Home
CALENDF-2010 - Information scientifique et technique (IST)
Contents
1.
2. XMAS172 SPECTRE 1 zone 0 siy TEFF 300 NDIL 5 1 10 100 1000 1 0E 10 NFEV 9 525 jeff30n525 1 asc SORTIES NFSFRL 0 b10 sfr NFSF 12 b10 sf NFSFTP 11 b10 sft NFTP LO b10 tp PREC 4 NIMP 0 80 REGROUTP NFTP 10 b10 tp NFTPR 17 b10 tpr NIMP 0 80 REGROUSF NFSF 12 bl0 sf NFSFR 13 bl0 sfdr NIMP 0 80 REGROUSF NFSF 11 b10 sft NFSFR 14 b10 sftr NIMP 0 80 COMPSF NFSF1 13 b10 sfdr NFSF2 14 b10 sftr NFSFDR 20 bl0 err NFSFDA 21 b10 era NIMP 0 80 END 41 CALENDF ENERGIES 100000 1 AILLAGE GENERE 2 zones 7284 1x 19640330 0 480 147 293 5 043477 298500 297200 82500 79500 28500 27000 4 918953 4 797503 4 679053 4 563526 4 450853 4 340961 4 000000 3 927860 3 830880 3 736300 3 644050 3 554080 3 300000 3 217630 3 137330 3 059020 2 983490 2 909830 2 720000 2 659320 2 600000 2 550000 2 485030 2 421710 2 300270 2 242050 2 185310 2 130000 2 100000 2 059610 1 930000 1 884460 1 855390 1 840000 1 797000 1 755000 1 629510 1 590000 1 544340 1 500000 1 475000 1 440000 1 337500 1 300000 1 267080 1 235000 1 202060 1 170000 1 110000 1 097000 1 080000 1 071000 1 045000 1 035000 0 986000 0 972000 0 950000 0 930000 0 910000 0 876425 0 819450 0 790000 0 780000 0 741550 0 705000
3. 080000 077000 074500 072000 069500 067000 064750 062500 060250 058000 056000 054000 052000 050000 048000 046000 044000 042000 040250 038500 036750 035000 033750 032500 031250 030000 028750 027500 026250 025000 023750 022500 021250 020000 018750 017500 016250 015000 013750 012500 011250 010000 008967 007934 006900 006500 006000 005500 005000 004500 004000 003500 003000 002300 001700 001300 001000 000800 000500 000110 TEFF 293 16 DIL 6 0 1 1 10 100 1000 1 0E 10 FEV 9 9237 jeff30n9237 2 asc SORTIES NFCS 0 u238e sfr NFSF 12 u238e sf NFTP 10 u238e tp IPRECI 4 IMP 0 80 REGROUTP NFTP 10 v238e tp NFTPR u238e tpr IMP O 80 REGROUSF NFSF 12 v238e sf NFSFR 13 u238e sfr NIMP 0 80 SEFFNRA ENERGIES 1 0E 5 20 0E 6 FTP 11 u238e tpr FSFTP 18 u238e sft DIL 6 0 1 1 10 100 1000 1 0E 10 IMP 0 80 COMPSF NFSF1 13 u238e sft NFSF2 18 u238e sfr NFSFDR 20 u238e err NFSFDA 21 u238e era NIMP 0 80 END 67 inu238f inu239e SIGTTEUM ENERGIES 4000000 9000 TEFF 300 NFEV 9 9237 Njeff30n9237_2 asc NFCS 10 u238f cs PRECI 1 NIMP O 80 REGROUCS NF
4. 33 Example of an NFSF sf output corresponding to Hf 78 directly calculated effective cross section in Xmas 172 groups format prior to REGROUSF Remark that group 37 has been sub divided into three zones by the code s ffectives direct for 72 HF 178 NAIG DIST xxxx ZA 72178 MAT 7237 TEFF 300 0 172 gr de 1 0000E 5 a 1 9640E 7 IP 4 NDIL 3 SDIL 1 0000 100 00 1 00000E 10 Dilutions in barns IG 1 ENG 1 733253E 7 1 964033E 7 NK 1 NOR 0 NPAR 4 KP 2101 4 15 0 SMOY 5 567459 0 3 220455 0 3 533597 3 4 341010 1 1 909369 0 Total Elastic Absorption Inelastic N XN SEF 0 5 567151 0 5 567440 0 5 567459 0 Total SEF 1 3 220240 0 3 220442 0 3 220455 0 Elastic SEF 2 3 536712 3 3 533790 3 3 533597 3 Absorption SEF 3 4 340350 1 4 340969 1 4 341010 1 Inelastic SEF 4 1 909339 0 1 909367 0 1 909369 0 N XN IG 2 ENG 1 491825E 7 1 733253E 7 NK 1 NOR 0 NPAR 4 KP 2 101 4 15 0 SMOY 5 625593 0 3 230511 0 1 982992 3 4 704450 1 1 922653 0 SEF 0 5 625549 0 5 625590 0 5 625593 0 SEF 1 3 230438 0 3 230507 0 3 230511 0 SEF 2 1 982083 3 1 982935 3 1 982992 3 SEF 3 4 704670 1 4 704464 1 4 704450 1 SEF 4 1 922661 0 922654 0 922653 0 IG 37 ENG 5 000000E 4 5 516564E 4 NK 1 NOR 0 NPAR 2 KP 2 101 0 0 0 SMOY 1 166758 1 1 142097 1 2 4661
5. 10 F N 0Y 99 CALENDF 2010 r o je J N V K 10 a JAN al A 2 45 2 5 2 55 2 60 265 Incident Energy Kev 94 Pu 239 36 Cross Section barns Ratio 1 6 1 2 0 8 Groupwise infinitely dilute cross section set MAT 9443 Total 94 Pu 241 Cross Section 27 40 To 62 88 amp Min i m cm Ratio F PREPRO 2010 1 CATENDF 2010 i n L L i J ma Tee H HH CALENDF 2010 PREPRO 2010 4 1 4 4 4 4 4 4 10 10 10 10 10 10 104 10 Incidenl Energy eV 94 Pu 241 37 5 Appendix A Code installation This appendix explains how to install CALENDF on various computer systems CALENDF is currently available on those computer platforms Intel 32 64 running Window XP 7 Intel 64 AMD 64 running Linux Unix workstation Oracle Apple IBM The CALENDF code package is available on different media although the Fortran code itself could be loaded on less than 1 44 Mbytes It will require around 300 Mbytes of free disk space on the workstation on which it will be installed and this includes all the input data files and test cases results Operating system under which the code has been executed Oracle Solaris 11 and Studio 12 Fortran 90 95 compiler Apple OsX 10 6 and Intel ifort 11 gfortran 4 5 g95 compilers Ubuntu 10 Fedora 13 linux and gfortran 4 5
6. 43723 68368 26470 46999 44819 81966 62628 09804 99930 74196 57802 72015 45484 18981 04348 76792 13000 75500 44000 17000 07100 98600 86000 62500 40000 30000 18000 10000 05800 02500 00500 51 NFSFR NIMP 0 COMPSF NESF1 NFSF2 NFSFDR 20 NFSFDA 21 NIMP 0 END 14 80 13 14 80 pu23d sftr pu23d pu23d pu23d pu23d sfdr S ET err era 52 inpu240 CALENDF RE RE RE CO ENI MODIFOPT LCORSCT FALSE MODIFOPT LFORMRF FALSE ENERgies 1 0E 5 20 0E 6 MAILlage READ XMAS172 SPECtre borne inferieure ALPHA 1 zones 0 sch TEFF 293 6 NDIL 1 1 0E 10 NFEV 9 9440 jeff30n9440_3 asc SORTies NFSFRL 0 pu240 sfr NF SF 12 pu240 sf NESFTP 11 pu240 sft NF TP 0 pu240 tp PREC 4 NIMP 0 80 GROUTP NFTP 10 pu240 tp NFTPR 17 pu240 tpr NIMP 0 80 GROUSF NFSF 12 pu240 sf NFSFR 13 pu240 sfdr NIMP 0 80 GROUSF NFSF 11 pu240 sft NFSFR 14 pu240 sftr NIMP 0 80 MPSF NFSF1 13 pu240 sfdr NFSF2 14 pu240 sftr NFSFDR 20 pu240 err NFSFDA 21 pu240 era NIMP O 80 D 53 inpu240a CALENDF MODIFOPT MODIFOPT ENERGIES MAILLAGE 5 4572 1 480 3744 1 1920 1320 1 960 1116 1 480 S25 lx 012346 767891
7. United Kingdom Atomic Energy Authority Culham Science Centre Abingdon Oxfordshire OX14 3DB United Kingdom CEA DEN DANS DM2S SERMA 91191 Gif sur Yvette CEDEX France March 2011 Abstract CALENDF 2010 represents a Fortran 95 update of the 1994 2001 then 2005 code distribution with emphasise on programming quality and standards physics and usage improvements Devised to process multigroup cross sections it relies on Gauss quadrature mathematical principle and strength The followings processes can be handled by the code moment probability table and effective cross section calculation pointwise cross section probability table and effective cross section regrouping probability table condensation probability table mix for several isotopes probability table interpolation effective cross section based probability table calculations probability table calculations from effective cross sections cross section comparison complete energy pointwise cross section processing and thickness dependent averaged transmission sample calculation The CALENDF user manual after having listed all principal code functions describes sequentially each of them and gives comments on their associated output streams Installation procedures test cases and running time platform comparisons are given in the appendix R sum Le code CALENDF 2010 est une r vision en Fortran 95 du code diffus en 1994 2001 puis 2005 avec une am lioration de sa
8. pu240cl sf NFSFR 13 pu240c1 sfdr NIMP 0 80 REGROUSF NFSF 11 pu240cl sft NFSFR 14 pu240cl sftr NIMP 0 80 COMPSF NFSF1 13 pu240cl sfdr NFSF2 14 pu240cl sftr NFSFDR 20 pu240cl err NFSFDA 21 pu240cl era NIMP 0 80 D 57 inpu240d CALENDE MODIFOPT LCORSCT FALSE MODIFOPT LFORMRF FALSE ENERgies 1 5 20 0E 6 MAILlage READ XMAS172 SPECtre borne inferieure ALPHA 1 zones 0 dis TEFF 293 6 NDIL 1 1 0E 10 NFEV 9 9440 jeff3ltn9440 3 asc SORTies NFSFRL pu240d sfr NESFTP NFTP PREC 4 NIMP 0 80 REGROUTP NFTP 10 pu240d tp NFTPR 17 pu240d tpr NIMP 0 80 LECRITP MODIFOPT LPSPPOS TRUE NFTPR 17 pu240d tpr NFTPP 18 pu240d tpp NIMP 0 80 REGROUSF NESE 12 pu240d sf NFSFR 13 pu240d sfdr NIMP 0 80 REGROUSF NFSF 11 pu240d sft NFSFR 14 pu240d sftr NIMP 0 80 COMP SF NFSF1 13 pu240d sfdr NFSF2 14 pu240d sftr NFSFDR 20 pu240d err NFSFDA 21 pu240d era NIMP 0 80 pu240d sft pu240d tp 0 NFSF 12 pu240d sf 1 1 LO D 58 inpu240e CALEN DF MOD IFOPT LCORSCT FALSE MOD IFOPT LFORMRF ENERgies 1 0E 5 FALSE 20 0E 6 MAIL XMAS172 SPECtre E 0 TEFF NDIL 1 0E 10 NFEV 9 SORTies NFSF
9. 354 923 29500 LODOS 23018 20655 18675 16728 14859 13020 10000 05 20 0E 6 NERE 11232 groups 950084 708666 479021 260577 051700 855125 667113 488268 320188 157405 002373 485595 72000 6000 4692 3600 2420 1300 0398 9522 86508 78650 0 0 0 5 0 0 4 4 3 0 0 0 0 0 0 3 2 0 0 1 0 9 0 1 0 0 8 6 GN XO U1 Cy CO0 N ND ODO N POD DOD C Un Cy O CALENDF ODIFOPT NCAS 1113916 ENERGIES 1 0E AILLAGE GE 5 zones 4572 1 19640329 8 480 3744 1 1433 81736 1920 1320 21 203299503 960 1116 1 51 578022 480 524 1 5 0434766 5 012346 4 981215 4 4 767891 4 738278 4 4 535358 4 507190 4 4 314166 4 287372 4 4 103400 4 077550 4 3 903615 3 879370 3 Je 113 23 81 50 0901753 3 532143 3 510205 3 3 360563 3 340375 3 3 197555 3 177480 3 3 040138 3 021255 3 2 891870 2 873910 2 2 151947 2 735973 2 2 629660 2 614830 2 2 501272 2 485030 2 2 382370 2 371185 2 2 271160 2 256605 2 2 157655 2 143828 2 2 059610 2 049708 2 1 974490 1 963368 1 1 884460 1 874770 1 1 807750 1 797000 1 1 722728 1 711970 1 1 639633 1 629510 1 1 555755 1 544340 1 1 475000 1 466250 1 1 404560 1 395920 1 1 337500 1 328125 1 1 267080 1 259060 1 1 202060 1 194045 1 1 150000 1 143250 1 1 105667 1 101333 1 1 065800 1 060600 1 1 025000 1 020000 1 981333 976667 940000 935000 896570 889854 850000 842363 790000 785000 72327
10. A maximum of 20 partial cross sections can be grouped together The default sequences are MTREFD 1 5 lt 2 101 184 15 gt the partial grouped CS are identified if they exist by these 5 numbers MTREFD 1 MT 2 the elastic scattering cross section MTREFD 2 MT 102 MT 103 any process without outgoing neutron MTREFD 3 MT 18 the fission total MTREFD 4 MT 4 MT 22 any process emitting one neutron only except elastic MTREFD 5 MT 5 MT 11 any process emitting several neutrons except fission The programmed grouping is given by MTREP 1 20 1 lt 20000000000000000000 gt MTREP 1 20 2 lt 102 103 104 105 106 107 108 109 111 112 113 114115 116000000 gt MTREP 1 20 3 lt 180000000000000000000 gt MTREP 1 20 4 lt 4 22 23 28 29 32 33343536444500000000 gt MTREP 1 20 5 lt 5 11 16 17 24 25 30 37 41 420000000000 gt MODIECSGRP word 6 MTREFD lt 2 101 184 15 gt MODIECSGRP word 5 MTREP lt IX gt one of the five MTREFD indices lt 20 values MT s array gt 10 3 3 CALENDF Reads an ENDF evaluation Reconstructs pointwise cross sections Computes effective cross sections and probability tables CALENDF MODIFOPT word 7 LCORSCT lt TRUE gt by default the elastic scattering cross section is the difference between the total CS and the sum of the partial CS other than the scattering lt FALSE gt the total cross sections is the sum of the partial CS NCASUNR lt 1 1 1
11. COMP SF NFSF1 13 VINE Str NFSF2 18 FRET TE SEE NESFDR 20 hf178 err NFSFDA 21 hf178 era NIMP O 80 END 44 inhf178a CALENDF MODIFOPT LCORSCT FALSE ENERGIES 1 0E 5 6 9E 03 MATLLAGE READ XMAS172 SPECTRE 1 0 sl TEFF 300 NDIL 1 0E 10 NFEV 9 7237 jeff30n7237 1 asc SORTIES NFCS 14 hfl78a cs NFSFRL 0 hfl78a sfr NFSF 0 hfl78a sf NFSFTP 0 hfl78a sft NFTP 10 hfl78a tp PREC 4 NIMP O 80 END 45 Inhf000 CAL MODIFOPT LCORSCT ENDF FALSE MODIFOPT NCAS 1 2 1 4 9 16 ENERGIES 1 0E 5 20 0E 6 MAILLAGE READ XMAS172 SPECTRE 1 0 TEFF 300 NDIL 6 0 1 1 10 100 1000 1 0E 10 NFEV 9 7200 jeff30n7200 1 asc SORTIES NFSFRL 0 hf000 sfs NFSF 2 A AF000s ST NFSFTP 0 hf000 sft NFTP 0 hf000 tp PREC 4 NIMP 0 80 REGROUTP NFTP 10 hf000 tp NFTPR 17 hf000 tpr NIMP O 80 REGROUSF NFSF 12 hf000 sf NFSFR 13 hf000 sfr NIMP 0 80 SEFFNRA ENERGIES 0 2 E 7 NFTP T4 1f000stpr NFSFTP 18 hf000 sft NDIL 6 Odo Va us 100 1000 1 40EF10 NIMP 0 80 COMP SF NFSF1 13 hf000 sfr NFSF2 18 hf000 sft NFSFDR 20 hf000 err NFSFDA 21 hf000 era NIMP O 80 END 46 inpu239 CALENDF MODIFOPT LCORSCT FALSE
