  1       008098  FF MEE  808800  FF Move dir under  00ff to  8000  For Keil C   8888B8  FF Terminal       Figura A3 19 Opciones de velocidad de transmisi  n     A242 21  Anexo 3  Manual de pr  cticas     Control mediante Linealizaci  n Entrada Salida    A3 3   Descripci  n de los Jumpers de configuraci  n     JP8 JP7    321  321 JP11 JP9 JP12  JP10       1  1    1  2            1  4            JP6    JP5       Figura A3 20  Placa Altair     JP1    Si este conector est   cerrado en las bornas BAT puede conectarse una bater  a de    NiCa de 3 6 voltios  Esta se recargar   autom  ticamente cuando la placa est    alimentada  Si est   abierto en las bornas BAT se podr   conectar una pila de
12.       1  de 0 04  tolerancia  1   4        B1008 END _ de carb  n 100        1  de  0 04  tolerancia  V4        B1009 por du de carb  n 140        1  de 0 04  tolerancia  1   4         Resistencia cer  mica 0 25      1  de  tolerancia  6 W     Resistencia cer  mica 47      5  de 0 45  tolerancia  12 W    B1012 Resistencia cer  mica 68      5  de 0 45  tolerancia  12 W     B2000       Condensador de poli  ster de  nF    0 12  B2001       Condensador de poli  ster de 2 2 nF    033  B2002       Condensador de poli  ster de 10 nF    0 14  B2003       Condensador de poli  ster de 100 nF            0 I8  B2100       Condensador de poli  ster de 1 F    024                        B2200       Condensadorcer  mico22yWF __  05  B2300       Condensador electrol  tico 22 pF  50 V        0 08    2303       Condensador de papel de 100 uF  50 V        0 12  B3000       Z  calo torneado DIP100T 8 pins    136  B3001       Z  calo torneado DIPIOOT 14 pins    1 53     2 Amplificadores Operacionales     4 Amplificadores Operacionales     4 Puertas Nand    B4200 u Circuito integrado 7805  0 51       NN    Presupuesto    c    ejeje    c    c       72    Control mediante Linealizaci  n Entrada Salida    B5000    B7000  B7100  B7201    u    Potenci  metro multivuelta  ajuste horizontal  20        10  de tolerancia  1   4 W    Cable de cobre di  metro 0 6 mm  PIRESOLD    Diodo led     Conector macho cable plano 10 pines   Cable plano 10 pines   Placa de topos 150x80 mm       Presupuesto    73    Contr
13.       10       Output high voltage Vout 2 4     V              800 pA     port 0 in external bus mode  0 9           V            80 pA    ALE  PSEN  RO   Logic 0 input current TL     10     70        Vin   0 45 V   ports 1  2  3  4  5  6   Input low current to RESET Lio     10    100        Vin   0 45 V  for reset  Input low current  XTAL2               15 uA          0 45 V  Input low current              20        Vin   0 45 V   OWE  PE SWD   Logical 1 to 0 transition current           65     650            2    ports 1  2  3  4  5  6   Input leakage current 1         1 uA 10 45  lt  Vin  lt             port 0  EA  ports 7  8   Pin capacitance        10 pF      1 MHz          25  C   Power supply current   Active mode  12 MHz 9 Icc _ 40 mA         5  9  Idle mode  12 MHz 9   15 mA          5 V     Slow down mode  12 MHz 9   15 mA  Vcc 25      Active mode  16 MHz 9 Icc   52 3 mA         5       Idle mode  16 MHz    19 mA         5 ys  Slow down mode  16MHz        19 mA  Vcc  5V      Power down Mode PD d 50 pA         2   5 5 V9  Notes see page 311   Semiconductor Group 309    SIEMENS SAB 80C517 80C537       A D Converter Characteristics          5      10         0 V                          5                Vss   0 2 V  VintaREF   VintanD  gt  1V  T a 0 to 70   C for the SAB 80C517 83C537  T a   40 to 85   C for the SAB 80C517 83C537 T40 875                      Parameter Symbol Limit values Unit Test  Condition   min  typ  max    Analog input voltage V ANPUT VAGND    VARE
14.       25  C          Gain Bandwidth Product     MHz                                                                                                                            0 1 2 3 4 5 6 8  IVDD     Supply Voltage     V  Figure 55  PHASE MARGIN  vs  LOAD CAPACITANCE  75              5            25      Rnull   100 Q   60      Rnull   50 Q  o  a 45    z      S     Rnull  2024      30   NT                10ko  15    0     Npp   10 100 1000 10000    CL   Load Capacitance     pF    Figure 57    Gain Margin     dB    Gain Bandwidth Product   MHz    GAIN BANDWIDTH PRODUCTt  vs  FREE AIR TEMPERATURE    Vpp 5V  f  10 kHz  RL   10       CL   100 pF                      1 8       1 6                            1 4   75  50  25 0 25 50 75 100 125  TA     Free Air Temperature             Figure 56    GAIN MARGIN  vs  LOAD CAPACITANCE                                                                                                 10 100 1000 10000  CL   Load Capacitance     pF    Figure 58    t Data at high and low temperatures are applicable only within the rated operating free air temperature ranges of the various devices       35 TEXAS  INSTRUMENTS    44 POST OFFICE BOX 655303 9 DALLAS  TEXAS 75265       TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    APPLICATION INFORMATION    macromodel information    Macromodel information provided was derived using Microsim Parts     the model generation software u
15.       5  25  C 4 25 4 65  Io  1mA  9  8     5 1  8  5    VOM  voltage    VICR voltage range    Full range t  3    VIC    0  lo   i    kid BEEN  pili  Maximum negative peak output Vic  0 lp   500 uA  ner   di 5                           ecf  o f o fo  in     Gommoremode                            0 fo    capacitance    zo  Oloseddoopoutputimpedance  r2 1 MHz  Ay 10  Vic   5 V to 2 7 V  25  C 75 80 75 80   CMRR Common mode rejection ratio   je  500   250    0 0  85 500   Fulrengs    k Supply voltage rejection ratio VDD   2 2 V to  8 V  80 95 80 95      S   t Vo   0 No load MEN p   8              upply curren                   Fullrang       Full range is 0     to 70 C   NOTE 4  Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA   150  C extrapolated  to TA   25  C using the Arrhenius equation and assuming an activation energy of 0 96 eV       5 TEXAS  INSTRUMENTS    POST OFFICE BOX 655303    DALLAS  TEXAS 75265 11    Vom     o          Large signal differential voltage  VD amplification          TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TLC2274C operating characteristics at specified free air temperature  Vpp     5 V    TLC2274C TLC2274AC             us id    SI te at unit         2 3 V        10        male  vs                    100 pF E 17  range  y Equivalentinput  f 10Hz            M         ME  i nose vollage    IA d ao  
16.       8888608  FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF                   8888B8  FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF                   6686C6  FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF                   8888D8  FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF                   8888bE8  FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF                   8888F8  FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF                        008100            FE      FF EF 8D F8 A4      C5 F8 CC AS 2    FC                5   008110  EE 68 63 8D      A4 2C FE 22 C2 D1 C2 DS EE 38 E7                8   668126  87 D2 D1 D2 DS 12 81 C6 EC 36 E7 85 B2 D1 12 81           B8   668136  CE 12 81 41 38 01 03 12 81 C6 38 DS 03 12 81 CE    AB      HE  888150  22 BC 66 GE BE 88 32 EF 8D F8 84 26 D2 26 FF AD                   E  y        Verifies the memory of the CI    Figura A3 15  Programa a partir de la posici  n 8000 hexadecimal     A240 21  Anexo 3  Manual de pr  cticas     Control mediante Linealizaci  n Entrada Salida    Una vez posicionados en la posici  n 8000 hexadecimal y haber comprobado que el  programa est   situado correctamente solo falta escribir el programa en la RAM del  microcontrolador que est   a partir de la posici  n 8000 en hexadecimal  Para la escritura  utilizaremos el comando write de las herramientas     PRACTICA HEX   Hex For W95 98 NT   0 80Beta       File Edit    View    Tools    Help       82 81 D6 FF FF FF FF FF FF FF FF 02 82 06 FF FF  FF FF F
17.       L   1 82           0  0  L0            B    B   Una vez encontradas las diferencias entre las matrices solo tenemos que realizar el  diagrama de bloques mediante Simulink        Para la obtenci  n de una variable del circuito  como por ejemplo la tensi  n en el    condensador de salida  que ser  a la tensi  n de salida del convertidor Boost con filtro de  salida  ser   la siguiente     2 R  dV       c2   1 ace 1      Vo   1 83   dt Rt Re JC                            Integrator        Gain    tension de  condesador2    AM RARC2F C2           corriente de la bobina 2    Figura 1 18  Simulaci  n de la tensi  n de salida     De esta manera se generan unos bloques donde tendremos las tensiones en los  condensadores y las corrientes en las bobinas     Una vez obtenidas las tensiones y corrientes de nuestro convertidor solo tenemos  que aplicar la formula de Linealizaci  n Entrada Salida      ILI  IL2  k Vo  Vo deseada     1 84         POS    Ciclo de trabajo        Una vez obtenido el ciclo de trabajo se compara este valor con una sefial rampa  entre los valores 0 y 1  esta comparaci  n generar   una sefial cuadrada que cambiar   segun  el ciclo de trabajo     3l  Memoria Descriptiva     Control mediante Linealizaci  n Entrada Salida      3  t7  b j  Duty cicle        EA Ege  5  m                  gt   Producto Saturacion s      0 y1 Comparador                    2  1 0   Division WI                    Saturacion  0y2  11  12          Voz             ref1    Figura 1 19  Sim
18.       PINS     DIM       A MAX       A MIN                      4040047 D 10 96    All linear dimensions are in inches  millimeters     This drawing is subject to change without notice    Body dimensions do not include mold flash or protrusion  not to exceed 0 006  0 15    Falls within JEDEC MS 012       46    Ji TEXAS    INSTRUMENTS    POST OFFICE BOX 655303 9 DALLAS  TEXAS 75265    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    MECHANICAL DATA  FK  S CQCC N    LEADLESS CERAMIC CHIP CARRIER  28 TERMINAL SHOWN       NO  OF    TERMINALS     MIN MAX    18 17 16 15 14 13 12             0 307 0 358   7 80   9 09     0 406 0 458   10 31     11 63     20       28       0 495 0 560   12 58     14 22        44       0 495 0 560    52  12 58     14 22        0 850 0 858    ge  21 6   21 8                 1 047   1 063   26 6     27 0                                26 27 28 1 2 3 4    0 020  0 51  0 080  2 03   0 010  0 25  4 i 0 064  1 63              0 020  0 51     0 010  0 25                    0 055  1 40   0 045  1 14  QUE      0 035  0 89     0 028  0 71   gt  P 0 045  1 14   0 022  0 54  0 035  0 89                       0 050  1 27              4040140 D 10 96       NOTES  A  Alllinear dimensions are in inches  millimeters     B  This drawing is subject to change without notice    C  This package can be hermetically sealed with a metal lid   D  The terminals are gold plated    E      Falls with
19.       TLC2274AID TLC2274AIN m  25mV   TLC22741D TLC2274IN TLC2274IPW     40 C to 125  C  o50uV   TLC2274AQD  25      TLC2274QD      950uV   TLC2274AMD TLC2274AMFK   TLC2274AMJ   TLC2274AMN   55  C to 125 25      TLC2274MD TLC2274MFK TLC2274MJ TLC2274MN  tTheD packages are available taped and reeled  Add R suffix to device type  e g   TLC2274CDR      t The PW package is available taped and reeled      Chips are tested at 25  C        TLC2272       D  P  OR PW PACKAGE TLC2274 EIU  d D  J  N  OR PW PACKAGE         VIEW   TOP VIEW   TOP VIEW   15 51  10UT    1 81  Vpp  23922  1IN   2 7    20UT Se  1IN     6    2IN  T   AIN  Vop  GND    4 5   2IN  1IN      4       NC       VDD  16    Vpp   NC 15   NC  2IN       3IN      __    Ir or   22 292    N X e 0    NC     No internal connection         35 TEXAS  INSTRUMENTS    2 POST OFFICE BOX 655303 9 DALLAS  TEXAS 75265      505559        391440 LSOd    59254 SVXAL    SVTIVG    I    SVXAL          SLNANNYLSN    equivalent schematic  each amplifier     IN                                                                                                                                                                                      VDD            i        Q3 Q6 Q9 Q12 914 Q16  0    o e             H gt        gt           e C1 e        lt  R5      Q13 Q15 Q17                     DI al IH       pi Y     e    eq  Q2 Q5 Q7 Q8 Q10 a11  R3 R4 R1 R2  e e e e e e e    ACTUAL DEVICE COMPONENT COUNTT    COMPONENT TLC2272 TLC2274    ees  gt     cap
20.      Function  Add   Description    ADD adds the byte variable indicated to the accumulator  leaving the result in the  accumulator  The carry and auxiliary carry flags are set  respectively  if there is a  carry out of bit 7 or bit 3  and cleared otherwise  When adding unsigned integers   the carry flag indicates an overflow occurred   OV is set if there is a carry out of bit 6 but not out of bit 7  or a carry out of bit 7 but  not out of bit 6  otherwise OV is cleared  When adding signed integers  OV indicates  a negative number produced as the sum of two positive operands  or a positive sum  from two negative operands   Four source operand addressing modes are allowed  register  direct  register   indirect  or immediate    Example  The accumulator holds           1100001 1p  and register O holds            101010108    The instruction  ADD A RO  will leave 6Dy  011011016  in the accumulator with the AC flag cleared and both  the carry flag and OV set to 1    ADD A Rn   Operation  ADD   A   lt   A     Rn    Encoding  9 20  1 0     irrr   Bytes  1   Cycles  1    ADD A direct    Operation     Encoding     Bytes   Cycles     ADD        lt   A     direct           00010101 direct address                         2  1    Semiconductor Group 179    SIEMENS Instruction Set       ADD A  ORi    Operation  ADD        lt   A      Ri                     Encoding  001010111  Bytes  1  Cycles  1    ADD A   data    Operation  ADD        lt   A     data                               Encodin
21.      TL2 Timer 2  Low Byte OCC 00y  T2CON Timer 2 Control Register 0C8y   00                    1  Bit addressable special function registers  2  This special function register is listed repeatedly since some bits of it also belong to other functional blocks   3    means that the value is indeterminate and the location is reserved    Semiconductor Group 285    SIEMENS    SAB 80C517 80C537                         Table 1  Special Function Register  cont d   Address Register Name Register Contents  after Reset  Ports PO Port 0 80y   FF   P1 Port 1 90     FF   P2 Port 2 0A0     FF   P3 Port 3 0B0y   FF   P4 Port 4     8   FF   P5 Port 5     8   FF   P6 Port 6                   P7 Port 7  Analog Digital Input ODB   XXy    P8 Port 8  Analog Digital Input  4 bit  ODDy         gt   Pow Sav  PCON Power Control Register 87  004  Modes  Serial ADCONO 2  A D Converter Control Reg  0D8y   00   Channels PCON 2  Power Control Register 87H 004  SOBUF Serial Channel 0 Buffer Reg  99h XXy 9  SOCON Serial Channel 0 Control Reg   984   00   SORELL    Serial Channel 0  Reload Reg    OAAH 0D9y  low byte  SORELH 4   Serial Channel 0  Reload Reg    OBAH XXXX XX1 18   high byte  S1BUF Serial Channel 1 Buffer Reg   9C  0XX4 3   S1CON Serial Channel 1 Control Reg  9By 0X00 000g 3   S1REL Serial Channel 1 Reload Reg    9Dy 00H  low byte  S1RELH    Serial Channel 1  Reload Reg    OBB   XXXX XX1 1p 3   high byte  Timer 0  TCON Timer Control Register 88  00    Timer 1 THO Timer 0  High Byte 8     00H  TH1
22.      bit variable specified is complemented  A bit which had been a one is changed  to zero and vice versa  No other flags are affected  CPL can operate on the carry or  any directly addressable bit     Note     When this instruction is used to modify an output pin  the value used as the original  data will be read from the output data latch  not the input pin     Example  Port 1 has previously been written with 5Dy  010111015   The instruction  sequence    CPL P1 1  CPL   1 2    will leave the port set to 5      01011011p                                                CPL C  Operation  CPL    bit   lt     C   Encoding  10110011  Bytes  1  Cycles  1  CPL bit  Operation  CPL    C         bit   Encoding  1011 0010 bit address  Bytes  2  Cycles  1    Semiconductor Group 194    SIEMENS Instruction Set       DA A    Function     Description     Example     Decimal adjust accumulator for addition    DA A adjusts the eight bit value in the accumulator resulting from the earlier  addition of two variables  each in packed BCD format   producing two four bit digits   Any ADD or ADDC instruction may have been used to perform the addition     If accumulator bits 3 0 are greater than nine  xxxx1010 xxxx1111   or if the AC flag  is one  six is added to the accumulator producing the proper BCD digit in the low    order nibble  This internal addition would set the carry flag if a carry out of the low   order four bit field propagated through all high order bits  but it would not clear the  c
23.      para la pr  xima  conversi  n     Guardar la intensidad 2    I2b       C  lculo del ciclo de trabajo     monte           duty   T                   Comienza la pr  xima  conversi  n entre 0 y 2 5    A4  6 7  Anexo 4  Mejora del programa     Control mediante Linealizaci  n Entrada Salida    Interrupci  n del Timer 2     Inicio Interrupci  n  Del Timer 2   Puesta a cero desborde del  Timer 2  Puesta a cero del  Watch Dog Timer      Qu   valor tiene la  variable Duty                      duty  gt  11045 duty  lt 110 us    El ciclo ser   fijo   ser   del 50    63 us     Calculo y asignaci  n del  nuevo ciclo de trabajo  para el pr  ximo periodo     Fin de Interrupci  n    A4 7 7  Anexo 4  Mejora del programa     A5   MANUALES T  CNICOS     A5 1   MICROCONTROLADOR  SAB 80C537     SIEMENS       M icrocomputer Components    SAB 80C517 80C537  8 Bit CM OS Single Chip M icrocontroller    User s M anual 05 94    Edition 05 95    This edition was realized using the software  system FrameMaker      Published by Siemens AG   Bereich Halbleiter  Marketing   Kommunikation  Balanstrafe 73   81541 M  nchen       Siemens AG 1995   All Rights Reserved     Attention please     As far as patents or other rights of third par   ties are concerned  liability is only assumed  for components  not for applications  pro   cesses and circuits implemented within com   ponents or assemblies     The information describes the type of compo   nent and shall not be considered as assured  characteristics  
24.     5      5      5      5      5      5      5  C  5  C  5  C    t Full range is    40     to 125  C for Q level part     55  C to 125  C for M level part   NOTE 4  Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA   150  C extrapolated  to TA   25  C using the Arrhenius equation and assuming an activation energy of 0 96 eV          35 TEXAS  INSTRUMENTS    POST OFFICE BOX 655303    DALLAS  TEXAS 75265 27    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TLC2274Q and TLC2274M electrical characteristics at specified free air temperature  Vpp   5 V   unless otherwise noted   continued     TLC2274Q  TLC2274AQ   PARAMETER TEST CONDITIONS Tat TLC2274M TLC2274AM UNIT       DD upply curren     U  o loa  Ea ange AER      T Full range is    40     to 125  C for Q level part     55     to 125  C for M level part   TLC2274Q and TLC2274M operating characteristics at specified free air temperature   TLC2274Q  TLC2274AQ   PARAMETER TEST CONDITIONS TLC2274M TLC2274AM UNIT  Slew rate at unity           2 3 V  Ri   10        Equivalent input f  10 Hz           noise voltage f 1kHz    E  VN PP  equivalent input  noise current  THD N distortion plus RL   10 kQ   Ay 10      Ay 10   0 00496 0 004   nolge cid   Ay   100   0 03  0 03   Maximum VO PP  246 V  Ay  1  BOM output swing HEC PEE  S 25  C  bandwidth        10              100 pF  Ay     1  To
25.     Delay    2 Osc  Periodes Mec                  21            3  Port     e e o Pin  Q            v  Vss  Input Data  1 zl   read pin  3     MCS01824  Figure 7 3    Output Driver Circiut of Ports 1 through 6    The described activating and deactivating of the four different transistors translates into four states  the pins can be         input low state  IL   p2 active only   input high state  IH    steady output high state  SOH   p2 and p3 active  forced output high state  FOH   p1  p2 and p3 active   output low state  OL   n1 active    Semiconductor Group 43    SIEMENS On Chip Peripheral Components       If a pin is used as input and a low level is applied  it will be in IL state  if a high level is applied  it will  switch to IH state  If the latch is loaded with  0   the pin will be in OL state  If the latch holds a  0   and is loaded with  1   the pin will enter FOH state for two cycles and then switch to SOH state  If  the latch holds a  1  and is reloaded with a  1  no state change will occur     At the beginning of power on reset the pins will be in IL state  latch is set to  1   voltage level on pin  is below of the trip point of p3   Depending on the voltage level and load applied to the pin  it will  remain in this state or will switch to IH  2 SOH  state    If it is used as output  the weak pull up p2 will pull the voltage level at the pin above p3 s trip point  after some time and p3 will turn on and provide a strong  1   Note  however  that if the load exceeds
26.     For most applications in noisy environments  components external to the chip are used to give  warning of a power failure or a turn off of the power supply  These circuits could be used to control  the PE SWD pin  The possible steps to go into power down mode could then be as follows         Apower fail signal forces the controller to go into a high priority interrupt routine  This interrupt  routine saves the actual program status  At the same time pin PE SWD is pulled low by the  power fail signal        Finally the controller enters power down mode by executing the relevant double instruction  sequence     7 7 1 Idle Mode    In idle mode the oscillator of the SAB 80C517 continues to run  but the CPU is gated off from the  clock signal  However  the interrupt system  the serial channels  the A D converter  the oscillator  watchdog  the division multiplication unit and all timers  except for the watchdog timer  are further  provided with the clock  The CPU status is preserved in its entirety  the stack pointer  program  counter  program status word  accumulator  and all other registers maintain their data during idle  mode     The reduction of power consumption  which can be achieved by this feature  depends on the  number of peripherals running  If all timers are stopped and the A D converter and the division   multiplication unit are not running  maximum power reduction can be achieved  This state is also  the test condition for the idle Icc  see the DC characteristics
27.     P6 4  P6 3  P6 2  P6 1  P6 0  OWE  P5 0  P5 1  P5 2    5 3    5 4    5 5  P5 6    5 7  Vss   P0 7  PO 6  P0 5  P0 4  P0 3  P0 2    MCP00775       Pin Configuration   P LCC 84     Semiconductor Group 268       SIEMENS SAB 80C517 80C537          E  3 o   gt  lt  eS  LJ M Qa       ac Ele                         8 8                          RR BR BR KKK         CO  C  OQ                Z zz oc     oO  OG               ET  ESHSEREEEITDEIRCEEERPEEBEP EEEPFE SEHE IT        CC4 INT2 P1 4   7 7          VAGND  N C  VAREF  N C  N C   N C  N C     CC3 INT6 P1 3 N C     CC2 INT5 P1 2 N C   CC1 INT4 P1 1 RESET  CCO INT3 P1 0 P4 7 CM7  Vos P4 6 CM6  Vec P4 5 CM5  XTAL2 P4 4 CM4  XTAL1 P4 3 CM3  P2 0 PE SWD  P2 1 P4 2 CM2  p2 2 SAB 80C517 80C537 P4 1 CMf  P2 3 P4 0 CMO  P2 4 Voc  P2 5 Ves  P2 6 RO  P2 7 P8 3  PSEN P8 2  ALE P8 1  EA P8 0  N C  P6 7  P0 0 P6 6  P0 1 P6 5  N C  N C   N C  N C   P0 2 N C        LJ LJ LJ LJ EJ EJ EJ EJ EJ LJ LJ LJ LJ LJ LJ LH HI ELI LJ  no             ley        OH IO                                LO iO      iO           10         6 d  O     a amp  a aa cnmaaaanaanmraoaaonran  Ae SOR OSS NNI DR                 aO                       lt   88858828  622                        Ta MCP02150             Pin Configuration   P MQFP 100 2     Semiconductor Group 269    SIEMENS    SAB 80C517 80C537       Pin Definitions and Functions       Symbol Pin Number                 P LCC 84    P MQFP 100 2    Function       P4 0  P4 7 1 3  5 9    64   66   68   72        
28.     Port 4   is a bidirectional I O port with internal  pull up resistors  Port 4 pins that have  1 s written to them are pulled high by  the internal pull up resistors  and in that  state can be used as inputs  As inputs   port 4 pins being externally pulled low  will source current    in the DC  characteristics  because of the internal  pull up resistors    This port also serves alternate compare  functions  The secondary functions are  assigned to the pins of port 4 as  follows                P4 0      CM1  P4 1      CM2  P4 2   Compare Channel 2         Compare Channel 0   P4 2       CM3  P4 3   Compare Channel 3   P4 4     P4 5     P4 6      Compare Channel 1        CM4  P4 4   Compare Channel 4      CM5  P4 5   Compare Channel 5      CM6  P4 6   Compare Channel 6      CM7  P4 7   Compare Channel 7       PE SWD 4          67          Power saving modes enable    Start Watchdog Timer   A low level on this pin allows the  software to enter the power down  idle  and slow down mode  In case the low  level is also seen during reset  the  watchdog timer function is off on  default    Use of the software controlled power  saving modes is blocked  when this pin  is held on high level  A high level during  reset performs an automatic start of the  watchdog timer immediately after reset   When left unconnected this pin is pulled  high by a weak internal pull up resistor             Input  O   Output    Semiconductor Group    270    SIEMENS    SAB 80C517 80C537       Pin Definition
29.     SIEMENS    SAB 80C517 80C537       AC Characteristics            5      10   Vsgs 0V    TA        to 70      for the SAB 80C517 16 83C537 16  T a   40 to 85   C for the SAB 80C517 16 83C537 16 T40 85        for port 0  ALE and PSEN outputs   100pF  C  for all outputs   80 pF                                                                       Parameter Symbol Limit Values Unit  16 MHz Clock Variable Clock  1 t ci cL   3 5 MHz to 16 MHz  min   max  min  max   Program Memory Characteristics  ALE pulse width fLHLL 85   2tc  cL 740    ns  Address setup to ALE tAVLL 33     tcLcL     30     ns  Address hold after ALE  ti   Ax 28                35     ns  ALE to valid instr  in tLLIV   150 P      100 jns  ALE to PSEN        38   tere    25   ns  PSEN pulse width            153            35 l  ns  PSEN to valid instr  in          88                100   ns  Input instruction hold tPXIX 0     0     ns  after PSEN  Input instruction float    tpxiz     43     tec      20 ns  after PSEN  Address valid after IPXAV 55              8     ns  PSEN   Address to valid instr  in  tayiy     198 0           115 ins  Address float to PSEN   tAzp   0     0     ns                           Interfacing the SAB 80C517 to devices with float times up to 55 ns is permissible     This limited bus contention will not cause any damage to port 0 drivers     Semiconductor Group    315    SIEMENS    SAB 80C517 80C537       AC Characteristics  cont d                                                        
30.     The programmability of the internal reference voltages allows adjusting the internal voltage range  to the range of the external analog input voltage or it may be used to increase the resolution of the  converted analog input voltage by starting a second conversion with a compressed internal  reference voltage range close to the previously measured analog value  Figures 7 30 and 7 31  illustrate these applications     Semiconductor Group 89    SIEMENS On Chip Peripheral Components          5 00 V ANO AN1 AN         4 375 V  3 125 V  1 25 V                  0 625 V  OV  VAGND MCS01841             Figure 7 30    Adjusting the Internal Reference Voltages to the Range of the External Analog Input  Voltages       First Conversion Second Conversion   BO E E           diet 35 125 V  VINTAREF  1 875 V  VINTAGND   OV  Vacno MCS01842  Sample Sample  Time Time             Figure 7 31  Increasing the Resolution by a Second Conversion    Semiconductor Group 90    SIEMENS On Chip Peripheral Components       The external reference voltage supply need only be applied when the A D converter is used   otherwise the pins Varer               may be left unconnected  The reference voltage supply has to  meet some requirements concerning the level of Vagnp and Varer and the output impedance of the  supply voltage  see also  A D Converter Characteristics  in the data sheet          The voltage Varer must meet the following specification   Varer   Voc       5 96       The voltage Vagnp must meet
31.     Watchdog Reset and Watchdog Status Flag    If the software fails to clear the watchdog in time  an internally generated watchdog reset is entered  at the counter state 7FFCy  The duration of the reset signal then depends on the prescaler  selection  either 8 cycles or 128 cycles   This internal reset differs from an external one only in so  far as the watchdog timer is not disabled and bit WDTS  watchdog timer status  bit 6 in special  function register IPO  is set  Figure 7 62 shows a block diagram of all reset requests in the SAB  80C517 and the function of the watchdog status flags  The WDTS flag is a flip flop  which is set by  a watchdog timer reset and cleared by an external HW reset  Bit WDTS allows the software to  examine from which source the reset was activated  The watchdog timer status flag can also be  cleared by software     Figure 7 60  Special Function Register IENO                     OADy OACY OABY          OAS     8      0A8y   EAL   WDT   Eso              IENO    These bits are not used in controlling the fail safe mechanisms                                         Bit Function    WDT Watchdog timer refresh flag   Set to initiate a refresh of the watchdog timer  Must be set directly before  SWDT is set to prevent an unintentional refresh of the watchdog timer              Figure 7 61  Special Function Register IEN1             OBDy 0BCy                   0B94 OB8y  SWDT   EX5   EADC       OB8y IEN1                                        These bits are
32.    25  C Q        e  N    Ay   10             5 V to 2 7 V   Vo 0V  Rs   50       Vpp   4 4 V to 16 V   Vic   Vpp 2  No load    t Full range is     40  C to 125  C   NOTE 4  Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA   150  C extrapolated  to TA   25  C using the Arrhenius equation and assuming an activation energy of 0 96 eV     vy TEXAS  INSTRUMENTS    POST OFFICE BOX 655303    DALLAS  TEXAS 75265 15       TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TLC22721 operating characteristics at specified free air temperature  Vpp     5 V    TLC2272AI  MIN MAX    Slew rate at Vo    2 3 V   unity gain CL   100 pF    Equivalent input    noise voltage    1 kHz A    Vn    Peak to peak f 0 1 Hz to 1 Hz  VNPP equivalent input  noise voltage    0 1 Hz to 10 Hz  noise current  Total harmonic Vo   2 3 V 0 0011   THD N distortion plus RL   10       0 004   noise f  20 kHz 0 03   Gain bandwidth f 210 kHz   product        100 pF    Maximum  Bom output swing  bandwidth    Ay 2 1   Settling time Step   2 3 V to 2 3 V         VO PP    4 6 V   RL 10k0  CL   100 pF    RL   10        CL   100 pF  Phase margin at  om unity gain    Gain margin    T Full range is    40  C to 125  C           Ji TEXAS    INSTRUMENTS    16 POST OFFICE BOX 655303 9 DALLAS  TEXAS 75265    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    S
33.    250         an        3 6U 178mAn    Control mediante Linealizaci  n Entrada Salida    A247 21    Anexo 3  Manual de pr  cticas     Control mediante Linealizaci  n Entrada Salida    Figura A3 23  Situaci  n de los jumpers JP1 y BAT         ERHEU                                                 0000000000000                 en     METTI SE    Figura A3 24  Situaci  n de los puertos     Anexo 3  Manual de pr  cticas        85232 8    RS232 1  COMUNICACION 9600 b 20000      2 8 21    Control mediante Linealizaci  n Entrada Salida       bd     gt                     a I inore  Wind               LNOLA    inOZ1       NIZ                          na27sna    2              Eto      ang     712                     lt     5 9                    lt     9139      n de los jumpers JP9  JP10  JP11 y JP12     Figura A3 25  Situaci      2 9 21    Anexo 3  Manual de pr  cticas     Control mediante Linealizaci  n Entrada Salida          85884885    PA    i  t  i SIVRELRE Betzee  8    BUS DE DATOS 00   07  CON DIRECCIONCSMLTIPLEXADAS                  dede sra  SrzPs    c 94                        Eel kad had Bed ead ole ll fl 58144145    M A A m m       99r9v02 v    arcada  lt             39453483    cama  anana                  Be SS     55 FRAIA SIMIGA                 SHRM yer                   S onisat esanimar  amp                              CPU 12 18 r        Figura A3 26  Vista general del circuito     A220 21  Anexo 3  Manual de pr  cticas     Control mediante Linealizaci  n Entrada
34.    4 1  A4 3   Diagrama de                             4 4  As Man  ales TECOS tata    5 1   Microcontrolador SAB 806 337  ote dt TA de dos da odas  A82 SOPA DDG2Z TIN                    O            eese O A A             IV    1   MEMORIA DESCRIPTIVA     Control mediante Linealizaci  n Entrada Salida    1 1   Introducci  n     En la actualidad el n  mero de equipos electr  nicos que requieren ser alimentados  en una alta gama de tensiones continuas  con potencias cada vez m  s elevadas  ha  producido mucho inter  s en investigaci  n y mejora en sistemas de alimentaci  n basados en  convertidores conmutados     En un convertidor DC DC  la tensi  n de entrada en continua es convertida a tensi  n  de salida con una mayor o menor magnitud  posiblemente con polaridad opuesta  o bien  aislado las referencias de entrada y masa de salida  Usualmente el control requerido  es casi  siempre disefiado para producir una tensi  n de salida bien regulada  a  n en presencia de  variaciones en la tensi  n de entrada y en la corriente en la carga     El bloque de control es una parte integral de cualquier sistema de procesado de  potencia  Una eficiencia alta es esencial en cualquier aplicaci  n cuya raz  n principal es la  de conservaci  n de la energ  a  La eficiencia de un convertidor  teniendo en cuenta la  potencia de salida      y la potencia de entrada Py  es     Pour  e e 1 1  fois  1 1     IN    El rendimiento es siempre inferior a la unidad  debido a la presencia de p  rdidas de  p
35.    5 2   Condiciones de los materiales     En este apartado se explican las caracter  sticas t  cnicas exigibles de los  componentes presentes en la ejecuci  n de la obra     5 2 1   Especificaciones el  ctricas   5 2 1 1   Placas de circuito impreso     Todos los circuitos se realizar  n sobre placas de fibra de vidrio de sensibilidad  positiva  en diferentes medidas  utiliz  ndose una sola          o de doble cara seg  n el dise  o     5 2 1 2   Conductores el  ctricos     Los conductores utilizados ser  n internos a excepci  n de la alimentaci  n y de la  interconexi  n entre placas que reunir  n condiciones especiales requeridas para los  conductores expuestos al exterior  Cabe comentar que la obra tendr   lugar dentro de un  laboratorio o una industria  Los cables de interconexi  n entre placas y de la fuente de  alimentaci  n est  n constituidos por un cable unipolar debidamente aislado con una secci  n  de 1 5 mm        5 2 1 3   Componentes pasivos    Los componentes pasivos utilizados en el proyecto son los disponibles  tecnol  gicamente en el momento de la realizaci  n del proyecto  Las caracter  sticas t  cnicas  se han introducido en el Anexo   5 2 1 4   Componentes activos    Los componentes pasivos utilizados en el proyecto son los disponibles    tecnol  gicamente en el momento de la realizaci  n del proyecto  Las caracter  sticas t  cnicas  se han introducido en el Anexo     83  Pliego de condiciones    Control mediante Linealizaci  n Entrada Salida    5 2 1 5 
36.    Detalles de la ejecuci  n      Programa de obras     Dado el amplio abanico de detalles tratados si se presentan dudas a la hora de poner  en marcha el proyecto lo m  s recomendable es ponerse en contacto con el proyectista     81  Pliego de condiciones    Control mediante Linealizaci  n Entrada Salida    5 1 2   Descripci  n general del montaje     Las diferentes partes que componen la obra a realizar por parte del instalador   poniendo especial   nfasis en el orden establecido  no efectuando una actividad concreta sin  haber realizado previamente la anterior       Encargo y compra de los componentes necesarios      Construcci  n de los inductores      Fabricaci  n de la placa de circuito impreso      Montaje de los componentes en la placa      Montaje de la caja      Ajuste y comprobaci  n de los par  metros para el buen funcionamiento     Interconexi  n de los diferentes m  dulos      Puesta en marcha del equipo      Controles de calidad y fiabilidad      Mantenimiento para el correcto funcionamiento del sistema     Todas las partes que en conjunto forman la obra de este proyecto  tendr  n que ser  ejecutadas por montadores calificados  someti  ndose a las normas de la Comunidad  Aut  noma Europea  pa  ses o incluso comunidades internacionales que se tengan previstas  para este tipo de montajes  no haci  ndose responsable el proyectista de los desperfectos  ocasionados por su incumplimiento     82  Pliego de condiciones    Control mediante Linealizaci  n Entrada Salida 
37.    Inverting large signal pulse response                                                    mL    42  43  Voltage follower large signal pulse response 44  45    Voltage follower small signal pulse response    Vn Equivalent input noise voltage vs Frequency  Noise voltage  referred to input  Over a 10 second period    48  49  50  51    Inverting small signal pulse response   46  47    Integrated noise voltage  THD N Total harmonic distortion plus noise    Gain bandwidth product      Supply voltage  vs Free air temperature    vs Load capacitance  vs Frequency 25  26    NOTE  For all graphs where Vpp   5 V  all loads are referenced to 2 5 V     52  53  54    om Phase margin    aja go A A                O al            i TEXAS  INSTRUMENTS    POST OFFICE BOX 655303    DALLAS  TEXAS 75265 29    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL                                                                                                                                                    OPERATIONAL AMPLIFIERS  SLOS190C   FEBRUARY 1997     REVISED JULY 2000  TYPICAL CHARACTERISTICS  DISTRIBUTION OF TLC2272 DISTRIBUTION OF TLC2272  INPUT OFFSET VOLTAGE INPUT OFFSET VOLTAGE  20  de 891 Amplifiers From 891 Amplifiers From  2 Water Lots 2 Wafer Lots  Vpp   2 5 V VDD   5V    250          25  C     TA   25     S  qs A    15       o                    lt  10    10 5         5  9 8  5 5 a   gt      0   1 6  1 2  08  0 4 0 04 0 8 12 1 6  1 6  1 2  08  04 0 04 08 12 1 6  Vio   Input Offset
38.    JP9    JP10    JP11    JP12    Este Jumper dispone de una se  al de masa y la se  al  RO  Esta se  al se denomina  reset output  Es puesta a nivel bajo por el sistema cada vez que se reinicializa el  microcontrolador ya sea por fallo de corriente  perro guardian o por reset  Esta  se  al puede ser util para reinicializar electr  nica externa     Estos jumpers permiten configurar la placa para que sobre ella haya una memoria  EPROM  27c256  o bien una memoria EEPROM  X28c256   Si estos est  n en la  configuraci  n por defecto en la placa base se debe instalar una EPROM en caso  contrario puede instalarse una EEPROM o bien una SRAM  Ambas pueden ser  programadas externamente a trav  s del bus de datos y direcciones     Sirve para conectar y desconectar la resistencia terminadora de 120 O de la red  RS485  Seg  n las normas que definen las redes RS485  los extremos de las mismas  deben tener unas resistencias terminadoras de 120 Q  Normalmente este puente  permanece cerrado     Cerrando este puente se conecta el puerto RS485 al puerto standart de la familia 51   UART 0   Si se cierra este puente se deber   de abrir el JP      ya que el puerto solo  se puede configurar para RS232 o bien RS485     Conecta el puerto RS232c 1 a la UART 1 del microcontrolador  Por defecto est    cerrado ya que este puerto es el utilizado para depurar     Cerrando este puente se conecta el puerto RS232c 0 al puerto serie standart de la  familia 51  patillas P3 0 y P3 1  normalmente este puerto est 
39.    Terms of delivery and rights to change design  reserved     For questions on technology  delivery and  prices please contact the Semiconductor  Group Offices in Germany or the Siemens  Companies and Representatives worldwide   see address list      Due to technical requirements components  may contain dangerous substances  For in   formation on the types in question please  contact your nearest Siemens Office  Semi   conductor Group     Siemens AG is an approved CECC manufac   turer     Packing    Please use the recycling operators known to  you  We can also help you     get in touch with  your nearest sales office  By agreement we  will take packing material back  if it is sorted   You must bear the costs of transport     For packing material that is returned to us un   sorted or which we are not obliged to accept   we shall have to invoice you for any costs in   curred     Components used in life support devices  or systems must be expressly authorized  for such purpose     Critical components of the Semiconductor  Group of Siemens AG  may only be used in  life support devices or systems    with the ex   press written approval of the Semiconductor  Group of Siemens AG     1 Acritical component is a component used  in a life support device or system whose  failure can reasonably be expected to  cause the failure of that life support de   vice or system  or to affect its safety or ef   fectiveness of that device or system     2 Life support devices or systems are in   tend
40.    Unit  CCU   CCH1 Comp  Capture Reg  1  High Byte  0       004  CCH2 Comp  Capture Reg  2  High Byte  0C5   004  CCH3 Comp  Capture Reg      High Byte  0C7   004  CCH4 Comp  Capture Reg  4  High Byte  OCF y 004  CCL1 Comp  Capture Reg  1  Low Byte  0C2  004  CCL2 Comp  Capture Reg  2  Low Byte  0C4   004  CCL3 Comp  Capture Reg  3  Low Byte  0C6   004  CCL4 Comp  Capture Reg  4  Low Byte  OCE   004  CMEN Compare Enable Register 0F6y 004  CMHO Compare Register 0  High Byte  003   004  CMH1 Compare Register 1  High Byte  005   00   CMH2 Compare Register 2  High Byte  007           CMH3 Compare Register 3  High Byte  0       004  CMH4 Compare Register 4  High Byte  OE5y 00   CMH5 Compare Register 5  High Byte  0  7   004  CMH6 Compare Register 6  High Byte    0F3y 004  CMH7 Compare Register 7  High Byte  OF5   004  CMLO Compare Register 0  Low Byte  0D2   00   CML1 Compare Register 1  Low Byte  004  004  CML2 Compare Register 2  Low Byte  006  004  CML3 Compare Register 3  Low Byte   0E2y 00   CML4 Compare Register 4  Low Byte  0  4   004  CML5 Compare Register 5  Low Byte OE6  004  CML6 Compare Register 6  Low Byte  OF2  004  CML7 Compare Register 7  Low Byte 0F4y 004  CMSEL Compare Input Select OF7y 004  CRCH Com  Rel  Capt  Reg  High Byte  OCBy 00   CRCL Com  Rel  Capt  Reg  Low Byte  0       004  CTCON Com  Timer Control Reg  0E1y OXXX 0000     CTRELH Com  Timer Rel  Reg   High Byte  ODF  004  CTRELL Com  Timer Rel  Reg   Low Byte  ODEy 004  TH2 Timer 2  High Byte OCDy    
41.    io  i  CS       1 3     Memoria Descriptiva     Control mediante Linealizaci  n Entrada Salida  La ecuaci  n del bucle interior izquierdo se define   di                  1 4     De donde obtenemos      relaci  n        dV  1     i               Vin L  i R     1 5     dt       dt L Ll          Combinando las ecuaciones  1 2  y  1 5  obtenemos     RR R  pal de  V  Vin  1 6   dt R Ro R  R             La ecuaci  n del bucle interior izquierdo se define    Vo  ic Ro  i R 0  1 7     Combinando las ecuaciones  1 3  y  1 7  obtenemos     dV  R             lt  bi        ys  1 8   dt R R   R R   Resolviendo el sistema con las ecuaciones   di         i    Vc Yin  dt            L             Re  i  1 Ve  dt         CER IG                 1 6  y  1 8        Memoria Descriptiva     Control mediante Linealizaci  n Entrada Salida    1 4 1 1 2   Topolog  a  OFF  del convertidor Buck o reductor     il        10  an ee aa RE  _ Z gt              WAN    Rc io H   ia f D D R Vo     e    I    Figura 1 4  Convertidor Buck en topolog  a    OFF      Una vez que ha transcurrido el tiempo DT  el interruptor pasa a estar abierto y el  diodo polarizado en directa  dejando pasar corriente  En este periodo es la bobina la que se  comporta como una fuente de alimentaci  n suministrando corriente a la carga  decreciendo    la corriente en la bobina de forma lineal mientras el interruptor permanezca abierto ya que  la derivada de la corriente en la bobina es negativa     Para que la variaci  n de corriente
42.   2 2    2 2    2 2    2 2  0 70  40 125  40 125  55 125            35 TEXAS  INSTRUMENTS    4 POST OFFICE BOX 655303 9 DALLAS  TEXAS 75265    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TLC2272C electrical characteristics at specified free air temperature  Vpp   5 V  unless otherwise  noted     TLC2272C TLC2272AC  PARAMETER TEST CONDITIONS UNIT  TYP MAX       TYP                300 2500  300 950           Full range 3000 1500    Temperature 25  C  ovio coefficient of input to 70  C uV   C  offset voltage  Input offset voltage   0  Vop   2 5V   long term drift   0  Rs   50 Q 25  C 0 002 0 002 uV mo   see Note 4   af        ff t   IO Inputof  set curren Ful ange p10 F100           1         i t      Input bias curren Full range      o    25   0104 0104 3  y     Rs  50 Q Vio    lt 5mv       owa      642  ICR voltage range      Viol   5m        Full range m T    TERT  250 15      Dem 25  C 4 85 4 93 4 85 4 93  oe oe Ful rangs 185  voltage      25     425    1m       Full range 425  pan  5  C         25        50     2 on   0 09 0 15 0 09 0 15  y Low level output Vic 2 5V  lot   5000   Fame 0 15  dio ze   o 15     Vic   2 5 V      5mA     OL  57         rs    E  a       Large signal   10 kat 25  C EA    Ayp differential voltage Vic  2 5V  ull ange    HOM Vo 1Vto4V  fid Differential input 25  C 1012   resistance  Common mode input 25  C 1012  resistance           Bis iip  i EE       capacitance 
43.   4 bit prescaler     SAB 80C517 identification  mark  BB  or later   16 bit reload  counter gated timer mode and overflow interrupt request       Compare timer with fos  2 input clock  8 bit prescaler  16 bit reload and overflow interrupt  request       Compare  reload  capture register array consisting of four different kinds of registers   one 16 bit compare reload capture register   three 16 bit compare capture registers   one 16 bit compare capture register with additional  concurrent compare  feature   eight 16 bit compare registers with timer overflow controlled loading     Altogether the register array may control up to 21 output lines and can request up to 7 independent  interrupts     For brevity  in the following text all double byte compare  compare capture or compare reload   capture registers are called CMx  x   0    7   CCx  x   0    4  or CRC register  respectively     The block diagram in figure 7 33 shows the general configuration of the CCU  All CCx registers and  the CRC register are exclusively assigned to timer 2  Each of the eight compare registers CMO  through CM7 can either be assigned to timer 2 or to the faster compare timer  e g  to provide up to  8 PWM channels  The assignment of the CMx registers   which can be done individually for every  single register   is combined with an automatic selection of one of the two possible compare modes     Semiconductor Group 93    SIEMENS On Chip Peripheral Components       Port 5  port 4 and seven lines of por
44.   8     ns  PSEN    Address to valid        302 0            115 jns  instruction in  Address float to PSEN   tazpL            ns                           Interfacing the        80C517 to devices with float times up to 75 ns is permissible   This limited bus contention will not cause any damage to port 0 drivers     Semiconductor Group 313    SIEMENS    SAB 80C517 80C537       AC Characteristics  cont d                                                                                                     Parameter Symbol Limit Values Unit  12 MHz Clock Variable Clock  1 f        23 5 MHzto 12 MHz  min max  min  max   External Data Memory Characteristics  RD pulse width   RLRH 400          100    ns  WR pulse width tWLWH 400             100    ns  Address hold after ALE  fLLAX2 132     2tctc_    30    ns  RD to valid instr in   RLDV     252                  165  ns  Data hold after RD tRHDX 0     0     ns  Data float after RD   RHDZ   97     214     70 Ins  ALE to valid data in fLDV   517    8 tere  150  ns  Address to valid data       tAypy   585   9 tereL    165 ins  ALE to WR or RD fLLWL 200  300 3       50         50  ns  WR or RD high to ALE           43 123 tere      40 tec   40 ns  high  Address valid to WR fAVWL 203     4fcici    130    ns  Data valid to WR tavwx 33                50     ns  transition  Data setup before WR taywx 433     7        150    ns  Data hold after WR tWHOX 33              50     ns  Address float after RD   az   0   0 ns  Semiconductor Group 314
45.   Actualizaci  n  del ciclo de  trabajo       Figura 2 21  Diagrama de Flujo del control     En el microcontrolador se debe de implementar el programa que realice el diagrama  de flujo anterior  La frecuencia en la cual el programa ha de obtener la salida de la se  al  cuadrada actualizada es de 7 kHz  Por tanto el tiempo m  ximo de ejecuci  n es de 142  useg  Teniendo en cuenta que el reloj est   oscilando a una frecuencia de 12 MHz y que  cada instrucci  n requiere como m  nimo  instrucciones sencillas  12 ciclos  el programa no  puede tener mas de 142 instrucciones sencillas     Las instrucciones complejas como la multiplicaci  n y la divisi  n en este  microcontrolador para variables enteras sin signo tardan     Divisi  n enteros sin signo     24 useg     Multiplicaci  n enteros sin signo  gt  16 useg     54  Memoria de c  lculo    Control mediante Linealizaci  n Entrada Salida    Para la realizaci  n del sistema de control necesitaremos unas variables del circuito  de potencia que ir  n variando a lo largo del tiempo  seg  n la carga y la variaci  n de la  fuente de alimentaci  n     El sistema de control mediante Linealizaci  n Entrada Salida no es muy dificil de  implementar  mediante el microcontrolador 80C537  ya que este microcontrolador permite  la realizaci  n de divisiones y multiplicaciones mediante hardware  tambi  n gracias al  programa proview32 nos permite programarlo mediante c  digo C  mucho mas f  cil de  implementar que si fuera en c  digo ensamblador  E
46.   CJNE compares the first operand to the second operand and performs a jump if they are not  equal  CY is set if the first operand is less than the second operand  otherwise it is cleared   Comparisons can be made between A and directly addressable bytes in internal data memory  or an immediate value and either A  a register in the selected register bank  or a register  indirectly addressable byte of the internal RAM    DJNZ decrements the source operand and returns the result to the operand  A jump is  performed if the result is not zero  The source operand of the DJNZ instruction may be any  directly addressable byte in the internal data memory  Either direct or register addressing may  be used to address the source operand     Interrupt Returns    RETI transfers control as RET does  but additionally enables interrupts of the current priority  level     Semiconductor Group 175    SIEMENS Instruction Set       9 3 Instruction Definitions    All 111 instructions of the SAB 80C517 can essentially be condensed to 54 basic operations  in the  following alphabetically ordered according to the operation mnemonic section                                         Instruction Flag Instruction Flag       OV AC CY OV AC   ADD X X X SETBC 1   ADDC X X X CLR C 0   SUBB X X X CPL C X   MUL 0 X ANL C bit X   DIV 0 X ANL C  bit X   DA X ORL C bit X   RRC X ORL C bit X   RLC X MOV C pit X   CJNE X                            A brief example of how the instruction might be used is given as well 
47.   Mode 3  Timer counter 0 is configured as one 8 bit timer  timer counter 1 in this mode holds  its count     External inputs INTO and INT1 can be programmed to function as a gate for timer counters 0  and 1 to facilitate pulse width measurements     Semiconductor Group 291    SIEMENS SAB 80C517 80C537                              KG CTCON             T T2CON    TT PIER No input selected  timer 2 stops                         fosc   12           gt  Timer function        P17 T2       Counter function  external  qo input ue at pin P1 7 T2                                        Prescaler Timer 2 input selection  ARIS   gt     P1 5 T2EX     SYNC EXF2 Interrupt  Request  Reload  1  available only in SAB 80C517 80C537    MCBO1474  identification mark  BB  or later shaded areas are not used for this function             Figure 6  Block Diagram of Timer 2    Semiconductor Group 292    SIEMENS SAB 80C517 80C537             fosc  2    3 Bit Prescaler     16   32   64   128    Compare Timer           Control  CTCON           ae    gt  To Compare    Circuitry    To Interrupt  CTF OP  i Circuitry    Overflow         MCB00783       Figure 7  Block Diagram of the Compare Timer    Semiconductor Group 293       SIEMENS SAB 80C517 80C537          BEEN   Overflow            Compare Timer    pU    Output  Comparator Circuit    P4 x CMx  Compare Latch       CTF              MCA00784       Compare Register CMx  Figure 8    Compare Mode 0 with Registers CMO to CM7    Semiconductor Group 294       
48.   No flags are affected     RO contains the address 204  The accumulator holds the value 364  00110110p    Internal RAM location 20y holds the value 75 4  01110101 p   The instruction    XCHD               will leave RAM location 204 holding the value 764  01110110p  and 35H   00110101 p  in the accumulator     XCHD   A3 0       Ri 3 0        110110111                Semiconductor Group 247    SIEMENS Instruction Set       XRL  lt dest byte gt    lt src byte gt     Function     Description     Example     Logical Exclusive OR for byte variables    XRL performs the bitwise logical Exclusive OR operation between the indicated  variables  storing the results in the destination  No flags are affected     The two operands allow six addressing mode combinations  When the destination  is the accumulator  the source can use register  direct  register indirect  or  immediate addressing  when the destination is a direct address  the source can be  accumulator or immediate data     Note     When this instruction is used to modify an output port  the value used as the original  port data will be read from the output data latch  notthe input pins     If the accumulator holds           110000116  and register 0 holds            10101010B  then the instruction    XRL A RO  will leave the accumulator holding the value 694  01101001 p      When the destination is a directly addressed byte  this instruction can complement  combinations of bits in any RAM location or hardware register  The patt
49.   TERREA A TEE 132  FOO  a do Flag iua                               132  7 7 Power Saving Modes       toa ex A RR AU NOS AUR ERREUR 134  7 7 1   MEMO         136  7 7 2 Power Down Mode                                             139  7 7 3  Slow Down                                                       140  7 8 Fail Save Mechanisms sull ull ke eee ee mS ee mn RC 141    Semiconductor Group 6    SIEMENS 80C517 80C537       Table of Contents Page  7 8 4 Programmable Watchdog Timer                                   141  7 8 2 Oscillator Watchdog    ac ir dd awed ar a eee Cs 146  7 9 Oscillator and Clock Circuit a oud e ER AAA xS 148  LID  System Glock                                          cna ES 150  8 Interrupl  Syslem xcci e ELE a 152  8 1 Interrupt St LIB EDT Oso uc    PE Pd Ee      RE               OR          op aha 152  8 2 Priority Level Structure                                           162  8 3 How Interrupts are Handled                                       164  8 4 Extemal          auo S Ea E ER E e SEXE data   3 167  8 5 Response TIME on ded ac ay ao oe an paw a we EN 168  9 Instruction Set irre dno vec pene x ERES IPIE ERE ETE 169  9 1 Addressi  g MOdeS  xu   crga aw Ra CR t SS xa Dc ul dr eC Owes RACER CR 169  9 2 Introduction to the Instruction Set                                  171  9 2 1 Data                  eR e La E oss Gores OUR a               171  9 2 2     ACUNMCUC sss wa                ed ex pde wes ux Aa ERE Oa DN qu 172  9 23s EOJ esn e NEM SN o
50.   TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TLC2274Q and TLC2274M electrical characteristics at specified free air temperature  Vpp     5 V     unless otherwise noted     PARAMETER       Input offset voltage    Temperature coefficient of  input offset voltage    TEST CONDITIONS            Input offset voltage long   term drift  see Note 4     Input offset current  118 Input bias current    Common mode input    voltage range As   9045    VICR    lo   20 uA    Maximum positive peak lo    200 pA    VOM  output voltage    lo   1 mA  Vic  0     Maximum negative peak Vic   0     Vom  output voltage    Vic  9     Large signal differential  voltage amplification    Differential input resistance  Common mode input  resistance      Common  mode input f  10 kHz   capacitance  Closed loop output f 1MHz  Ay 10  impedance    Common mode rejection Vic   5V to 2 7 V  ratio Vo  0     AVD    L 1MQ    CMRR    Supply voltage rejection    KSVR     ratio  AVDD  AVIO  Vic   0     No load           lt  5mv    lo   50 uA    lo   500 uA    lo  5mA    L 10kQ    N package    Rs   500              2 2 V to  8 V        TLC22740  TLC2274AQ   Tat TLC2274M TLC2274AM UNIT    Full range 3000      25  C       Parc  os   os                 mo             wo          Full range E  3 5      25C   485 493 4 85 4 93  Full range 4 85    2  2  2  2  2    o  as       4 99     4 91    2       aec       5 a  PENNE EE    5            5        
51.   Z  calos torneados tipo D LL     Todos los circuitos integrados que aparecen dispondr  n de un z  calo para su uni  n  con la placa de circuito impreso  Estos z  calos son del tipo D I L     Dual IN Line   de  contacto mecanizado de gran cantidad y de perfil bajo  formados por contactos internos de  tipo cuatro dedos  3 5 um  de esta  o sobre una base de cobre berilio niquelado y con un  recubrimiento de carb  n esta  ado  Tambi  n est  n amoldados mediante un poli  ster negro  con fibra de vidrio ign  fuga  sus caracter  sticas se encuentran en la tabla 6 1                                Margen de temperaturas  55  C a 125  C  Resistencia de contacto 10mQ  maximo   Resistencia de aislamiento 10  Q  Fuerza de inserci  n por contacto 120 gr  Fuerza de extracci  n por contacto 80 gr  Fuerza de retenci  n por contacto 400 gr  m  nimo        Tabla 6 1  Caracter  sticas t  cnicas de los z  calos tipo D I L     5 2 1 6   Reglamento Electrot  cnico de Baja Tensi  n     Todos los aspectos t  cnicos de la instalaci  n que  directa o indirectamente  est  n  incluidos en el Reglamento Electrot  cnico de Baja Tensi  n  tendr  n que cumplir lo que se  disponga en las respectivas normas     Las instrucciones m  s importantes relacionadas con la realizaci  n del proyecto son  las siguientes                 017 Instalaciones interiores o receptoras   Prescripciones de car  cter general                 029 Instalaciones a pequefias tensiones                030 Instalaciones a tensiones espe
52.   cerrado salvo que se  configure el equipo para RS485 con lo que estar   abierto     A244 21  Anexo 3  Manual de pr  cticas     Control mediante Linealizaci  n Entrada Salida    A3 3 1   Situaci  n de los Jumpers de configuraci  n     74HCTBS  7T4HCT00       BuS_CPU lt     Figura A3 21  Situaci  n de los jumpers JP7 y 1  8     A245 21  Anexo 3  Manual de pr  cticas       n Entrada Salida    izaci    Control mediante Lineal    1u8ny    1080   Qno gt  gt           Or nMVNHWROKee eee                    50 255308    L 18082108  Hug WO                   2422     9493    SHIJI    94232      422  5    2422    0x15   LHII   boxed   80H22    1500       CHI   ZNUD   942   CINY      422  GNU    HI          CEHI   CENU    ZWD  ZNO           CENU     80H22 CONU                       CLLNU     an  lt OLNU gt     bid   6NU gt    CONU        10n0  12 5   X3215    62044101      22791NI     2227S1NI        amp  227v ANI   8227   INI      406    906    sau   cv 00  2     506 gt      zau gt      100   l    gau                                               Xna sna           JP2  JP3  JP4  JP5 y JP6     jumpers    22  Situaci  n de los    A3    Figura      2 6 21    Anexo 3  Manual de pr  cticas     11       FRSE 1 ASE 1  FASE 2  TIERRA  Du 12        c2      C4 cs      C6      10uF 220pF 22      220pF 220pF 22      22             CONDENSADORES CERAMICOS DE 22 pF ANTIPARASITARIOS  TOR4    21  TOR2    5  EN PATILLA 1 DEL JUMPER DEBE HABER 3 7U  TORS    1N4148 P4  TOR4       ESO          01    BRT1 
53.   gt   o  x  85 0   75  50  25 0 25 50 75 100 125 0 1 2 3 4 5 6 7 8  TA     Free Air Temperature          IVpp       Supply Voltage     V  Figure 35 Figure 36  TLC2274 TLC2272  SUPPLY                  SUPPLY                   vs vs  SUPPLY VOLTAGE FREE AIR TEMPERATURE  6  Vo 0  No Load  4 8   lt   lt   E E  1 1  t t     36        25                       E   TA   55 C    8 24 e  a TA   125  C i  a a  2     1 2  0 0  0 1 2 3 4 5 6 7 8  75  50  25 0 25 50 75 100 125  IVpp      Supply Voltage     V TA     Free Air Temperature       C  Figure 37 Figure 38    t Data at high and low temperatures are applicable only within the rated operating free air temperature ranges of the various devices          5 TEXAS  INSTRUMENTS    POST OFFICE BOX 655303    DALLAS  TEXAS 75265 39    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    I pp   Supply Current   mA    SR   Slew Rate     V us    TYPICAL CHARACTERISTICS  TLC2274 SLEW RATE  SUPPLY                  vs  vs LOAD CAPACITANCE    FREE AIR TEMPERATURE                                                    o      gt                cc  5               7   0   75  50  25 0 25 50 75 100 125  TA   Free Air Temperature       C  Figure 39  SLEW             vs  FREE AIR TEMPERATURE   gt   E                  5  5       5          2                                75  50  25 0 25 50 75 100 125  TA   Free Air Temperature     C    Figure 41                                     
54.   if a 0 to 1 transition is programmed to the port pin  i e  a  1  is programmed to the port  latch which contained a  0   The extra pullup can drive a similar current as the pulldown  FET n1  This provides a fast transition of the logic levels at the pin     Semiconductor Group 42    SIEMENS On Chip Peripheral Components           The pullup FET p2 is of p channel type  It is always activated when a  1  is in the port latch   thus providing the logic high output level  This pullup FET sources a much lower current than  p1  therefore the pin may also be tied to ground  e g  when used as input with logic low input  level        The pullup FET p3 is of p channel type  It is only activated if the voltage at the port pin is  higher than approximately 1 0 to 1 5 V  This provides an additional pullup current if a logic high  level shall be output at the pin  and the voltage is not forced lower than approximately 1 0 to  1 5 V   However  this transistor is turned off if the pin is driven to a logic low level  e g  when  used as input  In this configuration only the weak pullup FET p2 is active  which sources the  current           in addition  the pullup FET p3 is activated  a higher current can be sourced  M    Thus  an additional power consumption can be avoided if port pins are used as inputs with a  low level applied  However  the driving cabability is stronger if a logic high level is output                                                                                        
55.   multiplication with a result greater than OFFFFy                    SLR Shift direction bit    When set  shift right is performed  SLR   0 selects shift left operation   SC 4 Shift counter       3 When preset with 00000p  normalizing is selected  After operation SC 0  SC 2 to SC 4 contain the number of normalizing shifts performed  When set  SC 1 with a value z 0  shift operation is started  The number of shifts  SC 0 performed is determined by the count written to SC 0 to SC 4        Semiconductor Group 130    SIEMENS On Chip Peripheral Components       Normalizing    Normalizing is done on an integer variable stored in MDO  least significant byte  to MD3  most  significant byte   This feature is mainly meant to support applications where floating point arithmetic  is used   To normalize  means  that all reading zeroes of an integer variable in registers MDO to         are removed by shift left operations  The whole operation is completed when the MSB  most  significant bit  contains a  1        To select a normalize operation  the five bit field ARCON O to ARCON 4 must be cleared  That  means  a write to ARCON instruction with the value XXXO 0000g starts the operation     After normalizing  bits ARCON 0 to ARCON 4 contain the number of shift left operations which were  done  This number may further on be used as an exponent  The maximum number of shifts in a  normalize operation is 31     25     1   The operation takes six machine cycles at most  that means  6 microsecond
56.   n     La resoluci  n a tramos de las ecuaciones de estado y la posterior combinaci  n de  las mismas dan lugar a la expresi  n     x T    H x 0    F x 0  7 0    g z 0   k  1 58     Donde aparece el vector de estado al final de un intervalo de conmutaci  n  cualquiera en funci  n de las variables de estado y el control al principio del intervalo  Si la  frecuencia de conmutaci  n es suficientemente elevada respecto a las frecuencias propias  del sistema podemos escribir que     Hg F   H A    A  i     2 4   1 59   g  H B  B  Vin              1   e               Para el convertidor Boost de la siguiente figura   ill id ilz    Control       Figura 1 17  Convertidor Boost con filtro de salida     26  Memoria Descriptiva     Control mediante Linealizaci  n Entrada Salida    Las matrices de  1 56  y  1 57  son                    0 eq  0 es 0 TL  0 ES  den den den den  0 0   0 E 0   0  am 1 PES 1    0 L 0  Lh   0 L 0  L  den den den den  0 0 d  1 0 0 A  E  1 60     C            C  ROC       L          il   den  gt      6       E          on Vc2  den   LyL     Si consideramos el caso m  s sencillo sin acoplo magn  tico   M   0   las ecuaciones  siguientes se pueden escribir como                                       T _ B  1     0 0  T T LC  L   o E 0  1          C  C      0  0 es 1 DE      LUC   L L    A 2      un  0 0     1  L C   L C  RC    0 0 0 0        1 61   T  L  0  T  0  k  Vi     7     5  0  0 0    0 al  27    Memoria Descriptiva     Control mediante Linealizaci  n Entrada
57.   that are located on addresses dividable by eight  are bit addressable  thus allowing  128 bit addressable locations within the SFR area     Since the SFR area is memory mapped  access to the special function registers is as easy as with  the internal RAM  and they may be processed with most instructions  In addition  if the special  functions are not used  some of them may be used as general scratch pad registers  Note  however   all SFRs can be accessed by direct addressing only     The special function registers are listed in the following tables where they are organized in  functional groups which refer to the functional blocks of the SAB 80C517  Block names and symbols  are listed in alphabetical order  Bit addressable special function registers are marked with a dot in  the fifth column  Special function registers with bits belonging to more then one functional block are  marked with an asterisk at the symbol name     Semiconductor Group 20    SIEMENS Memory Organization       Special Function Registers of the SAB 80C517                               Block Symbol Name Address   Contents  after Reset  CPU ACC Accumulator 0E0y   00H  B B Register 0F0y    00H  DPH Data Pointer  High Byte 83H 00H  DPL Data Pointer  Low Byte 82H 00H  DPSEL Data Pointer Select Register 92H XXXX X000p    PSW Program Status Word Register              00H  SP Stack Pointer 81H 07H  A D  ADCONO A D Converter Control Register 0   OD8j  00H  Converter ADCON1 A D Converter Control Register 1       
58.   the drive capability of p2  the pin might remain in the IL state and provide a weak  1  until the first  0 to 1 transition on the latch occurs  Until this the output level might stay below the trip point of the  external circuitry     The same is true if a pin is used as bidirectional line and the external circuitry is switched from  output to input when the pin is held at  0  and the load then exceeds the p2 drive capabilities        Port 0  in contrast to ports 1 through 6  is considered as  true  bidirectional  because the port 0 pins  float when configured as inputs  Thus  this port differs in not having internal pullups  The pullup FET  in the PO output driver  see figure 7 4 a  is used only when the port is emitting 1 s during the  external memory accesses  Otherwise  the pullup is always off  Consequently  PO lines that are  used as output port lines are open drain lines  Writing a  1  to th port latch leaves both output FETs  off and the pin floats  In that condition it can be used as high impedance input  If port 0 is configured  as general I O port and has to emit logic high level  1   external pullups are required        Addr   Data V     Control    Read  Latch    Pin                 501825                                 Figure 7 4 a   Port 0 Circuitry    Semiconductor Group 44    SIEMENS On Chip Peripheral Components       7 1 2 Port 0 and Port 2 used as Address Data Bus    As shown in figures 7 4 a  and 7 4 b   the output drivers of ports O and 2 can be switch
59.   total number of counts for        PWM cycle      200 for PWM channel 2     Toca is the actual compare register contents which just caused the interrupt                 1  the  variable  count determining the duty cycle of the PWM signal     The interrupt routine may be left when        Tccnext IS loaded to register CC2      the port latch is complemented and prepared for the next transition and      auser defined flag is set to mark that this PWM cycle is now completed     Semiconductor Group 257    SIEMENS Application Examples       The same calculation must be performed when register CC1 has had its match and has caused an  interrupt for PWM channel 1  But this is done independently from channel 2 since both channels  have their own interrupt request flags     When either of the two count values of Tecnex has been reached by timer 2  in our example   channel 1 is first  then the corresponding interrupt routine polls the user flag and is informed that a  new PWM cycle is to be generated  It therefore calculates the next compare value to                                Tecduty    where Tocauty may be a new value for the duty cycle calculated in another task of the program     10 1 2 Sine Wave Generation with a CMx Registers Compare Timer Configuration    The following example of a PWM generation demonstrates the use of some important features of  the SAB 80C517 s CCU         flexibly programmable compare timer with 16 bit reload and 8 selectable input clocks  fosc 2  to fosc
60.   zo Closed  loop output f 1MHz  Ay   10 25  C   impedance                                      rejection ratio VO 25V   Rs 500  Fulang                  Supply current Vo   2 5 V  No load    t Full range is 0     to 70  C    t Referenced to 0 V   NOTE 4  Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA   150  C extrapolated  to TA   25  C using the Arrhenius equation and assuming an activation energy of 0 96 eV      lt     a  a  ao e  eoo a  e    oe            5 TEXAS  INSTRUMENTS    POST OFFICE BOX 655303    DALLAS  TEXAS 75265 5    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TLC2272C operating characteristics at specified free air temperature  Vpp   5 V    TLC2272C TLC2272AC  PARAMETER TEST CONDITIONS TAT          MIN UNIT    Vo 2 0 5 V to 2 5 V   V us    Vn Equivalent input                nVAlHz    Slew rate at unity  gain    Peak to peak f20 1 Hzto 1 Hz  VNPP equivalent input   noise voltage f  0 1 Hz      10 Hz 25  C  fA VHz    Equivalent input  noise current    Total harmonic Vg spe sige eM               1  20 kHz  0 004  0 004   distortion plus noise      10 kot  L  0 0396 0 0396  Gain bandwidth f 10 kHz   product CL   100 pF   Maximum      Vo PP    2 V  Ay   1          output swing            bandwidth RL   10 kot  CL   100 pF    Ay   1   Settling time Step   0 5 V to 2 5 V    gt     RL   10          C    100 pFt     
61.  0 196  Settling time Step      2 3 V to 2 3 V  25  C  6 Phase margin at 25  C  m unit gain RL   10              100 pF   gt      Vop   5V  Total harmonic Vo    2 3 V  00056 0 0011   25  C  Gain bandwidth f   10 kHz      10       i      MH  RL   10 ko  T0001     t Full range is    40     to 125  C for Q level part     55     to 125  C for M level part           Ji TEXAS    INSTRUMENTS    28 POST OFFICE BOX 655303 9 DALLAS  TEXAS 75265    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TYPICAL CHARACTERISTICS    Table of Graphs    V Input offset voltage          10    9 vs Common mode voltage    1    um        avIO Input offset voltage temperature coefficient Distribution 7 10  l ip lio Input bias and input offset current vs Free air temperature 1    vs Supply voltage    Input voltage range vs Free air temperature    V               vs Supply voltage  los Short circuit output current      Free air temperature    Vo Output voltage vs Differential input voltage 22  23    vs Load resistance 24  AyD Large signal differential voltage amplification   vs Frequency 25  26  vs Free air temperature 27 28    CMRR Common mode rejection ratio iis Frequency   vs Free air temperature            vs Frequency 33  34   ksvR Supply voltage rejection ratio vs Free air temperature   vs Supply voltage 36  37  IDD Supply current vs Free air temperature 38  39  SR Slewrate vs Load capacitance   vs Free air temperature 
62.  1 2 el    convertidor se comporta como un Boost  elevando la tensi  n con respecto a la tensi  n de  entrada     15  Memoria Descriptiva     Control mediante Linealizaci  n Entrada Salida    1 4 3 1   Funcionamiento del convertidor Buck Boost o reductor elevador   Para el an  lisis de este convertidor es examinar la tensi  n en el condensador y la    corriente en la bobina es los diferentes estados en que se encuentra el interruptor  La  variaci  n de corriente y tensi  n en la bobina en r  gimen permanente debe de ser cero      t   ic    il  0        Figura 1 10  Intensidad en la bobina     Cuando el interruptor est   cerrado el diodo se polariza en inversa  no deja pasar  corriente  la corriente en la bobina aumenta linealmente almacenando energ  a para el  pr  ximo periodo de conmutaci  n  mientras el condensador se comporta como una fuente  suministrando energ  a a la carga     Cuando el interruptor est   abierto al no poder cambiar bruscamente la corriente que  pasa por la bobina y el diodo se polariza en directa  pasando corriente hacia la carga  en  este periodo el condensador almacena energ  a para luego devolverla a la carga en el  pr  ximo periodo de conmutaci  n     1 4 3 1 1   Topolog  a    ON    del convertidor Buck Boost                    Figura 1 11  Convertidor Buck Boost en topologia    ON        16  Memoria Descriptiva     Control mediante Linealizaci  n Entrada Salida    Cuando el interruptor est   cerrado y el diodo polarizado en inversa  la fuente de  a
63.  1 Vor  R      RR          Memoria Descriptiva     24    Control mediante Linealizaci  n Entrada Salida    1 4 4 2   Matrices del convertidor Boost con filtro de salida     A partir de las ecuaciones diferenciales  1 42   1 43   1 44  y  1 47  obtenemos la  matriz de la topolog  a    ON    siguiente                                           dii        Zn  0 0 0  i5    dt L  Vin    1     ER 0 0   C  0 Va L   dt  _    10          0 A  zn      R            1 zl R      i 0  dt L  R Ro JL  R  Ro J L                0 0 Ro           e 1 R4                                  Rt                Ye            1 54     A partir de las ecuaciones diferenciales  1 49   1 48   1 50  y  1 53  obtenemos la  matriz de la topologia    OFF    siguiente                                      mui  E R       iu   R     Ra e pe T 0 Iu  dt L  L L   Wo 2E  0 E 0 Vo   dt  _ C  C       R R  di   enel 1         Ra         1 zl R   1 i  dt L  L          L            1  e  C2 0 0 ER  ET         L dt        5 R                  e  B  L      0  1 55   0  0            B    25  Memoria Descriptiva     Control mediante Linealizaci  n Entrada Salida    1 5   Control mediante Linealizaci  n Entrada Salida     En el modo de conducci  n continua  un convertidor conmutado puede representarse  mediante dos ecuaciones diferenciales vectoriales lineales a tramos como sigue         Ayx 4 B  para 0     t     Ton  1 56         Ayx4 B  para       lt t lt T  1 57     Donde x es el vector de estado y T es el periodo de conmutaci
64.  12344  The instruction    LUMP               at location 01234 will load the program counter with 12344     Operation  LJMP          lt  addr15 0             Encoding  0000 0010 addr15   addr8 addr7                                                 Bytes   Cycles     Semiconductor Group 214    SIEMENS Instruction Set       MOV  lt dest byte gt    lt src byte gt   Function  Move byte variable    Description  The byte variable indicated by the second operand is copied into the location  specified by the first operand  The source byte is not affected  No other register or  flag is affected     This is by far the most flexible operation  Fifteen combinations of source and  destination addressing modes are allowed     Example  Internal RAM location 304 holds 404  The value of RAM location 404 is 104  The  data present at input port 1 is 11001010B  OCA     MOV RO   30H         lt            MOV A ERO  A lt  40H  MOV R1 A   R1  lt    40H  MOV B     1   B  lt   10H  MOV  R1 P1   RAM  40H   lt    OCAH  MOV P2 P1     2  lt                leaves the value 30y in register 0  40y in both the accumulator and register 1  10H  in register B  and OCAy  11001010p  both in RAM location 40y and output on                   port 2   MOV A Rn  Operation  MOV    A   lt   Rn   Encoding  1110  O  Bytes  1  Cycles  1    MOV A direct       Operation  MOV   A   lt   direct                                Encoding  1110 0101 direct address  Bytes  2  Cycles  1       MOV A         is not a valid instruction 
65.  18   RAV 92  R4  R42 19  RAV 27  R41   140        R42   100 KQ              40  Memoria de calculo    Control mediante Linealizaci  n Entrada Salida    Como podemos observar los valores de R41 y R42 no concuerdan con el valor de la  relaci  n calculada  el potenci  metro P48 ser   el encargado de conseguir de forma indirecta  la relaci  n deseada     Si la entrada es de 20 5 V la salida del primer operacional tendr   el siguiente valor     x  ea 19 19  27            iss 2005 25 7     2 19   92000 27    X   0 277    La salida final de la etapa tiene que ser de 2 5 V  aplicando la ecuaci  n  2 14  la  relaci  n de R47 R45 tiene que ser                 2 5  eo x 0 277  2 20   R45  R47   R47  9 1    _S      _   R45 R45  R47   100 kQ   R45   10 kO              El potenci  metro P49 es el encargado de conseguir la relaci  n de R47 R45 deseada  y se ha escogido un valor de           P49   20 kO           La funci  n de R46 es el de la polarizaci  n del segundo operacional y su valor es de              R46   10 kO        2 3 2 2   Adaptaci  n de las intensidades de las bobinas     Para poder obtener la intensidad que pasa por las bobinas se tiene que introducir  una resistencia serie ya que la tensi  n en las bobinas no se puede medir en bornes de estas  ya que hay variaciones elevadas de tensi  n y no de intensidad  por eso se introduce una  resistencia serie  en la cual mediremos la tensi  n y de esta manera podremos saber la  intensidad que pasa por la bobina  Esta resistencia de
66.  2  Low Byte 0CCH 00H  T2CON Timer 2 Control Register 0C8Q                            1  Bit addressable special function registers   2  This special function register is listed repeatedly since some bits of it also belong to other functional blocks   3  X means that the value is indeterminate     Semiconductor Group    22    SIEMENS    Memory Organization       Special Function Registers of the SAB 80C517  cont d                       Block Symbol Name Address   Contents  after Reset  Ports PO Port 0 80y     FFy  P1 Port 1 90y   FFy  P2 Port 2 0A0y    FFy  P3 Port 3 0B0y    FFy  P4 Port 4 OE8y    FFy  P5 Port 5 OF8y            P6 Port 6                  P7 Port 7  Analog Digital Input 0DBy XXH   P8 Port 8  Analog Digital Input  4Bit 0DDy XXH   Pow  Sav M   PCON Power Control Register 87H 00H  Serial ADCONO    A D Converter Control Register 008       00    Channels PCON  Power Control Register 87H 00H  SOBUF Serial Channel 0  Buffer Register 99H XXH   SOCON Serial Channel 0 Control Register 98H    00H  SORELL    Serial Channel 0  Reload Reg   low byte           0D9y  SORELH     Serial Channel 0  Reload Reg   high byte   OBAH XXXX XX11p   S1BUF Serial Channel 1  Buffer Register 9CH XXH   S1CON Serial Channel 1  Control Register 9By 0X00 0000g    S1REL Serial Channel 1  Reload Register 9DH 00H  S1RELH    Serial Channel 1  Reload Reg   high byte   OBBy XXXX XX11B                   TCON Timer Control Register 88y     00H  Timer  THO Timer 0  High Byte 8CH 00H  TH1 Timer 1  High B
67.  24  the low   order two digits of the decimal sum of 56  67  and the carry in  The carry flag will be  set by the decimal adjust instruction  indicating that a decimal overflow occurred   The true sum 56  67  and 1 is 124     Semiconductor Group 195    SIEMENS Instruction Set       Operation     Encoding     Bytes   Cycles     BCD variables can be incremented or decremented by adding 014 or 994  If the  accumulator initially holds 304  representing the digits of 30 decimal   then the  instruction sequence    ADD A   99H  DA A    will leave the carry set and 294 in the accumulator  since 30   99   129  The low   order byte of the sum can be interpreted to mean 30   1   29     DA   contents of accumulator are BCD  if    A3 0   gt  9           1     then  A3 0   lt        0    6            if     7 4   gt  9  v   C    1     then  A7 4   lt   A7 4    6       1101 0100                Semiconductor Group 196    SIEMENS Instruction Set       DEC byte  Function  Decrement  Description         variable indicated is decremented by 1  An original value of 00y will underflow    Example     DEC A    Operation     Encoding   Bytes   Cycles     DEC Rn    Operation     Encoding     Bytes   Cycles     to OFF  No flags are affected  Four operand addressing modes are allowed   accumulator  register  direct  or register indirect     Note     When this instruction is used to modify an output port  the value used as the original  port data will be read from the output data latch  not the input pi
68.  25 3 354 45 5 55  t  Time     us    Figure 46       POST OFFICE BOX 655303 9 DALLAS  TEXAS 75265 41    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000                                                                                                                                                                               TYPICAL CHARACTERISTICS  VOLTAGE FOLLOWER  INVERTING SMALL SIGNAL PULSE RESPONSE SMALL SIGNAL PULSE RESPONSE  100 2 65  2 6   TA   25  C     i         gt   E S 255  9 2  E 2  5 5  o 2 5            2  2 45  2 4  0 05 1 15 2 25 3 35 4 0 0 5 1 1 5  t  Time   us t  Time     us  Figure 47 Figure 48  EQUIVALENT INPUT NOISE VOLTAGE  VOLTAGE FOLLOWER vs  SMALL SIGNAL PULSE RESPONSE FREQUENCY  60  E Vpp  5V             25      z 50 Rs   20 0  1   gt      E E  2 5 40  2 2  o o  2 z 30  5    2        2          gt  E  5     10  c   gt   0  0 0 5 1 1 5 10 100 1k 10k  t  Time   us f   Frequency   Hz  Figure 49 Figure 50         35 TEXAS  INSTRUMENTS    42 POST OFFICE BOX 655303 9 DALLAS  TEXAS 75265    Vn   Equivalent Input Noise Voltage     nV  VA Hz    Integrated Noise Voltage                 TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TYPICAL CHARACTERISTICS    EQUIVALENT INPUT NOISE VOLTAGE                                                                                                                 
