Home

+ x - 神戸大学附属図書館

image

Contents

1.
2.
3. Mass Sheave truck Buffer Damper Trolley Container 2 1 23 I PS
4. 30 3 3 MATLAB Simulink ATV y ADRE L
5. LIM LSM 2 5 AEE LIM 12 LSM 2 6 GE
6. 6 2 2 1 10 000TEU
7. 0 70 5 5 1 EE
8. 0 10
9. 7 H qu Trolley Wheel Girder Primary Core Linear Suspension Wire Secondary Motor Plate Spreader Container 2 9
10. Wed E 58 4 5 1 2 4 4
11. n 24 3 2 2 ROO BIEN 10 2 3 2 3 1 5 33 6kN 0 7ms 4 dt rad s
12. LL It
13. 4 8 4 9 TLM 31CI9 4 10 4 2 4 11 4 3 s 35Smm 390mm 4 5000 i 1525 e i 19609615250 4 8 42 Al mm 200 4 9 TLM 31C1 346 4 10
14. 10 LIM LIM vf 3 Linear Synchronous Motor LSM
15. 82 5 5 2 5 7 3 Ten cox din fiie rad sec rad 1 m eTrigcnometric Function amp 5 7 R53
16. 41 4 4 4 4 1 Sm LIM 3mm 4mm LIM LIM PWM
17. Y 1 3 2 3 MATLAB Simulink
18. 5 1 UC 5 Lf
19. E E IRD D H 4 4 1
20. wi w2 Ws w4 10 30 20 20 2 5 4 c 9 8 3 0m 10 30 w4220 w4220
21. 3 2 1 0 10 3 3 Tn IKN d0 dt rad s b 5 A N N A 0 1 0 05 0 rad 0 05 0 1 0 time sec 2 3 3 10 0 07rad 4 1
22. 1 5 E M kg m kg 7 m rad N 3 4 5 3 5 5 2 ELE TEARS x 5 1 x 9 2 9
23. 2 1 F I 2 6 SI 2 1
24. LSM EM Electromagnet PM Permanent Magnet VR Variable Reluctance HB Hybrid SC Super Conducting 0 5 LSM X v 27 r C o LIM HER M 0 x 7 LIM LIM
25. 23 NM AEN 3 4 Tr kN 29 rad s 0 rad time sec 3 4 0 007rad 40 4 HE E qoM Mu NDS NM RS L
26. 52 4 11 4 00m HJ FEJE QO N sec 53 200 150 100 HOSE st 50 0 8 0 10 0 V 0 0 10 0 20 0 30 0 40 0 50 0 60 0 Hz 416 T 7 sec N 8 0 10 0 V 0 0 10 0 20 0 30 0 40 0 50 0 60 0 Hz 4 17
27. LIM 2 5 LSM Suspension amp Trolle Guide Wheel Primary Core Secondary Core Primary y Coils e Al or Cu Linear Reluctance Motor 25 LSM 2 6 LIM 2 3 4 Ed 2 7 LIM 2 8 2 8 x z LIM x 1
28. H lt 3 F ROKA 2 4 m Fes
29. E 1 2 41 20 2 42 x Lagrange 9 SY H 3 LU 3 1 209 3 2
30. 5 5 3 4 Yi wo w 2x10 6 10 4 10 4x10 1 5 10 amp AT E Pu pd pg B 5 3 uj 10 E r 5 D 5 10 15 20 25 30 D 5 10 15 20 25 30 time sec time sec a Simulated responses b The deviation from the evaluation mass 5 10 86 5 100a 8 HE 17
31. Simulink 4 13 4 14 4 8 5 60Hz 5Hz 47 LIM 3 0 50m Q2 25m G4 00m TH 5 0 5V 3Hz
32. 20ft E 48 5m Ev X re EDET OHN E E F SEN
33. 2 SY cowos eB 3 RE
34. LD 09 2 pp 7 12 2009 94 32 33 34 35 Y Taniguchi S B An S Yamamoto and T Azukizawa Integrate Trolley Drive and Swaying Angle Control System for a Linear Motor Driven Container Crane System The 7th Int Symp on Linear Drives for Industry Applications Inchon Korea OS8 3 CD ROM 2009 Y Taniguchi S B An H Wang S Yamamoto and T Azukizawa Integrated Control Method for Linear Motor Driven Container Crane System The 6th Int Symp on Linear Drives for Industry Applications Lille France PS2 11 CD ROM 2007 Y Taniguchi S B An Wang Makino S Yamamoto and T Azukizawa Fundamental Study of an Integrated Control Method for a Linear Motor Driven Container Crane System The International Conference on Electrical Engineering 2008 Okinawa Japan O 060 CD ROM 2008 REGES AREL 2010 95 A Y