12. is illustrated in Fig la b and c Equation 1 must be satisfied for 2N values of n Due to orthogonal polynomial properties this set of 2N equations always has one solution the roots o being real over the range of o and the probabilities pi being always positive 1 22 Calculational methods The moments having been computed the probability table is established from the following relation x I 2 M z M 22 My R 22 1 2N moments 2 N 1 by bz b z by _2N x Rane 1 4 2 4 7 ayz 2 Pi 2N R 2 gt Ry 11 01 25 u 1 2x P x quad table The second line is the Pad approximant that introduces an approximate description of higher moment order Partial cross section steps obey the following equation pe f o E o E dE gt go i Equation 3 must be satisfied for N values of n The consistency between total and partials is obtained by a suitable choice of the indices n values In the absence of mathematical background there is no reason why an individual partial cross section steps cannot be slightly negative and sometimes this is the case However the effective cross section reconstructed from the sum of the steps values is always positive The moments taken into account are not only from 0 to 2N 1 for the total but negative moments are also introduced in order to obtain a better numerical description of the excitatio
13. 0 50000 0 48 2 293 16 0 40000 0 39100 0 35000 0 32 0 28000 0 24800 0 22 0 16000 0 14000 0 43 0 09500 0 08000 0 07 0 05000 0 04200 0 03 0 02000 0 01500 0 01 0 00300 0 00011 F 300 10 1 E 10 V 9 9437 jeff30n9437 3 asc V 9 9437 jeff30n9437 3 asc Ties FSFRL 0 pu23d sfr FSF 12 s pu23d lt sf NFSFTP 11 pu23d sft FTP 10 pu23d tp IPRECI 4 NIMP O 80 REGROUTP NFTP 10 pu23d tp NFTPR 17 pu23d tpr NIMP 0 80 REGROUSF FSF 12 pu23d sf FSFR 13 pu23d sfdr P 0 80 USF FSF 11 pu23d sft 9 078 171 995 253 625 422 538 716 193 433 075 830 503 405 900 050 446 12 gt ou OI NOOO an O O O 0 oo SO O OOo 40 70 50 00 E EE O OO 14918246 6703200 3011942 1108031 550232 273237 82297 29282 11137 3526 1433 677 148 55 3 90555 34643 30000 360 840 475 239 097 996 910 705 433 vo O COCO C0H H H H N W UI 314 2 189 415 067 030 200000 976 46036 11912 58362 20056 22447 47049 99695 75148 62165 81736 28736 62539 59513 26653 60329 o Oo Goo O NO OG O oo O O O O U O OO OO 13840306 6065306 2465969 1002588 497870 247235 67379 27394 9118 3354 1234 453 136 Dil 33 19 to OOOOrRRrRRFRRENN U OO OO 460 59713 63942
14. 0 682560 0 595280 0 566960 0 540000 0 531580 0 519620 0 500000 0 449680 0 433000 0 413990 0 400000 0 391000 0 369930 0 320000 0 314500 0 300000 0 280000 0 263510 0 248000 0 209140 0 198810 0 189000 0 180000 0 169710 0 160000 0 140000 0 134000 0 115000 0 100000 0 095000 0 080000 0 058000 0 050000 0 042000 0 035000 0 030000 0 025000 0 010000 0 006900 0 005000 0 003000 1 000010 5 TEFF 300 DIL 1 1 0E 10 FEV 9 525 jeff30n525 1 asc SORTIES FSFRL 0 b10a sfr FTP 10 b10a tp IPRECI 3 NIMP 0 80 END Calculates from 1 eV to 100 Kev with two weighting spectrums 7284 groups with lethargy width of 1 480 and 1 E weighting The energy boundaries are calculated from E 1 964033 maxwellian spectrum with T 293 K The six energies 298500 297200 82500 79500 28500 ODO Cy O Cy O F Pr i 233782 466330 837990 382370 020000 711970 404560 150000 020000 860000 653150 485000 350000 233580 153030 077000 020000 E 07 147 groups with the low energy group boundaries read and a 27000 are inserted above 5 043477 eV 19640330 exp 7284 480 Thus only 141 groups will be present below this energy N B In that case REGROUTP is not necessary this evaluation does not contain any resonance rang COOC OO NN W SA 129250 380750 767920 360000 974490 670000 370000 123000 996000 850000 625000 467010 334
15. 23 2 11 EECRICS LECRISE LECRTI Pie ai as ia 24 3 12 COMBPSE Si A i a A a is 26 sals SIG TEUM KE e a C mu n m ma O 27 Bala ERNST den ee A Ee tadas saks ais au EEN 28 3 15 INPUTTSSARIABEES eeh ee ege Sh a D Haq A e nime ni 29 4 CALENDF OUTPUT FORMATI A 31 4 1 OUTPUT PES RO ma A E Sta OS EE Sa 31 4 2 EXAMPLES nina lala last 31 5 APPENDIX A CODE INSTALLATIONN 38 6 APPENDIX B STANDARD TEST CASES 40 6 1 TIMINGS isis Bee 72 T REFERENCE 73 1 1 INTRODUCTION In the 60 s Levitt proposed the denomination probability table for a natural discretisation of cross section data to describe the resolved resonance energy range Simultaneously the sub group method was proposed by Nikolaev 2 based on a different definition of the probability tables Since then several different approaches have been put forward 34 The Ribon approach 5 based on Gauss guadrature as a probability table definition and relying on their mathematical principle and strength has now been used for nearly 25 years In order to Justify this approach several aspects of the diff
16. 535358 314166 103400 903615 13238 532143 360563 197555 040138 891870 751947 629660 501272 382370 271160 157655 059610 DDD DDD N V WV Ud ds ds UT 1 555755 1 025000 981333 930000 870950 804725 123275 646113 574040 519620 476005 433000 385733 338495 303625 259633 223395 196358 172283 148590 122600 087500 060250 040250 026250 013750 005000 000500 TEFF 29 NDIL 0 NFEV 9 SORTIES NFTP IPRECI NIMP 0 REGROUTP 1 974490 1 1 884460 1 1 807750 1 1 722728 1 639633 1 1 475000 1 1 404560 1 1 337500 1 1 267080 1 1 202060 1 1 150000 1 1 105667 1 065800 1 LCORSCT FALSE LFORMRF FALSE 1 0E 5 20 0E6 GENEre 11277 19640329 8 1433 81736 203 99503 51 578022 5 0434766 4 981215 4 950084 4 918953 4 888590 4 4 738278 4 708666 4 679053 4 650171 4 4 507190 4 479021 4 450853 4 423380 4 4 287372 4 260577 4 233782 4 207649 4 4 077550 4 051700 4 025850 4 000000 3 3 879370 3 855125 3 830880 3 807235 3 3 690175 3 667113 3 644050 3 621557 3 3 510205 3 488268 3 466330 3 444935 3 3 340375 3 320188 3 300000 3 279408 3 3 177480 3 157405 3 137330 3 117753 3 3 021255 3 002373 2 983490 2 965075 2 2 873910 2 855950 2 837990 2 820473 2 2 735973 2 720000 2 704830 2 689660 2 2 614830 2 600000 2 583333 2 566666 2 2 485030 2 469200 2 453370 2 437540 2 2 371185 2 360000 2 345067
17. NFSFM 0 text NFTPM 17 pumc tp PRECI 4 NIMP O 80 TRANSMOY transmission for n 0 001 0 0004 0 0001 at b ENERGIES 10000 0 00001 NFTP 17 pumc tp 0 001 0 0004 0 0001 NFTRM 18 pumc trm NIMP O 80 Calculates Pu9 Pu40 et Pu42 mixture transmission Mixture with 0 175 0 625 0 2 Average transmission for n 0 001 0 0004 0 0001 at b 50 9d inpu23 CALEN AI 2225 1161 548 223 1652 907 450 183 55 24 7 2 1 3 TEF NDI 120 NFE NFE SOR N N DF Rgies 1 0E 5 30 0E 6 Llage GENEre 3 zones 17 1 32E 6 26511672 1 5409 3 19640329 76 1733253017 8342 427 10000000 00000 8187307 53 8116 36094 4493289 6411 23678794 41 1301 60148 2018965 17995 125 ils 2018965 17 988 88222 1353352 83237 1224564 28 179 53289 820849 98624 608100 62 492 02394 407622 03978 301973 83 156 38889 122773 39903 111089 96 165 64421 40867 71438 36978 63 787 52177 16615 57273 15034 39 465 85808 5530 84370 5004 51 248 67324 2034 68369 1507233 010 39402 914 24231 748 51 371 70319 304 32483 203 99 91 66088 75 67357 67 90 48 25160 45 51744 40 16 30 51126 27 60773 24 98 15 92827 13 70959 11 22 8 31529 7 52398 6 16 4 12925 4 00000 3 38 2 72000 2 60000 2 55 2 10000 2 02000 193 1 67000 1 59000 1 50 1 37000 1 33750 1 30 1 15000 1 12300 De Dd 1 04500 1 03500 1 02 0 97200 0 95000 0 93 0 85000 0 79000 0 78 0 54000
18. PDF format tory containing utility codes library interface NJOY GENDF and probability tables MF 50 ac uk 39 6 Appendix B Standard test cases The following input files constitute the set of standard test cases and participate in the code QA processes This set covers the code words and is supplied to users to enable them to confirm that a new installation is working correctly Unix and Windows CALENDF input file differ only concerning filenames input convention Unix gt filename Windows gt filename inal27 CALENDF MODIFOPT LCORSCT FAISE MODIFOPT LFORMRF FAISE ENERgies 1 0E 5 20 0E 6 MAILlage READ XMAS172 SPECtre borne inferieure ALPHA 1 zones 0 SJ TEFF 293 6 NDIL 5 1 10 100 1000 1 0E 10 NFEV 9 1325 jeff30nl325 2 asc SORTies NFSFRL 0 al27 sfr NFSF 12 al27 sf NFSFTP 11 al27 sft NFTP 10 al27 tp IPRECI 4 NIMP 0 80 REGROUTP NFTP 10 al27 tp NFTPR 17 al27 tpr NIMP 0 80 REGROUSF NFSF 12 al27 sf NFSFR 13 al27 sfdr NIMP 0 80 REGROUSF NFSF 11 al27 sft NFSFR 14 al27 sftr NIMP 0 80 COMP SF NFSF1 13 al27 sfdr NFSF2 14 Dama 2 0 NFSFDR 20 al27 err NFSFDA 21 al27 era NIMP 0 80 END 40 inb10 CALENDF MODIFOPT LCORSCT FALSE ENERGIES 1 0E 5 20 0E 6 MAILLAGE READ
19. by describing mainly the positive moments useful for large backeround Cross sections or small penetration REDUORTP ENERgies lt enmin gt lt enmax gt energy range in eV NFTPD lt nftpd gt 1f 0 unit input probability table lt file name gt MAXNOR lt maxnor gt maximum order of the reduced probability table MAXlIorini optional word if absent the reduced PT will be normal if present lt maxiorini gt the reduced PT will describe the moments from MAXIORINI to MAXIORINI 2 NOR 1 or from MAXIORINI to MAXIORINI NOR 1 2 NFTPR lt nftpr gt unit for reduced probability table lt file name gt IPRECI lt ipreci gt calculational accuracy indices see 3 15 NIMP lt nimp gt output dump indices on unit 6 see 3 15 lt ncar gt number of characters per output line on unit 6 23 3 11 LECRICS LECRISF LECRITP Read and write specific CALENDF branches LECRICS NFCSL lt nfcsl gt unit for cross section input lt file name gt NFCSE lt nfcse gt unit for cross section output lt file name gt NFPEF lt nfpef gt unit for pendf style cross section output lt file name gt NIMP lt nimp gt output dump indices on unit 6 see 3 15 lt ncar gt number of characters per output line on unit 6 Read and write pointwise cross section files LECRISF NFSFL lt nfsfl gt unit for effective cross section input lt file name gt NFSFE lt nfsfe gt unit for effective cross section output lt file name gt NFSFP
20. compiler Windows XP 7 and gfortran 4 5 Lahey 6 compilers README files are supplied that details the installation and the QA procedures as well as the necessary adaptations required for use on the different Operating System and compiler tandem README files follows KKKKKKKKKKKKKKKKKKKKKKKKKKKKK Multi platforms installation The CALENDF code package including diverse utility programs and interfaces is available through the Nuclear Data Centre It requires a minimum of 300 Mbytes of free disk space on the machine On which it shall be installed on The disk contains the following files Calendf 2010 The CALENDF directory README This file Src Source code directory README Execution instruction NEEDS TO BE READ Makefile The file needed to compile CALENDF and create the executable xcalendf Makeliste c shell make gt amp output Kai Calendf source code xcalendf Calendf executable OsX 10 6 system dependent sub directories OsX Apple intel Oracle Oracle Solaris Sparc Linux Ubuntu 10 Fedora 13 Windows Microsoft Window XP 7 38 QAcal Runtest in Docs Util gecco merge Dr J Ch Sublet Direc Unix tory containing test cases script to run all test cases CALENDF input data Direc anua Direc Ecco erge jean christophe subl teccf tory containing the documentation and User ls in Acrobat
21. 0 00001 MATLLAGE READ XMAS172 SPECTRE 4 zones 0000000 15000000 000000 1400000 0 25 Fly 0 293 16 TEFF 300 NDIL 0 NFEV 9 9237 jeff30n9237_2 asc SORTIES NFTP 10 u238a tp PREC 4 NIMP 0 80 REGROUTP NFTP 11 u238a tp NFTPR 12 u238a tpr NIMP 0 80 END Calculates from 1 E 5eV to 20 MeV with 4 weighting spectrums 20 Mev gt E gt 10 MeV fusion spectrum T 15 MeV thus alphaz gt 10 7 10 Mev gt F gt 2 MeV fission spectrum lt F gt 1 4 MeV thus 10776 lt alphaz lt 10 7 2 MeV gt E gt 0 25 eV E 1 spectrum thus alphaz lt 10 0 25 eV gt E gt 00001 maxwellian spectrum T 293 16 thus 10 lt alphaz lt 10776 63 inu238b CALENDF ENERGIES 4 9000 MAILLAGE GENERE a zones 15 1 32E 6 19640330 00000 17332530 39074 14918247 15894 13840306 62915 11618342 56943 10000000 00000 8187307 53078 6703200 46036 6065306 59713 5488116 36094 4493289 6411 3678794 41171 3011942 11912 2465969 63942 2231301 60148 2018965 17995 132 0 95 2018965 17995 1652988 88222 1353352 83237 1224564 28253 1108031 58362 1002588 43723 907179 53289 820849 98624 608100 62625 550232 20056 497870 68368 450492 02394 407622 03978 301973 83422 273237 22447 247235 26470 183156 38889 122773 39903 111089 96538 82297 47049 67379 46999 55165 64421 40867 71438 36978 63716 29282 99695 27394 44819 24787