69.  256        TOC loading  mechanism to reduce interrupt load of the CPU    The above features allow         PWM generation for digital to analog conversion with extremely low external hardware costs   simple passive RC filter or any other integrating device        output frequencies from less than 1 Hz  16 bit reload  timer input clock of         256  to 3 MHz   2 bit reload  timer input clock of fosc 2     The following paragraphs do not contain a basic description of PWM generation with  microcontrollers but rather should give an idea of how to use the CCU of the SAB 80C517 in this  kind of applications  Please refer to other literature for a general description of the pulse width  modulation     The example in the following uses typical parameters  a PWM frequency above the audible range   23 4 kHz   with 8 bit resolution  The PWM may  for instance  be used to generate a sine wave via  a low cost RC filter     To simplify matters  just one PWM channel is used in this example  The SAB 80C517  however  can  drive up to eight channels with the fast compare timer     Semiconductor Group 258    SIEMENS Application Examples       Explanation of a Few Terms        Pulse width modulation    In our case the PWM is used to synthesize a sine wave  This means that a digital output signal is  periodically varied in the length of its high or low time    duty cycle   One high and one low time  together make up a sample point of the sine wave to be synthesized  The generation of the sine  
70.  2K page then the call will be made to the next page since the PC will have been  incremented to the next instruction prior to execution    RET transfers control to the return address saved on the stack by a previous call operation  and decrements the SP register by two  2  to adjust the SP for the popped address    AJMP  LJMP and SJMP transfer control to the target operand  The operation of AJMP and  LJMP are analogous to ACALL and LCALL  The SJMP  short jump  instruction provides for  transfers within a 256 byte range centered about the starting address of the next instruction       128 to   127     JMP  A   DPTR performs a jump relative to the DPTR register  The operand in A is used as  the offset  0   255  to the address in the DPTR register  Thus  the effective destination for a  jump can be anywhere in the program memory space     Conditional Jumps    Conditional jumps perform a jump contingent upon a specific condition  The destination will be  within a 256 byte range centered about the starting address of the next instruction      128 to   127      JZ performs a jump if the accumulator is zero    JNZ performs a jump if the accumulator is not zero    JC performs a jump if the carry flag is set    JNC performs a jump if the carry flag is not set    JB performs a jump if the directly addressed bit is set    JNB performs a jump if the directly addressed bit is not set    JBC performs a jump if the directly addressed bit is set and then clears the directly addressed  bit  
71.  35       c C aA       B4200 u Circuito integrado 7805  0 51 1      A  Potenci  metro     multivuelta  ajuste        horizontal 20 kQ   10  de tol      W           w  Toroidal NTHO9 Ariston            3   38        B6500 m Cable de cobre di  metro 0 6 mm 0 01 38 6 0 37  PIRESOLD       78  Presupuesto    Control mediante Linealizaci  n Entrada Salida    B7100    B7201    Driver IR2125  3 58 3 58        w   S    E  7    B7500 u               B9000 Interruptor 3 posiciones  montaje en 1 5 1 1  caja   1    Caja estanca 190x95x60 mm  PVC     5   2   v      Conector hembra banana di  metro 4  mm     B9300 Conector hembra cable plano 10 pines    08   2      B9100  B9200    MEA O EN 53   2                6  M  13    B9301 Conector macho cable plano 10 pines      3       ITOTAL CAP  TULO 2  Material  110 3                 79  Presupuesto    Control mediante Linealizaci  n Entrada Salida    4 4   Precio de ejecuci  n por material     Ota capitulo Toce te onc Eo p eb eben dete bm quat tee dba 2 046       Total caprulo A                  E cate a qued deus 110 3       Total presupuesto de ejecuci  n por material    2 156 3         4 5   Precio de ejecuci  n por contrato     Total presupuesto de ejecuci  n por material                                               2 156 3       Gastos generales 13 00                                         erue er eg e 280 32       Beneficio industrial 6 00 lada e Ree 129 38       WPL CORO COLA e oo et A me tM                        etd ies 2566         4
72.  40 49    Figura A1 8  Funci  n tensi  n corriente media carga     En la gr  fica anterior podemos observar la relaci  n tensi  n corriente para nuestro  Boost a media carga  En el eje de las X se encuentra la tensi  n de salida de nuestro  convertidor y en el eje de las Y se encuentra la intensidad que pasa por la bobina 1  de esta  manera podemos comprobar la relaci  n intensidad tensi  n del convertidor    El convertidor puede llegar a una tensi  n de unos 32 5 V consumiendo una  intensidad de 4 Amperios  La tensi  n m  nima ser   de 12 V que es la tensi  n de  alimentaci  n       1 5 9  Anexo 1  Resultados experimentales    Control mediante Linealizaci  n Entrada Salida     Tek Deten           Convertidor apagado                  5 00 Y Chz 3500mV P40 0ms A Chi   180V  bJul 2003  1     1  11 41 46    Figura A1 9  Funci  n tensi  n corriente a plena carga     En la gr  fica anterior podemos observar la relaci  n tensi  n corriente para nuestro  Boost a plena carga  En el eje de las X se encuentra la tensi  n de salida de nuestro  convertidor y en el eje de las Y se encuentra la intensidad que pasa por la bobina 1  de esta  manera podemos comprobar la relaci  n intensidad tensi  n del convertidor    El convertidor puede llegar a una tensi  n de unos 24 V consumiendo una intensidad  de 3 5 Amperios  La tensi  n m  nima ser   de 12 V que es la tensi  n de alimentaci  n    A1 6 9  Anexo 1  Resultados experimentales    Control mediante Linealizaci  n Entrada Salida     A1 6   P
73.  5V  1  0 1  0 1 1 10 100    RL     Load Resistance             Figure 24    t Data at high and low temperatures are applicable only within the rated operating free air temperature ranges of the various devices     35 TEXAS    INSTRUMENTS       POST OFFICE BOX 655303    DALLAS  TEXAS 75265 35    TLC227x  TLC227xA    Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000       Ayp  Large Signal Differential            Large Signal Differential    Voltage Amplification     dB    Voltage Amplification     dB          TYPICAL CHARACTERISTICS    LARGE SIGNAL DIFFERENTIAL VOLTAGE  AMPLIFICATION AND PHASE MARGIN  vs  FREQUENCY    180      Vpp 5V         10 ko  C    100 pF 135           25  C          90         45         0           45                 90    1k 10k 100 k 1M 10M    f  Frequency   Hz  Figure 25    LARGE SIGNAL DIFFERENTIAL VOLTAGE  AMPLIFICATION AND PHASE MARGIN                            vs  FREQUENCY  180    135    90    45    0       45    90    1k 10k 100 k 1M 10M    f  Frequency     Hz    Figure 26      35 TEXAS  INSTRUMENTS    POST OFFICE BOX 655303 9 DALLAS  TEXAS 75265             Phase Margin             Phase Margin    1k    100    Ayp  Large Signal Differential  Voltage Amplification     V mV    10    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TYPICAL CHARACTERISTICS    LARGE SIGNAL DIFFERENTIAL  VOLTAGE AMPLIFICATION
74.  6   Precio por licitaci  n     Precio A efe met n 2566                                           tid    410 56       Precio total por Hacia ds 2976 56         4 7   Resumen del presupuesto    El presupuesto asciende a  2976 56 euros   495 258 pesetas    DOS MIL NOVECIENTOS SETENTA Y SEIS EUROS CON CINCUENTA Y  SEIS C  NTIMOS     CUATROCIENTAS NOVENTA Y CINCO MIL DOSCIENTAS CINCUENTA  Y OCHO PESETAS      Tarragona 5 de septiembre del 2003     EL INGENIERO T  CNICO ELECTR  NICO   LORENZO PUJOL MAYOL     80  Presupuesto    5   PLIEGO DE CONDICIONES     Control mediante Linealizaci  n Entrada Salida    5   Pliego de condiciones   5 1   Disposiciones y abarque del pliego de condiciones   5 1 1   Objetivo del pliego     El objetivo de este proyecto es el estudio de un convertidor Boost con filtro de  salida con un control por linealizaci  n entrada salida  Este proyecto es un proyecto de  investigaci  n  esto implica que el prototipo se ha dise  ado teniendo en cuenta la  accesibilidad y la fiabilidad de estudio omitiendo su desarrollo industrial  En caso de una  futura aplicabilidad industrial se deber  a tener presente el pliego de condiciones  que tiene  como principal funci  n regular las condiciones entre las partes contratantes considerando  los aspectos t  cnicos  facultativos  econ  micos y legales     El pliego de condiciones define entre los otros los siguientes aspectos       Obras que componen el proyecto      Caracter  sticas exigibles a los materiales y componentes  
75.  80C517 offers two on chip peripherals which monitor the program flow and ensure an  automatic  fail safe  reaction for cases where the controller s hardware fails or the software hangs  up       Aprogrammable watchdog timer  WDT  with variable time out period from 512 microseconds  up to approx  1 1 seconds at 12 MHz   The SAB 80C517   s WDT is a superset of the SAB 80515 watchdog       An oscillator watchdog  OWD  which monitors the on chip oscillator and forces the  microcontroller into the reset state if the on chip oscillator fails     7 8 1 Programmable Watchdog Timer    To protect the system against software upset  the user   s program has to clear this watchdog within  a previously programmed time period  If the software fails to do this periodical refresh of the  watchdog timer  an internal hardware reset will be initiated  The software can be designed so that  the watchdog times out if the program does not work properly  It also times out if a software error is  based on hardware related problems     The watchdog timer in the SAB 80C517 is a 15 bit timer  which is incremented by a count rate of  either foycre 2 Or foycre 32             fosc 12   That is  the machine clock is divided by a series  arrangement of two prescalers  a divide by two and a divide by 16 prescaler  see figure 7 58   The  latter is enabled by setting bit WDTREL 7     Immediately after start  see next section for the start procedure   the watchdog timer is initialized to  the reload value progra
76.  C  swing bandwidth RL   1       CL   100 pF    Ay     1  To 0 1    0 1   Step      2 3 V to 2 3 V     Settling time        10 ka       25      CL   100 pF e     Phase margin at  i   25  C  9m unity gain        10 kQ  CL   100 pF pf    so o          t Full range is 0  C to 70  C           Ji TEXAS    INSTRUMENTS    8 POST OFFICE BOX 655303 9 DALLAS  TEXAS 75265    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TLC2274C electrical characteristics at specified free air temperature  Vpp   5 V  unless otherwise    noted   TLC2274C TLC2274AC  PARAMETER TEST CONDITIONS TAT UN        AK MN p ei  UM  300 2500 300 950  vig  Input offset voltage Full range 3000 1500      Temperature coefficient 25  C  VIO of input offset voltage to 70  C    Input offset voltage  long term drift           25   MIC   2     see Note 4 107  neon    25  C    25        25        uV   C    25  C uV mo    al  o  al    o   gt  f              EN E     o  o o  o  A  m  No      4    0  Full range to              20 A 25  C  C    25   High level output        200 pA  VOH voltage Full range    25  C    Bag         Common mode input    VICR voltage range IVio   lt 5 mV                         4 99  4 85 4 93  4 85  4 25 4 65  4 25    4 99  4 85 4 93  4 85  4 25 4 65      1mA  Obs TR 4 25    Full range   0 01   0 09 0 15  0 15    0 01  0 09 0 15  0 15    Vic   2 5 V  loL   50 uA 25  C    Vic   2 5 V  25  C    e          Low level outpu
77.  C to 125  C   MSU               55  C to 125  C  Storage temperature range                         e eens    65 C to 150  C  Lead temperature 1 6 mm  1 16 inch  from case for 10 seconds  D  N  P or PW package            260  C  Lead temperature 1 6 mm  1 16 inch  from case for 60 seconds  J package                       300  C    1 Stresses beyond those listed under    absolute maximum ratings    may cause permanent damage to the device  These are stress ratings only  and  functional operation of the device at these or any other conditions beyond those indicated under    recommended operating conditions    is not  implied  Exposure to absolute maximum rated conditions for extended periods may affect device reliability    NOTES  1  All voltage values  except differential voltages  are with respect to the midpoint between        and Vpp        2  Differential voltages are at IN  with respect to IN     Excessive current will flow if input is brought below Vpp       0 3 V   3  The output may be shorted to either supply  Temperature and or supply voltages must be limited to ensure that the maximum  dissipation rating is not exceeded     DISSIPATION RATING TABLE    TA  lt  25  C DERATING FACTOR        70  C        85            125      POWER RATING     ABOVE TA   25     POWERRATING POWER RATING POWER RATING    725 mW 5 8 mW   C  950 mW 7 6 mW   C  1375 mW 11 0 mW   C  1375 mW 11 0 mW   C  1150 mW 9 2 mW   C  1000 mW 8 0 mW   C   525 mW 4 2 mW   C   700 mw 5 6 mW   C    PACKAGE   
78.  Driver     Circuit pin             MCS01822    Read  Pin             Figure 7 1  Basic Structure of a Port Circuitry    Semiconductor Group 41    SIEMENS On Chip Peripheral Components       Port 1 through 6 output drivers have internal pullup FET s  see figure 7 2   Each      line can be  used independently as an input or output  To be used as an input  the port bit must contain a one   1   that means for figure 7 2  Q   0   which turns off the output driver FET n1  Then  for ports 1  through 6  the pin is pulled high by the internal pullups  but can be pulled low by an external source   When externally pulled low the port pins source current  1  or      For this reason these ports are  sometimes called  quasi bidirectional      Yoo    Internal  Pull Up  Arrangement    Int  Bus           o Pin       ps          MCS01823       Figure 7 2  Basic Output Driver Circuit of Ports 1 through 6    In fact  the pullups mentioned before and included in figure 7 2 are pullup arrangements as shown  in figure 7 3  One n channel pulldown FET and three pullup FETs are used         The pulldown FET n1 is of n channel type  It is a very strong driver transistor which is capable  of sinking high currents   o    it is only activated if a  0  is programmed to the port pin  A short  circuit to        must be avoided if the transistor is turned on  since the high current might destroy  the FET        The pullup FET p1 is of p channel type  It is activated for two oscillator periods  S1P1 and  S1P2
79.  Equivalent input 2   noise current         fA NHz    THD N distortion plus f   20 kHz  0 004  0 004   noise RL  10 kat 0 03  0 03     Gain bandwidth   f   10 kHz  RL   10 kot     CL   100 pF  2      em Me  Maximum     VO PP   2V  Ay 1   Bom output swing 25  C 1 MHz  bandwidth RL   10         C    100 pF     Ay   1   eom    Step   0 5 V to 2 5 V    RL   10 kot      CL   100 pF Too   01     Total harmonic   Vo   0 5 V to 2 5 V         0 0013  0 0013  E  25      Settling time       Phase margin at  a unity gain RL   10 kot  CL   100      Gain margin       Full range is 0  C to 70  C     Referenced to 0 V            35 TEXAS  INSTRUMENTS    10 POST OFFICE BOX 655303 9 DALLAS  TEXAS 75265    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TLC2274C electrical characteristics at specified free air temperature  Vpp     5 V  unless  otherwise noted     TLC2274C TLC2274AC  PARAMETER TEST CONDITIONS TAT                      MIN TYP        UNIT  300 2500 300 950  Vio   Input offset voltage                  3000 1500 uv  Temperature coefficient of input 25  C 2  VIO     offset voltage to 70  C E 2         Input offset voltage long term 25  C  drift  see Note 4     uV mo    25  C  Full range      25  C  118 Input bias current  Full range    25  C    llo Input offset current    Common mode input   5500  Mol lt 5mv      a   NS 25  C 4 85 4 93 4 85 4 93  Maximum positive peak output O     Full range    4 42  5
80.  Ext  interrupt O   P3 3 INTT Ext  interrupt 1   P3 4 TO Timer 0 external count input   P3 5 T1 Timer 1 external count input   P3 6 WR External data memory write strobe  P3 7 RD External data memory read strobe  P4 0 CMO Compare 0 of compare unit CMO 7    4 1 CM1 Compare 1 of compare unit CMO 7  P4 2 CM2 Compare 2 of compare unit CMO 7  P4 3 CM3 Compare 3 of compare unit CMO 7  P4 4 CM4 Compare 4 of compare unit CMO 7  P4 5 CM5 Compare 5 of compare unit CMO 7  P4 6 CM6 Compare 6 of compare unit CMO 7  P4 7 CM7 Compare 7 of compare unit CMO 7  P5 0 CCMO Concurrent compare 0   P5 1 CCM1 Concurrent compare 1   P5 2 CCM2 Concurrent compare 2   P5 3 CCM3 Concurrent compare 3   P5 4 CCM4 Concurrent compare 4   P5 5 CCM5 Concurrent compare 5   P5 6 CCM6 Concurrent compare 6   P5 7 CCM7 Concurrent compare 7   P6 0 ADST Ext  A D converter start   P6 1 RXD1 Serial input channel 1   P6 2 TXD1 Serial output channel 1             Semiconductor Group 47    SIEMENS On Chip Peripheral Components       7 1 4 Port Handling    7 1 4 1 Port Timing    When executing an instruction that changes the value of a port latch  the new value arrives at the  latch during S6P2 of the final cycle of the instruction  However  port latches are only sampled by  their output buffers during phase 1 of any clock period  during phase 2 the output buffer holds the  value it noticed during the previous phase 1   Consequently  the new value in the port latch will not  appear at the output pin until the next phase 1  
81.  FB 99 OPOLY  5  VB VC VE VP VLN 0 VE 54 4DC  78    984 9E3  1E6 1E6 1  6  1E6 VLIM 7 8DC 0  GA 6 011 12 377 0E 6 VLP 91 ODC 1 9  GCM 0 6 10 99 134E 9 VLN 0 92DC 9 4  ISS 3 10DC 216 0E 6  MODEL DX D  1S 800 0E 18   HLIM 90 OVLIM 1K    MODEL JX PJF  IS 1 500E 12BETA 1 316E 3     11 210 JX   VTO   270   J2 12 110 JX ENDS  R2 6 9100 0E3    Figure 59  Boyle Macromodel and Subcircuit    PSpice and Parts are trademarks of MicroSim Corporation        Macromodels  simulation models  or other models provided by TI   directly or indirectly  are not warranted by Tl as fully representing all H   of the specification and operating characteristics of the      semiconductor product to which the model relates  TEXAS    POST OFFICE BOX 655303    DALLAS  TEXAS 75265 45    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    MECHANICAL DATA    D  R PDSO G    PLASTIC SMALL OUTLINE PACKAGE  14 PIN SHOWN          0 050  1 27           0 020  0 51   0 014  0 35     8           gt  i          0 010  0 25   V              A                                                 0 008  0 20  NOM    0 244  6 20   0 228  5 80        0 157  4 00   0 150  3 81           RA Plane Y          ox                                                      0 010  0 25        7     0 044  1 12           0 016  0 40                       y            m     sz      069  1 75  MAX       NOTES  A                    0 004  0 10           0 004 00       
82.  FFy is written into the input shift  register  Resetting the divide by 16 counter aligns its rollover with the boundaries of the incoming  bit times     The 16 states of the counter divide each bit time into 16 counter states  At the 7th  8th and 9th  counter state of each bit time  the bit detector samples the value of RXDO RxD1  The value accepted  is the value that was seen in at least 2 of the 3 samples  This is done for noise rejection  If the value  accepted during the first bit time is not 0  the receive circuits are reset and the unit goes back looking  for another 1 to 0 transition  This is to provide rejection of false start bits  If the start bit proves valid   itis shifted into the input shift register  and reception of the rest of the frame will proceed     As data bits come from the right  1 s shift out to the left  When the start bit arrives at the leftmost  position in the shift register  which in mode 1 B is a 9 bit register   it flags the RX control block to do  one last shift  The signal to load SOBUF S1BUF and RB80 RB81  and to set RIO RI1 will be  generated if  and only if  the following conditions are met at the time the final shift pulse is  generated     1  RIO RI1   0  and  2  either SM20 SM21   0 or the received stop bit   1    Semiconductor Group 67    SIEMENS On Chip Peripheral Components       If either of these two conditions is not met the received frame is irretrievably lost  If both conditions  are met  the stop bit goes into RB80 RB81  the 8
83.  IL1 1 08  Corriente en la bobina 2 media carga  0 425 A  Corriente en la bobina 2 toda la carga  IL2 0 65 A    Potencia de entrada media carga  9 6 W  Potencia de salida media carga  8 67 W  Potencia de entrada toda la carga  i 13 68 W  Potencia de salida toda la carga  11 9 W  Rendimiento a media carga  90 3    Rendimiento con toda la carga  87         Tabla 2 3  Par  metros variables de la planta     60  Memoria de c  lculo    Control mediante Linealizaci  n Entrada Salida    2 5   Listado de todos los componentes calculados        Memoria de c  lculo    61    Control mediante Linealizaci  n Entrada Salida       Tabla 2 4  Componentes calculados     Memoria de c  lculo    62    3   PLANOS     R24  1 2  Vin   12 V  0 25 6W    R26  1 10 1 2 W    Q1  3 I   2  Gate C8 C9 C10 R28    BUK 455    122    1 100u    2 2u 47 12W    ETAPA DE POTENCIA    ize Document Number R  Moor    OSTO 200 Sheet 1 of 7  2       TLC2274IN    TLC22741N    1  11 sense    TLC22741N  1    itle    SENSOR DE CORRIENTE 1    ize Document Number R  Moo    OSTO 200 Sheet 2 of 7  2       TLC2274IN    TLC22741N    1  12 sense    TLC2274IN  1    itle    SENSOR DE CORRIENTE 2    ize Document Number R  oo    OSTO 200 Sheet 3 of 7  2       R41 140k    Vo sense    U14  TLC2272IN    TLC22721N    1    R47    SENSOR DE TENSI  N    ize Document Number R  Moor    OSTO 200 Sheet 4 of 7  2       Vo sense  PUERTO 7 0    TLC2274IN    PUERTO 7 1  TLC22741N    PUERTO 7 2    FILTRO ANTI ALIASING    ize Document Number Rev  A4  0
84.  Interrupci  n del conversor A D  BLOQUE A     Seleccionar el P7 0   Vo    para la pr  xima    conversi  n     Guardar la intensidad 2    126      Nuevo valor           ad con   0        C  lculo del ciclo de trabajo           12        das T  id  lb             _ des    Vob   W          Comienza      pr  xima  conversi  n entre 0 y 2 5 V           Qu   valor tiene  la variable Duty     El ciclo ser   fijo  ser   Calculo de las variables    del 50    Asign  ndose del ciclo de trabajo para  un valor a las variables el pr  ximo periodo   Ton y Toff  Ton y Toff     59  Memoria de c  lculo    Control mediante Linealizaci  n Entrada Salida    2 4   Par  metros principales de la planta     El convertidor conmutado DC DC Boost elevador sobre el que se ha explicado el  control tiene como par  metros principales los siguientes valores     PARAMETRO SIMBOLO VALOR  Tension de entrada  Vin 12V  Tensi  n de salida Vo 18 20 V  Inductancia en la bobina 1 L1 0 69 mH  Inductancia en la bobina 2 L2 1 22 mH  Capacidad de salida Cl 46 2 uF  Capacidad del filtro C2 124 2 uF  Carga de salida R28 R27 48 28 Q  Resistencia de sensado 1 R24 0 25 Q  Resistencia de sensado 2 R25 0 25 Q  Resistencia en la bobina 1 RS1 0 40  Resistencia en la bobina 2 RS2 0 90  Resistencia al MOSFET Rps 0 070    Ca  da de tensi  n en el diodo Vd  on  0 25 V       Tabla 2 2  Par  metros fijos de la planta     C  LCULOS S  MBOLO VALOR  Corriente en la bobina 1 media carga  IL1 0 8     Corriente en la bobina 1 toda la carga 
85.  Las ecuaciones del bucle exterior vienen definidas por   di          By uet Un  1 33     Seg  n la ley de tensiones de Kirchoff        dV   i  ij ip2ij C       1 34     L C L dt      La ecuaci  n del bucle interior izquierdo se define   di     iv x             0  1 35   De donde obtenemos la relaci  n   dV  1     ic   C      L i Ri  V  1 36  C dt Ro   dt L L1          Combinando las ecuaciones  1 34  y  1 36  obtenemos     j RR                           oe Tue  1 37      R R           La ecuaci  n del bucle interior derecho se define            Vo    ic Ro  i  R 0  1 38     Combinando las ecuaciones  1 34  y  1 38  obtenemos     gere  Re n   Vo  1 39   dt R  R    R  Re       18  Memoria Descriptiva     Control mediante Linealizaci  n Entrada Salida    Resolviendo el sistema con las ecuaciones     di  RR   1     M   ev dep      dt RER JE  RER  I    dV    Ro Pi D ES  dt REREJE              1 4 3 2   Matrices del convertidor Buck Boost    reductor elevador         1 37  y  1 39        A partir de las ecuaciones diferenciales  1 30  y  1 32  obtenemos la matriz de la  topolog  a  ON  siguiente        d  c 0     Vin   M A      Z   1 40   dV  0      1 pl 0   2 RER JOUG d       A partir de las ecuaciones diferenciales  1 37  y  1 39  obtenemos la matriz de la  topolog  a    OFF    siguiente              R R  A   a   Rs E ne E   0  dt   _ c ind      141   dV       1 1o   0  M     Vo chc   dt R R   C               Y    1 4 4   Convertidor Boost con filtro de salida     Este convertid
86.  Litio de  unos 3 3 voltios  Se recomienda una pila de Litio que es capaz de mantener la    alimentaci  n del sistema durante unos 5 aiios     Si no se a  ade una pila  JP  deber   permanecer abierto y el conector BAT cerrado     JP2    Pone el se  al SWD PE a nivel bajo  Alimentaci  n Power Down  si est   cerrado la    patilla 4 del microcontrolador ser   puesta a masa con lo que la SRAM interna del  micro ser   alimentada con la alimentaci  n de la placa  En caso contrario se puede  alimentar los primeros 40 bytes de la memoria SRAM a trav  s de la patilla 2 del    puente     Esta patilla tiene una segunda funci  n  si se mantiene a nivel alto durante el    arranque se inicializa autom  ticamente el perro guardi  n     JP3  la placa  Teni  ndolo abierto se puede dar al sistema una referencia externa     1  4    Conecta la referencia del conversor A D del microcontrolador a la alimentaci  n de    Pone la masa del conversor A D del microcontrolador  referencia inferior  a la    masa del sistema  GND   Teni  ndolo abierto se puede suministrar una referencia    externa     A243 21    Anexo 3  Manual de pr  cticas     Control mediante Linealizaci  n Entrada Salida    JP5 Pone la se  al OWE a nivel bajo  Teni  ndolo abierto este puente se inicializa    el perro guardi  n al arrancar el microcontrolador  Si el equipo dispone de la eprom de la  casa Altair  este puente deber   estar cerrado  de lo contrario el sistema siempre se  reinicializar   indefinidamente     JP6    JP7  JP8 
87.  N je    e hs  Open  Ctrl O i    face GILEA    Figura A3 4  Generaci  n del fichero   c     Una vez introducido el fichero   c en el proyecto y haber generado el c  digo con el  compilador en C  introduciremos las caracter  sticas de nuestro microcontrolador  mediante  la opci  n project del compilador        File Edit Search Project Tool View Debug   Options Window Help    Nehiin ENSE                Figura A3 5  Ver las opciones del proyecto     Acto seguido nos aparecer  n las siguientes opciones       ptions        i  Directories     C51     A51  89 151    Figura A3 6  Opciones del proyecto    La primera opci  n es para seleccionar los colores y las fuentes de los caracteres del  c  digo del fichero en   c     La segunda opci  n son los directorios donde se encuentran las librer  as del  programa as   como las funciones ya generadas     La tercera opci  n es la m  s importante ya que en ella podemos hacer que todas las  variables sean caracteres sin signo  enteros  en coma flotante  etc  Tambi  n el intervalo de  generaci  n de vectores de interrupci  n  etc  As   como la utilizaci  n de c  digo especifico  para el microcontrolador 80C537  como la multiplicaci  n y la divisi  n por hardware     La cuarta opci  n sirve para la utilizaci  n de los registros que hay en los bancos  con  esta opci  n podemos decir en que banco nos queremos situar     La quinta opci  n sirve para decir al programa donde queremos que nos situ   el  c  digo del programa as   como la generaci  n de
88.  P   RI     0 250 2 5   1 56W  2 1     Se ha escogido una resistencia de 0 25 Q y 6 W de potencia ya que el precio para  una resistencia de 2 W era el mismo que una de 6 W  Al tener que introducir la placa  dentro de una caja el rendimiento de disipaci  n de las resistencias se vera afectado por lo  que la potencia que pueden aguantar se tiene que dimensionar con un margen elevado     El MOSFET de potencia utilizado es el BUK455  este transistor puede soportar    corrientes medias de hasta 26 A  con una resistencia en conducci  n tipica de 0 07 Q a    34  Memoria de c  lculo    Control mediante Linealizaci  n Entrada Salida    temperatura ambiente  pero se ha escogido tambi  n ya que el tiempo de pasar de corte a  conducci  n es del orden de 30 ns     El diodo r  pido de potencia que se ha optado para el circuito es el BYW 29  este  diodo puede soportar corrientes medias de 15 A y soportar tensiones inversas de hasta 200  V  con un tiempo de pasar del estado de conducci  n al de corte de 25 ns     Los Condensadores utilizados para el almacenamiento de energ  a son los  electrol  ticos ya que por su reducido tama  o y su gran capacidad de almacenar energ  a son  los id  neos para la realizaci  n del circuito  pero tienen el problema que no son r  pidos a la  hora de absorber el rizado de las tensiones  a frecuencias elevadas  por lo que tambi  n se  han introducido condensadores cer  micos que estos si que pueden absorber las tensiones  elevadas  a frecuencias elevadas  pero t
89.  P6 0  ADST        P6 1  RxD1  P0 7  P6 2  TxD1  P0 6  P6 3 P0 5  P6 4 P0 4  P6 5 PO 3  P6 6 P0 2  P6 7 P0 1   P0 0    P5 7  0    7        EA          RESET pr  OWE SWD RD vec vss    Analog Digital Inputs                         1 0    5D  6D  7D  8D                                                                                  MCB01864       Figure 10 4    Connecting the SAB 80C517 with External Program and Data Memory    Semiconductor Group    264       SIEMENS    High Performance    8 Bit CMOS Single Chip Microcontroller    Advanced Information    SAB 800517  SAB 806537    e Versions for 12 MHz and 16 MHz  operating frequency   e 8Kx8 ROM  SAB 80C517 only    e 256x8 on chip RAM   e Superset of SAB 80C51 architecture   1 us instruction cycle time at 12 MHz  750 ns instruction cycle time at 16 MHz  256 directly addressable bits  Boolean processor  64 Kbyte external data and program  memory addressing   e Four 16 bit timer counters   e Powerful 16 bit compare capture unit   CCU  with up to 21 high speed or PWM  output channels and 5 capture inputs   e Versatile  fail safe  provisions    SAB 80C517 80C537    Microcontroller with factory mask programmable ROM  Microcontroller for external ROM    Fast 32 bit division  16 bit 2 multiplication   32 bit normalize and shift by peripheral  MUL DIV unit  MDU    Eight data pointers for external memory  addressing   Fourteen interrupt vectors  four priority  levels selectable   8 bit A D converter with 12 multiplexed  inputs and progr
90.  PDS  PCON 6  and must not set bit PDE  PCON 1   The hardware ensures  that a concurrent setting of both bits  PDE and PDS  will not initiate the power down mode  Bit PDE  and PDS will automatically be cleared after having been set and the value shown when reading one  of these bits is always zero  0   Figure 7 57 shows the special function register PCON  This double   instruction sequence is implemented to minimize the chance of unintentional entering the power   down mode  which could possibly  freeze  the chip s activity in an undesired status     Note that PCON is not a bit addressable register  so the above mentioned sequence for entering  the power down mode is composed of byte handling instructions     The following instruction sequence may serve as an example     ORL  PCON  00000010B Set bit PDE     bit PDS must not be set  ORL PCON  01000000B   Set bit PDS         PDE must not be set    The instruction that sets bit PDS is the last instruction executed before going into power down  mode  If idle mode and power down mode are invoked simultaneously  the power down mode takes  precedence     The only exit from power down mode is a hardware reset  Reset will redefine all SFR   S  but will not  change the contents of the internal RAM     In the power down mode         can be reduced to minimize power consumption  Care must be taken   however  to ensure that        is not reduced before the power down mode is invoked  and that         is restored to its normal operating le
91.  Phase margin at  m unity gain RL 10 kot     Gain margin       Full range is 0  C to 70  C     Referenced to 0 V          Ji TEXAS    INSTRUMENTS    6 POST OFFICE BOX 655303 9 DALLAS  TEXAS 75265    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TLC2272C electrical characteristics at specified free air temperature  Vpp     5 V  unless  otherwise specified     TLC2272C TLC2272AC  PARAMETER TEST CONDITIONS TAT UNIT       TYP MAX      TYP MAX    300 2500 300 950  Vio Input offset voltage      rang 3000 15001  Y    Temperature coefficient of 25  C S  ids input oler voltage Y Liu     Input offset voltage   long term drift 25  C 0 002 0 002 uV mo    see Note 4        ab    10 nput offset curren                  Ful range    250     Input bias current Fullrange  o   00  pA     53  5    5 3  25  C to to  Common mode input 4 2 4 2    VICR voltage range ASA           _5 5  Full range to to  3  3     lo  20 uA 25  C    7        25     4 85 4 93 4 85 4 93         rne ee Fullrange  output voltage    TRA 25  C 4 25 4 65 4 25 4 65       Full range  Vio 0  o  80A   25                          25        4 85    4 91    4 85    4 91         aamun pogativepeak  Vic 0 o7 50   F  lrangs  output voltage  jase  masma   956 35 4i      5     te Full range  3             Large signal differential      10             voltage amplification vost      range    C             25        Differential input    12 12    Common m
92.  RETI    will leave the stack pointer equal to 094 and return program execution to location  0123       RETI    PC15 8        SP     SP       SP    1   PC7 0   lt    SP     SP       SP    1       0011 0010                Semiconductor Group 235    SIEMENS Instruction Set       RL A    Function     Description     Example     Operation     Encoding     Bytes   Cycles     Rotate accumulator left    The eight bits in the accumulator are rotated one bit to the left  Bit 7 is rotated into  the bit O position  No flags are affected    The accumulator holds the value OC5y  11000101 pg   The instruction   RL A   leaves the accumulator holding the value 8By  10001011 p  with the carry  unaffected     RL   An   1   lt   An       0 6          lt   A7        00100011                Semiconductor Group 236    SIEMENS Instruction Set       RLC A    Function     Description     Example     Operation     Encoding     Bytes   Cycles     Rotate accumulator left through carry flag    The eight bits in the accumulator and the carry flag are together rotated one bit to  the left  Bit 7 moves into the carry flag  the original state of the carry flag moves into  the bit O position  No other flags are affected     The accumulator holds the value OC5y  11000101 p   and the carry is zero  The  instruction    RLC A   leaves the accumulator holding the value 8Ay  10001010B  with the carry set   RLC    An   1   lt   An  n   0 6    AO   lt   C     C   lt   A7        00110011                Semiconductor G
93.  Rn A Move accumulator to register 1 1  MOV  Rngirect Move direct byte to register 2 2  MOV Rn  data Move immediate data to register 2 1  MOV direct  A Move accumulator to direct byte 2 1  MOV direct  Rn Move register to direct byte 2 2  MOV  direct direct Move direct byte to direct byte 3 2  MOV direct  Ri Move indirect RAM to direct byte 2 2  MOV direct  data Move immediate data to direct byte 3 2  MOV  Ri A Move accumulator to indirect RAM 1 1  MOV  Ri direct Move direct byte to indirect RAM 2 2  MOV  Ri   data Move immediate data to indirect RAM 2 1  MOV DPTR   data16   Load data pointer with a 16 bit constant 3 2  MOVC A  A   DPTR   Move code byte relative to DPTR to accumulator 1 2  MOVC A  A        Move code byte relative to PC to accumulator 1 2  MOVX A  Ri Move external RAM  8 bit addr   to A 1 2  MOVX A  DPTR Move external RAM  16 bit addr   to A 1 2  MOVX  Ri A Move A to external RAM  8 bit addr   1 2  MOVX              Move A to external RAM  16 bit addr   1 2  PUSH direct Push direct byte onto stack 2 2  POP direct Pop direct byte from stack 2 2         A Rn Exchange register with accumulator 1 1          Asjdirect Exchange direct byte with accumulator 2 1  XCH A  Ri Exchange indirect RAM with accumulator 1 1  XCHD A  Ri Exchange low order nibble indir  RAM with A 1 1                1  MOV A ACC is not a valid instruction    Semiconductor Group    253    SIEMENS Instruction Set       Instruction Set Summary  cont d                 Mnemonic Description Byte   Cycl
94.  SFR remain at the port 2 pins  throughout the external memory cycle  This will facilitate paging  It should be noted that  if a port 2  pin outputs an address bit that is a 1  strong pullups will be used for the entire read write cycle and  not only for two oscillator periods     Semiconductor Group 27    SIEMENS External Bus Interface       Timing  The timing of the external bus interface  in particular the relationship between the control signals  ALE  PSEN  RD WR and information on port 0 and port 2  is illustrated in figure 5 2 a  and b      Data memory  In a write cycle  the data byte to be written appears on port 0 just before WR is  activated  and remains there until after WR is deactivated  In a read cycle  the incoming byte is  accepted at port 0 before the read strobe is deactivated     Program memory  Signal PSEN functions as a read strobe  For further information see section 5 3     External Program Memory Access  The external program memory is accessed under two conditions         whenever signal EA is active  or      whenever the program counter  PC  contains a number that is larger than 01FFFy    This requires the ROMless version SAB 80C537 to have EA wired low to allow the lower 8 K  program bytes to be fetched from external memory     When the CPU is executing out of external program memory  all 8 bits of port 2 are dedicated to an  output function and may not be used for general purpose       The contents of the port 2 SFR  however is not affected  During e
95.  Salida    A partir de la expresi  n  1 58  podemos obtener varias expresiones de 1 0  para el  convertidor Boost  una por cada variable de estado como puede verse a continuaci  n           342 0    amp      0    a  1 62     4    Y   x  0    8     j l       Donde i   1   4     Si intentamos conseguir que entre una variable y su consigna se reduzca de forma  exponencial   ciclo a ciclo   de la forma     x T  x   W x  0    x7   1 63     Podemos rescribir la ecuaci  n  1 60  como     W x  0     0    W x          x  0     amp    7 0            A  1 64   2 f     x   0    g     La expresi  n anterior cuando la variable a linealizar es la tensi  n de salida  1     4   presenta un denominador nulo por lo cual deducimos que no es posible controlar el  convertidor en este caso     Si tomamos la tensi  n intermedia Vcl como variable a linealizar  obtenemos la  siguiente expresi  n del ciclo de trabajo     LT  in eir illyer  ver            7  1 65   k  ill    Vel    1          En las matrices de la ecuaci  n  1 61  se puede observar algunos t  rminos entre  par  ntesis  son los t  rminos de segundo orden  condensador y bobina  que no han sido  eliminador junto con los t  rminos en         Elimin  ndolos y recalculando el ciclo de trabajo obtenemos         insi Ww ifa   var        1 66  T   ill oe                                                1  Memoria Descriptiva     Control mediante Linealizaci  n Entrada Salida    La sustituci  n de la ecuaci  n anterior en el sistema de ecuaciones p
96.  Salida    A3 4   Realizaci  n de un cable de comunicaciones    Para poder comunicar un equipo ALTAIR con el PC es necesario disponer de un cable  RS232c de 3 hilos realizado correctamente     DR  R5232c 9 pines  Normalmente COM 1           5  TIERR A  3  Tx D  2  RxD        DB25  R5232c 25 pines  Normalmente COM2         D    3        O      1  TIERRA 5  TIERRA  o 7  TIERRA 3  TxD     2  TxD 2  RxD     3  RxD             O   O    Figura 27  Cable de comunicaci  n PC microcontrolador     A221 21  Anexo 3  Manual de pr  cticas     A4   MEJORA DEL PROGRAMA     Control mediante Linealizaci  n Entrada Salida    A4   Mejora del programa   A4 1   Introducci  n     En este apartado se ha generado un programa alternativo utilizando el generador  PWM del microcontrolador SAB 80C537 de Siemens  tambi  n se ha eliminado la  interrupci  n del conversor A D y del Timer 0  por lo que se ha eliminado c  digo y el  tiempo de ejecuci  n del programa     De esta manera se ha generado un programa m  s r  pido  por lo que se ha podido  aumentar la frecuencia de conmutaci  n del transistor de potencia  pasando de una  frecuencia de conmutaci  n de 7 kHz a 8 kHz  siendo esta mejora de un 14      A4 2   C  digo del programa      include  lt reg517 h gt     Librer  a que incluye todos registros del microcontrolador 80c537      unsigned char duty 0       Variable global que contiene el tiempo que debe estar encendido o apagado  el transistor      unsigned char 116 0     Variable global que contiene e
97.  TLC2272M TLC2272AM UNIT  23 3 6 2  L   3 6  Slew rate at      range    VNPP equivalent input  Equivalent input 8  Total harmonic           2 3 V mara 0 0011  0 0011  F  25  C    THD N distortion plus   RL   10 kQ  IAy 10       0 004  0 004   noise f  20 kHz IAy 100   0 03  0 03     Gain bandwidth  f  10 kHz  RL   10          CL   100 pF  Maximum  BoM output swing Mur k   6N  25  C  bandwidth L                    0 1   Step    2 3 V to 2 3 V  25  C    RL   10 ko     CL   100 pF To 001    0 01     Settling time       Phase margin at  m unity gain RL   10       CL   100 pF    Gain margin    t Full range is    40     to 125  C for Q level part     55     to 125  C for M level part           Ji TEXAS    INSTRUMENTS    24 POST OFFICE BOX 655303 9 DALLAS  TEXAS 75265    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TLC2274Q and TLC2274M electrical characteristics at specified free air temperature  Vpp   5 V   unless otherwise noted     TLC2274Q  TLC2274AQ   PARAMETER TEST CONDITIONS Tat TLC2274M UNIT  25  C         TYP  300 2500 300 950  Temperature coefficient 25  C 2  0 5  1    a a                  V  uV   C    0 002 0 002 uV mo    0 5  pA  A    2    3000 1500            of input offset voltage to 125  C    Input offset voltage    25V          long term drift VDD  SV  Vic  9      see Note 4 Vo 0   ges     25 C    25      0  0 3 0    03    25  C to to to  4 4 4 2    25  C    500    1    500  P    
98.  The content of the accumulator after the execution of this  instruction is undefined     Semiconductor Group 215    SIEMENS Instruction Set       MOV A ORi  Operation  MOV                         lt   Ri   Encoding  1110 011i  Bytes  1  Cycles  1    MOV A   data  Operation  MOV                                               A       data  Encoding  0111 0100 immediate data  Bytes  2  Cycles  1  MOV Rn A  Operation  MOV   Rn   lt   A   Encoding  1111  1rrr  Bytes  1  Cycles  1    MOV Rn direct    Operation  MOV   Rn       direct                          Encoding  1010  irrr direct address          Bytes   Cycles  2    Semiconductor Group 216    SIEMENS Instruction Set       MOV Rn  Zdata    Operation  MOV   Rn   lt   data                               Encoding  0111 1       immediate data  Bytes  2  Cycles  1    MOV direct A    Operation  MOV   direct   lt   A                                Encoding  1111 0101 direct address  Bytes  2  Cycles  1    MOV direct Rn    Operation  MOV   direct       Rn           Encoding  10001 irrr direct address                         Bytes   Cycles     MOV direct direct    Operation  MOV   direct   lt   direct              Encoding  1000 0101 dir addr   src  dir addr   dest                                   Bytes   Cycles  2    Semiconductor Group 217    SIEMENS    Instruction Set       MOV    Operation     Encoding     Bytes   Cycles     MOV    Operation     Encoding     Bytes   Cycles     MOV    Operation     Encoding     Bytes   Cycles     MO
99.  The output  latch corresponding to a secondary  function must be programmed to a one   1  for that function to operate    The secondary functions are assigned  to the pins of port 3  as follows         Rx DO  P3 0   receiver data input   asynchronous  or data input output   synchronous  of serial interface       Tx DO  P3 1   transmitter data  output  asynchronous  or clock  output  synchronous  of serial  interface 0       INTO  P3 2   interrupt 0 input timer 0  gate control       INT1  P3 3   interrupt 1 input timer 1  gate control       TO  P3 4   counter 0 input       T1  P3 5   counter 1 input       WR  P3 6   the write control signal  latches the data byte from port 0 into  the external data memory       RD  P3 7   the read control signal  enables the external data  memory to port O                        Input  O   Output    Semiconductor Group 272    SIEMENS SAB 80C517 80C537       Pin Definitions and Functions  cont d        Symbol Pin Number l O   Function       P LCC 84   P MQFP 100 2       P1 7 P1 0  29  36 98   100         Port 1   1 6 9 is a bidirectional I O port with internal  pull up resistors  Port 1 pins that have  1 s written to them are pulled high by  the internal pull up resistors  and in that  state can be used as inputs  As inputs   port 1 pins being externally pulled low  will source current  Z  in the DC  characteristics  because of the internal  pull up resistors  It is used for the low  order address byte during program  verifi cation  It also co
100.  Timer 1  High Byte 8Dy 00h  TLO Timer 0  Low Byte 8A          TL1 Timer 1  Low Byte 8By 00y  TMOD Timer Mode Register 89          Watchdog           2  Interrupt Enable Register 0 0A8y   00   IEN1 2  Interrupt Enable Register 1 0B8   1  00   IPO 2  Interrupt Priority Register 0     9           IP12 Interrupt Priority Register 1 0B9y XX00 0000g     WDTREL Watchdog Timer Reload Reg  864                          1                            A    Semiconductor Group    Bit addressable special function registers   This special function register is listed repeatedly since some bits of it also belong to other functional blocks   X means that the value is indeterminate and the location is reserved   These registers are available in the CA step and later steps     286    SIEMENS SAB 80C517 80C537       A D Converter    The SAB 80C517 contains an 8 bit A D Converter with 12 multiplexed input channels which  uses the successive approximation method  It takes 7 machine cycles to sample an analog  signal  during this sample time the input signal should be held constant   the total conversion  time  including sample time  is 13 machine cycles  13 us at 12 MHz oscillator frequency    Conversion can be programmed to be single or continuous  at the end of a conversion an  interrupt can be generated     A unique feature is the capability of internal reference voltage programming  The internal  reference voltages Vintarer and Vintacno for the A D converter are both programmable to one  of 16 s
101.  VU    VU MIU       LN    VU VEU MIU                     1000990  18               13538 91                 1g          Transmit       Ld1S              1495           7       Receive    9015    Il  axl  HIUS              Jf8XS 0                                      291  XL          Timing Diagram   Serial Interfaces 0 and 1  Modes 2 and 3   Mode A    Figure 7 18 b     75    Semiconductor Group    SIEMENS On Chip Peripheral Components       7 3 Timer 0 and Timer 1           SAB 80C517 has a number of general purpose 16 bit timer counters  timer 0  timer 1  timer 2  and the compare timer  timer 2 and the compare timer are discussed separately in section 7 5   Compare Capture Unit    Timer counter 0 and 1 are fully compatible with timer counters 0 and 1 of  the SAB 8051 and can be used in the same operating modes     Timer counter 0 and 1 which are discussed in this section can be configured to operate either as  timers or event counters          n  timer  function  the register is incremented every machine cycle  Thus one can think of it  as counting machine cycles  Since a machine cycle consists of 12 oscillator periods  the count  rate is 1 12 of the oscillator frequency         n  counter  function  the register is incremented in response to a 1 to 0 transition  falling  edge  at its corresponding external input pin  TO or T1  alternate functions of P3 4 and P3 5   resp    In this function the external input is sampled during S5P2 of every machine cycle   When the samples s
102.  Voltage     mV Vio   Input Offset Voltage     mV  Figure 1 Figure 2  DISTRIBUTION OF TLC2274 DISTRIBUTION OF TLC2274  INPUT OFFSET VOLTAGE INPUT OFFSET VOLTAGE  20 20  992 Amplifiers From 992 Amplifiers From  2 Wafer Lots 2 Wafer Lots  Vpp   2 5 V Vpp   5V    15 7 15     v  E                  30   10                o o  5 5         8 8  Pos E  0 0   1 6  12  0 8  0 4 0 04 08 12 1 6  1 6  12  08  04 0 04 0 8 12 1 6  Vio   Input Offset Voltage   mV Vio   Input Offset Voltage     mV  Figure 3 Figure 4         35 TEXAS  INSTRUMENTS    30 POST OFFICE BOX 655303 9 DALLAS  TEXAS 75265    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TYPICAL CHARACTERISTICS                      INPUT OFFSET VOLTAGE INPUT OFFSET VOLTAGE  vs vs  COMMON MODE VOLTAGE COMMON MODE VOLTAGE  1  2  gt   0    05  o o  o           gt     2 E 0     5  5 5  2 2         1     5  0 5   gt   gt    1                                                        1 0 1 2 3 4 5  6  5  4  3  2  1 0 1 2 3 4 5  Vic   Common Mode Voltage     V Vic   Common Mode Voltage     V  Figure 5 Figure 6  DISTRIBUTION OF TLC2272 INPUT OFFSET DISTRIBUTION OF TLC2272 INPUT OFFSET  VOLTAGE TEMPERATURE COEFFICIENTT VOLTAGE TEMPERATURE COEFFICIENTT  25 25    128 Amplifiers From 128 Amplifiers From  2 Wafer Lots 2 Wafer Lots  Vpp   2 5 V Vpp   5V   20      Package 20    P Package  25 C to 125     25  C to 125  C                   15 15          10          10    
103.  XXXX 0000p 3  ADDAT A D Converter Data Register OD9y 00H  DAPR D A Converter Program Register ODAH 00H  Interrupt IENO Interrupt Enable Register 0 0A8y   00H  System CTCON    Com  Timer Control Register 0E1y OXXX 0000p    IEN1 Interrupt Enable Register 1 0B8y   00H  IEN2 Interrupt Enable Register 2 9AH XXXX 00X0p    IPO Interrupt Priority Register O 0A9H 00H  IP1 Interrupt Priority Register 1 0B9y XX00 0000p    IRCON Interrupt Request Control Register   0C0y   00H  TCON  Timer Control Register 88y   00H  T2CON  Timer 2 Control Register 0C8y   00H  MUL DIV ARCON Arithmetic Control Register          OXXX XXXXp    Unit MDO Multiplication Division Register O 0E9y XXH   MD1 Multiplication Division Register 1          XXH   MD2 Multiplication Division Register 2 OEBH XXH   MD3 Multiplication Division Register 3 OECY XXH   MD4 Multiplication Division Register 4 0EDH XXH    MD5 Multiplication Division Register 5          XXH        1  Bit addressable special function registers   2  This special function register is listed repeatedly since some bits of it also belong to other functional blocks   3  X means that the value is indeterminate     Semiconductor Group 21    SIEMENS    Memory Organization       Special Function Registers of the SAB 80C517  cont d           Block Symbol Name Address   Contents  after Reset  Compare  CCEN Compare Capture Enable Register 0C1H 00H  Capture CC4EN Compare Capture 4 Enable Register 0  9   X000 0000p    Unit CCH1 Compare Capture Register 1  High Byt
104.  a similar specification   Vacno   Vss      0 2 V       The differential output impedance of the analog reference supply voltage should be less than  1          If the above mentioned operating conditions are not met the accuracy of the converter may be  decreased     Furthermore  the analog input voltage Vanpur must not exceed the range from  Vagnp     0 2 V  to   Varer   0 2 V   Otherwise  a static input current might result at the corresponding analog input  which will also affect the accuracy of the other input channels     7 4 3 A D Converter Timing    A conversion is internally started by writing into special function register DAPR  ADEX   0   A write   to DAPR will start a new conversion even if a conversion is currently in progress  The conversion  begins with the next machine cycle and the busy flag BSY will be set  When external start is  selected  ADEX   1  the conversion starts in the machine cycle following the one where the low  level was detected at P6 0 ADST     The conversion procedure is divided into three parts     Load time  f       During this time the analog input capacitance      see data sheet  must be loaded to the analog input  voltage level  The external analog source needs to be strong enough to source the current to load  the analog input capacitance during the load time  This causes some restrictions for the impedance  of the analog source     Sample time  tg      During this time the internal capacitor array is connected to the selected analog i
105.  be easily extended to the new SAB 80C517     The SAB 80C517 is in the Siemens line of highly integrated microcontrollers for control applications   Some of the various on chip peripherals have been added to support the 8 bit core in case of  stringent real time requirements  The 32 bit 16 bit arithmetic unit  the improved 4 level interrupt  structure and the increased number of eight 16 bit datapointers are meant to give such a CPU  support  But strict compatibility to the 8051 architecture is a principle of the SAB 80C517 s design     Furthermore  the SAB 80C517 contains three additional 8 bit I O ports and twelve general input  lines  The additional serial channel is compatible to an 8051 UART and provided with an  independent and freely programmable baud rate generator  An 8 bit resolution A D converter with  software adjustable reference voltages has been integrated to allow analog signal processing  As  a counterpart to the A D converter  the SAB 80C517 includes a powerful compare capture unit with  two 16 bit timers for all kinds of digital signal processing  The controller has been completed with  well considered provisions for  fail safe  reaction in critical applications and offers all CMOS  features like low power consumption as well as an idle  power down and slow down mode     Figure 2 1 shows a block diagram of the SAB 80C517     Readers who are familiar with the SAB 8051 or SAB 80515 may concentrate on chapters 6 and 7  where the reset conditions and the new pe
106.  being externally pulled low  will source current        in the   DC characteristics  because of the  internal pull up resistors  Port 6 also  contains the external A D converter  control pin and the transmit and receive  pins for serial channel 1  The output  latch corresponding to a secondary  function must be programmed to a one   1  for that function to operate    The secondary functions are assigned  to the pins of port 6  as follows         ADST  P6 0   external A D converter  start pin       RxD1  P6 1   receiver data input of  serial interface 1        TxD1  P6 2   transmitter data output  of serial interface 1       P8 0   P8 3       78   81       57   60          Port 8   is a 4 bit unidirectional input port  Port  pins can be used for digital input  if  voltage levels meet the specified input  high low voltages  and for the higher  4 bit of the multiplexed analog inputs of  the A D converter  simultaneously            Input  O   Output    Semiconductor Group    277    SIEMENS    SAB 80C517 80C537       Pin Definitions and Functions  cont d                                      Symbol Pin Number l O   Function  P LCC 84   P MQFP 100 2  RO 82 61 O Reset Output  This pin outputs the internally  synchronized reset request signal  This  signal may be generated by an external  hardware reset  a watchdog timer reset  or an oscillator watch dog reset  The  reset output is active low   Vas 37 60  83 10  62   Circuit ground potential  Voc 38 84 11  63   Supply Terminal for al
107.  circuito analizado se acercar   m  s a la realidad     Memoria Descriptiva     Control mediante Linealizaci  n Entrada Salida    Suponemos para el an  lisis que cuando el interruptor esta abierto el diodo esta  polarizado en directa  para un periodo de conmutaci  n  y que la corriente de la bobina es  siempre positiva de manera que el convertidor est   siempre trabajando en modo de  conducci  n continuo  En el otro periodo de conmutaci  n se supone que el interruptor esta  cerrado y el diodo esta polarizado en inversa  no conduce     El periodo de conmutaci  n del convertidor es T  el interruptor estar   cerrado entre  el tiempo 0  lt  t  lt  DT y estar   abierto entre el tiempo DT  lt  t  lt  T  estos dos tipos de  conmutaci  n se ver  n variados por la ley de control     La funci  n de este convertidor es la de mantener la relaci  n Vo   D  Vin     1 4 1 1   Funcionamiento del convertidor Buck o reductor   Para el an  lisis del convertidor y poder encontrar la tensi  n de salida en funci  n de    las diferentes intensidades y tensiones  se examina la corriente que pasa por la bobina y la  tensi  n a trav  s de la misma durante un ciclo de conmutaci  n     La variaci  n neta de la corriente en la bobina en todo el ciclo debe de ser cero as    como la tensi  n en el condensador  en r  gimen permanente     vi t           Figura 1 2  Tensi  n y corriente en la bobina     Cuando el interruptor esta cerrado y el diodo polarizado en inversa  la corriente en  la bobina aumenta lin
108.  data bits go into SOBUF S1BUF  and RIO RI1 is  activated  At this time  no matter whether the above conditions are met or not  the unit goes back  to looking for a 1 to 0 transition in RXDO RxD1     7 2 3 3 Mode 2  9 Bit UART  Serial Interface 0     Mode 2 is functionally identical to mode 3  see below   The only exception is  that in mode 2 the  baud rate can be programmed to two fixed quantities  either 1 32 or 1 64 of the oscillator frequency   Note that serial interface O cannot achieve this baud rate in mode 3  Its baud rate clock is generated  by timer 1  which is incremented by a rate of fos  12  The dedicated baud rate generator of serial  interface 1 however is clocked by a fosc 2 signal and so its maximum baud rate is fogc 32     7 2 3 4 Mode 3   Mode A  9 Bit UART  Serial Interfaces 0 and 1     Eleven bits are transmitted  through TxDO TxD1   or received  through RxDO RxD1   a start bit  0    8 data bits  LSB first   a programmable 9th data bit  and a stop bit  1   On transmission  the 9th data  bit  TB80 TB81  can be assigned the value of 0 or 1  On reception the 9th data bit goes into RB80   RB81 in SOCON S1CON     Figures 7 18 a  and b  show a functional diagram of the serial interfaces in mode 2 and 3 or  mode A  resp  and associated timing  The receive portion is exactly the same as in mode 1  The  transmit portion differs from mode 1 only in the 9th bit of the transmit shift register     Transmission is initiated by any instruction that uses SOBUF S1BUF as a
109.  de salida  y empieza la conversi  n entre 0 y 2 5 V      ADCON1 0x00   Se selecciona el puerto 7 pin 0  que es la tensi  n de salida   ADCONI  0xDC       DAPR 0x80    Reaizaremos la conversi  n entre 0 y 2 5 V  DAPR  0xDA       void inicio inter void        En esta funci  n habilitamos las interrupciones del Timer 0 y  del conversor A D haciendo que la interrupci  n del Timer 0 sea  la m  s prioritaria  Tambien inicializamos la variable reloj      1  reloj 0    Inicializaci  n del puerto 1 pin 2        1 0  03    La interupci  n del Timer 0 ser   la mas prioritaria  prioridad nivel 3  y la del conversor a d ser   de nivel 2          0x A9     IPO 0x02              0xB9     EAL 1    Hablilitamos todas las interupciones  EAL  0xAF          0 1    Habilitamos las interrupciones del Timer 0 overflow           0xA9     EADC I    Habilitamos las interrupciones del conversor anal  gico digital   EADC  0xB8          void inicio timer void     En esta funci  n inicializamos el Timer 0 como contador de 8 bits  en cascada  habilitandolo y dando un valor a la parte baja      1  TMOD 0x03     El Timer 0 estar   como contador de 8 bits en cascada  TMOD  0x89    TRO 1    Habilitamos el Timer 0  TRO  0x8C     TLO 0xCB    Sefial cuadrada de 71 us 50  duty cycle  TLO  0  8              void inicio_dog void    En esta funci  n hacemos que se inicialize el Watch dog timer  a 512 microsegundos que es el m  nimo que se puede dar en este    microcontrolador      WDTREL 0x7F    El prescaler frecuen
110.  deactivation of ALE and PSEN takes 6 oscillator periods  The  execution sequence for these two types of read cycles is shown in figure 5 2 a  and b      5 4 ALE  Address Latch Enable    The main function of ALE is to provide a properly timed signal to latch the low byte of an address  from PO into an external latch during fetches from external memory  The address byte is valid at the  negative transition of ALE  For that purpose  ALE is activated twice every machine cycle  This  activation takes place even if the cycle involves no external fetch  The only time no ALE pulse  comes out is during an access to external data memory when RD WR signals are active  The first  ALE of the second cycle of a MOVX instruction is missing  see figure 5 2 b     Consequently  in any  system that does not use data memory  ALE is activated at a constant rate of 1 6 of the oscillator  frequency and can be used for external clocking or timing purposes     5 5 Overlapping External Data and Program Memory Spaces    In some applications it is desirable to execute a program from the same physical memory that is  used for storing data  In the SAB 80C517  the external program and data memory spaces can be  combined by AND ing PSEN and RD  A positive logic AND of these two signals produces an active  low read strobe that can be used for the combined physical memory  Since the PSEN cycle is faster  than the RD cycle  the external memory needs to be fast enough to adapt to the PSEN cycle     Semiconducto
111.  destination register  The   write to SOBUF S1BUF  signal also loads TB80 TB81 into the 9th bit position of the transmit shift  register and flags the TX control unit that a transmission is requested  Transmission commences at  S1P1 of the machine cycle following the next rollover in the divide by 16 counter  thus the bit times  are synchronized to the divide by 16 counter  and not to the  write to SOBUF S1BUF  signal      The transmission begins with the activation of SEND  which puts the start bit to TxDO TxD1  One  bit time later  DATA is activated which enables the output bit of transmit shift register to TxDO TxD1   The first shift pulse occurs one bit time after that  The first shift clocks a 1  the stop bit  into the 9th  bit position of the shift register  Thereafter  only zeros are clocked in  Thus  as data shift out to the  right  zeros are clocked in from the left  When TB80 TB81 is at the output position of the shift  register  then the stop bit is just left of the TB80 TB81  and all positions to the left of that contain  zeros     Semiconductor Group 68    SIEMENS On Chip Peripheral Components       This condition flags the TX control unit to do one last shift and then deactivate SEND and set TIO         This occurs at the 11th divide by 16 rollover after  write to SOBUF S1 BUF      Reception is initiated by a detected 1 to 0 transition at RxDO RxD1  For this purpose RxDO RxD1 is  sampled of a rate of 16 times whatever baud rate has been established  When a trans
112.  device  at these or any other conditions above those indicated in the operational sections of this  specification is not implied  Exposure to absolute maximum rating conditions for longer  periods may affect device reliability  During overload conditions  Vn  gt         or Vin  lt  Vas   the Voltage on        pins with respect to ground  Vss  must not exeed the values definded  by the absolute maximum ratings     DC Characteristics    Voc   5      10 96         0 V      a 0to 70   C for the SAB 80C517 83C537  T a   40 to 85   C for the SAB 80C517  83C537 T40 85                            Parameter Symbol Limit Values Unit   Test Condition  min  max    Input low voltage  except EA    Vy      0 5 0 2 Vec                0 1  Input low voltage  EA  Vi 4     0 5 0 2                        0 3  Input high voltage      0 2                0 5  V         0 9   Input high voltage to XTAL2 V iHi 0 7                  0 5  V      Input high voltage to RESET    Ho 0 6                  0 5  V    Output low voltage VoL   0 45 V         1 6 mA    ports 1  2  3  4  5  6                       Notes see page 311     Semiconductor Group 308    SIEMENS    SAB 80C517 80C537       DC Characteristics  cont d                                                              Parameter Symbol Limit Values Unit   Test Condition   min  max   Output low voltage Vout   0 45 V Io    3 2mA     ports ALE  PSEN  RO   Output high voltage Vou 2 4     V              80 A   ports 1  2  3  4  5  6  0 9                  
113.  direct A    Operation  ANL   direct   lt   direct     A                    Encoding  01010101  Bytes  2  Cycles  1    Semiconductor Group          immediate data                direct address          185    SIEMENS Instruction Set       ANL direct  Zdata    Operation  ANL   direct   lt   direct    data             Encoding  0101 00411 direct address immediate data                                  Bytes   Cycles  2    Semiconductor Group 186    SIEMENS Instruction Set       ANL C   lt src bit gt   Function  Logical AND for bit variables    Description      If the Boolean value of the source bit is a logic O then clear the carry flag  otherwise  leave the carry flag in its current state  A slash          preceding the operand in the  assembly language indicates that the logical complement of the addressed bit is  used as the source value  but the source bit itself is not affected  No other flags are  affected     Only direct bit addressing is allowed for the source operand     Example  Set the carry flag if  and only if  P1 0   1  ACC 7   1  and OV   0   MOV C P1 0   Load carry with input pin state  ANL C ACC 7   AND carry with accumulator bit 7  ANL C  OV   AND with inverse of overflow flag  ANL C bit    Operation  ANL   C   lt   C     bit                                Encoding  1000 0010 bit address  Bytes    Cycles  2   ANL C  bit    Operation  ANL   C   lt   C      bit                                Encoding  1011 0000 bit address  Bytes  2  Cycles  2    Semiconductor Gr
114.  en la bobina sea nula en r  gimen permanente   tiene que ser la misma corriente al principio y al final de cada ciclo de conmutaci  n  por lo  que el periodo debe ser siempre el mismo     Este intervalo estar   comprendido entre DT  lt t  lt  T     Este estado se define mediante la ecuaci  n del bucle exterior   di       ur NI UT     Vin  1 9     Seg  n la ley de tensiones de Kirchoff        dV   i   i   i    i  CS 1 10     L C L dt      La ecuaci  n del bucle interior izquierdo se define   di           1 11     Memoria Descriptiva     Control mediante Linealizaci  n Entrada Salida    De donde obtenemos la relaci  n        dV    1        pg R   y 1 12  i dt   di 7             Combinando las ecuaciones  1 9  y  1 12  obtenemos     i RR  E eo PE RE  1 13   dt                                ecuaci  n del bucle interior izquierdo se define    V gt     o Re  i  R 0  1 14     Combinando las ecuaciones  1 10  y  1 14  obtenemos     pe Rc     l Vo  1 15   dt R  Ro R  Re    Resolviendo el sistema con las ecuaciones            1 13  y  1 15        dis  z            i R   dt R Ro L  R Re  V   C    dV       ji _ En  dt                     Memoria Descriptiva     Control mediante Linealizaci  n Entrada Salida    1 4 1 2   Matrices del convertidor Buck o elevador     A partir de las ecuaciones diferenciales  1 6  y  1 8  obtenemos la matriz de la    topolog  a  ON  siguiente              i RR      Rar E E     an       c cle    P M ie   dV       1 Eon 2     R R   C              EX        A
115.  fact  mode 3 is the same as  mode 2 in all respects except the baud rate  The baud rate in mode 3 is variable        In all four modes  transmission is initiated by any instruction that uses SOBUF as a destination  register  Reception is initiated in mode 0 by the condition RIO   0 and RENO   1  Reception is  initiated in the other modes by the incoming start bit if RENO   1  The serial interfaces also provide  interrupt requests when a transmission or a reception of a frame has completed  The corresponding  interrupt request flags for serial interface O are TIO or RIO  resp  See section 8 for more details about  the interrupt structure  The interrupt request flags TIO and RIO can also be used for polling the serial  interface 0 if the serial interrupt is not to be used  i e  serial interrupt 0 not enabled      The control and status bits of the serial channel 0 in special function register SOCON are illustrated  in figure 7 8  Figure 7 7 shows the special function register SOBUF which is the data register for  receive and transmit  The following table summarizes the operating modes of serial interface O     Serial Interface 0  Mode Selection                                  SMO SM1 Mode Descriptions Baud Rate   0 0 0 Shift register fosc  12   0 1 1 8 bit UART Variable   1 0 2 9 bit UART fosc 64              32  1 1 3 9 bit UART Variable   Figure 7 7    Special Function Register SOBUF  Address 994                   99H Serial interface 0 buffer register SOBUF             Rec
116.  flag being set before the operation  If the state of the  carry is not known before starting a single or multiple precision subtraction  it should  be explicitly cleared by a CLR C instruction     SUBB A Rn    Operation     Encoding     Bytes   Cycles     SUBB        lt   A     C       Rn        1001 1rrr                Semiconductor Group 242    SIEMENS    Instruction Set       SUBB    Operation     Encoding     Bytes   Cycles     SUBB    Operation     Encoding     Bytes   Cycles     SUBB    Operation     Encoding     Bytes   Cycles     A direct    SUBB     A       A       C     direct                       direct address             A    Ri                   A   data                      immediate data             1001 0101  2   1   SUBB    A   lt   A               Ri    1001 0111   SUBB         lt   A       C       data  1001 0100   2   1    Semiconductor Group    243    SIEMENS Instruction Set       SWAP A  Function  Swap nibbles within the accumulator    Description  SWAP    interchanges the low and high order nibbles  four bit fields  of the  accumulator  bits 3 0 and bits 7 4   The operation can also be thought of as a four   bit rotate instruction  No flags are affected     Example  The accumulator holds the value 0  5    11000101 p   The instruction  SWAP A  leaves the accumulator holding the value 5      010111005      Operation  SWAP   A3 0  5    7 4    A7 4   lt   A3 0                    Encoding  1100 0100  Bytes  1  Cycles  1    Semiconductor Group 244    SIEME
117.  greater flexibility and better resolution  It substitutes the 80C517 s baud  rate generator at Serial Channel 0 which provides only 4 8 kBaud or 9 6 kBaud at 12 MHz crystal  frequency  Since the new generator offers greater flexibility it is often possible to use it instead of  Timer1 which is then free for other tasks     Figure 7 11a shows a block diagram of the new baud rate generator for Serial Channel 0  It consists  of a free running 10 bit timer with fosc  2 input frequency  On overflow of this timer there is an  automatic reload from the registers SORELL  address AAy  and SORELH  address          The  lower 8 bits of the timer are reloaded from SORELL  while the upper two bits are reloaded from bit  0 and 1 of register SORELH  The baud rate timer is reloaded by writing to SORELL     Semiconductor Group 58    SIEMENS On Chip Peripheral Components       SORELH 0  1 SORELL    Baud Rate Clock                  CER 10 Bit Timer Overiiog     fosc 2  MCS02222             Figure 7 11a  Baud Rate Generator for Serial Interface 0    The default value after reset of SORELL is OD9y  SORELH contains XXXX     11       Special Function Register SORELH  SORELL    Bit No  MSB LSB    Addr                    SORELH                   Bit No  MSB LSB  7 6 5 4 3 2 1 0  Addr           Isb   SORELL                                      A shaded areas are not used for programming the baudrate timer             Bit Function  SORELH 0 1 Reload value  Upper two bits of the timer reload value   SO
118.  gt         NU  SE Input Shift Register   9Bits     RXDx       Shift  Load  shift  SxBUF          Note  x means that 0 or 1 can  be inserted for interface  0 or interface 1  resp     Read  SxBUF             S Internal Bus     MCS01833                Figure 7 17 a   Functional Diagram   Serial Interfaces 0 and 1  Mode 1   Mode B    Semiconductor Group 72    SIEMENS On Chip Peripheral Components                wo       n     Transmit 5  o         m          Lu  ac  co           1                     E   AS  5    x ot  5 Lo     ac EE          x    gt  lt   gt  lt  ou  lt     S   c Qc tnc    ac  S      a      gt  lt      gt  lt            C  2 o a         Receive             Figure 7 17 b   Timing Diagram   Serial Interfaces 0 and 1  Mode 1   Mode B    Semiconductor Group 73    SIEMENS On Chip Peripheral Components                                                                               S Internal Bus 0      8    Write  to    SxBUF  Shift Data  TX Control  Tlx Send  Baud Serial  gt  1  Rate          4 Port  Clock Interrupt  RX Clock      Load  Tm SxBUF  Transition RX Control  Detector  1FFy Shift  Register  RXD l    X  Shift  Load    Shift    SxBUF  Note  x means that O or 1 can SZ  be inserted for interface SxBUF  0 or interface 1  resp   Read  SxBUF  7  Internal Bus  MCS01834             Figure 7 18 a   Functional Diagram   Serial Interfaces 0 and 1  Modes 2 and 3   Mode A    Semiconductor Group 74    On Chip Peripheral Components    SIEMENS             988 1019        M  
119.  in general is that the controller s outputs are precisely  timed by hardware  no matter which task is running on the CPU  This in turn means that the CPU  normally does not know about the timer count  So  if the CPU writes to a compare register only in  relation to the program flow  then it could easily be that a compare register is overwritten before the  timer had the chance to reach the previously loaded compare value  Hence  there must be  something to  synchronize  the loading of the compare registers to the running timer circuitry  This  could either be an interrupt caused by the timer circuitry  as described before  or a special hardware  circuitry     Semiconductor Group 118    SIEMENS On Chip Peripheral Components          a  CMHx CMLx   CTREL  maximum duty cycle     P4 x H       b  CMHx CMLx   FFFFy  minimum duty cycle  One             y eye     One machine state or two oscillator cycle            MCT01854             Figure 7 50  Modulation Range of a PWM Signal Generated with a Compare Timer CMx Register  Combination    Thus  TOC loading  means that there is dedicated hardware in the CCU which synchronizes the  loading of the compare registers CMx in such a way that there is no loss of compare events  It also  relieves the CPU of interrupt load     What does this hardware look like     A CMx compare register in compare mode 0 consists of two latches  When the CPU tries to access  a CMx register it only addresses a register latch and not the actual compare latch w
120.  in the data sheet      Thus  the user has to take into account that the right peripheral continues to run or is stopped   respectively  during idle  Also  the state of all port pins   either the pins controlled by their latches or  controlled by their secondary functions   depends on the status of the controller when entering idle     Normally the port pins hold the logical state they had at the time idle was activated  If some pins are  programmed to serve their alternate functions they still continue to output during idle if the assigned  function is on  This applies for the compare outputs as well as for the system clock output signal  and the serial interface in case the latter could not finish reception or transmission during normal  operation  The control signals ALE and PSEN are held at logic high levels  see table 7 13      During idle  as in normal operating mode  the ports can be used as inputs  Thus  a capture or reload  operation as well as an A D conversion can be triggered  the timers can be used to count external  events and external interrupts can be detected     Semiconductor Group 136    SIEMENS    On Chip Peripheral Components       Table 7 13    Status of External Pins During Idle and Power Down Mode                                     Outputs Last Instruction Executed from Last Instruction Executed from  Internal Code Memory External Code Memory   Idle Power down Idle Power down   ALE High Low High Low   PSEN High Low High Low   Port 0 Data Data Float Fl
121.  is automatically started on  completion of the previous one     Semiconductor Group 83    SIEMENS    On Chip Peripheral Components                                                                                                                 Write to DAPR    Shaded areas are not used in ADC functions                                P 8  00  Internal Bus    s    P 7  DBy        ADCON   DC                     ADCONO  08   q       Port 7          Port 8 A D  Converter     6 0 ADST  VINTAREF VINTAGND  ViREF  VAGND D A Converter         5 4 5 2         DAPR          Internal Bus    MCB00780       Figure 7 25  Block Diagram of the A D Converter    Semiconductor Group    84       SIEMENS On Chip Peripheral Components       An externally controlled conversion can be achieved by setting the bit ADEX  In this mode on single  conversion is triggered by a 1 to 0 transition at pin P6 0 ADST  if ADM is O  P6 0 ADST is sampled  suring S5P2 of every machine cycle  When the samples show a logic high in one cycle and a logic  low in the next cycle the transition is detected and the conversion is started  When ADM and ADEX  is set  a continuous conversion is started when pin P6 0 ADST sees a low level  the conversion is  stopped when the pin P6 0 ADST goes back to high  The last commenced conversion during low  level will be completed     The busy flag BSY  ADCONO 4  is automatically set when a conversion is in progress  After  completion of the conversion it is reset by hardware  This flag ca
122.  is useful when entering subroutines or interrupt service  routines  ASM51 and the device SAB 80C517 default to register bank 0     The 8 general purpose registers of the selected register bank may be accessed by register  addressing  With register addressing the instruction of code indicates which register is to be used   For indirect addressing RO and R1 are used as pointer or index register to address internal or  external memory  e g  MOV  RO      Reset initializes the stack pointer to location 074 and increments it once to start from location 08H  which is also the first register  RO  of register bank 1  Thus  if one is going to use more than one  register bank  the SP should be initialized to a different location of the RAM which is not used for  data storage     4 4 Special Function Registers    The special function register  SFR  area has two important functions  Firstly  all CPU registers  except the program counter and the four register banks reside here  The CPU registers are the  arithmetic registers like A  B  PSW and pointers like SP  DPHx and DPLx     Secondly  a number of registers constitute the interface between the CPU and all on chip  peripherals  That means  all control and data transfers from and to the peripherals use this register  interface exclusively     The special function register area is located in the address space above the internal RAM from  addresses 80y to FFy  All 81 special function registers of the SAB 80C517 reside here     Sixteen SFRs
123.  la corriente y la tensi  n eliminando el rizado en la carga     Este estado se comprende entre 0    t  lt  DT     Para el an  lisis del convertidor se deben de encontrar las tensiones que hay en los  dos condensadores y las corrientes que pasan por las bobinas   La ecuaci  n del bucle izquierdo     1              1 42        La ecuaci  n del bucle interior derecho     i        1 43        La ecuaci  n del bucle exterior derecho se define     RR    2_1 19   R Veo    1 44                      din       Ly di  i Reo  i Ro         La ecuaci  n del bucle interior derecho se define     22  Memoria Descriptiva     Control mediante Linealizaci  n Entrada Salida    dVo   dt       i        igg               Vo 1  Re   i   R   0    Combinando la ecuaci  n  1 44  y  1 45  obtenemos     dV  R 1  C  2      um Vo   dt R Ro  R Ro     Resolviendo el sistema con las siguientes ecuaciones                  1 45      1 46      1 47                       di    Ke        Vin  dt L  L   dV      i   dt Ci    RR j Vao V  1 42   1 4  dij    D        C2 5   R   c2    Cl m d 2  dt R  Ro JL  R Ro    L  E                Ro  Ji   1  s  dt RR C  Ret Ros  Os  1 4 4 1 2   Topolog  a    OFF    del convertidor Boost con filtro de salida   111 il2            io    L dpi  qe cbe  Ak      zx                                     Tos Tis     dE     1   Zac       o  Vin   gt          2   X R   Vo  ge     o     2 cl a C2  bul gn      Figura 1 16  Convertidor Boost con filtro de salida en topologia    OFF        Cuando 
124.  matriz de la  topolog  a  ON  siguiente              i RR    A SER E      a  de  lle c eU          128   dv  Ro      1  ill         R R   C RARE ICI EX  y    A partir de las ecuaciones diferenciales  1 25  y  1 27  obtenemos la matriz de la  topolog  a  OFF  siguiente              i RR    UL        n    a  de   _ c c      Ely  1 29   dV B S                          M  A    14  Memoria Descriptiva     Control mediante Linealizaci  n Entrada Salida    1 4 3   Convertidor Buck Boost o reductor elevador     Este tipo de fuente conmutada permite elevar o disminuir la tensi  n de salida en  respecto a la tensi  n de entrada seg  n sea su ciclo de trabajo  Tambi  n forma parte de los  convertidores de segundo orden ya que solo tiene dos elementos almacenadores de energ  a     Este convertidor invierte la tensi  n de salida con respecto a la tensi  n de la fuente  de alimentaci  n     Este convertidor se comporta como 10  convertidores ya mencionados  anteriormente  se comporta como si el convertidor Buck y Boost se encontraran en  cascada                          D io        lar      T  or id M          Re     ir m       ic  Vin ol IL     B   Vo  Control E  OD o            alz  gt     Figura 1 9  Esquema de un convertidor Buck Boost        La funci  n de este convertidor es la de mantener la relaci  n Vo   MW 5  Si    el ciclo de trabajo es D   1 2 el convertidor se comporta como un Buck  reduciendo la  tensi  n de salida con respecto a la de entrada  Si el ciclo de trabajo es D gt
125.  measured with all output pins disconnected  XTAL2 driven with clock  signal according to the figure below  XTAL1   N C     EA   OWE   PE SWD           Port 0   Port 7   Port 8             RESET   Vas        would be slightly higher if a crystal oscillator is used     gi    kc  idle mode   is measured with all output pins disconnected and with all peripherals  disabled  XTAL2 driven with clock signal according to the figure below  XTAL1   N C    RESET   OWE   Voc  Port 0   Port 7   Port 8   Voc  EA   PE SWD           Icc  slow down mode  is measured with all output pins disconnected and with all peripherals  disabled  XTAL2 driven with clock signal according to the figure below  XTAL   N C    Port 7   Port 8           EA   PE SWD            6  Icc  max   at other frequencies is given by  active mode                 3 1 fosc   3 0  idle mode   cc max   1 0   fosc   3 0  Where fosc is the oscillator frequency in MHz         values are given in mA and measured at           5 V  see also notes 4 and 5      7  The output impedance of the analog source must be low enough to assure full loading of the  sample capacitance      during load time         After charging of the internal capacitance        in the load time  7  the analog input must be held constant for the rest of the sample time     Ts      8  The differential impedance Rp of the analog reference voltage source must be less than  1      at reference supply voltage     co         Exceeding the limit values at one or more i