35. 2 3 1 X 2 2 FE 2 3 LSM Linear Synchronous Motor
36. 40 2 3 210 m min 3 5m s 0 7m s 2 3 35 7kN 125 0kW LIM 2 10 1207 135 kW LIM 2 3 30 ton
37. 41 ir 2276 faat 4 2 g 4 3 f Ma f c a dt 4 3 4 3 4 1 4 Ma msg 34 4 4
38. 22 2 1
39. loj 4 peyi f E ATL yA ORBA ER
40. 5 5 2 4 wi wa ws 4 50 10 100x107 0 0 R 1 5 9 5 9 a 9 B 15 1 Ve m s m deg 0 5 10 15 20 25 30 5 10 15 20 25 30 time sec time sec a Simulated responses b The deviation from the evaluation mass 59
41. E ETAL 1 E 1
42. ai 2 5 KETI 2 11 47 Cr 0 N DEEE P x z 7 m rad c Ns m FA c Ns m
43. kN b e TESTE v ms x Im 9 deg 7 m Hv 7 3 4 uA F 5 6 a 8 EZ IE b a LoT ELS 8 9 8 lt 40m HE 2 TA sui Tv
44. 1 2 3 R DIO E LOL 7
45. 19 BA uh pp 51 52 FRS 2008 2010 2007 ERES Tx Bu Mi E UR pp 85 86 2007 By 0l LD 07 02 2007 HEDRET 78 22 v pp 35 36 2006 MERE Z FA nif NAYTI S B An Y Taniguchi S Yamamoto and T Azukizawa Fundamental Study of an Integrated
46. 3 2 5 23 EL 7 7 20 14m 14m 147 29m 1 5ms 2 41 2 42 7 3 1 XR G 30 3 9
47. 25 Le 1 4 4 1 4 8 4 22 25 aso c IO TI posee nce ME E D reme cS y ee 5 ana a a dh I Al a a efe fus 0 5 10 15 20 25 A UEERILIIILI TNR CS lod lue a m Sue 10 AL iym doce emnt mue m qc mme m puente Dyer a 20 So 0 amp ue en o MA S on
48. LA Z i X 1 2
49. Fundamental Study of Detection Method of Swaying Angle of Container and Integrated Trolley Drive and Swaying Angle Control System for Linear Motor Driven Container Crane System Thesis or Dissertation 653 http www lib Kkobe u ac jp handle gakui D1005097 Create Date 2015 11 07 2010 8 1 1 I UU ute usse nc uU cus EE 1 KIRA ae PUE 2 BENE MEN REO pc PE 3 2 5 5 22
50. 38 4 3 3 E E 3 AZL HH 8 n H E EXE EXC M a c mm m 4ton 8ton BI 0o
51. H H Simulink 40ft 30ton 1 4ton Ston amp 3 E
52. 88 6 HH 1 pa Erp aL Tq LE Mu yp 3 MATLAB Simulink l
53. 1 Q G 4 5 6 7 8 9 10 11 12 13 14 15 16 tem 59 2003 1 2006 10 1 0 2010 www maerskline com 2008 2010 Giua C Seatzu and G Usai Observer controller design for cranes via Lyapunov equivalence Automatica Vol 35 No 4 pp 669 678 1999 G Bartolini A Pisano and E Usai Second order sliding mode
54. 3 35 4 3 3 2 4 40m 4 1 Clock To Werkspaceb EH JT ER D EH 4 2 E Simulink v A Ameh Frang atan Mi posiT 8 Integrator Integratori Gotot beta emi Hothetaly Goto From 1 Gotos Goto4 n Fon
55. 4 TOM 5
56. 293 O VOL UU UU CT 1 1 E LUE 10497 04 E 1
57. LIM 2 4 1 MHR 2 9 Girder Pope cu
58. v dxldt ozz 27 LIM s s s 2 5 2 5 5 w E2 m s v mys LIM LIM LIM
59. Gantry Crane Transfer Crane 9 11 GE 2 X 1 1 EE e fohe ff AA
60. 6 8 4 32 3 3 Ed 425 4 33 Bd 0 deg 0 15
61. 69 6 8 0 15
62. 0 0 10 0 20 0 30 0 40 0 50 0 60 0 Hz X 4 20 Z T E 5 5 1 5 2 5 3 5 4 9 9 5 6 2 7 5 8 5 9 6 s X 4 21 57 4 9 4 9 05 5 0V 30Hz LIM JH 4 9 4 21 30Hz 45Hz 15 4 21
63. 1 Bub epum Qu cUME STR E E