22. 074500 072000 058000 056000 054000 052000 050000 038500 036750 035000 033750 032500 025000 023750 022500 021250 020000 012500 011250 010000 008967 007934 004500 004000 003500 003000 002300 000110 00001000010 3 46 9440 jeff31tn9440_3 asc 10 pu240a tp 4 90 858228 621290 395907 181516 975950 783590 599065 423540 258815 098175 946660 802955 674490 550000 421710 315202 199495 100000 008623 840000 755000 590000 1 500000 361875 291770 226765 165000 118667 040000 996000 918615 670000 431140 080000 PRPRPRPRPRPRPRPRPERPRERERRPENNNNNNNNWWWWWW EPSP gt 950000 896570 834725 760775 675207 602710 535790 492500 449680 404663 354983 317250 275877 237185 206557 182250 157677 136000 100000 069500 048000 031250 018750 006900 001700 827866 592408 368434 155383 951900 759945 576572 402145 238223 078598 928245 785438 659320 533758 408597 300270 185310 086537 997245 907230 829250 744243 659878 578585 491667 422280 353750 283540 218530 160000 114333 075500 035000 991000 945000 889854 827088 EE GER 667855 595280 531580 488750 445510 400000 350000 314500 271755 233580 203975 180000 155353 134000 097500 067000 046000 030000 017500 006500 001300 PRPRPRPRPRPRPRPRPRPRERERERP
23. 133 2 IG 172 ENG 1 000010E 5 3 000000E 3 NK 1 NOR 0 NPAR 2 KP 2 101 0 0 0 SMOY 1 396740 3 8 186960 0 1 388553 3 SEF 0 7 431022 2 7 944199 2 1 396740 3 SEF 1 5 894722 0 6 055967 0 8 186959 0 SEF 2 7 372074 2 7 883639 2 1 388553 3 34 s Example of an NFSFR sfdr output corresponding to Hf178 directly calculated effective cross section in Xmas 172 groups format after REGROUSF The effective cross sections from the sub groups of Xmas group 37 have now been re grouped effec ZA 7217 H n n t 71 09 Bit E H H H H teow H H H H H SDIL NNNNN 71 09 3 amp IG 71 unan SMOY EF 0 EF 1 EF 2 G 172 SMOY EF 0 EF 1 infinite dilute cross section standard deviation tives direct for 72 HF 178 NAIG DIST xxxx 8 MAT 7237 TEFF 300 0 172 GR DE 1 0000E 5 a 1 9640 1 0000 100 00 1 00000E 10 ENG 1 733253E 7 1 964033E 7 NK 1 NOR 0 NPAR 4 KP 2 101 5 567459 0 3 220455 0 3 533597 3 4 341010 1 1 909369 0 5 567151 0 5 567440 0 5 567459 0 3 220240 0 3 220442 0 3 220455 0 3 536712 3 3 533790 3 3 533597 3 4 340350 1 4 340969 1 4 341010 1 1 909339 0 1 909367 0 1 909369 0 ENG 1 491825E 7 1 733253E 7 NK 1 NOR 0 NPAR 4 KP 2 101 5 625593 0 3 230511 0 1 982992 3 4 704450 1 1 922653 0 5 625549 0 5 625590 0 5 625593 0 3 2304
24. 2 330135 2 2 256605 2 242050 2 227865 2 213680 2 2 143828 2 130000 2 120000 2 110000 2 2 049708 2 039805 2 029903 2 020000 2 963368 1 952245 1 941123 1 930000 1 874770 1 865080 1 855390 1 847695 1 797000 1 786500 1 776000 1 765500 1 711970 1 701478 1 690985 1 680493 1 629510 1 619633 1 609755 1 599878 1 1 544340 1 533255 1 522170 1 511085 466250 1 457500 1 448750 1 440000 1 395920 1 387280 1 378640 1 370000 1 328125 1 318750 1 309375 1 300000 1 259060 1 251040 1 243020 1 235000 1 194045 1 186030 1 178015 1 170000 7 143250 1 136500 1 129750 1 123000 1 101333 1 097000 1 091333 1 085667 1 060600 1 055400 1 050200 1 045000 1 1 020000 1 014000 1 008000 1 002000 976667 972000 966500 961000 955500 925000 920000 915000 910000 903285 865475 860000 855000 850000 842363 797363 790000 785000 780000 770388 714137 705000 697520 690040 682560 639075 632038 625000 617570 610140 566960 560220 553480 546740 540000 514715 509810 504905 500000 496250 471508 467010 462678 458345 454013 428248 423495 418743 413990 409327 380465 375198 369930 364948 359965 334660 330995 327330 323665 320000 300000 295000 290000 285000 280000 255755 251878 248000 244395 240790 220000 217285 214570 211855 209140 193905 191453 189000 186750 184500 169710 167283 164855 162428 160000 146370 144247 142123 140000 138000 118800 115000 111250 107500 103750 083750 080000 077000
25. 38 0 3 230507 0 3 230511 0 1 982083 3 1 982935 3 1 982992 3 4 704670 1 4 704464 1 4 704450 1 1 922661 0 1 922654 0 922653 0 ENG 4 086771E 4 5 516564E 4 NK 4 NOR 0 NPAR 2 KP 2 101 1 201096 1 1 175828 1 2 526864 1 8 182794 2 8 172096 2 4 225719 4 9 898621 0 1 169300 1 1 201096 1 1 047461 1 8 079674 2 8 182794 2 9 666170 0 1 144302 1 1 175828 1 1 037859 1 8 066198 2 8 172096 2 2 324502 1 2 499868 1 2 526864 1 1 595166 3 4 932675 4 4 225719 4 ENG 3 000000E 3 5 000000E 3 NK 1 NOR 0 NPAR 2 KP 2 101 2 188839 2 4 570619 0 2 143133 2 2 177516 2 2 181033 2 2 188839 2 4 569482 0 4 569839 0 4 570619 0 2 131822 2 2 135335 2 2 143133 2 ENG 1 000010E 5 3 000000E 3 NK 1 NOR 0 NPAR 2 KP 2 101 1 396740 3 8 186960 0 1 388553 3 7 431022 2 7 944199 2 1 396740 3 5 894722 0 6 055967 0 8 186959 0 7 372074 2 7 883639 2 1 388553 3 50 nn EF 2 35 4 4 0 0 0 E 7 IP 4 NDIL 3 15 LS 0 0 Linearly interpolated pointwise cross section produced from resonance parameters One should notice the statically generated resonances produced by CALENDF in the URR of this Pu 239 evaluation MAT 9228 Fission 92 U 235 Cross Scction 100 0 To 100 0 CALENDF 2010 gt MIGG D I O 5 y 10 Y wh ifi n 2 10 10 10 10 Incident Energy ev 92 U 235 MAT 9437 1 7 94 Pu 239 Cross Section B4 31 To 6457 I CALENDF 2010 El menn N 0Y 99 Cross Section barns O
26. 4 9 16 gt by default number of random sampling for each of the six IPRECI calculational accuracy indices 1 2 3 4 5 6 However if the group structure is considered as fine 1 sampling is enough LFORMRF lt TRUE gt by default the formalism used to calculate the RRR is free i e determined by CALENDF from the numerous values of the resonance parameters lt FALSE gt the formalism is the formalism recommended by the evaluator LFORMUR lt TRUE gt by default the formalism used to calculate the URR is free 1 e chosen by CALENDF agaisnt the numerous values of the resonance parameters lt FALSE gt the user choices the formalism LFORMUR lt FALSE gt IFORMUR if IFORMUR 1 SLBW if IFORMUR 2 MLBW if IFORMUR 3 BWMN if IFORMUR 4 RM DISTLAW word 6 three possible laws for resonance parameter distributions every partial width distribution being a X law only one of these three options may be active at any time by default word LVPSTR the energies are the eigenvalues of a random matrix and the width distributions are stratified no bias reduced variance 11 ENERgies if word LVPALE the energies are the eigenvalues of a random matrix and the width distributions are simply randomly distributed corresponds to the actual distribution of parameters if word LWIGAL the energies are distributed according to Wigner law and the width distributions are simply randomly distributed the simplest appro
27. 5 714137 660502 653150 602710 595280 546740 540000 509810 504905 476005 471508 441340 437170 404663 400000 364948 359965 330995 327330 303625 300000 267633 263510 237185 233580 211855 209140 191453 189000 172283 169710 153030 150810 136000 134000 107500 103750 OD ETA A O E Ga a LD JAN O Ct 9s em OCS DOS AO DO NNNNNNNNNWWWWW AP LLE universal 918953 4 888590 679053 4 650171 450853 4 423380 233782 4 207649 025850 4 000000 830880 3 807235 644050 3 621557 466330 3 444935 300000 3 279408 1379307 32111753 983490 2 965075 837990 2 820473 704830 2 689660 583333 2 566666 453370 2 437540 345067 2 330135 227865 2 213680 120000 2 110000 029903 2 020000 1 941123 1 930000 1 855390 1 847695 1 776000 1 765500 1 1 690985 1 680493 1 1 609755 1 599878 1 522170 1 511085 1 448750 1 440000 1 378640 1 370000 1 309375 1 300000 1 243020 1 235000 1 178015 1 170000 14129750 1 123000 1 091333 1 085667 1 050200 1 045000 1 008000 1 002000 966500 961000 925000 920000 876425 870950 827088 819450 770388 760775 697520 690040 639075 632038 581120 574040 531580 527593 496250 492500 462678 458345 428248 423495 391000 385733 350000 346165 320000 317250 290000 285000 255755 251878 2226790 1223395 203975 201392 184500 182250 164855 162428 146370 144247 126400 122600 097500 095000 H NNNNNNNNN
28. 52177 16615 57273 15034 39193 11137 75148 9118 81966 7465 85808 5530 84370 5004 51433 3526 62165 3354 62628 2248 67324 2034 68369 1507 33075 1433 81736 1234 09804 1010 39402 914 24231 748 51830 677 28736 453 99930 371 70319 304 32483 203 99503 148 62539 136 74196 91 66088 75 67357 67 90405 55 596513 51 57802 48 25160 45 51744 40 16900 37 26653 33 72015 30 51126 27 60773 24 98050 22 60329 19 45484 15 92827 13 70959 11 22446 9 90555 9 18981 8 31529 7 52398 6 16012 5 34643 5 04348 4 12925 4 00000 3 38075 3 30000 2 76792 2 72000 2 60000 2 55000 2 36000 2 13000 2 10000 2 02000 1 93000 1 84000 1 75500 1 67000 1 59000 1 50000 1 47500 1 44000 1 37000 1 33750 1 30000 1 23500 1 17000 1 15000 1 12300 1 11000 1 09700 1 07100 1 04500 1 03500 1 02000 0 99600 0 98600 0 97200 0 95000 0 93000 0 91000 0 86000 0 85000 0 79000 0 78000 0 70500 0 62500 0 54000 0 50000 0 48500 0 43300 0 40000 0 39100 0 35000 0 32000 0 31450 0 30000 0 28000 0 24800 25 293 16 0 24800 0 22000 0 18900 0 18000 0 16000 0 14000 0 13400 0 11500 0 10000 0 09500 0 08000 0 07700 0 06700 0 05800 0 05000 0 04200 0 03500 0 03000 0 02500 0 02000 0 01500 0 01000 0 00690 0 00500 0 00300 0 00011 TEFF 300 NDIL 1 1 0E 10 NFEV 9 9237 jeff30n9237_2 asc SORTIES NFSFRL 0 u238b sfl NFSF 12 u238b sf IPRECI 2 NIMP 0 80 END Calculates from 4 to 9000 eV with 3 weighting spectrums 15 groups with lower boundaries read fission spectrum lt E gt 1 32E 6 eV 132 groups with lowe
29. 65 1 Continuum SEF 0 1 166712 1 1 166753 1 1 166758 1 SEF 1 1 142051 1 1 142092 1 1 142097 1 SEF 2 2 466081 1 2 466156 1 2 466165 1 IG 37 ENG 4 520382E 4 5 000000E 4 NK 4 NOR 0 NPAR 2 KP 2 101 0 0 0 SMOY 1 205705 1 1 180382 1 2 532232 1 URR 1 zone EPSMOY 2 194043 1 2 186461 1 8 100010 4 Standard deviation SEF 0 9 055990 0 1 161169 1 1 205705 1 effective cross section total EPSEFF 2 941875 1 2 187865 1 2 194043 1 Standard deviation SEF 1 8 830609 0 1 136219 1 180382 1 effective cross section elastic EPSEFF 2 904991 1 2 179013 1 2 186461 1 Standard deviation SEF 2 2 253812 1 2 495000 1 2 532232 leffective cross section absorption EPSEFF 4 127730 3 8 975879 4 8 100010 4 Standard deviation IG 37 ENG 4 086771E 4 4 520382E 4 NK 4 NOR 0 NPAR 2 KP 2 101 0 0 0 SMOY 1 229967 1 1 204160 1 2 580676 1 URR 2 zone EPSMOY 1 054639 1 1 063011 1 9 614032 4 4 random samples per zones SEF 0 9 004422 0 1 179915 1 1 229967 1 3 zones in group 37 EPSEFF 1 035748 1 9 955265 2 1 054639 1 SEF 1 8 778806 0 1 154539 1 1 204160 1 EPSEFF 1 054210 1 1 005223 1 1 063011 1 SEF 2 2 256161 1 2 537609 1 2 580676 1 EPSEFF 2 354784 3 160998 3 9 614032 4 IG 171 ENG 3 000000E 3 5 000000E 3 NK 1 NOR 0 NPAR 2 KP 2 101 0 0 0 SMOY 2 188839 2 4 570619 0 2 143133 2 infinite dilute cross section SEF 0 2 177516 2 2 181033 2 2 188839 2 SEF 1 4 569482 0 4 569839 0 4 570619 0 SEF 2 2 131822 2 2 135335 2 2 143
30. 660 220000 146370 067000 015000 42 infe56 CALENDF MODIFOPT LCORSCT FALSE ENERGIES 1 0E 5 20 0E 6 MAILLAGE READ XMAS172 SPECTRE 1 zone 0 1 TEFF 300 NDIL 1 1 0E 10 NFEV 9 2631 jeff30n2631 2 asc SORTIES NFSFRL 0 fe56 sfr NFSF 12 fe56 sf NFSFTP 11 fe56 sft NFTP 0 fe56 tp PREC 4 NIMP O 80 REGROUTP NFTP 10 fe56 tp NFTPR 17 fe56 tpr NIMP O 80 REGROUSF NFSF 12 fe56 sf NFSFR 13 fe56 sfdr NIMP O 80 REGROUSF NFSF 11 fe56 sft NFSFR 14 fe56 sftr NIMP O 80 COMPSF NFSF1 13 fe56 sfdr NFSF2 14 fe56 sftr NFSFDR 20 fe56 err NFSFDA 21 fe56 era NIMP O 80 END 43 inhf178 CALENDF MODIFOPT LCORSCT FALSE ENERGIES 1 0E 5 20 0E 6 MAILLAGE READ XMAS172 SPECTRE 1 0 St TEFF 300 NDIL 6 0 1 1 10 100 1000 1 0E 10 NFEV 9 7237 jeff30n7237_l asc SORTIES NFSFRL 0 hfl78 sfs NFSF 12 HELIO Sf NESFTP hfl78 sft NFTP LO hfl78 tp PREC 4 NIMP O 80 REGROUTP NFTP 10 hfl78 tp NFTPR 17 hfl78 tpr NIMP 0 80 REGROUSF NFSF 12 hf178 sf NFSFR 13 hfl78 sfr NIMP 0 80 SEFFNRA ENERGIES 0 2 E 7 NFTP 7 hf178 tpr NFSFTP 18 hfl78 sft NDIL 6 0 1 1 10 100 1000 1 0E 10 NIMP 0 80