126.  not used in controlling the fail safe mechanisms        Bit Function    SWDT Watchdog timer start flag   Set to activate the watchdog timer  When directly set after setting WDT   a watchdog timer refresh is performed              Semiconductor Group 144    SIEMENS On Chip Peripheral Components          OWD Reset Request       WDT Reset Request          SET                            pes                 n Internal Reset  Synchronization       CLEAR  External HW Reset Request    RESET o    Internal Bus     lt  MCS01857                         Figure 7 62  Watchdog Status Flags and Reset Requests    Figure 7 63  Special Function Register IPO    0A9     OWDS   WDTS   1P0 2   IPO                         These bits are not used in controlling the fail safe mechanisms           Bit Function       OWDS Oscillator watchdog timer status flag   Set by hardware when an oscillator watchdog reset occured   Can be cleared or set by software       WDTS Watchdog timer status flag   Set by hardware when a watchdog timer reset occured   Can be cleared or set by software          Semiconductor Group 145    SIEMENS On Chip Peripheral Components       7 8 2 Oscillator Watchdog    What happens      a microcontroller system it the controller s on chip oscillator stops working  This  failure e g  caused by a broken crystal  an open connection to the crystal  or a long term disturbance  normally leaves the system in a random  undetermined state  The SAB 80C517 provides a  fail   safe  reaction upon a
127.  occ             Scotus ied sot e bebe abaci e sump dra bie s Sa oTt L  mina 5  367 Driver    coss tede Cte Ec LE ME L  mina 6  3  Puente                   ooi er eter doeet eie merece tereti         L  mina 7  38  Caja etdpa de Control  edic ix Dua                        L  mina 8  3 9   Caja etapa de        idad L  mina 9  dis PLOSUPUES Mec Cc ITE 72  aL Precios elemegtales second tas O 72  4 1 1   Capitulo 1  Dise  o  Simulaci  n e                                                                   72  2 12   C apitalo  25 Matelas oed                 73  Ah De NTA CINCO S ases SE SH SR Obcaecati ea aec E eie 75  4 2 1   Cap  tulo 1  Dise  o  Simulaci  n e Implementaci  n                                     75  4 2 2   Capitulo 2  Materiale atto eere ket eedem eG            i ides 76  4S Aplicaci  n de                                      oca b d Mf 78  4 3 1   Capitulo 1  Dise  o  Simulaci  n e Implementaci  n                      sss 79  2 42  Capitulo 27 Material              rd rotas rante                     79  4A   Precio de ejecuci  n por material    aede terae        81  4 5   Precio de ejecuci  n por CONTA id A Per a D i ud tach wae 81    II    BO Precio por licitaci  ns A a aa 81    4 7  Resumen del presupuesto  eise oet deae esi ad tad iterate 81  aa AAA TT LU T        82  5 1   Disposiciones y abarque del pliego de        1  1                                                                       82  5  T  l  Objetivo del    techo ri aieo Luca real obe Ee ust 82  
128.  operations     The arithmetic unit  further on also called MDU for  Multiplication Division Unit   has been  integrated to support the 8051 core of the SAB 80C517 in real time control applications  It can  increase the execution speed of math intensive software routines by factor 5 to 10     The MDU is handled by seven registers  which are memory mapped as special function registers  like any other registers for peripheral control  Therefore  the arithmetic unit allows operations  concurrently to and independent of the CPU s activity     The following table describes the four general operations the MDU is able to perform           Operation Result Remainder Execution Time  32bit 16bit 32bit 16bit 6 toy    1 6bit 1 6bit 16bit 16bit 4 toy      16bit x 16bit 32bit     4 toy      32 bit normalize       6 toy    32 bit shift L R         6 toy                 1  1        1 microsecond at 12 MHz oscillator frequency  2  The maximal shift speed is 6 shifts per machine cycle    7 6 4 Programming the MDU    Operating Registers of the MDU    The seven SFR of the MDU consist of registers MDO to MD5  which contain the operands and the  result  or the remainder  resp   and one control register called ARCON     Thus MDO to MD5 are used twofold         for the operands before a calculation has been started and      for storage of the result or remainder after a calculation     This means that any calculation of the MDU overwrites its operands  If a program needs the original  operands for f
129.  partir de las ecuaciones diferenciales  1 13  y  1 15  obtenemos la matriz de la    topolog  a  OFF  siguiente      RR    ICE R    s   j   0               c en    A  1 17             Ro  i 1o e 0                    dt KER     R R   C B                   1 4 2   Convertidor Boost o elevador     El convertidor Boost es un tipo de fuente conmutada DC DC que eleva la tensi  n  de salida con respecto a la tensi  n de la fuente de alimentaci  n  manteni  ndola constante  frente a variaciones de tensi  n de la fuente de alimentaci  n o de la carga mediante una ley    de control     Este convertidor forma parte de los convertidores de segundo orden ya que contiene    dos elementos almacenadores de energ  a     xl id          10  L           Ts rada     Dn  PVA 5                          Vin      XE    As   is      o e    Control te                Figura 1 5  Esquema de un convertidor Boost     Memoria Descriptiva     Control mediante Linealizaci  n Entrada Salida    Para una mejor aproximaci  n al convertidor Boost real se han introducido las  resistencias par  sitas del condensador y de la bobina  Para el an  lisis se supone que cuando  el interruptor est   cerrado el diodo est   polarizado en inversa ya a la inversa  Se supone  tambi  n que la tensi  n en la bobina siempre es positiva     Cuando el interruptor pase de un estado a otro al no poder la intensidad que pasa  por la bobina cambiar bruscamente se elevar   la tensi  n en la bobina y se sumar   a la  tensi  n de la fuente 
130.  performed so a carry out from the low order eight bits may propagate through  higher order bits  No flags are affected     A value between 0 and 3 is in the accumulator  The following instructions will  translate the value in the accumulator to one of four values defined by the DB   define byte  directive     REL_PC  INC A  MOVC A   A   PC  RET  DB 66H  DB 77H  DB 88H  DB 99H    If the subroutine is called with the accumulator equal to 01   it will return with 77y  in the accumulator  The INC A before the MOVC instruction is needed to  get  around  the RET instruction above the table  If several bytes of code separated the  MOVC from the table  the corresponding number would be added to the  accumulator instead     MOVC A   A   DPTR    Operation     Encoding     Bytes   Cycles     MOVC        lt    A     DPTR         100110011                Semiconductor Group 222    SIEMENS Instruction Set       MOVC A   QA   PC  Operation  MOVC   PC       PC    1        lt           PC                     Encoding  10001001 1  Bytes  1  Cycles  2    Semiconductor Group 223    SIEMENS Instruction Set       MOVX  lt dest byte gt    lt src byte gt     Function     Description     Example     Move external    The MOVX instructions transfer data between the accumulator and a byte of  external data memory  hence the  X  appended to MOV  There are two types of  instructions  differing in whether they provide an eight bit or sixteen bit indirect  address to the external data RAM     In the first 
131.  producidas por las no linealidades de los componentes reales  posibles  interferencias exteriores no previstas  etc     A pesar de estas variaciones  el controlador implementado final se aproxima mucho  al simulado  en r  gimen transitorio y en estacionario  pudiendo afirmar que el objetivo de  este proyecto se ha desarrollado satisfactoriamente para una frecuencia de 8 kHz     A1 9 9  Anexo 1  Resultados experimentales    A2   C  DIGO DEL PROGRAMA     Control mediante Linealizaci  n Entrada Salida   include  lt reg517 h gt    Libreria que incluye todos registros  del microcontrolador 80c537       unsigned char duty 0      Variable global que contiene el tiempo que debe  estar encendido o apagado el transistor       unsigned char 11b 0    Variable global que contiene el valor de la  intensidad que pasa por la bobina 1 en valor digital de 8 bits       unsigned char i2b 0     Variable global que contiene el valor de la intensidad  que pasa por la bobina 2 en valor digital de 8 bits       unsigned char vob 0     Variable blobal que contiene el valor de la tensi  n de salida  en 8 bits y que puede variar entre 0x00 son 18 V y OxFF que son 20 5 V       unsigned char periodo 104    Periodo del ciclo de trabajo  en nuestro caso 7 kHz    unsigned char ad con 0    Variable global para realizar los diferentes casos     unsigned char vo dese OxFF    Variable global que sirve para dar un valor a la tensi  n deseada       unsigned char valor 0       Variable global que nos permite guarda
132.  qu input la at pin P1 7 T2                                        Prescaler Timer 2 input selection       _   gt       1 5   2      E SYNC EXF2 Interrupt  Request  Reload  1  available only in SAB 80C517 80C537 5 MCBO1474  identification mark  BB  or later shaded areas are not used for this function             Figure 7 34 a   Block Diagram of Timer 2    Semiconductor Group 97    SIEMENS On Chip Peripheral Components       Timer Mode    In timer function  the count rate is derived from the oscillator frequency  A 2 1 prescaler offers the  possibility of selecting a count rate of 1 12 or 1 24 of the oscillator frequency  Thus  the 16 bit timer  register  consisting of TH2 and TL2  is either incremented in every machine cycle or in every second  machine cycle  The prescaler is selected by bit T2PS in special function register T2CON  see  figure 7 35   If T2PS is cleared  the input frequency is 1 12 of the oscillator frequency  if T2PS is  set  the 2 1 prescaler gates 1 24 of the oscillator frequency to the timer     Gated Timer Mode    In gated timer function  the external input pin T2  P1 7  functions as a gate to the input of timer 2  If  T2 is high  the internal clock input is gated to the timer  T2   0 stops the counting procedure  This  will facilitate pulse width measurements  The external gate signal is sampled once every machine  cycle  for the exact port timing  please refer to section 7 1  Parallel 1 0       Event Counter Mode    In the counter function  the timer 2 
133.  quality it for both electrically noisy  environments and applications requiring high system security  In such applications unintentional  entering of the power saving modes must be absolutely avoided  A power saving mode would  reduce the controller s performance  in the case of slow down mode  or even stop any operation  in  the case of power down mode   This situation might be fatal for the system  which is controlled by  the microcontroller  Such critical applications often use the watchdog timer to prevent the system  from program upsets  Then  an accidental entering of the power saving modes would even stop the  watchdog timer and would circumvent the watchdog timer s task of system protection     Semiconductor Group 134    SIEMENS On Chip Peripheral Components       Hardware Enable for the Use of the Power Saving Modes    To provide power saving modes together with effective protection against unintentional entering of  these modes  the SAB 80C517 has an extra pin disabling the use of the power saving modes  As  this pin will most likely be used only in critical applications it is combined with an automatic start of  the watchdog timer  see the description in section 7 8  Fail Save Mechanisms    This pin is called  PE SWD  powers saving enable start watchdog timer  and its function is as follows     E SWD   1  logic high level         Use of the power saving modes is not possible  The instruction sequences used for entering  these modes will not affect the normal opera
134.  register S1CON  while the stop bit is ignored     Mode B   8 bit UART  variable baud rate   10 bits are transmitted  through TXD1  or received  through RXD1   a start bit  0    8 data bits  LSB first   and a stop bit  1   On reception  the stop bit goes into RB81  in special function register S1CON     Variable Baud Rates for Serial Interface 1    Variable baud rates for modes A and B of serial interface 1 can be derived from a dedicated   baud rate generator    baud rate clock  16    running timer with programmable reload register  SAB 80C517 devices with stepping code   CA  or later provide a 10 bit free running timer for baud rate generation     The baud rate clock  baud rate     is generated by a 8 bit free    Mode A  B baud rate        32x 2        Reload Value   Watchdog Units    The SAB 80C517 offers two enhanced fail safe mechanisms  which allow an automatic recov   ery from hardware failure or software upset         programmable watchdog timer  WDT   variable from 512 ms up to about 1 1 s time out  period  12 MHz  Upward compatible to SAB 80515 watchdog         oscillator watchdog  OWD   monitors the on chip oscillator and forces the microcontroller to  go into reset state  in case the on chip oscillator fails     Programmable Watchdog Timer  The WDT can be activated by hardware or software     Hardware initialization is done when pin PE SWD  Pin 4  is held high during RESET  The  SAB 80C517 then starts program execution with the WDT running  Pin PE SWD doesn t allo
135.  shown in figure 7 69     Note     During slow down operation  see section 7 7  the frequency of the clockout signal is divided by  eight     Semiconductor Group 150    SIEMENS On Chip Peripheral Components          se    1  52  53   54    5  56   st 152    3   54   55  se    1   sa             fL IL   Eee      G  RD WR L    CLKOUT         MCT01858                Figure 7 69  Timing Diagram   System Clock Output    Semiconductor Group 151    SIEMENS Interrupt System       8 Interrupt System    The SAB 80C517 provides 14 interrupt sources with four priority levels  Seven interrupts can be  generated by the on chip peripherals  i e  timer 0  timer 1  timer 2  compare timer  serial interfaces  0 and 1 and A D converter   and seven interrupts may be triggered externally     Short Description of the Interrupt Structure for Advanced SAB 80 C 515 Users    The interrupt structure of the SAB 80C517 has been mainly adapted from the SAB 80 C 515  Thus   each interrupt source has its dedicated interrupt vector and can be enabled disabled individually   there are also four priority levels available     In the SAB 80C517 two interrupt sources have been added         Compare timer overflow interrupt      Receive and transmit interrupt of serial interface 1    In the SAB 80 C 515 the 12 interrupt sources are combined to six pairs  each pair can be  programmed to one of the four interrupt priority levels  In the SAB 80C517 the new interrupt sources  were added to two of these pairs  thus form
136.  the controller will soon start its program again     For that purpose  the SAB 80C517 has a pin dedicated to output the internal reset request  This  reset output  RO  at pin 82 shows the internal  and already synchronized  reset signal requested  by any of the three possible sources in the SAB 80C517  external hardware reset  watchdog timer  reset  oscillator watchdog reset  The duration of the active low signal of the reset output depends  on the source which requests it  In the case of the external hardware reset it is the synchronized  external reset signal at pin RESET  In the case of a watchdog timer reset or oscillator watchdog  reset the RESET OUT signal takes at least two machine cycles  which is the minimal duration for a  reset request allowed  For details   how the reset requests are OR ed together and how long they  last   see also chapter 7 8  Fail Save Mechanisms      Semiconductor Group 39    SIEMENS On Chip Peripheral Components       7 On Chip Peripheral Components    This chapter gives detailed information about all on chip peripherals of the SAB 80C517 except for  the integrated interrupt controller  which is described separately in chapter 8  Sections 7 1 and 7 2  are associated with the general parallel and serial I O facilities while the remaining sections  describe the miscellaneous functions such as the timers  A D converter  compare capture unit   multiplication division unit  power saving modes   fail save  mechanisms  oscillator and clock  circuit
137.  the mode is automatically set  depending on the timer which is used as time base or depending on the port which outputs the  compare signal     Semiconductor Group 103    SIEMENS On Chip Peripheral Components       7 5 4 1 Compare Mode 0    In mode 0  upon matching the timer and compare register contents  the output signal changes from  low to high  It goes back to a low level on timer overflow  As long as compare mode 0 is enabled   the appropriate output pin is controlled by the timer circuit only  and not by the user  Writing to the  port will have no effect  Figure 7 38 shows a functional diagram of a port latch in compare mode 0   The port latch is directly controlled by the two signals timer overflow and compare  The input line  from the internal bus and the write to latch line are disconnected when compare mode 0 is enabled     Compare mode 0 is ideal for generating pulse width modulated output signals  which in turn can be  used for digital to analog conversion via a filter network or by the controlled device itself  e g  the  inductance of a DC or AC motor   Mode 0 may also be used for providing output clocks with initially  defined period and duty cycle  This is the mode which needs the least CPU time  Once set up  the  output goes on oscillating without any CPU intervention  Figure 7 39 illustrates the function of  compare mode 0     For some information on how to operate a timer compare register configuration to generate PWM  signals  e g  by using a compare inte
138.  the oscillator frequency     Mode 1  8 bit UART  variable baud rate     10 bits are transmitted  through TxDO  or received  through RxDO   a start bit  0   8 data bits  LSB  first   and a stop bit  1   On reception  the stop bit goes into RB80 in special function register  SOCON  The baud rate is variable     Mode 2  9 bit UART  fixed baud rate     11 bits are transmitted  through TxDO  or received  through RxDO   a start bit  0   8 data bits  LSB  first   a programmable 9th bit  and a stop bit  1   On transmission  the 9th data bit  TB80 in SOCON   can be assigned to the value of 0 or 1  For example  the parity bit  P in the PSW  could be moved  into TB80 or a second stop bit by setting TB80 to 1  On reception the 9th data bit goes into RB80  in special function register SOCON  while the stop bit is ignored  The baud rate is programmable to  either 1 32 or 1 64 of the oscillator frequency           Semiconductor Group 51    SIEMENS On Chip Peripheral Components       Mode 3  9 bit UART  variable baud rate     11 bits are transmitted  through TxDO  or received  through RxDO   a start bit  0   8 data bits  LSB  first   a programmable 9th bit  and a stop bit  1   On transmission  the 9th data bit  TB80 in SOCON   can be assigned to the value of 0 or 1  For example  the parity bit  P in the PSW  could be moved  into TB80 or a second stop bit by setting TB80 to 1  On reception  the 9th data bit goes into RB80  in special function register SOCON  while the stop bit is ignored  In
139.  to 125  C                                                  5  4 3  2  10 1 2 3 4 5             Temperature Coefficient     uV   C    Figure 10  INPUT VOLTAGE RANGE    VS  SUPPLY VOLTAGE                               Vj   Input Voltage Range   V                      2 3 4 5 6 7 8  IVpp     Supply Voltage   V    Figure 12    t Data at high and low temperatures are applicable only within the rated operating free air temperature ranges of the various devices        32    35 TEXAS    INSTRUMENTS    POST OFFICE BOX 655303 9 DALLAS  TEXAS 75265    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TYPICAL CHARACTERISTICS    INPUT VOLTAGE              HIGH LEVEL OUTPUT VOLTAGE   vs vs  FREE AIR TEMPERATURE HIGH LEVEL OUTPUT CURRENT          TA   125  C              25  C       Vj   Input Voltage Range     V            55  C    VoH  High Level Output Voltage     V                       75  50  25 0 25 50 75 100 125                                                                            TA   Free Air Temperature       C            High Level Output Current   mA  Figure 13 Figure 14  LOW LEVEL OUTPUT VOLTAGE LOW LEVEL OUTPUT VOLTAGET  vs vs  LOW LEVEL OUTPUT CURRENT LOW LEVEL OUTPUT CURRENT  1 4  Vpp  5 V         2 5        gt  1 2  o o  o o  5   1 TA   125  C          2          2     5 E  we        25  C                     gt   gt  0 6  3 a         55  C  5 5  al E 0 4  a Li   gt   gt  02  0  0 1 2 3 
140.  to accumulator 1 1  ADD A direct Add direct byte to accumulator 2 1  ADD A   Ri Add indirect RAM to accumulator 1 1  ADD A  data Add immediate data to accumulator 2 1  ADDC A Rn Add register to accumulator with carry flag 1 1  ADDC A direct Add direct byte to A with carry flag 2 1  ADDC A   Ri Add indirect RAM to A with carry flag 1 1  ADDC A   data Add immediate data to A with carry flag 2 1  SUBB A Rn Subtract register from A with borrow 1 1  SUBB Adirect Subtract direct byte from A with borrow 2 1  SUBB A  Ri Subtract indirect RAM from A with borrow 1 1  SUBB A  data Subtract immediate data from A with borrow 2 1  INC A Increment accumulator 1 1  INC Rn Increment register 1 1  INC direct Increment direct byte 2 1  INC  Ri Increment indirect RAM 1 1  DEC A Decrement accumulator 1 1  DEC Rn Decrement register 1 1  DEC direct Decrement direct byte 2 1  DEC  QRi Decrement indirect RAM 1 1  INC DPTR Increment data pointer 1 2  MUL AB Multiply A and B 1 4  DIV AB Divide A by B 1 4  DA A Decimal adjust accumulator 1 1                Semiconductor Group    251    SIEMENS    Instruction Set       Instruction Set Summary  cont d        Mnemonic       Description       Byte       Cycle       Logic Operations                                                                               ANL A Rn AND register to accumulator 1 1  ANL  Asjdirect AND direct byte to accumulator 2 1  ANL A  Ri AND indirect RAM to accumulator 1 1  ANL A  data AND immediate data to accumulator 2 1  ANL  direc
141.  todos los tipos  de convertidores conmutados  Este principio consiste en el almacenamiento temporal de  energ  a y una cesi  n de esta en un segundo periodo de tiempo  donde su duraci  n  condiciona la cantidad de energ  a almacenada o cedida  hecho que provoca un mayor o  menor suministro de esta energ  a a la carga     1 4   Topolog  as b  sicas de los convertidores conmutados DC DC   1 4 1   Convertidor Buck o reductor     El convertidor Buck es una fuente conmutada DC DC que reduce la tensi  n de  salida con respecto a la tensi  n de la fuente de alimentaci  n  manteniendo la tensi  n de  salida constante frente a las variaciones de tensi  n de la fuente de alimentaci  n o a  variaciones producidas por la carga mediante alguna ley de control  ya sea por corriente   tensi  n o corriente y tensi  n     El convertidor reductor al tener dos elementos almacenadores de energ  a  se  encuentra dentro de la familia de los convertidores de segundo orden  ya que no se le ha  agregado ningun filtro a la salida  Este filtro eliminar  a el rizado de corriente y tensi  n   producido por las diferentes conmutaciones del interruptor  El filtro estar  a formado por  una bobina que eliminar  a el rizado de corriente y un condensador que eliminar  a el rizado  de tensi  n               T    Vin      gt   Control             IH    Figura 1 1  Esquema de un convertidor Buck     Para el an  lisis se han introducido las resistencias par  sitas de la bobina y del  condensador  de esta manera el
142.  torneado DIP100T 8 pins  B3001 Z  calo torneado DIP100T 14 pins    B4000 Circuito integrado TLC2272IN   2 Amplificadores Operacionales      B4001        4 Amplificadores Operacionales    u Circuito integrado DM74LS00    4 Puertas Nand      u Circuito integrado 7805     B4100    1    4200 1       75  Presupuesto    Control mediante Linealizaci  n Entrada Salida            Fuente lineal   LL       B5000 Potenci  metro multivuelta  ajuste  horizontal 20        10  de tolerancia  Y4  W     B6000    Toroidal IIS Ariston     2      B6500 Cable cobre di  metro 0 6 mm 38 6  PIRESOLD      B700   u  JjDiodoZenrl5 V                 1      B7100       Diodo Schottky BYW2950    1      B7201   u jDiodobiplarIN4007        1      B730   u Diookd                    2JJJ         1  O    B7500       MOSFET de potencia BUK455    1      B7500   u  DriverIR2125              1        B800   u                B800   u                   76  Presupuesto    Control mediante Linealizaci  n Entrada Salida    4 3   Aplicaci  n de precios     4 3 1   Capitulo 1  Disefio  Simulaci  n e Implementaci  n     N  MERO DESCRIPCI  N PRECIO   CANT    IMPORTE  A1000 BEBE  Estudio te  rico y simulaci  n               28        1002     h  Dise  o   Dise  o del software    software     EUM EE y puesta en ae a 5  del equipo              TOTAL CAPITULO 1  Dise  o  Simulaci  n e Implementaci  n  2046              Presupuesto    77    Control mediante Linealizaci  n Entrada Salida    4 1 2   Cap  tulo 2  Material     NUME
143.  un fichero en hexadecimal que lo  utilizaremos para la programaci  n del microcontrolador 80C537     A2  2 21  Anexo 3  Manual de pr  cticas     Control mediante Linealizaci  n Entrada Salida    En la figura siguiente se muestra la opci  n 3  en el apartado de generaci  n de  interrupciones  que en este caso es la de generar una interrupci  n cada 8 bytes     Options           C Generate      assembler source file   SAC   E  Environment       Generate an object file  OBJ                              Colors  Font     Debugging information   Editor C No debug information  Execution    Standard  PLM51 compatible   DM    Extended  DE     Green C Extended 1997 version  DE 2    Floating port  Code generation    Generate rterupt vectors  Defines Interval for ierupt vectors   8  Offset for interrupt vectors   o  Memory Model  Registers    Order variables         Variable length arguments lists size  fis  ess                 Detauts   Cancel   Hep      Figura A3 7  Generaci  n de interrupciones     En la figura siguiente nos muestra la aplicaci  n para la utilizaci  n del hardware del  microcontrolador 80C537  esta aplicaci  n es la m  s importante ya que utiliza todas las  funciones especificas del microcontrolador     El tipo de memoria Rom que se utilizar   ser   la larga  cuando programemos sobre  la memoria RAM de la placa Altair  ya que utilizara saltos de 2 bytes para poderse  posicionar en los 64 kbytes de la memoria externa  La posici  n 0 a la 7FFF en hexadecimal  ser   par
144.  variables del  programa  as   como el hardware del microcontrolador  donde est   el Stack pointer  as    como los puntos de ruptura del programa  etc     P  32  practica    File Edit Search Project Tool   View Debug Options Window Help              View listing  View Map file  View Messages        estar a nivel baj    Report  Code    reloj 0  Kernel puerto 1 pin 2      la parte baja del  sistor de potenci    wv Main registers  Data dump       Hardware       Symbols            Watch    tos    mos que se inicial  Figs L inicio dog      134 inicio timer    Er 5  alizamos el Timer    Trace    Main Registers  PRACTICA     ni xi    CPU Bank Data Hardware       Figura A3 13  Opciones del simulador     En la siguiente figura podemos observar todo el hardware que tiene el  microcontrolador y con esta opci  n podremos dar valores a los puertos de entrada salida   ver los valores de la conversi  n A D  ver prioridades de las interrupciones  etc     A2  6 21  Anexo 3  Manual de pr  cticas     Control mediante Linealizaci  n Entrada Salida        M          Code          esta                      Interrupt Controller  Timer O   Timer 1   Port O   Port 1   Port 2   ta Ha pres                ARTO   0   2   zi Port 5    PTR FF   P2 Port 6   Bis E de Timer 2 and CCU    LIART 1   x    TR mathunt   REA      TF A D Converter    sk  xx  TF     watchDog Timer 517        KAF  m     se inicialize e    NEn esta    23H SERIAL   Inte  2RH TIMFR 2  Int       Figura A3 14  Hardware del simulador     Una
145.  vez se ha probado el programa en el programa monitor  y se ha generado un  fichero Intel hex como el siguiente      10823C00COE0COF0COD075D00085D90EE50C600848   08824C0014601314601E807B16   1082540075DC01850E0B750C0175DA80806D75DC9B   1082640002850E09750C0275DA80805F75DC008565   108274000E0A EAFS0CFCES0DC3950BFFE49400FE37   10828400AD11128141C006C0077C00E509C3950AFF   10829400FFE49400FEDOE02FFFDOEO3EFE7D6812A4   108244008105AD097C001281418F0875DA80E508EB   0682B400B45A01D340089A   0882BA00750FCB7510CB800D90   1082C20074FFC39508F50FE5082498F510D0DOD0B7   0482D200F0D0E032D6   0C82D600C0D075D000D2AED2BE309207EE   0782E200C292850F8A 80059E   0882E900D29285108AD0D03238   0C82F10012831E1283151283061282FFF6   0282FD0080FE01    0782FF0075DC0075DA802236   0F830600C29275B90375A902D2AFD2A9D2B8221B   09831500758903D28C758ACB2214   08831E0075867FD2BED2BE229B   0C832600040DFF040FCB0410CB041196D3   0300080002820698    0300430002823CFA    030000000281D6A4   1081D600758112E4787FF6D8FD908326E4937002C9   1081E600804EC31392D5C31392D1FFA3E493F8B084   1081F600D5402130D505E4A393F5A0E420D102A310                         A2  7 21  Anexo 3  Manual de pr  cticas     Control mediante Linealizaci  n Entrada Salida     108206009320D507F608DFF3A380D1F208B800F66D   1082160005A080F2E8030303541F2420F9E854075D   10822600F8E4D333B80002800333D8FD47F780D88B   0682360075A0FF0282F1B9    10810000E0A 3FEEOFFEF8DFOA4CFCS5FOCCA42CFCE3   09811000EE60038DF0A42CFE22A8   10811900C2D1C2D5EE30E707D2D1D2D51281C6EC91   1081290
146.  wave out of the modulated digital signal is done by a low pass filter         PWM frequency    In this example the switching frequency of the PWM signal is fixed  The frequency is determined by  the reload value   gt  resolution  and the input clock of the timer         8 bit resolution    This means that only eight bits of the 16 bit wide timer and compare circuitry are used to generate  the PWM signal   gt  faster PWM frequency   Thus the duty cycle of the signal is programmable in  256 steps  Each step represents a quantum of one machine state or 166 6 ns at fos    12 MHz   256 x 166 6 ns   42 649 us  1 42 649 us   23 4 kHz     Configuration of the CCU    To generate a sine wave  the duty cycle of a PWM signal must be varied periodically  as mentioned  above  One PWM period  or one sample point  is represented by a full compare timer period  The  high to low transition of the PWM signal takes place upon every compare timer overflow  the low   to high transition is programmable and takes place when the timer count matches the contents of  the compare register   gt  compare mode 0   In the worst case  maximum sine wave frequency   the  contents of the compare register must be reloaded in every compare timer period         Compare timer setup    Input clock  The input clock is set to         2  This can be done in special function register CTCON  In this case    the timer is incremented every machine cycle  166 6 ns at 12 MHz      Reload  The reload register CTRELy  high byt
147. 0010 bit address  Bytes   Cycles  2    Semiconductor Group 220    SIEMENS Instruction Set       MOV DPTR   data16  Function  Load data pointer with a 16 bit constant    Description         data pointer is loaded with the 16 bit constant indicated  The 16 bit constant is  loaded into the second and third bytes of the instruction  The second byte  DPH  is  the high order byte  while the third byte  DPL  holds the low order byte  No flags are  affected     This is the only instruction which moves 16 bits of data at once   Example  The instruction  MOV DPTR   1234H    will load the value 1234  into the data pointer         will hold 124 and DPL will hold  34H   Operation  MOV   DPTR   lt   data15 0  DPH O DPL  lt   data15 8 O  data7 0             Encoding  1001 0000 immed  data 15   8 immed  data 7    0                                  Bytes   Cycles     Semiconductor Group 221    SIEMENS Instruction Set       MOVC A   A    lt base reg gt     Function     Description     Example     Move code byte    The MOVC instructions load the accumulator with a code byte  or constant from  program memory  The address of the byte fetched is the sum of the original  unsigned eight bit accumulator contents and the contents of a sixteen bit base  register  which may be either the data pointer or the PC  In the latter case  the PC  is incremented to the address of the following instruction before being added to the  accumulator  otherwise the base register is not altered  Sixteen bit addition is 
148. 008105AD097C001281418F0875DA80E508EB   0682B400B45A01D340089A   0882BA00750FCB7510CB800D90   1082C20074FFC39508F50FE5082498F510D0D0D0B7   0482D200F0D0E032D6   0C82D600C0D075D000D2AED2BE309207EE   0782  200  292850  8   80059     0882E900D29285108AD0D03238   0C82F10012831E1283151283061282FFF6   0282FD0080FE01    0782FF0075DC0075DA802236   0F830600C29275B90375A902D2AFD2A9D2B8221B    A2  8 21  Anexo 3  Manual de pr  cticas     Control mediante Linealizaci  n Entrada Salida     09831500758903D28C758ACB2214   08831E0075867FD2BED2BE229B   0C832600040DFF040FCB0410CB041196D3   03800B 000282D698    0380430002823          038000000281D6A4   1081D600758112E4787FF6D8FD908326E4937002C9   1081E600804EC31392D5C31392D1FFA3E493F8B084   1081F600D5402130D505E4A393F5A0E420D102A310   108206009320D507F608DFF3A380D1F208B800F66D   1082160005A080F2E8030303541F2420F9E854075D   10822600F8E4D333B80002800333D8FD47F780D88B   0682360075A0FF0282F1B9   10810000E0A3FEE0FFEF8DFOA4CFCSFOCCA42CFCE3   09811000EE60038DF0A42CFE22A8   10811900C2D1C2D5EE30E707D2D1D2D51281C6EC91   1081290030E705B2D11281CE12814130D1031281DB   10813900C630D5031281CE22BC000EBE0032EF8DAF   10814900F08420D226FFADF0227B0075F008EF2FD6   10815900FFEE33FEEB33FBEE9DEB9C4005FBEE9D02   10816900FEOFD5FOE9E4CECDCBCC227EFF7FFF22F6   10817900EDB410005022EE8DF084FEEF54F045F07E   10818900C48DF084C4FCEF540FC445F0C48DF0845 1   1081A90008CEC5FOCDCBEF2FFFED33FD10D7079BE0   1081B9005005D5F0F1229BFDOFD5FOEA22C3E49FCB   0D81C900FFE49EFE22C3E49DFDE49CFC2229   
149. 01234   At this point the instruction  POP SP  will leave the stack pointer set to 204  Note that in this special case the stack pointer  was decremented to 2     before being loaded with the value popped  205     Operation  POP   direct   lt    SP      SP       SP    1   Encoding  1101 0000 direct address   Bytes  2   Cycles  2    Semiconductor Group 232    SIEMENS Instruction Set       PUSH direct    Function     Description     Example     Operation     Encoding     Bytes   Cycles     Push onto stack    The stack pointer is incremented by one  The contents of the indicated variable is  then copied into the internal RAM location addressed by the stack pointer   Otherwise no flags are affected     On entering an interrupt routine the stack pointer contains 094  The data pointer  holds the value 0123y  The instruction sequence    PUSH  DPL  PUSH           will leave the stack pointer set to OBy and store 234 and 014 in internal RAM  locations OAy and OBy  respectively     PUSH   SP   lt   SP    1    SP        direct           1100 0000 direct address                         2  2    Semiconductor Group 233    SIEMENS Instruction Set       RET  Function  Return from subroutine    Description         pops the high and low order bytes of the PC successively from the stack   decrementing the stack pointer by two  Program execution continues at the  resulting address  generally the instruction immediately following an ACALL or  LCALL  No flags are affected     Example  The stack po
150. 01833200004A    00000001FF       Anexo 3  Manual de pr  cticas     A2  9 21    Control mediante Linealizaci  n Entrada Salida    A3 2   Utilizaci  n del programa ex51     Una vez hecho el proceso anterior ya se puede programar el microcontrolador  mediante el programa ex51  proporcionado por la casa Ibercomp     Sintit   Hex For W95 98 NT   0 80Beta  File Edit View Tools Help          FF       Figura A3 14  Pantalla programa ex51     Una vez abierto nuestro fichero Intel hex  nos posicionaremos en la posici  n 8000  hexadecimal para ver que las interrupciones est  n en su sitio y el programa tambi  n   mediante la herramienta edit  gt goto o tecla r  pida    Ctrl  G           PRACTICA HEX   Hex For W95 98 NT   0 80Beta    File Edit View Tools Help           668666  82 81 06 FF FF FF FF FF FF FF FF 82 82      FF FF                   668616  FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF                   868620  FF FF      FF FF FF EF FF FF FE FE FF FF FF FE          668636  FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF                   668646  FF FF FF 82 82 3   FF FF FF FF FF FF FF FF FF FF                     668656  FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF                   888868  FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF                      888878  FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF                   668686  FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF                   888898  FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF             
151. 030E705B2D11281CE12814130D1031281DB   10813900C630D5031281CE22BC000EBE0032EF8DAF   10814900F08420D226FFADF0227B0075F008EF2FD6   10815900FFEE33FEEB33FBEE9DEB9CA4005FBEE9D02   10816900FEOFD5FOE9EACECDCBCC227EFF7FFF22F6   10817900EDB410005022EE8DF084FEEF54F045F07E   10818900C48DF084C4FCEF540FC445F0C48DF08451   1081A90008CECSFOCDCBEF2FFFED33FD10D7079BEO   1081B9005005D5F0F1229BFDOFD5F0EA22C3E49FCB   0D81C900FFE49EFE22C3E49DFDE49CFC2229   01833200004A    00000001FF    Se puede observar los valores en hexadecimal marcados en rojo y en un cuadro que  no est  n posicionados a partir de la posici  n 8100 en hexadecimal sino que est  n en la  posici  n 00  OB y 43 que son el comienzo del programa  ROM de la placa Altarir  y las  interrupciones  La interrupci  n OB ser   la del Timer 0 y la interrupci  n 43 ser   la del  conversor A D  Este problema de no poder grabar en las posiciones de la O a la 7FFF por  ser una ROM se soluciona posicionandolas a partir de la 8000  ya que la ROM de la placa  Altair  en las posiciones de atenci  n a la interrupci  n tiene un salto hacia la misma  posici  n pero a partir de la posici  n 8000     Quedando el fichero anterior de la siguiente manera      10823C00COE0COF0COD075D00085D90EE50C600848   08824C0014601314601E807B16   1082540075DC01850E0B750C0175DA80806D75DC9B   1082640002850E09750C0275DA80805F75DC008565   108274000E0AE4F50CFCE50DC3950BFFE49400FE37   10828400AD11128141C006C0077C00E509C3950AFF   10829400FFE49400FEDOEO2FFFDOEO3EFE7D6812A4   1082A4
152. 05 0    Date  AGOSTO 200 Sheet 5 of 7  2       12 1 2 W    IR 2125    itle    DRIVER IR2125    ize Document Number R  Moo    OSTO 200 Sheet 6 of 7  2       Vin  12 V Vcc   5V  1N4007    itle    FUENTE DE ALIMENTACION    ize Document Number R  Moon    OSTO 200 Sheet Z of 7  2       Control mediante Linealizaci  n Entrada salida   Lamina         L  mina 8  Caja etapa de control     Control mediante Linealizaci  n Entrada salida   Lamina 9       L  mina 9  Caja etapa de potencia     4   PRESUPUESTO     Control mediante Linealizaci  n Entrada Salida    4   Presupuesto   4 1   Precios elementales     4 1 1   Capitulo 1  Disefio  Simulaci  n e Implementaci  n     NUMERO   UNIDADES DESCRIPCI  N PRECIO  A1000 Estudio te  rico y simulaci  n   A1001 Dise  o del Hardware     A1002 Dise  o del software   A1003 Montaje y puesta en marcha del equipo        71  Presupuesto    Control mediante Linealizaci  n Entrada Salida    4 1 2   Cap  tulo 2  Material     NUMERO   UNIDADES DESCRIPCION PRECIO    B1000 u Resistencia de carb  n 10 Q   1  de 0 04  tolerancia  Y  W     B1001 NM de carb  n 12 Q   1  de 0 04  tolerancia  Y  W    B1002      de carb  n 1        1  de 0 04  tolerancia  1   4          1003        de carb  n 10        1  de 0 04  tolerancia  1   4          1004 EE ee de carb  n 16 kO   1  de 0 04  tolerancia  1   4        B1005 EM 7 de carb  n 33        1  de  0 04  tolerancia  1   4        B1006 EB _ de carb  n 75 kO   1  de 0 04  tolerancia  1   4        B1007 o3 I de carb  n 82  
153. 0C517 instruction set includes 111 instructions  49 of which are single byte  45 two byte  and 17 three byte instructions  The instruction opcode format consists of a function mnemonic  followed by a  destination  source  operand field  This field specifies the data type and addressing  method s  to be used     Like all other members of the 8051 family  the SAB 80C517 can be programmed with the same  instruction set common to the basic member  the SAB 8051    Thus  the SAB 80C517 is 100  software compatible to the SAB 8051 and may be programmed  with 8051 assembler or high level languages     9 1 Addressing Modes  The SAB 80C517 uses five addressing modes         register       direct       immediate       register indirect       base register plus index register indirect    Table 9 1 summarizes the memory spaces which may be accessed by each of the addressing  modes     Register Addressing    Register addressing accesses the eight working registers  RO   R7  of the selected register bank   The least significant bit of the instruction opcode indicates which register is to be used  ACC  B   DPTR and CY  the Boolean processor accumulator  can also be addressed as registers     Direct Addressing    Direct addressing is the only method of accessing the special function registers  The lower  128 bytes of internal RAM are also directly addressable     Immediate Addressing    Immediate addressing allows constants to be part of the instruction in program memory     Semiconductor Grou
154. 12    SIEMENS On Chip Peripheral Components          m gt  To interrupt Logic               Port Latch Circuit P1 4          dada dus  Comparator       COCON 1  COCON 2  COCON 3    m2   m2 Emn    Timer 2 Port 5     Output Buffer                                 501852                   Figure 7 45   Concurrent Compare  Function of Register CC4    Pattern Table  8 Bit  Schedule Table  16 Bit             Compare Register  CC4H CC4L          Timer Count 4000        1000  20004 30004         5 7       P5 6  P5 5  P5 4                      5 2    Port Pattern           P5 1          P5 0  MCTO1853                Figure 7 46  Example for a  Concurrent Compare  at Port 5    Semiconductor Group 113    SIEMENS    On Chip Peripheral Components       Figure 7 47  Compare Capture Enable Register CCAEN          0C9y          COCON2COCON 1       COCONOCOCOENCOCAH4  COCAL4  COMO          CCAEN                Selects compare or capture function  number of concurrent compares and compare mode of    register CC4        Bit    Function       COCAH4  0  0    1  1    COCAL4    0  1    0  1    Compare capture mode for CC4 register  Compare capture disabled   Capture on falling rising edge at pin  P1 0 INT2 CC4   Compare enabled   Capture on write operation into register CC4L        COMO    Compare mode bit  When set compare mode 1  is selected for CC4   COMO   0 selects compare mode 0        COCOEN    Enables the compare mode 1 and the  concurrent compare output for CC4   Setting of this bit automa
155. 12 input channels  the eight inputs at port 7 and the four inputs at port 8   Thus  there are two methods of selecting a channel of port 7 and it does not matter which is used   if a new channel is selected in ADCON 1 the change is automatically done in the corresponding bits         to MX2 in ADCONO and vice versa  If bit        is set  the additional analog inputs at port 8 are  used         and MX1 then determine which channel of port 8 is being selected  see table 7 6      Semiconductor Group 86    SIEMENS On Chip Peripheral Components       Ports P7 and P8 are dual purpose input ports  If the input voltage meets the specified logic levels   they can be used as digital inputs as well regardless of whether the pin levels are sampled by the  A D converter at the same time     The special function register ADDAT  figure 7 28  holds the converted digital 8 bit data result  The  data remains in ADDAT until it is overwritten by the next converted data  ADDAT can be read or  written under software control  If the A D converter of the SAB 80C517 is not used  register ADDAT  can be used as an additional general purpose register     Figure 7 28  Special Function Register ADDAT  Address 009          0D9y Conversion result ADDAT             This register contains the 8 bit conversion result     7 4 1 2 Start of Conversion    An internal start of conversion  ADEX   0  is triggered by a write to DAPR instruction  The start  procedure itself is independent of the value which is written 
156. 190C     FEBRUARY 1997     REVISED JULY 2000    TLC22741 electrical characteristics at specified free air temperature  Vpp    5 V  unless otherwise  noted     TLC22741 TLC2274Al    Vio Input ofset voltage Full range 3000 1500  Temperature coefficient of  o o 2 vie  ONIO input offset voltage itia AHH  Input offset voltage  long term drift  see Note 4  0 004 Sup           ps  ws U     A 2     mo   To  Input bias current 150    Common mode input Rg  509   Viol lt  5 mV  voltage range    5 to    5 to    Sas    Maximum positive peak                  output voltage   Fulrange   range 4 85 EL REN 85  4 25  lp   1 mA       er  Nee        499         500 pA  land odie ai   35  Vic   0  lo  5mA              9        10          gt     co  oa    Maximum negative peak Vic   0   output voltage    Large signal differential  voltage amplification    Differential input resistance    Common mode input    resistance  Common mode input f210kHz  N package  capacitance  Z Closed loop output f21MHz      10 25      o impedance s dS    CMRR Common mode rejection Vic     5 to 2 7 V   ratio Vo   0  Rs 500 Full range   k Supply voltage rejection Vpp      2 2 V to  8 V   SVR ratio  AVpp   AVio  Vic   0  No load Full range    Ipp Supply current No load  Full range    t Full range is     40  C to 125  C   NOTE 4  Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA   150  C extrapolated  to TA   25  C using the Arrhenius equation and assuming a
157. 2 12   Descripci  n general del                                                   83  5 2   Condiciones de losamatetiales   uas ete A A A         84  5 2 1   Especificaciones   1        1                                              84  25 2  Til s Placas de circuito IMPOR t aan eae dme EU  84  22 1 2  Cond  ctares el e CITI COS Scusa EO A actividad ua ms 84  5 2  ld  COMPONENTES                      ls ia rebar etat be Re 84  DALLAS COMPONENTES Activos  dssdo eve Da ada to dier INED NE Da vase EB Ore e vei DA 84  5 2 1 5   Z  calos torneados tipo D E  aue s eie      tee be oso aide ene nS      85  5 2 1 6   Reglamento Electrot  cnico de Baja Tensi  n                     sse 85  Dis   Resistencias  nosti aoa a EAR Qe URN TERI ON Y D    ee in Ro        85  Su ed Condensador  s                 tud pin eo Wide stt tdi      RV EE        86  5 2 1 9   Circuitos integrados y       1                                                 87  5 2 2   Especificaciones IMEC ATIC AS   eA sse test p      SUE 88  5 2 3   Ensayos  verificaciones ajustes  iuit oi E HE ahud ida 88  5 3   C        tores de ejecuci  n era sdb           88  2 9  1  Desctipelon del DIOCOSO o o Da a a tends 88  5 3 1 1   Compra y preparaci  n del material    oerte te edet rns 88  5 3 1 2   Construcci  n de los THdUCtOTe8  ded steer ER pad uon a EN XH B pad Ins 89  25 3  1 3     Fabricaci  n del circuito IMPTESO oo eina irt at es eth ed erp tuta dert 89  5 3 2   Soldadura de los                                           
158. 2 Byte  1 Cycle Instruction  e g  ADD A Data      Read next Opcode Again    Read  Opcode Read next Opcode  Discard     Y Y Y  STSTISTTSISTSTSISIRSTSTS      c  1 Byte  2 Cycle Instruction  e g  INC DPTR                Read next Opcode Again      Read Read next  Opcode     Opcode  No Fetch No Fetch  i  MOVX     Discard   No ALE    Sp     d  MOVX  1         2 Cycle                 MCB01816            Access External Memory             Figure 3 1  Fetch Execute Sequence    Semiconductor Group 15    SIEMENS Memory Organization       4 Memory Organization  The SAB 80C517 CPU manipulates operands in the following four address spaces         upto 64 Kbyte of program memory      upto 64 Kbyte of external data memory      256 bytes of internal data memory         128 byte special function register area    4 1 Program Memory    The program memory of the SAB 80C517 consists of an internal and an external memory portion   see figure 4 1   8 Kbytes of program memory may reside on chip  SAB 80C517 only   while the  SAB 80C537 has no internal ROM  The program memory can be externally expanded up to  64 Kbyte  If the EA pin is held high  the SAB 80C517 executes out of the internal program memory  unless the address exceeds 1 FFF   Locations 20004 through OFFFFy are then fetched from the  external program memory  If the EA pin is held low  the SAB 80C517 fetches all instructions from  the external program memory  Since the SAB 80C537 has no internal program memory  pin EA  must be tied low whe
159. 21  There are two different gate bits  one for timer 1   TMOD 7  and one for timer 0  TMOD 3            OSC    nterru  TLO THO TFO P     5 Bits     8 Bits     TO Pin C T  1       Control       INTO Pin       MCS01837             Figure 7 21  Timer Counter 0 1  Mode 0  13 Bit Timer Counter    Semiconductor Group 79    SIEMENS On Chip Peripheral Components       7 3 2   Mode 1    Mode 1 is the same as mode 0  except that the timer register is run with all 16 bits  Mode 1 is shown  in figure 7 22           C T  0  LS opt TLO THO TFO Interrupt  A  8 Bits     8 Bits                                TO Pin           Control  INTO Pin  MCS01838  Figure 7 22    Timer Counter 0 1  Mode 1  16 Bit Timer Counter    Semiconductor Group 80    SIEMENS On Chip Peripheral Components       7 3 3 Mode2    Mode 2 configures the timer register as an 8 bit counter  TLO  with automatic reload  as shown in  figure 7 23  Overflow from TLO not only sets TFO  but also reloads TLO with the contents of THO   which is preset by software  The reload leaves THO unchanged               m  Lon  0               Interrupt       TO Pin p       Control       Gate    INTO Pin          MCS01839             Figure 7 23  Timer Counter 0 1  Mode 2  8 Bit Timer Counter with Auto Reload    Semiconductor Group 81    SIEMENS On Chip Peripheral Components       7 3 4 Mode 3    Mode 3 has different effects on timer 0 and timer 1  Timer 1 in mode 3 simply holds its count  The  effect is the same as setting TR1 2 0  Timer 0 in 
160. 4 5 0 1 2 3 4 5 6  loL     Low Level Output Current   mA loL   Low Level Output Current   mA  Figure 15 Figure 16    t Data at high and low temperatures are applicable only within the rated operating free air temperature ranges of the various devices          i TEXAS  INSTRUMENTS    POST OFFICE BOX 655303    DALLAS  TEXAS 75265 33    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    VoM     Maximum Positive Peak Output Voltage     V    Vo PP      Maximum Peak to Peak Output Voltage     V    TYPICAL CHARACTERISTICS    MAXIMUM POSITIVE PEAK OUTPUT VOLTAGET  vs  OUTPUT CURRENT                                        Vom         Maximum Negative Peak Output Voltage     V    0 1 2 3 4 5          Output Current   mA    Figure 17    MAXIMUM PEAK TO PEAK OUTPUT VOLTAGE                                                                                                                         vs  FREQUENCY  10  RL   10       9 TA   25  C  lt       8     5  7     5      6 5  E  5 Vpp 5V a  4 3            5    o  3 t  o      2         1     0  10   100 k 1M 10M  f  Frequency     Hz  Figure 19    MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGET  vs  OUTPUT CURRENT                                            Output Current   mA  Figure 18  SHORT CIRCUIT OUTPUT CURRENT    vs  SUPPLY VOLTAGE                   100 mV                         2 3 4 5 6 7 8   VDD     Supply Voltage     V  Figure 20    t Data at high and low temperat
161. 4 modes     Mode 0  Shift register mode   Serial data enters and exits through RXDO  TXDO outputs the shift clock 8 data bits  are transmitted received  LSB first   The baud rate is fixed at 1 12 of the oscillator  frequency     Mode 1      8 bit UART  variable baud rate   10 bit are transmitted  through RXDO  or received  through RXDO   a start bit  0    8 data bits  LSB first   and a stop bit  1   On reception  the stop bit goes into RB80  in special function register SOCON  The baud rate is variable     Mode2  9 bit UART  fixed baud rate    11 bit are transmitted  through TXDO  or received  through RXDO   a start bit  0    8 data bits  LSB first   a programmable 9th  and a stop bit  1   On transmission  the  9th data bit  TB80 in SOCON  can be assigned to the value of 0 or 1  For example   the parity bit  P in the PSW  could be moved into TB80 or a second stop bit by  setting TB80 to 1  On reception the 9th data bit goes into RB80 in special function  register SOCON  while the stop bit is ignored  The baud rate is programmable to  either 1 32 or 1 64 of the oscillator frequency     Mode 3  9 bit UART  variable baud rate   11 bit are transmitted  through TXDO  or received  through RXDO   a start bit  0    8 data bits  LSB first   a programmable 9th  and a stop bit  1   In fact  mode 3 is the  same as mode 2 in all respects except the baud rate  The baud rate in mode 3 is  variable     Variable Baud Rates for Serial Interface 0    Variable baud rates for modes 1 and 3 of ser
162. 5  0 89  MAX 0 020  0 51  MIN           0 310  7 87   0 290  7 37        aU    0 200  5 08  MAX       Seating Plane             0 125  3 18  MIN       AUR 0 100  2 54                       0 021  0 53       0 015  0 38  0 010  0 25   M  0 010  0 25  NOM    py                               14 18 PIN ONLY    4040049 C 08 95       NOTES  A  All linear dimensions        in inches  millimeters    B  This drawing is subject to change without notice   C  Falls within JEDEC MS 001  20 pin package is shorter then MS 001           5 TEXAS  INSTRUMENTS    POST OFFICE BOX 655303    DALLAS  TEXAS 75265 49    TLC227x  TLC227xA   Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS   SLOS190C     FEBRUARY 1997     REVISED JULY 2000    MECHANICAL DATA  P  R PDIP T8  PLASTIC DUAL IN LINE PACKAGE    0 400  10 60   0 355  9 02           0 260  6 60   0 240  6 10             0 070  1 78            0 020  0 51  MIN        dq f    0 200  5 08  MAX       w  y Seating Plane  A  0 125  3 18  MIN    his    0 100  2 54        0 310  7 87   0 290  7 37                                                                                Bd 4    0 010  0 25  NOM                      0 021  0 53   0 015  0 38              kt       0 010  0 25   M           4040082 B 03 95       NOTES  A  All linear dimensions        in inches  millimeters    B  This drawing is subject to change without notice   C  Falls within JEDEC MS 001         35 TEXAS  INSTRUMENTS    50 POST OFFICE BOX 655303 9 DALLAS  TEXAS 75265    TL
163. 5 13       TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TLC22721 operating characteristics at specified free air temperature  Vpp   5 V    TLC22721 TLC2272AI  PARAMETER TEST CONDITIONS TAT UNIT  TYP MAX   MIN TYP MAX    a lesa 25  C nn CECI  ew                   V us    unity gain RL   10                100 pF    Full  range     Equivalent input  f  10 Hz      ee eee p    VNPP equivalent input  Equivalent input S  Total harmonic   Vo   0 5 V to 2 5 V    Av                0 0013  0 0013     25  C    THD N distortion plus 1  20 kHz        Ay   10   0 004  0 004   noise RL   10 kot   Ay   100   0 03  0 03     Gain bandwidth   f  10 kHz  Ri   10kOF    jc  product        100 T  Maximum output    VO PP    Ay   1  25  C  swing bandwidth   RL   10 uL C    100 pF   TM Step   0 5 V to 2 5 V     Settling time RL   10 kot  To 25  C  C    100 pF  0 01        Phase margin at  m unity gain RL   10         CL   100 pF     Gain margin    T Full range is     40  C to 125  C   t Referenced to 0 V          Ji TEXAS    INSTRUMENTS    14 POST OFFICE BOX 655303 9 DALLAS  TEXAS 75265    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TLC2272lelectrical characteristics at specified free air temperature  Vpp    5 V  unless otherwise    noted     TLC22721 TLC2272AI  ARAMETER TEST CONDITIONS Tat  MIN TYP MAX MIN TYP           P   Vio Inp
164. 5 2 Eight Datapointers for Faster External Bus Access                      29  5 3 PSEN  Program Store Enable                                      33  5 4 ALE  Address Latch Enable                                        33  5 5 Overlapping External Data and Program Memory Spaces                33  6 System RESO                              xd has ad a wei dece acaba ed 35  6 1 Hardware Reset and Power Up                                         35  6 1 1 eset Function and                                                     35  6 1 2 Hardware Reset Timing                                           38  6 2 Reset Output PINRO      e aue wo aU ENEA 39  7 On Chip Peripheral Components                                   40  7 1                      a doe t oo Ot awd we hae RS EM PE E UE Eu E ados 40  YsL 1      POM      Jus arduo me paie y wae        RR SU s Sa E ACE        Rs S eoe 40  7 1 2   Port 0 and Port 2 used as Address Data Bus                          45  7 1 3 Alternate Functions ase               RE SES AU 46                MT  c TP 48  FA Weick  AP ON MAUI  goes ER E Tq PE 48  7 1 4 2 Port Loading and Interfacing                                       49  7 1 4 8 Read Modify Write Feature of Ports O through 6                        49  7 2 Serial Interfaces                         51  7 2 1 Serial Interface O td              51  7 2 1 1 Operating Modes of Serial Interface 0                                51  7 2 1 2 Multiprocessor Communication Feature                     
165. 517 deserves special attention  since it consists of eight  16 bit registers which can be alternatively selected as datapointers  See section 4 4 and chapter 5  for further details        Shared Address Location    FFFF    Upper Special  28  Bytes Function        Internal Registers  Externa RAM                External    Data  Memory       Lower  128   Bytes  Internal  RAM                         Internal External        EA 1   EA 0                                         Program Memory Data  Medion    Direct Byte d 2  Addressing Addressing    MCB00078             Figure 4 2  Data Memory   SFR Address Spaces    Semiconductor Group 18    SIEMENS Memory Organization          127     7F y  A S A    cratch Pad Area  30H    2FH  77 75 2EH  6F 6D 20H  67 65 20H  5F 5D 2BH  57 55 2AH  AF 4D 29H  47   46   45 28H  3c   3B          39   38   274  26H  25H   26   25 24H  23H  22H  21H  20H  1FH                                                 18H  17H    10H  FH                   MCA01818             Figure 4 3  Mapping of the Lower Portion of the Internal Data Memory    Semiconductor Group 19    SIEMENS Memory Organization       4 3 General Purpose Registers    The lower 32 locations of the internal RAM are assigned to four banks with eight general purpose  registers  GPRs  each  Only one of these banks may be enabled at a time  Two bits in the program  status word  PSW 3 and PSW 4  select the active register bank  see description of the PSW   This  allows fast context switching  which
166. 7 4  is used to select one of these modes     Hardware Enable for Power Saving Modes    A dedicated Pin  PE SWD  of the SAB 80C517 allows to block the power saving modes  Since  this pin is mostly used in noise critical application it is combined with an automatic start of the  Watchdog Timer  see there for further description      PE SWD         logic high level   Using of the power saving modes is not possible  The  instruction sequences used for entering of these modes  will not affect the normal operation of the device     PE SWD       logic low level   All power saving modes can be activated by software   When left unconnected  Pin PE SWD is pulled to high level  by a weak internal pullup  This is done to provide system  protection on default     The logic level applied to pin PE SWD can be changed during program execution to allow or to  block the use of the power saving modes without any effect on the on chip watchdog circuitry   Power Down Mode    The power down mode is entered by two consecutive instructions directly following each other   The first instruction has to set the flag PDE  power down enable  and must not set PDS  power  down set   The following instruction has to set the start bit PDS  Bits PDE and PDS wvill  automatically be cleared after having been set     The instruction that sets bit PDS is the last instruction executed before going into power down  mode  The only exit from power down mode is a hardware reset     The status of all output lines of th
167. 72AQ   TEST CONDITIONS Tat TLC2272M UNIT  Full range    3000 1500          300     Temperature coefficient 25  C     9VIO     of input offset voltage to 125  C 2 uv C  0 5  1    Input offset voltage long  Vpp   2 5 V  25     0 002 0 002 uV mo    term drift  see Note 4  Rs   502    25  C  llo Input offset current         al  a            950         Full range  i a i 25  C PEE ees     Fulrangs P    0  0 3 0  0 3  25  C to to to  4 4     0  to  3 5    299  285 493  185  125 465    a  o  o      S    S   TE  No    Common mode input    VICR voltage range         lt 5 mV    Full range           20 pA 25 C    25  C  igh            200 uA           fullrange  voltage 2556         1 mA    Vic   2 5 V         50 uA 25  C    25  C  V 2 5 V  IOL   A  VoL Low level output voltage IC OL   500 y Full range  V 2 5 V    5mA   4     OL   Full range     25         It Vic  2 5V  Roscoe Full range  ifferential voltage       1Vto4V 9    L  amplification RL   1 mat 25  C    25  C          i  39e      1012 1012  1012 1012    e            a  a    0 9                  lt     ayo     mV    Differential input    resistance     BEEN      25  C  resistance    Common mode input      f   10 kHz  P package 25  C  capacitance    Closed loop output f 1MHz  Ay   10 25  C  impedance    CMRR Common mode rejection   Vic   0 to 2 7 V  25  C  ratio Vo   2 5 V  Rs   50 0 Full range    k Supply voltage rejection   Vpp   4 4 V to 16 V  25  C  SVR ratio  AVpp AVIO  Vic   Vpp 2  No load Full range  25  C  Full range    F
168. 9y XX00 0000p  IRCON Interrupt Request Control Register 0C0y Y  00    TCON 2  Timer Control Register 88y   00y  T2CON 3 Timer 2 Control Register 0C8y 004                   1 Bit addressable special function registers  2  This special function register is listed repeatedly since some bits of it also belong to other functional blocks   3 Xmeans that the value is indeterminate and the location is reserved    Semiconductor Group 283             SIEMENS SAB 80C517 80C537  Table 1  Special Function Register  cont d   Address Register Name Register Contents  after Reset   MUL DIV ARCON Arithmetic Control Register 0EFy OXXX XXXXg   Unit MDO Multiplication Division Register 0  OE9   XX    MD1 Multiplication Division Register 1                      MD2 Multiplication Division Register 2  OEBy XX    MD3 Multiplication Division Register      OEC             MD4 Multiplication Division Register 4  OEDy        MD5 Multiplication Division Register 5  OEE  XX                       1  Bit addressable special function registers  2  This special function register is listed repeatedly since some bits of it also belong to other functional blocks   3 X means that the value is indeterminate and the location is reserved    Semiconductor Group    284    SIEMENS SAB 80C517 80C537             Table 1   Special Function Register  cont d    Address Register Name Register Contents   after Reset   Compare  CCEN Comp  Capture Enable Reg  0C1y 004   Capture  CC4EN Comp  Capture Enable 4 Reg  0C9H X000 0000p 
169. A  a e  mo    Common mode input Rg   50 0  Mio ls 5mv                   20 yA    25           2 2 A  ee High level output OH 00 u Full range  voltage 25  C           1 mA  Full range    25  C         2 5 V  loL   50 pA 25  C  Vic   2 5 V  25  C  VoL Low level output loL   500 HA Full range  voltage 250  Vic   2 5 V loL  5       0280      5            s  ns   10 35    25       si i i          10 kat       Eos              etie         voltage amplification Vo 1Vto4V  resistance  resistance  capacitance  impedance    Common mode Vio   01027 V          A 2208  Supply voltage rejection   Vp   44 Vio 16   SVR ratio  AVpp AVio       Vic Vpp       Noked        0  f o  Full range is    40     to 125  C for    level part     55 C to 125  C for M level part   t Referenced to 2 5 V  NOTE 4  Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA   150  C extrapolated  to TA   25  C using the Arrhenius equation and assuming an activation energy of 0 96 eV     199  185   193  185  125 465                      65  125  007  0 09 075  015   35    Pu     lt         al                   E  al    0 9    A  al    VICR     voltage range 0  Full range to to   y 3 5   0   0    E           lt      mV       A  al            5 TEXAS  INSTRUMENTS    POST OFFICE BOX 655303    DALLAS  TEXAS 75265 25    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TLC2274Q and T
170. AB A15 from DPH A8 A15 from PCH          00791                   Data Memory Read Cycle    Semiconductor Group 317    SIEMENS SAB 80C517 80C537                    ALE    PSEN            tum e tum    WR  lovwx      1        hor           LLAX2              Port 0 Instr  IN       A0   A7  from PCL         lw          Port 2   P2 0   P2 7 or A8   A15 from DPH A8   A15 from PCH       MCT00098             Data Memory Write Cycle    Semiconductor Group 318    SIEMENS    SAB 80C517 80C537       AC Characteristics  cont d                                                                                                                       Parameter Symbol Limit Values Unit  Variable Clock   Frequ    3 5 MHz to 12 MHz   min max   External Clock Drive  Oscillator period teLeL 83 3 285 ns  Oscillator frequency 1          3 5 12 MHz  High time   CHCX 20    ns  Low time tCLCX 20   ns  Rise time   CLCH   20 ns  Fall time t CHCL   20 ns  AC Characteristics  cont d   Parameter Symbol Limit Values Unit   Variable Clock  Frequ    1 MHz to 16 MHz   min max   External Clock Drive  Oscillator period     1       62 5 285 ns  Oscillator frequency cie  13 5 16 MHz  High time   CHOX 25   ns  Low time     1     25   ns  Rise time        x 20 ns  Fall time t CHCL   20 ns  Semiconductor Group 319    SIEMENS SAB 80C517 80C537                  0 2 e c 0 1V       MCT00793                External Clock Cycle    Semiconductor Group 320    SIEMENS    SAB 80C517 80C537       AC Characteristics  cont d          
171. ACTERISTICS    COMMON MODE REJECTION RATIO  vs  FREQUENCY                                  10 100 1k 10k 100k 1M 10M  f  Frequency   Hz    Figure 31    SUPPLY VOLTAGE REJECTION RATIO  vs  FREQUENCY                                     10 100 1k 10k 100k 1M 10M  f   Frequency     Hz    Figure 33    Ji TEXAS    CMRR   Common Mode Rejection Ratio     dB    ksvr   Supply Voltage Rejection Ratio     dB    COMMON MODE REJECTION RATIO  vs  FREE AIR TEMPERATURE    90       86       82       78       74                            70   75  50  25 0 25 50 75 100 125    TA   Free Air Temperature             Figure 32    SUPPLY VOLTAGE REJECTION RATIO  vs  FREQUENCY  100    80       60          40    20                             20  10 100 1k 10k 100k 1M 10M    f  Frequency     Hz    Figure 34    INSTRUMENTS    POST OFFICE BOX 655303 9 DALLAS  TEXAS 75265    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TYPICAL CHARACTERISTICS                                                                                                                                                    TLC2272  SUPPLY VOLTAGE REJECTION RATIOT SUPPLY                   vs vs  FREE AIR TEMPERATURE SUPPLY VOLTAGE  110 3                2 2         8 V Vo  0     Vo 0 No Load  1  o    105 2 4  oc  lt   c E  2              2 100 9 18 TA   25  C  tc 3     o  S           55      S 95  amp  12   gt            125       amp  a     a  l 90 0 6  tc 
172. AH2 COCAL2   Compare capture mode for CC register 2   0 0 Compare capture disabled   0 1 Capture on rising edge at pin P1 2 INT5 CC2   1 0 Compare enabled   1 1 Capture on write operation into register CCL2  COCAH3 COCAL3   Compare capture mode for CC register 3   0 0 Compare capture disabled   0 1 Capture on rising edge at pin P1 3 INT6 CC3   1 0 Compare enabled   1 1 Capture on write operation into register CCL3          Figure 7 42 and 7 43 show the general timer compare register port latch configuration for registers  CRC and CC1 to CC4 in compare mode 0 and compare mode 1  Please note that the compare  interrupts of registers CRC and CC4 can be programmed to be negative or positive transition  activated  Compare interrupts for the CC1 to CC3 registers are always positive transition activated     Semiconductor Group 109    SIEMENS On Chip Peripheral Components                   Interrupt    Compare Register CCx    Al        Comparator  Compare Signal    Overflow    P1 4  P1 0   Interrupt CC4           INT 2 INT 3 MCS01849             Figure 7 42  Timer 2 with Registers CCx   CRC and CC1 to CC4  in Compare Mode 0           Interrupt    Compare Register CCx  Compare Signal Latch        Circuit       TH2 TL2    Timer 2    P1 7 P1 0   cco   INT 3     501850             Figure 7 43  Timer 2 with Registers                  and CC1 to CC4       Compare Mode 1    Semiconductor Group 110    SIEMENS On Chip Peripheral Components       Modulation Range in Compare Mode 0    As alread
173. C227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    MECHANICAL DATA    PW  R PDSO G    PLASTIC SMALL OUTLINE PACKAGE  14 PIN SHOWN                                                                                  0 15 NOM    peer    a                                                                                  NH                   Seating Plane  MEME     20 MAX      25 0 10                                                    4040064     08 96       NOTES      Alllinear dimensions are in millimeters    This drawing is subject to change without notice    Body dimensions do not include mold flash or protrusion not to exceed 0 15   Falls within JEDEC MO 153                   35 TEXAS  INSTRUMENTS    POST OFFICE BOX 655303    DALLAS  TEXAS 75265 51    IMPORTANT NOTICE    Texas Instruments and its subsidiaries  Tl  reserve the right to make changes to their products or to discontinue  any product or service without notice  and advise customers to obtain the latest version of relevant information  to verify  before placing orders  that information being relied on is current and complete  All products are sold  subject to the terms and conditions of sale supplied at the time of order acknowledgment  including those  pertaining to warranty  patent infringement  and limitation of liability     TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  accor
174. CC4  Cleared when  interrupt is initiated           IEX3 External interrupt 3 edge flag  Set by hardware when external interrupt edge was  detected or when a compare event occurred at pin 1 0 INT3 CCO  Cleared when  interrupt is initiated        IEX4 External interrupt 4 edge flag  Set by hardware when external interrupt edge was  detected or when a compare event occurred at pin 1 1 INT4 CC1  Cleared when  interrupt is initiated        IEX5 External interrupt 5 edge flag  Set by hardware when external interrupt edge was  detected or when a compare event occurred at pin 1 2 INT5 CC2  Cleared when  interrupt is initiated        IEX6 External interrupt 6 edge flag  Set by hardware when external interrupt edge was  detected or when a compare event occurred at pin 1 3 INT6 CC3  Cleared when  interrupt is initiated        TF2 Timer 2 overflow flag  Set by timer 2 overflow  Must be cleared by software  If  the timer 2 interrupt is enabled  TF2   1 will cause an interrupt        EXF2 Timer 2 external reload flag  Set when a reload is caused by a negative transition  on pin T2EX while EXEN2   1  When the timer 2 interrupt is enabled  EXF2   1  will cause the CPU to vector the timer 2 interrupt routine  Can be used as an  additional external interrupt when the reload function is not used  EXF2 must be  cleared by software           Semiconductor Group 160    SIEMENS Interrupt System       Figure 8 8  Special Function Register CTCON  Address 0  1          0E1y                        CTC
175. CON is used in such a way   The type of calculation the MDU has to perform is selected following  the order in which the MDx registers are written to  see table 7 11   This mechanism also reduces  execution time spent for controlling the MDU  Hence  a special write sequence selects an operation     The MDU monitors the whole write and read out sequence to ensure that the CPU has fetched the  result correctly and was not interrupted by another calculation task   See section 7 6 4  The Error  Flag       Thus  a complete operation lasts from writing the first byte of the operand in phase 1 until reading  the last byte of the result in phase 3     7 6 2  Multiplication Division    The general mechanism to start an MDU activity has been described above  The following  description of the write and read sequences adds to the information given in the table below where  the write and read operations necessary for a multiplication or division are listed              Table 7 11  Programming the MDU for Multiplication and Division  Operation 32Bit 16Bit 16Bit 16Bit 16Bit x 16Bit  First Write        D   endL MDO D   endL MDO  M andL  MD1  D end MD1  D enaH MD4       MD2  D end          D endH MD4  D orL MD1 M   andH  MD4  D orL  Last Write MD5  D orH MD5  D orH MD5  M orH  First Read MDO  QuoL MDO  QuoL MDO  PrL  MD1 Quo MD1 QuoH MD1  MD2 Quo         QuoH MD4  RemL MD2  MD4  RemL  Last Read MD5  RemH MD5  RemH         PrH                Semiconductor Group 128    SIEMENS On Chip Periphera
176. DO RxD1 input     Note that the value of the received stop bit is irrelevant to SOBUF S1BUF  RB80 RB81  or RIO RI1     Semiconductor Group 69    SIEMENS On Chip Peripheral Components          Internal Bus    RXDO   5 P3 0        Output  Function    Start Shift Shift fi       T  m                TX Control  36 TX Clock was E F x     P3 1        Serial  gt   opi  d unction  Interrupt    Clock  RENO  RIO RIO    RIO E Start Receive  RX Control  RX Clock 4 4 4 4 4 4 1 0 Shift  z RXDO  i i P3 0 Alt   Input Shift Register       Load     Shift Function  SOBUF       SOBUF  L   Read        Internal Bus    MCS01831             Figure 7 16 a   Functional Diagram   Serial Interface 0  Mode 0    Semiconductor Group 70    SIEMENS On Chip Peripheral Components          Transmit Receive    Ns h    2            MCTO1832          Write to SOCON  Clear RI   S5P2    5  6  Write to SOBUF       S6P2   Data Out    Shift Clock    Shift Clock                  o  a        RXDO  Receive    o  ce   gt  lt   a    ALE  Send  Shift  TXDO  TIO  RIO  Shift  TXDO             Figure 7 16 b   Timing Diagram   Serial Interface 0  Mode 0    Semiconductor Group 71    SIEMENS    On Chip Peripheral Components          Internal Bus            1    Write  to  SxBUF                Shift  TX Control    Data       Send       Tix   gt  1    Baud Serial  gt   Rate            Port  Clock Interrupt                     1    0         Clock         Load                   Transition Start SxBUF  Detector RX Control  1FFH Shift  
177. ESCOLA  TECNICA       SUPERIOR  ig ENGINYERIA  UNIVERSITAT   gt  ROVIRA I VIRGILI    Departament d Enginyeria Electr  nica El  ctrica i Autom  tica    Implementaci  n de un control digital mediante  Linealizaci  n Entrada Salida para un convertidor  conmutado CC CC elevador  Boost  con filtro de salida     AUTOR  Lorenzo Pujol   DIRECTORES  Enrique Cant    Abdelali El Aroundi     FECHA  Septiembre 2003       NDICE GENERAL     1   Memoria descriptiv A            ins 1                                                            1         Blu M                          2  1 3   Fundamentos te  ricos de los convertidores conmutados DC DC                             eens 3  1 4   Topolog  as b  sicas de los convertidores conmutados                                                3  1 4 1   Convertidor Buck o                                                                       3  1 4 1 1   Funcionamiento del convertidor Buck o                                              3  1 4 1 1 1   Topolog  a    ON    del convertidor Buck o                                                       4  1 4 1 1 2   Topolog  a    OFF    del convertidor Buck o reductor                                   6  1 4 1 2   Matrices del convertidor Buck o elevador                        eee         9  1 4 2   Convertidor Boost o elevador                                           9  1 4 2 1   Funcionamiento del convertidor Boost o elevador                          eese 10  1 4 2 1 1   Topolog  a    ON    del conve
178. Eight Datapointers of the SAB 80C517 are Realized    Simply adding more datapointers is not suitable because of the need to keep up 10096 compatibility  to the 8051 instruction set  This instruction set  however  allows the handling of only one single 16   bit datapointer  DPTR  consisting of the two 8 bit SFRs DPH and DPL      To meet both of the above requirements  speed up external accesses  10096 compatibility to 8051  architecture  the SAB 80C517 contains a set of eight 16 bit registers from which the actual  datapointer can be selected     This means that the user s program may keep up to eight 16 bit addresses resident in these  registers  but only one register at a time is selected to be the datapointer  Thus the datapointer in  turn is accessed  or selected  via indirect addressing  This indirect addressing is done through a  special function register called DPSEL  data pointer select register   All instructions of the  SAB 80C517 which handle the datapointer therefore affect only one of the eight pointers which is  addressed by DPSEL at that very moment     Figure 5 1 illustrates the addressing mechanism  a 3 bit field in register DPSEL points to the  currently used DPTRx  Any standard 8051 instruction  e g  MOVX  DPTR  A   transfer a byte from  accumulator to an external location addressed by DPTR  now uses this activated DPTRx     Semiconductor Group 29    SIEMENS External Bus Interface             DPSEL Selected  Data   2  1  0   pointer                         D
179. F FF FF FF FF FF FF FF FF FF FF FF FF FF  FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF  FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF       Figura A3 16  Escritura del programa en la RAM del microcontrolador     Tambi  n se puede leer el programa que hay en la memoria gracias al comando leer   La utilizaci  n es sencilla  solo tenemos que decirle que posiciones queremos que nos lea        File Edit    View    Tools    Help       Start    8000    finish at  8333                               FO As  DS  38 D1  BE 00                 Figura A3 17  Lectura de la memoria del microcontrolador     Anexo 3  Manual de pr  cticas     A241 21    Control mediante Linealizaci  n Entrada Salida    Tambi  n tenemos la opci  n de cambiar el puerto de dialogo entre el PC y el  microcontrolador     PRACTICA HEX   Hex For W95 98 NT   0 80Beta    anl         File Edit View   Tools Help                                    FF  FF       Speed   cow2  FF Move dir under  00Ff to  8000  For Keil C  COMS3  FF Terminal COM4  FF FF FF FF FF FF FF FF FF FF FF FF FF  FF FF FF FF FF FF FF FF FF FF FF FF Fr        Must be at 376H EPP SPP   FF FF FF FF FF FF FF FF FF FF FF FF FF LPT2 Mustbe at 278                      FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF                          D        Read Alt L  82   Verify                Write Alt 5  ds   Reset  FF   Execute  FF   Autoexec  FF   Quit Autoexec  FF                                           FE      FF EF 8D F8 A4 CF C5 FO CC A4 2C FC          
180. F V 9     0 2   0 2   Analog input C      25 60 pF 7    capacitance   Load time tL         2 toy us 7    Sample time ts       7       us 7      incl  load time        Conversion time tc       13        lus 7    incl  sample time              Total unadjusted error TUE       2 LSB   Varner                          Vss 11   Internal reference error VintREFERR     t 30 mV 8              supply current                5 mA 8                          Notes see page 311     Semiconductor Group 310    SIEMENS SAB 80C517 80C537       Notes for pages 308  309 and 310     1  Capacitive loading on ports 0 and 2 may cause spurious noise pulses to be superimposed  on the Vo  of ALE and ports 1  3  4  5 and 6  The noise is due to external bus capacitance  discharging into the port 0 and port 2 pins when these pins make 1 to 0 transitions during  bus operation    In the worst case  capacitive loading  gt  100 pF   the noise pulse on ALE line may exceed  0 8 V  In such cases it may be desirable to qualify ALE with a schmitt trigger  or use an  address latch with a schmitt  trigger strobe input     I9    Capacitive loading on ports 0 and 2 may cause the Voy on ALE and PSEN to momentarily  fall below the 0 9 Vcc specification when the address lines are stabilizing     3  Power down  pp is measured with all output pins disconnected   EA   RESET           Port 0   Port 7   Port 8           XTAL1   N C   XTAL2   Vas   VAGND  N C   VAREF           PE SWD   OWE              e    Icc  active mode  is
181. If some other value was input on  P1  the program will loop at this point until the P1 data changes to 34 y      Semiconductor Group 188    SIEMENS       CJNE    Operation     Encoding     Bytes   Cycles     CJNE    Operation     Encoding     Bytes   Cycles     CJNE    Operation     Encoding     Bytes   Cycles     A direct rel     PC       PC    3   if  A   lt   gt   direct    then  PC       PC    relative offset  if  A      direct    then  C     1   else  C  0    Instruction Set             1011 0101 rel  address          direct address                            A   data rel            lt   PC    3   if  A        data   then  PC       PC    relative offset  if  A   lt  data   then  C     1   else  C  0             1011 0100 immediate data rel  address                                  RN   data  rel            lt   PC    3   if  Rn   lt   gt  data   then  PC       PC    relative offset  if  Rn     data   then  C      1   else  C  0             1011 1rrr immediate data rel  address                                  Semiconductor Group 189    SIEMENS    Instruction Set       CJNE  Ri   data rel  Operation          lt           3                                  rel  address          if   Ri         data   then  PC       PC    relative offset   if   Ri      data   then  C      1   else  C  0  Encoding  10110111 immediate data  Bytes   Cycles  2    Semiconductor Group 190       SIEMENS Instruction Set       CLR A  Function  Clear accumulator  Description      The accumulator is c
182. L   10 kot  C    100 pFt       Full range is    40     to 125  C for Q level part     55     to 125  C for M level part   t Referenced to 2 5 V    0 004  0 004   0 03  0 03     Total harmonic   Vo   0 5 V to 2 5 V     0 0013  0 0013     5  C          Ji TEXAS    INSTRUMENTS    22 POST OFFICE BOX 655303 9 DALLAS  TEXAS 75265    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TLC2272Q and TLC2272M electrical characteristics at specified free air temperature  Vpp     5 V     unless otherwise noted     PARAMETER       Input offset voltage    Temperature coefficient of  VIO     input offset voltage    Input offset voltage  long term drift    see Note 4          nput offset current    lio  118 Input bias current    Common mode input    VICR     voltage range    Maximum positive peak    VOM  output voltage    Maximum negative peak    Vom  output voltage    Large signal differential  voltage amplification    fid Differential input resistance  ri    Common mode input  resistance    Ayp    TEST CONDITIONS    Rs 500         lt 5mV    lo   20 uA    lo   200 pA  lo   1         Vic   0  lo   50 uA    Vic  0 lo   500 pA  Vic   0       5mA         10                4    RL 1ma    Full range  25  C  to 125  C    Full range       Common mode input a    _ i ii S p    i   gt  Closed loop output  o impedance    Common mode rejection  CMRR ratio    k Supply voltage rejection  SVR ratio  AVpp 4 AV O     IDD Supply cu
183. LC2274M electrical characteristics at specified free air temperature  Vpp   5 V   unless otherwise noted   continued     TLC2274Q  TLC2274AQ   PARAMETER TEST CONDITIONS Tat TLC2274M TLC2274AM UNIT    TYP MAX TYP MAX      S   t Vo  2 5V No load  T ETE  upply curren        loa          Full rang         Full range is    40     to 125  C for    level part     55 C to 125  C for M level part        TLC2274Q and TLC2274M operating characteristics at specified free air temperature  Vpp   5 V    TLC22740  TLC2274AQ   PARAMETER TEST CONDITIONS Tat TLC2274M TLC2274AM UNIT  MIN                             MAX  23 36 23 36  Slew rate at unity   Vo   0 5 V to 2 5 V  Vlus           10 kot  CL   100 pFt Full 17 17  range    Equivalent input  f  10 Hz  m  noise voltage      r  1 kHz               VN PP  equivalent input    Equivalent input     Tetalharmonc  vo 05vto25w    AV 1   0 0013  0 0013     THD N distortion plus f   20 kHz  Ay 10   25  C 0 004  0 004   noise RL   10 kat  Ay   100   0 03  0 03     Gain bandwidth      10 kHz  RL   10             Maximum output    Vo pp    2 V  Ay   1   swing bandwidth          kot  CL   100 pF     Ay      1    Step   0 5 V to 2 5 V   Ri   10           CL   100 pFt    Settling time       Phase margin at  m unity gain        10 kot     Gain margin    T Full range is    40  C to 125  C for Q level part     55  C to 125  C for M level part   t Referenced to 2 5 V          Ji TEXAS    INSTRUMENTS    26 POST OFFICE BOX 655303 9 DALLAS  TEXAS 75265    TLC227x