64. 2 41 2 42 ofi SY MATLAB Simulink Simulink 3 1 3 1 1 Clock To Workspace Gaint dg dt 8 dt Integrator Integrato infe 6 H T gt To Workspace Trigonometric 17yHm Integratori xTo Workspace v To Werkspaced To Werkspaceb TfigcnometricFunction m n Trigonometric gA Functicnt To Workspacel 21 unction co m Subtracti 31 3 1 Mass of Trolley M 10 ton Total Mass of Hanged Part m 41 ton Wire Length 3 0m Friction Coefficient of Wheels c 0 05 Ns m Friction Coefficient of Sheaves 0 05 Ns m
65. b t SY Hi WRI TROR v m s t _ N 40 dt rad s 0 rad 3 6 3 6 2 LT T T 1 54 s 0 lt 7 lt 27 27 lt lt 2 57 2 5 lt lt 4 5 3 7 26 spe gp 1 1 o 0 05 time sec ur
66. W RE alt mm Qt TIF 4 5 4 5 4 5 B rad mU AE e 4 6 4 6 8 NA o 7
67. yd 4 7 4 4 Z 4 2 2 1 2 M m
68. 7 22 m w2 w4 200 600 400 400 5 2 E 3 0 v ms x m deg 1 m time sec a F 0 80 time sec b 0 Woa 0 W3 WXx 400 I i 1 1 1 4 1 1 1 1 4 1 1 1 1 1 50 time sec c 200 w 600 ws w4 400 gt ET 2 5 6 EVAT Al 81 56b 2o AO Ms 0 o m uuu
69. lt dnas dd
70. 4 3 36 4 3 1 37 4 3 2 kkk 38 4 3 8 39 42 42 4149 ER RR MR S EN 47 443 i 55 IESU IE DAC Sed a Pt n Sut eds 59 L6 AT SN 64 e ed RA M te ea adis 69 71 Sau det OR ebat CL M 71 5 2 ki 71 5 3 73 eA N E AE EE T 73 5 3 2 kk 76 5 4 79 541 kiki 80 5 5 83 5 5 1
71. E2 FE 0 LIM input V f IN H B 2 E Y rw 3 4 4 4 23 4 23 4 26 EEIE d 9 9 3 ms deg deg deg deg s time
72. 78 5 4 CDG H f 5 2 HE 14 29m 40m II FORS 7 20 14m 14m 1 5ms Simulink 5 5 1 m WreLength Integrator Integratori 2 epp 5 Integrato Integrator Subtr
73. Motor LIM 2 LIM 2 2 LDM LSM LSM LIM E
74. 0 15 deg 0 deg time sec X 4 33 68 4 7
75. 10 4 28 Simulink 10Hz PC Tg gto d i on i Integrato Gains pi 70 butter M QU ACD gt PM Pe atan Gaint Dead Zonel 1 Trigonometric Gaind Anal Funatian6 Input 0 Filter Design utter BER G Analce TBI Input 7 Filter Designl 27300 Gonstant EHA ransport I layl Dead Zoneg Donstant Guanser in Ca non 108 gt 8 Constanti H numi Tranzfer Fen TEE ato Output 7 Jene TsHl x 03 utput 1 bo
76. LD 06 69 2006 18 2007 19 EH LD 07 02 2007 HH T4 20 EBH 78 51 52 2008 21 SEN m Vol 45 No l pp 116 121 2010 22
77. 85 5 90b 10 0 05m s 0 1m 20 0 1m s 0 1m 20 0 3m s 0 2m D 10 20 D 209 0 2m
78. kk 5 23 i 6 2 J SS 24 1 6 2 3 2 233 VFF vV BERBA ECOL ERE Lec isi eet 12 2 3 4 dotes ee eee 13 24 kk 16 24 1 T 7 ANDE T 16 24 2 18 258 431 18 3 21 21 3 2 i 21 L UNDER T Sort ee tt ted 23 3 2 2 kk 25 i 323 kk 26 324 28 32 5 kk 29 EA EEE 31 4 7 69 33 33 qoc dou s cem 33 4 2 1 4 2 2
79. 5 3 SY EITI ZLEE FEA h h ANIZ Fy fi N m f Ns m f N rad f Nsrrad d 2 9 J u Ru at 51 72 5 4 5 3 MATLAB Simulink CUG 52
80. TLM 31C1 23 AS GA GB 24 seika SEIKANA 25 TOSVERT TM VE AS1 26 Quanser Q8 H LL 27 LMA A 50N 28 S B An et al New Approach to Anti Sway System Design for a Container Crane SICE Annual Conference in Fukui August 4 6 Fukui Japan pp 335 339 2003 29 EME D Vol 130 No 1 pp 102 108 2010 30 Vol 45 No 3 pp 113 119 2010 31