31. 8 387795 1 7 196014 1 1 191781 1 6 364072 3 1 349498 0 1 216702 0 1 327956 1 2 541038 2 2 347179 0 2 136141 0 2 110377 1 9 061974 2 4 395784 0 4 217302 0 1 784828 1 3 422754 1 7 891743 0 7 706997 0 1 847458 1 3 521294 1 1 237046 1 1 208213 1 2 883303 1 1 182076 1 2 089486 1 2 049793 1 3 969330 1 4 568197 2 3 277071 1 3 241213 1 3 585716 1 1 576334 2 4 467187 1 4 423119 1 4 406813 1 1 874864 3 5 518622 1 5 493299 1 2 532238 1 31 T IG 171 ENG 3 000000E 3 5 000000E 3 NOR 2 I 5 072824 1 2 033169 2 4 554983 0 1 987619 2 4 927176 1 2 349110 2 4 586717 0 2 303243 2 Group 172 with table ord IG 172 ENG 1 000010E 5 3 000000E 3 NOR 8 I 4 790513 2 2 605929 2 4 608785 0 2 559841 2 1 107177 1 3 258078 2 4 680370 0 3 211274 2 1 662634 1 4 829956 2 4 914168 0 4 780815 2 1 981846 1 8 160701 2 5 695631 0 8 103745 2 1 902789 1 1 431781 3 7 800669 0 1 423980 3 1 496186 1 2 335819 3 1 150792 1 2 324312 3 9 609510 2 3 319366 3 1 579922 1 3 303567 3 4 093668 2 4 036773 3 1 900039 1 4 017772 3 32 first negative moment 1 er 7 NPAR 2 KP 8 and 2 partials NPAR 2 KP 2 101 2 101 0 0 Example of an NFTPR tpr output corresponding to Hf 78 probability tables in Xmas 172 format after REGROUTP The probability tables from the sub groups of Xmas group 37 have now been re grouped tables de probabilite pour 72
32. CEA R 6277 Le Y DIRECTION DELEGUEE AUX ACTIVITES NUCLEAIRES DIRECTION DE L ENERGIE NUCLEAIRE DE SACLAY Kd Kd 2011 CE ISSN 0429 3460 COMMISSARIAT L ENERGIE ATOMIQUE CALENDF 2010 USER MANUAL Jean Christophe SUBLET Pierre RIBON and Mireille COSTE DELCLAUX UNITED KINGDOM ATOMIC ENERGY AUTHORITY CULHAM SCIENCE CENTRE ABINGDON OXFORDSHIRE CEA SACLAY DIRECTION DE L NERGIE NUCL AIRE DIRECTION D L GU E AUX ACTIVIT S NUCL AIRES DE SACLAY D PARTEMENT DE MOD LISATION DES SYST MES ET STRUCTURES SERVICE D TUDES DES R ACTEURS ET DE MATH MATIQUES APPLIQU ES n 84 HON oh S O lt oz DIRECTION DES SYSTEMES RAPPORT CEA R 6277 CEA SACLAY 91191 GIF SUR YVETTE CEDEX FRANCE D INFORMATION Rapport CEA R 6277 United Kingdom Atomic Energy Authority Culham Science Centre Abingdon Oxfordshire CEA Saclay Direction de L nergie Nucl aire Direction D l gu e aux Activit s Nucl aires de Saclay D partement de Mod lisation des Syst mes et Structures Service d tudes des R acteurs et de Math matiques Appliqu es CALENDF 2010 USER MANUAL Jean Christophe SUBLET Pierre RIBON and Mireille COSTE DELCLAUX Septembre 2011 RAPPORT CEA R 6277 Jean Christophe SUBLET Pierre RIBON Mireille COSTE DELCLAUX lt Manuel d utilisation de CALENDE 2010 gt R sum Le code CALENDF 2010 est une r vision en Fortran 95 du cod
33. CS 10 u238f cs NFCSR 11 u238f csr NIMP O 80 LECRICS ENERGIES 0 20000000 NFCSL 11 u238f csr NFCSE 12 u238f cse NIMP O 80 END CALENDF MODIFOPT NCASUNR 1 1 1 1 1 16 MODIFOPT LFORMRF FALSE ENERGIES 40000 2000 MATLLAGE READ RED616 SPECTRE 1 zones Quo TEFF 293 NDIL 1 10 100 1000 1000000 NFEV 9 9437 jeff30n9437 3 asc SORTIES NFPR 11 pu239e pr NESE 12 pu239 e sf PREC 3 NIMP 0 90 REGROUSF NFSF 3 pu239e sf NFSFR 14 pu239e sfr NIMP 0 90 REGROUPR NFPR 5 pu239e pr NFPRR 16 pu239e prr NIMP 4 90 LECRISF NFSFL 17 pu239e sfr NFSFE 119 pu239e sfe NFSFP 121 2 pu239e10b sfp NIMP O 90 END 68 inu239f inW184 essai SIGTTEUM SIGTTEUM ENERGIES 1 0E 3 2 0E 6 TEFF 293 6 NFEV 9 9437 jeff30n9437_3 asc NFCS 10 pu239f cs PREC 4 NIMP 0 95 LECRICS ENERGIES 1 0E 3 2 0E 6 NFCSL 5 pu239f cs NFCSE 16 pu239f cse NFPEF 7 pu239f csp NIMP 0 95 END calcul test ecriture PENDF CALENDF MODIFOPT NCASUNR 1 1 1111 ENERGIES 0 20000000 MAILLAGE READ ECCO1968 SPECTRE 1 zones Ove Oli TEFF 300 NDIL NFEV 9 7437 endfb70n7437 1 asc SORTIES NFSF 0 w184 sf NFCS 14 w184 cs PREC 4 NIMP 0 95 REGROUCS NECS 14 wl84 cs NFCSR 15 w184 csr NIMP O 95 LECRICS ENERGIES 0 ET NFCSL 15 w184 csr NFC
34. ENERGIES 1 0E 5 20 0E 6 MAILLAGE READ XMAS172 SPECTRE 1 O lut TEFF 300 NDIL 1 0E 10 NFEV 9 9437 jeff30n9437_l asc SORTIES NESFRL 0 pu239 sfr NFSF LA Me 9 St NFSFTP 11 pu239 sft NE TP DS Zpu239 tp PREC 4 NIMP 0 80 REGROUTP NFTP 10 pu239 tp NFTPR 17 pu239 tpr NIMP 0 80 REGROUSF NFSF 12 pu239 sf NFSFR 13 pu239 sfdr NIMP 0 80 REGROUSF NFSF 11 pu239 sft NFSFR 14 pu239 sftr NIMP 0 80 COMP SF NFSF1 13 pu239 sfdr NFSF2 14 pu239 sftr NFSFDR 20 pu239 err NFSFDA 21 pu239 era NIMP 0 80 END 47 inpu239a inpu239b CALENDF MODIFOPT NCASUNR 1 1 29 16 ENERGIES 5 0E 6 6 0E 6 MAILLAGE READ ECCO1968 SPECTRE 3 zones 1 32E 6 1 29E 6 0 1 1 O 293 TEFF 293 NDIL 1 0E 10 NFEV 9 9437 jeff30n9437 1 asc SORTIES NFCS 14 pu239a cs NESFRL 0 pu239a sfr NFSF Es Pues dass tr NFSFTP 0 pu239a sft NFTP 10 pu239a tp PREC 4 NIMP 0 80 END CALENDF MODIFOPT NCASUNR 1 1 29 16 ENERGIES 5 0E 6 6 0E4 D MAILLAGE REA ECCO1968 SPECTRE 3 zones 1 32E 6 1 29E 6 D 0 SD TEFF 2500 NDIL 1 1 0E 10 NFEV 9 9437 SORTIES NFCS 14 1 pu235b NESERL 0 pu239b NFSF 0 pu239b NFSFTP 0 pu239
35. ENNNNNNNNWWWWWW ds gt gt gt 797503 563526 340961 129250 927860 736300 554080 380750 217630 059020 909830 767920 644490 2917515 395483 285715 171483 073073 985868 895845 818500 733485 649755 567170 483333 413420 345625 275310 210295 155000 110000 071000 030000 986000 940000 883139 819450 741550 660502 588200 527593 485000 441340 395500 346165 310875 267633 230185 201392 177428 153030 130200 095000 064750 044000 028750 016250 006000 001000 935000 876425 812088 732413 653150 581120 523607 480503 437170 391000 342330 307250 263510 226790 198810 174855 150810 126400 091250 062500 042000 027500 015000 005500 000800 54 NFTP 10 pu240a tp NFTPR 15 pu240a tpr NIMP O 90 CONDENTP ENERGIES 1 0E 5 20 0E6 MATLLAGE READ ECCO33 SPECTRE 6 zones 11 E 6 15 E 6 600000 2 E 6 500000 1 300000 s 4 0 290 NDIL 4 1 10 100 1 E 10 NFTPD 15 pu240a tpr SORTIES FSFC 16 pu240a sfc FTPC 17 pu240a tpc IPRECI 4 NIMP 0 90 LECRITP ODIFOPT LPSPPOS TRUE FIPR 15 pu240a tpr FTPP 18 pu240a tpp IMP 1 90 CONDENTP ENERGIES 1 0E 5 20 0E6 MAILLAGE READ ECCO33 SPECTRE 6 zones 11 E 6 15 E 6 600000 2 E 6 500000 1 300000 Da 4 1 0 290 NDIL 4 1 10 100 1 E 10 NFTPD 15 pu240a tpr SORTIES NFSFC 20 pu240a sfx NF
36. FF 300 NDIL 1 1 0E 10 NFEV 9 9443 SORTIES NFSFRL 0 NFSF 152 NESFTP 11 NE TP 0 PREC 4 NIMP 0 80 GROUTP NFTP 10 NIMP 0 80 GROUSF NFSF 12 NFSFR 13 NIMP 0 80 GROUSF NFSF 11 NFSFR 14 NIMP 0 80 MPSF NFSF1 13 NFSF2 14 NFSFDR 20 NFSFDA 21 NIMP 0 80 D D jeff30n9443_2 asc pu241 pu241 sf puldis pu241 sfr sf SEE ED pu241 tp NFIPR 17 pu241 tpr pu241 sf pu241 sfdr pu241 sft pu241 sftr pu241 pu241 pu241 pu241 sfdr stir rr era 61 inu238 CALENDF MODIFOPT LCORSCT FALSE ENERGIES 1 0E 5 20 0E 6 RE RE RE CO EN MAILLAGE RFA XMAS172 SPECTRE 1 0 SA TEFF 300 NDIL 1 1 0E 10 D NFEV 9 9237 jeff30n9237 2 asc SORTIES NFSFRL 0 NFSF 12 NFSFTP 11 NFTP 0 PREC 4 NIMP 0 80 GROUTP NFTP 10 NFTPR 17 NIMP 0 80 O N N GROUSF FSF 12 FSFR 13 NIMP 0 80 GROUSF NFSF 11 NFSFR 14 NIMP 0 80 MPSF NFSF1 13 NFSF2 14 NFSFDR 20 NFSFDA 21 NIMP 0 80 D u238 sfr SET tarus bo St u238 tp 0238 Ep Ene Se PUISE u238 sfdr 0238 SEE u238 sftr u238 sfdr u238 sftr u238 err u238 era 62 inu238a CALENDF ENERGIES 2000000
37. HF 178 NAIG DIST xxxx ZA 72178 MAT 7237 TEFF 300 0 172 groupes de 1 0000E 5 a 1 9640E 7 IPRECI 4 IG 1 ENG 1 733253E 7 1 964033E 7 NOR 2 I 1 NPAR 4 KP 2 101 4 15 4 094861 1 5 513532 0 3 182873 0 4 079314 3 4 225357 1 1 904044 0 5 905139 1 5 604854 0 3 246516 0 3 155175 3 4 421208 1 1 913062 0 IG 2 ENG 1 491825E 7 1 733253E 7 NOR 2 I 1 NPAR 4 KP 2 101 4 15 2 643676 1 5 597086 0 3 183352 0 1 396993 3 4 846315 1 1 927705 0 7 356324 1 5 635838 0 3 247459 0 2 193585 3 4 653467 1 1 920838 0 IG 37 ENG 4 086771E 4 5 516564E 4 NOR 10 I 9 NPAR 2 KP 2 101 0 0 1 817951 4 6 660090 1 5 466607 1 1 193480 1 1 020717 3 8 935837 1 7 481450 1 1 454390 1 6 100122 3 1 459432 0 1 297162 0 1 622696 1 2 992847 2 2 912367 0 2 720470 0 1 918979 1 1 605709 1 6 196353 0 6 019160 0 1 771922 1 6 324775 1 1 111158 1 1 086710 1 2 444874 1 1 192779 1 1 821346 1 1 784775 1 3 657134 1 3 747613 2 3 054167 1 3 017495 1 3 667078 1 1 171656 2 4 322708 1 4 281148 1 4 155950 1 1 249877 3 5 405850 1 5 368656 1 3 719273 1 Probability Total Elastic Absorption IG 172 ENG 1 000010E 5 3 000000E 3 NOR 8 I 7 NPAR 2 KP 2 101 0 0 4 790513 2 2 605929 2 4 608785 0 2 559841 2 1 107177 1 3 258078 2 4 680370 0 3 211274 2 1 662634 1 4 829956 2 4 914168 0 4 780815 2 1 981846 1 8 160701 2 5 695631 0 8 103745 2 1 902789 1 1 431781 3 7 800669 0 1 423980 3 1 496186 1 2 335819 3 1 150792 1 2 324312 3 9 609510 2 3 319366 3 1257992241 3 303567 3 4 093668 2 4 036773 3 1 900039 1 4 017772 3
38. Programme under grant EP 1501045 Corresponding authors jean christophe sublet ccfe ac uk mireille coste delclaux cea fr 1 Contents 1 INTRODUCTION ZL SS u S a a Qasa et DSA TUVA ete to 1 1 1 GAUSS QUADRATURE AND PT MOMENT sisi 1 1 2 CALCULATIONAL METHODS eaa 2 1 3 UNRESOLVED RESONANCE RANGER 3 1 4 EFFECTIVE CROSS SECTION AND MOMENT 3 1 5 CALENDESPEGIBIGSS S asun guau uuu imapa aun Geen 4 1 6 CALENDEEEATURES sadia in e NQ S SSS l Ma NT o 6 2 90 se as 8 EA 1 AA ANSKU aG u AKAA 8 3 1 DIMENSIONAPIQPTIONS Sag Z Ra a e 9 3 2 PARTIAL CROSS SECTIONS GROUDING a a 10 3 3 ON E CH REN 11 3 4 REGROUCS REGROUPR REGROUSF REGROUTP 5555555555 5 59 4 8 8 15 3 5 CONDENTE Sesc arandos ss aaa a ijas ease Shea apuy tase as 17 3 6 MIXIS O EP IS aa aiii 19 3 7 IN TERI Pants WA WA a SR SEDE 20 3 8 TPMOSERE ati MAR EA U MINNA A RE E Saad 21 3 9 SEFENRA csi uu Qhatu aaa anas as sie aan S 22 3 10 RED WOR UPS sasaites sa a aputa S et a as aa es at qr do
39. RL NFSF NFSFTP NE TP PREC NIMP 0 REGROUTP NFTP 10 NFTPR 17 NIMP 0 80 REGROUSF NFSF 12 NFSFR 13 NIMP 0 80 REGROUSF NFSF 11 NFSFR 14 NIMP 0 80 COMPSF NFSF1 13 NFSF2 14 NFSFDR 20 NFSFDA 21 IMP 0 80 zones a 293 6 0 12 1 LO 4 80 N D age READ born 9440 inferieure ALPHA jeff31pu240p asc pu240e y s r pu240e sf sft tp pu240e pu240e pu240e tp pu240e tpr pu240e sf pu240e sfdr pu240e sft pu240e sftr pu240e pu240e pu240e pu240e sfdr sftr err era 59 inpu240f CALENDF MODIFOPT LPSPPOS TRUE MODIFOPT LPSTPOS TRUE ENERGIES 1 0E 5 20 0E6 MAILLAGE READ XMAS172 SPECTRE 3 zones 500000 1000000 E ZS 1 0 31 T NDIL 5 ds liks 100 1 E 7 NFEV 9 9440 jeff31tn9440_3 asc SORTIES NFSF 12 pu240f sf NFSFTP 11 pu240f sfi NFTP LO pu240f tp PREC 4 NIMP 1 80 REGROUTP NFTP 10 pu240f tp NFTPR 13 pu240f tpr NIMP 0 90 LECRITP MODIFOPT LPSPPOS TRUE NFIPR 13 pu240f tpr NFIPP 117 pu240f tpp NIMP 1 90 60 inpu241 CA RE RE RE CO EN LENDF MODIFOPT LCORSCT ENERGIES 1 0E 5 FALSE 20 0E 6 MAILLAGE REA XMAS172 SPECTRE 1 Di TE
40. SE 16 w184 cse NFPEF 7 wl84 csp NIMP 1 95 END 69 inPu241b test cas CAD pour sorties FNDF CALENDF ENERGIES 0 MAILLAGE REA RED616 SPECTRE 1 zones Oe de TEFF 294 NDIL 5 le 0s NFEV 9 SORTIES NFCS NFSF PREC 3 NIMP 0 80 REGROUSF NFSF 12 NFSFR 13 NIMP 0 80 REGROUCS NFCS 10 NFCSR 17 NIMP 0 80 LECRICS pu24 pu24 ENERGIES 0 NFCSL NFPEF NECSE NIMP 1 LECRISF NFSFL 13 NFSFE 119 NFSFP 121 NIMP 0 100 END 6 18 100 D 1 9443 17 1 00 10 20000000 00 1 E 8 ornlpu241 asc pu24 pu24 LOS lb sf pu241b sf pu241b sfr 2000000 pu pu pu pu24 pu24 Lx pu lb cs lb csr 0 241b csr 241b csp 241b cse 1b s lb sfe 241 1b sfp 70 inPu240e END CALENDF MODIFOPT LCORSCT FALSE MODIFOPT LFORMRF FALSE ENERgies 1 0E 5 20 0E 6 MAILlage READ XMAS172 SPECtre borne inferieur 1 zones 0 1 TEFF 293 6 NDIL 1 1 0E 10 NFEV 9 9440 jeff31pu240p asc SORTies NF TP 10 pu240e tp PREC 1 NIMP 2 80 ALPHA 71 6 1 Timings To give some idea of the relative speeds of the code system on various platforms the running times in second for some o