184. LOS190C     FEBRUARY 1997     REVISED JULY 2000    TLC22741 electrical characteristics at specified free air temperature  Vpp   5 V  unless otherwise  noted     TLC22741 TLC2274AI  PARAMETER TEST CONDITIONS Tat UNIT  TYP MAX TYP MAX    Vior npurofsetyolage Full range 3000 1500  Temperature coefficient of    5     OMO        offset voltage            Input offset voltage       long term drift  see Note 4  0002 quoe    25      lio Input offset current    40     to 85  C 150 150 pA  Full range 800 800  25  C    lip Input bias current    40     to 85  C 150 150  Full range    Oto  0 3  4 1042    0 to  3 5 3 5               200 uA  4 25 4 65 4 25 4 65             1 mA   0 09 0 15 0 09 0 15       2 5    lo    500 uA   2 5V    5m  dicic                      voltage amplification Vo 1Vto4V Full range 15 13 Vim    Ina Differential input resistance   Ina Differential input resistance   resistance   256    EE        Common mode input 25  C 1012 1012  resistance   li MM             ii    pum         EN  capacitance   25 Closed loop output f 1 MHz  Ay   10 25     140 140 Q  impedance             Common mode rejection Vic   0 to 2 7 V  25  C 70 75 70 75    ee ee  k Supply voltage rejection Vpp   4 4 V to 16 V  80 95 80 95    e   O 44 6  Ipp Supply current Vo   2 5 V  No load    25  C  Common mode input    voltage range Rs   50 Q   Vio   lt  5 mV    VicR  Full range                       t Full range is     40     to 125        t Referenced to 0 V   NOTE 4  Typical values are based on the i
185. M6 62 Concurrent compare 6  P5 7 CCM7 61 Concurrent compare 7  P4 7 CM7 9 Comp  output for the CM7 reg   P4 6 CM6 8 Comp  output for the CM6 reg   P4 5 CM5 7 Comp  output for the CM5 reg   P4 4 CM4 6 Comp  output for the CM4 reg   P4 3 CM3 5 Comp  output for the CM3 reg   P4 2 CM2 3 Comp  output for the CM2 reg   P4 1 CM1 2 Comp  output for the CM1 reg   P4 0 CMO 1 Comp  output for the CMO reg   P1 7 T2 29 External count or gate input to timer 2  P1 5 T2EX 31 External reload trigger input  P1 4 INT2 CC4 32 Comp  output capture input for CC register 4  P1 3 INT6 CC3 33 Comp  output capture input for CC register 3  P1 2 INT5 CC2 34 Comp  output capture input for CC register 2  P1 1 INT4 CC1 35 Comp  output capture input for CC register 1  P1 0 INT3 CCO 36 Comp  output capture input for CRC register       1  Pin numbering refers to the P LCC 84 package    Semiconductor Group 95             SIEMENS On Chip Peripheral Components  Table 7 9   Special Function Registers of the CCU   Symbol Description Address  CCEN Comp  capture enable reg  0C1h  CC4EN Comp  capture 4 enable reg  0C9hy  CCH1 Comp  capture reg  1  high byte 0C3H  CCH2 Comp  capture reg  2  high byte 0C5H  CCH3 Comp  capture reg  3  high byte 0C7H  CCH4 Comp  capture reg  4  high byte           CCL1 Comp  capture reg  1  low byte 0C2y  CCL2 Comp  capture reg  2  low byte 0C4y  CCL3 Comp  capture reg      low byte 0C6H  CCL4 Comp  capture reg  4  low byte                    Compare enable register 0F6y  CMHO Compare re
186. N  see figure 8 6   The flag that actually generates this  interrupt is bit IEX2 in register IRCON  In addition  this flag will be set if a compare event occurs at  the corresponding output pin P1 4 INT2 CC4  regardless of the compare mode established and the  transition at the respective pin  If an interrupt 2 is generated  flag IEX2 is cleared by hardware when  the service routine is vectored too     Semiconductor Group 158    SIEMENS Interrupt System       Figure 8 6  Special Function Register T2CON  Address 0C8j                   0CDy     _ aid      0C8y    0C8H   1                         These bits are not used for interrupt control           Bit Function       I2FR External interrupt 2 falling rising edge flag  When set  the interrupt 2 request flag  IEX2 will be set on a positive transition at pin P1 4 INT2  I2FR   0 specifies  external interrupt 2 to be negative transition activated        ISFR External interrupt 3 falling rising edge flag  When set  the interrupt 3 request flag  IEXS will be set on a positive transition at pin P1 0 INT3  I3FR   0 specifies  external interrupt 3 to be negative transition active           Like the external interrupt 2  the external interrupt 3 can be either positive or negative transition   activated  depending on bit I3FR in register T2CON  The flag that actually generates this interrupt  is bit IEX3 in register IRCON  In addition  this flag will be set if a compare event occurs at pin  P1 0 INT3 CCO  regardless of the compare mode e
187. NS Instruction Set       XCH A    byte                                                Function  Exchange accumulator with byte variable   Description         loads the accumulator with the contents of the indicated variable  at the same  time writing the original accumulator contents to the indicated variable  The source   destination operand can use register  direct  or register indirect addressing    Example  RO contains the address 204  The accumulator holds the value 3F  001111116    Internal RAM location 20y holds the value 754  01110101 p   The instruction  XCH A   RO  will leave RAM location 204 holding the value         00111111p  and 75H   011101016  in the accumulator    XCH A Rn   Operation  XCH   A  5  Rn    Encoding  1100  irrr   Bytes  1   Cycles  1   XCH A direct   Operation  XCH   A  S  direct    Encoding  1100 01041 direct address   Bytes  2   Cycles  1    Semiconductor Group 245    SIEMENS Instruction Set       XCH A    Ri    Operation  XCH       5   Ri                     Encoding  11000111  Bytes  1  Cycles  1    Semiconductor Group 246    SIEMENS Instruction Set       XCHD A ORi    Function     Description     Example     Operation     Encoding     Bytes   Cycles     Exchange digit    XCHD exchanges the low order nibble of the accumulator  bits 3 0  generally  representing a hexadecimal or BCD digit   with that of the internal RAM location  indirectly addressed by the specified register  The high order nibbles  bits 7 4  of  each register are not affected
188. O     IEX5   TF2   EXF2   IEX6   Low   Note     This  priority within level  structure is only used to resolve simultaneous requests of the same  priority level     8 3 How Interrupts are Handled    The interrupt flags are sampled at S5P2 in each machine cycle  The sampled flags are polled during  the following machine cycle  If one of the flags was in a set condition at S5P2 of the preceding cycle   the polling cycle will find it and the interrupt system will generate a LCALL to the appropriate service  routine  provided this hardware generated LCALL is not blocked by any of the following conditions     1  Aninterrupt of equal or higher priority is already in progress   2  The current  polling  cycle is not in the final cycle of the instruction in progress     3  The instruction in progress is RETI or any write access to registers IENO  IEN1  IEN2 or IPO  and IP1     Any of these three conditions will block the generation of the LCALL to the interrupt service routine   Condition 2 ensures that the instruction in progress is completed before vectoring to any service  routine  Condition 3 ensures that if the instruction in progress is RETI or any write access to  registers IENO  IEN1  IEN2 or IPO and IP1  then    least one more instruction will be executed before  any interrupt is vectored too  this delay guarantees that changes of the interrupt status can be  observed by the CPU     Semiconductor Group 164    SIEMENS Interrupt System       The polling cycle is repeated with e
189. ON       TOPS 1                             These bits are not used for interrupt control           Bit Function       CTF Compare timer overflow  Set by hardware at a rollover of the compare timer  Bit  is cleared by hardware  since CA step  cleared by software in BC step and  earlier versions   If the compare timer interrupt is enabled  CTF   1 will cause an  interrupt           All of these bits that generate interrupts can be set or cleared by software  with the same result as  if they had been set or cleared by hardware  That is  interrupts can be generated or pending  interrupts can be cancelled by software  The only exceptions are the request flags IEO and IE1  If  the external interrupts 0 and 1 are programmed to be level activated  IEO and IE1 are controlled by  the external source via pin INTO and         respectively  Thus  writing a one to these bits will not set  the request flag IEO and or IE1  In this mode  interrupts O and 1 can only be generated by software  and by writing a 0 to the corresponding pins INTO  P3 2  and INT1  P3 3   provided that this will not  affect any peripheral circuit connected to the pins     Each of these interrupt sources can be individually enabled or disabled by setting or clearing a bit  in the special function registers IENO  IEN1 and IEN2  figures 8 2  8 3 and 8 4   Note that IENO  contains also a global disable bit  EAL  which disables all interrupts at once  Also note that in the  SAB 8051 the interrupt priority register IP is l
190. PTR  DPTR  DPTR  DPTR  DPTR  DPTR  DPTR  DPTR    DPTRO                DPH 884   DPL 82y           MN  A    External Data Memory    MCD00779                  Cc    O oco         CO O     O               Ooo        wc c              FP C          C             Figure 5 1  Accessing of External Data Memory via Multiple Datapointers    Advantages of Multiple Datapointers    Using the above addressing mechanism for external data memory results in less code and faster  execution of external accesses  Whenever the contents of the datapointer must be altered between  two or more 16 bit addresses  one single instruction  which selects a new datapointer  does this job   If the program uses just one datapointer  then it has to save the old value  with two 8 bit instructions   and load the new address  byte by byte  This not only takes more time  it also requires additional  space in the internal RAM     Application Example and Performance Analysis    The following example shall demonstrate the involvement of multiple data pointers in a table  transfer from the code memory to external data memory     Start address of ROM source table  1          Start address of table in external RAM  2FAOy    Semiconductor Group 30    SIEMENS    External Bus Interface       1  Using only One Datapointer  Code for an 8051     Initialization Routine       Action    Code       Initialize shadow variables with source pointer    MOV LOW SRC           0FFH  MOV HIGH SRC           H FH       Initialize shadow 
191. Products conform to specifications per the terms of Texas Instruments On products compliant to MIL PRF 38535  all parameters are tested        standard warranty  Production processing does not necessarily include    nl herwise noted  On all other produc roduction  testing of all parameters  EXAS unless otl ise noted  On all other products  productio    processing does not necessarily include testing of all parameters   INSTRUMENTS    POST OFFICE BOX 655303 9 DALLAS  TEXAS 75265 1    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TLC2272 AVAILABLE OPTIONS    PACKAGED DEVICES  Viomax At  TA pts SMALL PLASTIC DIP Tssopt  OUTLINET  P   PW    D        950 uV TLC2272ACD TLC2272ACP           TLC2272CD TLC2272CP TLG2272CPW    950 uV TLC2272AID TLC2272AIP  2 5 mV TLC22721D TLC2272lP      40 C to 125  C  950 uV TLC2272AQD TLC2272AQPW  2 5 mV TLC2272QD TLC2272QPW         950 uV TLC2272AMD TLC2272AMP  DC ID TOS    2 5 mV TLC2272MD TLC2272MP a  T The D packages are available taped and reeled  Add R suffix to the device type  e g   TLC2272CDR       The PW package is available taped and reeled  Add R suffix to the device type  e g   TLC2272PWR       Chips are tested at 25  C        TLC2274 AVAILABLE OPTIONS    PACKAGED DEVICES  Viomax AT SMALL CHIP CERAMIC PLASTIC         25     OUTLINET CARRIER DIP DIP p   D   FK   J   N          950uV   TLC2274ACD TLC2274ACN    25      TLC2274CD TLC2274CN TLC2274CPW  950  
192. RELL 0 7 Reload value  Lower 8 bit of timer reload value           Reset value of SORELL is 0OD9y  SORELH contains XXXX XX11p     Semiconductor Group 59    SIEMENS On Chip Peripheral Components       Figure 7 11b shows a block diagram of the options available for baud rate generation of Serial  Channel 0  It is a fully compatible superset of the functionality of older SAB 80C517 steppings  The  new baud rate generator can be used in modes 1 and 3 of the Serial Channel 0  It is activated by  setting bit BD  ADCONO 7   This also starts the baud rate timer  When Timer1 shall be used for  baud rate generation  bit BD must be cleared  In any case  bit SMOD  PCON 7  selects an  additional divider by two     The default values after reset in registers SORELL and SORELH provide a baud rate of 4 8 kBaud   with SMOD   0  or 9 6 kBaud  with SMOD   1  at 12 MHz oscillator frequency  This guarantees  full compatibility to older steppings of the SAB 80C517     Timer 1 Overflow                Baud Rate  Phase 2 CLK Generator  j e MSC02223          Figure 7 11b  Block Diagram of Baud Rate Generation for Serial Interface 0    If the new baud rate generator is used the baud rate of Serial Channel 0 in Mode 1 and 3 can be  determined as follows     25  00 x oscillator frequency  64 x  21      SOREL     Mode 1  3 baud rate         with SOREL   SORELH 1   0  SORELL 7     0    Semiconductor Group 60    SIEMENS On Chip Peripheral Components       7 2 2 Serial Interface 1    7 2 2 1 Operating Modes 
193. RL C   lt src bit gt    Function  Logical OR for bit variables   Description  Set the carry flag if the Boolean value is a logic 1  leave the carry in its current state  otherwise  A slash           preceding the operand in the assembly language indicates  that the logical complement of the addressed bit is used as the source value  but  the source bit itself is not affected  No other flags are affected    Example  Set the carry flag if  and only if  P1 0   1  ACC 7   1  or OV        MOV C P1 0   Load carry with input pin P1 0  ORL C ACC 7   OR carry with the accumulator bit 7  ORL C  OV   OR carry with the inverse of OV   ORL C bit   Operation  ORL   C       C  v  bit    Encoding  0111 0010 bit address   Bytes  2   Cycles  2   ORL C  bit   Operation  ORL   C       C  v    bit    Encoding  1010 0000 bit address   Bytes  2   Cycles  2    Semiconductor Group 231    SIEMENS Instruction Set                                  POP direct   Function  Pop from stack   Description    The contents of the internal RAM location addressed by the stack pointer is read   and the stack pointer is decremented by one  The value read is the transfer to the  directly addressed byte indicated  No flags are affected    Example  The stack pointer originally contains the value 324  and internal RAM locations 30y  through 324 contain the values 204  23    and 01 4  respectively  The instruction  sequence  POP DPH  POP DPL  will leave the stack pointer equal to the value 304 and the data pointer set to 
194. RO   UNI  DESCRIPCION PRECIO   CANT    IMPORTE          Resistencia de carb  n 10      1  de  tolerancia  Y  W   EE Resistencia de can 12 Q   1  de 0 04 1 0 04  tolerancia  Y         Resistencia de carb  n 1 kO   1  de  tolerancia  4        Resistencia de carb  n 10 kQ   1  de  tolerancia  14        Resistencia de carb  n 16        1  de  tolerancia  4        Resistencia de carb  n 33        1  de  tolerancia  14        Resistencia de carb  n 75        1  de  tolerancia  14        Resistencia de carb  n 82        1  de  0 04 1 0 04  tolerancia  14        Resistencia de carb  n 100        1  de  tolerancia  V4 W   ESAE Resistencia de ENTER 140        1  de  tolerancia  V4 W    Resistencia          0 25      1  de  tolerancia  6 W     B1011 u Resistencia cer  mica 47      5  de  tolerancia  12 W    B1012 u Resistencia cer  mica 68      5  de  tolerancia  12 W     B2000 Condensador de poli  ster de 1 nF   B2001      Condensador de poli  ster de 2 2 nF           6   08    B2002   ou   Condensador de poli  ster de 10 nF  EL c  Condensador de poli  ster de 100 nF   B2100 Condensador de poli  ster de 1 uF  A ae  B2200        Condensador cer  mico 2 2 uF  ro A A  B2300 Condensador electrol  tico 22 uF  50 V   B2303 Condensador de papel de 100 uF  50 V   B3000 Z  calo torneado DIP100T 8 pins   B3001 Z  calo torneado DIP100T 14 pins     B4000     Circuito integrado TLC2272IN      or a   B4001 u  Circuito integrado TLC2274IN  1 86  EGENT rc ENS   B4100     Circuito integrado DM74LS00  0
195. S5P2 in every machine  cycle  The value is not polled by the circuitry until the next machine cycle  If the request is active  and conditions are right for it to be acknowledged  a hardware subroutine call to the requested  service routine will be the next instruction to be executed  The call itself takes two cycles  Thus a  minimum of three complete machine cycles will elapse between activation and external interrupt  request and the beginning of execution of the first instruction of the service routine     A longer response time would be obtained if the request was blocked by one of the three previously  listed conditions  If an interrupt of equal or higher priority is already in progress  the additional wait  time obviously depends on the nature of the other interrupt s service routine  If the instruction in  progress is not in its final cycle  the additional wait time cannot be more than 3 cycles since the  longest instructions  MUL and DIV  are only 4 cycles long  and  if the instruction in progress is RETI  or a write access to registers IENO  IEN1  IEN2 or IPO  IP1  the additional wait time cannot be more  than 5 cycles  a maximum of one more cycle to complete the instruction in progress  plus 4 cycles  to complete the next instruction  if the instruction is MUL or DIV      Thus  in a single interrupt system  the response time is always more than 3 cycles and less than  9 cycles     Semiconductor Group 168    SIEMENS Instruction Set       9 Instruction Set    The SAB 8
196. SEL 6 Select bit for CM6  CMSEL 5 Select bit for CM5  CMSEL 4 Select bit for CM4  CMSEL 3 Select bit for CM3  CMSEL 2 Select bit for CM2  CMSEL 1 Select bit for CM1  CMSEL O Select bit for CMO  Figure 7 49    Special Function Register CMEN       OF6y       CMEN 7       CMEN 6       CMEN 5       CMEN 4    CMEN 3       CMEN 2          CMEN 1       CMEN O          CMEN    Contains enable bits for compare registers CMO to CM7  When set  compare function is enabled  and led to the output lines           Bit Function   CMEN 7 Compare enable bit for CM7  CMEN 6 Compare enable bit for CM6  CMEN 5 Compare enable bit for CM5  CMEN 4 Compare enable bit for CM4  CMEN 3 Compare enable bit for CM3  CMEN 2 Compare enable bit for CM2  CMEN 1 Compare enable bit for CM1  CMEN O Compare enable bit for CMO          Semiconductor Group    1    17    SIEMENS On Chip Peripheral Components       First Configuration          Registers Assigned to the Compare Timer    Every CMx register switched to the compare timer as a time base operates in compare mode 0 and  uses a port 4 pin as an alternate output function  see table 7 8  Alternate Port Functions of the  CCU          Modulation Range in Compare Mode 0    In the general description of compare mode 0  section 7 5 4  and in the description of the timer 2   CCx register configuration  section 7 5 5 1  it was mentioned that a compare output is restricted in  its maximum or minimum duty cycle  There is always a time portion of 1 2   at n bit timer leng
197. SIEMENS SAB 80C517 80C537       Interrupt Structure    The SAB 80C517 has 14 interrupt vectors with the following vector addresses and request  flags           Table 4   Interrupt Sources and Vectors   Source  Request Flags  Vector Address Vector   IEO 0003  External interrupt 0   TFO 000By Timer 0 overflow   IE1 0013  External interrupt 1   TF1 001By Timer 1 overflow  RIO TIO 00234 Serial channel 0   TF2   EXF2 002By Timer 2 overflow ext  reload  IADC 00434 A D converter   IEX2 004By External interrupt 2  IEX3 00534 External interrupt 3  IEX4 005     External interrupt 4  IEX5 0063  External interrupt 5  IEX6 006By External interrupt 6           0083  Serial channel 1   CTF 009By Compare timer overflow             Each interrupt vector can be individually enabled disabled  The response time to an interrupt  request is more than 3 machine cycles and less than 9 machine cycles     External interrupts O and 1 can be activated by a low level or a negative transition  selectable   at their corresponding input pin  external interrupts 2 and 3 can be programmed for triggering  on a negative or a positive transition  The external interrupts 2 to 6 are combined with the  corresponding alternate functions compare  output  and capture  input  on port 1     For programming of the priority levels the interrupt vectors are combined to pairs or triples   Each pair or triple can be programmed individually to one of four priority levels by setting or  clearing one bit in special function reg
198. Special Function Registers    All registers  except the program counter and the four general purpose register banks  reside  in the special function register area  The 81 special function registers include arithmetic  registers  pointers  and registers that provide an interface between the CPU and the on chip  peripherals  There are also 128 directly addressable bits within the SFR area  The special  function registers are listed in table 1  In this table they are organized in groups which refer to  the functional blocks of the SAB 80C517  Block names and symbols are listed in alphabetical  order                 Table 1  Special Function Register  Address Register Name Register  Contents  after Reset  CPU ACC Accumulator 0E04 7  00    B B Register OFO     00   DPH Data Pointer  High Byte 83H 004  DPL Data Pointer  Low Byte 82H 00y  DPSEL Data Pointer Select Register 92H XXXX X000g 3   PSW Program Status Word Register 0DO4    00   SP Stack Pointer 81H 074  A D  ADCONO  A D Converter Control Register O  00857  00   Converter  ADCON1   A D Converter Control Register 1          XXXX 0000g 3   ADDAT A D Converter Data Register 0D9y 004  DAPR D AConverter Program Register ODA  004  Interrupt IENO Interrupt Enable Register 0 0A84      004  System CTCON 2           Timer Control Register     1   0XXX 0000g  IEN1 Interrupt Enable Register 1 0B84     00   IEN2 Interrupt Enable Register 2 9A  XXXX 00X0g 3   IPO Interrupt Priority Register O DA9y 00y  IP1 Interrupt Priority Register 1 0B
199. T  vs  FREE AIR TEMPERATURE                                                                             75  50  25 0 25 50 75 100 125    1000    100    Zo     Output Impedance            o    0 1    TA     Free Air Temperature             Figure 27    OUTPUT IMPEDANCE  vs  FREQUENCY          20     Output Impedance                          100 1k 10k 100 k 1M    f   Frequency     Hz    Figure 29    Vpp   5V  Vic   2 5 V  Vo 21to4V    gt             gt   o    tc  RL   1 MQ        2     DE  va             lt             LS    RL 10      85   lt     1k    100    10       LARGE SIGNAL DIFFERENTIAL  VOLTAGE AMPLIFICATIONT    vs  FREE AIR TEMPERATURE                                                                                   75  50  25 0 25 50 75 100 125    1000    100    10    0 1  1    TA     Free Air Temperature       C    Figure 28    OUTPUT IMPEDANCE  VS  FREQUENCY                         00 1k 10k 100 k 1M  f  Frequency     Hz    Figure 30    t Data at high and low temperatures are applicable only within the rated operating free air temperature ranges of the various devices        35 TEXAS    INSTRUMENTS    POST OFFICE BOX 655303    DALLAS  TEXAS 75265    37    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000       38    CMRR   Common Mode Rejection Ratio     dB    ksvr   Supply Voltage Rejection Ratio     dB    100    80    60    40    20    100    80    60    40    20     20    TYPICAL CHAR
200. T S E  Curso Acad  mico 2002 2003     3  E  Cant       Apuntes de la asignatura S E M C   Universidad Rovira 1 Virgili   E T S E  Curso Acad  mico 2002 2003     4  Katsukito Ogata     Ingenier  a de control moderna   2   Edici  n 1993     5  Robert W  Erickson     Fundamentals of Power Electronics   University of  Colorado  Boulder  Curso Acad  mico 2000 2001     6  M  Jos   Prieto     Elementos Magn  ticos integrados para aplicaci  n en convertidores  electr  nicos   Universidad de Oviedo  Tesis doctoral mayo de 2000     7  J  Luis Mufioz S  ez  S  Hern  ndez Gonzalez     Sistemas de Alimentaci  n  Conmutados   Ed  Paraninfo 1996     8      Giral      Regulaci  n ideal de carga en el convertidor elevador con filtro de salida  mediante control por Linealizaci  n Entrada Salida   Universidad Rovira i Virgili   Curso Acad  mico 2001 2002     9  Informaci  n fabricante de circuitos integrados  Siemens  IR  Arist  n  Texas    Instruments y Fairchild     Bibliograf  a    
201. V    Ooeration     Encoding     Bytes   Cycles     direct    Ri    MOV     direct   lt    Ri               1000       011i          direct address             direct  Zdata                      direct address             immediate data                                                 direct address             Semiconductor Group    MOV   direct   lt  data  01110101    Ri A  MOV    Ri    lt   A   1111 0111  1  1    Ri direct  MOV    Ri    lt   direct   10100111  2    218    SIEMENS Instruction Set       MOV   Ri  data    Operation  MOV    Ri    lt   data                               Encoding  0 1 1 01 T1 immediate data  Bytes  2  Cycles  1    Semiconductor Group 219                                                             SIEMENS Instruction Set  MOV  lt dest bit gt    lt src bit gt   Function  Move bit data  Description    The Boolean variable indicated by the second operand is copied into the location  specified by the first operand  One of the operands must be the carry flag  the other  may be any directly addressable bit  No other register or flag is affected   Example  The carry flag is originally set  The data present at input port 3 is 11000101p  The  data previously written to output port 1 is 354  001101016    MOV P1 3 C  MOV C P3 3  MOV P1 2 C  will leave the carry cleared and change port 1 to 394  00111001p    MOV C bit  Operation  MOV   C       bit   Encoding  1010 0010 bit address  Bytes  2  Cycles  1  MOV bit C  Operation  MOV   bit   lt   C   Encoding  1001 
202. VN PP  equivalent input  noise voltage  f  0 1 Hz to 10 Hz                      Equivalent input    25  C    THD N distortion plus f   20 kHz   m   Ay   10   0 004  0 004   noise RL   10 kQ   Ay   100   0 03  0 03     Gain bandwidth f 10 kHz         10          CL   100 pF    Maximum                  46V  Ay 1    BOM output swing    _   bandwidth        10              100 pF  Ay      1 E  Step   2 3 V to 2 3 V   RL   10        CL   100 pF    Settling time    i Phase margin at  m unity gain        10          Gain margin    t Full range is 0  C to 70  C             35 TEXAS  INSTRUMENTS    12 POST OFFICE BOX 655303 9 DALLAS  TEXAS 75265    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TLC22721 electrical characteristics at specified free air temperature  Vpp   5 V  unless otherwise  noted     TLC22721 TLC2272AI  PARAMETER TEST CONDITIONS Tat UNIT  MIN TYP MAX MIN TYP MAX    v Input offset volt 300     2500 80        n onset voltage  _ i        Full range 3000 1500       Temperature coefficient 25  C    of input offset voltage to 85  C wee          Input offset voltage  long term drift 25  C    see Note 4              2 5V   Rs   502 256    uV mo    lio Input offset current    40 C to 85  C  Full range  25  C  lig Input bias current    40 C to 85  C  Full range              e            o    o     a N  o   ES a N    o      o        25     0t04      Common mode input to 4      lt   voltage rang
203. a de bloques del control     2 3 2 1   Adaptaci  n de la tensi  n de salida     La variable que eval  a el control Entrada Salida es la tensi  n de la salida del  convertidor  pero la se  al que obtenemos a la salida es una tensi  n que varia entre los 18 V  y los 20 5 V  por lo que debemos realizar un circuito que adapte la tensi  n de salida a una  tensi  n que la pueda tratar el microcontrolador ya que este solo puede leer tensiones entre  0  5                 un mejor funcionamiento del circuito del convertidor y poder tener una mayor  resoluci  n la conversi  n se realizar   entre 0 y 2 5 V  pero el circuito generado podr   ser  utilizado para un margen mayor de tensiones para un futuro control  ya que puede dar  tensiones entre 0 y 5 V     38  Memoria de c  lculo    Control mediante Linealizaci  n Entrada Salida    Obteniendo una se  al entre 0 y 5V para luego hacer la conversi  n de una manera    ptima                     gt            2       7   o   gt    c       2   c  o  E    19 21    Tensi  n de entrada   V         Figura 2 7  Relaci  n entrada salida del sensor de tensi  n     El circuito que se realiza para adaptar el se  al est   formado por dos etapas  la  primera etapa es un amplificador diferencial  que adapta la tensi  n de salida a una tensi  n    m  s reducida  La segunda etapa es un amplificador no inversor que ajusta el sefial entre 0 y  5        Vcc  5V  A           Vcc  5   A       R41  140k R42 100k   lt  Vo sense    TLC2272IN    Vo    Figura 2 8  Se
204. a del 20   la serie  E12 a valores definidos por el 10   y la serie E24 a la de 5      El conjunto total de valores de toda la gama se obtiene multiplicando por 0 1  1  10   100  10    10    10    10   o 107 la tabla anterior  Para evitar la utilizaci  n d eun n  mero  elevado de ceros en la designaci  n del valor de una resistencia  se utilizan las letras  k y M   que designan un factor multiplicador de 10  y 10   respectivamente     Para identificar el valor de una resistencia se utiliza un sistema por medio de  colores que permite cubrir toda la tabla anterior  A este sistema se le denomina c  digo de  colores y consiste en pintar alrededor de la resistencia  en un extremo  cuatro anillos de  unos colores determinados  corresponden los dos primeros colores son los identificadores  del valor de la tabla de valores anteriores  el tercer color al numero de ceros que es  necesario a  adir y el cuarto a la tolerancia     La disipaci  n de potencia en forma de calor que es capaz de soportar se ha de tener  en cuenta ya que la corriente que atraviesa la resistencia por una cierta energ  a que se  utiliza para vencer la dificultad que presenta su paso  esta energ  a se transforma en calor  y  la cantidad de este es inversamente proporcional al valor   hmico de la resistencia  Por  tanto para un valor fijo de resistencia  se disipar   en el ambiente una cantidad de calor  cuatro veces mayor si circula una corriente de 2 A  que si lo hace una de 1 A  La m  xima  disipaci  n de poten
205. a la memoria ROM y de la posici  n 8000 a la FFFF hexadecimal ser   para la  memoria RAM de la placa     Si quisi  ramos grabar en la ROM utilizariamos la configuraci  n ROM small  esta  opci  n sirve para que el programa no ocupe tanto ya que los saltos y llamadas a subrutinas  se optimizan haciendo que no ocupen tanto     A2  3 21  Anexo 3  Manual de practicas     Control mediante Linealizaci  n Entrada Salida      ptions           H A           Environment    Directories   C51  Source  Floating point  Code generation  Defines  Listing  Object    Memory Model  Registers  Optimizer  Messages  OCW   A51   L51             m Memory Rom     Small    Small  C Compact  y C Compact  C Large p  9   Large               Use extemal stack       806517            Component with XRAM  Philips 8    592  8  C528            Dual DPTR Dallas AMD  ATMEL            Use additional data pointers      Use the arithmetic processor             Defaults      Cancel      Help         Figura A3 8  Opciones de memoria     En la siguiente figura podemos observar la opci  n de utilizaci  n de los bancos del    microcontrolador       ptions           E    5i    Directories   C51  Source  Floating point  Code generation  Defines  Listing  Object  Memory Model  Registers  Optimizer  Messages  Qow   A51  Source  Set  Listing    Object                   Generate an object file                   Include debugging information          Register bank used in the module                          m                 D
206. ach machine cycle  and the values polled are the values that  were present at S5P2 of the previous machine cycle  Note that if any interrupt flag is active but not  being responded to for one of the conditions already mentioned  or if the flag is no longer active  when the blocking condition is removed  the denied interrupt will not be serviced  In other words   the fact that the interrupt flag was once active but not serviced is not remembered  Every polling  cycle interrogates only the pending interrupt requests     The polling cycle LCALL sequence is illustrated in figure 8 11                         C1     lt  C2  gt a C3    4 C4  gt    5                                                    S5P2               SSS OS eS Se  Interrupts Long Call to Interrupt Interrupt  Interrupt are polled Vector Address Routine  is latched MCTO1859  Figure 8 11    Interrupt Response Timing Diagram    Note that if an interrupt of a higher priority level goes active prior to S5P2 in the machine cycle  labeled C3 in figure 8 11  then  in accordance with the above rules  it will be vectored to during C5  and C6 without any instruction for the lower priority routine to be executed     Thus  the processor acknowledges an interrupt request by executing a hardware generated LCALL  to the appropriate servicing routine  In some cases it also clears the flag that generated the  interrupt  while in other cases it does not  then this has to be done by the user s software  The  hardware clears the externa
207. acitors       6      t Includes both amplifiers and all ESD  bias  and trim circuitry       OUT    1IV8 0171IV8 n SOWOUIT                     0002          GASIAAH     4661                   20619018  593154          IVNOILVH3dO  WXL2ZO1L  X222911    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C   FEBRUARY 1997     REVISED JULY 2000    absolute maximum ratings over operating free air temperature range  unless otherwise noted t    Supply voltage            see Note 1                                         8 V  Supply voltage  Vpp   see Note 1                                    2   888     8V  Differential input voltage  Vip  see Note 2  _                                                     16V  Input voltage  Vj  any input  see Note 1                                         Vpp    0 3 V to Vpp   Inputcurrent  I  ary Inpul                       iia denkt  5mA  Output    current  ley                 RR aie ne alae eons RES n RR    E RR EENES  50 mA  Tetal current into        sseeesesters eere re eee adie eH evi          weet eee swab  50 mA  Total c  rrent out of VDD  sse Rc her RR                                      50 mA  Duration of short circuit current at  or below  25  C  see Note 3                                 unlimited  Continuous total dissipation             sessa aeaaeae See Dissipation Rating Table  Operating free air temperature range  Ta  C suffix                                        0  C to 70  C   Rec aee  m    40 
208. addressed slave will clear its  SM20 bit and prepare to receive the data bytes that will be coming  After having received a complete  message  the slave sets SM20 again  The slaves that were not addressed leave their SM20 set and  go on about their business  ignoring the incoming data bytes     SM20 has no effect in mode     In mode 1 SM20 can be used to check the validity of the stop bit  If  SM20   1 in mode 1  the receive interrupt will not be activated unless a valid stop bit is received     7 2 1 3 Baud Rates of Serial Channel 0    As already mentioned there are several possibilities to generate the baud rate clock for the serial  interface 0 depending on the mode in which it is operated     To clarify the terminology  something should be said about the difference between  baud rate clock   and  baud rate   The serial interface requires a clock rate which is 16 times the baud rate for internal  synchronization  as mentioned in the detailed description of the various operating modes in section  7 2 3     Therefore  the baud rate generators have to provide a  baud rate clock  to the serial interface  which   there divided by 16   results in the actual  baud rate   However  all formulas given in the  following section already include the factor and calculate the final baud rate     Semiconductor Group 54    SIEMENS On Chip Peripheral Components       Mode 0    The baud rate in mode O is fixed     oscillator frequency  12    Mode 0 baud rate         Mode 2    The baud rate i
209. addressing mode combinations  When the destination  is a accumulator  the source can use register  direct  register indirect  or immediate  addressing  when the destination is a direct address  the source can be the  accumulator or immediate data   Note   When this instruction is used to modify an output port  the value used as the original  port data will be read from the output data latch  not the input pins    Example  If the accumulator holds           110000116  and register 0 holds            101010105  then the instruction  ANL A RO  will leave 814  10000001p  in the accumulator   When the destination is a directly addressed byte  this instruction will clear  combinations of bits in any RAM location or hardware register  The mask byte  determining the pattern of bits to be cleared would either be a constant contained  in the instruction or a value computed in the accumulator at run time   The instruction  ANL P1   01110011p  will clear bits 7  3  and 2 of output port 1    ANL A Rn   Operation  ANL        lt   A     Rn    Encoding  0101 1rrr   Bytes  1   Cycles  1   ANL A direct   Operation  ANL   A   lt   A     direct    Encoding  010110101 direct address   Bytes  2   Cycles  1    Semiconductor Group 184    SIEMENS    Instruction Set       ANL A   Ri    Operation  ANL        lt   A      Ri                     Encoding  01010111   Bytes  1   Cycles  1   ANL A   data    Operation  ANL        lt   A     data                   Encoding  01010100  Bytes  2   Cycles  1   ANL
210. ail Save Mechanisms   The chapter at hand only deals with the external hardware  reset     The reset input is an active low input at pin 10  RESET   An internal Schmitt trigger is used at the  input for noise rejection  Since the reset is synchronized internally  the RESET pin must be held low  for at least two machine cycles  24 oscillator periods  while the oscillator is running  With the  oscillator running the internal reset is executed during the second machine cycle in which RESET  is low and is repeated every cycle until RESET goes high again     During reset  pins ALE and PSEN are configured as inputs and should not be stimulated externally    An external stimulation at these lines during reset activates several test modes which are reserved  for test purposes  This in turn may cause unpredictable output operations at several port pins      A pullup resistor is internally connected to        to allow a power up reset with an external capacitor  only  An automatic reset can be obtained when        is applied by connecting the reset pin to Vas via  a capacitor as shown in figure 6 1 a  and c   After        has been turned on  the capacitor must hold  the voltage level at the reset pin for a specified time below the upper threshold of the Schmitt trigger  to effect a complete reset     Semiconductor Group 35    SIEMENS System Reset       The time required is the oscillator start up time plus 2 machine cycles  which  under normal  conditions  must be at least 10   20 ms f
211. alue 564  The  instruction sequence    MOVX A     1  MOVX  RO A    copies the value 564 into both the accumulator and external RAM location 12      Semiconductor Group 224    Instruction Set                                                                   MOVX A ORi  Operation  MOVX         lt   Ri   Encoding  1110 001i  Bytes  1  Cycles  2  MOVX A  DPTR  Operation  MOVX         lt   DPTR    Encoding  1110 0000  Bytes  1  Cycles  2  MOVX  Ri A  Operation  MOVX     Ri    lt   A   Encoding  111110011  Bytes  1  Cycles  2  MOVX  DPTR A  Operation  MOVX     DPTR    A   Encoding  1111 0000  Bytes  1  Cycles  2    Semiconductor Group 225    SIEMENS Instruction Set       MUL AB  Function     Description     Example     Operation     Encoding     Bytes   Cycles     Multiply    MUL AB multiplies the unsigned eight bit integers in the accumulator and register  B  The low order byte of the sixteen bit product is left in the accumulator  and the  high order byte in B  If the product is greater than 255  OF Fi  the overflow flag is  set  otherwise it is cleared  The carry flag is always cleared     Originally the accumulator holds the value 80  50 4   Register B holds the value 160              The instruction    MUL AB    will give the product 12 800  3200p   so B is changed to 324  00110010p  and the  accumulator is cleared  The overflow flag is set  carry is cleared     MUL                   Semiconductor Group 226    SIEMENS Instruction Set       NOP  Function     Description     Exa
212. am execution to continue at the instruction at label LABEL2     JNB    PC   lt   PC      if  bit    O   then  PC       PC    rel              0011 0000 bit address rel  address                                  Semiconductor Group 209    SIEMENS Instruction Set       JNC rel  Function     Description     Example     Operation     Encoding     Bytes   Cycles     Jump if carry is not set    If the carry flag is a zero  branch to the address indicated  otherwise proceed with  the next instruction  The branch destination is computed by adding the signed  relative displacement in the second instruction byte to the PC  after incrementing  the PC twice to point to the next instruction  The carry flag is not modified     The carry flag is set  The instruction sequence    JNC LABEL1  CPL C  JNC LABEL2    will clear the carry and cause program execution to continue at the instruction  identified by the label LABEL2     JNC          lt   PC   2  if  C    0    then  PC       PC    rel          0101 0000 rel  address                         Semiconductor Group 210    SIEMENS Instruction Set       JNZ rel  Function     Description     Example     Operation     Encoding     Bytes   Cycles     Jump if accumulator is not zero    If any bit of the accumulator is a one  branch to the indicated address  otherwise  proceed with the next instruction  The branch destination is computed by adding the  signed relative displacement in the second instruction byte to the PC  after  incrementing the PC tw
213. ama de diferentes tipos de condensadores  de  los que conviene conocer sus principales caracter  sticas con el objeto de poder utilizar los  m  s id  neos para cada aplicaci  n       Los condensadores cer  micos tienen una aplicaci  n que va desde las  altas frecuencias con tipos compensados en temperatura y bajas  frecuencias  hasta la baja frecuencia como condensadores de desacoplo y  paso  Su aspecto exterior puede ser tubular  de disco o de lenteja       Los condensadores de pl  stico metalizado se utilizan en bajas y medias  frecuencias como condensadores de paso y en algunas ocasiones en alta  frecuencia  Tienen la ventaja de poder llegar a capacidades  relativamente elevadas a tensiones que pueden superar los 1000 V       Los condensadores electroliticos de aluminio y de t  ntalo son los que  poseen la mayor capacidad para un tama  o determinado  Estos tipos de  condensadores de polaridad fija  son utilizados en aquellos puntos que  existe una tensi  n continua  aplic  ndose normalmente en filtros  rectificadores  desacoplamientos en baja frecuencia y condensadores de  paso  Su comportamiento en baja frecuencia no es bueno  por lo que no  es recomendable su uso     5 2 1 9   Circuitos integrados y semiconductores     En este proyecto los circuitos integrados A O s  TLC2272 y TLC2274    microcontrolador  Siemens 80C537   driver para Mosfet  IR2121   reguladores de tensi  n   LM7805   entre otros  Todos ellos se tendr  n que alimentar a una tensi  n adecuada  las  caract
214. ammable ref  voltages  Two full duplex serial interfaces   Fully upward compatible with SAB 80C515  Extended power saving modes   Nine ports  56 I O lines  12 input lines  Two temperature ranges available    0 to 70  C       40 to 85  C   Plastic packages  P LCC 84   P MQFP 100 2       SAB 80C517 80C537    Oscillat  8 Datapointer Watchdog    Timer  8 bit USART    2 x Analog Digital Input                        RAM  Watchdog  256 x 8 Port 0 1 0  i i  2             MCA01 473    1  SAB 800517  1 0  SAB 800515   Analog Digital Input          Semiconductor Group    04 95    SAB 80C517 80C537    SIEMENS       The SAB 80C517 80C537 is a high end member of the Siemens SAB 8051 family of  microcontrollers  It is designed in Siemens ACMOS technology and based on the SAB 8051  architecture  ACMOS is a technology which combines high speed and density characteristics  with low power consumption or dissipation     While maintaining all the SAB 80C515 features and operating characteristics the  SAB 80C517 is expanded in its arithmetic capabilities   fail safe  characteristics  analog signal  processing and timer capabilities  The SAB 80C537 is identical with the SAB 80C517 except  that it lacks the on chip program memory  The SAB 80C517 SAB 80C537 is supplied in a  84 pin plastic leaded chip carrier package  P LCC 84  and in a 100 pin plastic quad metric flat  package  P MQFP 100 2      Ordering Information                                                             Type Ordering Code   Pac
215. are    Figure 7 13    Special Function Register S1BUF  Address            9CH                   Serial interface 1 buffer register S1BUF          Receive and transmit buffer of serial interface 1  Writing to S1BUF loads the transmit register and  initiates transmission  Reading out S1BUF accesses a physically separate receive register     Semiconductor Group    62    SIEMENS On Chip Peripheral Components       7 2 2 2 Multiprocessor Communication Feature    Mode A of the serial interface 1 has a special provision for multiprocessor communication  In this  mode  9 data bits are received  The 9th bit goes into RB81  Then follows a stop bit  The port can be  programmed such that when the stop bit is received  the serial port interrupt  i e  the request flag       is set  will be activated only if RB81   1  This feature is enabled by setting bit SM21 in S1CON   A way to use this feature in multiprocessor communications is as follows     If the master processor wants to transmit a block of data to one of the several slaves  it first sends  out an address byte which identifies the target slave  An address byte differs from a data byte in  that the 9th bit is 1 in an address byte and 0 in a data byte  With SM21   1  no slave will be  interrupted by a data byte  An address byte  however  will interrupt all slaves  so that each slave  can examine the received byte and see if it is being addressed  The addressed slave will clear its  SM21 bit and prepare to receive the data bytes that 
216. arry flag otherwise     If the carry flag is now set  or if the four high order bits now exceed nine  1010xxxx   1111xxxx   these high order bits are incremented by six  producing the proper BCD  digit in the high order nibble  Again  this would set the carry flag if there was a carry   out of the high order bits  but wouldn t clear the carry  The carry flag thus indicates  if the sum of the original two BCD variables is greater than 100  allowing multiple  precision decimal addition  OV is not affected     All of this occurs during the one instruction cycle  Essentially  this instruction  performs the decimal conversion by adding 00H  06H  604  or 664 to the  accumulator  depending on initial accumulator and PSW conditions     Note     DA A cannot simply convert a hexadecimal number in the accumulator to BCD  notation  nor does DA A apply to decimal subtraction     The accumulator holds the value 561   01010110p  representing the packed BCD  digits of the decimal number 56  Register 3 contains the value 674  01100111p   representing the packed BCD digits of the decimal number 67  The carry flag is set   The instruction sequence    ADDC A R3  DA A    will first perform a standard two   s complement binary addition  resulting in the value  OBEy  101111105  in the accumulator  The carry and auxiliary carry flags will be  cleared     The decimal adjust instruction will then alter the accumulator to the value 24   001001005   indicating the packed BCD digits of the decimal number
217. as  y los tornillos que sujetan la placa de circuito  impreso     5 4   Condiciones facultativas     Los permisos de car  cter obligatorio necesarios para realizar el proyecto o la  utilizaci  n de la misma tendr  n que obtenerse por parte de la empresa contratante   quedando la empresa contratista al margen de todas las consecuencias derivadas de la  misma     Cualquier retardo producido en el proceso de fabricaci  n por causas debidamente  justificadas  siendo estas alienas a la empresa contratista  ser   aceptada por el contratante   no teniendo este ultimo derecho a reclamaci  n por dafios o perjuicios     89  Pliego de condiciones    Control mediante Linealizaci  n Entrada Salida    Cualquier demora no justificada supondr   el pago de una multa por valor del 6   del importe total de fabricaci  n  para cada fracci  n del retardo temporal  acordado en el  contrato      La empresa contratista se compromete a proporcionar las mayores facilidades al  contratista para que la obra se realice de una forma r  pida y adecuada    El aparato cumplir   los requisitos m  nimos respecto el proyecto encargado   cualquier variaci  n o mejora sustancial en el contenido del mismo tendr   que ser  consultada con el t  cnico dise  ador  proyectista   Durante el tiempo que se haya estimado  la instalaci  n  el t  cnico proyectista podr   anunciar la suspensi  n moment  nea si as   lo  estimase oportuno    Las caracter  sticas de los elementos y componentes ser  n los especificados en la  memo
218. as interrupciones del Timer 2 overflow     j    A4  3 7  Anexo 4  Mejora del programa     Control mediante Linealizaci  n Entrada Salida    A4 3   Diagrama de bloques     Programa Principal     Inicializaci  n del Timer 2 con el valor 0x82  genera una  sefial de 8 kHz de frecuencia    Inicializaci  n de la comparaci  n con el valor 0        lo que  generar   un ciclo de trabajo del 50     Salida del PWM por el puerto 1 pin 2    Inicializaci  n del auto reload con el valor 0x82  genera  una sefial de 8kHz de frecuencia     Inicializaci  n de las interrupciones   Habilitar interrupci  n Timer 2     Inicializaci  n del  Watch Dog Timer     Iniciado a 512 useg     Inicializaci  n del conversor A D   Seleccionar el puerto 7 pin 0 para la  primera conversi  n    Inicio conversi  n entre 0 y 2 5 V     BUCLE INFINITO        A4  4 7  Anexo 4  Mejora del programa     Control mediante Linealizaci  n Entrada Salida    Bucle Infinito           Final de la    conversion   No  Si    Seleccionar el P7 1   I1b    para la proxima    conversion        Guardar la tensi  n de  salida   Vob       Comienza la pr  xima  conversi  n entre 0 y 2 5 V      Final de la         conversi  n   No  Si    Seleccionar el P7 2   I2b    para la pr  xima    conversi  n     Guardar la intensidad 1   Ilb    Comienza la pr  xima  conversi  n entre 0 y 2 5 V       A4  5 7  Anexo 4  Mejora del programa     Control mediante Linealizaci  n Entrada Salida               Final de la  conversi  n     Seleccionar el P7 0    
219. as its effect on the PSW flags   The number of bytes and machine cycles required  the binary machine language encoding  and a  symbolic description or restatement of the function is also provided     Note     Only the carry  auxiliary carry  and overflow flags are discussed  The parity bit is computed after  every instruction cycle that alters the accumulator     Similarily  instructions which alter directly addressed registers could affect the other status flags if  the instruction is applied to the PSW  Status flags can also be modified by bit manipulation     Semiconductor Group 176    SIEMENS Instruction Set       Notes on Data Addressing Modes    Rn    direct     Ri     data    f  data 16    bit    A z    Working register RO R7   128 internal RAM locations  any      port  control or status register  Indirect internal or external RAM location addressed by register RO or R1  8 bit constant included in instruction   16 bit constant included as bytes 2 and 3 of instruction   128 software flags  any bit addressable I O pin  control or status bit    Accumulator    Notes on Program Addressing Modes    addr16      addr1 1      rel      Destination address for LCALL and LUMP may be anywhere within the 64 Kbyte  program memory address space     Destination address for ACALL and AJMP will be within the same 2 Kbyte page of  program memory as the first byte of the following instruction     SJMP and all conditional jumps include an 8 bit offset byte  Range is   127     128  bytes rel
220. ative to the first byte of the following instruction     All mnemonics copyrighted     Intel Corporation 1980    Semiconductor Group 177    SIEMENS Instruction Set       ACALL addr11    Function     Description     Example     Operation     Encoding     Bytes   Cycles     Absolute call    ACALL unconditionally calls a subroutine located at the indicated address  The  instruction increments the PC twice to obtain the address of the following  instruction  then pushes the 16 bit result onto the stack  low order byte first  and  increments the stack pointer twice  The destination address is obtained by  successively concatenating the five high order bits of the incremented PC  op code  bits 7 5  and the second byte of the instruction  The subroutine called must  therefore start within the same 2K block of program memory as the first byte of the  instruction following ACALL  No flags are affected     Initially SP equals 074  The label  SUBRTN  is at program memory location 03454   After executing the instruction    ACALL SUBRTN    at location 01234  SP will contain 09y  internal RAM location 084 and 09  will  contain 25y and 014  respectively  and the PC will contain 0345       ACALL    PC   lt   PC    2    SP   lt   SP    1     SP        PC7 0     SP       SP    1     SP    lt   PC15 8    PC10 0      page address       al0 a9 a8 1 000 1 a7 a6 a5 a4   a3 a2 a1 a0                         Semiconductor Group 178    SIEMENS Instruction Set       ADD A   lt src byte gt               
221. be de ser peque  a ya que no  queremos perder rendimiento en el convertidor Boost     41  Memoria de c  lculo    Control mediante Linealizaci  n Entrada Salida    Para la realizaci  n del sensado de corriente se utiliza un amplificador diferencial de  instrumentaci  n ya que la tensi  n se debe referenciar a masa y se debe dar una ganancia  para poder tener la relaci  n tensi  n corriente deseada     La resistencia a utilizar ser   de 0 25 Q  por lo que se tendr   que dar una ganancia  de 4 para que al realizar la conversi  n A D tengamos el valor de la corriente     El circuito utilizado es el siguiente           2 TLC2274IN    Vcc  5 V    11 sense          R8                Figura 2 9  Sensor de corriente 1    La se  al Vs   corresponde a la tensi  n m  s elevada de la resistencia serie de la  bobina 1 que en principio ser   una tensi  n constante de 12 V  la alimentaci  n del  convertidor  y la se  al Vs     ser   la menor tensi  n de la resistencia serie de la bobina 1    El divisor de tensi  n a la entrada del amplificador de instrumentaci  n sirve para  disminuir la tensi  n en modo com  n y para referenciar la tensi  n a masa  para que el  amplificador pueda trabajar en una zona de trabajo   ptima     La funci  n del amplificador es la siguiente     RA        2 R6               208   Vs     Vs      2 21     Suponiendo que R7   R6    9   R11  RIO   R8  R3   RI  R4   R2     Los dos amplificadores diferenciales se dise  ar  n para tener una relaci  n intensidad  tensi  n 
222. bit  0   8 data bits  LSB  first   and a stop bit  1   On reception  the stop bit goes into RB81 in special function register  S1CON  In fact  mode B of serial interface 1 is identical with mode 1 of serial interface O in all  respects except for the baud rate generation  see section 7 2 2 3            In both modes  transmission is initiated by any instruction that uses S1BUF as a destination  register  Reception is initiated by the incoming start bit if REN1   1  The serial interfaces also  provide interrupt requests when a transmission or a reception of a frame has completed  The  corresponding interrupt request flags for serial interface 1 are      or       resp  See section 8 for  more details about the interrupt structure  The interrupt request flags      and      can also be used  for polling the serial interface 1 if the serial interrupt shall not be used  i e  serial interrupt 1 not  enabled      The control and status bits of the serial channel 1 in special function register S1CON are illustrated  in figure 7 12  Figure 7 13 shows the special function register S1BUF which is the data register for  receive and transmit  Note that these special function registers are not bit addressable  Due to this  fact bit instructions cannot be used for manipulating these registers  This is important especially for  S1CON where a polling and resetting of the RI1 or      request flag cannot be performed by JNB  and CLR instructions but must be done by a sequence of byte instruction
223. bitwise logical AND of two operands  for both bit and byte operands  and  returns the result to the location of the first operand        ORL performs bitwise logical OR of two source operands  for both bit and byte operands  and  returns the result to the location of the first operand        XRL performs logical Exclusive OR of two source operands  byte operands  and returns the  result to the location of the first operand     9 2 4 Control Transfer    There are three classes of control transfer operations  unconditional calls  returns  jumps   conditional jumps  and interrupts  All control transfer operations  some upon a specific condition   cause the program execution to continue a non sequential location in program memory     Semiconductor Group 174    SIEMENS Instruction Set       Unconditional Calls  Returns and Jumps    Unconditional calls  returns and jumps transfer control from the current value of the program  counter to the target address  Both direct and indirect transfers are supported     ACALL and LCALL push the address of the next instruction onto the stack and then transfer  control to the target address  ACALL is a 2 byte instruction used when the target address is  in the current 2K page  LCALL is a 3 byte instruction that addresses the full 64K program  space  In ACALL  immediate data  i e  an 11 bit address field  is concatenated to the five most  significant bits of the PC  which is pointing to the next instruction   If ACALL is in the last 2  bytes of a
224. bled even if the pin  or the path to the pin is broken     Like the watchdog timer circuitry  the oscillator watchdog circuitry contains a status flip flop  This  flip flop is set when an oscillator failure is detected and it is cleared by an external HW reset or by  software  see figure 7 62      The block diagram in figure 7 64 illustrates the function of the oscillator watchdog  Note that the  OWD reset request is held for at least three additional cycles after the on chip oscillator returns to  normal operation  This is done to ensure a proper oscillator startup     Semiconductor Group 146    SIEMENS On Chip Peripheral Components          oos                  On Chip  PO OA9      XTALZ Oscillator Frequency Delay OWD Reset  Request    Comparator 5 Cycles                 Internal  Clock             Watchdog  Oscillator          MCB00789             Figure 7 64  Functional Block Diagram of the Oscillator Watchdog    Semiconductor Group 147    SIEMENS On Chip Peripheral Components       7 9 Oscillator and Clock Circuit    XTAL1 and XTAL2 are the input and output of a single stage on chip inverter which can be  configured with off chip components as a Pierce oscillator  The oscillator  in any case  drives the  internal clock generator  The clock generator provides the internal clock signals to the chip at half  the oscillator frequency  These signals define the internal phases  states and machine cycles  as  described in chapter 3     Figure 7 65 shows the recommended oscillat
225. bles or disables the timer 2 external reload interrupt   EXEN2   0 disables the timer 2 external reload interrupt   The external reload function is not affected by EXEN2           Semiconductor Group 156    SIEMENS Interrupt System                                              Figure 8 4  Special Function Register IEN2  Address 09       09                   ECT       ES1   IEN2  Bit Function  ES1 Enable serial interrupt of interface 1  Enables or disables the interrupt of serial    interface 1  If ES1   0  the interrupt is disabled        ECT Enable compare timer interrupt  Enables or disables the interrupt at compare  timer overflow  If ECT   0  the interrupt is disabled           In the following the interrupt sources are discussed individually     The external interrupts 0 and 1  INTO and INTT  can each be either level activated or negative  transition activated  depending on bits ITO and IT1 in register TCON  see figure 8 5   The flags that  actually generate these interrupts are bits IEO and IE1 in TCON  When an external interrupt is  generated  the flag that generated this interrupt is cleared by the hardware when the service routine  is vectored to  but only if the interrupt was transition activated  If the interrupt was level activated   then the requesting external source directly controls the request flag  rather than the on chip  hardware     The timer 0 and timer 1 interrupts are generated by TFO and TF1 in register TCON  which are set  by a rollover in their respe
226. cada vez que se da el RESET  del microcontrolador ya sea por el pulsador o por el Watch Dog Timer todos los puertos  quedan a nivel alto por lo que si estuviera el transistor de potencia conectado  estar  a  conectado hasta que no se volviera a programar el microcontrolador  pudi  ndose da  ar al  pasar una gran corriente  ya que se produce el cortocircuito de la fuente con la bobina     Se ha optado por la introducci  n de un inversor  de esta manera al realizarse el  RESET del microcontrolador  a la salida del inversor quedar  a a nivel bajo  no conduciendo  el transistor de potencia     49  Memoria de c  lculo    Control mediante Linealizaci  n Entrada Salida    Una manera sencilla de realizar un inversor es la introducci  n de una puerta Nand   cortocircuitando las entradas                    Xj X   Out  0 0 1  0 1 1  1 0 1  1 1 0                   Tabla 2 1  Funci  n Nand     La resistencia R50 Pull up  sirve por si se desconectara el microcontrolador no  quedara el transistor de potencia en conducci  n     Vin   12V           mes Cis C16    1u         R51   10k    Figura 2 18  Driver IR2125              IR 2125        El driver IR2125 se trata de un integrado que sirve para disparar transistores de  potencia ya que este tipo de transistores tienen una gran capacidad entre puerta y surtidor  lo que hace imposible dispararlos a trav  s del puerto del microcontrolador  El  funcionamiento es sencillo ya que puede generar una se  al cuadrada a una tensi  n m  s  elevada  en 
227. channel 0 interrupt   If ESO   0  the serial channel 0 interrupt is disabled   ET2 Enables or disables the timer 2 overflow or external reload interrupt   If ET2   0  the timer 2 interrupt is disabled   EAL Enables or disables all interrupts  If EAL   0  no interrupt will be acknowledged     If EAL   1  each interrupt source is individually enabled or disabled by setting or  clearing its enable bit           Semiconductor Group 155    SIEMENS Interrupt System       Figure 8 3  Special Function Register IEN1  Address 0  8                                  OBC OBBy        0B9j 0B8y  0B8y  EXEN2 EX6   EX5   EX4   EX3   EX    EADC   IEN1                                  This bit is not used for interrupt control              Bit Function  EADC Enables or disables the A D converter interrupt   If EADC   0  the A D converter interrupt is disabled   EX2 Enables or disables external interrupt 2 capture compare interrupt 4     If EX2   0  external interrupt 2 is disabled        EX3 Enables or disables external interrupt 3 capture compare interrupt 0   If EX3   0  external interrupt 3 is disabled        EX4 Enables or disables external interrupt 4 capture compare interrupt 1   If EX4   0  external interrupt 4 is disabled        EX5 Enables or disables external interrupt 5 capture compare interrupt 2   If EX5   0  external interrupt 5 is disabled        EX6 Enables or disables external interrupt 6 capture compare interrupt 3   If EX6   0  external interrupt 6 is disabled        EXEN2 Exa
228. ci  n hacemos que se inicialize el Watch dog timer  a 512 microsegundos que es el m  nimo que se puede dar en este  microcontrolador     inicio adc      En esta funci  n inicializamos el conversor A D que coja la    tensi  n que hay en el puerto 7 pin 0 que es la tensi  n de salida  y empieza la conversi  n entre 0 y 2 5 V      while 1        while BSY  1        ADCON 1 0x01    Selecciono el puerto 7 pin 1 para la pr  xima conversi  n que ser   la  intensidad 1     vob ADDAT     Guardo el valor de la conversi  n de la tensi  n de salida 1     DAPR 0x80     Realizaremos la conversi  n entre 0 y 2 5 V  DAPR  0xDA       while BSY  1        ADCON 1 0x02    Selecciono el puerto 7 pin 2 para la pr  xima conversi  n que ser   la  intensidad 2     ilb ADDAT        Guardo el valor de la converi  n de la intensidad 1     DAPR 0x80     Realizaremos la conversi  n entre 0 y 2 5 V  DAPR  20xDA       while  BSY  1       ADCON 1 0x00    Selecciono el puerto 7 pin 0 para la p  xima conversi  n que ser   la  tensi  n de salida     12b ADDAT     Guardo el valor de la conversi  n de la intensidad 2      A4  2 7  Anexo 4  Mejora del programa     Control mediante Linealizaci  n Entrada Salida    duty   11b 12b   vo_dese vob  W   125  11b    Calculo del ciclo de trabajo para 8 kHz      DAPR 0x80    Realizaremos la conversi  n entre 0 y 2 5 V  DAPR  0xDA          vold inicio adc void    En esta funci  n inicializamos el conversor A D que coja la tensi  n que hay en el  puerto 7 pin 0 que es la tens
229. cia de ciclo 2 frecuencia de  ciclo   freq oscilador 12 ser  n 512 useg  WDTREL  0x86     SWDT 1     Activaci  n del watch dog  SWDT  0xBE     SWDT 1     Activaci  n del watch dog  SWDT  0xBE            2 4 4  Anexo 2  C  digo del programa     A3   MANUAL DE PR  CTICAS     Control mediante Linealizaci  n Entrada Salida    A3  Manual de pr  cticas   A3 1   Utilizaci  n del programa Proview32     Para comenzar a utilizar el programa proview32 tendremos que generar un proyecto     PY32    File Edit Search   Project Tool View Debug Options    Le  e   gt     p         Close    Figura A3 1  Creaci  n de un nuevo proyecto           Seleccionamos generar un nuevo proyecto  Una vez seleccionado el nuevo proyecto  tendemos la siguiente pantalla     x          MsiNbinoname  pr    Directory  e MsiNbinN          Type        8051 C 80651        Cancel   Browse   Hep      Figura A3 2  Introducci  n del nombre del proyecto     En esta pantalla introduciremos el nombre del proyecto y el tipo de  microcontrolador  que en nuestro caso ser   el 8051     Acto seguido nos aparecer   la siguiente pantalla  en la cual a  adiremos el fichero  en   c  con el bot  n derecho del rat  n  que lo habremos generado antes     Project   e  fsi bin practica prj       View source file  View listing    Delete fie    Figura A3 3  Introduccion del fichero   c     A2  1 21  Anexo 3  Manual de practicas     Control mediante Linealizaci  n Entrada Salida    P  32  practica    File Edit Search Project 1       New Ctrl
230. cia que puede soportar una resistencia es un factor que afecta al tama  o  fisico de esta y que obliga en algunos casos a utilizar dise  os denominados de alta  potencia     5 2 1 8   Condensadores   La capacidad de los condensadores se mide en unidades llamadas Faradios  pero  debido a que est   unidad es muy grande  se utilizan a la pr  ctica otras m  s pequefias que    son fracciones de la anterior  Las m  s utilizadas son        Microfaradio o millon  sima de Faradio   1uF   10  F      85  Pliego de condiciones    Control mediante Linealizaci  n Entrada Salida       Nanofaradio o milmillon  sima de Faradio   1 nF   10           Picofaradio o billon  sima de Faradio   1 pF     10  F      Por similitud a la forma de designaci  n de valores de las resistencias se utilizan en  ocasiones  en lugar de la designaci  n de nF se utiliza la letra k  es decir  1 nF es igual a 1  kpF  de forma que siempre se lea en el cuerpo de un condensador el valor expresado por un  n  mero seguido por la letra k  se indicar   que se ha utilizado el picofaradio en la  designaci  n de su valor     Un factor a tener en cuenta al determinar el valor de un condensador es la  tolerancia  de la misma forma que en las resistencias  se indica los extremos m  ximos y los  m  nimos que podr   tener el condensador  Las tolerancias son un 5   10  y 20  para  todos los tipos de condensadores  excepto los electrol  ticos  donde la tolerancia puede  llegar a valores del 50      Existen en el mercado una amplia g
231. cial Function Register S1RELH  STRELL  Bit No  MSB LSB  7 6 5 4 3 2 1 0  Addr  OBBy     msb S1RELH  Bit No  MSB LSB  7 6 5 4 3 2 1 0  Addr  09Dy Isb   S1REL                                           shaded areas are not used for programming the baudrate timer                      Bit Function  S1RELH 0 1 Reload value  Upper two bits of the timer reload value   S1REL 0 7 Reload value  Lower 8 bit of timer reload value        Reset value of S1REL is         STRELH contains XXXX XX11B     Semiconductor Group 65    SIEMENS On Chip Peripheral Components       7 2 3 Detailed Description of the Operating Modes    The following sections give a more detailed description of the several operating modes of the two  serial interfaces     The sections 7 2 3 2  and 7 4 3 4  apply to both of the serial interfaces  The description of the  synchronous mode 0 and the asynchronous mode 2 refers only to serial interface O     7 2 3 1 Mode 0  Synchronous Mode  Serial Interface 0     Serial data enters and exits through RxDO  TxDO outputs the shift clock  8 bits are transmitted   received  8 data bits  LSB first   The baud rate is fixed at 1 12 of the oscillator frequency     Figures 7 16 a  and b  show a simplified functional diagram of the serial port in mode 0  and  associated timing     Transmission is initiated by any instruction that uses SOBUF as a destination register  The  write   to SOBUF  signal at S6P2 also loads a 1 into the 9th bit position of the transmit shift register and  tells th
232. ciales                031 Receptores  Prescripciones generales     M LB T 035 Receptores  Transformadores y autotransformadores     Reactancias y rectificadores  Condensadores                 044 Normas U N E  de obligado cumplimiento     5 2 1 7   Resistencias     Es necesario establecer los extremos m  ximos y m  nimos entre los que estar  n  comprendidos las resistencias  La tolerancia marca estos valores que se expresan  normalmente como porcentajes del valor en ohmios asignados te  ricamente  Se tendr   que  expresar su tolerancia y sumarla al valor nominal     84  Pliego de condiciones    Control mediante Linealizaci  n Entrada Salida    Existen resistencias con una gran precisi  n en el valor  el que implicar fijar  tolerancias muy bajas  pero se tendr   en cuenta que su precio aumenta considerablemente y  solamente ser  n necesarias en aplicaciones muy espec  ficas estando normalmente  destinadas a usos generales las tolerancias estandarizadas de 5   10  y 20      Ateni  ndose al valor ohmico y a la tolerancia  se establecen de forma est  ndar una  serie de valores  de forma que con ellos se pueda tener toda una gama de resistencias desde  1 ohmio en adelante  estos valores son los siguientes     E6   1 1 5  2 2  3 5  4 7  6 8   E12   1  1 5  1 8  2 2  2 7  3 3  3 9  4 7  5 6  6 8  8 2     E24   1  1 2  1 3  1 5  1 6  1 8  2  2 2  2 4  2 7  3  3 3  3 6  3 9  4 3  4 7  5 1  5 6  5 2   6 8  7 5  8 2  9 8     La serie E6 equivale a valores correspondientes a la toleranci
233. cializamos el conversor A D que coja la    tensi  n que hay en el puerto 7 pin 0 que es la tensi  n de salida  y empieza la conversi  n entre 0 y 2 5 V      A4  1 7  Anexo 4  Mejora del programa     Control mediante Linealizaci  n Entrada Salida      FUNCI  N DE ATENCI  N A LA INTERRUPCI  N DEL TIMER 2      void timer2  void  interrupt 8 using 0   Funci  n de atenci  n a la interrupci  n  para el    desborde del Timer 2  se ejecutar   cuando desborde  el Timer 2  saltando a la posici  n 0x2B   Utiliza los registros del banco 0 tiene que ser 5      1  TF2 0    Bit de desborde del Timer 2 se tiene que cambiar mediante software    WDT 1    Cada vez que ocurra la interrupci  n del Timer 0 se reiniciliarizar   el    SWDT 1    Watch dog timer ya que si el puerto 1 pin 0 estuviera a nivel alto el transistor  de potencia estar  a conduciendo realizando con la bobina un cortocircuito  por lo  que es prioritario que se ejecute esta interrupci  n  si no fuera as   se reinicializar  a  el microcontrolador    if duty gt 0xE6        Si el ciclo de trabajo se ha desbordado damos un tiempo fijo    CCL2 0xC0    Sefial cuadrada del 50  63 us       else  1  ton 0x82 duty    Calculo del estado de conducci  n del transistor    CCL2 ton    Calculo del ciclo que estar   encendido el transistor            void main void     inicio timer           esta funci  n inicializamos el Timer 2      inicio inter       En esta funci  n habilitamos las interrupciones del Timer 2      inicio dog      En esta fun
234. combinations  The difference is the location of the above spike within the timer  period  at the end of a timer period or at the beginning plus the end of a timer period  Please refer  to the description of the relevant timer register combination in section 7 5 5 1 or 7 5 5 2 for details     Timer Count   FFFFy           Contents Timer Count    of a Timer    Compare Value  Register    Timer Count    Reload Value    Y Interrupt can be generated    on overflow                Compare  Output   P1 x CCx     MCTO1846  Interrupt can be generated  on compare match  Figure 7 39    Function of Compare Mode 0    Semiconductor Group 105    SIEMENS On Chip Peripheral Components       7 5 4 2 Compare Mode 1    In compare mode 1  the software adaptively determines the transition of the output signal  This  mode can only be selected for compare registers assigned to timer 2  It is commonly used when  output signals are not related to a constant signal period  as in a standard PWM generation  but  must be controlled very precisely with high resolution and without jitter  In compare mode 1  both  transitions of a signal can be controlled  Compare outputs in this mode can be regarded as high  speed outputs which are independent of the CPU activity     If mode 1 is enabled  and the software writes to the appropriate output latch at the port  the new  value will not appear at the output pin until the next compare match occurs  Thus  one can choose  whether the output signal is to make a new tran
235. contains 7Ey  01111110p   Internal RAM locations 7Ey and 7Fy  contain OFFy and 404  respectively  The instruction sequence    INC  RO  INC RO  INC  RO    will leave register O set to 7     and internal RAM locations 7Ey and 7Fy holding   respectively  00y and 41      INC   A   lt   A    1       00000100                INC   Rn   lt   Rn    1       0000 1rrr                Semiconductor Group 202    SIEMENS    Instruction Set       INC direct    Operation  INC   direct   lt   direct    1                               Encoding  0000 0101 direct address  Bytes  2  Cycles  1  INC  Ri    Operation  INC    Ri    lt    Ri     1                   Encoding  000010111  Bytes  1  Cycles  1    Semiconductor Group 203    SIEMENS Instruction Set                      INC DPTR   Function  Increment data pointer   Description  Increment the 16 bit data pointer by 1     16 bit increment  modulo 216  is performed   an overflow of the low order byte of the data pointer  DPL  from OFFy to 00y will  increment the high order byte  DPH   No flags are affected   This is the only 16 bit register which can be incremented    Example  Registers        and DPL contain 124 and OFEy  respectively  The instruction  sequence  INC DPTR  INC DPTR  INC DPTR  will change        and DPL to 134 and 014    Operation  INC   DPTR       DPTR    1   Encoding  10100011   Bytes  1   Cycles  2    Semiconductor Group 204    SIEMENS Instruction Set                                              JB bit rel   Function  Jump if b
236. cted Channel Pin  0 0 0 0 Analog input 0 P7 0  0 0 0 1 Analog input 1 P7 1  0 0 1 0 Analog input 2 P7 2  0 0 1 1 Analog input 3 P7 3  0 1 0 0 Analog input 4 P7 4  0 1 0 1 Analog input 5 P7 5  0 1 1 0 Analog input 6 P7 6  0 1 1 1 Analog input 7 P7 7  1 x  0 0 Analog input 8 P8 0  1 X 0 1 Analog input 9 P8 1  1 X 1 0 Analog input 10 P8 2  1 X 1 1 Analog input 11 P8 3                         X means that the value may be 1 or 0     The bits        to MX2 in special function register ADCONO and the bits        to        in ADCON 1 are  used for selection of the analog input channel  Table 7 6 lists the selected input channels  The bits  MXO to MX2 are represented in both the registers ADCONO and ADCON1  however  these bits are  present only once  it has the same effect irrespective of whether they are accessed via ADCONO  or ADCON1  This is done in order to maintain software compatibility to the SAB 80 C 515  In this  device there are only eight input channels which are selected by        to MX2 in ADCONO  Thus      program written for the SAB 80 C 515 selects one of the lower eight input channels  port 7  if the  bit MX3 is reset which is the default value after reset   For clarity  In the SAB 80 C 515 the analog  input channel is called port 6 or ANO to AN7  resp  However  it is found on the same address  0DB yy   as the SAB 80C517 s port 7      If all 12 multiplexed input channels are required register ADCON 1 is to be used  It contains a four   bit field to select one of all 
237. ctive timer counter registers  exception see section 7 3 4 for timer 0 in  mode 3   When a timer interrupt is generated  the flag that generated it is cleared by the on chip  hardware when the service routine is vectored too     The two interrupts of the serial interfaces are generated by the request flags RIO and TIO  in  register SOCON            and TI1  in register S1CON   respectively  Figures 7 7 and 7 12 show  SFR s SOCON and S1CON  That is  the two request flags of each serial interface are logically OR   ed together  Neither of these flags is cleared by hardware when the service routine is vectored too   In fact  the service routine of each interface will normally have to determine whether it was the  receive interrupt flag or the transmission interrupt flag that generated the interrupt  and the bit will  have to be cleared by software     The timer 2 interrupt is generated by the logical OR of bit TF2 in register T2CON and bit EXF2 in  register IRCON  Figures 8 6 and 8 7 show SFR s T2CON and IRCON  Neither of these flags is  cleared by hardware when the service routine is vectored too  In fact  the service routine may have  to determine whether it was TF2 or EXF2 that generated the interrupt  and the bit will have to be  cleared by software     Semiconductor Group 157    SIEMENS Interrupt System       Figure 8 5  Special Function Register TCON  Address 88       8Fy 8Ey 8Dy 8CH 8By        89   88    88H TF1 TFO IE1 IT1 IEO ITO TCON                               Y The
238. d  down by a divide by two flip flop   Minimum and maximum high and low  times as well as rise fall times specified  in the AC characteristics must be  observed        P2 0   P2 7       41  48       14   21    I O          Port 2   is a bidirectional I O port with internal  pull up resistors  Port 2 pins that have  1 s written to them are pulled high by  the internal pull up resistors  and in that  state can be used as in puts  As inputs   port 2 pins being externally pulled low  will source current  Z  in the DC  characteristics  because of the internal  pull up resistors  Port 2 emits the high   order address byte during fetches from  external program memory and during  accesses to external data memory that  use 16 bit addresses  MOVX ODPTR    In this application it uses strong  internal pull up resistors when issuing  1 s  During accesses to external data  memory that use 8 bit addresses   MOVX  Ri   port 2 issues the  contents of the P2 special function  register             Input  O   Output    Semiconductor Group    274    SIEMENS    SAB 80C517 80C537       Pin Definitions and Functions  cont d        Symbol    Pin Number                P LCC 84    P MQFP 100 2    Function       PSEN    49    22    The Program Store Enable   output is a control signal that enables  the external program memory to the  bus during external fetch operations  It  is activated every six oscillator periodes  except during external data memory  accesses  Remains high during internal  pro gram e
239. d 7 2 2 3     Transmission is initiated by any instruction that uses SOBUF S1BUF as a destination register  The   write to SOBUF S1BUF  signal also loads a 1 into the 9th bit position of the transmit shift register  and flags the TX control block that a transmission is requested  Transmission actually commences  at S1P1 of the machine cycle following the next roll over in the divide by 16 counter  thus  the bit  times are synchronized to the divide by 16 counter  not to the  write to SOBUF S1BUF  signal      The transmission begins with activation of SEND  which puts the start bit to TXDO TxD1  One bit  time later  DATA is activated  which enables the output bit of the transmit shift register to TxDO   TxD1  The first shift pulse occurs one bit time after that     As data bits shift out to the right  zeros are clocked in from the left  When the MSB of the data byte  is at the output position of the shift register  then the 1 that was initially loaded into the 9th position  is just left of the MSB  and all positions to the left of that contain zero  This condition flags the TX  control to do one last shift and then deactivate SEND and set TIO TI1  This occurs at the 10th divide   by 16 rollover after  write to SOBUF S1BUF      Reception is initiated by a detected 1 to 0 transition at RxDO RxD1  For this purpose RxDO RxD1 is  sampled at a rate of 16 times whatever baud rate has been established  When a reception is  detected  the divide by 16 counter is immediately reset  and 1
240. dance with Tl   s standard warranty  Testing and other quality control techniques are utilized to the extent  TI deems necessary to support this warranty  Specific testing of all parameters of each device is not necessarily  performed  except those mandated by government requirements     Customers are responsible for their applications using Tl components     In order to minimize risks associated with the customer s applications  adequate design and operating  safeguards must be provided by the customer to minimize inherent or procedural hazards     Tl assumes no liability for applications assistance or customer product design       does not warrant or represent  that any license  either express or implied  is granted under any patent right  copyright  mask work right  or other  intellectual property right of TI covering or relating to any combination  machine  or process in which such  semiconductor products or services might be or are used  Tl   s publication of information regarding any third  party s products or services does not constitute Tl   s approval  warranty or endorsement thereof     Copyright    2000  Texas Instruments Incorporated    BIBLIOGRAF  A     Control mediante Linealizaci  n Entrada Salida    BIBLIOGRAF  A     1  J  Maix       Apuntes de la asignatura de Electr  nica de Potencia     Universidad  Rovira i Virgili  E  T S E  Curso acad  mico 2002 2003     2  J  Brezmes     Apuntes de la asignatura Se  ales y Sistemas II   Universidad Rovira i  Virgili  E 