81. It z Trolley P x t XosZe 2 11 x x sin 2 23 z cos0 2 24 X X 10 cos 2 25 2 10 sin 2 26 U Lagrange L K U K U 2 27 2 29 K lu ls 32 2 27 2 2 U mgl cos 0 2 28 L K U 2 2 29 gt M ml x 0 mglcosd 29 EA 2 2 2 30 ee c I0 x cos 0 Lagrange 2 31 2 34 L 7 ml 0 ml x cos 2 31 T 2 31 ml Q mlx sin ml X cosQ 2 32 t TP 2 33 20 F c 10 c l xX 0 2 34 Lagrange
82. L 2 1 Primary core Current sheet 45 070 512 7 LIM 28 LIM LIM m s m s o rad s m r m m 1 No m 13 us H m ml H m gi S m Zi S ml UNAM Hm S m1 1 KRH
83. 10Hz PC LIM 3 a Cuanser nul n8 DAC TuS m gt Analog Output Input 7 Filter Design 4 13 X LIM Control Board Q8 1 PC 4 MATLAB Simulink ti Simulink Control Board Q8 LIM gt 0 50 225m 4 00 m X 4 14 48 4 8 50N 5 099kgf 1 196RO 1 RO 0 75 2
84. 9 3 s 9 deg deg deg time sec 4 24 4 23 g Y 4 25 61 5 10 deg 5 10 degD 23 7 5 4 9 4 K H X 4 25 LIM E E LIM E
85. x x X X xr f x x Ax bu y Cx 4 5 C 5 1 5 2 0 1 0 0 0 0 pic m 0 1 Jdem M M b M 10 0 0 1 p 0 0 Mc mc Dd L Mml MI m MI H c Ns m N _ oc c Ns m 5 1 e u Fx 1 1
86. 4 19 4 20 T 4 9 ETT Ko G s e 0 08 n 4 9 s 2c0 S 0 K 6 og 4 10 4 8 0 20 gt 6 11v 1 98 0 0073 0 0554v 0 649 4 10 0 373v 5 844v 58 54 0 8 0 6 0 e e 0 2 00 4 00 6 00 V 10 0 20 0 30 0 40 0 30 0 60 0 Hz 4 19 56 rad s 50 40 30 20 m 10 AA RN 4 0 EM y o 0 00 2 00 4 00 6 00 800 10 00
87. 22 2A HH 7 Vol 45 No 1 116 121 2010 iu 2 Q Vol 45 No 3 113 119 2010 1 Y Taniguchi S B An H Wang H Makino S Yamamoto and T Azukizawa Fundamental Study of an Integrated Control Method for a Linear Motor Driven Container Crane System The International Conference on Electrical Engineering 2008 Okinawa Japan O 060 CD ROM 2008 97 1 Q G 4 5 IU 9 1 7 27 6 LD 06 69 2006 Y Taniguchi S B An H Wang S Yamamoto and T Azu
88. E R Wii E
89. 56m 1990 40ft 40ft 2 uses go eu E 1 NA i e T 1 1 _
90. f v wr 58 y 0 01 0 005 y rad 0 005 0 01 time sec 4 3 0 01rad 0 6 E f 8 0 37 4 3 2 y 9 2 2 41 2
91. Wr REDDI FI 89 m 30ton 1 4ton Ston DIS LE EDZ LIM E
92. 20 20 0 5 0 2m
93. 43 X42 TLM 31C1 22 TLM 31C1 60 Hz 3 5 76 m s F 48 mm Y 292 mm 65 mm 220 V 50 mm 4 2A 366 mm 1 6 kVA 134 mm 1 5N 64 mm 12 kg LIM 4 11 44 4 3 3 LIM 5 mE yF 48mm 11SmmW X 3mmT ne 2 65mmW X 4mmT 3 2mm M 17 4kg m 5 2kg 0 8m Kj 5m
94. S m N x yi m s Qc ZW E j J ple __ jlot 1 kN J 242 1 HE i A m 2 7 Ji A m 2 A 2 8 2 7 2 8 4 IT 1 I 2 ot 0 A 07 A ex A A z e B 2 24 rez b ee L4 7a Sg due Wis 2 9 2 10
95. 5 10 b 10 0 2 0 05m s 20 0 3 0 1m s 20 0 9 0 2m s 110 20 0 1 20 0 5 0 2m
96. 64 t v B PR p HE p Ii Ej R 1 aE 1 5 FC Ey E 44 Dg LIM np Pi W 2 20 Pa 2 21 45 ZEAR as 2 LIM F N Re P 1 Je ux ipe 2 22 u cosh2 g 4 05 cos2 d f T T T 1224 6 2 2 22 b 28 cosh 2 g d cos2 d f T T 15 s 2 22 a 2 22 b Bn D LLT 2 4
97. 42 4 2 1 H p E LS E 4 1 ILT 4 kgl m kg 7 N
98. 0 YT HZ SEU S avc T f a TOtZS Bm EN Tm ZB HU 5 2 2