41. TPC 21 pu240a tpx IPRECI 4 NIMP 1 90 END inpu240b CALENI DF MODIFOPT LCORSCI FALSE MODIFOPT LFORMRF MODIFOPT 1 LPSPPOS OE 5 ENERgies MAILlage XMAS172 SPECtre 1 zones 0 TEFF DIS de NDIL 1 1 0E 10 NFEV 9 SORTies NFSFRL NFSF NFSFTP NE TP PREC NIMP 0 REGROUTP NFTP 10 NFTPR 17 NIMP 0 80 REGROUSF NFSF 12 NFSFR 13 NIMP 0 80 REGROUSF NFSF 11 NFSFR 14 NIMP 0 80 COMPSF NFSF1 NFSF2 13 14 NIMP 80 D READ born inferi FALSE TRUE 20 0E 6 ur ALPHA 6 pu240b pu240b pu240b pu240b jeff31tn9440 3 asc sfr sf sft tp NFSFDR 20 NFSFDA 21 pu240 pu24 b tp R EPE pu240 pu240b sfdr b sf pu240b sft pu240b sftr pu240b pu240b pu240b pu240b sfdr SEI err era 56 inpu240c CALENDF MODIFOPT LCORSCT FALSE MODIFOPT LFORMRF FALSE ENERgies 1 5 20 0E 6 MAILlage READ XMAS172 SPECtre borne inferieure ALPHA 1 zones 0 1 TEFF 293 6 NDIL jeff31tn9440_3 asc pu240c1 sfr pu240c1 sf NFSFTP 1 pu240c1 sft NFTP d pu240c1 tp PREC NIMP 0 REGROUTP NFTP 10 pu240c1 tp NFTPR 17 pu240cl tpr NIMP 0 80 REGROUSF NFSF 12
42. WWWWWW ds ds ds es 14212 858228 621290 395907 181516 975950 183590 599065 423540 258815 098175 946660 ua Oo oo O o0 O PRPRPRPRPRPRPRPRPRFPRPRFPRPRFPENNNNNNNNWWWWWWH AD A 827866 592408 368434 155383 951900 759945 576572 402145 238223 078598 928245 785438 659320 933758 408597 300270 185310 086537 997245 1 907230 829250 1 744243 1 659878 1 578585 1 491667 422280 353750 283540 218530 160000 1 114333 1 075500 035000 991000 950000 910000 860000 804725 741550 675207 617570 560220 519620 485000 449680 413990 375198 338495 310875 275877 244395 217285 196358 177428 157677 140000 115000 087500 N DDD VU VU VU VU Q ds ds ds E 797503 563526 340961 129250 927860 736300 554080 380750 217630 059020 909830 767920 644490 517515 395483 285715 171483 073073 985868 1 895845 818500 733485 649755 567170 1 483333 1 413420 1 345625 1 275310 1 210295 155000 110000 1 071000 030000 986000 945000 903285 855000 797363 732413 667855 610140 553480 514715 480503 445510 409327 369930 334660 307250 271755 240790 214570 193905 174855 155353 138000 111250 083750 66
43. a sequence of code words that falls into different categories The code words are described in the following sections The code words are shown in BOLD type with details of the various parameters that accompany some of them shown in an ITALIC font Default values are assumed 1f the optional code word is not used and are enclosed in angle brackets lt gt Optional code words are shown underlined User parameter choices are described enclosed in angle bracket Many of the code words consist of several characters of which only the upper case ones as shown in this manual are read so abbreviations may be used if wished All the input is free format the user may include as many blanks white space on the same line between the words and the parameters as desired so that the file is readable and easily understood One or more commentary text line could begin the input file afterward the input stream is continuous until the code word end Any type of characters can be added comments descriptions once the code word and parameters sequences have been typed 3 1 DIMENSIONAL OPTIONS NORMAX and NDILMX are dimensions used by several branches and can be currently modified by user There is no limit to NDILMX numerical accuracy may limit NOR the order of the probability tables to around 16 but greater values of NORMA X are probably useless All the other dimensions defined hereafter are only used in CALENDF and SIGTTEUM They have been
44. ability tables have been proved to be most useful in accounting for all self shielding effects in more thermal neutron environments The present conditions of probability table usage and precincts are determined The principle of all probability tables is to describe the cross section within a group by a set of discrete values Pi gt Ori Oxi x elastic inelastic fission absorption with i 1 to N As the partial cross sections 0x always appear linearly in neutronic applications to each step N of the total cross section ou only one value of each partial can be associated 1 1 Gauss Quadrature and PT Moment A probability distribution is exactly defined by its infinite moment sequence A PT Mt is formed of N doublets pi 6i i 1 N exactly describing a sever sequence of 2N moments of the G E distribution Such a probability table is a Gauss quadrature and as such will benefit from their entire mathematical settings 2517 Pg 9 4 PS3 15 10 Py 02 Py Oy El E HT gt r inf sup 0 0 01 0 02 0 03 0 0 25 0 5 Fig 18 Cross section versus energy 1b Exact PT distribution 1c PT discretisation The only degree of freedom is in the choice of moments for which a default is proposed in CALENDF dependant on the table order and associated to the required accuracy in o 1 Esup n O max n x n Q E cl SEE poode Y poi With G Ewe Ent D Each one of the components of Equation 1
45. adapted so that all presently available evaluations could be processed by CALENDF 2010 However future evaluations may oblige the users to modify these dimensions in order to process them appropriately MODIFDIM _ word 6 NORMAX lt ll gt max order of the probability tables NDILMX lt 16 gt max number of dilutions NISOMX lt 9 gt maz number of isotopes described by the evaluation NPPRMX lt 30 gt max number of resolved resonance populations including each isotope energy range orbital momentum spin NZORMX lt ll gt max number of sub ranges or zones describing the Resolved Resonance Range RRR in the evaluation NPPUMX lt 46 gt max number of unresolved resonance populations isotope orbital momentum spin NPEUMX lt 140 gt max number of energies used to define the average resonance parameters in the URR of the evaluation NPOPMX lt 12 gt max number of populations orbital momentum spin for a given isotope for the URR NMODMX lt 13 gt max number of interpolation modes describing a raw cross section in the evaluation 3 2 PARTIAL CROSS SECTIONS GROUPING In the present 2010 version CALENDEF regroups the many partial cross sections into 5 macro partials stored into MTREFD 1 5 and identified by a MT number inspired from ENDF 102 1 and used by simulation codes This grouping defined in MTREP 1 20 1 5 is verified when probability tables and cross sections are processed and can easily be modified
46. ations on these CSPT such as the calculation of effective cross sections the comparison of sets of effective CS the calculation of the neutron transmission of some samples CALENDF can process PENDF data but then of course does not provide a better description of the cross sections in the unresolved energy range nor allow a probability table calculation in this range if only averaged cross sections are provided unless the pointwise data file comes from the output containing the cross sections NFCS output performed by CALENDF CALENDEF evaluation processing can induce negative values of the probability table steps for the three following reasons 1 If the evaluation and the processing are correct no negative values of the o steps nor of the probabilities should exist However small negative values of some partial cross sections steps associated to small probabilities may occur for perfectly legitimate mathematical reasons The evaluation itself can induce negative values For instance the presence of negative pointwise cross section in the unresolved resonance range URR inserted in order to correct averaged resonance parameters overestimation can lead to such a default Furthermore some doubtful evaluation still remains in some data libraries One must recognise however that CALENDF itself can occasionally produce negative values A modification of the accuracy indice IPRECI generally improves the results Total neg
47. ative steps are suppressed if they exist Partial negative steps are of no consequences and by default are preserved by the code However users are given the possibility to remove all negative values by using CALENDF or LECRITP keyword LPSPPOS The accuracy of the data will then be slightly decreased In some evaluation in the Resolve Resonance Range the radiation widths could have been set to zero in those cases the code will automatically set them to 10 when the Reich Moore approximation is used 2 Use of CALENDF Details of CALENDF and differences in running CALENDF on different platforms are discussed in Appendix A This section concentrates on the information that a user must know prior to using CALENDF and on introducing the code words and their sequences that instruct CALENDF to carry out various types of calculation The code is modular and is split into several branches each of them being able to perform a set of well defined tasks and processing cfmod f Module subroutines mcalendf f Main program spgbr f Branching subroutines spgdop f Doppler subroutines spgintg f Numerical subroutines spglec f Read Write subroutines spgmat f Mathematical subroutines spgnew f Recently added subroutines spgsh f CALENDF branching subroutines spgsig f Cross section subroutines spgsvc f Service subroutines spgtpsf f Effective cross section and probability table subroutines 3 Main Input The input file constructed by a user consists of
48. b NFTP TOS Pues 9 PREC 4 NIMP 0 80 END jeff30n9437_l asc cs sfr sr sft tp 48 inpu239c CALENDF PT of Pu9 ENERGIES 10000 0 00001 MAILLAGE READ XMAS172 SPECTRE 1 zones 0 0 EV 9 9437 jeff30n9437 1 asc ORTIES NEIE 10 pu239c tp PRECI 4 NIMP 0 80 EGROUTP NFTP 10 pu239c tp NFTPR 11 pu239c tpr NIMP O 80 CALENDF PT of Pu40 ENERGIES 10000 0 00001 MAILLAGE READ XMAS172 SPECTRE 1 zones TE NDIL 0 NF S HI EV 9 9440 jeff30n9440 2 asc ORTIES NFTP 10 pu240c tp PRECI 4 NIMP 0 80 EGROUTP NFTP 10 pu240c tp NFTPR 12 pu240c tpr NIMP O 80 CALENDF PT of Pu42 ENERGIES 10000 0 00001 MAILLAGE READ XMAS172 SPECTRE 1 zones Os 0 TE NDIL 0 NF S HI EE NDI NFEV 9 9446 jeff30n9446 2 asc SORTIES NEIE 10 pu242c tp IPRECI 4 NIMP 0 80 EGROUTP NFTP 10 pu242c tp NFTPR 13 pu242c tpr HI NIMP 0 80 MIKISOTP mixture for n i n total 0 175 0 625 0 2 ENERGIES 10000 0 NISO 3 AISO 0 175 0 625 0 2 NFTPD 11 pu239c tpr 49 NFTPD 12 pu240c tpr NFTPD 13 pu242c tpr NDIL O
49. considered like a generalization of the narrow resonance hypothesis where t E is replaced by a constant Point wise cross sections CS are calculated on pre defined energy zones for every group These energy zones are generally discontinuous except in the branch SIGTTEUM or in case of very fine groups and they can be recorded on reguest Effective cross section SEFF can be on reguest calculated from the point wise cross section as well and recorded Effective cross sections can also be rapidly calculated from the probability tables for any dilution Cross section probability tables CSPT based on Gauss guadratures are computed for every group From these ladders effective cross sections can be generated The use of the branches REGROUTP REGROUSF and REGROUCS are often necessary to bind the resulting data CSPT SEFF and CS Their systematic use is recommended CALENDF the main branch can deal with evaluations describing several isotopes the treatment of CSPT by REGROUTP is then rigorous but the treatment of SEFF and CS is meaningless as there is no correct theory to amalgamate several isotopes In the unresolved resonance range URR several random samples of resonances can be generated to describe the same energy range REGROUTP and REGROUSF provide an exact merging but REGROUCS is meaningless there is no meaning in averaging several random pointwise CS describing the same energy range CALENDF also allows utilitarian oper