241. de     Vo   2   14   2 22     A  tener un voltio    la salida del amplificador de instrumentaci  n querr   decir que  pasa un amperio por la resistencia serie de la bobina     42  Memoria de c  lculo    Control mediante Linealizaci  n Entrada Salida       2 5   2   gt    o  155  S         gt    0 5   0   0 0 5 1 1 5 2 2 5  Intensidad  A              Figura 2 10  Relaci  n intensidad tensi  n     Para poder obtener la relaci  n intensidad tensi  n utilizaremos el potenci  metro para  obtener la ganancia deseada     La ganancia total que deber   darnos el amplificador diferencial ser       Tensi   li  Ganancia     ee desalida  2 23   Tensi  n de entrada       La tensi  n de salida tiene que ser 2 5 V cuando la intensidad que pasa por la bobina  sea de 2 5 A  por tanto aplicando la f  rmula de la ganancia     2 9V      EE  2 24   0 250 x 2 54    Para que el amplificador trabaje a la mitad de la tensi  n de alimentaci  n  que ser    2 5 V la relaci  n de las resistencias que referencian a masa para el sensor de corriente de  la bobina 1 ser  n        33k    Figura 2 11  Referencia a masa sensor de corriente 1     43  Memoria de calculo    Control mediante Linealizaci  n Entrada Salida      R4 R4 RA 25                  Jr   127  2 5V gt          225          R4 83  RA R3 9 5  R4   R2   10kQ  R3   RI   33kQ                   10   R8   10kQ                 IR7   R6   10kO           R9   R11   10kQ              12            12                                       Figura 2 12  Senso
242. de alimentaci  n por lo que la tensi  n de salida se vera aumentada en  respecto a la tensi  n de entrada     Vin    La funci  n de este convertidor es mantener la relaci  n Vo         1 4 2 1   Funcionamiento del convertidor Boost o elevador     Para el an  lisis del convertidor tenemos que observar la corriente en la bobina y la  tensi  n en el condensador cuando el interruptor est   abierto o cerrado  la variaci  n de la  corriente en la bobina en todo el estado debe de ser cero en r  gimen permanente igual que  la tensi  n media en bornes de la bobina     vi t           Figura 1 6  Intensidades y tensiones en el Boost     10  Memoria Descriptiva     Control mediante Linealizaci  n Entrada Salida    Cuando el interruptor esta cerrado el diodo est   polarizado en inversa  la corriente  en la bobina aumenta linealmente  almacenando energ  a sin transferirla a la carga  mientras  el condensador se comporta como una fuente de alimentaci  n cediendo energ  a a la carga     Cuando el interruptor esta abierto y el diodo est   polarizado en directa es la bobina  la que se comporta ahora como una fuente de alimentaci  n  cediendo energ  a al  condensador y a la carga  el condensador se comporta ahora como carga  almacenando  energ  a para el pr  ximo periodo de conmutaci  n  en este periodo la corriente de la bobina  va disminuyendo linealmente cedi  ndose a la carga  En este cambio la tensi  n que se  genera en la bobina se suma a la tensi  n de la fuente de alimentaci  n ya que t
243. de polvo de ferrita   n  cleo para la construcci  n de  inductores de acumulaci  n  ya que es el m  s indicado para la construcci  n de bobinas de  almacenamiento de energ  a  tambi  n por la poca variaci  n de Ar     Una vez escogido el n  cleo es el momento de la elecci  n del tama  o de este  Seg  n  las vueltas de hilo que se tengan que dar al n  cleo y seg  n la inductancia que se quiera  llegar se escoger   el nucleo  Para un valor de la bobina de 0 69 mH se escoger   el nucleo  NTH 039 ya que es el que tiene la Ar m  s elevada     Se observa que tiene una inductancia nominal Ar de 1 mH 100 vueltas   10   Por  tanto la m  nima inductancia para este n  cleo es de 900 nH 100 vueltas     Para el c  lculo de la bobina 1  de 0 69 mH se utilizar   la siguiente f  rmula           L A xN  x10   2 6    N   10   x PN MALUM 276 88   277 vueltas  2 7   A  09  100    36  Memoria de calculo    Control mediante Linealizaci  n Entrada Salida    Para el calculo de la bobina del filtro de salida de 1 22 mH la f  rmula ser   la  siguiente        N   10      x  10        368 17   368vueltas  2 8   L  donde    65 Inductancia en      N  N  mero de vueltas     At    ndice de autoinducci  n  mH 100 vueltas      Se tiene que realizar un ajuste final del n  mero de vueltas en el momento de hacer  la bobina para conseguir el valor espec  fico deseado     Una vez que se ha obtenido el n  mero de vueltas para obtener la inductancia  deseada  solo queda la elecci  n del cable para el paso de corrien
244. described in the next two  sections  Figure 7 56 illustrates special function register ARCON     Write Sequence        A write to MDO is also the first transfer to be done for normalize and shift  This write resets  the MDU and triggers the error flag mechanism  see below        To start a shift or normalize operation the last write must access register ARCON     Semiconductor Group 129    SIEMENS On Chip Peripheral Components       Read Sequence        The order in which the first three registers MDO to MD2 are read is not critical      The last read from MD3 determines the end of a whole shift or normalize procedure and  releases the error flag mechanism     Note     Any write access to ARCON triggers a shift or normalize operation and therefore changes the  contents of registers MDO to MD3      Figure 7 56  Register ARCON       OEFY   MDEF MDOV SLR   SC 4       3   SC2   SC1   5   0   ARCON                                  Arithmetic control register  Contains control flags and the shift counter of the MDU  Triggers a shift  or a normalize operation in register MDO to MD3 when being written to        Bit Function    MDEF Error flag    Indicates an improperly performed operation  MDEF is set by hardware  when an operation is retriggered by a write access to MDx before the first  operation has been completed  MDEF is automatically cleared after  being read     MDOV Overflow flag    Exclusively controlled by hardware  MDOV is set by following events       division by zero    
245. dition to all features of the SAB 80C515  there are several enhancements for higher  performance  The SAB 80C517 has been expanded e g  in its arithmetic characteristics  fail save  mechanisms  analog signal processing facilities and timer capabilities     Listed below is a summary of the main features of the SAB 80C517 80C537     8 Kbyte on chip program memory  SAB 80C517 only    ROMless version also available  SAB 80C537    Full compatibility with SAB 80C515 80C535   256 byte on chip RAM   256 directly addressable bits   1 microsecond instruction cycle at 12 MHz oscillator frequency   64 of 111 instructions are executed in one instruction cycle   External program and data memory expandable up to 64 Kbyte each   8 bit A D converter       12multiplexed inputs       Programmable reference voltages       External internal start of conversion   Two 16 bit timers counters  8051 compatible    Powerful compare capture unit  CCU  based on a 16 bit timer counter and a high speed 16 bit   timer for fast compare functions       One 16 bit reload compare capture register       Four 16 bit compare capture registers  one of which serves up to nine compare channels   concurrent compare    Eight fast 16 bit compare registers   Arithmetic unit for division  multiplication  shift and normalize operations   Eight datapointers instead of one for indirect addressing of program and external data memory   Extended watchdog facilities       16 bit programmable watchdog timer       Oscillator watchd
246. e        lt 5 mV    VicR  Full range VIR    25  C  25  C 4 85 4 93  range 4 85   5     4 25 4 65  range 4 25   Vic   2 5 V  lot   50      25      25      range  25  C  range  25  C  range  25  C        a      o  a  o      o     afa  ala             20 uA    High level output          200 pA  voltage                                    o                    l    alu                     1 mA                0 09 0 15    Low level output Vic   2 5 V  lo    500 pA TE    voltage                Vic 225V  lot   5mA                             a          Large signal differential   Vic  2 5 V  Ri   10 kat  voltage amplification Vo 1Vto4V             a           N        E  N             1 mot  fig Differential input 25  C  resistance    Common mode input  i resistance   Ci Common mode input f   10 kHz  P package  capacitance   25 Closed loop output f 1 MHz  Ay   10 25  C 140 140  impedance    CMRR Common mode Vic   0 to 2 7 V  70 75 70 75  rejection ratio        2 5 V  Fis  00 0 Full range    Supply voltage Vpp   4 4 V to 16 V  80 95 80 95  ksyn rejection ratio hs      Ipp Supply current Vo   2 5 V  No load mA    25  C       t Full range is     40  C to 125  C    t Referenced to 0 V   NOTE 4  Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA   150  C extrapolated  to TA   25  C using the Arrhenius equation and assuming an activation energy of 0 96 eV     vy TEXAS  INSTRUMENTS    POST OFFICE BOX 655303    DALLAS  TEXAS 7526
247. e       Boolean Variable Manipulation                                                                                                    CLR C Clear carry flag 1 1  CLR bit Clear direct bit 2 1  SETB C Set carry flag 1 1  SETB  bit Set direct bit 2 1  CPL C Complement carry flag 1 1  CPL bit Complement direct bit 2 1  ANL      AND direct bit to carry flag 2 2  ANL      AND complement of direct bit to carry 2 2  ORL     OR direct bit to carry flag 2 2  ORL C  bit OR complement of direct bit to carry 2 2  MOV C bit Move direct bit to carry flag 2 1  MOV  bit C Move carry flag to direct bit 2 2  Program and Machine Control   ACALL addr11 Absolute subroutine call 2 2  LCALL addr16 Long subroutine call 3 2  RET Return from subroutine 1 2  RETI Return from interrupt 1 2  AJMP  addri1 Absolute jump 2 2  LJMP         16 Long iump 3 2  SJMP       Short jump  relative addr   2 2  JMP OA   DPTR Jump indirect relative to the DPTR 1 2  JZ rel Jump if accumulator is zero 2 2  JNZ rel Jump if accumulator is not zero 2 2  JC rel Jump if carry flag is set 2 2  JNC rel Jump if carry flag is not set 2 2  JB bit rel Jump if direct bit is set 3 2  JNB bit rel Jump if direct bit is not set 3 2  JBC bit rel Jump if direct bit is set and clear bit 3 2  CJNE  Agirect rel Compare direct byte to A and jump if not equal 3 2                Semiconductor Group 254    SIEMENS Instruction Set       Instruction Set Summary  cont d           Mnemonic Description Byte   Cycle             Program and Machine Co
248. e  0C3y 00H   CCU  CCH2 Compare Capture Register 2  High Byte   0C5y 00H  CCH3 Compare Capture Register     High Byte  0C7y 00H  CCH4 Compare Capture Register 4  High Byte  0       00H  CCL1 Compare Capture Register 1  Low Byte 0C2y 00H  CCL2 Compare Capture Register 2  Low Byte 0C4y 00H  CCL3 Compare Capture Register 3  Low Byte 0C6H 00H  CCL4 Compare Capture Register 4  Low Byte OCEy 00y  CMEN Compare Enable Register 0F6y 00H  CMHO Compare Register 0  High Byte 0D3H 00H  CMH1 Compare Register 1  High Byte 0D5H 00H  CMH2 Compare Register 2  High Byte 0D7H 00H  CMH3 Compare Register 3  High Byte          00H  CMH4 Compare Register 4  High Byte 0E5H         CMH5 Compare Register 5  High Byte 0E7y 00H  CMH6 Compare Register 6  High Byte OF3y 00H  CMH7 Compare Register 7  High Byte     5   00H  CMLO Compare Register 0  Low Byte 0D24H 00H  CML1 Compare Register 1  Low Byte 0D4y 00H  CML2 Compare Register 2  Low Byte 0D6H 00H  CML3 Compare Register 3  Low Byte 0E2y 00y  CML4 Compare Register 4  Low Byte     4   00H  CML5 Compare Register 5  Low Byte 0E6y 00H  CML6 Compare Register 6  Low Byte OF2y 00H  CML7 Compare Register 7  Low Byte 0F4y 00H  CMSEL Compare Input Select 0F7y 00H  CRCH Com  Rel  Capt  Register  High Byte 0CBy 00H  CRCL Com  Rel  Capt  Register  Low Byte OCA 00H  CTCON Com  Timer Control Register 0E1y OXXX 0000p    CTRELH Com  Timer Rel  Register  High Byte 0DFy 00H  CTRELL Com  Timer Rel  Register  Low Byte ODEH 00H  TH2 Timer 2  High Byte          00H  TL2 Timer
249. e  is set to OFFy  CTRELL  low byte  must contain         Thus  the timer counts from OFFOOy to OFFFFy    8 bit reload     256 steps      Semiconductor Group 259    SIEMENS    Application Examples          Sine  Wave                                                                   Table  angle 30 90 150 210 270 330  CMLx 40H 00H 40H COH        COH  MCT01862  Figure 10 2  PWM Generation for Sine Wave Synthesis  Semiconductor Group 260       SIEMENS Application Examples           Compare Setup    Compare mode   Compare register CMO  consisting of CMHO and CMLO  is used in compare mode 0  This means bit  CMSEL O must be set  in register CMSEL  to assign CMO to the compare timer and switch on  compare mode 0     Enable port output  The compare is enabled with SFR bit CMEN O in register           The corresponding compare  output pin is port 4 0         Interrupts    Since the compare value may be varied in every compare timer period  it is most effective to use  the compare timer overflow interrupt for reloading the compare register CMO with a new value     Enable Interrupt  The compare timer overflow interrupt is enabled by SFR bit ECT in register IEN2  The general    enable flag EAL in register IENO must be set  too     The Program    Variation of the duty cycle of the PWM signal is done by a variation of the contents of the compare  register CMO  CMO is loaded with new compare values in an  high prioritized  interrupt routine  This  makes the loading independent from other ta
250. e  the  compare value is transferred to the actual compare latches at a write to CMLx instruction  low byte  of CMx   Thus  the CMx register is to be written in a fixed order  too  high byte first  low byte second   If the high byte may remain unchanged it is sufficient to load only the low byte  See figure 7 52   block diagram of a CMx register connected to timer 2     Semiconductor Group 122    SIEMENS On Chip Peripheral Components             Compare Timer 2        Interrupt Logic  Output       ts Bit  re    Compa            Write to                Register Latch CMx  MCAO1 866             Figure 7 52  CMx Register Assigned to Timer 2    7 5 6 Capture Function in the CCU    Each of the four compare capture registers CC1 to CC4 and the CRC register can be used to latch  the current 16 bit value of the timer 2 registers TL2 and TH2  Two different modes are provided for  this function  In mode 0  an external event latches the timer 2 contents to a dedicated capture  register  In mode 1  a capture will occur upon writing to the low order byte of the dedicated 16 bit  capture register  This mode is provided to allow the software to read the timer 2 contents  on the   fly     In mode 0  the external event causing a capture is        for CC registers 1 to 3  a positive transition at pins CC1 to CC3 of port 1       for the CRC and CC4 register  a positive or negative transition at the corresponding pins   depending on the status of the bits ISFR and I2FR in SFR T2CON  If the edge 
251. e TX control block to commence a transmission  The internal timing is such that one full  machine cycle will elapse between  write to SOBUF  and activation of SEND     SEND enables the output of the shift register to the alternate output function line P3 0  and also  enables SHIFT CLOCK to the alternate output function line P3 1  SHIFT CLOCK is low during S3   S4  and S5 of every machine cycle  and high during S6  S1  and S2  while the interface is  transmitting  Before and after transmission SHIFT CLOCK remains high  At S6P2 of every machine  cycle in which SEND is active  the contents of the transmit shift register is shifted one position to  the right     As data bits shift to the right  zeros come in from the left  When the MSB of the data byte is at the  output position of the shift register  then the 1 that was initially loaded into the 9th position  is just  left of the MSB  and all positions to the left of that contain zeros  This condition flags the TX control  block to do one last shift and then deactivates SEND and sets TIO  Both of these actions occur at  S1P1 in the 10th machine cycle after  write to SOBUF      Reception is initiated by the condition RENO   1 and RIO   0  At S6P2 in the next machine cycle   the RX control unit writes the bits 1111 1110 to the receive shift register  and in the next clock phase  activates RECEIVE     RECEIVE enables SHIFT CLOCK to the alternate output function line of P3 1  SHIFT CLOCK  makes transitions at S3P1 and S6P1 in every 
252. e controller can be looked up in table 7     Semiconductor Group 301    SIEMENS    SAB 80C517 80C537       Table 7    Status of External Pins During Idle and Power Down                                                    Outputs Last instruction executed from Last instruction executed from  internal code memory external code memory   Idle Power down Idle Power Down   ALE High Low High Low   PSEN High Low High Low   Port 0 Data Data Float Float   Port 1 Data alternate Data last output  Data alternate Data last output  outputs outputs   Port 2 Data Data Address Data   Port 3 Data alternate Data last output  Data alternate Data last output  outputs outputs   Port 4 Data alternate Data last output  Data alternate Data last output  outputs outputs   Port 5 Data alternate Data last output  Data alternate Data last output  outputs outputs   Port 6 Data alternate Data last output  Data alternate Data last output  outputs outputs   Idle Mode    During idle mode all peripherals of the SAB 80C517 are still supplied by the oscillator clock   Thus the user has to take care which peripheral should continue to run and which has to be  stopped during Idle     The procedure to enter the Idle mode is similar to entering the power down mode   The two bits IDLE and IDLS must be set by to consecutive instructions to minimize the chance  of unintentional activating of the idle mode     There are two ways to terminate the idle mode         The idle mode can be terminated by activating any enabled in
253. e datapointers at a time  The selection of the actual datapointer  is done in special function register DPSEL  datapointer select register  address 92        Each 16 bit datapointer  DPTRx  register is a concatenation of registers DPHx  data pointer s high  order byte  and DPLx  data pointer s low order byte   These pointers are used in register indirect  addressing to move program memory constants and external data memory variables  as well as to  branch within the 64 Kbyte program memory address space     Since the datapointers are mainly used to access the external world  they are described in more  detail in section 5 2     Ports 0 to 8    PO to P8 are the SFR latches to port 0 to 8  respectively  The port SFRs 0 to 5 are bit addressable   Ports 0 to 6 are 8 bit I O ports  that is in total 56 I O lines  which may be used as general purpose  ports and which provide alternate output functions dedicated to the on chip peripherals of the SAB  80C517     Port 7  8 bit  and port 8  4 bit  are general purpose input ports and have no internal latch  That  means  these port lines are used for the 12 multiplexed input lines of the A D converter but can also  be used as digital inputs  P7 P8 are the associated SFRs when the digital value is to be read by the  CPU  Both ports can be read only  You can find more about the ports in section 7 1  parallel 1 0      Semiconductor Group 25    SIEMENS    Memory Organization       Peripheral Control  Data and Status Registers    Most of the s
254. e line at port P1 4  which is the  standard output for register CC4  and an additional eight lines at port 5  see figure 7 45      Concurrent compare is an ideal and effective option where more than one synchronous output  signal is to be generated  Applications including this requirement could among others be a complex  multiple phase stepper motor control as well as the control of ignition coils of a car engine  All these  applications have in common that predefined bit patterns must be put to an output port at a precisely  predefined moment  This moment refers to a special count of timer 2  which was loaded to compare  register CC4     Figure 7 46 gives an example of how to generate eight different rectangular wave forms at port 5  using a pattern table and a time schedule for these patterns  The patterns are moved into port 5  before the corresponding timer count is reached  The  future  timer count at which the pattern shall  appear at the port must be loaded to register CC4  Thus the user can mask each port bit differently  depending on whether he wants the output to be changed or not     Concurrent compare is enabled by setting bit COCOEN in special function register CCAEN  A  1  in  this bit automatically sets compare mode 1 for register CC4  too  A 3 bit field in special function  register CC4EN determines the additional number of output pins at port 5  Port P1 4 CC4 INT2 is  used as a standard output pin in any compare mode for register CC4     Semiconductor Group 1
255. e value 17  114 or  00010001 p  in B  since 251    13x18    17  Carry and OV will both be cleared     DIV     A15 8      B7 0   lt   A     B        1000 0100                Semiconductor Group 199    SIEMENS Instruction Set       DJNZ   bytes     lt  rel addr gt     Function     Description     Example     Decrement and jump if not zero    DJNZ decrements the location indicated by 1  and branches to the address   indicated by the second operand if the resulting value is not zero  An original value  of 00y will underflow to OFFy  No flags are affected  The branch destination would  be computed by adding the signed relative displacement value in the last instruction  byte to the PC  after incrementing the PC to the first byte of the following instruction     The location decremented may be a register or directly addressed byte     Note     When this instruction is used to modify an output port  the value used as the original  port data will be read from the output data latch  not the input pins     Internal RAM locations 404  504  and        contain the values  01 4  70y  and 15     respectively  The instruction sequence    DJNZ 40H LABEL 1  DJNZ 50H LABEL 2  DJNZ 60H LABEL 3    will cause a jump to the instruction at label LABEL  2 with the values 004  6Fy  and  154 in the three RAM locations  The first jump was nottaken because the result was  zero     This instruction provides a simple way of executing a program loop a given number  of times  or for adding a moderate time de
256. e verifiquen las formas de onda en los diferentes puntos del  circuito  mediante un osciloscopio de alta sensibilidad     El posible funcionamiento inadecuado del equipo puede ser debido a m  ltiples  causas que pueden ser resumidas en tres       Conexionado defectuoso entre m  dulos      Componentes defectuosos  una vez localizado  se procedera a su  substituci  n      Conexi  n defectuosa del componente a la placa de circuito impreso   Este tipo de fallada es muy corriente entre placas de doble cara donde  los agujeros no est  n metalizados  pos eso se soldar  n los componentes  por las dos caras  o en su defecto se pasar   un hilo conductor a trav  s del  agujero y luego se soldar       5 3   Condiciones de ejecuci  n   5 3 1   Descripci  n del proceso   5 3 1 1   Compra y preparaci  n del material   La compra de los materiales  componentes y aparatos necesarios tendr   que    realizarse con el tiempo necesario  de manera que est  n disponibles a la hora que comience  el ensamblaje de los componentes     87  Pliego de condiciones    Control mediante Linealizaci  n Entrada Salida    5 3 1 2   Construcci  n de los inductores     A tal efecto se dispondr   de cable de bobinar de di  metro 0 6 mm soldable  En  primer lugar se cortar   un cable de 16 m de longitud para la realizaci  n de la primera  bobina  Despu  s se ir  n haciendo las 277 espiras para la primera bobina  consiguiendo que  queden bien apretadas al m  ximo  al cuerpo del n  cleo toroidal     Para la segunda bob
257. ealmente as   como la tensi  n en el condensador almacenando  energ  a  cedida de la fuente de alimentaci  n  para luego devolverla a la carga  Tambi  n en  este periodo se va cediendo energ  a a la carga     Memoria Descriptiva     Control mediante Linealizaci  n Entrada Salida    Cuando el interruptor esta abierto y el diodo polarizado en directa   la fuente de  alimentaci  n no cede energ  a al circuito  es ahora cuando la bobina y el condensador se  comportan como fuentes suministrando energ  a a la carga  La intensidad y la tensi  n van  disminuyendo     1 4 1 1 1   Topolog  a  ON  del convertidor Buck o reductor              Figura 1 3  Convertidor Buck en topologia                Cuando el interruptor est   cerrado la fuente de alimentaci  n suministra corriente al  inductor y al resto del circuito  como la tensi  n de salida Vo es menor que la tensi  n de  entrada Vin  la corriente que pasa por la bobina ser   creciente mientras el interruptor este  cerrado  toda esta corriente tambi  n pasa por el interruptor y la suministra la fuente de  alimentaci  n     En todo el ciclo el interruptor se encuentra cerrado y el diodo polarizado en inversa   cerrado     Este estado permanecer   durante el tiempo 0  lt  t  lt  DT  donde T es el periodo de  conmutaci  n y D es el ciclo de trabajo  tambi  n llamado factor de servicio     Este estado se define mediante la ecuaci  n del bucle exterior   Ul ia    E En   Vin  1 2     Seg  n la ley de tensiones de Kirchoff        dV   i   i
258. ect addressing  For 8 bit addressing MOVX instructions utilizing registers RO and R1 can  be used  A 16 bit external memory addressing is supported by eight 16 bit datapointers     Multiple Datapointers    As a functional enhancement to standard 8051 controllers  the SAB 80C517 contains eight  16 bit datapointers  The instruction set uses just one of these datapointers at a time  The  selection of the actual datapointers is done in special function register DPSEL  data pointer  select  addr  924   Figure 3 illustrates the addressing mechanism     Internal Data Memory  The internal data memory is divided into three physically distinct blocks         the lower 128 bytes of RAM including four banks of eight registers each      the upper 128 byte of RAM      the 128 byte special function register area     A mapping of the internal data memory is also shown in figure 2  The overlapping address  spaces are accessed by different addressing modes  The stack can be located anywhere in the  internal data memory     Semiconductor Group 281    SIEMENS    SAB 80C517 80C537                                                             DPSEL 92 y  DPTR7  DPSEL Selected  Data   2  1  0   pointer             DPTR 0  DPTRO  0 0 1   DPTR 1     1      DPTR 2 DPH 83y  DPL 82   0 1 1   DPTR 3  1 0 0   DPTR 4    0 1   DPTR 5 External Data Memory  1 1 0   DPTR 6 MCODO779  1 1 1           Figure 3    Addressing of External Data Memory    Semiconductor Group    282       SIEMENS SAB 80C517 80C537       
259. ed  a  to be implanted in the human  body  or  b  to support and or maintain  and sustain human life  If they fail  it is  reasonable to assume that the health of  the user may be endangered     SIEMENS Revision History                      SAB 80C517 80C537 User s Manual   Revision History  04 95   Previous Releases  06 91 10 92 08 93 04 94   Page Subjects  changes since last revision    119 Figure 7 33  writing error corrected   133 Pin assignment Table 7 10 corrected   141 Page number reference number corrected   167 Software watchdog timer start  extended description  188 Description of CTF flag modified   360 ROM verification timing  text added          Semiconductor Group 4       SIEMENS 80C517 80C537       Table of Contents Page  1 Introduction Sra ra AA RUE SOS OE SUAE      CR RUN C Rees 8  2 Fundamental Structure                         uulelleele esses  10  3 Central Processing Unit                                         13  3 1 General Description    eua ot aaa deb GN ae ba AR ud 13  3 2 Ca MMI  anch    14  4 Memory Organization                                           16  4 1 Program MeMO ida e irte cy AN SR eS 16  4 2 Data           ative eats pattie Cea Se d a DEN soto gen PE SUERTE MAE 16  4 3 General Purpose Registers                                        20  4 4 Special Function Registers   i oq caw scr e E uo      20  5 External Bus Interface             corto er            27  5 1 Accessing External                                                    27  
260. ed in program  memory are executed  The 16 bit program counter  PC  holds the address of the next instruction to  be executed  The PC is manipulated by the control transfer instructions listed in the chapter   Instruction Set   The conditional branch logic enables internal and external events to the processor  to cause a change in the program execution sequence     Semiconductor Group 13    SIEMENS Central Processing Unit       3 2 CPU Timing    A machine cycle consists of 6 states  12 oscillator periods   Each state is divided into a phase 1  half  during which the phase 1 clock is active  and a phase 2 half  during which the phase 2 clock is  active  Thus  a machine cycle consists of 12 oscillator periods  numbered S1P1  state 1  phase 1   through S6P2  state 6  phase 2   Each state lasts for two oscillator periods  Typically  arithmetic and  logical operations take place during phase 1 and internal register to register transfers take place  during phase 2     The diagrams in figure 3 1 show the fetch execute timing related to the internal states and phases   Since these internal clock signals are not user accessible  the XTAL2 oscillator signals and the ALE   address latch enable  signal are shown for external reference  ALE is normally activated twice  during each machine cycle  once during S1P2 and S2P1  and again during S4P2 and S5P1     Execution of a one cycle instruction begins at S1P2  when the op code is latched into the instruction  register  If it is a two byte i
261. ed to an  internal address or address data bus for use in external memory accesses  In this application they  cannot be used as general purpose 1 0  even if not all address lines are used externally  The  switching is done by an internal control signal dependent on the input level at the EA pin and or the  contents of the program counter  If the ports are configured as an address data bus  the port latches  are disconnected from the driver circuit  During this time  the P2 SFR remains unchanged while the  PO SFR has 1 s written to it  Being an address data bus  port 0 uses a pullup FET as shown in  figure 7 4 a   When a 16 bit address is used  port 2 uses the additional strong pullups p1 to emit  1   s for the entire external memory cycle instead of the weak ones  p2 and p3  used during normal  port activity        Read  Latch                Control Voc    Internal  Pull Up  Arrangement    o Pin       MCS01826    Read  Pin             Figure 7 4 b   Port 2 Circuitry    Semiconductor Group 45    SIEMENS On Chip Peripheral Components       7 1 3 Alternate Functions    Several pins of ports 1  3  4  5 and 6 are multifunctional  They are port pins and also serve to  implement special features as listed in table 7 1     Figure 7 5 shows a functional diagram of a port latch with alternate function  To pass the alternate  function to the output pin and vice versa  however  the gate between the latch and driver circuit must  be open  Thus  to use the alternate input or output functio
262. eed I O  pulse width modulation and more timer counter capabilities  The CCU contains       one 16 bit timer counter  timer 2  with 2 bit prescaler  reload capability and a max  clock  frequency of          12  1 MHz with a 12 MHz crystal          one 16 bit timer  compare timer  with 8 bit prescaler  reload capability and a max  clock  frequency of fosc 2  6 MHz with a 12 MHz crystal         thirteen 16 bit compare registers        five of which can be used as 16 bit capture registers        up to 21 output lines controlled by the CCU        seven interrupts which can be generated by CCU events     Figure 5 shows a block diagram of the CCU  Eight compare registers  CMO to CM7  can  individually be assigned to either timer 2 or the compare timer  Diagrams of the two timers are  shown in figures 6 and 7  The four compare capture registers and the compare reload capture  register are always connected to timer 2  Dependent on the register type and the assigned  timer two compare modes can be selected  Table 3 illustrates possible combinations and the  corresponding output lines     Table 3  CCU Configuration                         Assigned Timer  Compare Register   Compare Output at   Possible Modes  Timer 2 CRCH CRCL P1 0 INT3 CCO Comp  mode 0  1   Reload  CC1H CC1L P1 0 INT4 CC1 Comp  mode 0  1  CC2H CC2L P1 0 INT5 CC2 Comp  mode 0  1  CC3H CC3L P1 0 INT6 CC3 Comp  mode 0  1  CC4H CC4L P1 0 INT2 CC4 Comp  mode 0  1  CC4H CC4L P5 0 CCMO Comp  mode 1  CC4H CC4L P5 7 CCM7 Comp  
263. efaults                       Help      Figura A3 9  Opciones de los bancos del microcontrolador     En la siguiente figura podemos observar que hay la opci  n de la generaci  n de un  fichero  Intel hex que ser   el utilizado para la programaci  n de la memoria del    microcontrolador     Tambi  n se observa en que posici  n de la memoria nos introducir   el c  digo el  lincador  como se sabe la memoria RAM de la placa Altair est   a partir de la posici  n 8000  en hexadecimal y los primeros 256 bytes son utilizados para las interrupciones del  microcontrolador  por lo que le decimos al programa que nos posicione el programa a  partir de la posici  n 8100 en hexadecimal     A2  4 21    Anexo 3  Manual de practicas     Control mediante Linealizaci  n Entrada Salida    Este programa tiene el problema que las interrupciones las sigue posicionando en  las primeras 256 posiciones  que en la placa Altair es la ROM  este problema es de f  cil  soluci  n ya que se puede modificar el fichero Intel hex     Si quisi  ramos grabar el programa en una EPROM solo tendr  amos que posicionar  el c  digo a partir de la posici  n 0 y utilizar un modo de ROM peque  o  small                                                           Mess   Libraries           RTX 51 Kemel      Misc   ois Model Jv   51           RT  TinY  Ram Size   128  egisters    Alx Standard  Optimizer    EM     Intel Hex  Messages    RTX51 pe A  acw E    Debug     Debug Info       51 Monitor    Semaphores       Use Bank switc
264. eive and transmit buffer of serial interface 0  Writing to SOBUF loads the transmit register and  initiates transmission  Reading out SOBUF accesses a physically separate receive register     Semiconductor Group 52    SIEMENS    On Chip Peripheral Components       Figure 7 8  Special Function Register SOCON  Address 9814                                                              9Fy  9Ey      9CH 9By        99H 98H  984   SMO   SM1   SM20   RENO   TB80   RB80   TIO RIO   SOCON  Bit Symbol  SMO SM1  0 0 Serial mode 0  Shift register mode  fixed baud rate  0 1 Serial mode 1  8 bit UART  variable baud rate  1 0 Serial mode 2  9 bit UART  fixed baud rate  1 1 Serial mode 3  9 bit UART  variable baud rate  SM20 Enables the multiprocessor communication feature in modes 2 and 3  In  mode 2 or 3 and SM20 being set to 1  RIO will not be activated if the  received 9th data bit  RB80  is 0  In mode 1 and SM20   1  RIO will not  be activated if a valid stop bit has not been received  In mode 0  SM20  should be 0   RENO Receiver enable  Enables serial reception  Set by software to enable  reception  Cleared by software to disable reception   TB80 Transmitter bit 8  Is the 9th data bit that will be transmitted in modes 2  and 3  Set or cleared by software as desired   RB80 Receiver bit 8  In modes 2 and 3 it is the 9th bit that was received  In  mode 1  if SM20   0  RB80 is the stop bit that was received  In mode 0   RB80 is not used    TIO Transmitter interrupt  Is the transmit interrup
265. eiver RI 21  Ser  Channel 1  Transmitter 111       A D Converter       Timer 0 Overflow TFO          DODOLCQ0WN  Q5           07U    MCS00785             Figure 8 1 a   Interrupt Structure of the SAB 80C517    Semiconductor Group 153    SIEMENS    Interrupt System             Timer 1 Overflow    Compare Timer  Overflow EI       P1 1 INT4 CC1       IEX 4    ail    Receiver  Ser  Channel 0  Transmitter       P1 2 INT5 CC2       Timer 2  Overflow       IET 2         P1 5   T2EX    P1 3 INT6 CC3                        Highest  Priority Level     gt  Lowest    Priority Level       o0o30c 00Uu   Q5          07U    MCS00786          Figure 8 1 b   Interrupt Structure of the SAB 80C517  cont d     Semiconductor Group 154    SIEMENS Interrupt System       Figure 8 2    Special Function Register IENO  Address 0  8         0A8H    OAFLy                  OAC OABY         OAM      8         EAL   wor   ET2   ESO   ET   EX1   ETO   Exo   IENO                                        This bit is not used for interrupt control                             Bit Function  EXO Enables or disables external interrupt O   If EXO   0  external interrupt 0 is disabled   ETO Enables or disables the timer O overflow interrupt   If ETO   0  the timer 0 interrupt is disabled   EX1 Enables or disables external interrupt 1   If EX1   0  external interrupt 1 is disabled   ET1 Enables or disables the timer 1 overflow interrupt   If ET1   0  the timer 1 interrupt is disabled   ESO Enables or disables the serial 
266. el interruptor est   cerrado el diodo se polariza en directa  La bobina 1 se  comporta como una fuente cediendo su energ  a almacenada a los otros elementos  almacenadores de energ  a  estos eliminan el rizado de la corriente y de la tensi  n    suministrando energ  a a la carga     En este estado de corriente de la bobina 1 va decreciendo linealmente mientras que    en la bobina 2 va aumentando  tambi  n aumenta la tensi  n en los dos condensadores     Memoria Descriptiva     Control mediante Linealizaci  n Entrada Salida    La tensi  n en la carga es la suma de la tensi  n de la fuente de alimentaci  n y de la  bobina 1  de esta manera la tensi  n en la salida siempre es mayor que la tensi  n de entrada     Este estado est   comprendido entre DT  lt  t  lt  T     Las ecuaciones del bucle izquierdo     C dV        or cham as  1 48   jx          i a Ra tty Ra in Re tl   Vin  1 49   La ecuaci  n del bucle exterior derecho   di   RR       R  L  e Ri                1 Rain Ra TE     1 50   Las ecuaciones del bucle interior derecho se define   dV   Dom ep wo    1 51     L2 C2 L2 2 dt      Ve      Rey T    R 0  1 52     Combinando la ecuaci  n  1 51  y  1 52  obtenemos     dV  R               Vo   1 53   dt         R Ro     Resolviendo el sistema con las siguientes ecuaciones                 di  i  R V  Vin            R Ll   C1 Cl    dt        223 L  L2 L        Wo d       gt    1 49   1 48   22         y       dp R Vou Ra  Ve   1 50   1 53    Ro   T 11    Reka lL       L        cs
267. eld within the input voltage specifications   V V   Since P7 and P8 are not bit addressable registers  all input lines of P7 or P8 are read at  the same time by byte instructions     Semiconductor Group 40    SIEMENS On Chip Peripheral Components       Nevertheless  it is possible to use ports 7 and 8 simultaneously for analog and digital input   However  care must be taken that all bits of P7 or P8 that have an undetermined value caused by  their analog function are masked     In order to guarantee a high quality A D conversion  digital input lines of port 7 and port 8 should  not toggle while a neighbouring port pin is executing an A D conversion  This could produce  crosstalk to the analog signal     Digital I O Port Circuitry    Figure 7 1 shows a functional diagram of a typical bit latch and I O buffer  which is the core of each  of the 7 l O ports  The bit latch  one bit in the port s SFR  is represented as a type D flip flop  which  will clock in a value from the internal bus in response to a  write to latch  signal from the CPU  The  Q output of the flip flop is placed on the internal bus in response to a  read latch  signal from the  CPU  The level of the port pin self is placed on the internal bus in response to a  read pin  signal  from the CPU  Some instructions that read from a port  i e  from the corresponding port SFR PO to  P6  activate the  read latch  signal  while others activate the  read pin  signal  see section 7 1 4 3      Read  Latch       Port Port   
268. ements SP     Accumulator Specific Transfers        XCH exchanges the byte source operand with register A  accumulator         XCHD exchanges the low order nibble of the source operand byte with the low order nibble  of A        MOVX performs a byte move between the external data memory and the accumulator  The  external address can be specified by the DPTR register  16 bit  or the R1 or RO register  8 bit         MOVC moves a byte from program memory to the accumulator  The operand in A is used as  an index into a 256 byte table pointed to by the base register  DPTR or PC   The byte operand  accessed is transferred to the accumulator     Address Object Transfer        MOV DPTR   data loads 16 bits of immediate data into a pair of destination registers  DPH  and DPL     9 2 2 Arithmetic    The SAB 80C517 has four basic mathematical operations  Only 8 bit operations using unsigned  arithmetic are supported directly  The overflow flag  however  permits the addition and subtraction  operation to serve for both unsigned and signed binary integers  Arithmetic can also be performed  directly on packed BCD representations     Addition         NC  increment  adds one to the source operand and puts the result in the operand        ADD adds A to the source operand and returns the result to A        ADDC  add with carry  adds A and the source operand  then adds one  1  if CY is set  and  puts the result in A        DA  decimal add adjust for BCD addition  corrects the sum which results 
269. emiconductor Group 121    SIEMENS    On Chip Peripheral Components       Action    Select compare mode 1  CMSEL x   0    Move the compare value for the first timer  period to the compare register CMx  high  byte first     Switch on compare mode 0  CMSEL x   1      Move the compere value for the second  timer period to the compare register     Enable the compare function   CMEN x   1     Set up the prescaler for the compare timer     Set specific compare output to low level   CLR P4 x     Start the compare timer with a desired value   write to CTREL     Second Configuration  CMx Registers Assigned to Timer 2    Comment    This is also the default value after reset    In compare mode 1 latch is loaded directly  after a write to CMLx  Thus the value slips  directly into the compare latch     Now select the rigth compare mode     The register latch is loaded  This value is  used after the first timer overflow     The compare output is switched to low level     Compare function is initialized   The output will oscillate     Any CMx register switched to timer 2 as a time base operates in compare mode 1  In this case CMx  registers behave like any other compare register connected to timer 2  e g  the CRC or CCx  registers   Please refer to the above description of compare mode 1 for further details     Since there are no dedicated interrupts for the CMx compare outputs  again a buffered compare  register structure is used to determine an exact 16 bit wide loading of the compare valu
270. er  sticas de tensi  n y corriente de entrada salida  tiempos de retardo  etc   se  encuentran en las hojas del fabricante del Anexo     86  Pliego de condiciones    Control mediante Linealizaci  n Entrada Salida    5 2 2   Especificaciones Mec  nicas     Todos los materiales escogidos son de una calidad que se adapta al objetivo del  proyecto  no obstante si no se pudiera encontrar en el mercado alg  n producto por estar  agotado  el instalador encargado del montaje tendr   que estar capacitado para su  substituci  n por otro similar o equivalente     Las placas de circuito impreso se realizar  n en fibra de vidrio  Se recomienda el uso  de z  calos torneados  para la inserci  n de componentes  De esta forma se reduce el tiempo  de reparaci  n y adem  s se disminuye el calentamiento de los pins de los componentes  electr  nicos en el proceso de soldadura que podr  a producir su deterioro     Las dimensiones de cada caja ser  n suficientemente grandes para la colocaci  n en  su interior todos los componentes y sus materiales  sin que se pueda llegar a producirse  alg  n contacto  Las partes del circuito que puedan influir sobre las dem  s  se aislar  n   Sobre la superficie de la caja se realizar  n orificios para la introducci  n de interruptores   conectores e indicadores luminosos     5 2 3   Ensayos  verificaciones y ajustes     Antes de proceder al montaje de las placas en la caja  se alimentar  n estas con las  tensiones estipuladas en la memoria     Se recomienda que s
271. er overflow  This means  that the new compare value is moved to        at an undefined moment in the current timer period   The moment depends on the interrupt response time  uncertainty of 3 to 9 machine cycles  and on  the length of the interrupt routine itself  perhaps there are more channels to serve   etc  Without any  further provisions  like the TOC loading  there would be no chance for loading an early compare  value  e g  CMO   0000    because the timer would have passed these early counts before the  loading was completed     The TOC loading now solves the above problem  The interrupt service routine is always  thinking   one cycle in advance  It actually loads the compare value  or sample point  for the next timer period   Thus  the CPU has one full timer period to serve all compares     The compare value loaded to the CMO register by the interrupt routine will be immediately  transferred to the actual compare latch at the next compare timer overflow  This overflow then again  requests a new interrupt service routine     Semiconductor Group 262    SIEMENS Application Examples       Conclusion    This application example is meant to show that the CCU of the SAB 80C517 is able to generate  very fast PWM signals with low CPU effort     Small single chip systems which have to manage PWM periods below 50 microseconds require a  very efficient on chip timer hardware to leave enough CPU time to perform other control tasks in  real time     The SAB 80C517 takes advantage o
272. er to generate the address of the next instruction and  then pushes the 16 bit result onto the stack  low byte first   incrementing the stack  pointer by two  The high order and low order bytes of the PC are then loaded   respectively  with the second and third bytes of the LCALL instruction  Program  execution continues with the instruction at this address  The subroutine may  therefore begin anywhere in the full 64 Kbyte program memory address space  No  flags are affected     Initially the stack pointer equals 074  The label  SUBRTN  is assigned to program  memory location 12344  After executing the instruction           SUBRTN    at location 01234  the stack pointer will contain 094  internal RAM locations 08y  and 09y will contain 264 and 014  and the PC will contain 12344     LCALL           lt   PC    3   SP   lt   SP    1    SP        PC7 0    SP       SP    1    SP        PC15 8           lt  addr15 0             00010010 addr15     addr8 addr7     addrO                                  Semiconductor Group 213    SIEMENS Instruction Set       LJMP addr16  Function  Long jump    Description    LUMP causes an unconditional branch to the indicated address  by loading the high   order and low order bytes of the PC  respectively  with the second and third  instruction bytes  The destination may therefore be anywhere in the full 64K  program memory address space  No flags are affected    Example  The label  JMPADR  is assigned to the instruction at program memory location 
273. ern of bits  to be complemented is then determined by a mask byte  either a constant contained  in the instruction or a variable computed in the accumulator at run time  The  instruction    XRL P1  00110001B    will complement bits 5  4  and 0 of output port 1     XRL A Rn    Operation     Encoding     Bytes   Cycles     XRL2        lt   A  v  Rn        0110  1rrr                Semiconductor Group 248    SIEMENS Instruction Set       XRL A direct    Operation  XRL        lt   A  v  direct                                Encoding  0110 0101 direct address  Bytes  2   Cycles  1   XRL A    Ri    Operation  XRL   A   lt   A  v   Ri                     Encoding  01100111   Bytes  1   Cycles  1   XRL A   data    Operation  XRL        lt   A  v  data                               Encoding  0110 0100 immediate data  Bytes  2   Cycles  1   XRL direct  A    Operation  XRL   direct   lt   direct  v  A                                Encoding  0110 0010 direct address  Bytes  2  Cycles  1    Semiconductor Group 249    SIEMENS Instruction Set       XRL direct  Zdata    Operation  XRL   direct   lt   direct  v  data             Encoding  0110 00411 direct address immediate data                                  Bytes   Cycles  2    Semiconductor Group 250    SIEMENS    Instruction Set       Instruction Set Summary       Mnemonic       Description       Byte       Cycle       Arithmetic Operations                                                                            ADD A Rn Add register
274. erturbaciones de carga     Las siguientes gr  ficas  figura A1 10 y A1 11 representan el cambio de media carga  a carga completa de la simulaci  n del convertidor y la figura A1 12 el cambio de media a  carga completa obtenida en el laboratorio     Se puede observar que la tensi  n disminuye a una tensi  n igual que en el arranque a  carga completa y que la intensidad de entrada aumenta respectivamente  En la gr  fica  obtenida en el laboratorio vemos una no linealidad en la tensi  n de salida  esto es debido a  que al hacer el cambio los interruptores tienen una pequefia oscilaci  n     Cambio de media carga a carga completa   25 T T T Y T T T T T       20r 4       a  T  1    Tensi  n          EX       T   1             0  0 0 01 002 0 03 0 04 0 05 0 06 0 07 0 08 009 01    Tiempo    Figura A1 10  Tensi  n de aumento de carga 40      Cambio de media carga a carga completa  2 T T T T T T T T T       Intensidad  A     e  to    e  o       e  h    e  to  T   1             0 1 1 L 1 L 1 1 L 1  0 0 01 0 02 0 03 0 04 0 05 0 06 0 07 0 08 0 09 0 1  Tiempo    Figura A1 11  Intensidad de aumento de carga del 40        1 7 9  Anexo 1  Resultados experimentales    Control mediante Linealizaci  n Entrada Salida        Tek Deten    1            Chi  2 00V    5 00V   P4 00ms     Ch2 f 16 9V    10Jul 2003  02 20 20   10 54 47    Figura A1 12  Perturbaciones de aumento de carga del 40      Las siguientes gr  ficas  figura A1 13 y AI 14 representan el cambio de carga  completa a media carga de 
275. es  locations 204 through 2Fy  contain 128 directly addressable bits    Programming information  These bits can be referred to in two ways  both of which are  acceptable for the ASM51  One way is to refer to their addresses  i e  O to 7Fy  The other way  is with reference to bytes 20y to 2Fy  Thus bits 0 to 7 can also be referred to as bits 20 0 20 7   and bits 8 OF  are the same as 21 0 21 7 and so on  Each of the 16 bytes in this segment may  also be addressed as a byte      3  Locations 30y to 7Fy can be used as a scratch pad area     Semiconductor Group    17    SIEMENS Memory Organization       Using the stack pointer  SP    a special function register described in section 4 4   the stack can be  located anywhere in the whole internal data memory address space  The stack depth is limited only  by the internal RAM available  256 byte maximum   However  pay attention to the fact that the stack  is not overwritten by other data  and vice versa     External Data Memory    Figure 4 2 and 4 3 contain memory maps which illustrate the internal external data memory  To  address data memory external to the chip  the  MOVX  instructions in combination with a 16 bit  datapointer or an 8 bit general purpose register are used  Refer to chapter 9  Instruction Set  or 5   External Bus Interface  for detailed descriptions of these operations  A maximum of 64 Kbytes of  external data memory can be accessed by instructions using a 16 bit address     The datapointer structure in the SAB 80C
276. eset is active  A positive transition at this pin during  normal program execution will not start the watchdog timer     Furthermore  when using the hardware start  the watchdog timer starts running with its default time   out period  The value in the reload register WDTREL  however  can be overwritten at any time to  set any time out period desired         The Second Possibility of Starting the Watchdog Timer    The watchdog timer can also be started by software  This method is compatible to the start  procedure in the SAB 80 C 515  Only setting of bit SWDT in special function register IEN1  figure  7 61  starts the watchdog timer  Starting the watchdog timer does not automatically reload the  WDTREL register into the watchdog timer registers WDTL WDTH  A reload of WDTREL occurs  only when using the double instruction refresh sequence SETB WDT SETB SWDT  Using the  software start  the time out period can be programmed before the watchdog timer starts running     Note that once the watchdog timer has been started it cannot be stopped by anything but an  external hardware reset through pin 10 with a low level applied to pin PE SWD     Refreshing the Watchdog Timer    At the same time the watchdog timer is started  the 7 bit register WDTH is preset by the contents  of WDTREL O to WDTREL 6  Once started the watchdog cannot be stopped by software but can  only be refreshed to the reload value by first setting bit WDT  IENO 6  and by the next instruction  setting SWDT  IEN1 6   Bi
277. f the fast compare timer and the TOC loading mechanism to  meet the above requirements     10 2 Using an SAB 80C537 with External Program Memory and Additional External Data  Memory    Figure 10 4 shows an example of how to connect an external program and data memory to the SAB  80C517 80C537  For the program memory a standard EPROM 27644 is used  An 8 Kbyte static  RAM 5565 serves as external data memory  The 74HCT573 works as address latch  The address  space ranges from 0 to 1FFFy  8 Kbyte   Pin EA is tied low  so all program memory accesses are  done from external memory  Port 0 is the multiplexed address data bus  while port 2 always emits  the high order byte of the address  Therefore  in this configuration port O and port 2 must not be  used as general purpose      ports     Semiconductor Group 263    SIEMENS    Application Examples          1 0    1 0    1 0                  XTAL2     XTAL            Varer    P8 3  AN11   P8 2  AN10     P8 1  AN9   P8 0  AN8      P1 0  INT3 CCO  P7 5 AN5   P1 1  INT4 CC1  P7 4 AN4   P1 2  INT5 CC2  P7 3 AN3   P1 3  INT6 CC3  P7 2 AN2   P1 4  INT2 CC4  P7 1 AN1   P1 5  T2EX  P7 0 ANO   P1 6  CLKOUT   P1 7  T2  P2 7  P2 6  P4 0  CM0  P2 5  P4 1  CM1  P2 4  P4 2  CM2  P2 3  P4 3  CM3  P2 2  P4 4  CM4  P2 1  P4 5  CM5  P2 0  P4 6  CM6   P4 7  CM7        P3 0 RxD  P3 1 TxD  P3 2 INTO  P3 3 INTT   P3 4 TO     P5 0             P5 1  OCM1   P5 2  0CM2   P5 3  OCM3     P5 4  0CM4  P3 5 T1  P5 5  0    5   P5 6  0CM6  PSEN    P3 7 RD  P3 6 WR   
278. facilitates look up table accesses     Boolean Processor    The Boolean processor is a bit processor integrated into the SAB 80C517  It has its own instruction  set  accumulator  the carry flag   bit addressable RAM and I O     Semiconductor Group 170    SIEMENS Instruction Set       The Bit Manipulation Instructions Allow         set bit       clear bit       complement bit       jump if bit is set       jump if bit is not set       jump if bit is set and clear bit  move bit from   to carry    Addressable bits  or their complements  may be logically AND ed or OR ed with the contents of the  carry flag  The result is returned to the carry register     9 2 Introduction to the Instruction Set  The instruction set is divided into four functional groups     data transfer  arithmetic       logic   control transfer    9 2 1 Data Transfer  Data operations are divided into three classes         general purpose      accumulator specific      address object    None of these operations affects the PSW flag settings except a POP or MOV directly to the PSW     Semiconductor Group 171    SIEMENS Instruction Set       General Purpose Transfers        MOV performs a bit or byte transfer from the source operand to the destination operand        PUSH increments the SP register and then transfers a byte from the source operand to the  stack location currently addressed by SP        POP transfers a byte operand from the stack location addressed by the SP to the destination  operand and then decr
279. feature  with single  or split supplies  makes this   family a great choice when interfacing with   analog to digital converters  ADCs   For precision applications  the TLC227xA family is available and has a  maximum input offset voltage of 950 uV  This family is fully characterized at 5 V and  5 V     The TLC2272 4 also makes great upgrades to the TLC272 4 or TS272 4 in standard designs  They offer  increased output dynamic range  lower noise voltage  and lower input offset voltage  This enhanced feature set  allows them to be used in a wider range of applications  For applications that require higher output drive and  wider input voltage range  see the TLV2432 and TLV2442 devices     TA   25  C          lo    50 HA       lo    500 pA             Vo pp    Maximum Peak to Peak Output Voltage     V  5                If the design requires single amplifiers  please see the TLV2211 21 31 family  These devices are single  rail to rail operational amplifiers in the SOT 23 package  Their small size and low power consumption  make  them ideal for high density  battery powered equipment     Please be aware that an important notice concerning availability  standard warranty  and use in critical applications of  Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet     Advanced LinCMOS is a trademark of Texas Instruments     PRODUCTION DATA information is current as of publication date  Copyright    2000  Texas Instruments Incorporated  
280. flags are  cleared  a capture occurs in response to a negative transition  if the edge flags are set a  capture occurs in response to a positive transition at pins P1 0  INT3  CCO and P1 4  INT2   CC4     Semiconductor Group 123    SIEMENS On Chip Peripheral Components       In both cases the appropriate port 1 pin is used as input and the port latch must be programmed to  contain a one  1   The external input is sampled in every machine cycle  When the sampled input  shows a low  high  level in one cycle and a high  low  in the next cycle  a transition is recognized   The timer 2 contents is latched to the appropriate capture register in the cycle following the one in  which the transition was identified     In mode 0 a transition at the external capture inputs of registers CCO to CC4 will also set the  corresponding external interrupt request flags IEX2 to IEX6  If the interrupts are enabled  an  external capture signal will cause the CPU to vector to the appropriate interrupt service routine     In mode 1 a capture occurs in response to a write instruction to the low order byte of a capture  register  The write to register signal  e g  write to CRCL  is used to initiate a capture  The value  written to the dedicated capture register is irrelevant for this function  The timer 2 contents will be  latched into the appropriate capture register in the cycle following the write instruction  In this mode  no interrupt request will be generated     Figures 7 53 and 7 54 show funct
281. frequency 1          4 6 MHz   P1 0 P1 7   hyay    Port 0 Data OUT             2 7   ENABLE MCD02453   Address    1 0   1 7   A0 A7 Inputs     2 5   2 6  PSEN   Vss   P2 0 P2 4   AB A12 ALE  EA          Data            0   0 7 00 07 RESET   Vss   ROM Verification    For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs and begins  to float when a 100 mV change from the loaded Vo  Vo  level occurs               gt    20 mA     Semiconductor Group 323       SIEMENS SAB 80C517 80C537       Recommended Oscillator Circuits            40 40          NC          3 5 16 MHz CH          39    External Oscillator 59 MAG    Signal               30pF   10pF    E   MCS00796   incl  stray capacitance                   AC Testing  0 2 Voc 0 9V  Test Points  0 2V   0 1V  0 45V      MCA00697    AC Inputs during testing are driven at V cc     0 5 V for a logic 1 and 0 45 V for a logic  0   Timing measure   ments are made at V jymin for a logic  1  and V    max for a logic    0           Input  Output Waveforms              Timing Reference    Vos Points    Vo   0 1V    MCA00606             Float Waveforms    Semiconductor Group 324    A5 2  OPA TLC227XIN     TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000            Output Swing Includes Both Supply Rails     Low Input Offset Voltage   e Low Noise   9 nV Hz Typ at f   1 kHz 950 uV Max at TA   25  C   e Low Input Bias Cur
282. from the binary  addition of two digit decimal operands  The packed decimal sum formed by DA is returned to  A  CY is set if the BCD result is greater than 99  otherwise  it is cleared     Semiconductor Group 172    SIEMENS Instruction Set       Subtraction        SUBB  subtract with borrow  subtracts the second source operand from the the first operand   the accumulator   subtracts one  1  if CY is set and returns the result to A        DEC  decrement  subtracts one  1  from the source operand and returns the result to the  operand     Multiplication        MUL performs an unsigned multiplication of the A register  returning a double byte result  A  receives the low order byte  B receives the high order byte  OV is cleared if the top half of the  result is zero and is set if it is not zero  CY is cleared  AC is unaffected     Division      DIV performs an unsigned division of the A register by the B register  it returns the integer  quotient to the A register and returns the fractional remainder to the B register  Division by    zero leaves indeterminate data in registers A and B and sets OV  otherwise  OV is cleared   CY is cleared  AC remains unaffected     Flags  Unless otherwise stated in the previous descriptions  the flags of PSW are affected as follows         CY is set if the operation causes a carry to or a borrow from the resulting high order bit   otherwise CY is cleared        AC is set if the operation results in a carry from the low order four bits of the resul
283. g  0  high byte 0D3H  CMH1 Compare reg  1  high byte 0D5H  CMH2 Compare reg  2  high byte 007      CMH3 Compare reg  3  high byte           CMH4 Compare reg  4  high byte OE5y  CMH5 Compare reg  5  high byte 0E7y  CMH6 Compare reg  6  high byte 0F3y  CMH7 Compare reg  7  high byte     5    CMLO Compare reg  0  low byte 0D2H  CML1 Compare reg  1  low byte 0D4y  CML2 Compare reg  2  low byte 0D6H  CML3 Compare reg  3  low byte 0E2y  CML4 Compare reg  4  low byte 0E4y  CML5 Compare reg  5  low byte 0E6y  CML6 Compare reg  6  low byte 0F2H  CML7 Compare reg  7  low byte 0F4y  CMSEL Compare input select 0F7y  CRCH Com  rel  capt  reg   high byte OCByY  CRCL Com  rel  capt  reg   low byte OCA  CTCON Com  timer control reg  0E1y  CTRELH Com  timer rel  reg   high byte 0DFy  CTRELL Com  timer rel  reg   low byte ODEH  IRCON Interrupt control register 0C0y  TH2 Timer 2  high byte           TL2 Timer 2  low byte 0CCH  T2CON Timer 2 control register 0C8y             Semiconductor Group    96    SIEMENS On Chip Peripheral Components       7 5 1 Timer 2    Timer 2 is one of the two 16 bit time bases of the compare capture unit  It can operate as timer     event counter  or gated timer  The block diagram in figure 7 34 a  shows the general configuration  of the timer 2                   A MO   CTCON  0C8y T           TOR               T T   T2CON       me No input selected  timer 2 stops                         fosc   12 o Timer function         e P17 T2         Counter function  external 
284. g  00100100 immediate data  Bytes  2  Cycles  1    Semiconductor Group 180    SIEMENS Instruction Set       ADDC A   lt  src byte gt                    Function  Add with carry   Description    ADDC simultaneously adds the byte variable indicated  the carry flag and the  accumulator contents  leaving the result in the accumulator  The carry and auxiliary  carry flags are set  respectively  if there is a carry out of bit 7 or bit 3  and cleared  otherwise  When adding unsigned integers  the carry flag indicates an overflow  occurred   OV is set if there is a carry out of bit 6 but not out of bit 7  or a carry out of bit 7 but  not out of bit 6  otherwise OV is cleared  When adding signed integers  OV indicates  a negative number produced as the sum of two positive operands or a positive sum  from two negative operands   Four source operand addressing modes are allowed  register  direct  register   indirect  or immediate    Example  The accumulator holds 0C3y  1100001 1g  and register O holds           10101010p   with the carry flag set  The instruction  ADDC A RO  will leave 6Ey  01101110p  in the accumulator with AC cleared and both the carry  flag and OV set to 1    ADDC A Rn   Operation  ADDC        lt   A            Rn    Encoding  0011 14rrr   Bytes  1   Cycles  1    ADDC A direct    Operation     Encoding     Bytes   Cycles     ADDC        lt   A     C     direct           00110101 direct address                         2  1    Semiconductor Group 181    SIEMENS    Inst
285. generador de corriente   alimentando a la carga y al condensador  este almacena energ  a para el pr  ximo sub     intervalo     La tensi  n de la bobina se suma a la tensi  n de la fuente de alimentaci  n y el  condensador se carga a esta tensi  n elevando de esta forma la tensi  n de salida     Este estado durar   mientras el interruptor este cerrado en DT    t  lt T      12    Memoria Descriptiva     Control mediante Linealizaci  n Entrada Salida  Este estado se define mediante la ecuaci  n del bucle exterior     LS ei Rei    Vin  1 21     Seg  n la ley de tensiones de Kirchoff     dV        i  i   ip  1        1 22     L C L dt      La ecuaci  n del bucle interior izquierdo se define por   di            i  Rn  V           1 23   De donde obtenemos la relaci  n   dV  1     ic mc Vin   L         i  R  V  1 24      dt Re    dt L      E        Combinando las ecuaciones  1 21  y  1 24  obtenemos     di RR    2 V  Vin  1 25   dt R Ro R  Ro          La ecuaci  n del bucle interior izquierdo se define    Vo  ic Ro  i R 0  1 26     Combinando las ecuaciones  1 22  y  1 26  obtenemos     ghas Re i    Vo  1 27   dt R  R              Resolviendo el sistema con las ecuaciones              Hin  cae a ie dum  PIER Eq AER  e L     1 25  y  1 27   ae   Ro  i  1     dt                       13  Memoria Descriptiva     Control mediante Linealizaci  n Entrada Salida    1 4 2 2   Matrices del convertidor Boost o reductor     A partir de las ecuaciones diferenciales  1 18  y  1 20  obtenemos la
286. hen the destination is a directly addressed byte  the instruction can set  combinations of bits in any RAM location or hardware register  The pattern of bits  to be set is determined by a mask byte  which may be either a constant data value  in the instruction or a variable computed in the accumulator at run time  The  instruction  ORL P1  00110010p  will set bits 5  4  and 1 of output port 1    ORL A Rn   Operation  ORL   A   lt   A  v  Rn    Encoding  0100 1rrr   Bytes  1   Cycles  1    Semiconductor Group 228    SIEMENS    Instruction Set       ORL    Operation     Encoding     Bytes   Cycles     ORL    Operation     Encoding     Bytes   Cycles     ORL    Operation     Encoding     Bytes   Cycles     ORL    Operation     Encoding     Bytes   Cycles     A direct    ORL        lt   A  v  direct                          direct address                                              immediate data                               0100 0101  2  1  A  Ri  ORL        lt   A  v   Ri    01000111   1  1  A  data  ORL        lt   A  v  data  0100 0100  2  1  direct  A  ORL   direct   lt   direct  v  A   0100 0010  2  1    Semiconductor Group    direct address          SIEMENS Instruction Set       ORL direct   data    Operation  ORL   direct   lt   direct  v  data             Encoding  0100 00411 direct address immediate data                                  Bytes   Cycles  2    Semiconductor Group 230    SIEMENS Instruction Set                                                             O
287. hey do  however  require external pullups to drive  floating inputs  except when being used as the address data bus     When used as inputs it must be noted that the ports 1 through 6 are not floating but have internal  pullup transistors  The driving devices must be capable of sinking a sufficient current if a logic low  level shall be applied to the port pin  the parameters   and         the DC characteristics specify  these currents   Port 0 as well as the input only ports 7 and 8  however  have floating inputs when  used for digital input     7 1 4 3 Read Modify Write Feature of Ports 0 through 6    Some port reading instructions read the latch and others read the pin  see figure 7 1   The  instructions reading the latch rather than the pin read a value  possibly change it  and then rewrite  it to the latch  These are called  read modify write  instructions  which are listed in table 7 2  If the  destination is a port or a port bit  these instructions read the latch rather than the pin  Note that all  other instructions which can be used to read a port  exclusively read the port pin  In any case   reading from latch or pin  resp   is performed by reading the SFR PO to P6  for example    MOV           reads the value from port 3 pins  while  ANL P4   0        reads from the latch   modifies the value and writes it back to the latch     It is not obvious that the last three instructions in this list are read modify write instructions  but they  are  The reason is that they 
288. hich is  connected to the comparator circuit  The contents of the register latch may be changed by the CPU  at any time because this change would never affect the compare event for the current timer period   The compare latch  the  actual  latch  holds the compare value for the present timer period  Thus  the CPU only changes the compare event for the next timer period since the loading of the latch is  performed by the timer overflow signal of the compare timer     This means for an application which uses several PWM outputs that the CPU does not have to  serve every single compare line by an individual interrupt  It only has to watch the timer overflow of  the compare timer and may then set up the compare events of all compares for the next timer  period  This job may take the whole current timer period since the TOC loading prevents  unintentional overwriting of the actual  and prepared  value in the compare latch     Semiconductor Group 119    SIEMENS On Chip Peripheral Components          Overflow       CTF Interrupt Logic    Output    4                 16 Bi        168i    Compare Latch        168i    TOC Loadin     Write to               16 Bi    Compare Register CMx  Figure 7 51    Compare Function of a CMx Register Assigned to the Compare Timer                                      1865             Figure 7 51 shows    more detailed block diagram of a CMx register connected to the compare  timer  It illustrates that the CPU can only access the special function registe
289. hing  Source  Set r Starting addresses   Listing A  Object Code  0 FFFF    er 00 Idata 0 FF    0000 Bit  D FF    0000  5  Ust Xdata  O FFFF    0000   Data O FF   0000  Linker  More  Bank switching  Kernel  Listing  Flash  Monitor            Defaults   Cancel   Help         Figura A3 10  Opciones de ubicaci  n del programa     Una vez terminadas las configuraciones de posicionado de memoria  generaci  n del  fichero Intel hex y utilizaci  n del Hardware del microcontrolador 80C537  ejecutaremos el  programa en el simulador del microcontrolador     P  32  practica  File Edit Search Project Tool View   Debug Options Window Help    al        CHLEG       Figura A3 11  Simulador del microcontrolador                 Nos aparecer   la opci  n de la siguiente figura  debemos utilizar el microcontrolador  80C517 y una frecuencia de 12 MHz     A2  5 21  Anexo 3  Manual de pr  cticas     Control mediante Linealizaci  n Entrada Salida    I xl  Tool      Virtual Machine  Simulator   C Real Machine  Emulator  Cancel    C Other Tool   Help      Advanced Options   Port Settings          Microcontroller       80C517 m      Frequency     Crystal  MHz   12 000          Figura A3 12  Opciones de ejecuci  n     Una vez hecho todos estos apartados nos aparecer   una pantalla con el c  digo en C   c  digo m  quina y el valor de los registros     En la figura siguiente aparece los diferentes ficheros y las opciones que tiene el  programa  Se puede ver las diferentes opciones  como ver el valor de las
290. how a high in one cycle and a low in the next cycle  the count is  incremented  The new count value appears in the register during S3P1 of the cycle following  the one in which the transition was detected  Since it takes two machine cycles  24 oscillator  periods  to recognize a 1 to 0 transition  the maximum count rate is 1 24 of the oscillator  frequency  There are no restrictions on the duty cycle of the external input signal  but to  ensure that a given level is sampled at least once before it changes  it must be held for at least  one full machine cycle     In addition to the  timer  and  counter  selection  timer counters 0 and 1 have four operating modes  from which to select     Semiconductor Group 76    SIEMENS On Chip Peripheral Components       Figure 7 19  Special Function Register TCON  Address 88        8Fy 8Ey 8Dy 8CH 88H    8BH 8AH 89H           TF1   TRI            TRO 1     1   IEO          TCON    Y  These bits are not used in controlling timer counter 0 and 1                                Bit Function    TRO Timer 0 run control bit   Set cleared by software to turn timer counter 0 ON OFF           TFO Timer 0 overflow flag  Set by hardware on timer counter overflow   Cleared by hardware when processor vectors to interrupt routine        TR1 Timer 1 run control bit   Set cleared by software to turn timer counter 1 ON OFF        TF1 Timer 1 overflow flag  Set by hardware on timer counter overflow   Cleared by hardware when processor vectors to interrupt rou
291. ht datapointers  instead of one in the 8051  which speed up external data access     Bus Expansion Control    The external bus interface of the SAB 80C517 consists of an 8 bit data bus  port 0   a 16 bit address  bus  port O and port 2  and five control lines  The address latch enable signal  ALE  is used to  demultiplex address and data of port 0  The program memory is accessed by the program store  enable signal  PSEN  twice a machine cycle  A separate external access line  EA  is used to inform  the controller while executing out of the lower 8 Kbyte of the program memory  whether to operate  out of the internal or external program memory  The read or write strobe  RD  WR  is used for  accessing the external data memory     Peripheral Control    All on chip peripheral components   I O ports  serial interfaces  timers  compare capture registers   the interrupt controller and the A D converter   are handled and controlled by the so called special  function registers  These registers constitute the easy to handle interface with the peripherals  This  peripheral control concept  as implemented in the SAB 8051  provides the high flexibility for further  expansion as done in the SAB 80C517     Moreover some of the special function registers  like accumulator  Bregister  program status word   PSW   stack pointer  SP  and the data pointers  DPTR  are used by the CPU and maintain the  machine status     Semiconductor Group 12    SIEMENS Central Processing Unit       3 Central Proce
292. i  n 0x43  Utiliza los registros del banco 0      valor ADDAT    Guardamos el valor de la conversi  n ya  que solo dura unos ciclos   ADDAT  0xD9       A2 1 4  Anexo 2  C  digo del programa     Control mediante Linealizaci  n Entrada Salida    switch  ad con    Cada vez que entremos en la interrupci  n realizaremos un caso diferente            case 0     case 1     case 2       Caso para la tensi  n de salida    ADCONI 0x01    Selecciono el puerto 7 pin 1 para la pr  xima  conversi  n que ser   la intensidad 1    vob valor     Guardo el valor de la conversi  n de la tensi  n de salida 1    ad con l    En la pr  xima conversi  n realizaremos el caso 1    DAPR 0x80    Realizaremos la conversi  n entre 0 y 2 5 V  DAPR  0xDA     break    Fin caso 0        Caso de la intensidad de la bobina 1      ADCONI 0x02    Selecciono el puerto 7 pin 2 para la pr  xima  conversi  n que ser   la intensidad 2      ilb valor    Guardo el valor de la converi  n de la intensidad 1     ad con 2    En la pr  xima conversi  n se realizar   el caso 2    DAPR 0x80    Realizaremos la conversi  n entre 0 y 2 5 V  DAPR  0xDA     break    Fin caso 1        Caso de la intensidad de la bobina 2      ADCONI 0x00    Selecciono el puerto 7 pin 0 para la p  xima  conversi  n que ser   la tensi  n de salida     12b valor    Guardo el valor de la conversi  n de la intensidad 2     ad con 0    En la pr  xima conversi  n se realizar   el caso 0      duty   i1b i2b   vo_dese vob  W   periodo  ilb     Calculo del cicl
293. i  n de salida y empieza la conversi  n entre 0 y 2 5 V          reloj 0     nicializaci  n del puerto 1 pin 2    ADCON 1 0x00    Se selecciona el puerto 7 pin 0  que es la tensi  n de salida   ADCONI  0xDC     DAPR 0x80    Realizaremos la conversi  n entre 0 y 2 5 V  DAPR  0xDA          void inicio timer void    En esta funci  n inicializamos el Timer 2           CTCON 0x00    El Timer 2 estar   fosc 12    con preescaler  CTCON  0    1     T2PS 0      21 0     Frecuencia del timer 2 fosc 12       210 1    TL2 periodo    Valor del timer 2     TH2 0xFF    T2R1 1             0 del timer 2 auto reload     T2RO0 0    CCL2 ton    Valor de la comparaci  n     CCH2 0xFF    CRCH 0xFF     Valor del auto reload     CRCL periodo    CCEN 0x20     Salida del PWM por el puerto 1 pin 2 comparador         vold inicio dog void    En esta funci  n hacemos que se inicialize el Watch dog timer  a 512 microsegundos que es el m  nimo que se puede dar en este    microcontrolador    1  WDTREL 0x7F    El prescaler frecuencia de ciclo 2 frecuencia de  ciclo   freq oscilador 12 ser  n 512 useg  WDTREL  0x86     SWDT 1     Activaci  n del watch dog  SWDT  0xBE     WDT 1     Activaci  n del watch_dog         void inicio inter void        En esta funci  n habilitamos la interrupcion del Timer 2 siendo  la m  s prioritaria      1  IP1 0x20    La interupcion del Timer 2 sera la mas prioritaria    IPO 0x20      TPO  0xB9     EAL 1    Hablilitamos todas las interupciones  EAL  OxAF      ET2 1    Habilitamos l
294. ial interface 0 can be derived from either timer 1  or from the oscillator via a special prescaler   BD       Timer 1 may be operated in mode 1  to generate slow baud rates  or mode 2  The dedicated  baud rate generator  BD  provides the two standard baud rates 4800 or 9600 baud with 0 1696  deviation  Table 8 shows possible configurations and the according baud rates     SAB 80C517 devices with stepping code  CA  or later provide a dedicated baud rate generator  for the serial interface 0  This baud rate genertaor is a free running 10 bit timer with  programmable reload registers     5  9MOD    Mode 1 3 baud rate      Jose    64x  219  SOREL     The default value after reset in the reload registers SORELL and SORELH prvide a baud rate  of 4 8 kBaud  SMOD   0  or 9 6 kBaud  SMOD   1  at 12 MHz oscillator frequency  This  guarantees full compatibility to the SAB 80C517 older steppings     Semiconductor Group 304    SIEMENS SAB 80C517 80C537       Serial Interface 1  Serial interface 1 can operate in two asynchronous modes     Mode A   9 bit UART  variable baud rate   11 bits are transmitted  through TXDO  or received  through RXDO   a start bit  0    8 data bits  LSB first   a programmable 9th  and a stop bit  1   On transmission  the  9  data bit  TB81 in S1CON  can be assigned to the value of 0 or 1  For example   the parity bit  P in the PSW  could be moved into TB81 or a second stop bit by  setting TB81 to 1  On reception the 9  data bit goes into RB81 in special function 
295. ice  The accumulator is not modified  No flags are affected     The accumulator originally holds 00y  The instruction sequence  JNZ LABEL1    INC A  JNZ LABEL2    will set the accumulator to 014 and continue at label LABEL2   JNZ           lt   PC    2   if  A   0   then  PC       PC    rel           0111 0000 rel  address                         Semiconductor Group 211    SIEMENS Instruction Set       JZ rel  Function     Description     Example     Operation     Encoding     Bytes   Cycles     Jump if accumulator is zero    If all bits of the accumulator are zero  branch to the address indicated  otherwise  proceed with the next instruction  The branch destination is computed by adding the  signed relative displacement in the second instruction byte to the PC  after  incrementing the PC twice  The accumulator is not modified  No flags are affected     The accumulator originally contains 01     The instruction sequence    JZ LABEL1  DEC A  JZ LABEL2    will change the accumulator to 004 and cause program execution to continue at the  instruction identified by the label LABEL2     JZ   PC       PC     2  if  A    0    then  PC   lt   PC    rel          0110 0000 rel  address                         Semiconductor Group 212    SIEMENS Instruction Set       LCALL  addr  6    Function     Description     Example     Operation     Encoding     Bytes   Cycles     Long call    LCALL calls a subroutine located at the indicated address  The instruction adds  three to the program count
296. iempo de  exposici  n depende de la l  mpara utilizada  de la distancia de   sta a la placa  del  material fotosensible y del envejecimiento del mismo  El fabricante recomendara  cual es el tiempo   ptimo     4   Una vez acabada la exposici  n  se retira la placa y se coloca dentro del l  quido  revelador  el tiempo de atacado de revelado depende del fabricante de la placa de  circuito impreso  quien indicar   cual es el m  s adecuado  De todas formas el  proceso puede darse por acabado cuando las pistas se vean n  tidamente  y el resto  de la superficie se aprecie libre de cualquier sustancia fotosensible   se observa el  cobre limpio       Cuando la placa ya est   revelada se limpia con agua  que producir   una  parada del proceso de revelado y ya se puede pasar al atacado  donde se sumerge la  placa en el atacador r  pido o en la disoluci  n y se observa como desaparece el  cobre que no conforma el trazado de las pistas                  Pliego de condiciones    Control mediante Linealizaci  n Entrada Salida    Una vez ha desaparecido toda la superficie de cobre que no forma parte de  las pistas se secar   la placa del atacador y se limpiara para finalizar el proceso de  atacado     5   Finalmente se limpia la emulsi  n fotosensible que recubre las pistas   que  impedir  a la soldadura   con alcohol o bien con acetato     6   Se realizar  n los agujeros para soldar los terminales y despu  s se soldar  n     5 3 2   Soldadura de los componentes     Existen diversos m  todos 
297. iene la misma  polaridad     1 4 2 1 1   Topolog  a  ON  del convertidor Boost o elevador     il  RLI x    E      gs             dps  s      Rc s  iej RS Vo      o                  i   i  Figura 1 7  Convertidor Boost en topolog  a  ON     Cuando el interruptor esta cerrado y el diodo polarizado en inversa  la fuente de   alimentaci  n suministra corriente a la bobina  almacen  ndola  mientras el condensador se    comporta como una fuente alimentando a la carga  Este sistema estar   comprendido entre  0   t    DT     La corriente que pasar   por el diodo ser   pr  cticamente nula  La bobina se  comportar   como receptor y el condensador como fuente     El sistema de ecuaciones del bucle izquierdo se define   di      rcu   Vin  1 18     Seg  n la ley de tensiones de Kirchoff        i  O  1 19     11  Memoria Descriptiva     Control mediante Linealizaci  n Entrada Salida    La ecuaci  n del bucle derecho se define     peo            0  1 20   dt R Reo    Resolviendo el sistema con las ecuaciones           di  _ i  Vin  oa        1 18  y  1 20        _ DO    1 18  y  1 20   dt Rt Ro  E       1 4 2 1 2   Topolog  a    OFF    del convertidor Boost o elevador              il      gt  io  L RLI id      T                  a Zro a  ic    R  Vin 4     vo                              i    Figura 1 8  Convertidor Boost topolog  a    OFF        Una vez transcurrido el tiempo DT el interruptor pasa a estar cerrado y el diodo a  estar polarizado en directa  actuando ahora la bobina como un 