99. 11 2 3 3 URB 2 2 2 2 Linear Direct Motor EN P P E UT Al Cu Linear Induction YS Motor pus uS EEE _ Linear Synchronous
100. LDM Linear Direct Motor IS 314 LIM Linear Induction Motor 2 2 LIM Linear Induction Motor LDM Linear DC Motor LHM Linear Hybrid Motor LES Linear Electromagnetic Solenoid H 2 3 LIM LSM LDM LSTM LHM LOA LES LEP LSM Linear Synchronous Motor LSTM Linear Stepping Motor LOA Linear Oscillatory Actuator LEP Linear Electromagnetic Pump II 314
101. 10 20 0 1 0 1m 209 0 3 0 2m 87 5 6 1807 L
102. Tcos mg L T OKY 33 N z 8 rad 4 1 T Acceleration Sensor Spread amp Container m 41 SY Tm 1 OR f 7zg tan eb
103. 1 E F tE 3 7 amp 22 Bi 4 d XEXE Tu HH 3 7 lt A AL H FS Q ES wH R Qa h g IN 4S R a A m amp jJ KR S ow R OM ing 27 3 24 E 40m KZ 3 8 29 rad s 0 rad time sec 3 8 L 1 DERE REO i 4n
104. 84 552 85 5 5 3 evtl HS MEUS D RO 86 516410319 DES NN e M LUE Mode A p Paucis eR E 88 6 89 91 93 97 iii 1 1 1 C X 90 MADO 2006 9 14 500TEU twenty foot equivalent unit 1TEU 20 1 Emma Maersk
105. CNN Le de L 82 T 1 FI k j ees 1 1 bE og a i T 1 EON ca RE M ERE PE pnt E Sc AER D V jr o p AS SEI K p af j m b jt jr poem L 1 1 L 1 1 1 1 L 1 1 1 L o o Q 7 20 25 15 time 20 w4 20 c wi 10 wa 30 w3 T b 5 4 b wi wa ws w4 50 50 0 0 Bd 5 4 b 5 8 w w 0 i
106. 2 11 Q 11 Ba T LT T jlot z x oJ e 2 12 H j coth 1538 2 13 g ge k g 2 14 445 z C IL 1 2 14 c ge TLTB tanh tanh q 4 12 2 15 T LH 2 16 AM JO SV T T RIR V TL 1 TI 2 fH 2 15 4 Ed tanh tanh Mo Hau e tanh 4d 4 Lf T 2 17 2 18 yl V m e
107. IE Tv ERS 15 2 2659 lt 8 5 7 1 28
108. Subtract BoceleT gt gt 48 4 8 Fromg M l m e atan Integrators Integrator Trigonometric ei Function8 Frob 1 Gmte dtheta eal B gt d 8 dt Gotca Trigonometric i Gotos veloT H Functiong ib b E cos Trigonometric Fronto Come Functian1 n pi gt ih WreLeneth Goto ith EHE BO Hh E OD Framt Dividel fs f dtheta gt gt dtheta theta gt theta From To Workspacel Fram73 To Werkspace4 Frome To Workspaceb From To Workspace veloT YeloT posiT posiT beta beta delta delta Fromg0 To Workspacel1 Frorm81 To Wrkspacel 0 Fram84 To Workspacel 4 From85 To Workspacet5 x PE 2 9 E N x 42 Simulink 4 1 Mass of Trolley M Mass of Container me Total Mass of Hanged Part m Wire Length 7 Friction Coefficient of Wheels c Friction Coefficient of Sheaves 10 0 ton 30 0 ton 41 0 ton 3 0m 0 05 Ns m 0 05 Ns m 36 43 1 4 3 53 4kN
109. 10 ton 10 ton 1 ton 41 ton 210 m min 0 7 m s 35 7 kN 125 0 kW 2 10 17 2 4 2 2 3 O 0
110. Ia at es at p n et S E 0 3 10 15 20 25 4 r 2 jp DX ci ou Er le c cec EE R NN 0 1 0 5 10 15 20 25 bcm aum Dra a 1 n 05 p et es PORA E 20 0 qp i 0 3 10 15 20 25 Nn 02 lee rore HRP x i g EE es EM RE 2 1 1 Sw oos um ss s MP TN RES 1 eere 0 9 10 15 20 25 A 0L SUAE 3 M TEE pe ecce er Sese d ee ce zl x 1 Qe 4 2 EE eunt et join etc 1 1 0 5 10 15 20 25 time sec a Wi 3 Woa W3 20 WA 20 74 Reference Value Simulated Results time sec b Wi 50 Wo 50 0 Wg 0 Reference Value Simulated Results 25 20 15 25 20 15 25 20 15 time sec c Wi 10 Wo 30 20 20 4E gt Ja x 5 3