50. ction processes and not to any other processes As specified in the ENDF 6 Format manual the energy mesh for the total cross section must be a union of all energy meshes used for the partial cross sections However this rule has been regularly ignored in some evaluations CALENDF will add the partials energy points within the meshes of the total and print a diagnostic New energy points could also be added if necessary to satisfy the reconstruction criteria CALENDF Doppler broadens all cross sections assuming that they have structures This feature contrasts with other processing systems and may generate differences when comparing group data particularly in the first group of threshold channels Such a feature affects the threshold itself as well 1 6 CALENDF features Cross section probability tables allow various data handling processes to be performed once they have been calculated These include isotopic smearing condensation interpolation and order reduction Those data manipulation processes are made eztremely efficient and strict in terms of physical meaning and easy to perform which is due to the very explicit format of the probability tables Those operations all assume the statistical hypothesis and tend to be more exact at high energy although for the Pu evaluation this limit is as low as a few hundred eV The statistical hypothesis in neutronic terms this time implies a replacement of t E by its mean value Z and could be
51. dil gt number of dilutions If ndil gt 0 lt sdil idil gt dilution values ndil times lt unit gt for the PT to be condensed lt file name gt file name of this PT lt nfsfc gt if O unit for calculated effective cross sections lt file name gt lt nftpc gt if 0 unit for collapsed probability table lt file name gt lt ipreci gt calculational accuracy indices lt nimp gt output dump indices on unit 6 see 3 15 lt ncar gt number of characters per output line on unit 6 Nota Bene in a CONTENTP group the weighting spectra can vary The energies boundaries given for a chosen weighting spectrum are adjusted to the closest group boundaries of the inputted group structure 18 3 6 MIXISOTP Smear mixes several isotopic probability tables together that have to be defined on the same grid MIXISOTP ENERgies lt enmin gt lt enmax gt energy range in eV NISO lt niso gt number of isotopes to be mixed described by their probability tables AISO relative isotopic atomic percentage lt aiso iiso gt niso times NFTP unit for the probability table input file lt nftp gt lt file name gt niso times NDIL lt ndil gt number of dilutions If ndil gt 0 lt sdil idil gt dilution values ndil times SORTies NFSFM lt nfsfm gt if O unit for calculated effective cross sections lt file name gt NFTPM lt nftpm gt if 0 unit for collapsed probability table lt file name gt IPRECI lt ipreci gt calcu
52. e diffus en 1994 2001 puis 2005 avec une am lioration de sa qualit et de ses modalit s d utilisation Destin au calcul et au traitement des sections efficaces neutroniques multigroupes il est largement bas sur l utilisation de la quadrature de GAUSS Ses principales fonctionnalit s sont les suivantes calcul de tables de probabilit bas es sur les moments et calcul de sections effectives regroupement de sections efficaces ponctuelles de tables de probabilit et de sections effectives condensation de tables de probabilit m lange de tables de probabilit pour diff rents isotopes interpolation de tables de probabilit calcul de tables de probabilit bas es sur les sections effectives calcul de sections effectives 4 partir de tables de probabilit comparaison de sections effectives reconstruction de sections efficaces ponctuelles continues dans tout le domaine nerg tique et calcul de la transmission moyenne travers des chantillons de diff rentes paisseurs Le manuel d utilisation de CALENDF apr s avoir rappel les principales fonctionnalit s du code pr sente de fa on exhaustive les donn es relatives chacune et commente les sorties associ es En annexe il fournit les proc dures d installation sur les diff rents calculateurs des cas tests standard ainsi qu une comparaison des performances des diff rents ordinateurs sur lesquels le code a t port et qualifi 2011 Commissariat P E
53. erent table methodology are discussed while their accuracy the calculational methods efficiency possible interpretation and manipulation are weighted This probability table PT approach has been introduced exploited in both resolved RRR and unresolved URR resonance ranges and programmed in the code CALENDF The 2010 version of the code has been significantly revised in order to improve both its quality and clarity by adopting 90 95 Fortran standard while strengthening its physics The step from a research tool to a reliable code system has now been attained suitably documented verified and QA d The main features of the code are described and exemplified They include not only cross section processing but also some physical controls particularly in the resonance parameter ranges resolved and unresolved Although probability tables used as a tool certainly enhance classical neutronic calculational methods they are not even nowadays in common use in industry or utility bodies because they demand dense data storage and interpretation methods Their main interest is that in the unresolved resonance range they uniquely complement pointwise Monte Carlo treatment However in the resolved resonance range the energy dependent information is embedded within each group which can be summarized as the statistical hypothesis This assumption is more physically acceptable for high energy applications fast spectrum systems notably however prob
54. f the test cases on a single processor with no optimisation can be compared All test cases will typically complete in less than 10 minutes SunBlade 2500 Intel Xeon 64 AMD 64 Sparc 1 6 Ghz 2 26 Ghz 2 2 Ghz a b c inal27 2 52 0 27 0 48 inb10 0 5 0 11 0 16 inb10a 1 9 0 19 0 30 infe56 15 3 1 33 2 66 inhf178 282 6 21 9 54 9 inhf178a 0 03 0 01 0 01 inpu239 384 7 63 8 72 9 inpu239a 0 08 0 02 0 03 inpu239b 0 07 0 02 0 03 inpu239c 341 1 41 0 70 7 inpu239d 377 5 64 0 73 0 inpu240 293 8 25 4 59 8 inpu240a 608 4 54 9 130 0 inpu240b 291 0 25 4 59 8 inpu240c 293 6 25 3 59 8 inpu240d 269 7 25 3 59 8 inpu240e 48 7 4 6 8 9 inpu240f 234 1 25 6 60 1 inpu241 195 6 21 3 38 3 inu238 342 4 38 8 91 0 inu238a 289 4 36 2 85 8 inu238b 264 3 9 10 0 inu238c 1 0 0 29 0 57 inu238d 4 6 0 7 1 8 inu238e 1413 7 157 4 341 6 inu238f 1 0 0 3 0 49 Time in Seconds fa Solaris 10 Sparc and Studio 10 Fortran 77 95 Compiler b Apple OsX 10 6 and Intel ifort 11 1 Compiler c Solaris 10 186 and Studio 11 Fortran 77 95 Compiler Fortran compiler FFLAGS for normal full debugging and fast execution are provided for each compilers and platforms Older Fortran 95 compiler releases on all platforms are also generally supported On some platforms a factor of 3 to 5 time improvement can be achieved between normal and fast compilation executable test cases runs 72 7 Reference 1 2 3 4 5 6 7 8 L B Levitt The probability tab
55. he dilution is infinite this formula becomes i N O DO x eff guad i xi quad 2 5 This eguation represents the first order moment CALENDF will compute the relative and absolute differences that could exist between the calculated effective cross sections computed from the PT and the pointwise data in order to ascertain the calculational choice made Those differences are usually well below the reconstruction accuracy required 1 5 CALENDE specifics The CALENDEF Nuclear Data Processing System is used to convert the evaluation defining the cross sections in ENDF format i e the point wise cross sections and or the resonance parameters both resolved and unresolved into forms useful for applications Those forms used to describe neutron cross section fluctuations correspond to cross section probability tables CSPT based on Gauss quadratures and effective cross sections The code accesses the data stored in MF 2 resonance parameters and MF 3 point wise cross sections of the ENDF 5 or 6 data file provided as input ignoring all other MF Ladders of resonance parameters are generated into some energy zones in the unresolved range which are then treated as the resolved range Checks of the consistency of the evaluated data are performed and messages emitted Within the resonance range the cross sections are calculated from the resonance parameters described in the ENDF file using different formalisms A slightly modif
56. ied multi level Breit and Wigner formalism Multi Niveau Breit et Wigner MNBW MLBW is applied by CALENDF in this energy range allowing the pointwise cross sections to be calculated In the Unresolved Resonance Range URR the basic idea is to generate random ladders of resonances The treatment of these ladders is then the same as that of the Resolved Resonance Range RRR except for the treatment of external or far off resonances For each group or several groups in case of fine structure an energy range is defined taking into account both the nuclear properties of the nuclei and the neutronic requirements accuracy and grid By default in CALENDF the energies are taken from a sequence of eigenvalues of a random matrix A stratified algorithm improved by an antithetic method creates the partial widths In the URR range CALENDF applies the statistical hypothesis based on the fact that the resonances can be statistically described The basic interpolation mode is a cubic one based over 4 points which requires a careful checking and eventual introduction of new energy points of the ENDF raw data MF 3 An important point is that CALENDF will need MF 3 MT 1 the total cross section present in the evaluated file MF 2 is thoroughly checked and interpreted if felt necessary All the MT numbers recognised by the code in MF 3 will be cubicized the different interpolation laws given are interpreted and the cross section energy grids are t
57. in gt lt enmax gt energy range in eV It is normalised to the nearest group bound of the selected group structure MAlLlage word 4 READ the group structure is read lt ign gt group structure name see 3 15 SPECtre lt nrange gt nrange number of energy zones For each zone ira ira 1 to nrange lt enzinf ira gt lower energy bound lt alphaz ira gt weighting spectra indice see 3 15 GENEre the group stucture is generated lt nrange gt number of energy zones for each zones ira ira 1 to nrange lt ngc ira gt lt alphaz ira gt lt etop ira gt ngc number of groups in the zone for ira alphaz weighting spectrum indices etop upper energy bound of the first group in the range IRA etop has to correspond within 10 to the last energy defined by ira 1 if ngc gt 0 the code reads NGC values of lower energy bounds lt eng ig gt ngc values if ngc lt 0 the code reads t the energy step for ngc groups lt gt defines the energy step which is calculated if t gt 0 the lethargy step is 1 7 eng ig 1 eng ig exp 17 if t lt 0 the energy step is tT eng ig 1 eng ig T N B when ngc ira gt 0 grid given it is possible to introduce energy points greater than the maximum of the range gt etop ira This allows the introduction of spurious energies points within the regular previously calculated energy grid NDIL NFTPD SORTies NFSFC NFTPC IPRECI NIMP lt n
58. lational accuracy indices see 3 15 NIMP lt nimp gt output dump indices on unit 6 see 3 15 lt ncar gt number of characters per output line on unit 6 19 3 7 INTERTP Interpolates between probability tables following an interpolation variable T T could represent the temperature for example INTERTP ENERgies NTP NFTP ABSC ILOINT NDIL TINT SORTies NFSFI NFTPI IPRECI NIMP lt enmin gt lt enmax gt energy range in eV lt ntp gt number of probability tables and interpolation variable T lt nftp gt unit lt tnftp gt file name ntp times lt T ntp gt values of the interpolation variable ntp times lt iloint gt interpolation laws interpolation in T 2 interpolation in VT 3 interpolation in T 4 interpolation in Log T lt ndil gt number of dilutions If ndil gt 0 lt sdil idil gt dilution values ndil times lt tint gt interpolation variable final value i e output temperature lt nfsf gt if z 0 unit for calculated effective cross sections lt file name gt lt nftp gt if O unit for the calculated probability table lt file name gt lt ipreci gt calculational accuracy indices see 3 15 lt nimp gt output dump indices on unit 6 see 3 15 lt ncar gt number of characters per output line on unit 6 20 3 8 TPMQSEFF Calculates probability tables from effective cross sections or reaction rates TPMQSEFF ENERgies lt enmin g