298. ienen el inconveniente que ocupan mucho espacio y  los valores de capacidad son muy peque  os     La protecci  n del MOSFET de potencia se realiza mediante un filtro paso bajos que  elimina las componentes frecuenciales de alta frecuencia que podr  an dafiar el MOSFET ya  que producen tensiones muy elevadas  tambi  n sirve para la eliminaci  n de tensiones  elevadas cuando el MOSFET no esta conduciendo     2  R26  10 1 2 W  4  2  C4    Figura 2 4  Filtro Paso Bajos      des          RC  2 2   Cs Cs 5    s  108       H s   10   2 3     La elecci  n de las resistencias de carga se ha realizado para que puedan aguantar  tensiones de 22 V  y se han elegido con una resistencia de 48 Q y de 68 O  La elecci  n de  la potencia se ha calculado mediante las formulas siguientes     Para la resistencia de 48 Q     2 2  p   2 21008 W  2 4     35  Memoria de c  lculo    Control mediante Linealizaci  n Entrada Salida    Para la resistencia de 68        2 2  poe ow  2 5   R 68    En todo caso se han elegido para que puedan soportar 12 W ya que el precio no  ten  a casi variaci  n y al tener que introducir la placa dentro de una caja necesitan tener un  margen     2 3 1 1   Calculo de las bobinas     TOROIDAL POLVO DE HIERRO  O ring iron dust core    Material grado 75    NTH 039   Aluh 100 Turns vueltas   1000   10   Dimensiones en mm    Ext   39 80  Dimensiones en mm  Y Int   24 13  Dimensiones en mm  Alto  14 48       Figura 2 5  Nucleo toroidal de las bobinas     Se ha escogido un n  cleo 
299. ificant byte  MD1  MD2  Last Read MD3 most significant byte          Abbreviations  D end   Dividend  1st operand of division    Dior   Divisor  2nd operand of division              Multiplicand  1st operand of multiplication            Multiplicator  2nd operand of multiplication   Pr   Product  result of multiplication   Rem   Remainder   Quo   Quotient  result of division   pale   means  that this byte is the least significant of the 16 bit or 32 bit operand     H   means  that this byte is the most significant of the 16 bit or 32 bit operand    Semiconductor Group 299    SIEMENS SAB 80C517 80C537            Ports  The SAB 80C517 has seven 8 bit I O ports and two input ports  8 bit and 4 bit wide      Port 0 is an open drain bidirectional I O port  while ports 1 to 6 are quasi bidirectional I O ports  with internal pull up resistors  That means  when configured as inputs  ports 1 to 6 will be pulled  high and will source current when externally pulled low  Port O will float when configured as  input     Port 0 and port 2 can be used to expand the program and data memory externally  During an  access to external memory  port 0 emits the low order address byte and reads writes the data  byte  while port 2 emits the high order address byte  In this function  port 01  not an open drain  port  but uses a strong internal pullup FET  Port 1  3  4  5 and port 6 provide several alternate  functions  Please see the  Pin Description  for details     Port pins show the information wri
300. illator frequency    Figure 7 10  Special Function Register ADCONO  Address 0D8y        ODFy ODE            ODCy ODBYy          009   OD8j             BD ADEX   BSY   ADM       2                         These bits are not used in controlling serial interface O           Bit Function       BD Baud rate enable    When set  the baud rate in modes 1 and 3 of serial interface 0 is taken  from a dedicated prescaler  Standard baud rates 4800 and 9600 baud at  12 MHz oscillator frequency can be achieved           Using timer 1 to generate baud rates     In mode 1 and 3 of serial channel 0 timer 1 can be used for generating baud rates  Then the baud  rate is determined by the timer 1 overflow rate and the value of SMOD as follows     SMOD    Mode 1  3 baud rate   32       x  timer 1 overflow rate     The timer 1 interrupt is usually disabled in this application  The timer itself can be configured for  either  timer  or  counter  operation  and in any of its operating modes  In the most typical  applications  it is configured for  timer  operation in the auto reload mode  high nibble of  TMOD   0010p   In the case  the baud rate is given by the formula     25  0   x oscillator frequency  32 x 12 x  256      TH1         Mode 1  3 baud rate      One can achieve very low baud rates with timer 1 by leaving the timer 1 interrupt enabled   configuring the timer to run as 16 bit timer  high nibble of TMOD   0001 p   and using the timer 1  interrupt for a 16 bit software reload     Table 7 4 l
301. imer 2 with Registers CRC  CC1 to CC4    Compare Function of Registers CRC  CC1 to CC3    The compare function of registers CRC  CC1 to CC3 is completely compatible with the  corresponding function of the SAB 80 C 515  Registers CRC  CC1 to CC3 are permanently  connected to timer 2     All four registers are multifunctional as they additionally provide a capture  see section 7 5 6  or a  reload capability  the CRC register only  see section 7 5 1   A general selection of the function is  done in register CCEN  see figure 7 41   For compare function they can be used in compare mode  0 or 1  respectively  The compare mode is selected by setting or clearing bit T2CM in special  function register T2CON     Semiconductor Group 108    SIEMENS On Chip Peripheral Components       Figure 7 41  Special Function Register CCEN       0C1y  COCAHS COCAL3  COCAH2 COCAL2 COCAH1 COCAL1 COCAHO COCALO  CCEN                                  Compare capture enable register selects compare or capture function for register CRC  CC1 to  CC3                    Bit Function  COCAHO COCALO   Compare capture mode for CRC register   0 0 Compare capture disabled   0 1 Capture on falling rising edge at pin   P1 0 INT3 CCO   1 0 Compare enabled   1 1 Capture on write operation into register CRCL  COCAH1 COCAL1   Compare capture mode for CC register 1   0 0 Compare capture disabled   0 1 Capture on rising edge at pin P1 1 INT4 CC1   1 0 Compare enabled   1 1 Capture on write operation into register CCL1  COC
302. in JEDEC MS 004         5 TEXAS  INSTRUMENTS    POST OFFICE BOX 655303    DALLAS  TEXAS 75265 47    TLC227x  TLC227xA   Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS   SLOS190C     FEBRUARY 1997     REVISED JULY 2000    MECHANICAL DATA    J  R GDIP T    CERAMIC DUAL IN LINE PACKAGE  14 PIN SHOWN       PINS     DIM       A MAX          A MIN       B MAX             1      0 065  1 65     0 045  1 14                             0 100  2 54   0 070  1 78        0 020  0 51  MIN       0 200  5 08  MAX    Seating Plane       A       0 130  3 30  MIN          0 100  2 54                       0 023  0 58  0 014  0 36   0 015  0 38 VS TEE AMO   i   0 008  0 20                   4040083 D 08 98       NOTES  All linear dimensions are in inches  millimeters     This drawing is subject to change without notice    This package can be hermetically sealed with a ceramic lid using glass frit    Index point is provided on cap for terminal identification only on press ceramic glass frit seal only     Falls within MIL STD 1835 GDIP1 T14  GDIP1 T16  GDIP1 T18  GDIP1 T20  and GDIP1 T22     moou  gt          35 TEXAS  INSTRUMENTS    48 POST OFFICE BOX 655303 9 DALLAS  TEXAS 75265    TLC227x  TLC227xA   Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS   SLOS190C     FEBRUARY 1997     REVISED JULY 2000    MECHANICAL DATA    N  R PDIP T    PLASTIC DUAL IN LINE PACKAGE  16 PIN SHOWN                                        0 260  6 60   0 240  6 10     8  4 L 0 070  1 78  MAX    0 03
303. ina se cortar   un cable de 22 m de longitud para poder realizar  las 365 espiras  Esta bobina se enrollar   como la primera     5 3 1 3   Fabricaci  n del circuito impreso   A continuaci  n se detallan los pasos para la fabricaci  n del circuito impreso     1   Los materiales y aparatos para la realizaci  n de la placa de circuito impreso son   insoladora  o l  mpara de luz act  nica   revelador   o en su defecto disoluci  n de  sosa c  ustica y agua  atacador r  pido que se puede sustituir por una disoluci  n con  la siguiente composici  n  33  de HLC  33  de agua oxigenada de 110 vol  menes  y 33  de agua destilada   y por ultimo se necesitan las placas de circuito impreso  de material fotosensible positivo de doble cara y fibra de vidrio     2   La forma de operar ser   la siguiente  en primer lugar se efectuar   una copia de  dos planos de la placa   cara componentes y cara soldaduras  en papel de acetato   Posteriormente se unir  n las dos copias procurando la correspondencia entre pistas  de las dos caras  dejando una ranura sin unir por donde se introducir   la placa     3   El conjunto  copias en papel de acetato y placa  se expondr  n a la luz  ultravioleta de la insoladora  Esta recubre la placa y las copias en acetato con un  material pl  stico el cual se le aplica el vac  o evitando que se formen burbujas de  aire entre el papel de acetato y la placa  A continuaci  n se expone el conjunto a la  luz ultravioleta durante el tiempo que aconseje el fabricante  Este t
304. ing triplets  therefore  the 14 interrupt sources are  combined to six pairs or triplets  each pair or triplet can be programmed to one of the four interrupt  priority levels  see chapter 8 2     Figure 8 1 gives a general overview of the interrupt sources and illustrates the request and control  flags described in the next sections  The priority structure and the corresponding control bits are  listed in section 8 2     8 1 Interrupt Structure    A common mechanism is used to generate the various interrupts  each source having its own  request flag s  located in a special function register  e g  TCON  IRCON  SOCON  S1CON    Provided the peripheral or external source meets the condition for an interrupt  the dedicated  request flag is set  whether an interrupt is enabled or not  For example  each timer 0 overflow sets  the corresponding request flag TFO  If it is already set  it retains a one  1   But the interrupt is not  necessarily serviced     Now each interrupt requested by the corresponding flag can individually be enabled or disabled by  the enable bits in SFR s IENO  IEN1  IEN2  see figure 8 2  8 3 and 8 4   This determines whether  the interrupt will actually be performed  In addition  there is a global enable bit for all interrupts  which  when cleared  disables all interrupts independent of their individual enable bits     Semiconductor Group 152    SIEMENS Interrupt System                     Highest  Priority Level       P3 2  M  INTO  Lowest  Priority Level  Rec
305. inter originally contains the value OBy  Internal RAM locations OAH  and OBy contain the values 234 and 01   respectively  The instruction    RET    will leave the stack pointer equal to the value 094  Program execution will continue  at location 01234     Operation  RET   PC15 8        SP                      SP       SP    1   PC7 0   lt    SP     SP       SP    1  Encoding  0010 0010  Bytes  1  Cycles  2    Semiconductor Group 234    SIEMENS Instruction Set       RETI  Function     Description     Example     Operation     Encoding     Bytes   Cycles     Return from interrupt    RETI pops the high and low order bytes of the PC successively from the stack  and  restores the interrupt logic to accept additional interrupts at the same priority level  as the one just processed  The stack pointer is left decremented by two  No other  registers are affected  the PSW is not automatically restored to its pre interrupt   status  Program execution continues at the resulting address  which is generally the  instruction immediately after the point at which the interrupt request was detected   If a lower or same level interrupt is pending when the RETI instruction is executed   that one instruction will be executed before the pending interrupt is processed     The stack pointer originally contains the value OBy  An interrupt was detected  during the instruction ending at location 01224  Internal RAM locations OAy and  0By contain the values 234 and 014  respectively  The instruction   
306. ion requirements can be met  Any CMx register connected to the compare timer  automatically works in compare mode 0 e g  to provide fast PWM with low CPU intervention   Together with timer 2  CMx registers operate in compare mode 1  the latter configuration  which is  described in the next section  allows the CPU to control the compare output transitions directly     The assignment of the eight registers CMO to CM7 to either timer 2 or to the compare timer is done  by an 8 channel 2 1 multiplexer  shown in the general block diagram in figure 7 33   The  multiplexer can be programmed by the corresponding bits in special function register CMSEL  see  figure 7 48   The compare function itself can individually be enabled in the SFR CMEN  see  figure 7 49      Note however that these register are not bit addressable  which means that the value of single bits  can only be changed by AND ing or OR ing the register with a certain mask     Semiconductor Group 116    SIEMENS    On Chip Peripheral Components       Figure 7 48  Special Function Register CMSEL       0F7y       CMSEL 7       CMSEL 6       CMSEL 5       CMSEL 4       CMSEL 3       CMSEL 2       CMSEL 1       CMSEL 0          CMSEL    Contains select bits for registers CMO to CM7  When set  CMLx CMHx are assigned to the compare  timer and compare mode 0 is enabled  The compare registers are assigned to timer 2 if  CMSELx   0  In this case compare mode 1 is selected                 Bit Function  CMSEL 7 Select bit for CM7  CM
307. ional diagrams of the capture function of timer 2  Figure 7 53  illustrates the operation of the CRC or CC4 register  while figure 7 54 shows the operation of the  compare capture registers 1 to 3     The two capture modes can be established individually for each capture register by bits in SFR  CCEN  compare capture enable register  and CCAEN  compare capture 4 enable register   That  means  in contrast to the compare modes  it is possible to simultaneously select mode 0 for one  capture register and mode 1 for another register   The bit positions and functions of CCEN are listed  in figure 7 41  the one for CC4EN in figure 7 47     Semiconductor Group 124    SIEMENS On Chip Peripheral Components          Input _            2  Clodi m L2 TH2 TF2 Interrupt  Request   Write to    Iv   Iv     gt     v Mode 1       Capture          P1 0 INT3     CRCL CRCH  CC  o   e 7    2                  EM  LL External  Pd  gt   IEX3 Interrupt 3  Request                                                             MCS01855  Figure 7 53  Capture with Registers CRC  CC4  Timer 2  Interrupt  Request   Write to           P1 1 INT4  External  CC1    Interrupt 4  Request  MCS01856  Figure 7 54    Capture with Registers CC1 to CC3    Semiconductor Group 125    SIEMENS On Chip Peripheral Components       7 6 Arithmetic Unit    This on chip arithmetic unit of the SAB 80C517 provides fast 32 bit division  16 bit multiplication as  well as shift and normalize features  All operations are unsigned integer
308. is incremented in response to a 1 to 0 transition at its  corresponding external input pin T2  P1 7   In this function  the external input is sampled every  machine cycle  When the sampled inputs show a high in one cycle and a low in the next cycle  the  count is incremented  The new count value appears in the timer register in the cycle following the  one in which the transition was detected  Since it takes two machine cycles  24 oscillator periods   to recognize a 1 to 0 transition  the maximum count rate is 1 24 of the oscillator frequency  There  are no restrictions on the duty cycle of the external input signal  but to ensure that a given level is  sampled at least once before it changes  it must be held for at least one full machine cycle  see also  section 7 1  Parallel I O  for the exact sample time at the port pin P1 7      Note   The prescaler must be off for proper counter operation of timer 2  i e  T2PS must be 0     In either case  no matter whether timer 2 is configured as timer  event counter  or gated timer  a  rolling over of the count from all 1 s to all O s sets the timer overflow flag TF2  bit 6 in SFR IRCON   interrupt request control  which can generate an interrupt     If TF2 is used to generate a timer overflow interrupt  the request flag must be cleared by the interrupt  service routine as it could be necessary to check whether it was the TF2 flag or the external reload  request flag EXF2 which requested the interrupt  for EXF2 see below   Both reques
309. ise  for the maximum  resolution of 16 bit  the modulation range would be so severely limited that it would be negligible     Semiconductor Group 111    SIEMENS On Chip Peripheral Components       Example    Timer 2 in auto reload mode  contents of reload register CRC   OFFO0y  16  1   Restriction of module  Range                           0 19576  icti    0 256 x2 x 100    0 195     This leads to a variation of the duty cycle from 0 195  to 99 805  for a timer 2 CCx register  configuration when 8 of 16 bits are used     Compare Function of Register CC4   Concurrent Compare     Compare register CC4 is new in the SAB 80C517 and permanently assigned to timer 2  It has its  own compare capture enable register CC4EN  see figure 7 47   Register CC4 can be set to  operate as any of the other CC registers  see also figures 7 42 and 7 43   Its output pin is P1 4   CC4 INT2 and it has a dedicated compare mode select bit COMO located in register CC4EN     In addition to the standard operation in compare mode 0 or 1  there is another feature called   concurrent compare  which is just an application of compare mode 1 to more than one output pin   Concurrent compare means that the comparison of CC4 and timer 2 can manipulate up to nine port  pins concurrently  A standard compare register in compare mode 1 normally transfers a  preprogrammed signal level to a single output line  Register CC4  however  is able to put a 9 bit  pattern to nine output lines  The nine output lines consist of on
310. ister IPO and one in IP1  Figure 9 shows the interrupt  request sources  the enabling and the priority level structure     Semiconductor Group 295    SIEMENS SAB 80C517 80C537                    Highest  Priority Level          Receiver  Ser  Channel 1  Transmitter       A D Converter       2 C               m t2 V m                        Timer 0 Overflow        5              Q5         O U                 MCS00785             Figure 9  Interrupt Structure    Semiconductor Group 296    SIEMENS SAB 80C517 80C537                         Highest  Priority Level          Timer 1 Overflow          Compare Timer  Overflow d    P1 1 INT4 CC1          Receiver  Ser  Channel 0  Transmitter       oo53ocoao00u  Q5          07U    P1 2 INT5 CC2          Timer 2  Overflow          P1 5   T2EX    P1 3 INT6 CC3          MCS00786             Figure 9  cont d   Interrupt Structure    Semiconductor Group 297    SIEMENS SAB 80C517 80C537       Multiplication Division Unit    This on chip arithmetic unit provides fast 32 bit division  16 bit multiplication as well as shift and  normalize features  All operations are integer operations                    Operation Result Remainder Execution Time  32 bit 16 bit 32 bit 16 bit 6 toy      16 bit 16 bit 16 bit 16 bit 41 cy   16 bit   16 bit 32 bit     4 toy   32 bit normalize     6 toy      32 bit shift left right      6 toy                   U 4        1 us   12 MHz oscillator frequency   2 The maximal shift speed is 6 shifts cycle     The MDU cons
311. ists of six registers used for operands and results and one control register   Operation of the MDU can be divided in three phases                                      1st Write  MDO  Last Write  MD5 or ARCON   First Read Last Read   MD0   MD3 or MD5   v v  Phase 1 X Phase 2                3     Load Registers Calculate Read Registers   limes ag       00787                          10  Operation of the MDU    To start an operation  register MDO to MD5  or ARCON  must be written to in a certain  sequence according to table 5 or 6  The order the registers are accessed determines the type  of the operation  A shift operation is started by a final write operation to register ARCON  see  also the register description      Semiconductor Group 298    SIEMENS SAB 80C517 80C537                               Table 5  Programming the MDU for Multiplication and Division  Operation 32 Bit 16 Bit 16 Bit 16 Bit 16 Bit   16 Bit  First Write MDO D endL MDO D endL MDO M andL  MD1 D end MD1 D end MD4 M   orL  MD2 D   end D   end  MD3 D   endH MD4 D   endH MD1 M   andH  MD4 D   orL D   orL  Last Write MD5 D   orH MD5 D   orH MD5 M   orH  First Read MDO QuoL MDO QuoL MDO PrL  MD1 Quo MD1 QuoH MD1  MD2 Quo  MD3 QuoH MD4 RemL MD2  MD4 RemL  Last Read MD5 RemH MD5 RemH MD3 PrH  Table 6  Shift Operation with the CCU  Operation Normalize  Shift Left  Shift Right  First Write MDO least significant byte  MD1  MD2  MD3 most significant byte  Last Write ARCON start of conversion  First Read MDO least sign
312. ists various commonly used baud rates and shows how they can be obtained from  timer 1     Semiconductor Group 56    SIEMENS On Chip Peripheral Components                Table 7 4  Timer 1 Generated Commonly Used Baud Rates  Baud Rate fosc  MHz  SMOD Timer 1   C T Mode Reload   Value   Mode 1  3 62 5 Kbaud 12 0 1 0 2         19 2 Kbaud 11 059 1 0 2 FDy  9 6 Kbaud 11 059 0 0 2 FDy  4 8 Kbaud 11 059 0 0 2         2 4 Kbaud 11 059 0 0 2         1 2 Kbaud 11 059 0 0 2 ESy  110 Baud 6 0 0 0 2 72H  110 Baud 12 0 0 0 1                                 Figure 7 11 shows the mechanisms for baud rate generation of serial channel 0  while table 7 5  summarizes the baud rate formulas for all usual configurations     Phase 2 CLK Timer 1     fosc 2  Overflow    Baud Rate  Clock          MCS01829             Figure 7 11  Generation of Baud Rates for Serial Channel 0    Semiconductor Group 57    SIEMENS On Chip Peripheral Components                   Table 7 5   Baud Rates of Serial Interface 0   Baud Rate Derived Interface Baud Rate   from Mode   Timer 1 in mode 1 1 3 2SMOD 4    see table 7 4  5 X 16 x  timer 1 overflow rate   Timer 1 in mode 2 1 3 2SMOD     Jose     see table 7 4        X X  2   16 12x 256  TH1               Oscillator 2 29M0D 1 foso  X X  2 16 2  BD 1 3 2SMOD 1 po       X X  2 16 1248             7 2 1 4 New Baud Rate Generator for Serial Channel 0    The SAB 80C517 devices with stepping code  CA  or later have a new baud rate generator for serial  channel 0 which provides
313. it is set   Description  If the indicated bit is a one  jump to the address indicated  otherwise proceed with  the next instruction  The branch destination is computed by adding the signed  relative displacement in the third instruction byte to the PC  after incrementing the  PC to the first byte of the next instruction  The bit tested is not modified  No flags  are affected    Example  The data present at input port 1 is 11001010p  The accumulator holds 56   010101108   The instruction sequence  JB P1 2 LABEL1  JB ACC 2 LABEL2  will cause program execution to branch to the instruction at label LABEL2    Operation  JB   PC       PC    3  if  bit    1  then  PC       PC    rel   Encoding  00100000 bit address rel  address   Bytes    Cycles     Semiconductor Group 205    SIEMENS Instruction Set                                              JBC bit rel   Function  Jump if bit is set and clear bit   Description  If the indicated bit is one  branch to the address indicated  otherwise proceed with  the next instruction   n either case  clear the designated bit  The branch destination  is computed by adding the signed relative displacement in the third instruction byte  to the PC  after incrementing the PC to the first byte of the next instruction  No flags  are affected   Note   When this instruction is used to test an output pin  the value used as the original  data will be read from the output data latch  not the input pin    Example  The accumulator holds 56y  01010110p   The ins
314. ition is  detected  the divide by 16 counter is immediately reset  and 1Fy is written to the input shift register     At the 7th  8th and 9th counter state of each bit time  the bit detector samples the value of RxDO   RxD1  The value accepted is the value that was seen in at least 2 of the 3 samples  If the value  accepted during the first bit time is not 0  the receive circuits are reset and the unit goes back to  looking for another 1 to O transition  If the start bit proves valid  it is shifted into the input shift  register  and reception of the rest of the frame will proceed     As data bits come from the right  1 s shift out to the left  When the start bit arrives at the leftmost  position in the shift register  which is a 9 bit register   it flags the RX control block to do one last shift   load SOBUF S1BUF and RB80  RB81  and set RIO RI1  The signal to load SOBUF S1BUF and  RB80 RB81  and to set RIO RI1  will be generated if  and only if  the following conditions are met at  the time the final shift pulse is generated     1  RIO RI1   0  and  2  either SM20 SM21   0 or the received 9th data bit   1    If either one of these two conditions is not met  the received frame is irretrievably lost  and RIO RI1  is not set  If both conditions are met  the received 9th data bit goes into RB80 RB81  the first 8 data  bits go into SOBUF S1BUF  One bit time later  no matter whether the above conditions are met or  not  the unit goes back to look for a 1 to 0 transition at the Rx
315. kage Description  8 bit CMOS Microcontroller  SAB 80C517 M TBD P MQFP 100 2 ble ROM  12 MHz  SAB 80C537 N Q67120 C452  P LCC 84  for external memory  12 MHz  SAB 80C537 M TBD P MQFP 100 2  SAB 80C517 N T40 85 Q67120 C483  P LCC 84 with factory mask programma   ble ROM  12 MHz   SAB 80C517 M T40 85         P MQFP 100 2 ext  temperature     40 to 85   C  SAB 80C537 N T40 85 Q67120 C484  P LCC 84 for external ROM  12 MHz          80C537 M T40 85   TBD P MQFP 100 2      xt  temperature     40 to 85       SAB 80C517 N16 Q67120 C723  P LCC 84 with mask programmable  SAB 80C517 M16 TBD         j E   7 140 to 110  C  SAB 80C537 N16 Q67120 C722  P LCC 84  for external memory  16 MHz  SAB 80C537 M16 TBD P MQFP 100 2  SAB 80C517 N16 T40 85  Q67120 C724  P LCC 84 with mask programmable ROM   16 MHz  ext  temperature     40 to 85  C  SAB 80C517 16 N T40 85 Q67120 C725  P LCC 84 with factory mask programma   ble ROM  12 MHz  Semiconductor Group 266    SIEMENS SAB 80C517 80C537          Voc Vss       Port 7  8 bit       Port 0  Port 8 8 bit  4    bit  Port 1  d  lt  gt  si   AGND LN  Port 2  _      E E  PE SWD SAB  Bn Port 3  RO 80C517     RESET 80C537     Port 4  __ 8 bit  EA  ALE      Port 5  8 bit  PSEN      Port 6  XTAL1 8 bit  XTAL2       MCL00776             Logic Symbol    Semiconductor Group 267    SIEMENS    SAB 80C517 80C537          VAGND  P7 7  P7 6  P7 5  P7 4  P7 3  P7 2  P7 1  P7 0  P3 0 SAB  P3 1  P3 2 80C517 80C537  P3 3  P3 4  P3 5  P3 6  P3 7  P1 7  P1 6  P1 5  P1 4      
316. l Components       Write Sequence    The first and the last write operation in phase one are fixed for every calculation of the MDU  All  write operations inbetween determine the type of MDU calculation         A write to MDO is the first transfer to be done in any case  This write resets the MDU and  triggers the error flag mechanism  see below         The next two or three write operations select the calculation type  32bit 16bit  16bit 1 6bit   16bit x 16bit   The last write to MD5 finally starts the selected MUL DIV operation    Read Sequence        Any read out of the MDx registers should begin with MDO      The last read from MD5  division  or MD3  multiplication  determines the end of a whole  calculation and releases the error flag mechanism     There is no restriction on the time within which a calculation must be completed  The CPU is allowed  to continue the program simultaneously to phase 2 and to fetch the result bytes at any time     If the user s program takes care that interrupting a calculation is not possible  monitoring of the  calculation process is probably not needed  In this case  only the write sequence must be observed     Any new write access to MDO starts a new calculation  no matter whether the read out of the former  result has been completed or not     7 6 3 Normalize and Shift    Register ARCON controls an up to 32 bit wide normalize and shift operation in registers MDO to          It also contains the overflow flag and the error flag which are 
317. l interrupt flags IEO and IE1 only if they were transition activated  The  hardware generated LCALL pushes the contents of the program counter onto the stack  but it does  not save the PSW  and reloads the program counter with an address that depends on the source  of the interrupt being vectored too  as shown in the following  table 8 2      Semiconductor Group 165    SIEMENS Interrupt System                                                    Table 8 2   Interrupt Source and Vectors   Interrupt Request Flags Interrupt Vector Address Interrupt Source   IEO 00034 External interrupt O  TFO 000By Timer 0 overflow   IE1 0013y External interrupt 1   TF1 001By Timer 1 overflow  RIO TIO 0023H Serial channel 0  TF2 EXF2 002By Timer 2 overflow ext  reload  IADC 0043H A D converter   IEX2 004By External interrupt 2  IEX3 0053H External interrupt 3  IEX4 005By External interrupt 4  IEX5 0063H External interrupt 5  IEX6 006By External interrupt 6  RH TH 0083  Serial channel 1   CTF 009By Compare timer overflow             Execution proceeds from that location until the RETI instruction is encountered  The RETI  instruction informs the processor that the interrupt routine is no longer in progress  then pops the  two top bytes from the stack and reloads the program counter  Execution of the interrupted program  continues from the point where it was stopped  Note that the RETI instruction is very important  because it informs the processor that the program left the current interrupt priorit
318. l operating  modes  N C      2 5  25    Not connected  28   29   36   51   53   74 77   88   89       Input  O   Output  Semiconductor Group 278    SIEMENS SAB 80C517 80C537             OWE         Oscillator Watchdog ROM  8K x 8  XIALL    L 256 x 8 SAB 806517  OSC  amp  Timing only  XTAL2                 k i                                                                                                                            RESET        Programmable    RO       Watchdog Timer Port 0                8 bit digit  1 0  PSEN         Div  Mul  Unit  lt   Port 1  Port 1  bit       _   mo             8 51 digit  1 0  EA          PE       Port 2                        Y        digi  1 0  Timer 2 T  or  Capture 8 bit digit  1 0  Compare Unit  Compare Timer Port 4  8 bit digit  1 0  Port 5  Serial Channel 0 8 bit digit  1 0  Progr  Baud Rate  Generator Port 6  8 bit digit  1 0  Serial Channel 1  Port 7  Progr  Baud Rate WS  Generator 8 bit digit    analog Input  fl Port 8  AGND 4 bit digit     analog Input  MCB00777  Figure 1    Block Diagram    Semiconductor Group 279    SIEMENS SAB 80C517 80C537       Functional Description    The SAB 80C517 is based on 8051 architecture  It is a fully compatible member of the Siemens  SAB 8051 80C51 microcontroller family being a significantly enhanced SAB 80C515  The  SAB 80C517 is therefore 100 96 compatible with code written for the SAB 80C515     CPU    Having an 8 bit CPU with extensive facilities for bit handling and binary BCD arithmetic
319. l programa proview32 genera un  fichero en hexadecimal que nos permite programar la EPROM    la RAM del  microcontrolador     Una vez obtenido las sefiales de la tensi  n de salida  la intensidad que pasa por la  bobina 1 y la intensidad que pasa por la bobina 2  solo nos falta aplicar la f  rmula del  control por Linealizaci  n por Entrada Salida para obtener el ciclo de trabajo     La siguiente f  rmula da la ley de control por Linealizaci  n Entrada Salida     _ IL1 IL2   k Vo _ deseada     Vo              duty  2 36     Donde     Duty es el ciclo de trabajo        es la intensidad que pasa por la bobina 1     IL2esla intensidad que pasa por la bobina 2          deseada es la tensi  n de salida que queremos conseguir     Voes la tensi  n real que hay en la salida del convertidor     kes Sow    1   es la constante proporcional del control PI     Clesel condensador que hay despu  s del diodo     T es el periodo     Wesun valor entre      1     A continuaci  n se explicara el algoritmo de control que se ha grabado en la  EPROM de la placa Altair 537  que lleva incorporado el microcontrolador 80C537     55  Memoria de c  lculo    Control mediante Linealizaci  n Entrada Salida    Programa Principal     Inicializaci  n del  Watch Dog Timer   Iniciado a 512 pseg     Inicializaci  n del Timer 0   Contador de 8 bits   Genera una se  al cuadrada de 142 seg  Duty cycle del 50       Inicializaci  n de las interrupciones     Habilitar interrupci  n Timer 0   Habilitar interrupci  n con
320. l valor de la intensidad que pasa por la  bobina 1 en valor digital de 8 bits      unsigned char i2b 0     Variable global que contiene el valor de la intensidad que pasa por la  bobina 2 en valor digital de 8 bits      unsigned char vob 0    Variable blobal que contiene el valor de la tension de salida en 8 bits  y que puede variar entre 0x00 son 18 V y OxFF que son 20 5 V      unsigned char periodo 0x82    Periodo de conmutaci  n del transistor 8 kHz     unsigned char T7125    Periodo equivalente a 8 kHz     unsigned char ton 0xC0        Tiempo en estado de conducci  n del transistor     unsigned char      con 0     Variable global para realizar los diferentes casos     unsigned char vo dese OxFF    Variable global que sirve para dar un valor a la tensi  n deseada      unsigned char valor 0       Variable global que nos permite guardar el valor del acumulador del conversor  A D ya que solo lo guarda un tiempo      unsigned char W 150        Variable global que guarda el valor    del P     sbit at 0x92 reloj    Pin donde se genera la sefial cuadrada que en nuestro caso es el puerto 1 pin 2     void inicio dog void          esta funci  n hacemos que se inicialize el Watch dog timer  a 512 microsegundos que es el m  nimo que se puede dar en este  microcontrolador     void inicio inter void          esta funci  n habilitamos las interrupciones del Timer 2     void inicio timer void     En esta funci  n inicializamos el Timer 2     void inicio adc void       En esta funci  n ini
321. la estabilidad de la tensi  n de salida  en los sistemas de alimentaci  n conmutados se centrar   el estudio del sistema en el lazo de  control  as   como las diferentes variaciones de este     Por tanto  el objetivo principal del proyecto es la implementaci  n de un controlador  mediante linealizaci  n entrada salida mediante el microcontrolador SAB 80C537  obtenido  mediante la aplicaci  n de t  cnicas de bloques de un control robusto mediante una  aplicaci  n de MATLAB  llamado SIMULINK   comprobando que el comportamiento  delante posibles perturbaciones de la carga  variaciones de tensi  n de alimentaci  n  ruido u  otros  se aproxima al deseado     Tambi  n se realizar   el estudio y montaje de la planta  un convertidor Boost  elevador con filtro de salida  En esta planta tambi  n se realizan las medidas pertinentes  para obtener los resultados pr  cticos  y as   poder comparar los resultados de las  simulaciones y demostrar el correcto funcionamiento del controlador     Memoria Descriptiva     Control mediante Linealizaci  n Entrada Salida    1 3   Fundamentos te  ricos de los convertidores conmutados DC DC     El funcionamiento b  sico de un convertidor conmutado DC DC  consiste en la toma  a diferentes intervalos de la se  al continua  ya sea tensi  n o corriente  una vez eliminado el  ruido y la componente alterna se tendr   que generar un ciclo de trabajo de la sefial que  cambia el interruptor     Para su realizaci  n existe un principio de funcionamiento com  n en
322. la simulaci  n del convertidor y la figura A1 15 el cambio de  carga completa a media obtenida en el laboratorio     Se puede observar que la tensi  n aumenta a una tensi  n igual que en el arranque a  media carga y que la intensidad de entrada disminuye respectivamente  En la gr  fica  obtenida en el laboratorio vemos una no linealidad en la tensi  n de salida  esto es debido a  que al hacer el cambio los interruptores tienen una pequefia oscilaci  n     Cambio de carga completa a media carga  fr T T T T T       T T T    d               Tensi  n   V             0 06 0 07 0 08 0 09 01 0 11 0 12 0 13 0 14  Tiempo    Figura A1 13  Tensi  n de disminuci  n de carga 40      A1 8 9  Anexo 1  Resultados experimentales    Control mediante Linealizaci  n Entrada Salida     Cambio de carga completa a media carga  T T T T       2r T T T T       Tensi  n   V      e  5    e      T  1    04  4    02r 3  1    1 L 1 1 1 1 1 1  0 06 0 07 0 08 009 01 031 02 013       Tiempo             Figura A1 14  Intensidad de disminuci  n de carga 40          L       d           Tek Deten           phy  A Chi 7 21 9V          10Jul 2003     8 600   12 10 54  Figura A1 15  Perturbaciones de disminuci  n de carga del 40      A1 7   Conclusiones     Como se ha podido observar en todas las figuras de este anexo  el comportamiento  din  mico del controlador implementado es muy similar al controlador simulado  con  pequefias variaciones  debidas a las variaciones del modelo simulado de la planta al  modelo real
323. lay  from 2 to 512 machine cycles  with a  single instruction  The instruction sequence    MOV R2   8  TOGGLE  CPL   1 7  DJNZ R2 TOGGLE    will toggle P1 7 eight times  causing four output pulses to appear at bit 7 of output  port 1  Each pulse will last three machine cycles  two for DJNZ and one to alter the    pin     Semiconductor Group 200    SIEMENS    Instruction Set       DJNZ    Operation     Encoding   Bytes   Cycles     DJNZ    Operation     Encoding     Bytes   Cycles     Rn rel    DJNZ           lt   PC    2    Rn       Rn    1   if  Rn   gt     or  Rn   lt  0  then  PC       PC    rel                               direct rel                               rel  address                11011          rel  address  2  DJNZ   PC       PC    2   direct   lt   direct      1  if  direct   gt  O or  direct     0  then  PC       PC    rel  1101 0101 direct address  2    Semiconductor Group 201    SIEMENS Instruction Set       INC  lt byte gt   Function  Increment  Description         increments the indicated variable by 1  An original value of OFF y will overflow    Example     INC A    Operation     Encoding   Bytes   Cycles     INC Rn    Operation     Encoding     Bytes   Cycles     to 00    No flags are affected  Three addressing modes are allowed  register  direct   or register indirect     Note     When this instruction is used to modify an output port  the value used as the original  port data will be read from the output data latch  notthe input pins     Register 0 
324. le 6 1  Register Contents Register Contents  PC 0000H IENO  IEN1 00H  ACC 00H IEN2 XXXX 00X0p  ADCONO 00H IPO 00H   IP1 XX00 0000p  ADCON 1 XXXX 0000p IRCON 00H  ADDAT 00H MDO 5 XXH  ARCON 0XXX XXXXp PO P6 OFFy  B 00H PCON 00H  CCL1 4 00H PSW 00H  CCH1 4 00H SOBUF  S1BUF OXXy  CCEN 00H SOCON 00H  CC4EN 00H S1CON 0X00 0000p  CMEN 00H S1REL 00H  CMLO 7 00H SP 07H           7 00H TCON 00H  CMSEL 00H TLO  THO 00H  CRCL  CRCH 00H TL1  TH 00H  CTCON OXXX 0000p TL2  TH2 00y  CTRELL  CTRELH 00H TMOD 00H  DAPR 00H T2CON         DPSEL XXXX X000p WDTREL 00H  DPTRO 7 0000y        Semiconductor Group 37    SIEMENS System Reset       6 1 2 Hardware Reset Timing  This section describes the timing of the hardware reset signal     The input pin RESET is sampled once during each machine cycle  This happens in state 5 phase 2   Thus  the external reset signal is synchronized to the internal CPU timing  When the reset is found  active  low level at pin 10  the internal reset procedure is started  It needs two complete machine  cycles to put the complete device to its correct reset state  i e  all special function registers contain  their default values  the port latches contain 1 s etc  Note that this reset procedure is not performed  if there is no clock available at the device  This can be avoided using the oscillator watchdog  which  provides an auxiliary clock for performing a correct reset without clock at the XTAL1 and XTAL2  pins  See section 7 8 for further details   The RESET signal mus
325. leared  all bits set to zero   No flags are affected   Example  The accumulator contains 5      01011100p   The instruction  CLR A  will leave the accumulator set to 00y  00000000p    Operation  CLR                            0  Encoding  1110 0100  Bytes  1  Cycles  1    Semiconductor Group 191    SIEMENS Instruction Set       CLR bit  Function  Clear bit    Description      The indicated bit is cleared  reset to zero   No other flags are affected  CLR can  operate on the carry flag or any directly addressable bit     Example  Port 1 has previously been written with 5Dy  01011101p   The instruction  CLR P1 2  will leave the port set to 59y  01011001 p                                                CLR C  Operation  CLR   C      0  Encoding  11000011  Bytes  1  Cycles  1  CLR bit  Operation  CLR   bit   lt  O  Encoding  1100 0010 bit address  Bytes  2  Cycles  1    Semiconductor Group 192    SIEMENS Instruction Set       CPL A  Function  Complement accumulator    Description  Each bit of the accumulator is logically complemented  one s complement   Bits  which previously contained a one are changed to zero and vice versa  No flags are  affected     Example  The accumulator contains 5      01011100p   The instruction  CPL A  will leave the accumulator set to OA3y  10100011p    Operation  CPL                    A   lt          Encoding  1111 0100  Bytes  1  Cycles  1    Semiconductor Group 193    SIEMENS Instruction Set       CPL bit  Function  Complement bit    Description    
326. ler        8 bit auto reload timer counter    THX  holds a value which is to be reloaded into    TLx    each time it  overflows        Timer 0   TLO is an 8 bit timer counter controlled by the standard timer 0 control  bits  THOO is an 8 bit timer only controlled by timer 1 control bits           Timer 1   Timer counter 1 stops       Semiconductor Group    78    SIEMENS On Chip Peripheral Components       7 3 1 Mode 0    Putting either timer counter into mode 0 configures it as an 8 bit timer counter with a divide by 32  prescaler  Figure 7 21 shows the mode 0 operation     In this mode  the timer register is configured as a 13 bit register  As the count rolls over from all 1 s  to all O s  it sets the timer overflow flag TFO  The overflow flag TFO then can be used to request an  interrupt  see section 8 for details about the interrupt structure   The counted input is enabled to the  timer when TRO   1 and either GATE   0 or INTO   1  setting GATE   1 allows the timer to be  controlled by external input INTO  to facilitate pulse width measurements   TRO is a control bit in the  special function register TCON  GATE is in TMOD     The 13 bit register consists of all 8 bits of TH1 and the lower 5 bits of TLO  The upper 3 bits of TLO  are indeterminate and should be ignored  Setting the run flag  TRO  does not clear the registers     Mode 0 operation is the same for timer 0 as for timer 1  Substitute TR1  TF1  TH1  TL1  and INT   for the corresponding timer 1 signals in figure 7 
327. limentaci  n suministra corriente a la bobina aumentando esta linealmente  en este estado  la bobina almacena energ  a  mientras el condensador suministra energ  a a la carga  comport  ndose como una fuente  la tensi  n en el condensador va disminuyendo  Este  periodo est   comprendido entre 0  lt  t  lt  DT    Este estado se define mediante las ecuaciones del bucle izquierdo     di       i Rp         1 30   Seg  n la ley de tensiones de Kirchoff        i    C   1 31     La ecuacion del bucle derecho se define     cai    Jr  c  1 32        dt R Ro    Resolviendo el sistema modificando las ecuaciones        dt ok  dV  Lh s  dt R R JC    1 4 3 1 2   Topolog  a  OFF  del convertidor Buck Boost      1 30  y  1 32                    id io               gos  L      Re E  T   Be    Vin aah 11 E      Vo     ill     E RL1 dies       T al    Figura 1 12  Convertidor Buck Boost en topolog  a    OFF        17  Memoria Descriptiva     Control mediante Linealizaci  n Entrada Salida    Una vez transcurrido el tiempo DT el interruptor pasa a estar abierto y el diodo  polarizado en directa  en este periodo la bobina se comporta como una fuente de  alimentaci  n que cede energ  a a la carga y al condensador  Debido a que la corriente que  pasa por la bobina debe de tener continuidad el condensador provoca una tensi  n en  inversa por lo que la tensi  n en la salida estar   invertida con respecto a la tensi  n de  entrada     Permanecer   en este intervalo mientras se cumpla DT  lt t  lt  T    
328. lished  the next conversion is automatically started in the  machine cycle following the last cycle of the previous conversion        One Machine Cycle                          I 4     BSY  m te    E             Interrupt Request Result is written    I            Flag IADC is Set into ADDAT  MCTO1843    MOV DAPR   xxH   Internal Start     or    P6 0 ADST 0     External Start              Figure 7 32  Timing Diagram of an A D Converter    Semiconductor Group 92    SIEMENS On Chip Peripheral Components       7 5 The Compare Capture Unit  CCU     The compare capture unit is one of the SAB 80C517   s most powerful peripheral units for use in all  kinds of digital signal generation and event capturing like pulse generation  pulse width modulation   pulse width measuring etc     The CCU consists of two 16 bit timer counters with automatic reload feature and an array of 13  compare or compare capture registers  A set of six control registers is used for flexible adapting of  the CCU to a wide variety of user   s applications     The CCU is the ideal peripheral for various automotive control applications  ignition injection  control  anti lock brakes  etc   as well as for industrial applications  DC  three phase AC  and  stepper motor control  frequency generation  digital to analog conversion  process control  etc      The detailed description in the following sections refers to the CCU   s functional blocks as listed  below         Timer 2 with fosc 12 input clock  2 bit prescaler 
329. lled high by  the internal pull up resistors  and in that  state can be used as inputs  As inputs   port 5 pins being externally pulled low  will source current  J  in the DC  characteristics  because of the internal  pull up resistors  This port also serves  the alternate function  Concurrent  Compare   The secondary functions  are assigned to the port 5 pins as  follows        CCMO  P5 0        concurrent compare 0      COMI  P5 1         concurrent compare 1      CCM2  P5 2   concurrent compare 2      CCM3  P5 3   concurrent compare 3      CCM4 P5 4   concurrent compare 4      CCM5  P5 5   concurrent compare 5      CCM6  P5 6   concurrent compare 6            7   5 7   concurrent compare 7    o   2 o                  OWE 69 45                Oscillator Watchdog Enable   A high level on this pin enables the  oscillator watchdog  When left  unconnected this pin is pulled high by a  weak internal pull up resistor  When  held at low level the oscillator watchdog  function is off             Input  O   Output    Semiconductor Group    276    SIEMENS    SAB 80C517 80C537       Pin Definitions and Functions  cont d        Symbol    Pin Number                P LCC 84    P MQFP 100 2    Function       P6 0   P6 7    70   77    46   50   54   56    I O    Port 6   is a bidirectional I O port with internal  pull up resistors  Port 6 pins that have  1 s written to them are pulled high by  the internal pull up resistors  and in that  state can be used as inputs  As inputs   port 6 pins
330. ltados pr  cticos obtenidos y las simulaciones te  ricas   comprobando su similitud y realizando una valoraci  n del tipo cualitativa del controlador     A1 2   Arranque del convertidor a media carga     Las siguientes gr  ficas  figura Al 1 y A1 2 representan el arranque del convertidor  simulada mediante diagramas de bloques de Matlab    y la figura A1 3 el arranque obtenida  en el laboratorio  Todas ellas a media carga     Amanque comedy media c aga       00 0005 001 0015 002 00  003 00  004 0045 005  Tiempo    Figura   1 1  Tensi  n de arranque convertidor media carga     Arranque del convertidor media carga    Intensidad          0   r     0005 0 01 0015 002 0025 0 03 0 035 0 04 0 045 0 05  Tiempo    Figura A1 2  Intensidad de arranque convertidor media carga     A1 1 9  Anexo 1  Resultados experimentales    Control mediante Linealizaci  n Entrada Salida        Tek Pres Pr                 Chil 2 00V    10Jul 2003  9111 60   10 49 07    Figura A1 3  Intensidad y tension en el arranque a media carga     Como se pueden observar en las gr  ficas de la tensi  n e intensidad de arranque son  muy parecidas a la gr  fica de tensi  n e intensidad obtenida en el laboratorio     La gr  fica obtenida en el laboratorio se puede observar que una vez estabilizado el  arranque  se obtiene una tensi  n en el canal 2 de unos 20 6 V  obtenida mediante un  mult  metro  es pr  cticamente igual que la tensi  n simulada  tambi  n que el tiempo de  estabilizaci  n  tanto en la sefial obtenida e
331. machine cycle  At S6P2 of every machine cycle in  which RECEIVE is active  the contents of the receive shift register are shifted one position to the  left  The value that comes in from the right is the value that was sampled at the P3 0 pin at S5P2 in  the same machine cycle     As data bits come in from the right  1 s shift out to the left  When the 0 that was initially loaded into  the rightmost position arrives at the leftmost position in the shift register  it flags the RX control block  to do one last shift and load SOBUF  At S1P1 in the 10th machine cycle after the write to SOCON  that cleared RIO  RECEIVE is cleared and RIO is set     Semiconductor Group 66    SIEMENS On Chip Peripheral Components       7 2 3 2 Mode 1 Mode B  8 Bit UART  Serial Interfaces 0 and 1     Ten bits are transmitted  through TxDO or TxD1   or received  through RxDO or RxD1   a start bit   0   8 data bits  LSB first   and a stop bit  1   On reception through RxDO  the stop bit goes into RB80   SOCON   on reception through RxD1  RB81  S1CON  stores the stop bit     The baud rate for serial interface 0 is determined by the timer 1 overflow rate or by the internal baud  rate generator of serial interface 0  Serial interface 1 receives the baud rate clock from its own baud  rate generator     Figures 7 17 a  and b  show a simplified functional diagram of both serial channels in mode 1 or  mode B  resp  The generation of the baud rate clock by the various timers is described in sections  7 2 1 3 an
332. may run with its full period from 0000  overflowing at a count rate of 65 535    OFFFF p    External interrupts INT4 and INT5 are enabled as compare interrupts and the compare registers  CC1 and CC2 are initialized to 50 96 duty cycle thus containing a value of 250 and 100  respectively   The contents of the port latches must be preprogrammed to a complementary level which will  appear after the corresponding compare event     Now timer 2 is started  The first compare interrupt occurs after 100 timer increments caused by the  contents of register CC2     Figure 10 1 illustrates the task schedule of the program  Every compare event causes an interrupt  request  which is served after a certain response time  depending on the current task being in  progress   There are a few jobs to be done  which are described in the following     Semiconductor Group 256    SIEMENS Application Examples          Timer 2  Count   0 50 100 150 200 250 300 350 400 450 500 550                       Timer start Y  Compare interrupt INT 5     Compare interrupt INT 6                          MCTO1861    H CPU is servicing interrupt task    H Interrupt is pending and will be serviced when current CPU task is completed             Figure 10 1  Task Schedule for  Additive Compare  Program    The interrupt routine has to calculate the next compare value for the current channel  e g  CC2      Tocnext                          Tecduty     where Tocnex is the next compare value in CC2    Tocto is the  constant
333. mmed to WDTREL O   WDTREL 6  After an external HW or HWPD reset   an oscillator power on reset  or a watchdog timer reset  register WDTREL is cleared to 00    The  lower seven bits of WDTREL can be loaded by software at any time     Examples  given for a 12 MHz oscillator frequency         WDTREL   Time Out Period Comments    00H 65 535 ms This is the default value and  coincides with the watchdog  period of the SAB 80515           1 18 Maximum time period                          512 us Minimum time period       Semiconductor Group 141    SIEMENS On Chip Peripheral Components       Starting the Watchdog Timer    There are two ways to start the watchdog timer depending on the level applied to pin PE SWD   pin 4   This pin serves two functions  because it is also used for blocking the power saving modes   For details see chapter 7 7         The First Possibility of Starting the Watchdog Timer    The automatic start of the watchdog timer directly after an external HW reset is a hardware start  initialized by strapping pin 4  PE SWD  to         In this case the power saving modes  power down  mode  idle mode and slow down mode  are also disabled and cannot be started by software     The self start of the watchdog timer by a pin option has been implemented to provide high system  security in electrically very noisy environments     Note     The automatic start of the watchdog timer is only performed if PE SWD  power save enable start  watchdog timer  is held at high level while r
334. mode 1  CMOH CMOL P4 0 CMO Comp  mode 1  CM7H CM7L P4 7 CM7 Comp  mode 1  Compare timer CMOH CMOL P4 0 CMO Comp  mode 0   with add  latches   CM7H CM7L P4 7 CM7 Comp  mode 0   with shadow latches   Semiconductor Group 289    SIEMENS    SAB 80C517 80C537          16 Bit Reload   CTREL                          Compare         Bit  E    Timer                       50    0000 7 U0    Max Clock  fosc 2 CMSEL    Timer 11    P     e     C             r            Capt  Com  4  CC4   Capt  Com  3  CC3     Capt  Com  2  CC2                    Capt  C  37 apt  Com  1  CC1     16 Bit Rel  Capt                                                                               MCB00781       Figure 5  Block Diagram of the Compare Capture Unit    Semiconductor Group 290       SIEMENS SAB 80C517 80C537       Compare    In the compare mode  the 16 bit values stored in the dedicated compare registers are  compared to the contents of the timer 2 register or the compare timer register  If the count value  in the timer registers matches one of the stored values  an appropriate output signal is  generated and an interrupt is requested  Two compare modes are provided     Mode 0  Upon a match the output signal changes from low to high  It goes back to low level  when the timer overflows     Mode 1  The transition of the output signal can be determined by software  A timer overflow  signal doesn t affect the compare output     Compare registers CMO to CM7 use additional compare latches when operated in m
335. mode 3 establishes TLO and THO as two separate  counters  The logic for mode 3 on timer 0 is shown in figure 7 24  TLO uses the timer 0 control bits   C T  GATE  TRO  INTO  and TFO  THO is locked into a timer function  counting machine cycles  and  takes over the use of TR1 and TF1 from timer 1  Thus  THO now controls the  timer 1  interrupt     Mode 3 is provided for applications requiring an extra 8 bit timer or counter  When timer O is in  mode 3  timer 1 can be turned on and off by switching it out of and into its own mode 3  or can still  be used by the serial channel as a baud rate generator  or in fact  in any application not requiring  an interrupt from timer 1 itself              OSC  12 fosc  12     C T  0 In i  nterru  TLO TFO p  A  B Bits   TO Pin c T 1  Control                               Gate  INTO Pin  fosc   12     8 Bits   TR1 Control MCSO1840  Figure 7 24    Timer Counter 0  Mode 3  Two 8 Bit Timer Counter    Semiconductor Group 82    SIEMENS On Chip Peripheral Components       7 4 A D Converter  The SAB 80C517 provides an A D converter with the following features         12 multiplexed input channels  which can also be used as digital inputs  port 7  port 8        Programmable internal reference voltages  16 steps each  via resistor array   8 bit resolution within the selected reference voltage range   13 microseconds conversion time  including sample time  at 12 MHz oscillator frequency  Selectable external or internal start of conversion trigger   Inter
336. mpare functions are combined with  negative transition activated interrupts  If the port latch of port P1 0 or P 1 4 contains a 1  the  interrupt request flags IEX3 or IEX2 will immediately be set after enabling the compare mode for the  CRC or CCA register  The reason is that first the external interrupt input is controlled by the pin s  level  When the compare option is enabled the interrupt logic input is switched to the internal  compare signal  which carries a low level when no true comparison is detected  So the interrupt  logic sees a 1 to 0 edge and sets the interrupt request flag     An unintentional generation of an interrupt during compare initialization can be prevented if the  request flag is cleared by software after the compare is activated and before the external interrupt  is enabled     7 5 5 2 Compare Function of Registers CMO to CM7    The CCU of the SAB 80C517 contains another set of eight compare registers  an additional timer   the compare timer  and some control SFR in the CCU which have not been described yet  These  compare registers and the compare timer are mainly dedicated to PWM applications     The additional compare registers CMO to CM7  however  are not permanently assigned to the  compare timer  each register may individually be configured to work either with timer 2 or the  compare timer as shown in table 7 10 on page 133     The flexible assignment of the CMx registers allows an independent use of two time bases where  by different applicat
337. mple     Operation   Encoding     Bytes   Cycles     No operation    Execution continues at the following instruction  Other than the PC  no registers or  flags are affected     It is desired to produce a low going output pulse on bit 7 of port 2 lasting exactly  5 cycles  A simple SETB CLR sequence would generate a one cycle pulse  so four  additional cycles must be inserted  This may be done  assuming no interrupts are  enabled  with the instruction sequence    CLR P2 7  NOP  NOP  NOP  NOP  SETB P2 7    NOP       0000 0000                Semiconductor Group 227    SIEMENS Instruction Set       ORL  lt dest byte gt   lt src byte gt     Function     Logical OR for byte variables                   Description    ORL performs the bitwise logical OR operation between the indicated variables   storing the results in the destination byte  No flags are affected    The two operands allow six addressing mode combinations  When the destination  is the accumulator  the source can use register  direct  register indirect  or  immediate addressing  when the destination is a direct address  the source can be  the accumulator or immediate data   Note   When this instruction is used to modify an output port  the value used as the original  port data will be read from the output data latch  not the input pins    Example  If the accumulator holds           110000116  and RO holds 554  01010101 p  then  the instruction  ORL A RO  will leave the accumulator holding the value 0D7y  11010111p    W
338. n   PDS Power down start bit  The instruction that sets the PDS flag bit is the last  instruction before entering the power down mode    IDLS IDLE start bit  The instruction that sets the IDSL flag bit is the last  instruction before entering the idle mode    SD When set  the slow down mode is enabled    GF1 General purpose flag   GFO General purpose flag   PDE Power down enable bit  When set  starting the power down mode is  enabled    IDLE Idle mode enable bit  When set  starting the idle mode is enabled           Semiconductor Group 138    SIEMENS On Chip Peripheral Components       7 7 2   Power Down Mode    In the power down mode  the on chip oscillator is stopped  Therefore  all functions are stopped   only the contents of the on chip RAM and the SFR s are held  The port pins controlled by their port  latches output the values that are held by their SFR S  The port pins which serve the alternate  output functions show the values they had at the end of the last cycle of the instruction which  initiated the power down mode  when enabled  the clockout signal  P1 6 CLKOUT  will stop at low  level  ALE and PSEN are held at logic low level  see table 7 13      If the power down mode is to be used  the pin PE SWD must be held low  Entering the power down  mode is done by two consecutive instructions immediately following each other  The first instruction  has to set the flag bit PDE  PCON 1  and must not set bit PDS  PCON 6   The following instruction  has to set the start bit
339. n She d OR E             174  924        Transter qase Dau vastas      Mareen CU De e      174  9 3 Instruction                 5                                            176  10 Application Examples                                           256  10 1 Application Examples for the Compare Functions                      256  10 1 1 Generation of Two Different PWM Signals with  Additive Compare  using   the         Registers    xu saneta das dade lave ina da eee a hea keke den 256  10 1 2 Sine Wave Generation with a CMx Registers Compare Timer   COnngurauOn   lt a A   i244  taeda etn ede de tae dae    d HAN Ruta tae bees 258  10 2 Using an SAB 80C537 with External Program Memory and Additional   External Data Memory                                           263  11 Device                           lt                                           265    Semiconductor Group 7    SIEMENS Introduction       1 Introduction    The SAB 80C517 80C537 is a high end microcontroller in the Siemens SAB 8051 8 bit  microcontroller family  It is based on the well known industry standard 8051 architecture  a great  number of enhancements and new peripheral features extend its capabilities to meet the extensive  requirements of new applications  Nevertheless  the SAB 80C517 maintains compatibility within the  Siemens SAB 8051 family  in fact  the SAB 80C517 is a superset of the Siemens SAB 80C515   80C535 microcontroller thus offering an easy upgrade path for SAB 80 C 515 80 C 535 users     In ad
340. n activation energy of 0 96 eV                       5 TEXAS  INSTRUMENTS    POST OFFICE BOX 655303    DALLAS  TEXAS 75265 19    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TLC22741 operating characteristics at specified free air temperature  Vpp     5 V    TLC22741 TLC2274AI  PARAMETER TEST CONDITIONS   UNIT    s Equivalent input      f  10 Hz 1   8 VEE     noisevoltage      Fat kHz                     Peak to peak f20 1 Hz to 1 Hz  Equivalent input S    VN PP  equivalent input  Total harmonic Vo     2 3 V            SERI 0 001196 0 001196  25  C    Slew rate at unity Vo    2 3 V   gain        100 pF    THD N distortion plus RL   10       Ay   10 0 004  0 004   noise f   20 kHz   Ay   100   0 03  0 03     Gain bandwidth f   10 kHz  RL   10       25  C  product CL   100 pF  Maximum output    VO PP    4 6 V  Ay   1  25  C  swing bandwidth RL           CL   100 pF      tep      2  to 2 3 V  o  Settling time        10 ka  UE 25  C         100 pF         Phase margin at       unity gain E CL   100 pF    ET    T Full range is    40  C to 125  C           Ji TEXAS    INSTRUMENTS    20 POST OFFICE BOX 655303 9 DALLAS  TEXAS 75265    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TLC2272Q and TLC2272M electrical characteristics at specified free air temperature  Vpp   5 V   unless otherwise noted     TLC22720  1LC22
341. n be read only  a write has no  effect  There is also an interrupt request flag IADC  IRCON 0  that is set when a conversion is  completed  See section 8 for more details about the interrupt structure     Figure 7 26  Special Function Register ADCONO  Address 0D8      ODFy ODE  0DDy 0DCy 0DBy ODAY          0D8y    0D8j    BD    CLK   ADEX   BSY   ADM   MX                     ADCONO    These bits are not used in controlling A D converter functions                                                           Bit Function   MXO Select 12 input channels of the A D converter    MX1   MX2   MX3   ADM A D conversion mode  When set  a continuous conversion is selected  If  ADM   0  the converter stops after one conversion    BSY Busy flag  This flag indicates whether a conversion is in progress   BSY   1   The flag is cleared by hardware when the conversion is  completed    ADEX Internal external start of conversion  When set  the external start of    conversion by P6 0 ADST is enabled           Figure 7 27  Special Function RegisterADCON1  Address 0DCy                          x MX3   MX2   MX1 MXO   ACON1                                  A D converter control register 1  It contains channel selection bits        to         Bits        to MX2  can be written or read either in ADCONO or in ADCON1     Semiconductor Group 85    SIEMENS On Chip Peripheral Components                                              Table 7 6   Selection of the Analog Input Channels   MX3 MX2  MX1           Sele
342. n el laboratorio como en la simulaci  n es de  unos 25 mseg     En cuanto a la intensidad de arranque se puede observar que es ligeramente mayor  la intensidad obtenida en el laboratorio  esto es debido a que a la hora de regular los dos  sensores de intensidad se les dio un margen de ganancia  esta diferencia no afecta a la ley  de control por intensidad  solo se tiene en cuenta para realizar la constante k del control P  de la tensi  n  Tambi  n se tendr  a en cuenta si se generara un control PI o PID por tensi  n     A1 2 9  Anexo 1  Resultados experimentales    Control mediante Linealizaci  n Entrada Salida     A1 3   Arranque del convertidor a plena carga     Las siguientes gr  ficas  figura A1 3 y A1 4 representan el arranque del convertidor  simulada mediante diagramas de bloques de Matlab    y la figura A1 5 el arranque obtenida  en el laboratorio  Todas ellas a plena carga     Arranque convertidor a plena carga  25 T T T T T T T T T       20r                         L 1 1 1 1 1 1 L 1  0 0 005 0 01 0 015 0 02 0 025 0 03 0 035 0 04 0 045 0 05  Tiempo    Figura A1 4  Tensi  n de arranque convertidor a plena carga     Arranque convertidor a plena carga  25 T T T T T Y T T T       Intensidad    0 5               L 1 1 1 1 1 1 1 1  0 0 005 0 01 0 015 0 02 0 025 0 03 0 035 0 04 0 045 0 05  Tiempo    Figura A1 5  Intensidad de arranque convertidor a plena carga     A1 3 9  Anexo 1  Resultados experimentales    Control mediante Linealizaci  n Entrada Salida        Tek Deten  
343. n filtro que para a la m  xima componente frecuencial de 8 kHz tenga  una atenuaci  n de 49 92 dB la frecuencia de corte del filtro sea de 2 kHz con las  resistencias y condensadores anteriormente calculadas  obtenemos      12566 4      A 203000    SS A  dB  50265 61   12566 4  50265 64    12566 4       25db  2 32     Para conseguir una atenuaci  n de 49 dB a la frecuencia de 8 kHz se necesita otro  filtro Butterworth puesto en cascada  por lo que el conjunto del filtro antialiasing ser   de  cuarto orden con una atenuaci  n total de 50 dB     C11 C13          10n Vcc   5V    C14    2 2n      Figura 2 15  Filtro anti aliasing de cuarto orden     48  Memoria de c  lculo    Control mediante Linealizaci  n Entrada Salida    2 3 2 4   Generaci  n del ciclo de trabajo     En este apartado se explicar   la adaptaci  n de la sefial cuadrada generada por el  microcontrolador  en el puerto 1 pin 2  para el encendido y apagado del transistor de    potencia   Vin   12V  A    Vcc  5V    C15 om  R50 du  10k   R51 10k       U16A    1  3  P12 2  400                      121 2W        IR 2125       Figura 2 16  Circuito de disparo del transistor de potencia     Una vez generada la sefial cuadrada por el microcontrolador  en el puerto 1 pin 2   esta variar   seg  n el tiempo que este a nivel alto o a nivel bajo  pero siempre con el mismo  periodo  la tensi  n variar   entre 0 y 5 V     Vcc  5V    P12       Figura 2 17  Circuito inversor     En el microcontrolador 80C537 se da el problema que 
344. n mode 2 depends on the value of bit SMOD in special function register PCON  see  figure 7 9   If SMOD   0  which is the value after reset   the baud rate is 1 64 of the oscillator  frequency  If SMOD   1  the baud rate is 1 32 of the oscillator frequency     2SMOD    Mode 2 baud rate         oscillator frequency    Figure 7 9  Special Function Register PCON  Address 874     874   SMOD      IDLE   PCON    These bits are not used in controlling serial interface O                                      Bit Function  SMOD When set  the baud rate of serial interface 0 in modes 1  2  3 is doubled              Modes 1 and 3    In these modes the baud rate is variable and can be generated alternatively by a dedicated baud  rate generator or by timer 1     Using the baud rate generator     In modes 1 and 3  the SAB 80C517 can use the internal baud rate generator for serial interface O   To enable this feature  bit BD  bit 7 of special function register ADCONO  must be set  see  figure 7 10   This baud rate generator divides the oscillator frequency by 2496  Bit SMOD   PCON 7  also can be used to enable a multiply by two prescaler  see figure 7 9   At 12 MHz  oscillator frequency  the commonly used baud rates 4800 baud  SMOD   0  and 9600 baud  SMOD    1  are available  with 0 16 96 deviation   The baud rate is determined by SMOD and the oscillator  frequency as follows     Semiconductor Group 55    SIEMENS On Chip Peripheral Components       2SMOD    Mode 1  3 baud rate   5406    x osc
345. n oscillator failure  If the on chip oscillator frequency falls below a certain limit  due to a hardware defect  the oscillator watchdog initiates an internal reset  This reset state is  maintained until the on chip oscillator is working again  This ensures a maximum of system  protection with a minimum of susceptibility to distortion or to operating errors     In the reset state all port pins of the SAB 80C517 show a  1        The oscillator watchdog consists of an integrated RC oscillator combined with a frequency  comparator  If the on chip oscillator s frequency falls below the frequency of the RC oscillator  the  comparator generates a signal which initiates a reset     The RC oscillator runs with a frequency of typically 300 kHz and works without any external  components  It also determines  as long as it is used  the lower limit of the SAB 80C517 s operating  frequency  which is therefore specified at 1 MHz     Since the frequency comparator of the oscillator watchdog takes its inputs directly from the on chip  oscillator  the minimum frequency of 1 MHz does not restrict the use of the slow down mode  In this  mode the CPU runs with one eighth of the normal clock rate  see section 7 7      The oscillator watchdog circuitry can be enabled externally  If the OWE pin  oscillator watchdog  enable  is pulled low  the oscillator watchdog function is off  If the pin is left unconnected or has a  logic high level  the watchdog oscillator is activated  Thus  the watchdog is ena
346. n using this device  In either case  the 16 bit program counter is the addressing  mechanism     Locations 034 through        in the program memory are used by interrupt service routines     4 2 Data Memory    The data memory address space consists of an internal and an external memory portion     Internal Data Memory    The internal data memory address space is divided into three physically separate and distinct  blocks  the lower 128 byte of RAM  the upper RAM area  and the 128 byte special function register   SFR  area  see figure 4 2   While the latter SFR area and the upper RAM area share the same  address locations  they must be accessed through different addressing modes  The map in  figure 4 2 and the following table show the addressing modes used for the different RAM SFR  spaces     Semiconductor Group 16    SIEMENS    Memory Organization                            Address Space Locations Addressing Mode  Lower 128 bytes of RAM 00y to 7Fy direct indirect  Upper 128 bytes of RAM        to OFFy indirect  Special function registers        to OFFy direct  For details about the addressing modes see chapter 9 1   FFFF  External  2000  1FFF 1FFF  Internal External   EA 1   EA 0   0 0          MCB01817             Figure 4 1    Program Memory Address Space    The lower 128 bytes of the internal RAM are again grouped in three address spaces     see figure 4 3      1  A general purpose register area occupies locations 0 trough 1Fy  see also section 4 3      2  The next 16 byt
347. nput channel  The  sample time includes the load time which is described above  After the load time has passed the  selected analog input must be held constant for the rest of the sample time  Otherwise the internal  calibration of the comparator circuitry could be affected which might result in a reduced accuracy of  the converter  However  in typical applications a voltage change of approx  200   300 mV at the  inputs during this time has no effect     Semiconductor Group 91    SIEMENS On Chip Peripheral Components       Conversion time  fc      The conversion time    includes the sample and load time  Thus  fc is the total time required for one  conversion  After the load time and sample time have elapsed  the conversion itself is performed  during the rest of tc  In the last machine cycle the converted result is moved to ADDAT  the busy  flag  BSY  is cleared before  The A D converter interrupt is generated by bit IADC in register  IRCON  IADC is already set some cycles before the result is written to ADDAT  The flag IADC is  set before the result is available in ADDAT because the shortest possible interrupt latency time is  taken into account in order to ensure optimal performance  Thus  the converted result appears at  the same time in ADDAT when the first instruction of the interrupt service routine is executed   Similar considerations apply to the timing of the flag BSY where usually a  JB BSY    instruction is  used for polling     If a continuous conversion is estab
348. nput channels will cause additional current which  is sinked sourced at these channels  This may also affect the accuracy of other channels  which are operated within the specification     10  Only valid for not selected analog inputs     11  No missing code     Semiconductor Group 311    SIEMENS SAB 80C517 80C537                  0 2 Vog 0 1V       MCT00793                Clock of Waveform for        Tests in Active  Idle Mode and Slow Down Mode    Semiconductor Group 312    SIEMENS SAB 80C517 80C537       AC Characteristics  Voc 25 Vi10  V3g 0 VTA  Oto 70   C for the SAB 80C517 83C537   T a  40 to 85   C for the SAB 80C517 83C537 T40 85   C  for port 0  ALE and PSEN outputs   100 pF  C  for all other outputs   80 pF                                                                        Parameter Symbol Limit Values Unit  12 MHz Clock Variable Clock  1 t          3 5 MHz to 12 MHz  min   max  min  max   Program Memory Characteristics  ALE pulse width fLHLL 127     2 tci cL 40     ns  Address setup to ALE tAVLL 53                30   ns  Address hold after ALE  fLLAx 48   teLcL   35   ns  ALE to valid fLLIV     233     4tctc_    100 ns  instruction in  ALE to PSEN          58     cLCL     25   ns  PSEN pulse width   p  pH 215   3   cLCL Z 35   ns  PSEN to valid          150   SICLCL     100 ns  instruction in  Input instruction hold tPXIX 0     0 ns  after PSEN  Input instruction float tpxpx      63              20 ns  after PSEN    Address valid after tpxay   75             
349. nput offset voltage shift observed through 168 hours of operating life test at TA   150  C extrapolated  to TA   25  C using the Arrhenius equation and assuming an activation energy of 0 96 eV          5 TEXAS  INSTRUMENTS    POST OFFICE BOX 655303    DALLAS  TEXAS 75265 17    TLC227x  TLC227xA    Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TLC22741 operating characteristics at specified free air temperature  Vpp   5 V    TLC22741 TLC2274AI         eee     id    Slew rate at unity  gain    Equivalent input  noise voltage    Peak to peak  VN PP  equivalent input  noise voltage    Equivalent input  noise current    Total harmonic  distortion plus noise    Gain bandwidth  product    Maximum  Bom output swing  bandwidth    Settling time    Phase margin at  om unity gain    t Full range is     40     to 125  C   t Referenced to 0 V       25  C  Vo   0 5 V to 2 5 V   Rp   10              100 pF  Full    V us  range    f 10 Hz 25            f 0 1Hzt010Hz     25          Vo   0 5 V to 2 5 V  lAy 1   0 001396 0 001396  f   20 kHz  Ay 10   25  C 0 004  0 004   RL   10 kat   Ay   100   0 03  0 03     f   10 kHz  RL   10 kot                   2   Av 1  25  C   RL  10kot  C    100 pF    Buc To 0 1    vm ESI    id       ESC  f    Rp   10 kat       100 pFt       18    Ji TEXAS    INSTRUMENTS    POST OFFICE BOX 655303 9 DALLAS  TEXAS 75265    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS
350. ns     Register 0 contains 7Fy  011111116   Internal RAM locations 7Ey and 7Fy  contain 00y and 40    respectively  The instruction sequence    DEC  RO  DEC RO  DEC  RO    will leave register 0 set to 7     and internal RAM locations 7Ey and 7Fy set to  OFFy and 3Fy     DEC        lt   A      1       0001 0100                DEC   Rn   lt   Rn    1       0 0 O 1 1rrr                Semiconductor Group 197    SIEMENS    Instruction Set       DEC direct    Operation  DEC   direct   lt   direct      1                               Encoding  0001 0101 direct address  Bytes  2  Cycles  1  DEC  Ri    Operation  DEC    Ri    lt    Ri       1                   Encoding  000110111  Bytes  1  Cycles  1    Semiconductor Group 198    SIEMENS Instruction Set       DIV AB  Function     Description     Example     Operation     Encoding     Bytes   Cycles     Divide   DIV AB divides the unsigned eight bit integer in the accumulator by the unsigned  eight bit integer in register B  The accumulator receives the integer part of the  quotient  register B receives the integer remainder  The carry and OV flags will be  cleared     Exception  If B had originally contained 00y  the values returned in the accumulator  and B register will be undefined and the overflow flag will be set  The carry flag is  cleared in any case     The accumulator contains 251  OFBy or 111110115  and B contains 18  124 or  00010010p   The instruction    DIV AB    will leave 13 in the accumulator  0Dy or 00001101p  and th
351. ns  the corresponding bit latch in the port  SFR has to contain a one  1   otherwise the pull down FET is on and the port pin is stuck at 0   This  does not apply to ports 1 0 to 1 4 and ports 5 0 to 5 7 when operated in compare output mode  refer  to section 7 5 3 for details   After reset all port latches contain ones  1                        Alternate V   Output a  bas      Internal  Latch  Pull Up  Arrangement  o Pin  Int  Bus  PL  Write v    to  Latch         MCS01827  Read Alternate    Pin Input  Function             Figure 7 5  Circuitry of Ports 1  3  4  5 and 6 0 through 6 2    Ports 6 3 through 6 7 have no alternate functions as discribed above  Therefore  the port circuitry  can do without the switching capability between alternate function and normal I O operation  This  more simple circuitry is shown as basic port structure in figures 7 1 and 7 2     Semiconductor Group 46    SIEMENS On Chip Peripheral Components                         Table 7 1   Alternate Functions of Port Pins   Port Pin Alternate Function   P1 0 INT3 CCO Ext  interrupt 3 capture 0 compare 0  P1 1 INT4 CC1 Ext  interrupt 4 capture 1 compare 1  P1 2 INT5 CC2 Ext  interrupt 5 capture 2 compare 2  P1 3 INT6 CC3 Ext  interrupt 6 capture 3 compare 3  P1 4 INT2 CC4 Ext  interrupt 2 capture 4 compare 4  P1 5 T2EX Timer 2 ext  reload trigger input  P1 6 CLKOUT System clock output   P1 7 T2 Timer 2 external count input   P3 0 RXDO Serial input channel 0   P3 1 TXDO Serial output channel 0   P3 2 INTO
352. nsor de tensi  n     La expresi  n del primer operacional es        Vol ini i   pd x Vo oe x         2 13     R43   R44   P48 R41 R41    La expresi  n del segundo operacional  Amplificador no inversor  es     Vo sense        x Vol  2 14   R45   P49    39  Memoria de calculo    Control mediante Linealizaci  n Entrada Salida    Para un mejor funcionamiento de los amplificadores operacionales se ha optado  polarizarlos alrededor de la mitad de la tensi  n de alimentaci  n  45V   m  s o menos a 2 5  V  por lo tanto la tensi  n a la entrada no inversora del primer operacional tiene la siguiente  expresi  n     RARPAS    R43   R44   P48       V  x 2 5V   Vo  2 15     Suponiendo que la tensi  n Vo ser   aproximadamente 19 V  el valor de R43  R44 y  el P48 ser  n de                          R44   10        43   82          48   20                Si el valor de la entrada Vo es menor que 19 V el valor de la salida del circuito total  tiene que ser 0 V  Vcc   y si el valor de la entrada es 20 5 V el valor de la salida tiene que  ser 2 5 V     Aplicando la ecuaci  n  2 13  y teniendo en cuenta la primera condici  n     La salida ser   igual a 0 V si Vin  lt  19 V     5  2 16             RA PAR    RA  RA      R43   844  P48 R41 R41    Suponiendo que el valor del potenci  metro es 0     ya que este se utiliza para un  mejor ajuste de la tensi  n de entrada  obtenemos la relaci  n de R41 y R42                       10000      R42    R42    114         H9 5  A     R41  R42  _ 19   41  R42 2
353. nstruction  the second is read during S4 of the same machine cycle  If it  is a one byte instruction  there is still a fetch at S4  but the byte read  which would be the next op   code  is ignored  and the program counter is not incremented  In any case  execution is completed  at the end of S6P2     Figures 3 1 a  and b  show the timing of a 1 byte  1 cycle instruction and for a 2 byte  1 cycle  instruction     Most SAB 80C517 instructions are executed in one cycle  MUL  multiply  and DIV  divide  are the  only instructions that take more than two cycles to complete  they take four cycles  Normally two  code bytes are fetched from the program memory during every machine cycle  The only exception  to this is when a MOVX instruction is executed  MOVX is a one byte  2 cycle instruction that  accesses external data memory  During a MOVX  the two fetches in the second cycle are skipped  while the external data memory is being addressed and strobed  Figures 3 1 c  and d  show the  timing for a normal 1 byte  2 cycle instruction and for a MOVX instruction     Semiconductor Group 14    SIEMENS Central Processing Unit          EE EE  P1 P2 P1   2   1   2   1   2   1   2   1   2   1 P2 P1   2   1 P2 P1   21       2   1 P2    OSC   XTAL2  LLU ULL       ALE                  Read Read next  Opcode Opcode  Discard  Read next Opcode  Again  SIsIsISIsIs       1 Byte  1 Cycle Instruction  e g  INC     Read Read 2nd  Opcod Byt  Pedes     T SS next Opcode                3        55  8      b  
354. nt and check for end of table INC DPTR        execution time not relevant for this CJNE          consideration  sed       Fetch source data byte from ROM table MOVC A  DPTR   Save source_pointer and load MOV DPSEL   07H   destination pointer   Transfer byte to destination address MOVX QDPTR  A   Save destination pointer and restore old POP DPSEL   datapointer   Total execution time  machine cycles      12       The above example shows that utilization of the SAB 80C517 s multiple datapointers can make  external bus accesses two times as fast as with a standard 8051 or 8051 derivative  Here  four data  variables in the internal RAM and two additional stack bytes were spared  too  This means for some  applications where all eight datapointers are employed that an SAB 80C517 program has up to  24 byte  16 variables and 8 stack bytes  of the internal RAM free for other use     Semiconductor Group 32    SIEMENS External Bus Interface       5 3 PSEN  Program Store Enable    The read strobe for external fetches is PSEN  PSEN is not activated for internal fetches  When the  CPU is accessing external program memory  PSEN is activated twice every cycle  except during a  MOVX instruction  no matter whether or not the byte fetched is actually needed for the current  instruction  When PSEN is activated its timing is not the same as for RD  A complete RD cycle   including activation and deactivation of ALE and RD  takes 12 osillator periods  A complete PSEN  cycle  including activation and