111. 2 3 2 1 Linear Direct Motor LDM LOM T X LDM
112. 4 EUN rye 2 Gee 225 3 ji 24 I 314 5 LIM end effec 2 1 longitudinal end effect zie 077 9 Aud LIM 8 2 transverse end effect ledge effect LIM
113. 300 1073x10 0 48Hz 15 65 70Hz 6V DC 15g 4 5 NA4 70 C9 8 30V 70 8 30V 2 2mA 0 01 2 5V 0 28 150 uVss 28 57mV 1000 2 5V 2V 0 25s 0 003 2 mmg 18 5g 46 4 6 TOSVERT TM VE AS1 PWM 200 240V 0 01 500Hz 11A 200 240V 4 2kVA 50 60Hz 4 7 Q8 IO 8 A D 8 D A 8 32 DIO PCI 32 bit 33 MHz y wo 8 OS Windows 2000 XP Ardence RTX API C ActiveX LabVIEW MATLAB MATRIXx PCI 275mm x 98mm
114. LIM H 4 16 ES 4 17 3 5 0 5 1 52 5 3 5 4 5 5 5 6 5 7 5 8 5 9 6 0 s 5 4 15 50 EZ ETE QV 51 31675 QN N sec 4 10 2 25m DEEV nw mss V N N sec
115. 2 wi w ws wa4 10 30 20 200 5 3 c 12 4 7 WA 3 0m wi W2 W3 w4 10 30 20 20 La 1 iE nt ome Simulated Results Reference Value j Z Sna SNS 9 23 2 ss d
116. MIL St oe p ME EZ SEE prospect Cum E ME FN 0 p x amp 1 1 1 1 goles pedea pner el 0 5 10 15 20 25 GS E ees o V d0r we poten IDE 20 a m s 0 deg deg deg time sec X 4 23 60 2 LIM 1 LIM 4 9 4 4 R 4 2317 4 24 4 23 0 4 4
117. 08 H 4 6 45 1 Vf Q8 4 7 pq LIM PC MATLAB Simulink Control Board Q8 X 4 12 4 4 AS 1GA 9 807m s 1G 1 3V AC DC 0 00914ms71x10
118. 5 1 2 ma AJ 3 X 5 2 X5 Mass of the moving part M Mass of hanged weight m Length of suspension wire Length of the rail 17 4 kg 52 kg 0 8m 5 5 3 1 b c TH amp d 5 3 a b c
119. AS 1GA SEIKA NA 4 70 DPM 601A 17 47 H A D PC TOSVERT TM 1 PC D A PC MATLAB Simulink Wincon wx E 4 12 4 4 d 45 4 6 Quanser Q8 HILL
120. E 4 KN amp amp fan fian amp faf faf 0 02 002 H H o0 001 0 0 e 001 e 0 01 0 02 0 02 time sec a 4ton x 39 30ton 6 2 L Ix LC 4 5 time sec b 4ton 45 4ton EN modes ete cH n iue ardt T 1 1 1 4j L 1 1 0 04 5 25 ede Hl pez 9 o pe 9 0 3 time sec time
121. LIM LIM j 1 E mi Zu B B ce E 2 4 e 2 rad s f Hz 7 s x m c m
122. 10 10 20 Ed 5 9 b K 5 10 b 5 8 4 B 20 5 5 8 C 10 20 0 2 HE 0 4 E 10 200 0 2 HE 40 7 v m s m x m
123. 2 KOs 4 9 9 2 5 2605 0 221 6 69v 1 53 0 007v 0 0476v 0 624 4 10 0 392v 6 083v 59 49 LIM 4 9 4 4 4 29 Bd 4 30 4 31 v V deg 9 deg 9 9 deg 65 10 EE A ed 1 1 DEEA 1 1 dial vi ui qnc rdi dii 10 0 E En en D Os 0 10L 10 time sec HIO 0 50m
124. deg deg time sec time sec a Simulated responses b The deviation from the evaluation mass 15 8 ay FTEMA S a bey a KER 84 10 20 0 1 20 0 4 10 20 20
125. 8 A FT 4 29 ERLER 10 10 1 1 1 flere SR es TAT Sh SE Sl f 1 1 1 E cdi pcnc an Acidi time sec HIRO 2 25m AV FT 4 30 ERLER 66 10 RE dir Mudo ccm ER cc ccc d dc dd E E ad LOOK OO EDDY E XS C EO T GC SEI 10 time sec HIRO 4 00m 8 H Hs NZ FT 4 31 Rb 1 1 1 3p g 1 1 1 dom l 1 1 1 E 1 1 1 1 1 T ejes 1 1 1 n 8 1 1 1 PN M NUNCA 1 4 2 time sec 1 10 0 time sec b 2 4 32 f 67 4 4 20 4 30 4 31