59. le method for treating unresolved resonances in Monte Carlo criticality calculations Trans Am Nucl Soc 14 648 1971 M N Nicolaev et al Methode des sous groupes pour la prise en compte de la structure r sonnante des sections efficaces dans les calculs neutroniques l re partie Translation of Atomnaia Energia 29 Nol 1970 D E Cullen Application of the probability table method to multigroup calculations of neutron transport Nucl Sc Eng 55 387 400 1974 D E Cullen Calculation of Probability Tables parameters to include intermediate resonance self shielding UCRL 79761 ANS Winter Meeting San Francisco 1977 P Ribon and J M Maillard Les tables de probabilit Application des sections efficaces pour la neutronigue CEA internal report 1986 F J Dyson Statistical Theory of the Energy Levels of Complex Systems J Math Phys 3 140 1962 3 157 1962 3 160 1962 P Ribon CALENDF et les programmes associ s Notice Th orique CEA internal report 1995 ENDF 6 Formats Manual Data Formats and Procedures for the Evaluated Nuclear Data File ENDF B VI and ENDF B VII Written by the Members of the Cross Sections Evaluation Working Group Last Revision Edited by M Herman and A Trkov Report BNL 90365 2009 June 2009 73 pn AA ee u ma ir SH r Ee Ge Le ae JN EDITE PAR LA DIRECTION DES SYSTEMES D INFO RMATIO N CEA SACLAY 91191 GIF SUR YVETTE CEDEX FRANCE
60. lt nfsf gt if 0 unit for directly calculated effective cross section with a Bondarenko flux lt file name gt lt nfsftp gt if 0 unit for PT calculated effective cross section for each zones prior to regrouping lt file name gt lt nftp gt if O unit for probability tables lt file name gt lt ipreci gt calculational accuracy indices see 3 15 lt nimp gt output dump indices on unit 6 see 3 15 13 lt ncar gt number of characters per output line on unit 6 Nota Bene in a CALENDF group the weighting spectra is unique Different weighting spectra can be introduced within a group by using the CONDENTP codeword The energies boundaries given for a chosen weighting spectrum are adjusted to the closest group boundaries 14 3 4 REGROUCS REGROUPR REGROUSF REGROUTP The use of these four branches is generally required after a CALENDF call if NFCS 0 then REGROUCS if NFPR 0 then REGROUPR if NFTC NFSFRL NFSFTP z 0 then REGROUSF if NFTP 40 then REGROUTP Their aim is to mix collapse or merge data belonging to the same group but appearing in different tables of the CALENDF output This is because the group covers several energy ranges of the evaluation because CALENDF creates several computational zones because there are several random samples in the unresolved energy range because there are several isotopes in the evaluation It is recommended to always use them It may not be always neces
61. lt nfsfp gt unit for effective cross section output lt dilution gt lt file name gt NIMP lt nimp gt output dump indices on unit 6 see 3 15 lt ncar gt number of characters per output line on unit 6 Read and write effective cross section files LECRITP MODIFOPT word 7 LPSPPOS lt FALSE gt by default negative steps of all partial cross sections are preserved lt TRUE gt negative steps of all partial cross sections are set to 1 000000 7 barn NFTPL lt nftpl gt unit for probability tables input lt file name gt NFTPE lt nftpe gt unit for probability tables output lt file name gt 24 NIMP lt nimp gt output dump indices on unit 6 see 3 15 lt ncar gt number of characters per output line on unit 6 Read and write probability table files 25 3 12 COMPSF Compares two different effective cross section files Computes the relative difference as the log of the cross sections ratio and the absolute difference as the simple difference COMPSF NFSF1 lt nfsf1 gt if 0 unit for effective cross section input 1 lt file name gt NFSF2 lt nfsf2 gt if 0 unit for effective cross section input 2 lt file name gt NFSFDR lt nfsfdr gt if O unit for relative difference output lt file name gt NFSFDA lt nfsfda gt if O unit for absolute difference output lt file name gt NIMP lt nimp gt output dump indices on unit 6 see 3 15 lt ncar gt number of characters per output line
62. n function troughs or dips opposed to peaks of the cross sections CALENDF standard choice ranges from 1 N to N for total cross section and 1 N 2 to N 1 2 for the partials Within the resonance range the cross sections are calculated from the resonance parameters described in the ENDF file using different formalisms A slightly modified multi level Breit and Wigner formalism is implemented by CALENDF in this energy range allowing the pointwise cross sections to be calculated 1 3 Unresolved resonance range The basic idea is to generate random ladders of resonances The treatment of these ladders is then the same as that of the RRR except for the treatment of external or far off resonance For each group or several groups in the case of fine structure an energy range is defined taking into account both the nuclear properties of the nuclei and the neutronic requirements accuracy and grid By default in CALENDF the energies are taken from a sequence of eigenvalues of a random matrix A stratified algorithm improved by an antithetic method creates the partial widths In the URR range CALENDF applies the statistical hypothesis based on the fact that the resonances can be statistically described 1 4 Effective cross section and moment The effective cross section can be calculated from either the pointwise cross section or the probability table as follows p Oi i O O O eff quad 04 msi 4 Pi i l Os 0 When t
63. nd of the first group in the range IRA etop has to correspond within 10 to the last energy defined by ira 1 if ngc gt 0 the code reads NGC values of lower energy bounds 12 lt eng ig gt ngc values if ngc lt 0 the code reads 7 the energy step for ngc groups lt gt defines the energy step which is calculated if gt 0 the lethargy step is 1 7 eng ig 1 eng ig exp if t lt 0 the energy step is tT eng ig 1 eng ig T N B when ngc ira gt 0 grid given it is possible to introduce energy points greater than the maximum of the range gt etop ira This allows the introduction of spurious energies points within the regular previously calculated energy grid TEFF NDIL NFEV SORTies NFCS NFPR NFTC NFSFRL NFSF NFSFTP NFTP IPRECI NIMP lt teff gt effective temperature in Kelvin lt ndil gt number of dilutions If ndil gt 0 lt sdil idiD gt dilution values ndil times lt unit for endf b gt lt material number to be processed gt lt file name gt file name in single quote on UNIX lt nfcs gt if O unit for pointwise data lt file name gt lt nfpr gt if O unit for the sets of group resonance parameters lt file name gt lt nftc gt if O unit for pointwise and collision density data for each dilution lt file name gt lt nfsfrl gt if 0 unit for effective cross section and fine structure flux with exact slowing down lt file name gt
64. ne remark is that group 37 has been sub divided into three zones by the code tables de probabilite pour 72 HF 178 NAIG DIST xxxx IPRECI 4 gt 0 0002 accuracy ZA 72178 MAT 7237 TEFF 300 0 172 groupes de 1 0000E 5 a 1 9640E 7 IPRECI 4 Group 1 NOR Table order NPAR number of partial IG 1 ENG 1 733253E 7 1 964033E 7 NOR 2 I 1 NPAR 4 KP 2 101 4 15 4 094861 1 5 513532 0 3 182873 0 4 079314 3 4 225357 1 1 904044 0 5 905139 1 5 604854 0 3 246516 0 3 155175 3 4 421208 1 1 913062 0 Probability Total Elastic Absorption Inelastic N xN 2 101 4 15 NOR table order NPAR number of partial IG 37 ENG 5 000000E 4 5 516564E 4 NOR 1 I O NPAR 2 KP 2 101 0 0 1 000000 0 1 166758 1 1 142097 1 2 466165 1 IG 37 ENG 4 520382E 4 5 000000E 4 NOR 11 I 10 NPAR 2 KP 2 101 0 0 3 433220 4 7 618463 1 6 215518 1 1 402945 1 2 235189 3 1 028660 0 8 354195 1 1 932406 1 7 939953 3 1 508435 0 1 345200 0 1 632347 1 2 825066 2 2 712981 0 2 538652 0 1 743293 1 1 023008 1 4 865225 0 4 682912 0 1 823134 1 3 539862 1 8 156930 0 7 956202 0 2 007281 1 3 240754 1 1 240664 1 1 212878 1 2 778589 1 1 180622 1 2 025037 1 1 988871 1 3 616566 1 4 545310 2 3 112827 1 3 074876 1 3 795007 1 1 523489 2 4 232851 1 4 195875 3 697636 1 2 118302 3 5 168061 1 5 111961 1 5 610059 1 IG 37 ENG 4 086771E 4 4 520382E 4 NOR 11 I 10 NPAR 2 KP 2 101 0 0 3 881368 4 6 555958 1 5 343885 1 1 212072 1 1 285089 3
65. nergie Atomique France RAPPORT CEA R 6277 Jean Christophe SUBLET Pierre RIBON Mireille COSTE DELCLAUX CALENDF 2010 User Manual Abstract CALENDF 2010 represents a Fortran 95 update of the 1994 2001 then 2005 code distribution with emphasise on programming quality and standards physics and usage improvements Devised to process multigroup cross sections it relies on Gauss quadrature mathematical principle and strength The followings processes can be handled by the code moment probability table and effective cross section calculation pointwise cross section probability table and effective cross section regrouping probability table condensation probability table mix for several isotopes probability table interpolation effective cross section based probability table calculations probability table calculations from effective cross sections cross section comparison complete energy pointwise cross section processing and thickness dependent averaged transmission sample calculation The CALENDF user manual after having listed all principal code functions describes sequentially each of them and gives comments on their associated output streams Installation procedures test cases and running time platform comparisons are given in the appendix 2011 Commissariat V nergie Atomique France Rapport CEA R xxx CALENDF 2010 User Manual Jean Christophe Sublet Pierre Ribon and Mireille Coste Delclaux
66. nostics some intermediary results intermediary physicist intermediary debug mode 29 4 only for numerical checks ncar meaning number number of possible characters per line alphaz define the weighting spectrum for each group lt 10 alpha ig alphaz i e 1 gt 1 E 0 gt constant D E E alpha ig gt 10 alpha ig mean slop of O E in the group width 10 lt alphaz lt 1 0 10 alphaz maxwellian spectrum temperature in Kelvin DE E e F kalphaz 1 10 lt alphaz lt 1 10 alphaz fission spectrum temperature in eV D E VE e F alphaz alphaz gt l 10 alphaz fusion spectrum mean energy D E e 0 0002 NE vValphaz 2 The weighting spectrum is constant within a group i e the energy bounds of alphaz are adjusted on the nearest group bounds except in CONDENTP which allows several groups with weights defined by two spectra to be collapsed 30 4 CALENDF output format 4 1 Output Files The following rules are available for all the output files of CALENDF A positive output unit number will generate ASCII coding while a negative unit number will lead to binary coding An output unit number greater than 100 generates E formatted result 1 123456E 01 An output unit number less than 1001 generates F formatted results 1 123456 1 4 2 Examples Example of an NFTP tp output corresponding to Hr probability tables in Xmas 172 groups format prior to REGROUTP O