355. nt instruction fetches  Sixteen bit addition is performed  modulo 2 9   a  carry out from the low order eight bits propagates through the higher order bits   Neither the accumulator nor the data pointer is altered  No flags are affected     An even number from 0 to 6 is in the accumulator  The following sequence of  instructions will branch to one of four AJMP instructions in a jump table starting at  JMP TBL     MOV DPTR   JMP_TBL   JMP  A DPTR  JMP_TBL  AJMP LABELO   AJMP LABEL1   AJMP LABEL2   AJMP LABEL3    If the accumulator equals 044 when starting this sequence  execution will jump to  label LABEL2  Remember that AJMP is a two byte instruction  so the jump  instructions start at every other address     JMP          lt   A     DPTR        0111 0041 1                Semiconductor Group 208    SIEMENS Instruction Set       JNB    Function     Description     Example     Operation     Encoding     Bytes   Cycles     bit rel    Jump if bit is not set    If the indicated bit is a zero  branch to the indicated address  otherwise proceed with  the next instruction  The branch destination is computed by adding the signed  relative displacement in the third instruction byte to the PC  after incrementing the  PC to the first byte of the next instruction  The bit tested is not modified  No flags  are affected     The data present at input port 1 is 11001010p  The accumulator holds 56 4   01010110p   The instruction sequence    JNB P1 S LABEL 1  JNB ACC 3 LABEL2    will cause progr
356. ntains the  interrupt  timer  clock  capture and  compare pins that are used by various  options  The output latch must be  programmed to a one  1  for that  function to operate  except when used  for the compare functions     The secondary functions are assigned  to the port 1 pins as follows         INT3 CCO  P1 0   interrupt 3 input   compare 0 output   capture 0 input       INT4 CC1  P1 1   interrupt 4 input    compare 1 output  capture 1 input       INT5 CC2  P1 2   interrupt 5 input    compare 2 output  capture 2 input       INT6 CC3  P1 3   interrupt 6 input    compare 3 output  capture 3 input       INT2 CC4  P1 4   interrupt 2 input    compare 4 output  capture 4 input       T2EX  P1 5   timer 2 external reload  trigger input       CLKOUT  P1 6   system clock  output       T2  P1 7   counter 2 input                        Input  O   Output    Semiconductor Group 273    SIEMENS    SAB 80C517 80C537       Pin Definitions and Functions  cont d        Symbol    Pin Number    10          P LCC 84    P MQFP 100 2    Function       XTAL2    39    12    XTAL2  Input to the inverting oscillator amplifier  and input to the internal clock generator  circuits        XTAL1    13    XTAL1   Output of the inverting oscillator  amplifier  To drive the device from an  external clock source  XTAL2 should  be driven  while XTAL1 is left  unconnected  There are no  requirements on the duty cycle of the  external clock signal  since the input to  the internal clocking circuitry is devide
357. nte figura        Figura 2 14  Filtro Butterworth   Donde la funci  n de transferencia es la siguiente     1  H s   R37 R38 C12 C11  2 28              s  s  C       R37 C11 R38 C11  R37 R38 C12 C11    Los valores de las resistencias R37 y R38 as   como condensadores C11 y C12 se  han calculado para que se iguale la funci  n de transferencia del filtro     46  Memoria de c  lculo    Control mediante Linealizaci  n Entrada Salida    Seg  n la ecuaci  n del filtro Butterworth     2      H s    gt   2 27   S TW  SW     1   28  R3TR38CIZ2CM          mE 1  UM       R37 R38 C12 C11  R37 C11  R38CI2          Donde la variable w    2        y f es la frecuencia de corte del filtro de Butterworth     Wed eo E e  2 29   S    Los valores de las diferentes resistencias y condensadores para obtener un filtro  Butterworth de las caracter  sticas indicadas son        R37   160000                 R38   160000              C12   10nF                 C11   2 2nF           Para obtener una se  al correcta  con el m  nimo de ruido en esta  viene dada esta  relaci  n mediante la f  rmula siguiente     5          6 02   1 76  2 30   N    Donde b es el numero de bits y S N es la relaci  n sefial ruido     Aplicando la formula  2 30   donde el numero de bits de la conversi  n ser  n 8 para  el microcontrolador 80C537  obtenemos la relaci  n se  al ruido  que ser       las    6 02  8  1 76   49 92 dB  2 31     47  Memoria de c  lculo    Control mediante Linealizaci  n Entrada Salida    Para realizar u
358. ntents of the compare registers  or to determine the level of the port outputs for the next  compare match   The principle is  that the  internal compare signal  generated at a match between timer count and register contents  not only  manipulates the compare output but also sets the corresponding interrupt request flag  Thus  the  current task of the CPU is interrupted   of course provided the priority of the compare interrupt is  higher than the present task priority   and the corresponding interrupt service routine is called  This  service routine then sets up all the necessary parameters for the next compare event     Some advantages in using compare interrupts     Firstly  there is no danger of unintentional overwriting a compare register before a match has been  reached  This could happen when the CPU writes to the compare register without knowing about  the actual timer 2 count     Secondly  and this is the most interesting advantage of the compare feature  the output pin is  exclusively controlled by hardware therefore completely independent from any service delay which  in real time applications could be disastrous  The compare interrupt in turn is not sensitive to such  delays since it loads the parameters for the next event  This in turn is supposed to happen after a  sufficient space of time     Please note two special cases where a program using compare interrupts could show a  surprising   behavior     The first configuration has already been mentioned in the de
359. ntrol  cont d                       CJNE A  data rel Compare immediate to A and jump if not equal 3 2  CJNE Rn  data rel Compare immed  to reg  and jump if not equal 3 2  CJNE  Ri  data rel   Compare immed  to ind  and jump if not equal 3 2  DJNZ Rn  rel Decrement register and jump if not zero 2 2  DJNZ  direct rel Decrement direct byte and jump if not zero 3 2  NOP No operation 1 1                Semiconductor Group 255    SIEMENS Application Examples       10 Application Examples  10 1 Application Examples for the Compare Functions    10 1 1 Generation of Two Different PWM Signals with  Additive Compare  using the   CCx Registers     The following example gives an idea of how to use compare mode 1 and compare interrupts for an   additive pulse width modulation      Assume that an application requires two PWM signals at two port pins providing different switching  frequencies  e g  a switching frequency of 2 kHz at port 1 1  further on called PWM channel 1  and  5 kHz at port 1 2  further on called PWM channel 2      In this case compare mode 0 cannot be used since it uses the timer overflow signal to switch all  compare outputs to low level and thereby provides the same switching frequency  In our case   however  the period of each PWM signal is different  being 0 5 ms for signal 1    500 timer 2 counts  at fosc   12 MHz  and 0 2 ms for signal 2    200 counts      Thus compare mode 1 must be used  because in this mode both transitions can be preset by  software     Timer 2 
360. nuestro caso 12 V con un tiempo de subida y bajada de unos 150 ns     Este driver se ha configurado en Low Side ya que el surtidor del transistor de  potencia esta a masa  t  pica configuraci  n en convertidores Boost  por lo que no hace falta  la tensi  n Bootstrap   tensi  n de referencia    t  pica en convertidores Buck    La resistencia R51 Pull down sirve por si se desconecta la etapa de control con la de  potencia  no pudiera quedar nunca en conducci  n el transistor de potencia     El driver tiene que estar lo m  s cerca posible del transistor de potencia para evitar  el ruido  Por esto el driver se ha introducido en la placa de potencia     50  Memoria de c  lculo    Control mediante Linealizaci  n Entrada Salida    R52         Gate    12 1 2 W    C17  10n    Figura 2 19  Protecci  n del transistor de potencia     D4    15V    El condensador C17 sirve para eliminar las componentes frecuenciales altas  ya que  se pueden producir conmutaciones no deseadas cuando el driver pasa de 0 a 12 V y  viceversa     La resistencia R53 Pull down sirve por si en un momento no se conecta el driver y  el transistor de potencia nunca pueda pasar al estado de conducci  n     La resistencia R52 sirve para aumentar el tiempo de conmutaci  n ya que entre la  puerta y el surtidor del transistor de potencia hay una capacidad de unos 2 nF por lo que el  circuito RC queda        l      6  H  e    P  Cm    41610           24ns  0233   1 5441610  SL      R52  6      Podemos observar que el tiemp
361. o  pero por la pequefia potencia que consume la etapa de  control  se descarto     D1    1 2  iv   gt   gt     1N4007          Vec   5V       Figura 2 20  Fuente de alimentaci  n     El diodo de la entrada 1N4007 sirve por si se conecta err  neamente la tensi  n de  entrada de la placa de control  de esta manera las tensiones nunca pueden estar invertidas     El condensador      es del tipo electrol  tico  ya que este tipo de condensadores  tienen una relaci  n tama  o capacidad elevada  sirve para almacenar energ  a en los  momentos que la placa pueda necesitarla en mayor o menor medida     Los condensadores C2 y C3 sirven para eliminar de una manera r  pida la subida de  tensi  n provocada por los arm  nicos de altas frecuencias  el condensador C2 elimina las  tensiones elevadas en la entrada y el condensador C3 las elimina en la salida     Se ha optado por la introducci  n de un diodo LED para reconocer de una manera  sencilla y visual si la placa de control est   alimentada correctamente     52  Memoria de c  lculo    Control mediante Linealizaci  n Entrada Salida    2 3 2 6   Conversi  n A D     El conversor anal  gico digital que se utiliza para realizar la conversi  n ya que se  encuentra integrado en el mismo microcontrolador  Se trata de un conversor de 8 bits  por  tanto la se  al que se puede adquirir puede llegar a 256   2     estados diferentes     La entrada anal  gica posible no puede ser negativa y no puede exceder de los 5 V   esto implica que tenemos una res
362. o de conmutaci  n es m  s peque  o que el tiempo de  conmutaci  n del driver que es del orden de 150 ns     El diodo zener que hay entre la puerta y el surtidor sirve para eliminar las tensiones  negativas y las tensiones positivas de m  s de 15 V  que podr  an da  ar el transistor de  potencia     51  Memoria de c  lculo    Control mediante Linealizaci  n Entrada Salida    2 3 2 5   Alimentaci  n de la placa de control     Al tener que alimentar la placa de control mediante una tensi  n continua de 5 V se  ha optado por la introducci  n de una fuente lineal de tensi  n  mediante el integrado  LM7805  Este integrado suministra a la salida una tensi  n constante de 5 V que se puede  conectar a las diferentes alimentaciones de los amplificadores operacionales del circuito de  la placa de control     Esta familia de integrados se pueden alimentar a tensiones elevadas  para que  puedan empezar a conducir deben de tener en su entrada una tensi  n 2 V superior a la  tensi  n que deben de tener a la salida  por lo que si se alimenta a la tensi  n de alimentaci  n  de la placa de potencia el regulador funciona correctamente  por lo que no hace falta tener  dos fuentes de alimentaci  n     Este tipo de integrados tienen el problema que sus rendimientos son muy peque  os   del orden del 50   ya que en ellos se pierde la diferencia de tensi  n entre entrada y salida   Se podr  a haber optado por la implementaci  n de un                Buck  reductor  con un  rendimiento mucho mas elevad
363. o de trabajo  para 7 kHz se ha calculado  los saltos de la interrupci  n  y la ejecuci  n de la  interrupci  n del Timer 0      DAPR 0x80    Realizaremos la conversi  n entre 0 y 2 5 V  DAPR  0xDA     if duty gt 90    Si el ciclo de trabajo se ha desbordado damos un tiempo fijo       ton 0xCB    Se  al cuadrada del 50  72 us    toff 0xCB     else    ton 0xFF duty    Calculo del ciclo que estar   encendido el transistor     toff 0x98 duty    Calculo del ciclo que estar   apagado el transistor       break    Fin caso 2      A2 2 4  Anexo 2  C  digo del programa     Control mediante Linealizaci  n Entrada Salida      FUNCI  N DE ATENCI  N A LA INTERRUPCI  N DEL TIMER 0      void timer0  void  interrupt 1 using 0   Funci  n de atenci  n a la interrupci  n  para el desborde del         WDT 1     SWDT 1     1f  reloj  1          Timer 0  se ejecutar   cuando desborde el Timer 0  saltando a la  posici  n OxOB  Utiliza los registros del banco 0        Cada vez que ocurra la interrupci  n del Timer 0 se reiniciliarizar   el        Watch dog timer ya que si el puerto   pin 0 estuviera a nivel alto el transistor  de potencia estar  a conduciendo realizando con la bobina un cortocircuito  por lo  que es prioritario que se ejecute esta interrupci  n  si no fuera as   se reinicializar  a  el microcontrolador        En la otra atenci  n a la interrupci  n el puerto 1 pin 2 estaba a nivel alto  ahora debe de estar a nivel bajo      reloj 0    Nivel bajo del puerto 1 pin 2      TLO ton       
364. oat   Port 1 Data alternate Data  Data alternate Data   outputs last output outputs last output   Port 2 Data Data Address Data   Port 3 Data alternate Data  Data alternate Data   outputs last output outputs last output   Port 4 Data alternate Data Data alternate Data   outputs last output outputs last output   Port 5 Data alternate Data  Data alternate Data   outputs last output outputs last output   Port 6 Data alternate Data  Data alternate Data   outputs last output outputs last output                   The watchdog timer is the only peripheral which is automatically stopped during idle  The idle mode  makes it possible to  freeze  the processor s status for a certain time or until an external event  causes the controller to go back into normal operating mode  Since the watchdog timer is stopped  during idle mode  this useful feature of the SAB 80C517 is provided even if the watchdog function  is used simultaneously     If the idle mode is to be used the pin PE SWD must be held low  Entering the idle mode is to be  done by two consecutive instructions immediately following each other  The first instruction has to  set the flag bit IDLE  PCON 0  and must not set bit IDLS  PCON 5   the following instruction has to  set the start bit IDLS  PCON 5  and must not set bit IDLE  PCON 0   The hardware ensures that a  concurrent setting of both bits  IDLE and IDLS will not initiate the idle mode  Bits IDLE and IDLS will  automatically be cleared after having been set  If one of the
365. ocated at address     8    in the SAB 80C517 this  location is occupied by register IEN1     1  Only available in SAB 80C517 identification mark  BB  or later     Semiconductor Group 161    SIEMENS Interrupt System       8 2 Priority Level Structure    As already mentioned above  all interrupt sources are combined as pairs or triplets  table 8 1 lists  the structure of the interrupt sources                       Table 8 1   Pairs and Triplets of Interrupt Sources   External interrupt O Serial channel 1 interrupt A D converter interrupt  Timer 0 interrupt   External interrupt 2  External interrupt 1   External interrupt 3  Timer 1 interrupt Compare timer interrupt External interrupt 4  Serial channel 0 interrupt   External interrupt 5  Timer 2 interrupt   External interrupt 6             Each pair or triplet of interrupt sources can be programmed individually to one of four priority levels  by setting or clearing one bit in the special function register IPO and one in IP1  figure 8 9   A low   priority interrupt can itself be interrupted by a high priority interrupt  but not by another interrupt of  the same or a lower priority  An interrupt of the highest priority level cannot be interrupted by another  interrupt source     If two or more requests of different priority levels are received simultaneously  the request of the  highest priority is serviced first  If requests of the same priority level are received simultaneously   an internal polling sequence determines which req
366. ode 0   Figure 8 shows the function of these latches  The latches are implemented to prevent from loss  of compare matches which may occur when loading of the compare values is not correlated  with the timer count  The compare latches are automatically loaded from the compare registers  at every timer overflow     Capture    This feature permits saving of the actual timer counter contents into a selected register upon  an external event or a software write operation  Two modes are provided to latch the current  16 bit value of timer 2 registers into a dedicated capture register     Mode 0  Capture is performed in response to a transition at the corresponding port pins         to CC3     Mode 1  Write operation into the low order byte of the dedicated capture register causes the  timer 2 contents to be latched into this register     Reload of Timer 2    A 16 bit reload can be performed with the 16 bit CRC register  which is a concatenation of the  8 bit registers CRCL and CRCH  There are two modes from which to select     Mode 0  Reload is caused by a timer overflow  auto reload      Mode 1  Reload is caused in response to a negative transition at pin T2EX  P1 5   which also  can request an interrupt     Timer Counters 0 and 1    These timer counters are fully compatible with timer counter    or 1 of the SAB 8051 and can  operate in four modes     Mode 0  8 bit timer counter with 32 1 prescaler  Mode 1  16 bit timer counter  Mode 2  8 bit timer counter with 8 bit auto reload  
367. ode input   12 12    Common mode input    impedance    cung Commormodereecon  Vio e 51027X 25  ratio Vo 0V    AS 509    un SUPA          rejesin  Vops  227           ratio  AVDD  AVi0    VIC 0    Nobad        0 _                    e       Ful range    t Full range is 0  C to 70  C   NOTE 4  Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA   150  C extrapolated  to TA   25  C using the Arrhenius equation and assuming an activation energy of 0 96 eV     AVD       c     lt   3  lt   lt   lt    lt     5 5  6  6  4     25 50 25 50  0 0  3 3    Q   Q  F   Q            5 TEXAS  INSTRUMENTS    POST OFFICE BOX 655303    DALLAS  TEXAS 75265 7    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TLC2272C operating characteristics at specified free air temperature  Vpp     5 V    TLC2272C TLC2272AC  PARAMETER TEST CONDITIONS UNIT  ax  SI te at Vi  2 3 V  R 10       zd  ew rate a 0 22  L  V us    Equivalent input  f  10 Hz         Vn    nVAHz  noise voltage          r  1 kHz J    VNPP eguivaleni input  noise voltage f   0 1 Hz to 10 Hz    Equivalent input S    Total harmonio   Vo   2 3 V  Ay    EE 0 0011  0 0011  ER  25  C    THD N distortion pulse 1  20 kHz  Ay   IAy 10   0 004  0 004   duration RL  10kQ          100     100 0 03  0 03     Gain bandwidth f 10 kHz        10              B E 2 2 MH  Maximum output    Vo pp    4 6 V  Ay   1  25 
368. of Serial Interface 1    The serial interface 1 is an asynchronous channel only and is able to operate in two modes  as an  8 bit or 9 bit UART  These modes  however  correspond to the above mentioned modes 1  2 and 3  of serial interface 0  The multiprocessor communication feature is identical with this feature in serial  interface 0  The serial interface 1 has its own interrupt request flags      and      which have     dedicated interrupt vector location  See section 8 for more details about the interrupts   The baud  rate clock for this interface is generated by a dedicated baud rate generator  A more detailed  description how to set the baud rate follows in section 7 2 2 3 and 7 2 2 4     Mode A  9 bit UART  variable baud rate     11 bits are transmitted  through TxD1  or received  through RxD1   a start bit  0   8 data bits  LSB  first   a programmable 9th bit  and a stop bit  1   On transmission  the 9th data bit  TB81 in S1CON   can be assigned to the value of 0 or 1  For example  the parity bit  P in the PSW  could be moved  into TB81 or a second stop bit by setting TB81 to 1  On reception the 9th data bit goes into RB81  in special function register SOCON  while the stop bit is ignored  In fact  mode A of serial interface  1 is identical with mode 2 or 3 of serial interface 0 in all respects except the baud rate generation   see section 7 2 2 3      Mode B  8 bit UART  variable baud rate     10 bits are transmitted  through TxD1  or received  through RxD1   a start 
369. of Vinracno DAPR  H                D A converter program register  Each 4 bit nibble is used to program the internal reference  voltages  Write access to DAPR starts conversion     DAPR   3  0                    VAGND      AREF    Vacno     16  with DAPR   3  0   lt  13     DAPR   7  4   ViNTAREF   VAGND WEE A AR AREF     Vacno     16  with DAPR   7  4   gt  3     Semiconductor Group 88    SIEMENS On Chip Peripheral Components       If DAPR   3  0  or DAPR   7  4    0  the internal reference voltages correspond to the external  reference voltages Vagnp and Varer  respectively     If Vainput  gt  Vintarer   the conversion result is OFFy  if               lt  Vinracno    the conversion result is 00H   Vainpur is the analog input voltage      If the external reference voltages Vagnp   0 V and Varer     5 V  with respect to Vss and         are  applied  then the following internal reference voltages Vintagnp and Vinraree shown in table 7 7 can  be adjusted via the special function register DAPR     Table 7 7  Adjustable Internal Reference Voltages                                                       Step DAPR   3  0  V intacno VintaREF  DAPR   7  4    0 0000 0 0 5 0   1 0001 0 3125       2 0010 0 625       3 0011 0 9375 E   4 0100 1 25 1 25   5 0101 1 5625 1 5625   6 0110 1 875 1 875   7 0111 2 1875 2 1875   8 1000 2 5 2 5   9 1001 2 8125 2 8125   10 1010 3 125 3 125   11 1011 3 4375 3 4375   12 1100 3 75 3 75   13 1101     4 0625   14 1110   4 375   15 1111   4 6875            
370. og    Semiconductor Group 8    SIEMENS Introduction       e Nine ports       Seven bidirectional 8 bit ports       One 8 bit and one 4 bit input port for analog and digital input signals     Two full duplex serial interfaces with own baud rate generators    Four priority level interrupt systems  14 interrupt vectors    Three power saving modes       Slow down mode       Idle mode       Power down mode    Siemens high performance ACMOS technology    P LCC 84 package    The ROMless version SAB 80C537 is identical with the SAB 80C517 except for the fact that it lacks  the on chip program memory  the SAB 80C537 is designed for applications with external program  memory     In this manual  any reference made to the SAB 80C517 applies to both versions  the SAB 80C517  and the SAB 80C537  unless otherwise noted     Figure 1 1 shows the logic symbol of the SAB 80C517        Voc Vss    Port 0  8 bit    Port 1  8   bit  Port 2  8 bit  Port 3  8 bit  Port 4  8   bit  Port 5  8   bit    Port 6  8   bit                             MCL00776             Figure 1 1  Logic Symbol    Semiconductor Group 9    SIEMENS Fundamental Structure       2 Fundamental Structure    The SAB 80C517 is a totally 8051 compatible microcontroller while its peripheral performance has  been increased significantly  It includes the complete SAB 80 C 515  providing 10096 upward  compatibility  This means that all existing 80515 programs or user s program libraries can be used  further on without restriction and may
371. ol mediante Linealizaci  n Entrada Salida    4 2   Anidamientos     4 2 1   Cap  tulo 1  Disefio  Simulaci  n e Implementaci  n     NUMERO   UNIDADES DESCRIPCION CANTIDAD  A1000 mac am Estudio te  rico y simulaci  n                 Disefio del Hardware     A1002 Eum Disefio del software      A1003   h  Montajey puesta en marcha del equipo    52         74  Presupuesto    Control mediante Linealizaci  n Entrada Salida    4 2 2   Cap  tulo 2  Material     Resistencia de carb  n 10      1  de  tolerancia  Y  W   Resistencia de carb  n 12       1  de  tolerancia  Y  W   B1002 u Resistencia de carb  n 1        1  de  BEEN tolerancia   4         1003 u Resistencia de carb  n 10 kO   1  de   i tolerancia  Ya       B1004 u Resistencia de carb  n 16 kQ   1  de 12  B1005 u Resistencia de carb  n 33 kQ   1  de 2  B1006 u Resistencia de carb  n 75 kQ   1  de 2  B1007 u Resistencia de carb  n 82 kO   1  de 1  B1008 u Resistencia de carb  n 100 kO   1  de 3  B1009 u Resistencia de carb  n 140 kO   1  de 1    1010 u Resistencia cer  mica 0 25 Q   1  de  EE NE tolerancia  6 W   B1011 u Resistencia cer  mica 47      5  de  eee ey tolerancia  12 W   Resistencia ceramica 68      5  de  tolerancia  12 W     B2000       Condensadordepoli  sterde1nF    1      B2000       Condensadordepoli  sterde2 2nF        6      B2002       Condensadordepoli  sterdel0nF    8    B2003  B2100  B2200    B2300 Condensador electrolitico 22 uF  50 V   B2303 Condensador de papel de 100 uF  50 V           B3000 Z  calo
372. oluci  n m  xima de     Resoluci  n m  xima   EC  19 53125 mV   estado  2 34   256 estados    En nuestro caso  la sefial de entrada tiene un rango entre 0 y 2 5 V  y la resoluci  n a  que se puede llegar es     Resoluci  n         9 765625 mV   estado   2 35   256 estados    Por tanto cualquier cambio de tensi  n en las se  ales a digitalizar de la planta   convertidor conmutado  mayor que 9 765625 mV  el sistema de control lo detectar       El tiempo que tarda en obtener el valor digital a partir del valor anal  gico de la  se  al es en nuestro caso para el microcontrolador 80C537 a 12 MHz es de     Tiempo de conversi  n   13 seg    Para otras especificaciones se puede mirar el manual t  cnico del microcontrolador   anexo 3     53  Memoria de c  lculo    Control mediante Linealizaci  n Entrada Salida    2 3 2 7   Control por Linealizaci  n Entrada Salida     Este control est   implementado de forma digital  en el microcontrolador 80C537 de  Siemens      La finalidad de este control es la de obtener un ciclo de trabajo mediante la tensi  n  de salidas y las intensidades que pasan por las bobinas del convertidor Boost con filtro de  salida  Una vez obtenidas las se  ales digitalizadas se calcula el ciclo de trabajo para el  nuevo periodo  Un primer diagrama de flujo mostrado en la figura 16 describe de forma  muy general el algoritmo implementado para realizar el control     Conversi  n A D  de las se  ales    Calculo del ciclo Generaci  n de la    de trabajo se  al cuadrada  
373. on Register T2CON       0C8y             OCEY        OCC  OCBY          0C9y 0             T2RO   T2CM     211   210   T2CON                         Y These bits are not used in controlling the CCU     Timer 2 control register  Bit addressable register which controls timer 2 function and compare mode  of registers CRC  CC1 to CC3              Bit Symbol    211   210   Timer 2 input selection  0 0 No input selected  timer 2 stops  0 1 Timer function  input frequency           12  T2PS   0  or foso 24  T2PS   1   1 0 Counter function  external input controlled by pin T2 P1 7   1 1 Gated timer function  input controlled by pin T2 P1 7  T2R1 T2RO   Timer 2 reload mode selection  0 X Reload disabled  1 0 Mode 0  auto reload upon timer 2 overflow  TF2   1 1 Mode 1  reload upon falling edge at pin T2EX P1 5           T2CM Compare mode bit for registers CRC  CC1 through CC3  When set   compare mode 1 is selected  T2CM   0 selects compare mode 0   T2PS Prescaler select bit  When set  timer 2 is clocked in the  timer  or  gated       timer  function with 1 24 of the oscillator frequency   T2PS   0 gates foso 12 to timer 2  T2PS must be 0 for the counter  operation of timer 2        Semiconductor Group    100    SIEMENS On Chip Peripheral Components       7 5 2 The Compare Timer    This timer   the fourth timer in the SAB 80C517   is implemented to function as a fast 16 bit time  base for the compare registers        to CM7  The compare timer combine with the CMx registers  can be emplo
374. ons of P3 7 and P3 6  see section 7 1    Port 0 and port 2  with exceptions  are used to provide  data and address signals  In this section only the port 0 and port 2 functions relevant to external  memory accesses are described  for further details see chapter 7 1      Fetches from external program memory always use a 16 bit address  Accesses to external data  memory can use either a 16 bit address  MOVX  DPTR  or an 8 bit address  MOVX  Ri      Role of PO and P2 as Data Address Bus    When used for accessing external memory  port 0 provides the data byte time multiplexed with the  low byte of the address  In this state  port 0 is disconnected from its own port latch  and the address   data signal drives both FETs in the port O output buffers  Thus  in this application  the port O pins  are not open drain outputs and do not require external pullup resistors     During any access to external memory  the CPU writes OFF  to the port 0 latch  the special function  register   thus obliterating whatever information the port 0 SFR may have been holding     Whenever a 16 bit address is used  the high byte of the address comes out on port 2  where it is  held for the duration of the read or write cycle  During this time  the port 2 lines are disconnected  from the port 2 latch  the special function register      Thus the port 2 latch does not have to contain 1s  and the contents of the port 2 SFR are not  modified     If an 8 bit address is used  MOVX  Ri   the contents of the port 2
375. ontrol         83  7 4 1 1 Initialization and Input Channel Selection                             83  7 4 1 2 Start of Conversion 5 se dto PRG          son cae PP RUNE 87  7 4 2 Reference Voltages                                              87  74 3 A D Converter Timing      decid eek ee eek ee bee               91  7 5 The Compare Capture Unit                                            93  A                                                                              97  7 5 2 The Compare                                                       101  7 5 3   Compare Function in the                                           103  7 5 4 Compare Modes of the CCU                                      103  7 5 4 1 Compare Mode 0 x izle he based ad  eae Soya o oed an xL Bek  RO      a 104  7 5 4 2 Compare Mode 1                                              106  7 5 5  Timer Compare Register Configurations in the CCU                    107  7 5 5 1 Compare Function of Timer 2 with Registers CRC  CC1 to     4          108  7 5 5 2 Compare Function of Registers        to CM7                         116  7 5 6 Capture Function in the                                            123  7 6 Anthmetie UNIt aora ae  CARY RA GE A oce                   ee eas ac 126  7 6 1 Programming the MDU                                          126  7 6 2 Multiplication                    Khe hr S rd NALE a 128  7 6 3 Normalize and Soria SU EROS ARR NUR 129  7 04    Tie OVertOW Flag  za iaa              nam    
376. or a crystal oscillator  This requirement is usually met using  a capacitor of 4 7 to 10 microfarad  The same considerations apply if the reset signal is generated  externally  figure 6 1 b   In each case it must be assured that the oscillator has started up properly  and that at least two machine cycles have passed before the reset signal goes inactive        RESET  SAB 80C517    RESET  SAB 80C517          Q t RESET    V SAB 80C517  MCS01820             Figure 6 1  Reset Circuitries    A correct reset leaves the processor in a defined state  The program execution starts at location  0000   The default values of the special function registers  SFR  to which they are forced during  reset are listed in table 6 1  After reset is internally accomplished the port latches of ports O to 6  default in OFFy  This leaves port 0 floating  since it is an open drain port when not used as data   address bus  All other      port lines  ports 1 through 6  output a one  1   Ports 7 and 8  which are  input only ports  have no internal latch and therefore the contents of the special function registers  P7 and P8 depend on the levels applied to ports 7 and 8     The contents of the internal RAM of the SAB 80C517 is not affected by a reset  After power up the  contents is undefined  while it remains unchanged during a reset it the power supply is not turned  off     Semiconductor Group 36                                                                                     SIEMENS System Reset  Tab
377. or circuit        XTAL2    E SAB 80C517         XTAL1        30 pF   10 pF for Quartz Crystal  MCS01867             Figure 7 65  Recommended Oscillator Circuit    In this application the on chip oscillator is used as a crystal controlled  positive reactance oscillator   a more detailed schematic is given in figure 7 66   It is operated in its fundamental response mode  as an inductive reactor in parallel resonance with a capacitor external to the chip  The crystal  specifications and capacitances are non critical  In this circuit 30 pF can be used as single  capacitance at any frequency together with a good quality crystal  A ceramic resonator can be used  in place of the crystal in cost critical applications  It a ceramic resonator is used  C  and C  are  normally selected to be of somewhat higher values  typically 47 pF  We recommend consulting the  manufacturer of the ceramic resonator for value specifications of these capacitors     Semiconductor Group 148    SIEMENS On Chip Peripheral Components       To drive the SAB 80 C517 with an external clock source  the external clock signal is to be applied  to XTAL2  as shown in figure 7 67  XTAL1 has to be left unconnected  A pullup resistor is  suggested  to increase the noise margin   but is optional if Voy of the driving gate corresponds to  the     specification of XTAL2        S     To Internal  a Timing Circuitry  vs    SAR  popa       1               J XTAL2                                  1  alc MCS01868       Quartz C
378. or es del tipo elevador  pero gracias al filtro de salida formado por  una bobina y un condensador  el rizado de corriente y de tensi  n  producido por las  diferentes conmutaciones del interruptor se ve disminuido en funci  n del tama  o de la  bobina y del condensador de salida     Este convertidor forma parte de los convertidores de cuarto orden al estar  constituido por cuatro elementos almacenadores de energ  a     19  Memoria Descriptiva     Control mediante Linealizaci  n Entrada Salida    ili id          C io  RLZ     gt         Sup  Pos       LZ         Pon     5                      Control             Figura 1 13  Esquema de un convertidor Boost con filtro de salida   Para una mejor aproximacion a la realidad se han introducido las resistencias    par  sitas de los cuatro elementos almacenadores de energ  a     Vin       La funci  n de este convertidor es mantener la relaci  n Vo        Siendo D el factor de servicio del controlador en r  gimen estacinario     Memoria Descriptiva     20    Control mediante Linealizaci  n Entrada Salida    1 4 4 1   Funcionamiento del convertidor Boost con filtro de salida   Para el an  lisis de este convertidor se deben de encontrar las intensidades que pasan    por las dos bobinas y las tensiones que hay en los dos condensadores en los dos ciclos de  trabajo del interruptor     vil t                  __ _               DT 1 T DT      Figura 1 14  Tensi  n en la bobina 1 y corriente en las bobinas     Cuando el interruptor est   ce
379. otencia     Estas   ltimas se deben a los elementos resistivos y de los elementos capacitivos   dispositivos magn  ticos  inductores   dispositivos semiconductores operando en modo  lineal  amplificadores  y dispositivos semiconductores operando en modo conmutado   MOSFET  diodos  etc       El siguiente proyecto se centra en los sistemas de alimentaci  n conmutados   realizando el estudio y el montaje de la placa de potencia y de control digital mediante un  microcontrolador de 8 bits  el SAB 80C537  mediante Linealizaci  n Entrada Salida para  un convertidor continua continua elevador  Boost      El contenido del proyecto se divide en un estudio inicial sobre el funcionamiento de  las fuentes conmutadas  realizando un estudio de las diferentes topolog  as de convertidores  b  sicos existentes  en un segundo apartado se har   el estudio del control a realizar     Una vez terminado el estudio te  rico con un modelo del microcontrolador  se  fijar  n los principales par  metros del convertidor y del control  calculando cada  componente  determinando los requisitos m  nimos necesarios de cada elemento     Como finalizaci  n  se realizar   una contrastaci  n de los datos y resultados    obtenidos del prototipo con los c  lculos y simulaci  n realizadas previamente  obteniendo  as   una valoraci  n cualitativa del controlador y de la planta     Memoria Descriptiva     Control mediante Linealizaci  n Entrada Salida    1 2   Objetivos     Dado el grado de importancia que representa 
380. oup 11    SIEMENS Fundamental Structure       Central Processing Unit    The CPU is designed to operate on bits and bytes  The instructions  which consist of up to 3 bytes   are performed in one  two or four machine cycles  One machine cycle requires twelve oscillator  cycles  The instruction set has extensive facilities for data transfer  logic and arithmetic instructions   The Boolean processor has its own full featured and bit based instructions within the instruction set   The SAB 80C517 uses five addressing modes  direct access  immediate  register  register indirect  access  and for accessing the external data or program memory portions a base register plus index   register indirect addressing     Memory Organization    The SAB 80C517 has an internal ROM of 8 Kbyte  The program memory can externally be  expanded up to 64 Kbyte  see Bus Expansion Control   The internal RAM consists of 256 bytes   Within this address space there are 128 bit addressable locations and four register banks  each  with 8 general purpose registers  In addition to the internal RAM there is a further 128 byte address  space for the special function registers  which are described in sections to follow     Because of its Harvard architecture  the SAB 80C517 distinguishes between an external program  memory portion  as mentioned above  and up to 64 Kbyte external data memory accessed by a set  of special instructions  As an important improvement of the 8051 architecture  the SAB 80C517  contains eig
381. oup 187    SIEMENS Instruction Set       CJNE  lt dest byte  gt      src byte  gt   rel    Function     Description     Example     Compare and jump if not equal    CJNE compares the magnitudes of the tirst two operands  and branches if their  values are not equal  The branch destination is computed by adding the signed  relative displacement in the last instruction byte to the PC  after incrementing the  PC to the start of the next instruction  The carry flag is set if the unsigned integer  value of  lt dest byte gt  is less than the unsigned integer value of  lt src byte gt    otherwise  the carry is cleared  Neither operand is affected     The first two operands allow four addressing mode combinations  the accumulator  may be compared with any directly addressed byte or immediate data  and any  indirect RAM location or working register can be compared with an immediate  constant     The accumulator contains 344  Register 7 contains 564  The first instruction in the  sequence  CJNE R7    60H  NOT EQ        DT   R7   60H  NOT EQ JC REQ LOW   If R7  lt  60H    T m   R7  gt  60H    sets the carry flag and branches to the instruction at label NOT EQ  By testing the  carry flag  this instruction determines whether R7 is greater or less than            If the data being presented to port 1 is also 344  then the instruction  WAIT  CJNE  A P1 WAIT    clears the carry flag and continues with the next instruction in sequence  since the  accumulator does equal the data read from P1   
382. ove described programming sequences  this is the first action for every type of  calculation  The mechanism is disabled with the final read instruction from MD3 or MD5  phase 3    Every instruction which rewrites MDO  and therefore tries to start a new calculation  in phases 1  through 3 of the same process sets the error flag     The same applies for any shift operation  normalize  shift left right   The error flag is set if the user s  program reads one of the relevant registers  MDO to MD3  or if it writes to MDO again before the  shift operation has been completed     Please note that the error flag mechanism is just an option to monitor the MDU operation  If the  user s program is designed such that an MDU operation cannot be interrupted by other calculations   then there is no need to pay attention to the error flag  In this case it is also possible to change the  order in which the MDx registers are read  or even to skip some register read instructions   Concerning the shift or normalize instructions  it is possible to read the result before the complete  execution time of six machine cycles has passed  e g  when a small number of shifts has been  programmed   All of the above  illegal  actions would set the error flag  but on the other hand do not  affect a correct MDU operation  The user has just to make sure that everything goes right     The error flag  MDEF  is located in ARCON and can be read only  It is automatically cleared after  being read     Semiconductor G
383. p 169    SIEMENS Instruction Set                      Table 9 1   Addressing Modes and Associated Memory Spaces   Addressing Modes Associated Memory Spaces   Register addressing RO through R7 of selected register bank  ACC   B  CY  Bit   DPTR   Direct addressing Lower 128 bytes of internal RAM  special  function registers   Immediate addressing Program memory   Register indirect addressing Internal RAM   R1  ERO  SP   external data    memory   R1   RO   DPTR   Base register plus index register addressing Program memory   DPTR   A   PC   A              Register Indirect Addressing    Register indirect addressing uses the contents of either RO or R1  in the selected register bank  as  a pointer to locations in a 256 byte block  the 256 bytes of internal RAM or the lower 256 bytes of  external data memory  Note that the special function registers are not accessible by this method   The upper half of the internal RAM can be accessed by indirect addressing only  Access to the full  64 Kbytes of external data memory address space is accomplished by using the 16 bit data pointer   Execution of PUSH and POP instructions also uses register indirect addressing  The stack may  reside anywhere in the internal RAM     Base Register plus Index Register Addressing    Base register plus index register addressing allows a byte to be accessed from program memory  via an indirect move from the location whose address is the sum of a base register  DPTR or PC   and index register  ACC  This mode 
384. para poner en contacto permanente dos conductores  el  ctricos  es decir  realizar entre ellos una conexi  n el  ctrica  Pero la m  s sencilla  con  seguridad y rapidez es la soldadura realizada mediante la aportaci  n de la fusi  n de una  aleaci  n met  lica     El proceso de soldadura consiste por tanto  en unir dos conductores de tipo y forma  diferentes   terminales de componentes entre s   o un circuito impreso con hilos y cables    de forma que mediante la adici  n de un tercer material conductor en estado l  quido  por  fusi  n a una determinada temperatura  se forme un compuesto intermet  lico entre los tres  conductores de tal manera que al enfriarse a la temperatura ambiente se obtenga una uni  n  r  gida permanente     La realizaci  n de la soldadura requiere unas condiciones iniciales a las que  superficies conductoras que se vayan a unir  as   como los utensilios a soldar y conseguir  una soldadura de calidad  Se ha de tener en cuenta y vigilar constantemente la limpieza de  los conductores que se pretende soldar  ya que la presencia de   xidos  grasas y cualquier  tipo de suciedad impide que la soldadura realizada sea de la calidad necesaria de forma que  se pueda mantenerse sin ninguna degradaci  n con el tiempo     5 3 3   Preparaci  n de la caja     Una vez adquirida la caja se proceder   a su mecanizado  con los orificios  destinados a alojar los diferentes elementos que son visibles desde el exterior as   como los  bornes de las diferentes entradas y salid
385. pare or compare capture register is compared with the contents of the timer register   If the count value in the timer register matches the stored value  an appropriate output signal is  generated at a corresponding port pin     The contents of a compare register can be regarded as  time stamp  at which a dedicated output  reacts in a predefined way  either with a positive or negative transition   Variation of this  time stamp   somehow changes the wave of a rectangular output signal at a port pin  This may   as a variation  of the duty cycle of a periodic signal   be used for pulse width modulation as well as for a continually  controlled generation of any kind of square wave forms  In the case of the SAB 80C517  two  compare modes are implemented to cover a wide range of possible applications  see section 7 5 4  below      In the SAB 80C517   thanks to the high number of 13 compare registers and two associated timers    several timer compare register combinations are selectable  In some of these configurations one  of the two compare modes may be freely selected  others  however  automatically establish a  compare mode  In the following the two possible modes are generally discussed  This description  will be referred to in later sections where the compare registers are described     7 5 4 Compare Modes of the CCU    As already mentioned  there are only a few compare registers with their corresponding port circuitry  which are able to serve both compare modes  In most cases
386. pecial Function Register S1REL  Address 90                        Serial interface 1 reload register S1REL             8 bit reload register for baud rate generator of serial interface 1     7 2 2 4 New Baud Rate Generator for Serial Channel 1    A new baud rate generator for Serial Channel 1  which is implemented in SAB 80C517 devices with  stepping code  CA  or later  now offers a wider range of selectable baud rates  Especially a baud  rate of 1200 baud can be achieved now     The baud rate generator itself is identical with the one used for Serial Channel 0  It consists of a free  running 10 bit timer with Fosc  2 input frequency  On overflow of this timer there is an automatic  reload from the registers S1REL  address 9      and S1RELH  address          The lower 8 bits of  the timer are reloaded from SOREL  while the upper two bits are reloaded from bit O and 1 of register  S1RELH  The baud rate timer is reloaded by writing to S1REL     The baud rate in Mode A and B can be determined by the following formula     oscillator frequency  32 x  216     Reload Value     Mode A  B baud rate         with Reload Value   S1RELH 1     0  S1RELL 7     0    Semiconductor Group 64    SIEMENS On Chip Peripheral Components       Figure 7 15A shows a block diagram of the baud rate generator for Serial Interface 1         STRELH 0 1        Baud Rate Clock                                                      fosc 2      502224  Figure 7 15A  Baud Rate Generator for Serial Interface 1  Spe
387. pecial function registers are used as control  status and data registers to handle the    on chip peripherals     In the special function register table the register names are organized in groups and each of these  groups refer to one peripheral unit  More details on how to program these registers are given in the  descriptions of the following peripheral units                                         Unit Symbol Section  Ports     7 1  Serial channels     7 2  Timer 0 1     7 3   A D converter ADC 7 4  Compare capture unit CCU 7 5  Arithmetic unit  MUL DIV unit    MDU 7 6  Power saving control unit     7 7  Watchdog unit WDT OWD 7 8  Interrupt system     8       Semiconductor Group    26    SIEMENS External Bus Interface       5 External Bus Interface    The SAB 80C517 allows for external memory expansion  To accomplish this  the external bus  interface common to most 8051 based controllers is employed     To speed up external bus accesses  the SAB 80C517 contains eight 16 bit registers used as  datapointers  This enhancement to the 8051 architecture is described in section 5 2     5 1 Accessing External Memory    It is possible to distinguish between accesses to external program memory and external data  memory or other peripheral components respectively  This distinction is made by hardware   Accesses to external program memory use the signal PSEN  program store enable  as a read  strobe  Accesses to external data memory use RD and WR to strobe the memory  alternate  functi
388. r 80C537 ha sido de obligada elecci  n ya que  realiza multiplicaciones y divisiones por hardware de una manera r  pida y sencilla     33  Memoria de c  lculo    Control mediante Linealizaci  n Entrada Salida    E  uso de un microcontrolador provoca la aparici  n de circuitos adicionales para  poder tratar la sefial de forma adecuada  Un diagrama de bloques m  s detallado para la  realizaci  n del control ser  a el siguiente              Figura 2 2  Diagrama de bloques del control     2 3   Funcionamiento de la planta     En este apartado se explicar   todos los elementos de la planta  tanto la etapa de  potencia como la de control  as   como los componentes y porque de su elecci  n     La tensi  n de alimentaci  n de la etapa de potencia y de control  as   como la placa    del microcontrolador ser   de 12 V en continua     2 3 1   Etapa de potencia     Wn n  12  12  Vo          R24      3 R25   12  1 2 LY  4 2 al 2 rra  Vin  12 V AW 1    AW T T T  0 25 6W 0 69m BYW 29 0 25 6W 122m    R26  1 10 1 2W    Q1  3 m 2  Gate    c5      C7 C8 cg C10 R28 R27  BUK 455    7 1 22u 1 22u 1 22u 122    1 1004    22u   4812W i 68 12W  1n  bd          1    Ws        2 2 2 2 2 2 2 2                See                        Figura 2 3  Etapa de potencia    Para calcular las resistencias en serie con las bobinas as   como la potencia que  deben de soportar  se calcula mediante la resistencia de estas as   como la intensidad  m  xima que puede pasar por estas  que en nuestro caso es de 2 5 A    
389. r CMx  the actual  compare latch is  however  loaded at timer overflow  The timer overflow signal also sets an interrupt  request flag  CTF in register CTCON  which may be used to inform the CPU by an interrupt that a  new timer cycle has started and that the compare values for the next cycle may be programmed  from now on     The activation of the TOC loading depends on a few conditions described in the following  A TOC  loading is performed only if the CMLx register has been changed by the CPU  A write instruction to  the low byte of the CMx register is used to enable the loading     The 8 bit architecture of the SAB 80C517 requires such a defined enable mechanism because 16   bit values are to be transferred in two portions    two instructions      Imagine the following situation  one instruction  e g  loading the low byte of the compare register  is  executed just before timer overflow and the other instruction  loading the high byte  after the  overflow  If there were no  rule   the TOC loading would just load the new low byte into the compare  latch  The high byte   written after timer overflow   would have to wait till the next timer overflow     Semiconductor Group 120    SIEMENS On Chip Peripheral Components       The mentioned condition for TOC loading prevents such undesired behavior  If the user writes the  high byte first then no TOC loading will happen before the low byte has been written   even if there  is a timer overflow in between  If the user just intends 
390. r Group 33    SIEMENS    External Bus Interface          b        ALE    PSEN    RD    P2    ALE    PSEN    RD    P2      lt         Machine Cycle               One Machine Cycle  gt        1   s2   s3   s4   55   s6   s1   S2    3   S4    5   s6      Bldg  A TL         E    PCH  OUT    OUT OUT OUT OUT    PCL OUT PCL OUT PCL OUT PCL OUT  valid valid valid valid                 4    One Machine Cycle                 One Machine Cycle               1   s2   s3   s4   s5   56   s1   s2   s3   s4   s5   56      PCH  OUT    OUT P2 OUT OUT        OUT IN   A A    A    PCL OUT  valid             MCS02094  ADDR OUT  valid    PCL OUT  valid     A   without  MOVX          with  MOVX       Figure 5 2 a  and b   External Program Memory Execution    Semiconductor Group       SIEMENS System Reset       6 System Reset  6 1 Hardware Reset and Power Up Reset    6 1 1 Reset Function and Circuitries    The hardware reset function incorporated in the SAB 80C517 allows for an easy automatic start up  at a minimum of additional hardware and forces the controller to a predefined default state  The  hardware reset function can also be used during normal operation in order to restart the device  This  is particularly done when the power down mode  see section 7 7  is to be terminated     Additionally to the hardware reset  which is applied externally to the SAB 80C517  there are two  internal reset sources  the watchdog timer and the oscillator watchdog  They are described in detail  in section 7 8  F
391. r de corriente 2   Para el segundo sensor de corriente tendremos que la tensi  n que hay en bornes a la  resistencia a sensar ser   de unos 20 V  para que el amplificador se polarice a la mitad de la    tensi  n de alimentaci  n  la relaci  n del divisor de entrada ser       R13       75k    Figura 2 13  Referencia a masa sensor de corriente 2     44  Memoria de calculo    Control mediante Linealizaci  n Entrada Salida    E     R16    R16      20K  2 5   gt     15   R16   15   R16       R16   R14   10kO          R15            75kQ          R22   R20   10kQ          R18     19   10kO          R23   R21   10kO             Memoria de c  lculo    R16 _    R15    2 5    17 5     2 26     45    Control mediante Linealizaci  n Entrada Salida    2 3 2 3   Filtro Anti Aliasing     Este filtro se utilizar   para eliminar las componentes de altas frecuencias para cada  se  al a digitalizar     Para la realizaci  n del filtro Anti Aliasing se utilizar   el filtro Butterworth  cuya  funci  n de transferencia es     2  Ww  H s   2  2 27   s  w  SHW     Donde w  es la frecuencia de corte   La frecuencia de muestreo del conversor A D es de 8 kHz  por lo que la frecuencia  de corte del filtro Butterworth tiene que ser como m  nimo la mitad de la frecuencia de    muestreo  es decir  menor que 4 kHz     Para un mejor funcionamiento del filtro y mayor atenuaci  n del ruido se escoger    una frecuencia de corte del filtro de unos 2 kHz     El filtro Butterworth es el que se presenta en la siguie
392. r el valor  del acumulador del conversor A D ya que solo lo guarda un tiempo       unsigned char ton 0xCB    Variable global donde se guarda el tiempo  que debe estar encendido el transistor       unsigned char toff 0xCB     Variable global donde se guarda el tiempo que debe  estar apagado el transistor      unsigned char W 150        Variable global que guarda el valor    del P    sbit at 0x92 reloj    Pin donde se genera la sefial cuadrada que en nuestro caso es el puerto 1 pin 2      void inicio dog void          esta funci  n hacemos que se inicialize el Watch dog timer  a 512 microsegundos que es el m  nimo que se puede dar en este  microcontrolador      vold inicio timer void     En esta funci  n inicializamos el Timer 0 como contador de 8 bits  en cascada  habilitandolo y dando un valor a la parte baja      void inicio inter void     En esta funci  n habilitamos las interrupciones del Timer 0 y  del conversor A D haciendo que la interrupci  n del Timer 0 sea  la m  s prioritaria  Tambien inicializamos la variable reloj      void inicio adc void       En esta funci  n inicializamos el conversor A D que coja la  tensi  n que hay en el puerto 7 pin 0 que es la tensi  n de salida  y empieza la conversi  n entre 0 y 2 5 V        FUNCI  N DE ATENCI  N A LA INTERRUPCI  N DEL CONVERSOR a d      void anal void  interrupt 8 using 0   Funci  n de atenci  n a la interrupci  n  para el convertidor  anal  gico digital  se ejecutara cuando termine la conversi  n   saltando a la posic
393. re timer input clock is         64       Compare timer input clock is fosc 128       0  1  0  1  0 Compare timer input clock is fosc 32  1  0  1                     CO  1O  OoO o        O   oO       olo             Compare timer input clock is         256       Semiconductor Group 102    SIEMENS On Chip Peripheral Components       When the reload register is to be loaded with a 16 bit value  the high byte of CTREL must be written  first to ensure a determined start or restart position  Writing to the low byte then triggers the actual  reload procedure mentioned above  The 16 bit reload value can be overwritten at any time     Overflow Interrupt of the Compare Timer    The compare timer has   as any other timer in the SAB 80C517   its own interrupt request flag  which  is in this case called CTF  This flag is located in register CTCON CTF and is set when the timer  count rolls over from all ones to the reload value     The overflow interrupt eases e g  software control of pulse width modulated output signals  A  periodic interrupt service routine caused by an overflow of the compare timer can be used to load  new values in the assigned compare registers and thus change the corresponding PWM output  accordingly     Please refer to section 8 for details about the overflow interrupt  enabling  vector address  priority   etc       7 5 3 Compare Function in the CCU    The compare function of a timer register combination can be described as follows  The 16 bit value  stored in a com
394. read the port byte  all 8 bits  modify the addressed bit  then write the  complete byte back to the latch     Semiconductor Group 49    SIEMENS On Chip Peripheral Components                                           Table 7 2   Read Modify Write Instructions   Instruction Function   ANL Logic AND  e g  ANL P1  A   ORL Logic OR  e g  ORL P2  A   XRL Logic exclusive OR  e g  XRL P3  A   JBC Jump if bit is set and clear bit  e g  JBC P1 1  LABEL  CPL Complement bit  e g  CPL P3 0   INC Increment byte  e g  INC P4   DEC Decrement byte  e g  DEC P5   DJNZ Decrement and jump if not zero  e g  DJNZ P3  LABEL  MOV Px y  C Move carry bit to bit y of port x   CLR Px y Clear bit y of port x   SETB Px y Set bit y of port x          The reason why read modify write instructions are directed to the latch rather than the pin is to avoid  a possible misinterpretation of the voltage level at the pin  For example  a port bit might be used to  drive the base of a transistor  When a  1  is written to the bit  the transistor is turned on  If the CPU  then reads the same port bit at the pin rather than the latch  it will read the base voltage of the  transistor  approx  0 7 V  i e  a logic low level    and interpret it as  0   For example  when modifying  a port bit by a SETB or CLR instruction  another bit in this port with the above mentioned  configuration might be changed if the value read from the pin were written back to the latch   However  reading the latch rather than the pin will return 
395. registro de la parte baja del Timer 0 toma el valor del tiempo que    debe estar encendido el transistor de potencia      else   En la otra atenci  n a la interrupci  n el puerto 1 pin 2 estaba a nivel bajo  ahora debe estar a nivel alto      reloj 1    Nivel alto del puerto 1 pin 2      TLO toff       registro de la parte baja del Timer 0 toma el valor del tiempo que    debe estar apagado el transistor        PROGRAMA PRINCIPAL      void main void          inicio_dog       inicio timer       inicio inter       inicio adc       while 1           En esta funci  n hacemos que se inicialize el Watch dog timer a  512 microsegundos que es el m  nimo que se puede dar en este microcontrolador        En esta funci  n inicializamos el Timer 0 como contador de 8 bits  en cascada  habilitandolo y dando un valor a la parte baja        En esta funci  n habilitamos las interrupciones del Timer 0 y  del conversor A D haciendo que la interrupci  n del Timer 0 sea  la m  s prioritaria  Tambien inicializamos la variable reloj         En esta funci  n inicializamos el conversor A D que coja la    tensi  n que hay en el puerto 7 pin 0 que es la tensi  n de salida  y empieza la conversi  n entre 0 y 2 5 V        Bucle infinito      A2 3 4  Anexo 2  C  digo del programa     Control mediante Linealizaci  n Entrada Salida      DEFINICI  N DE LAS FUNCIONES      void inicio adc void    En esta funci  n inicializamos el conversor A D que coja la  tensi  n que hay en el puerto 7 pin 0 que es la tensi  n
396. rent    1 pA Typ     Macromodel Included       Fully Specified for Both Single Supply and     Performance Upgrades for the 75272   Split Supply Operation TS274  TLC272  and TLC274       Common Mode Input Voltage Range     Available in Q Temp Automotive  Includes Negative Rail HighRel Automotive Applications      High Gain Bandwidth 2 2 MHz Typ Configuration Control   Print Support    Qualification to Automotive Standards      High Slew Rate    3 6 V us Typ    description MAXIMUM PEAK TO PEAK OUTPUT VOLTAGE    The TLC2272 and TLC2274 are dual and       quadruple operational amplifiers from Texas SUPPLY VOLTAGE  Instruments  Both devices exhibit rail to rail  output performance for increased dynamic range       single  or split supply applications  The  TLC227x family offers 2 MHz of bandwidth and  3 V us of slew rate for higher speed applications   These devices offer comparable ac performance  while having better noise  input offset voltage  and  power dissipation than existing CMOS  operational amplifiers  The TLC227x has a noise  voltage of 9 nV VHz  two times lower than  competitive solutions     The TLC227x  exhibiting high input impedance  and low noise  is excellent for small signal  conditioning for high impedance sources  such as  piezoelectric transducers  Because of the micro   power dissipation levels  these devices work well  in hand held monitoring and remote sensing 3 n a 10 T  m 16  applications  In addition  the rail to rail output IVDD l   Supply Voltage V   
397. ria y el pliego de condicione  teniendo en cuenta su perfecta colocaci  n y posterior  uso    La contrataci  n de este proyecto se considerar   valida una vez que las dos partes  implicadas  propiedad y contratista  se comprometan a concluir las cl  usulas del contrato   por el cual tendr  n que ser firmados los documentos adecuados en una reuni  n conjunta en  haber llegado a un acuerdo    Los servicios de la empresa contratista se consideran finalizados desde el mismo  momento en que el aparato se ponga en funcionamiento  despu  s la previa comprobaci  n  de su correcto funcionamiento    El presupuesto no incluye los gastos de tipo energ  tico ocasionados por el proceso  de instalaci  n  ni las obras que fuesen necesarias  que ir  n a cargo de la empresa  contratante    El cumplimiento de las elementales comprobaciones por parte de la empresa  instaladora  no ser  n competencia del proyectista  el cual queda fuera de toda  responsabilidad derivada del incorrecto funcionamiento del equipo como consecuencia de  esta omisi  n     5 5   Conclusiones     Las partes interesadas manifiestan que conociendo los t  rminos de este Pliego de  Condiciones y del proyecto adjunto  y est  n de acuerdo con el que en   l se manifiesta     90  Pliego de condiciones    6   ANEXOS     Al   RESULTADOS  EXPERIMENTALES     Control mediante Linealizaci  n Entrada Salida     A1 1   Introducci  n     Las medidas representadas en el siguiente apartado permiten realizar una  contrastaci  n con los resu
398. ries and system clock output     7 1 Parallel I O  7 1 1 Port Structures    Digital        The SAB 80C517 allows for digital I O on 56 lines grouped into 7 bidirectional 8 bit ports  Each port  bit consists of a latch  an output driver and an input buffer  Read and write accesses to the I O ports  PO through P6 are performed via their corresponding special function registers PO to P6     The output drivers of port 0 and 2 and the input buffers of port 0 are also used for accessing external  memory  In this application  port O outputs the low byte of the external memory address  time   multiplexed with the byte being written or read  Port 2 outputs the high byte of the external memory  address when the address is 16 bits wide  Otherwise  the port 2 pins continue emitting the P2 SFR  contents  see also chapter 7 1 2 and chapter 5 for more details about the external bus interface      Digital Analog Input Ports    Ports 7 and 8 are available as input ports only and provide for two functions  When used as digital  inputs  the corresponding SFR s P7 and P8 contain the digital value applied to port 7 and port 8  lines  When used for analog inputs the desired analog channel is selected by a three bit field in SFR  ADCONO or a four bit field in SFR ADCON1  as described in section 7 4  Of course  it makes no  sense to output a value to these input only ports by writing to the SFR s P7 or P8  this will have no  effect     If a digital value is to be read  the voltage levels are to be h
399. ripheral components are described  Chapter 8  Interrupt  System  has a special section for 80515 professionals where enhancements of the interrupt  structure compared to the SAB 80515 are summarized     For readers  however  who are newcomers to the 8051 family of microcontrollers  the following  section may give a general view of the basic characteristics of the SAB 80C517     The details of operation are described later in chapters 3 and 4     Semiconductor Group 10    SIEMENS Fundamental Structure             OWE        Oscillator Watchdog ROM    RAM 8K x 8                   256 x 8 SAB 80C517  OSC  amp  Timing only  XTAL2                RESET Programmoble dum   RO       Watchdog Timer Port 0   ALE    Port 0 8 bit digit   PSEN     Div   Mul   Unit        Port 1                  2 8 bi digi  1 0         PE SWD   UL IN Port 2       mi k              8 bit digit  1 0   Timer 2 Port 3   or  Capture 8 bit digit  1 0  Compare Unit   Compare Timer LIN Port 4     Port 4 8 51 digit  1 0   Port 5  Serial Channel 0    Port 5 8 bit digit  1 0  Progr  Baud Rate    Generator Port 6                digi  1 0  Serial Channel 1  Port 7  analog Input                                              0                                                                                                            Progr  Baud Rate                                              Generator          AGND Port 8 4 bit digit    analog Input        00777  Figure 2 1    Functional Block Diagram    Semiconductor Gr
400. romediado  se  obtiene          Ayx B  Vin     4          voy   z     4 x   B  Vin    A    4                   1 67   Donde       B    nos proporciona las siguientes ecuaciones              Vin     Ya   pla Va 12     dt li ly    dV               x         y     di  1 68   Ly 25        Ve    dV  me  Cr         k     w 1  lt 0  29    Memoria Descriptiva     Control mediante Linealizaci  n Entrada Salida    1 6   Simulaci  n mediante Simulink       Una vez obtenidas las ecuaciones caracter  sticas del convertidor Boost con filtro de  salida se sabe que     x   Ayx   B  para t     Ton  1 69         Ayx B  para Tq   lt t lt T  1 70     Si cogemos las ecuaciones A  yA  y las comparamos obtenemos que son    diferentes mientras que las matrices B  y B son iguales     La diferencia entre la matriz A   y la A  son los siguientes aspectos                                   fai          a la      0          E Wd Dr eo  dV  la  _1  dr c7  0 E 0 V     SEE 1 RR   1 Rall  amem  12       1 E    2    db pe L  tene             dho 0 0 PR  02  _1_ 1  Lar   R Ra    R R G  o   A    1 80     La matriz A  solo tiene un valor diferente que es en la intensidad de la bobina 1                                   di  EO 0 0 0 En i  dt      1  T 0 0 E 0 Voy  t 1                di  0 ze os Rey                   sk  is  A          dt L  R Ro   L  RR  1     112         0 0 Ro l   1 1    di     R Ra jC  R  Ro EA  A    1 81     30  Memoria Descriptiva     Control mediante Linealizaci  n Entrada Salida            
401. roup 133    SIEMENS On Chip Peripheral Components       7 7 Power Saving Modes    The SAB 80C517 provides   due to Siemens ACMOS technology   three modes in which power  consumption can be significantly reduced         Idle mode  The CPU is gated off from the oscillator  All peripherals are still provided with the clock and  are able to work        Power down mode  Operation of the SAB 80C517 is completely stopped  the oscillator is turned off  This mode is  used to save the contents of the internal RAM with a very low standby current        Slow down mode  The controller keeps up the full operating functionality  but its normal clock frequency is  internally divided by eight  This slows down all parts of the controller  the CPU and all  peripherals  to 1 8th of their normal operating frequency  Slowing down the frequency greatly  reduces power consumption     All of these modes   a detailed description of each is given in the following sections   are entered  by software  Special function register PCON  power control register  see figure 7 57  is used to  select one of these modes     These power saving modes  especially the power down mode  replace the hardware power down  supply for the internal RAM via a dedicated pin  as itis common with NMOS microcontrollers  During  the power saving modes  the power supply for the SAB 80C517 is again via all        pins  There is  no further dedicated pin for power down supply     For the SAB 80C517 several provisions have been made to
402. roup 237    SIEMENS Instruction Set       RR A    Function     Description     Example     Operation     Encoding     Bytes   Cycles     Rotate accumulator right    The eight bits in the accumulator are rotated one bit to the right  Bit 0 is rotated into  the bit 7 position  No flags are affected    The accumulator holds the value 0C5j   11000101 pg   The instruction   RR A   leaves the accumulator holding the value OE2y  11100010p  with the carry  unaffected     RR          lt   An   1  n   0 6     7   lt               00000011                Semiconductor Group 238    SIEMENS Instruction Set       RRC A  Function  Rotate accumulator right through carry flag    Description         eight bits in the accumulator and the carry flag are together rotated one bit to  the right  Bit 0 moves into the carry flag  the original value of the carry flag moves  into the bit 7 position  No other flags are affected     Example  The accumulator holds the value OC5y  11000101 p   the carry is zero  The  instruction    RRC A  leaves the accumulator holding the value 62y  01100010p  with the carry set     Operation  RRC          lt   An   1  n 0 6                    A7   lt   C    C       A0   Encoding  00010011  Bytes  1  Cycles  1    Semiconductor Group 239    SIEMENS Instruction Set       SETB  lt bit gt   Function  Set bit    Description    SETB sets the indicated bit to one  SETB can operate on the carry flag or any  directiy addressable bit  No other flags are affected                    
403. rrado el diodo se polariza en inversa  no deja pasar  corriente  La bobina 1 queda en bornes de la fuente de alimentaci  n carg  ndose  linealmente de corriente  mientras los condensadores y la bobina ceden energ  a a la carga   sin invertir la polaridad de la tensi  n en la carga  se van descargado en la carga     Cuando el interruptor esta abierto  el diodo se polariza en directa  deja pasar  corriente  es cuando la bobina 1 cede energ  a almacenada a los dem  s elementos  almacenadores de energ  a y a la carga  sumando la tensi  n que hay en la bobina a la de la  fuente  de esta manera la tensi  n en la salida se ve aumentada con respecto a la tensi  n de  salida     El filtro de salida elimina las componentes de alta frecuencia  eliminando el rizado  de la corriente  que se encargar  a la bobina 2  y de tensi  n  que se encargar  a el  condensador 2     21  Memoria Descriptiva     Control mediante Linealizaci  n Entrada Salida    1 4 4 1 1   Topolog  a    ON    del convertidor Boost con filtro de salida                          Figura 1 15  Convertidor Boost con filtro de salida en topolog  a                Cuando el interruptor est   cerrado la bobina 1 queda en bornes de la fuente de  alimentaci  n almacenando energ  a  la corriente que va a la bobina 1 crece linealmente  El  diodo al estar polarizado en inversa no deja pasar corriente  y los dem  s elementos  almacenadores de energ  a van cediendo parte de su energ  a a la carga  La bobina 1 y el  condensador 2 filtran
404. rrent    f  1 MHz  Ay   10  Vic   5 to 2 7 V    Vo  0 V  Rs 2 500  Vpp    2 2V to  8 V   Vic   0  No load    Vo 2 5V  No load    t Full range is    40  C to 125  C for Q level part     55     to 125  C for M level part   NOTE 4  Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA   150  C extrapolated  to TA   25  C using the Arrhenius equation and assuming an activation energy of 0 96 eV     TLC22720   TLC2272M    MIN TYP  300    TLC2272A0   TLC2272AM    MIN TYP  300        gt    gt       gt    gt     2500  3000    0 002    0 5                     a  e        a             5  to    4 99  4 93    4 99  4 85 4 93  4 85   4 25 4 65    4 25    4 85  4 85  4 25 4 65  4 25    wm  a          ad  ao          4 99     4 91       4 99     4 85    4 91       4 85       4 85     4 85       4 1    4 1           al           oa       3 5             oa                                     ola              20  300    1012    1012          130    k            75 80  75  80 95    N  al        o    N  al    o          P a               ce    2 4           3  2       Q         5 TEXAS  INSTRUMENTS    POST OFFICE BOX 655303    DALLAS  TEXAS 75265    23    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TLC2272Q and TLC2272M operating characteristics at specified free air temperature             5 V    TLC2272Q  TLC2272AQ   PARAMETER TEST CONDITIONS Tat
405. rrupt   please refer to chapter 7 5 5 where more details about  the configurations can be found  or to chapter 10 where two application examples are provided     Compare ee V              Read Latch          Internal  Bus    Write to  Latch    Access Disabled      Read Pin  Timer 2 Overflow MCS01845             Figure 7 38  Port Latch in Compare Mode 0    Semiconductor Group 104    SIEMENS On Chip Peripheral Components       Modulation Range of a PWM Signal and Differences between the Two Timer Compare  Register Configurations in the CCU    There are two timer compare register configurations in the CCU which can operate in compare  mode 0  either timer 2 with a CCx  CRC and CC1 to CC4  register or the compare timer with a CMx  register   They basically operate in the same way  but show some differences concerning their  modulation range when used for PWM     Generally it can be said that for every PWM generation with n bit wide compare registers there are  2  different settings for the duty cycle  Starting with a constant low level  0  duty cycle  as the first  setting  the maximum possible duty cycle then would be     1     1 2   x 100 96    This means that a variation of the duty cycle from 0  to real 100  can never be reached if the  compare register and timer register have the same length  There is always a spike which is as long  as the timer clock period     In the SAB 80C517 there are two different modulation ranges for the above mentioned two timer   compare register 
406. rtidor Boost o                                                       11  1 4 2 1 2   Topolog  a    OFF    del convertidor Boost o elevador                                     12  1 4 2 2   Matrices del convertidor Boost o                                                                                14  1 4 3   Convertidor Buck Boost o reductor         40                     15  1 4 3 1   Funcionamiento del convertidor Buck Boost o reductor elevador                     16  1 4 3 1 1   Topolog  a    ON    del convertidor Buck Boost                       eee 16  1 4 3 1 2   Topolog  a    OFF    del convertidor                3                                                 17  1 4 3 2   Matrices del convertidor Buck Boost o reductor elevador                                 19  1 4 4   Convertidor Boost con filtro de salida              ococcccnonononononononononononinononnnnnnnncnineneness 19  1 4 4 1   Funcionamiento del convertidor Boost con filtro de salida                               21  1 4 4 1 1   Topolog  a    ON    del convertidor Boost con filtro de salida                         22  1 4 4 1 2   Topolog  a    OFF    del convertidor Boost con filtro de salida                        23  1 4 4 2   Matrices del convertidor Boost con filtro de salida                                  25  1 5   Control mediante Linealizaci  n Entrada Salida                              ecce 26  1 6   Simulaci  n mediante Simulink            cccccccccccssesesescsscscscscsceccscsesescsvsrese
407. ruction Set       ADDC A   Ri    Operation  ADDC        lt                  Ri                     Encoding  001110111   Bytes  1  Cycles  1    ADDC A   data    Operation  ADDC        lt          C     data                   Encoding  00110100  Bytes  2  Cycles  1    Semiconductor Group          immediate data          182    SIEMENS Instruction Set       AJMP addr11    Function     Description     Example     Operation     Encoding     Bytes   Cycles     Absolute jump    AJMP transfers program execution to the indicated address  which is formed at run   time by concatenating the high order five bits of the PC  after incrementing the PC  twice   op code bits 7 5  and the second byte of the instruction  The destination must  therefore be within the same 2K block of program memory as the first byte of the  instruction following AJMP     The label  JMPADR  is at program memory location 01234  The instruction  AJMP   JMPADR  is at location 03454 and will load the PC with 0123y     AJM P   PC       PC   2   PC10 0      page address          a  0a9380 000 1            a5 a4   a3 a2 al ad                      Semiconductor Group 183    SIEMENS Instruction Set                                                 ANL  lt dest byte gt    lt src byte gt    Function  Logical AND for byte variables   Description  ANL performs the bitwise logical AND operation between the variables indicated  and stores the results in the destination variable  No flags are affected   The two operands allow six 
408. rupt request generation after each conversion    For the conversion  the method of successive approximation via capacitor array is used  The  externally applied reference voltage range has to be held on a fixed value within the specifications   see section  A D Converter Characteristics  in the data sheet   The internal reference voltages can  be varied to reduce the reference voltage range of the A D converter and thus to achieve a higher  resolution     Figure 7 25 shows a block diagram of the A D converter  There are four user accessible special  function registers  ADCONO  ADCON1  A D converter control registers   ADDAT  A D converter  data register  and DAPR  D A converter program register  for the programmable reference  voltages  The analog input channels  port 7 and port 8  can also be used for digital input  refer also  to section 7 1  Parallel           7 4 1 Function and Control    7 4 1 1 Initialization and Input Channel Selection    Special function register ADCONO which is illustrated in figure 7 26 is used to set the operating  modes  to check the status  and to select one of eight analog input channels  Special function  register ADCON1  figure 7 27  controls the selection of all twelve input channels     Register ADCONO contains two mode bits  Bit ADM is used to choose the single or continuous  conversion mode  In single conversion mode only one conversion is performed after starting  while  in continuous conversion mode after the first start a new conversion
409. rystal or Ceramic Resonator             Figure 7 66  On Chip Oscillator Circuitry          External  Oscillator XTAL2  Signal          XTAL1        501869             Figure 7 67  External Clock Source    Semiconductor Group 149    SIEMENS On Chip Peripheral Components       7 10 System Clock Output    For peripheral devices requiring a system clock  the SAB 80C517 provides a clock output signal  derived from the oscillator frequency as an alternate output function on pin P1 6 CLKOUT  If bit CLK  is set  bit 6 of special function register ADCONO  see figure 7 68   a clock signal with 1 12 of the  oscillator frequency is gated to pin P1 6 CLKOUT  To use this function the port pin must be  programmed to a one  1   which is also the default after reset     Figure 7 68  Special Function Register ADCONO  Address 0D8 4     ODFy ODE  ODDy ODCy 0DBy uar ODS   0      0D8j         ADEX  BSY   ADM   MX2       qe                   ADCONO              __  These bits are not used in controlling the clock out functions        Bit Function    CLK Clockout enable bit  When set  pin P1 6 CLKOUT outputs the system  clock which is 1 12 of the oscillator frequency              The system clock is high during S3P1 and S3P2 of every machine cycle and low during all other  states  Thus  the duty cycle of the clock signal is 1 6  Associated with a MOVX instruction the  system clock coincides with the last state  S3  in which a RD or WR signal is active  A timing  diagram of the system clock output is
410. s   0 0   Bank 0 selected  data address 004 074  0 1   Bank 1 selected  data address 08y 0F y  1 0   Bank 2 selected  data address 10   17    1 1   Bank 3 selected  data address 18y 1Fy   OV Overflow flag   F1 General purpose user flag 1   P Parity flag  Set cleared by hardware each    instruction cycle to indicate an odd even  number of  one  bits in the accumulator  i e   even parity              Register  SFR Address OF0y    The B register is used during multiply and divide and serves as both source and destination  For  other instructions it can be treated as another scratch pad register     Semiconductor Group 24    SIEMENS Memory Organization       Stack Pointer  SFR Address 0814H    The stack pointer  SP  register is 8 bits wide  It is incremented before data is stored during PUSH  and CALL executions and decremented after data is popped during a POP and RET  RETI   execution  i e  it always points to the last valid stack byte  While the stack may reside anywhere in  on chip RAM  the stack pointer is initialized to 074 after a reset  This causes the stack to begin at  location 084 above register bank zero  The SP can be read or written under software control     Datapointer  SFR Address 0824 and 0834 Datapointer Select Register  SFR Address 0924    As a functional enhancement to standard 8051 controllers  the SAB 80C517 contains eight 16 bit  registers which can be used as datapointers  To be compatible with 8051 architecture  the  instruction set uses just one of thes
411. s  e g      LOOP  MOV A S1CON  JNB ACC 0 LOOP  Testing of       ANL S1CON  0FEH   Resetting of         Semiconductor Group 61    SIEMENS    On Chip Peripheral Components       Figure 7 12  Special Function Register S1CON  Address                                                                           9B    SM 5      SM21   REN1   TB81   RB81 TI        S1CON   Bit Function   SM SM   0  serial mode A  9 bit UART  SM   1  serial mode B  8 bit UART   SM21 Enables the multiprocessor communication feature in mode A  If SM21  is set to 1       will not be activated if the received 9th data bit  RB81  is  0  In mode B  if SM21   1       will not be activated if a valid stop bit was  not received    REN1 Receiver enable of interface 1  Enables serial reception   Set by software to enable reception  Cleared by software to disable  reception    TB81 Transmitter bit 8 of interface 1  Is the 9th data bit that will be transmitted  in mode A  Set or cleared by software as desired    RB81 Receiver bit 8 of interface 1  Is the 9th data bit that was received in  mode     In mode B  if SM21   0  RB81 is the stop bit that was received    TI Transmitter interrupt of interface 1  Is the transmit interrupt flag  Set by  hardware at the beginning of the stop bit in any serial transmission  Must  be cleared by software         Receiver interrupt of interface 1  Is the receive interrupt flag   Set by hardware at the halfway through the stop bit time in any serial  reception  Must be cleared by softw