126. LIM N x m ms afm 0 deg 5 5 3 wi wa 5 5 20 20 73 T 5 3 3 12 13 b 5 3 b Qi wa w4 50 50 0 00 Ed 3 b 9 10
127. 5 6 2 5 0 EL V 4 4 7 m d 5 1 174 5221 ases d uu qd NA MAE M nM 52 15 41 lt 1
128. f awT OTT e f H HH E V W
129. gt E a RATU TO
130. 4 4 2 c m 4 4 2 m LMA A S0N LIM
131. 75 20F 5 3 2 5 x m b gt m s LIM a m s 7 17 deg BH EX LL at uml K 5 3 a 5 4 a Qi w2 ws 5 5 20 20 3 BE Eds NR 10 E 4 4
132. aint Math dg dt Functicn 17Hm Integrator Integratori Workspace To Workspacet 0 unction lt Oc mi gt r p Werkspace4 To Workspace5 o Subtract dx dt 4 Froduct4 Integratcr3 HRnge s Integrator Trigonometric Hu D Trigonometric E Functin1 x it Froduct1 Tow 1 Tb Workspace Trigonometric Froduct6 pup Divide 39 29 40 4 rad s 0 rad time sec 3 10 3 10
133. 54 4 4 3 LIM LIM 2 1 PWM LIM 7 4 18 45 0 40 0 35 0 f 0 20v 4 6 11v 1 98 30 0 e 25 0 ic iT R 20 0 15 0 10 0 Hill d SORN 0 0 0 00 1 00 2 00 3 00 4 00 5 00 6 00 7 00 8 00 9 00 10 00
134. o 0 HEIZ DEFAN K F Ix B I N Am I A 9 7 m Q 1 T 2 2 gg 7 A NIBI N 2 3 LDM 2 Linear Induction Motor LIM
135. 0 rad time sec 213 5 3 5 2 3 1 5 5 3 5 25 323 3 6 Bd 3 5 5 k
136. 35 7 kN 210m min 23 5m s kN 5 ddt rad s 9 rad 3 2 kN 40 dt rad s 0 rad time sec HE 3 2 0 0 15rad 8 6 0 1rad 65 8 HE r5sec 430 2 TET US 2 MEC 3 2 22
137. 90 91 3
138. 1 _ 40 deg 10 9 78 7 6 5 4 3 8 9 0 maximum value of the detection error 4 JM minimum value of the detection error mass error of container ton 47 s 1 4ton Ston
139. 2i en e wc 4 22 time sec 59 a nvs Id 4 22 10 20 deg E e Z Y 4 22 v V LIM N 9 Roar T deg 0 e 4 4 T
140. af L L 29 00 mgl sin 120 0 c X 0 0 2 35 O x 2 36 2 39 M m x 10 cos Ox Ot Ox 0 Ox c 10 0 Ox OL OF 77 cs Ox 6X 2 ok M m X ml cos mI sin 2 36 2 37 2 38 2 39 2 40 47 m X 7 cos ml 0 c 10 cos 0 2 3 2 40 C 18 cos 7 g sin E cos 0 m m M t m X 4 ml cos u ml sinb c tc Y c IO cos 2 41 2 42
141. 3 sec i pii m 4 EHEJ fa DED v 3 DRG NE FHL fa DN j N E e are a Wi 5 Woa 5 W3 20 WA time sec b Wi 50 Woy 50 W3 0 Wg 0 rA m A HA m 1 1 1 1 E amp poen E E iw amp 2 ama E 1 li
142. 42 4 4 9 9 30ton DAZ Jj 534kN 0 7m s 4 4 a 5 f kN m s rad 0 rad rad time sec 44 0 11 0 432x10 0 406x10 rad 0 025 0 023 iX 4 4
143. Description Symbol Value Mass of Trolley M 10 0 ton Mass of Container m 30 0 ton Total Mass of Hanged Part m 41 0 ton Velocity of Trolley y 240 m min Wire Length l 15m Friction Coefficient of Wheels 0 5 Ns m Friction Coefficient of Sheaves Cc 0 5 Ns m 83 5 5 1 xd 4 yi ws wa 100 0 40x10 40x10 R 1 m 30ton Y 55 4kN 0 7m s 5 8 a vims gt m 9 degl 5 8 b 10 20 LS 20
144. control of container cranes Automatica Vol 38 No 10 pp 1783 1790 2002 H M Omara and A H Nayfeh Gantry cranes gain scheduling feedback control with friction compensation Journal of Sound and Vibration Vol 281 No 1 2 pp 1 20 2005 WegilvyTaudawmecr2vw vwddube Avz aeoiddi C Vol 58 No 550 pp 106 111 1992 C Vol 59 No 561 pp 113 117 1992 10 226492 6 286975 y ih IIS 53147 SR up D Volll5 No 3 pp 223 232 1995 75 pp 35 36 2006 93 17 AOR