67. on unit 6 26 3 13 SIGTTEUM Computes pointwise cross section in the resolved resonance range on a grid created by the code as CALENDF in the unresolved resonance range at the energies of definition of the average parameters These cross sections are the average values of the infinite dilution cross sections calculated from several random samples The pointwise cross sections are taken into account over the whole energy range SIGTTEUM ENERgies lt enmin gt lt enmax gt energy range in eV TEFF lt teff gt effective temperature in Kelvin NFEV lt unit for endf b gt lt material number to be processed gt lt file name gt file name in single quotes on UNIX NFCS lt nfsf gt unit for pointwise cross section output lt file name gt IPRECI lt ipreci gt calculational accuracy indices see 3 15 NIMP lt nimp gt output dump indices on unit 6 see 3 15 lt ncar gt number of characters per output line on unit 6 The use of REGROUCS after SIGTTEUM is generally required 27 3 14 TRANSMOY Computes the averaged transmission of samples of different thickness in a neutron beam A probability table resulting from a mixture of several isotopes describes the sample TRANSMOY ENERgies lt enmin gt lt enmax gt energy range in eV NFTP lt nftp gt unit for probability tables input lt file name gt NTHICK lt nthick gt number of thickness If nthick gt 0 lt thick nthick gt thickne
68. otope In particular if the energy domain changes or if several sampling have been made REGROUSF has no sense in the case of several isotopes in the same evaluation for there is no strong theoretical background to calculate the merging of the effective cross sections for several isotopes REGROUCS NFCS lt nfsf gt unit for pointwise cross section Input lt file name gt NFCSR lt nfsfr gt unit for pointwise cross section output lt file name gt NIMP lt nimp gt output dump indices on unit 6 see 3 15 lt ncar gt number of characters per output line on unit 6 Regroups pointwise cross sections computed on several zones of a singular energy group for Just one isotope and one sampling REGROUCS cannot calculate the merging of several isotopes in the same evaluation which may be defined over different energy zones If there are several random samples MCASUNR 1 it just takes into account the first sample 16 3 5 CONDENTP Condenses a probability table given in a fine group structure to a coarser one with common boundaries CONDENTP MODIFOPT LPSTPOS lt TRUE gt by default negative steps of the total cross section are suppressed if present lt FALSE gt negative steps of the total cross section are preserved LPSPPOS lt FALSE gt by default negative steps of all partial cross sections are preserved lt TRUE gt negative steps of all partial cross sections are set to 1 000000 7 barn ENERgies lt enm
69. qualit et de ses modalit s d utilisation Destin au calcul et au traitement des sections efficaces neutroniques multigroupes il est largement bas sur l utilisation de la quadrature de GAUSS Ses principales fonctionnalit s sont les suivantes calcul de tables de probabilit bas es sur les moments et calcul de sections effectives regroupement de sections efficaces ponctuelles de tables de probabilit et de sections effectives condensation de tables de probabilit m lange de tables de probabilit pour diff rents isotopes interpolation de tables de probabilit calcul de tables de probabilit bas es sur les sections effectives calcul de sections effectives a partir de tables de probabilit comparaison de sections effectives reconstruction de sections efficaces ponctuelles continues dans tout le domaine nerg tique et calcul de la transmission moyenne travers des chantillons de diff rentes paisseurs Le manuel d utilisation de CALENDF apr s avoir rappel les principales fonctionnalit s du code pr sente de fa on exhaustive les donn es relatives a chacune et commente les sorties associ es En annexe il fournit les proc dures d installation sur les diff rents calculateurs des cas tests standard ainsi qu une comparaison des performances des diff rents ordinateurs sur lesquels le code a t port et qualifi Acknowledgements This work was part funded by Dr P Ribon CEA DEN and the RCUK Energy
70. r boundaries read E 0 95 spectrum 25 groups with lower boundaries read Maxwell spectrum T 293 16 K The upper energy bounds of each zones 2018965 18 0 24800 should be equal to the last lower bound of the next one N B in that case REGROUSF is not necessary thus the computation concerns only the resolved energy range 64 inu238c inu238d END CALENDF ENERGIES 5500 5800 MAILLAGE GENERE 1 2 s 19640330 00000 5800 5500 TEFF 300 NDIL 0 NFEV 9 9237 jeff30n9237_2 asc SORTIES NFCS 15 u238c cs PREC 3 NIMP 3 80 Calculates from 5500 to 5800 eV with 1 weighting spectrum 1 group with boundaries read Pointwise cross sections output END CALENDF ENERGIES 100 1100 MAILLAGE GENERE 1 zone 10 0 1100 0 100 TEFF 300 NDIL NFEV 9 9237 jeff30n9237_2 asc SORTIES NFCS 15 u238d cs NFSF 12 u238d sf PREC 3 NIMP 2 80 Calculate from 100 to 1100 eV with a flat weighting 10 groups of calculated energy boundaries with constant width of 100 eV Pointwise and effective cross sections output 65 inu238e 70147 61963 53525 45750 38728 31875 251 186 136 097 055 014 972 930 883 834 780 105 646 288 535 500 467 433 395
71. reated with a cubic interpolation y Pn x with polynomial order n lt 3 y a bx cx dx It is assumed that the indicated formulae are applicable to interpolate between x and x taking into account x i 1 and x i 2 Error in 6 1073 3 E gt linear Int 10 3 5 cubic Int E E Ir O 1 12 14 1 6 1 8 2 Fig 2 Cubic and linear interpolation errors There is a precision advantage depicted in Fig 2 when favouring a cubic polynomial interpolation against a linear one particularly when a lot of fine resonance structures cohabit forcing the energy grid to be fine On the subject and in order to illustrate differences between linear and cubic interpolation one needs to remark that When interpolating in between points when the concavity is directed upward a linear interpolation will always over estimate the area A cubic interpolation will lead to an area less than the former When interpolating in between points when the concavity is directed downward a linear interpolation will always under estimate the area A cubic interpolation does not systematically lead to such an under estimation also its area will be greater than the former This to say that particularly when the slope of the cross section changes rapidly and the raw description has not been particularly well inputted in the parameter file such different approaches could lead to group data discrepancies due to different reconstru
72. sary in case of a fine group treatment of a pointwise energy range for instance or of pointwise data However their usage does not penalise the processing and they just copy the data from the input to the output file REGROUPR NFPR lt nfpr gt unit for resonances parameters table input lt file name gt NFPRR lt nfppr gt unit for resonances parameters table output lt file name gt NIMP lt nimp gt output dump indices on unit 6 see 3 15 lt ncar gt number of characters per output line on unit 6 Regroups resonances parameters tables computed on all the zones REGROUTP NFTP lt nftp gt unit for probability table input lt file name gt NFTPR lt nftpr gt unit for probability table output lt file name gt NIMP lt nimp gt output dump indices on unit 6 see 3 15 lt ncar gt number of characters per output line on unit 6 Regroups probability tables computed on several zones of a singular energy group In particular if the energy domain changes if a mixture of isotopes occurs or if several sampling have been made REGROUSF NFSF lt nfsf gt unit for effective cross section input lt file name gt NFSFR lt nfsfr gt unit for effective cross section output lt file name gt NIMP lt nimp gt output dump indices on unit 6 see 3 15 lt ncar gt number of characters per outputline on unit 6 Regroups effective cross sections computed on several zones of a singular energy group for Just one is
73. ss values nthick times NFTRM lt nftrm gt unit for averaged transmission output lt file name gt NIMP lt nimp gt output dump indices on unit 6 see 3 15 lt ncar gt number of characters per output line on unit 6 28 3 15 INPUT variables Options for input variables ign ECCO33 ECCO1968 XMAS172 TRIP315 VITJ175 RED616 SCAL44 SCAL238 meaning Ecco 33 groups structure Ecco 1968 groups structure Xmas 172 groups structure Tripoli 315 groups structure Vitamin J 175 groups structure LLNL 616 groups structure ORNL SCALE 44 groups structure ORNL SCALE 238 groups structure These group structures are hard coded with 7 digits accuracy 1 234567D 00 ipreci Du L ra meaning test case 2 510 2 5 accuracy better case 5 10 accuracy for secondary isotope 1 10 accuracy for primary isotope 2 107 accuracy 5 for 4 10 accuracy for 8 10 accuracy The CALENDF results accuracy is governed by only one parameter ipreci This parameter controls The point wise grid created to describe the resonance region The target accuracy resulting from a numerical integration is 0 125 x 0 279 The number of random samples generated in every zone of the unresolved resonance regions governed by NCASUNR 1 for ipreci 1 2 or 3 4 for ipreci 4 9 for ipreci 5 16 for ipreci 6 The order NOR of the probability tables nimp LINHO meaning only diag
74. t lt enmax gt energy range in eV NFSF lt nfsf gt unit for effective cross section lt file name gt NFTP lt nftp gt unit for probability tables output lt file name gt LTAUR logical variable lt TRUE gt the probability tables are adjusted on the reaction rate lt FALSE gt by default the probability tables are adjusted on the effective cross section IPRECI lt ipreci gt calculational accuracy indices see 3 15 NIMP lt nimp gt output dump indices on unit 6 see 3 15 lt ncar gt number of characters per output line on unit 6 21 3 9 SEFFNRA Calculates effective cross sections from probability tables after regrouping SEFFNRA ENERgies NFTP NFSFTP NDIL NIMP lt enmin gt lt enmax gt energy range in eV lt nftp gt unit for probability table lt file name gt lt nfsftp gt unit for effective cross section output lt file name gt lt ndil gt number of dilutions If ndil gt 0 lt sdil idil gt dilution values ndil times lt nimp gt output dump indices on unit 6 see 3 15 lt ncar gt number of characters per output line on unit 6 22 3 10 REDUORTP Reduces the order of a probability table Allows to bias the table the tables calculated by CALENDF are always normal i e of order IOR 1 NOR to NOR REDUORTP allows as an option to bias the reduced table by describing mainly the negative moments useful for small background Cross sections or deep penetration
75. ximation LANTITH lt TRUE gt by default if LVPSTR impose an antithetic generation of the stratified neutron widths LNORMGN lt FALSE gt by default if TRUE in the unresolved resonance range normalize the averaged neutron widths to exactly the theoretical value deduced from the neutron density function it reduces the error but introduces a bias for the effective cross sections LPSTPOS lt TRUE gt by default negative steps of the total cross section are suppressed if present lt FALSE gt negative steps of the total cross section are preserved LPSPPOS lt FALSE gt by default negative steps of all partial cross sections are preserved lt TRUE gt negative steps of all partial cross sections are set to 1 000000 7 barn lt enmin gt lt enmax gt energy range in eV It is normalised to the nearest group bound of the selected group structure MAILlage word READ the group structure is read lt ign gt group structure name see 3 15 SPECtre lt nrange gt nrange number of energy zones For each zone ira ira 1 to nrange lt enzinf ira gt lower energy bound lt alphaz ira gt weighting spectra indice see 3 15 GENEre the group stucture is generated lt nrange gt number of energy zones for each zones ira ira 1 to nrange lt ngc ira gt lt alphaz ira gt lt etop ira gt ngc number of groups in the zone for ira alphaz weighting spectrum indices etop upper energy bou
Download Pdf Manuals
Related Search
Related Contents
Operating Instructions - VEGASWING 61 - - two-wire Aluratek AKBAIR01FB Copyright © All rights reserved.
Failed to retrieve file