412. s and Functions  cont d        Symbol Pin Number    10          P LCC 84   P MQFP 100 2    Function       RESET 10 73    RESET   A low level on this pin for the duration of  one machine cycle while the oscillator is  running resets the SAB 80C517  A small  internal pull up resistor permits  power on reset using only a capacitor  connected to               VAREF 11 78    Reference voltage for the A D con   verter        VAGND 12 79    Reference ground for the A D  converter        P7 7  P7 0  13   20 80   87                Port 7   is an 8 bit unidirectional input port  Port  pins can be used for digital input  if  voltage levels meet the specified input  high low voltages  and for the lower  8 bit of the multiplexed analog inputs of  the A D converter  simultaneously             Input  O   Output    Semiconductor Group    271    SIEMENS SAB 80C517 80C537       Pin Definitions and Functions  cont d        Symbol Pin Number VO     Function       P LCC 84   P MQFP 100 2       P3 0   P3 7  21 28 90   97 VO  Port 3   is a bidirectional I O port with internal  pull up resistors  Port 3 pins that have  1 s written to them are pulled high by  the internal pull up resistors  and in that  state can be used as inputs  As inputs   port 3 pins being externally pulled low  will source current    in the DC  characteristics  because of the internal  pull up resistors  Port 3 also contains  the interrupt  timer  serial port 0 and  external memory strobe pins that are  used by various options 
413. s at 12 MHz     Shifting   In the same way   by a write to ARCON instruction   a shift left right operation can be started  In this  case register bit SLR  ARCON 5  has to contain the shift direction  and ARCON 0 to ARCON 4 the  shift count  which must not be 0  otherwise a normalize operation would be executed   During shift   zeroes come into the left or right end of the registers MDO or         respectively     The first machine cycle of a shift left right operation executes four shifts  while all following cycles  perform 6 shifts  Hence  a 31 bit shift takes 6 microseconds at 12 MHz     Completion of both operations  normalize and shift  can also be controlled by the error flag  mechanism described in 7 6 4  The error flag is set if one of the relevant registers  MDO through  MD3  is accessed before the previously commenced operation has been completed     For proper operation of the error flag mechanism  it is necessary to take care that the right write or  read sequence to or from registers MDO to MD3  see table 7 12  is maintained     Semiconductor Group 131    SIEMENS On Chip Peripheral Components                Table 7 12  Programming a Shift or Normalize Operation  Operation Normalize  Shift Left  Shift Right  First write MDO least significant byte  MD1  MD2  MD3 most significant byte  Last write ARCON start of conversion  First read MDO least significant byte  MD1  MD2  Last read MD3 most significant byte          7 6 4 The Overflow Flag    An overflow flag is pro
414. s the  SAB 80C517 is optimized for control applications  With a 12 MHz crystal  5896 of the  instructions execute in 1 us    Being designed to close the performance gap to the 16 bit microcontroller world  the  SAB 80C517 s CPU is supported by a powerful 32  16 bit arithmetic unit and a more flexible  addressing of external memory by eight 16 bit datapointers     Memory Organisation    According to the SAB 8051 architecture  the SAB 80C517 has separate address spaces for  program and data memory  Figure 2 illustrates the mapping of address spaces        Shared Address Location    Upper Special  28  Bytes Function  Internal Registers    External                External  Data  Memory                            Lower  128   Bytes  Internal  RAM       Internal External   EA 1   EA 0                                            Program Memory Dara emo    Direct Byte ine  Addressing Addressing    MCB00078             Figure 2  Memory Mapping    Semiconductor Group 280    SIEMENS SAB 80C517 80C537       Program Memory    The SAB 80C517 has 8 KByte of on chip ROM  while the SAB 80C537 has no internal ROM   The program memory can externally be expanded up to 64 Kbyte  Pin EA controls whether  program fetches below address 2000   are done from internal or external memory     Data Memory  The data memory space consists of an internal and an external memory space     External Data Memory    Up to 64 KByte external data memory can be addressed by instructions that use 8 bit or 16 bit  indir
415. scription of compare mode 1  The fact  that the compare interrupts are transition activated becomes important when driving timer 2 with a  slow external clock  In this case it should be carefully considered that the compare signal is active  as long as the timer 2 count is equal to the contents of the corresponding compare register  and that  the compare signal has a rising and a falling edge  Furthermore  the  shadow latches  used in  compare mode 1 are transparent while the compare signal is active     Thus  with a slow input clock for timer 2  the comparator signal is active for a long time    high  number of machine cycles  and therefore a fast interrupt controlled reload of the compare register  could not only change the  shadow latch    as probably intended   but also the output buffer     Semiconductor Group 115    SIEMENS On Chip Peripheral Components       When using the CRC or CC4 register  you can select whether an interrupt should be generated  when the compare signal goes active or inactive  depending on the status of bits          or I2FR in  T2CON  respectively     Initializing the interrupt to be negative transition triggered is advisive in the above case  Then the  compare signal is already inactive and any write access to the port latch just changes the contents  of the  shadow latch      Please note that for CC registers 1 to 3 an interrupt is always requested when the compare signal  goes active     The second configuration which should be noted is when co
416. se bits are not used for interrupt control        Bit Function       ITO Interrupt O type control bit  Set cleared by software to specify falling edge low   level triggered external interrupts        IEO Interrupt 0 edge flag  Set by hardware when external interrupt edge is detected   Cleared when interrupt is initiated        IT1 Interrupt 1 type control bit  Set cleared by software to specify falling edge low   level triggered external interrupts        IE1 Interrupt 1 edge flag  Set by hardware when external interrupt edge is detected   Cleared when interrupt is initiated        TFO Timer 0 overflow flag  Set by hardware on timer counter overflow   Cleared by hardware when interrupt is initiated        TF1 Timer 1 overflow flag  Set by hardware on timer counter overflow   Cleared by hardware when interrupt is initiated           The A D converter interrupt is generated by IADC in register IRCON  see figure 8 7   It is set  some cycles before the result is available  That is  if an interrupt is generated  in any case the  converted result in ADDAT is valid on the first instruction of the interrupt service routine  with  respect to the minimal interrupt response time   If continuous conversions are established  IADC is  set once during each conversion  If an A D converter interrupt is generated  flag IADC will have to  be cleared by software     The external interrupt 2  INT2 CC4  can be either positive or negative transition activated  depending on bit I2FR in register T2CO
417. se register bits is read the value shown  is zero  0   Figure 7 57 shows special function register PCON  This double instruction sequence is  implemented to minimize the chance of unintentionally entering the idle mode     Note that PCON is not a bit addressable register  so the above mentioned sequence for entering  the idle mode is to be done by byte handling instructions     Semiconductor Group 137    SIEMENS On Chip Peripheral Components       The following instruction sequence may serve as an exemple     ORL PCON  00000001B    Set bit IDLE   bit IDLS must not be set    ORL PCON  00100000B    Set bit IDLS   bit IDLE must not be set    The instruction that sets bit IDLS is the last instruction executed before going into idle mode     Terminating the Idle Mode        The idle mode can be terminated by activation of any enabled interrupt  The CPU operation  is resumed  the interrupt will be serviced and the next instruction to be executed after the RETI  instruction will be the one following the instruction that set the bit IDLS        The other possibility of terminating the idle mode is a hardware reset  Since the oscillator is  still running  the hardware reset is held active for only two machine cycles for a complete  reset     Figure 7 57  Special Function Register PCON  Address 87          87H PDS   IDLS SD GF1 GFO   PDE   IDLE   PCON                                  Y  These bits are not used in controlling the power saving modes                            Bit Functio
418. sed  with Microsim PSpice     The Boyle macromodel  see Note 5  and subcircuit in Figure 59 were generated using  the TLC227x typical electrical and operating characteristics at TA   25  C  Using this information  output  simulations of the following key parameters can be generated to a tolerance of 20   in most cases      Maximum positive output voltage swing  Maximum negative output voltage swing  Slew rate   Quiescent power dissipation   Input bias current   Open loop voltage amplification    Unity gain frequency  Common mode rejection ratio  Phase margin   DC output resistance   AC output resistance  Short circuit output current limit    NOTE 5 G      Boyle      M  Cohn  D  O  Pederson  and J  E  Solomon   Macromodeling of Intergrated Circuit Operational Amplifiers   IEEE Journal  of Solid State Circuits  SC 9  353  1974                                                                                    99        DIN    3 EGND                 O  9  D FB r               ue  RSS C ISS     gt  C 90 o gt  91  v  D VB   Hos   DIP 7  x  RP   b   de HLIM  D  D VIP  D VIN  2 10 4    A  IN     e 4    ve  D R2     T  A pP Ji J2   6       7        IN   e      1 11 ca VEM     86  RD1 L  E RO1  VAD 5  Vcc     6    e  OUT   SUBCKT TLC227x 12345 RD1 60 112 653E3  C1 11 1214E 12 RD2 60 122 653E3  C2 6 760 00E 12 R01 8 550  DC 5 53DX R02 7 9950  DE 54 5DX RP 3 44 310E3  DLP 90 91DX RSS 10 99925 9E3  DLN 92 90DX VAD 60 4 5  DP 4 3DX VB 9 ODC O  EGND 99 OPOLY  2   3 0   4   0 VC 3 53 DC  78 
419. sescscsveceseseaeavavees 30  2   Memoria de calculo        5 eee e aee ee erase ae nep ra ve aoo                                      33  A AS A A 33  2 2   Control mediante Linealizaci  n Entrada Salida                          see 33    2 3  Funcionamiento de la planta    eot eee erede ti sola tr een Ne de Ee PER Te decades 34    2341  Etapa de potentis       e ieu a 34  2 3 1 1   Calculo de las                                              36  2 9 2  c A dte enu ien                   38  2 3 2 1   Adaptaci  n de la tensi  n de                                                      38  2 3 2 2   Adaptaci  n de las intensidades de las                                                                 41  2323   Filtro Anti A   as Mg  en a tes rb eie tei bec          46  2 3 2 4   Generaci  n del ciclo de              49  2 3 2 5   Alimentaci  n de la placa de control    ca      22  2 3 2 6   Conversion                   id Hasta enia          53  2 3 2 7   Control por Linealizaci  n Entrada Salida                          se 54  2 4   Par  metros principales de la planta               reete eterna nete        60  2 5   Listado de todos los componentes calculados                             sss 61  muri M A     EEEE OEE EEE  3AA Etapa de          edet    ivo E eS ai MY L  mina 1  2  Sensor de corriente d e esie odes e yu uae ue dis T Nn E RO NS L  mina 2  3 3 Sensor A                    L  mina 3  3 4 Sensor  de TEDSIONS              ESO ed e een eS De IA ERE edad cui L  mina 4  3 
420. sition  1 to 0 or 0 to 1  depending on the actual pin   level  or should keep its old value at the time the timer 2 count matches the stored compare value     Figure 7 40 shows a functional diagram of a timer compare register port latch configuration in  compare mode 1  In this function  the port latch consists of two separate latches  The upper latch   which acts as a  shadow latch   can be written under software control  but its value will only be  transferred to the output latch  and thus to the port pin  in response to a compare match     Note that the double latch structure is transparent as long as the internal compare signal is active   While the compare signal is active  a write operation to the port will then change both latches  This  may become important when driving timer 2 with a slow external clock  In this case the compare  signal could be active for many machine cycles in which the CPU could unintentionally change the  contents of the port latch  For details see also section 7 5 5 1  Using Interrupts in Combination with  the Compare Function      A read modify write instruction  see section 7 1  will read the user controlled  shadow latch  and  write the modified value back to this  shadow latch   A standard read instruction will   as usual   read  the pin of the corresponding compare output     Semiconductor Group 106    SIEMENS On Chip Peripheral Components          Compare Register Circuit    Compare Latch Shadow Latch    Port Circuit    Timer Register Outp
421. sks running on the CPU     The new compare values are loaded by a cyclic look up table routine  The table is located in the  ROM and contains the compare values for every sample point   In our case the sine wave is  synthesized by six sample points      The program flow is best described by a program flow chart  see figure 10 3   The following  paragraphs give some additional details         Main Program    CCU and interrupt initialization is done according to the previous description of the CCU  configuration     There is no other task in this application to be done in the main program  The controller is free for  any other job  e g  I O  control algorithms  adapting the sine wave table  etc            nterrupt Service Routine    The interrupt program contains the table look up routine only  This routine is illustrated in  figure 10 3 and performs the following two little jobs         managing the table pointer      loading the CMO register     Semiconductor Group 261    SIEMENS Application Examples          Main Program Interrupt Program    Do General Initialization Fetch Byte from Table  Initialize Compare Load Byte into Compare reg  CMLx  Initialize Interrupts Increment Table Pointer    End of Table  reached     Wait or Do any other Task Set Table Pointer  to first Address    MCA01863                Figure 10 3  Program Flow Charts    The interrupt routine takes full advantage of the TOC loading     The interrupt routine is always vectored to some time after a compare tim
422. ssing Unit    3 1 General Description    The CPU  Central Processing Unit  of the SAB 80C517 consists of the instruction decoder  the  arithmetic section and the program control section  Each program instruction is decoded by the  instruction decoder  This unit generates the internal signals controlling the functions of the individual  units within the CPU  They have an effect on the source and destination of data transfers  and  control the ALU processing     The arithmetic section of the processor performs extensive data manipulation and is comprised of  the arithmetic logic unit  ALU   an A register  B register and PSW register  The ALU accepts 8 bit  data words from one or two sources and generates an 8 bit result under the control of the instruction  decoder  The ALU performs the arithmetic operations add  subtract  multiply  divide  increment   decrement  BCD decimal add adjust and compare  and the logic operations AND  OR  Exclusive  OR  complement and rotate  right  left or swap nibble  left four    Also included is a Boolean  processor performing the bit operations of set  clear  complement  jump if not set  jump if set and   clear and move to from carry  Between any addressable bit  or its complement  and the carry flag   it can perform the bit operations of logical AND or logical OR with the result returned to the carry  flag  The A  B and PSW registers are described in section 4 4     The program control section controls the sequence in which the instructions stor
423. stablished and the transition at the respective  pin  The flag IEX3 is cleared by hardware when the service routine is vectored too     The external interrupts 4  INTA   5  INT5   6  INT6  are positive transition activated  The flags that  actually generate these interrupts are bits IEX4  IEX5  and IEX6 in register IRCON  see figure 8 7    In addition  these flags will be set if a compare event occurs at the corresponding output pin  P1 1 INT4 CC1  P1 2 INT5 CC2  and P1 3 INT6 CC3  regardless of the compare mode established  and the transition at the respective pin  When an interrupt is generated  the flag that generated it is  cleared by the on chip hardware when the service routine is vectored too     The compare timer interrupt is generated by bit CTF in register CTCON  see figure 8 8   which  is set by arollover in the compare timer  If a compare timer interrupt is generated  flag CTF will have  to be cleared by software     Semiconductor Group 159    SIEMENS Interrupt System       Figure 8 7  Special Function Register IRCON  Address 0C0      0  7   0C6y 0C5y 0C4y 0C3y 0C2y     1   OCOY  0CO0y   EXF2   TF2 IEX6   IEX5   IEX4   IEX3   IEX2   IADC   IRCON                                     Bit Function         ADC A D converter interrupt request flag  Set by hardware at the end of a conversion   Must be cleared by software        IEX2 External interrupt 2 edge flag  Set by hardware when external interrupt edge was  detected or when a compare event occurred at pin 1 4 INT2 
424. t  during  addition   or a borrow from the high order bits to the low order bits  during subtraction    otherwise AC is cleared        OV is set if the operation results in a carry to the high order bit of the result but not a carry  from the bit  or vice versa  otherwise OV is cleared  OV is used in two s complement  arithmetic  because it is set when the signal result cannot be represented in 8 bits        Pis set if the modulo 2 sum of the eight bits in the accumulator is 1  odd parity   otherwise P  is cleared  even parity   When a value is written to the PSW register  the P bit remains  unchanged  as it always reflects the parity of A     Semiconductor Group 173    SIEMENS Instruction Set       9 2 3 Logic  The SAB 80C517 performs basic logic operations on both bit and byte operands     Single Operand Operations        CLR sets A or any directly addressable bit to zero  0         SETB sets any directly bit addressable bit to one  1         CPL is used to complement the contents of the A register without affecting any flag  or any  directly addressable bit location        RL  RLC  RR  RRC  SWAP are the five operations that can be performed on A  RL  rotate left   HR  rotate right  RLC  rotate left through carry  RRC  rotate right through carry  and SWAP   rotate left four  For RLC and RRC the CY flag becomes equal to the last bit rotated out  SWAP  rotates A left four places to exchange bits 3 through 0 with bits 7 through 4     Two Operand Operations        ANL performs 
425. t 1 have alternate functions dedicated to the CCU  These  functions are listed in table 7 8  Normally each register controls one dedicated output line at the  ports  Register CC4 is an exception as it can manipulate up to nine output lines  one at port 1 4 and  the other eight at port 5  concurrently  This feature  the  concurrent compare   is described in  section 7 5 5 1     Note that for an alternate input function the port bit latch has to be programmed with       1     For bit  latches of port pins that are used as compare outputs  the value to be written to the bit latches  depends on the compare mode established     A list of all special function registers concerned with the CCU is given in table 7 9         CTREL      Internal Bus   16 bit Reload                   Compare Timer    8x  16 bit  Compare       Max Clockz fgsc 2                         Max Clock fog 12      copt  Comp  3  003              62         16 bit Rel Capt   CRC        gt   Comp     P  r  e  5                  r                                     MCB01577             Figure 7 33  Block Diagram of the CCU    Semiconductor Group 94    SIEMENS On Chip Peripheral Components                         Table 7 8  Alternate Port Functions of the CCU  Pin Symbol Pin Alternate Function  No      P5 0 CCMO 68 Concurrent compare 0  P5 1 CCM1 67 Concurrent compare 1  P5 2 CCM2 66 Concurrent compare 2  P5 3 CCM3 65 Concurrent compare 3  P5 4 CCM4 64 Concurrent compare 4  P5 5 CCM5 63 Concurrent compare 5  P5 6 CC
426. t A AND accumulator to direct byte 2 1  ANL  direct Zdata AND immediate data to direct byte 3 2  ORL A Rn OR register to accumulator 1 1  ORL A direct OR direct byte to accumulator 2 1  ORL A  Ri OR indirect RAM to accumulator 1 1  ORL A  data OR immediate data to accumulator 2 1  ORL  direct A OR accumulator to direct byte 2 1  ORL  direct  data OR immediate data to direct byte 3 2             A Rn Exclusive OR register to accumulator 1 1  XRL     Adirect Exclusive OR direct byte to accumulator 2 1  XRL A  Ri Exclusive OR indirect RAM to accumulator 1 1  XRL A  data Exclusive OR immediate data to accumulator 2 1  XRL   direct  A Exclusive OR accumulator to direct byte 2 1  XRL direct Zdata Exclusive OR immediate data to direct byte 3 2  CLR A Clear accumulator 1 1  CPL A Complement accumulator 1 1  RL A Rotate accumulator left 1 1  RLC A Rotate accumulator left through carry 1 1  RR A Rotate accumulator right 1 1  RRC A Rotate accumulator right through carry 1 1  SWAP A Swap nibbles within the accumulator 1 1                Semiconductor Group    252    SIEMENS    Instruction Set       Instruction Set Summary  cont d        Mnemonic       Description       Byte       Cycle       Data Transfer                                                                                        MOV A Rn Move register to accumulator 1 1  MOV  Agirect 1  Move direct byte to accumulator 2 1  MOV  A Qhi Move indirect RAM to accumulator 1 1  MOV A  data Move immediate data to accumulator 2 1  MOV
427. t WDT will automatically be cleared during the second machine cycle  after having been set  For this reason  setting SWDT bit has to be a one cycle instruction  e g  SETB  SWDT   This double instruction refresh of the watchdog timer is implemented to minimize the  chance of an unintentional reset of the watchdog     Semiconductor Group 142    SIEMENS On Chip Peripheral Components       The reload register WDTREL can be written to at any time  as already mentioned  Therefore  a  periodical refresh of WDTREL can be added to the above mentioned starting procedure of the  watchdog timer  Thus a wrong reload value caused by a possible distortion during the write  operation to the WDTREL can be corrected by software        Sede  WDT Reset Request    WDTH   i IPO 0A9        qos                  External  HW Reset  PE SWD                                 WDTREL          00788             Figure 7 58  Block Diagram of the Programmable Watchdog Timer                      Figure 7 59  Special Function Register WDTREL             086y Watchdog timer reload register WDTREL  Bit Function  WDTREL 7 Prescaler select bit     When set  the watchdog is clocked through an additional divide by 16  prescaler  see figure 7 58         WDTREL 6 Seven bit reload value for the high byte of the watchdog timer  This  to value is loaded to the WDT when a refresh is triggered by a consecutive  WDTREL O setting of bits WDT and SWDT           Semiconductor Group 143    SIEMENS On Chip Peripheral Components   
428. t be active for at least two machine  cycles  after this time the SAB 80C517 remains in its reset state as long as the signal is active   When the signal goes inactive this transition is recognized in the following state 5 phase 2 of the  machine cycle  Then the processor starts its address output  when configured for external ROM  in  the following state 5 phase 1  One phase later  state 5 phase 2  the first falling edge at pin ALE  occurs     Figure 6 2 shows this timing for a configuration with EA   0  external program memory   Thus   between the release of the RESET signal and the first falling edge at ALE there is a time period of  at least one machine cycle but less than two machine cycles        I           One Machine Cycle        gt      S4   S5   S6    1   S2   S3   S4   S5    6   S1   S2   S3   S4 S5   S6    1   S2       bl eT          p dr pb o dee ede Tn  Ed E Wt         lt                                     MCT01821                Figure 6 2  CPU Timing after Reset    Semiconductor Group 38    SIEMENS System Reset       6 2 Reset Output Pin  RO     As mentioned before the SAB 80C517 internally synchronizes an external reset signal at pin  RESET in order to perform a reset procedure  Additionally  the SAB 80C517 provides several  fail   save  mechanisms  e g  watchdog timer and oscillator watchdog  which can internally generate a  reset  too  Thus  it is often important to inform also the peripherals external to the chip that a reset  is being performed and that
429. t flag  Set by hardware at  the end of the 8th bit time in mode     or at the beginning of the stop bit  in the other modes  in any serial transmission  Must by cleared by  software    RIO Receiver interrupt  Is the receive interrupt flag  Set by hardware at the       end of the 8th bit time in mode 0  or during the stop bit time in the other  modes  in any serial reception  Must be cleared by software        Semiconductor Group    53    SIEMENS On Chip Peripheral Components       7 2 1 2 Multiprocessor Communication Feature    Modes 2 and 3 of the serial interface 0 have a special provision for multi processor communication   In these modes  9 data bits are received  The 9th bit goes into RB80  Then a stop bit follows  The  port can be programmed such that when the stop bit is received  the serial port 0 interrupt will be  activated  i e  the request flag RIO is set  only if RB80   1  This feature is enabled by setting bit  SM20 in SOCON  A way to use this feature in multiprocessor communications is as follows     If the master processor wants to transmit a block of data to one of the several slaves  it first sends  out an address byte which identifies the target slave  An address byte differs from a data byte in  that the 9th bit is 1 in an address byte and 0 in a data byte  With SM20   1  no slave will be  interrupted by a data byte  An address byte  however  will interrupt all slaves  so that each slave  can examine the received byte and see if it is being addressed  The 
430. t flags cause the  program to branch to the same vector address     The input clock to timer 2 is selected by bits T210    211  and T2PS as listed in figure 7 35     Semiconductor Group 98    SIEMENS On Chip Peripheral Components       Reload of Timer 2    The reload mode for timer 2 is selected by bits T2RO and T2R1 in SFR T2CON as listed in figure  7 34 b   Two reload modes are selectable     In mode 0  when timer 2 rolls over from all 1   s to all 0   s  it not only sets TF2 but also causes the  timer 2 registers to be loaded with the 16 bit value in the CRC register  which is preset by software   The reload will happen in the same machine cycle in which TF2 is set  thus overwriting the count  value 0000      In mode 1  a 16 bit reload from the CRC register is caused by a negative transition at the  corresponding input pin T2EX P1 5  In addition  this transition will set flag EXF2  if bit EXEN2 in SFR  IEN1 is set     If the timer 2 interrupt is enabled  setting EXF2 will generate an interrupt  The external input pin  T2EX is sampled in every machine cycle  When the sampling shows a high in one cycle and a low  in the next cycle  a transition will be recognized  The reload of timer 2 registers will then take place  in the cycle following the one in which the transition was detected        Timer 2  Interrupt  Request                Figure 7 34 b   Timer 2 in Reload Mode    Semiconductor Group 99    SIEMENS    On Chip Peripheral Components       Figure 7 35    Special Functi
431. t loL   500 pA  voltage     h         range  25     0 9    Vic   2 5 V  IOL   5          OL    Full range  25  C  Fu    Large signal differential   Vic   2 5 V  RL   10 kot TERRE  voltage amplification Vo 1Vto4V 9  RL   1 mot 25  C 175   fid Differential input 1012   resistance   resistance   capacitance   impedance             COmmon mode Vic   0 to 2 7 V  70 75 70 75  Sciens Vo 25V   Re 500           k Supply voltage rejection   Vpp   4 4 V to 16 V  80 95 80 95  Sm        Vio  Yoo   Nokad         Furage  x            2     0 loa m    t Full range is 0     to 70  C      Referenced to 0 V   NOTE 4  Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA   150  C extrapolated  to TA   25  C using the Arrhenius equation and assuming an activation energy of 0 96 eV          Cc    0 9               15  15        lt        al         ala   oy                                        r Q            5 TEXAS  INSTRUMENTS    POST OFFICE BOX 655303    DALLAS  TEXAS 75265 9    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TLC2274C operating characteristics at specified free air temperature  Vpp   5 V    TLC2274C TLC2274AC  PARAMETER TEST CONDITIONS TAT    Slew rate at Vo   0 5 V to 2 5 V   unity gain RL   10 kot         100 pF     e              a  noise voltage  C    f 1 kHz 25  Peak to peak      f 0 1to 1 Hz 25  C  VN PP  equivalent input  a    
432. te deseada     Con una Imax   2 A     2A                      0 0033           0 33 mm      2 9    600 A cm  Normalmente se toma una densidad de corriente de valores 200  400  600 o 800   A cm    Con un hilo de cobre de di  metro 0 65 mm al cual tiene una secci  n neta de 0 332    2  mm     Para la obtenci  n de la bobina 1 es necesario dar 277 vueltas con un hilo de cobre  de 0 6 mm de di  metro para obtener una bobina de 0 69 mH  Expresado en metros el cable    tendr   una longitud de     longitud    2     di  metro exterior   di  metro interior    2   alto    vueltas  2 10   longitud    2  39 8   24 13    2 14 48    277  16 6 m  2 11   Para la obtenci  n de la bobina 2 es necesario dar 368 vueltas con un hilo de cobre  de 0 6 mm de di  metro para obtener una bobina de 1 22 mH  Expresado en metros el cable    tendr   una longitud de     longitud    2   39 8   24 13    2 14 48   368 22m  2 12     37  Memoria de c  lculo    Control mediante Linealizaci  n Entrada Salida    2 3 2   Etapa de control     En este apartado se explicar   la adaptaci  n de las diferentes                ya sea tensi  n  de salida as   como las intensidades que pasan por las dos bobinas  Una vez adaptadas a  unas tensiones aceptables  se pasar   a realizar la conversi  n digital  mediante el conversor  anal  gico digital del microcontrolador 80C537     Adaptaci  n  de la se  al           Filtro  Anti Aliasing    Conversi  n  A D       Control  Entrada Salida    Generaci  n  duty    Figura 2 6  Diagram
433. teps with respect to the external reference voltages  This feature permits a conversion  with a smaller internal reference voltage range to gain a higher resolution  In addition  the  internal reference voltages can easily be adapted by software to the desired analog input  voltage range  see table 2            Table 2   Adjustable Internal Reference Voltages   Step DAPR   3  0  VintAGND VintAREF  DAPR   7  4    0 0000 0 0 5 0   1 0001 0 3125     2 0010 0 625     3 0011 0 9375     4 0100 1 25 1 25   5 0101 1 5625 1 5625   6 0110 1 875 1 875   7 0111 2 1875 2 1875   8 1000 2 5 2 5   9 1001 2 8125 2 8125   10 1010 3 125 3 125   11 1011 3 4375 3 4375   12 1100 3 75 3 75   13 1101     4 0625   14 1110     4 375   15 1111     4 68754                Semiconductor Group 287    SIEMENS SAB 80C517 80C537                         8  DD  Internal Bus     Ju     P 7  08           ADCON1  DC             _ a                ADCONO  083        2   MX  1       q                                                               A D    Converter                                    6 0 ADST   VNTAREF VINTAGND  VAREF  Vacno D A Converter                Pll      2       Write to DAPR DAPR  DAjy  Internal Bus  V A Shaded areas are not used in ADC functions MCB00780             Figure 4  Block Diagram A D Converter    Semiconductor Group 288    SAB 80C517 80C537    SIEMENS       Compare Capture Unit  CCU     The compare capture unit is a complex timer register array for applications that require high   sp
434. terrupt  This interrupt will be  serviced and normally the instruction to be executed following the RETI instruction will be  the one following the instruction that sets the bit IDLS         The other way to terminate the idle mode  is a hardware reset  Since the oscillator is still  running  the hardware reset must be held active only for two machine cycles for a complete  reset     Normally the port pins hold the logical state they had at the time idle mode was activated  If  some pins are programmed to serve their alternate functions they still continue to output during  idle mode if the assigned function is on  The control signals ALE and PSEN hold at logic high  levels  see table 7      Semiconductor Group 302    SIEMENS    SAB 80C517 80C537       Table 8    Baud Rate Generation                                  Function Serial Interface 0 Serial Interface 1  Mode Mode 0     8 Bit Baud rate     1 MHz O fosc   12 MHz    synchronous  channel  Baud rate   fosc E  derived  from  Mode Mode 1 Mode B  8 Bit Baud rate    1   62 5K 4800  9600 1 5     375     UART  Baud rate      Timer 1 BD 8 bit baud rate generator  derived  from  Mode Mode 2 Mode 3 Mode A  9 Bit Baud rate      187 5 K  1 62 5K 1 5 375K  UART 375     Baud rate   foso 2 Timer 1 8 bit baud rate generator  derived  from                      Baud rate values are given for 12 MHZ oscillator frequency     Semiconductor Group    303    SIEMENS SAB 80C517 80C537       Serial Interface 0  Serial Interface 0 can operate in 
435. terrupt is triggered by a  positive transition     The external interrupts 4  5  and 6 are activated by a positive transition  The external timer 2 reload  trigger interrupt request flag EXF2 will be activated by a negative transition at pin P1 5 T2EX but  only if bit EXEN  is set     Since the external interrupt pins  INT2 to INT6  are sampled once in each machine cycle  an input  high or low should be held for at least 12 oscillator periods to ensure sampling  If the external inter   rupt is transition activated  the external source has to hold the request pin low  high for INT2 and  INT3  if it is programmed to be negative transition active  for at least one cycle  and then hold it high   low  for at least one cycle to ensure that the transition is recognized so that the corresponding in   terrupt request flag will be set  see figure 8 12   The external interrupt request flags will automati   cally be cleared by the CPU when the service routine is called     Semiconductor Group 167    SIEMENS Interrupt System          a  Level Activated Interrupt        Low Level Threshold          P3 x INTx          1 Machine Cycle    b  Transition   Activated Interrupt  High Level Threshold                            Y  e g  P3 x INTx  Low Level Threshold         gt  1 Machine Cycle  gt  1 Machine Cycle MCTO1860  Transition to  be detected  Figure 8 12    External Interrupt Detection    8 5 Response Time    If an external interrupt is recognized  its corresponding request flag is set at 
436. th   which is left over  This  spike  may either appear when the compare register is set to the reload  value  limiting the lower end of the modulation range  or it may occur at the end of a timer period as  realized in this configuration  In a compare timer CMx register configuration  the compare output is  set to a constant high level if the contents of the compare registers are equal to the reload register   CTREL   The compare output shows a high level for one timer clock period when a CMx register  is set to OFFFFy  Thus  the duty cycle can be varied from 0 xx  to 100  depending on the  resolution selected  see calculation example in section 7 5 5 1   Please refer to figure 7 50 where  the maximum and minimum duty cycle of a compare output signal is illustrated  One clock period of  the compare timer is equal to one machine state    2 oscillator periods  if the prescaler is off  Thus   at 12 MHz operational frequency the spike is approx  166 6 ns long         The  Timer Overflow Controlled  Loading    There is one great difference between a CMx register and the other previously described compare  registers  compare outputs controlled by CMx registers have no dedicated interrupt function  They  use a  timer overflow controlled loading   further on called  TOC loading   to reach the same  performance as an interrupt controlled compare  To show what this  TOC loading  is for  it will be  explained more detailed in the following     The main advantage of the compare function
437. the correct value of  1      Semiconductor Group 50    SIEMENS On Chip Peripheral Components       7 2 Serial Interfaces    The SAB 80C517 has two serial interfaces which are functionally nearly identical concerning the  asynchronous modes of operation  The two channels are full duplex  meaning they can transmit  and receive simultaneously  They are also receive buffered  meaning they can commence  reception of a second byte before a previously received byte has been read from the receive  register  however  if the first byte still has not been read by the time reception of the second byte is  complete  the last received byte will be lost   The serial channel 0 is completely compatible with the  serial channel of the SAB 80 C 51  Serial channel 1 has the same functionality in its asynchronous  modes  but the synchronous mode is lacking     7 2 1 Serial Interface 0    7 2 1 1 Operating Modes of Serial Interface 0    The serial interface 0 can operate in four modes  one synchronous mode  three asynchronous  modes   The baud rate clock for this interface is derived from the oscillator frequency  mode 0  2   or generated either by timer 1 or by a dedicated baud rate generator  mode 1  3   A more detailed  description of how to set the baud rate will follow in section 7 2 1 3     Mode 0  Shift register  synchronous  mode     Serial data enters and exits through RXDO  TxDO outputs the shift clock  8 data bits are transmitted   received  LSB first   The baud rate is fixed at 1 12 of
438. tically sets bit COMO        COCON2  COCON1  COCONO       Selects additional concurrent compare outputs  at port 5  See table below           COCON2    COCON1    COCONO    Function       One additional output of CC4 at P5 0       Additional outputs of CC4 at P5 0 to P5 1       Additional outputs of CC4 at P5 0 to P5 2       Additional outputs of CC4 at P5 0 to P5 3       Additional outputs of CC4 at P5 0 to P5 4       Additional outputs of CC4 at P5 0 to P5 5       Additional outputs of CC4 at P5 0 to P5 6          a   ss                               Oo   Oo  A 2  O O       0  1  0  1  0  1  0  1       Additional outputs of CC4 at P5 0 to P5 7       Semiconductor Group    114    SIEMENS On Chip Peripheral Components       Using Interrupts in Combination with the Compare Function    The compare service of registers CRC  CC1  CC2  CC3 and CCA is assigned to alternate output  functions at port pins P1 0 to P1 4  Another option of these pins is that they can be used as external  interrupt inputs  However  when using the port lines as compare outputs then the input line from the  port pin to the interrupt system is disconnected  but the pin s level can still be read under software  control   Thus  a change of the pin s level will not cause a setting of the corresponding interrupt flag   In this case  the interrupt input is directly connected to the  internal  compare signal thus providing  a compare interrupt     The compare interrupt can be used very effectively to change the co
439. tine           Each timer consists of two 8 bit registers  THO and TLO for timer counter 0  TH1 and TL1 for timer   counter 1  which may be combined to one timer configuration depending on the mode that is  established  The functions of the timers are controlled by two special function registers TCON and  TMOD  shown in figures 7 19 and 7 20     In the following descriptions the symbols THO and TLO are used specify the high byte and low byte  of timer 0  TH1 and TL1 for timer 1  respectively   The operating modes are described and shown  for timer O  If not explicitly noted  this applies also to timer 1     Semiconductor Group 77    SIEMENS    On Chip Peripheral Components       Figure 7 20  Special Function Register TMOD  Address 89          894   GATE          C T M1 MO                   M1 MO   TMOD                         Timer 1 Timer 0    Timer counter 0 1 mode control register       Bit    Symbol       Gate    Gating control    When set  timer counter  x  is enabled only while  INTx  pin is high and               control bit is set    When cleared timer    x    is enabled whenever    TRx    control bit is set        C T    Counter or timer select bit   Set for counter operation  input from    Tx    input pin    Cleared for timer operation  input from internal system clock         8 bit timer counter               operates as 8 bit timer counter     TLx    serves as 5 bit prescaler        16 bit timer counter                and    TLx    are cascaded  there is no presca
440. tion of the device                 only if PE SWD is held at high level during reset  the watchdog timer is started  immediately after reset is released     PE SWD   0  logic low level         All power saving modes can be activated as described in the following sections      The watchdog timer has to be started by software if system protection is desired     When left unconnected  the pin PE SWD is pulled to high level by a weak internal pullup  This is  done to provide system protection by default     The logic level applied to pin PE SWD can be changed during program execution in order to allow  or block the use of the power saving modes without any effect on the on chip watchdog circuitry    the watchdog timer is started only if PE SWD is on high level at the moment when reset is released   a change at PE SWD during program execution has no effect on the watchdog timer  this only  enables or disables the use of the power saving modes    A change of the pin s level is detected in  state 3  phase 1  A Schmitt trigger is used at the input to reduce susceptibility to noise     In addition to the hardware enable disable of the power saving modes  a double instruction  sequence which is described in the corresponding sections is necessary to enter power down and  idle mode  The combination of all these safety precautions provide a maximum of system  protection     Semiconductor Group 135    SIEMENS On Chip Peripheral Components       Application Example for Switching Pin PE SWD
441. to DAPR  However  the value in DAPR  determines which internal reference voltages are used for the conversion  see section 7 4 2   When  single conversion mode is selected  ADM   0  only one conversion is performed  In continuous  mode after completion of a conversion a new conversion is triggered automatically  until bit ADM is  reset     When external start of conversion is selected a write to DAPR will not start the conversion  in this  case  conversion starts when a falling edge at pin P6 0 ADST is detected  In single conversion  mode one conversion is performed until the next falling edge at P6 0 ADST is recognized  In  continuous mode new conversions are started automatically as long as pin P6 0 ADST is on low  level  This is done until P6 0 ADST goes to logic high level  in this case the last commenced  conversion is completed     7 4 2 Reference Voltages    The SAB 80C517 has two pins to which a reference voltage range for the on chip A D converter is  applied  pin Varer for the upper voltage and pin Vienn for the lower voltage   In contrast to  conventional A D converters it is now possible to use not only these externally applied reference  voltages for the conversion but also internally generated reference voltages which are derived from  the externally applied ones  For this purpose a resistor ladder provides 16 equidistant voltage levels  between Virer and           These steps can individually be assigned as upper and lower reference  voltage for the converter i
442. to Reload Operation    The compare timer is  once started  a free running 16 bit timer  which upon overflow is  automatically reloaded by the contents of the special function register CTRELL  compare timer  reload register  low byte  and CTRELH  compare timer reload register  high byte   An initial writing  to the reload register CTRELL  the low byte  starts the timer  If the compare timer is already running   a write to CTRELL again triggers an instant reload of the timer  in other words restarts the timer in  the cycle following the write instruction with the count being loaded to the reload registers CTRELH   CTRELL     Figure 7 37  Compare Timer Control Register CTCON       0E1y   T2PS1          CTF   CLK2   CLK1   CLKO   CTCON                                  Compare timer control register  Contains clock selection bits for the compare timer  the compare  timer overflow flag and the control bit for the timer 2 prescaler              Bit Function   CLK2   CLK1 Compare timer input clock selection  See table below    CLKO   CTF Compare timer overflow flag  Bit is cleared by hardware  If the compare    timer interrupt is enabled  CTF 2 1 will cause an interrupt        T2PS1 Prescaler select bit for timer 2  T2PS1 must be 0 for the counter operation of timer 2              CLK2 CLK1 CLKO Function  Compare timer input clock is fog   2          Compare timer input clock is fosc 4       Compare timer input clock is fosc 8       Compare timer input clock is fosc 16          Compa
443. to change the low byte of the compare latch  then the high byte may be left unaffected     Summary of the above description of the TOC loading         The CMx registers are   when switched to the compare timer   protected from direct loading  by the CPU  A register latch couple provides a defined load time at timer overflow        Thus  the CPU has a full timer period to load a new compare value  there is no danger of  overwriting compare values which are still needed in the current timer period        When writing a 16 bit compare value  the high byte should be written first since the write to   low byte instruction enables a 16 bit wide TOC loading at next timer overflow         fthere was no write access to a CMx low byte then no TOC loading will take place        Because of the TOC loading  all compare values written to CMx registers are only activated  in the next timer period     Initializing the Compare Register Compare Latch Circuit    Normally when the compare function is desired the initialization program would just write to the  compare register  called  register latch      The compare latch itself cannot be accessed directly by a  move instruction  it is exclusively loaded by the timer overflow signal     In some very special cases  however  an initial loading of the compare latch could be desirable  If  the following sequence is observed during initialization then latches  the register and the compare  latch  can be loaded before the compare mode is enabled     S
444. truction sequence  JBC ACC 3 LABEL1  JBC ACC 2 LABEL2  will cause program execution to continue at the instruction identified by the label  LABEL2  with the accumulator modified to 524  01010010p     Operation  JBC   PC   lt   PC    3  if  bit    1  then  bit      0    PC       PC    rel   Encoding  0001 0000 bit address rel  address   Bytes    Cycles     Semiconductor Group 206    SIEMENS Instruction Set       JC rel  Function     Description     Example     Operation     Encoding     Bytes   Cycles     Jump if carry is set    If the carry flag is set  branch to the address indicated  otherwise proceed with the  next instruction  The branch destination is computed by adding the signed relative   displacement in the second instruction byte to the PC  after incrementing the PC  twice  No flags are affected     The carry flag is cleared  The instruction sequence    JC LABEL1  CPL C  JC LABEL2    will set the carry and cause program execution to continue at the instruction  identified by the label LABEL2     JC           lt   PC    2   if  C   1   then  PC       PC    rel             0100 0000 rel  address                      Semiconductor Group 207    SIEMENS Instruction Set       JMP  A   DPTR    Function     Description     Example     Operation     Encoding     Bytes   Cycles     Jump indirect    Add the eight bit unsigned contents of the accumulator with the sixteen bit data  pointer  and load the resulting sum to the program counter  This will be the address  for subseque
445. tself  These internally generated reference voltages are called Vintarer and  Viwracno  The internal reference voltage programming can be thought of as a programmable  D A  converter  which provides the voltages Vintages and Vintagnp for the A D converter itself     Semiconductor Group 87    SIEMENS On Chip Peripheral Components       The SFR DAPR  see figure 7 29  is provided for programming the internal reference voltages  Vintaner and Vinracno  For this purpose the internal reference voltages can be programmed in steps  of 1 16 of the external reference voltages  Varer     Vacuno  by four bits each in register DAPR  Bits 0  to    specify Vintacnp  While bits 4 to 7 specify Vinrarer  A minimum of 1 V difference is required  between the internal reference voltages Vinrarer and                  for proper operation of the A D  converter  This means  for example  in the case where Varer is 5 V and Vacno is O V  there must be  at least four steps difference between the internal reference voltages Vinrarer and Vinracno     The values of Vintacno and Vinarer are given by the formulas     DAPR   3  0     V NTAGND   VAGND   AREF   Vacno     16  with DAPR   3  0   lt  Cu     DAPR   7  4     VintaREF   VAGND    Vaner m Vacno     16  with DAPR   7  4   gt  3H     DAPR   3  0  is the contents of the low order nibble  and DAPR   7  4  the contents of the high order  nibble of DAPR     Figure 7 29  Special Function Register DAPR  Address DA        ODA Programming of Viurarer Programming 
446. tten to the port latches  when used as general purpose port   When an alternate function is used  the port pin is controlled by the respective peripheral unit   Therefore the port latch must contain a  one  for that function to operate  The same applies  when the port pins are used as inputs  Ports 1  3  4 and 5 are bit  addressable     The SAB 80C517 has two dual purpose input ports  The twelve port lines at port 7 and port 8  can be used as analog inputs for the A D converter  If input voltages at P7 and P8 meet the  specified digital input levels  Vj  and Vj  the port can also be used as digital input port     Semiconductor Group 300    SIEMENS SAB 80C517 80C537       Power Saving Modes           SAB 80C517 provides     due to Siemens ACMOS technology     three modes in which  power consumption can be significantly reduced         The Slow Down Mode  The controller keeps up the full operating functionality  but is driven with the eighth part of its  normal operating frequency  Slowing down the frequency greatly reduces power  consumption         The Idle Mode  The CPU is gated off from the oscillator  but all peripherals are still supplied by the clock and  able to work         The Power Down Mode  Operation of the SAB 80C517 is stopped  the oscillator is turned off  This mode is used to  save the contents of the internal RAM with a very low standby current     All of these modes are entered by software  Special function register PCON  power control  register  address is 8
447. type  the contents of RO or R1 in the current register bank provide an  eight bit address multiplexed with data on PO  Eight bits are sufficient for external       expansion decoding or a relatively small RAM array  For somewhat larger  arrays  any output port pins can be used to output higher order address bits  These  pins would be controlled by an output instruction preceding the MOVX     In the second type of MOVX instructions  the data pointer generates a sixteen bit  address  P2 outputs the high order eight address bits  the contents of DPH  while  PO multiplexes the low order eight bits  DPL  with data  The P2 special function  register retains its previous contents while the P2 output buffers are emining the  contents of DPH  This form is faster and more efficient when accessing very large  data arrays  up to 64 Kbyte   since no additional instructions are needed to set up  the output ports     Itis possible in some situations to mix the two MOVX types  A large RAM array with  its high order address lines driven by P2 can be addressed via the data pointer  or  with code to output high order address bits to P2 followed by a MOVX instruction  using RO or R1     An external 256 byte RAM using multiplexed address data lines  e g  an SAB 8155  RAM l O timer  is connected to the SAB 80 c 5XX port 0  Port    provides control  lines for the external RAM  Ports 1 and 2 are used for normal I O  Registers 0 and  1 contain 124 and 344  Location 344 of the external RAM holds the v
448. uctor Group 306       SIEMENS SAB 80C517 80C537       Instruction Set Summary    The SAB 80C517 80C537 has the same instruction set as the industry standard 8051 micro   controller     A pocket guide is available which contains the complete instruction set in functional and hexa   decimal order  Furtheron it provides helpful information about Special Function Registers  In   terrupt Vectors and Assembler Directives     Literature Information       Title Ordering No   Microcontroller Family SAB 8051 Pocket Guide B158 H6497 X X 7600             Semiconductor Group 307    SIEMENS SAB 80C517 80C537       Absolute Maximum Ratings    Ambient temperature under bias    BAB COGS 1 PBSC rito rore oo Eo geb RE tua iE UR dE er         0 to 70   C  SAB 806517 83659 7  TDi   40 to 85  C  Storage temperature         a ipia        Y RR     65 to 150   C  Voltage on        pins with respect to ground  Vag                                            0 5 Vto6 5 V  Voltage on any pin with respect to ground                                                     0 5to Veg 40 5 V  Input current on any pin during overload condition                                           10mA to  10mA  Absolute sum of all input currents during overload condition                       1100mAl  POWSPdISSIDAllOrt  aso Pa Ferte utr ta      Duet Kors 2W    Note Stresses above those listed under  Absolute Maximum Ratings  may cause permanent  damage of the device  This is a stress rating only and functional operation of the
449. uest is to be serviced first  Thus  within each  priority level there is a second priority structure determined by the polling sequence  as follows  see  figure 8 10          Within one pair or triplet the leftmost interrupt is serviced first  then the second and third  when  available       The pairs or triplets are serviced from top to bottom of the table     Semiconductor Group 162    SIEMENS    Interrupt System       Figure 8 9    Special Function Registers        and IP1  Address          and 0  9       0  9      0B9y       IPO 5    IPO 4   IPO 3   IPO 2   IPO 1   IPO O   IPO                    IP1 5                IP1 4   IP1 3   IP1 2   IP1 1   IP1 0   IP1                         These bits are not used for interrupt control     Corresponding bit locations in both registers are used to set the interrupt priority level of an interrupt    pair or triplet                                                     Bit Function  IP1 x IPO x       0 0   Set priority level O  lowest   0 1 Set priority level 1  1 0   Set priority level 2  1 1 Set priority level 3  highest   Bit Function  IP1 0 IP0 0 IEO RI1   TH ADC  IP1 1 IPO 1 TFO IEX2  IP1 2 IP0 2 IE1 IEX3  IP1 3 IP0 3 TF1 CTF IEX4  IP1 4 IPO 4 RIO   TIO IEX5  IP1 5 IP0 5 TF2   EXF2 IEX6  Semiconductor Group 163    SIEMENS Interrupt System                      Figure 8 10   Priority Within Level Structure    High  gt  Low   Priority  Interrupt Source   IEO RI   TI   ADC   High   TFO IEX2   IE1           l   TF1 CTF IEX4   RIO   TI
450. ulaci  n del control     Memoria Descriptiva     2   MEMORIA DE C  LCULO     Control mediante Linealizaci  n Entrada Salida    2 1   Introducci  n     En este cap  tulo se explicar   detalladamente el control mediante Linealizaci  n  Entrada Salida  tanto la parte de hardware como la de software  se justifica los disefios de  los circuitos  as   como los materiales utilizados y el algoritmo implementado a la hora de  implementar los diferentes circuitos        Figura 2 1  Diagrama de bloques del controlador     Se explicar   tambi  n los par  metros de la planta as   como los componentes de esta   as   como se debe utilizar la placa Altair para el microcontrolador 80C537  as   como el  programa utilizado para la programaci  n de este     2 2   Control mediante Linealizaci  n Entrada Salida     Para realizar el control del convertidor Boost se debe de obtener las variables del  convertidor Boost  que en nuestro caso ser  n la intensidad que pasa por las dos bobinas y  la tensi  n de la salida del convertidor  estas variables se ver  n afectadas por las variaciones  de carga y de tensi  n de entrada     La implementaci  n de este control por Linealizaci  n por Entrada Salida se ha  realizado con un sistema digital en un microcontrolador 80C537  Se ha escogido un  sistema de control digital para la implementaci  n de este control ya que al tenerse que  realizar multiplicaciones y divisiones ser  a muy dif  cil la implementaci  n en anal  gico     La elecci  n del microcontrolado
451. ull range is    40     to 125  C for    level part     55 C to 125  C for M level part   t Referenced to 2 5 V  NOTE 4  Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA   150  C extrapolated  to TA   25  C using the Arrhenius equation and assuming an activation energy of 0 96 eV     vy TEXAS  INSTRUMENTS    POST OFFICE BOX 655303    DALLAS  TEXAS 75265 21    1    E  al    7  7         4  15 0  0       m    2  65   9  35  40  75  95  2    Q  Q  pF  Q  5  2       2   IDD Supply current Vo   2 5 V  No load               TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TLC2272Q and TLC2272M operating characteristics at specified free air temperature  Vpp   5 V    TLC2272Q  TLC2272AQ   PARAMETER TEST CONDITIONS TLC2272M TLC2272AM UNIT    TYP MAX   MIN TYP MAX  3     3 6 2 3 6  Slew rate at Vo   1 25 V to 2 75 V       unity gain RL   10 kot         100 pFt 17 i Hs    Equivalent input  noise voltage    VNPP equivalent input    In Equivalent input 25  C fA Hz  noise current    nV AHz    THD N distortion plus f   20 kHz  Ay   IAy 10    noise RL   10 kot   Ay 100   7100    Gain bandwidth      f 10 kHz  RL 10kOf    2200  product CL   100 pFt  Maximum output    VO PP    2 V  Ay   1  25  C  swing bandwidth   R    10 kot  C    100 pF   Ay   1  To 0 196  Settling time ud rie 102 3  25  C  Cr   100 prt To 0 01   Phase margin at    9m unity gain R
452. ures are applicable only within the rated operating free air temperature ranges of the various devices        34    35 TEXAS    INSTRUMENTS    POST OFFICE BOX 655303 9 DALLAS  TEXAS 75265    Vo   Output Voltage     V    los   Short Circuit Output Current     mA    TLC227x  TLC227xA  Advanced LinCMOS    RAIL TO RAIL  OPERATIONAL AMPLIFIERS    SLOS190C     FEBRUARY 1997     REVISED JULY 2000    TYPICAL CHARACTERISTICS    SHORT CIRCUIT OUTPUT                   vs  FREE AIR TEMPERATURE                                                 15 oa  VOD   5V  Vip   100 mV  11  7   3   1  Vip   100 mV   5   75  50  25 0 25 50 75 100 125  TA     Free Air Temperature       C  Figure 21  OUTPUT VOLTAGE  vs  DIFFERENTIAL INPUT VOLTAGE  5           5V         25  C  RL   10 ko  3  Vic 9  1     1   3                          5     1000  750  500  250 0 250 500 750 1000  Vip   Differential Input Voltage     uV    Figure 23    Vo   Output Voltage     V    Avp   Differential Voltage Amplification     V mV    OUTPUT VOLTAGE  vs  DIFFERENTIAL INPUT VOLTAGE                                                                                                                                                                                                                                                             800    400 0 400 800 1200  Vip     Differential Input Voltage     uV  Figure 22  LARGE SIGNAL DIFFERENTIAL  VOLTAGE AMPLIFICATION  vs  LOAD RESISTANCE  1000  Vo   1V  TA   25  C  100  Vpp   5V  10  Vpp
453. urther use  they should be stored in general purpose registers in the internal RAM     Semiconductor Group 126    SIEMENS On Chip Peripheral Components       Operation of the MDU    The MDU can be regarded as a special coprocessor for multiplication  division and shift  Its  operations can be divided into three phases  see also figure 7 55      1  Loading the MDx registers  2  Executing the calculation  3  Reading the result from the MDx registers    During phase two  the MDU works on its own parallelly to the CPU  Execution times of the above  table refer to this phase  Because of the fast operation and the determined execution time for SAB  80C517 s instructions  there is no need for a busy flag  The CPU may execute a determined number  of instructions before the result is fetched  The result and the remainder of an operation may also  be stored in the MDx registers for later use     Phase one and phase three require CPU activity  In these phases the CPU has to transfer the  operands and fetch the results                                   1st Write  MDO  Last Write  MD5 or ARCON   First Read Last Read   MDO   MD3 or MD5   v v  Phase 1    Phase 2  gt  Phase 3  gt   Load Registers Calculate Read Registers     Time MCA00787             Figure 7 55  Operating Phases of the MDU    Semiconductor Group 127    SIEMENS On Chip Peripheral Components       How to Select an Operation    The MDU has no dedicated instruction register  only for shift and normalize operations  register  AR
454. ut Latch    Timer Circuit       MCS01848  O Pin             Figure 7 40  Compare Function of Compare Mode 1    7 5 5 Timer Compare Register Configurations in the CCU    The compare function and the reaction of the corresponding outputs depend on the timer compare  register combination  Basically  all compare functions implemented in the SAB 80 C 515 can also  be used in the SAB 80C517  Furthermore  the SAB 80C517 has nine further compare registers and  an additional 16 bit timer  thus providing a high flexibility in assigning compare registers to timers  and output lines     Table 7 10 shows possible configurations of the CCU and the corresponding compare modes  which can be selected  The following sections describe the function of these configurations     Semiconductor Group 107    SIEMENS On Chip Peripheral Components                Table 7 10  CCU Configurations  Assigned Compare Compare Output at   Possible Modes  Timer Register  Timer 2 CRCH CRCL  P1 0 INT3 CCO Comp  mode 0  1   Reload  CCH1 CCL1 P1 1 INT4 CC1 Comp  mode 0  1  CCH2 CCL2   P1 2 INT5 CC2 Comp  mode 0  1  CCHS CCLS3   P1 3 INT6 CC3 Comp  mode 0  1  CCH4 CCL4_   P1 4 INT2 CC4 Comp  mode 0  1  CCH4 CCL4   P5 0 CCMO Comp  mode 1  CCH4 CCL4   P5 7 CCM7 Comp  mode 1  CMHO CMLO   P4 0 CMO Comp  mode 1  CMH7 CML7   P4 7 CM7 Comp  mode 1  Compare CMHO CMLO  P4 0 CMO Comp  mode 0  with shadow latches   timer        CMH7 CML7    4 7     7 Comp  mode 0  with shadow latches                 7 5 5 1 Compare Function of T
455. ut offset voltage    Temperature  coefficient of input  offset voltage    Input offset voltage  long term drift   see Note 4     Input offset current  Input bias current    Common mode  input voltage range    Maximum positive  peak output voltage    Maximum negative  peak output voltage    Large signal  differential voltage  amplification    Differential input    fi  id resistance    China  COmmen moee  rejection ratio  Supply voltage  rejection ratio   AVpp   AVio     ksvR    Ipp Supply current       Common mode  input resistance      Gommon mode f   10 kHz  P package 25  C  input capacitance   25 Closed loop output f  1 MHz   impedance       UNIT    300 2500 300 950    Full range 3000 1500 dl    5    1010820 pA  1    25  C 1     40     to 85  C  Full range    150 150    800                       5 to    5 3  4 104 2       5 to    25             500          lt 5 mV    Full range    25 C  25  C  Full range  25  C  Full range  25  C  25  C  Full range   25  C    3 5    4 1  Full range    3 5  25     25  25      o  a        a    lo   20 uA    lo   200 pA    4 85 4 93  4 85  4 25 4 65  4 25     4 99     4 91    4 85 4 93  4 85  4 25 4 65    lo 2  1          4 25    Vic   0  lo   50 uA    Vic   0  lo   500 uA  Vic  0  lo   5                10            4 99     4 85    4 91       4 85       4 85     4 85   3 5   44       w          al  o          aj a  a  o    Vo t4V Full range    25  C            o    30    o    25  C 1012    1012    poe qe   fme            Vo 20V  No load mA 
456. variables with  destination pointer       MOV LOW DES PTR    0A0H  MOV HIGH DES           2FH       Table Look up Routine under Real Time Conditions                                              Action Code Machine  Cycles  Save old datapointer PUSH DPL 2  PUSH DPH 2  Load Source Pointer MOV DPL  LOW SRC_PTR  2  MOV DPH  HIGH SRC PTR  2  Increment and check for end of table INC DPTR       execution time not relevant for this CJNE     consideration  ndi  Fetch source data byte from ROM table MOVC A            2  Save source pointer and load MOV LOW SRC          DPL 2  destination pointer MOV HIGH SRC                 2  MOV DPL  LOW DES PTR  2  MOV DPH  HIGH DES PTR  2  Increment destination pointer  ex  time          INC               relevant   Transfer byte to destination address MOVX QDPTR  A 2  Save destination pointer MOV LOW DES PTR   DPL 2  MOV HIGH DES PTR  DPH 2  Restore old datapointer POP DPH 2  POP DPL 2  Total execution time  machine cycles      28  Semiconductor Group 31    SIEMENS External Bus Interface       2  Using Two Datapointers  Code for an SAB 80C517     Initialization Routine             Action Code   Initialize DPTR6 with source pointer MOV DPSEL   06H  MOV DPTR   1FFFH   Initialize DPTR7 with destination pointer MOV DPSEL   07H  MOV DPTR   2FA0H          Table Look up Routine under Real Time Conditions                                     Action Code Machine  Cycles   Save old source pointer PUSH DPSEL 2   Load source pointer MOV DPSEL   06H 2   Increme
457. vel before the power down mode is terminated  The reset signal  that terminates the power down mode also frees the oscillator  The reset should not be activated  before        is restored to its normal operating level and must be held active long enough to allow the  oscillator to restart and stabilize  similar to power on reset      Semiconductor Group 139    SIEMENS On Chip Peripheral Components       7 7 3   Slow Down Mode    In some applications  where power consumption and dissipation is critical  the controller might run  for a certain time at reduced speed  e g  if the controller is waiting for an input signal   Since in  CMOS devices there is an almost linear interdependence of the operating frequency and the power  supply current  a reduction of the operating frequency results in reduced power consumption     In the slow down mode all signal frequencies that are derived from the oscillator clock are divided  by eight  This also includes the clockout signal at pin P1 6 CLKOUT     If the slow down mode is to be used the pin PE SWD must be held low     The slow down mode is entered by setting bit SD  PCON 4   see figure 7 57  The controller  actually enters the slow down mode after a short synchronization period  max  two machine cycles    The slow down mode can be used together with idle and power down mode     The slow down mode is disabled by clearing bit SD     Semiconductor Group 140    SIEMENS On Chip Peripheral Components       7 8 Fail Save Mechanisms    The SAB
458. versor A D   Prioridad del Timer 0 mayor que el  conversor A D     Inicializaci  n del conversor A D   Seleccionar el puerto 7 pin 0 para la    primera conversi  n   Inicio conversi  n entre 0 y 2 5 V     PROGRAMA PRINCIPAL    Bucle infinito     Memoria de c  lculo       56    Control mediante Linealizaci  n Entrada Salida    Interrupci  n del Timer 0     Inicio Interrupci  n  Del Timer 0         Puesta a cero del  Watch Dog Timer          Que valor tiene  la variable reloj     Introducimos en la parte baja Introducimos en la parte  del Timer O el tiempo de baja del Timer 0 el tiempo  conducci  n del transistor de de conducci  n del transistor  potencia t     Toff  de potencia t   Ton        Fin de Interrupci  n    Memoria de c  lculo    Control mediante Linealizaci  n Entrada Salida    Interrupci  n del conversor A D     Inicio Interrupci  n   del conversor A D  Guardar el valor de la conversi  n   en la variable valor      Qu   valor tiene la  variable ad_con            ad           ad           ad              Seleccionar el P7 1   Ilb   Seleccionar el P7 2   126    para la pr  xima para la pr  xima  conversi  n  conversi  n     Guardar la tensi  n de Guardar la intensidad 1  salida   Vob     Ilb    Nuevo valor para Nuevo valor para  ad          1  ad con   2   Comienza la pr  xima Comienza la pr  xima  conversi  n entre 0 y 2 5 V conversi  n entre 0 y 2 5 V    BLOQUE  A    Fin de Interrupci  n    58  Memoria de c  lculo    Control mediante Linealizaci  n Entrada Salida   
459. vided for some exceptions during MDU calculations  There are three cases  where flag MDOV ARCON 6 is set by hardware         Division by zero      Multiplication with a result greater then 0000 FFFFy     auxiliary carry of the lower 16bit       Start of normalizing if the most significant bit of MD3 is set  MD3 7   1      Any operation of the MDU which does not match the above conditions clears the overflow flag  Note  that the overflow flag is exclusively controlled by hardware  It cannot be written to     7 6 5 The Error Flag    An error flag  bit MDEF in register ARCON  figure 7 56   is provided to indicate whether one of the  arithmetic operations of the MDU  multiplication  division  normalize  shift left right  has been  restarted or interrupted by a new operation     This can possibly happen e g  when an interrupt service routine interrupts the writing or reading  sequence of the arithmetic operation in the main program and starts a new operation  Then the  contents of the corresponding registers are indeterminate  they would normally show the result of  the last operation executed      Semiconductor Group 132    SIEMENS On Chip Peripheral Components       In this case the error flag can be used to indicate whether the values in the registers MDO to MD5  are the expected ones or whether the operation must be repeated  For a multiplication division  the  error flag mechanism is automatically enabled with the first write instruction to MDO  phase 1    According to the ab
460. w  dynamic switching of the WDT     Software initialization is done by setting bit SWDT  A refresh of the watchdog timer is done by  setting bits WDT and SWDT consecutively     A block diagram of the watchdog timer is shown in figure 11     When a watchdog timer reset occurs  the watchdog timer keeps on running  but a status flag  WDTS is set  This flag can also be manipulated by software     Semiconductor Group 305    SIEMENS SAB 80C517 80C537          SIS  WDT Reset Request    WDTH     IPO 0A9                       Jes           j     External HW Reset  PE SWD      Y  Control Logic      qw       Tn 6  088                 WDTREL    MCB00788          Figure 11  Block Diagram of the Programmable Watchdog Timer    Oscillator Watchdog    The oscillator watchdog monitors the on chip quartz oscillator  A detected oscillator failure   fosc    appr  300 kHz  causes a hardware reset  The reset state is held until the on chip  oscillator is working again  The oscillator watchdog feature is enabled by a high level at pin  OWE  pin 69   An oscillator watchdog reset sets status flag OWDS which can be examined and  modified by software  Figure 12 shows a block diagram of the oscillator watchdog        pos                   IPO OA9y   OWD Reset Request  gt          On Chip  Oscillator       Frequency Delay  Comparator 5 Cycles                Internal  Clock             Watchdog  Oscillator          MCB00789          Figure 12  Functional Block Diagram of the Oscillator Watchdog    Semicond
461. which will be at S1P1 of the next machine cycle     When an instruction reads a value from a port pin  e g  MOV A  P1  the port pin is actually sampled  in state 5 phase 1 or phase 2 depending on port and alternate functions  Figure 7 6 illustrates this  port timing  It must be noted that this mechanism of sampling once per machine cycle is also used  if a port pin is to detect an  edge   e g  when used as counter input  In this case an  edge  is  detected when the sampled value differs from the value that was sampled the cycle before   Therefore  there must be met certain requirements on the pulse length of signals in order to avoid  signal  edges  not being detected  The minimum time period of high and low level is one machine  cycle  which guarantees that this logic level is noticed by the port at least once        S4 55 56 51  P1 P2 P1   2   1   2  P1   2                SLE LI UU UU UU UU Lu    Input sampled                          e g   MOV A  P1                              9   MOV P1 A  Old Data X New Data  MCTO1828   Figure 7 6  Port Timing    Semiconductor Group 48    SIEMENS On Chip Peripheral Components       7 1 4 2 Port Loading and Interfacing    The output buffers of ports 1 through 6 can drive TTL inputs directly  The maximum port load which  still guarantees correct logic output levels can be looked up in the DC characteristics in the Data  Sheet of the        80C517  The corresponding parameters are Vo  and Vo     The same applies to port 0 output buffers  T
462. will be coming  After having received a complete  message  the slave is setting SM21 again  The slaves that were not addressed leave their SM21  set and go on about their business  ignoring the incoming data bytes     In mode B SM21 can be used to check the validity of the stop bit  If SM21   1 in mode B  the receive  interrupt will not be activated unless a valid stop bit is received     7 2 2 3 Baud Rates of Serial Channel 1    As already mentioned serial interface 1 uses its own dedicated baud rate generator for baud rate  generation in both operating modes  see figure 7 14      This baud rate generator consists of a free running 8 bit timer with fosc 2 input frequency  The timer  is automatically reloaded at overflow by the contents of register S1REL  see figure 7 15   The timer  must be started by writing the desired reload value to register S1REL  The baud rate in operating  modes A and B can be determined by following formula     oscillator frequency  Mode A  B baud rate         32 x  256     STREL     At 12 MHz oscillator frequency a baud rate range from about 1 5 kbaud up to 375 kbaud is covered   Using the fast baud rates offers the same functionality as the operating mode 2 in serial interface 0  with its fixed baud rates     Semiconductor Group 63    SIEMENS On Chip Peripheral Components                Phase 2 CLK    fosc 2   Baud Rate Clock       8 Bit Timer    Overflow MCS01830             Figure 7 14  Baud Rate Generator for Serial Interface 1    Figure 7 15  S
463. xecution        ALE    50    23    The Address Latch Enable   output is used for latching the address  into external memory during normal  operation  It is activated every six  oscillator periodes except during an  external data memory access       51    24    External Access Enable   When held at high level  instructions  are fetched from the internal ROM  when the PC is less than 8192  When  held at low level  the SAB 80C517  fetches all instructions from external  program memory  For the SAB 80C537  this pin must be tied low       PO 0   P0 7       52   59       26   27   30   35    I O          Port 0   is an 8 bit open drain bidirectional I O  port  Port 0 pins that have 1 s written to  them float  and in that state can be  used as high impedance inputs  Port 0  is also the multiplexed low order  address and data bus during accesses  to external program or data memory  In  this application it uses strong internal  pull up resistors when issuing 1 s   Port 0 also outputs the code bytes  during program verification in the   SAB 83C517  External pull up resistors  are required during program  verification             Input  O   Output    Semiconductor Group    275    SIEMENS    SAB 80C517 80C537       Pin Definitions and Functions  cont d        Symbol Pin Number                P LCC 84   P MQFP 100 2    Function       P5 7   P5 0  61  68 37   44    I O    Port 5  is a bidirectional I O port with internal  pull up resistors  Port 5 pins that have  1 s written to them are pu
464. xternal program memory fetches port 2 lines output the high byte  of the PC  and during accesses to external data memory they output either DPH or the port 2 SFR   depending on whether the external data memory access is a MOVX  DPTR or a MOVX  Ri      Since the SAB 80C537 has no internal program memory  accesses to program memory are always  external  and port 2 is at all times dedicated to output the high order address byte  This means that  port    and port 2 of the SAB 80C537 can never be used as general purpose       This also applies  to the SAB 80C517 when it is operated with only an external program memory     Semiconductor Group 28    SIEMENS External Bus Interface       5 2 Eight Datapointers for Faster External Bus Access    The Importance of Additional Datapointers    The standard 8051 architecture provides just one 16 bit pointer for indirect addressing of external  devices  memories  peripherals  latches  etc    Except for a 16 bit  move immediate  to this  datapointer and an increment instruction  any other pointer handling is to be done byte by byte  For  complex applications with numerous external peripherals or extended data storage capacity this  turned out to be a  bottle neck  for the 8051 s communication to the external world  Especially  programming in high level languages  PLM51   C   PASCAL51  requires extended RAM capacity  and at the same time a fast access to this additional RAM because of the reduced code efficiency  of these languages     How the 
465. y level  A simple  RET instruction would also have returned execution to the interrupted program  but it would have  left the interrupt control system thinking an interrupt was still in progress  In this case no interrupt of  the same or lower priority level would be acknowledged     Semiconductor Group 166    SIEMENS Interrupt System       8 4 External Interrupts    The external interrupts 0 and 1 can be programmed to be level activated or negative transition  activated by setting or clearing bit ITO or IT1  respectively  in register TCON  see figure 8 5    If ITx   0  x   O or 1   external interrupt x is triggered by a detected low level at the INTx pin   If ITx 2 1  external interrupt x is negative edge triggered  In this mode  if successive samples of the  INTx pin show a high in one cycle and a low in the next cycle  interrupt request flag IEx in TCON is  set  Flag bit IEx then requests the interrupt     If the external interrupt O or 1 is level activated  the external source has to hold the request active  until the requested interrupt is actually generated  Then it has to deactivate the request before the  interrupt service routine is completed  or else another interrupt will be generated     The external interrupts 2 and 3 can be programmed to be negative or positive transition activated  by setting or clearing bit I2FR or I3FR in register T2CON  see figure 8 6   If IXFR   0  x   2 or 3    external interrupt x is negative transition activated  If IXFR   1  external in
466. y mentioned in the general description of compare mode 0  section 7 5 4   a 100   variation of the duty cycle of a PWM signal cannot be reached  A time portion of 1  2   of an n bit  timer period is always left over  This  spike  may either appear when the compare register is set to  the reload value  limiting the lower end of the modulation range  or it may occur at the end of a timer  period     In a timer 2 CCx register configuration in compare mode 0 this spike is divided into two halves  one  at the beginning when the contents of the compare register is equal to the reload value of the timer   the other half when the compare register is equal to the maximum value of the timer register  here   OFFFFy   Please refer to figure 7 44 where the maximum and minimum duty cycle of a compare  output signal is illustrated  Timer 2 is incremented with the machine clock           12   thus at 12 MHz  operational frequency  these spikes are both approx  500 ns long        CCHx CCLx 0000y or  CRCH CRCL  maximum duty cycle                    NC L    Appr  1 2 of a Machine Cycle       CCHx CCLx FFFFY  minimum duty cycle     Appr  1 2 of a Machine Cycle       H  P1 x ca            1851             Figure 7 44  Modulation Range of a PMW Signal Generated with    Timer 2 CCx Register Combination in  Compare Mode 0    The following example shows how to calculate the modulation range for a PWM signal  To calculate  with reasonable numbers  a reduction of the resolution to 8 bit is used  Otherw
467. yed as high speed output unit or as a fast 16 bit pulse width modulator unit  For this  case  every CMx register assigned to the compare timer automatically operates in compare  mode 0  a compare timer overflow sets the corresponding output line at port 4 to low level  a  compare match pulls the pin high again  see also section 7 5 4 1      The minimum resolution attainable at the port 4 outputs is           6  appr  166 6 ns at fosc   12 MHz    The compare timer is provided with a 16 bit auto reload and an 8 bit prescaler for a very high  flexibility concerning timer period length and input clock frequency  A block diagram of the compare  timer is shown in figure 7 36     Input Clock Selection    The compare timer receives its input clock from a programmable prescaler which provides eight  different input frequencies  fosc 2  fosc 4  fosc 8  fosc 16  fosc 32  fosc 64  fosc 128         256  The  selection can be done in a three bit field  binary coded  in special function register CTCON  see  figure 7 37   Register CTCON can be written to at any time  its default value after reset is         that  iS fosc 2 input frequency            Control  CTCON             Ld  gt  To Compare    Circuitry              To Interrupt    16 Bit Compare Timer CTF    Circuitry    Overflow         16 Bit Reload  CTREL           MCB00783             Figure 7 36  Compare Timer Block Diagram    Semiconductor Group 101    SIEMENS On Chip Peripheral Components       Programming the Compare Timer in Au
468. yte 8DH 00H  TLO Timer 0  Low Byte 8AH         TL1 Timer 1  Low Byte 8By 00H  TMOD Timer Mode Register 89   00H  Watchdog         Interrupt Enable Register 0 0A84     00    IEN1   Interrupt Enable Register 1 OB8y      00    IPO   Interrupt Priority Register 0     9   00H  IP12 Interrupt Priority Register 1 0B9y XX00 0000p   WDTREL   Watchdog Timer Reload Register 86H 00H                   1  Bit addressable special function registers   2  This special function register is listed repeatedly since some bits of it also belong to other functional blocks   3  X means that the value is indeterminate    4  These registers are available in the CA step and later steps     Semiconductor Group    23    SIEMENS Memory Organization       The following paragraphs give a general overview of the special function registers and refer to  sections where a more detailed description can be found     Accumulator  SFR Address OE0y    ACC is the symbol for the accumulator register  The mnemonics for accumulator specific  instructions  however  refer to the accumulator simply as A     Program Status Word Register  PSW   SFR Address 0DO0Oy    0D7y 0D6y 005   004   0D3y 002   0D1y 000    0DO    CY   AC   FO   RS1   RSO   OV   Fi P   Psw                                     The PSW register contains program status information                             Bit Function   CY Carry Flag   AC Auxiliary carry flag  for BCD operations    FO General purpose user flag 0   RS1 RSO   Register bank select control bit
    
Download Pdf Manuals
 
 
    
Related Search
    
Related Contents
    Mustang SDXC Class10  4 pages  Digitus DA-20130 mice  Netgear Switch GSM7248 User's Manual  D5.2 ENORASIS User Manual  電子計算組織・八戸工業高等学校  à projet: [a DGCS fait [e point  groupe d`appel - Grandstream Networks, Inc    Copyright © All rights reserved. 
   Failed to retrieve file