145. sec X 427 4 26 4 27 SY 98 8 5 63 Ent 4 6 2 LIM LIM
146. y V 4 18 LIM LIM 0 60Hz 0 10V 4 18 LIM 4 18 y 020y 6 11y 1 98 4 8 55 2 LIM 4 15 LIM LIM G s 2 E LIM Ssec 0 08 6 o
147. Control Method International Symposium on Marine Engineering 2009 BEXCO Busan 2009 98
148. RNAT uh 2 pop E85 2 23 XC HH KEZ LC 31 H H C
149. SVP Gain Gaing Transfer Fon Quanser 28 DAC Derivative du dt butter To Saturation Gainll Analog n Filter Design X 4 28 LIM 00 50 2 25m 34 00m 2 G s 27008 Kio 4 9 2 s 26 0 5 6 on 64 0 204v 6 12v 2 92 0 0080 0 0635v 0 667 4 10 0 3830 5 945v 38 22 0 08s 5 G s 2se 20 _ 4 9 5520 0 5 0 gs K 0 173v 5 51 1 49 0 007v 0 05521 0 656 4 10 0 344 gt 5 502v 57 92
150. acti Framt Subtract tigonometric sima Function 1 m e AK Gotos atan simo HRED ME simo simx sim 2 simy sima gt sima From To Workspacet From To Workspacel 1 From To Workspace To Workspacel 55 3 rud Workspace3 R52 Description Symbol Value Mass of Trolley M 15 ton Total Mass of Hanged Part m 41 ton Wire Length 14 29 m Friction Coefficient of Wheels Ce 0 05 Ns m Friction Coefficient of Sheaves Ci 0 05 Ns m 79 5 4 1 HEB wi 0 w 0 ws 5 6 b cC w47400 a 7 F 0 c Gyi 200 600 400 pen
151. kizawa Integrated Control Method for Linear Motor Driven Container Crane System The 6th Int Symp on Linear Drives for Industry Applications Lille France PS2 11 CD ROM 2007 1 rn LD 09 2 pp 7 12 2009 BRE T Y Taniguchi S B An S Yamamoto and T Azukizawa Integrate Trolley Drive and Swaying Angle Control System for a Linear Motor Driven Container Crane System The 7th Int Symp on Linear Drives for Industry Applications Inchon Korea OS8 3 CD ROM 2009 4 AN c d 1 Q G 4 5 6 gt ZA Q0 EEH H 7
152. mV V 1500 4000x10 10 60 C 0 50 C 0 2 0 2 AC DC 15 DC 3500 2 5 3500 2 5 mes 0 035 2 4 2m 1 7mm 15096 32 6 kHz 13g 100N 49 0 2V SV 30Hz LIM o8 4 15 LIM 5 60Hz SHz MA T T 49 4410 4 11
153. sec b 8ton a Ston 8ton iH p JE 46 E dH co 7 AX en AH R gt AS mm c Qu A HN dg 6 E OU g EE xe 7 i lt n 5 e E HR HE g H dE t S EEANN N e a m qm Hi oct g M 46 4 Ey g HK 4 TA Os A iU cH 8 amp c qum 8 W T7 Rs TN d V ES zb an ou dm d osa ov ow Ih a 7 S 5 H 9 qo BR D go EN 2 7 de md M amp d w HUS gg di S EY N g i S D thw 14 d 10 DA RE MJ C 8 ES 2 S amp S du S EX R LOI d 2 5 QU IN S e ME qe NS ER NH e d H UH BN JR 57 E 4 N NOE ON vq d 25 mos don WoW ARB YO BOO BOW oS R W HRE nun SH sa BERI E LIH BOT e e 4 7 1

Download Pdf Manuals

image

Related Search

Related Contents

    Bedienungsanleitung Atmos Elite - Dive  GIMBEL MEXICANA S.A. de C.V.  取扱説明書  iRZ MC52iWDT GPRS class 10 GSM modem USER MANUAL  

Copyright © All rights reserved.
Failed to retrieve file