Home
博士論文 - 東京大学学術機関リポジトリ
Contents
1.
2. i
3. 4 4 4 4 1 EV 2
4. Men gp E s Transmitter Repeater Repeater PME MERECE RECEN IRL KDE MON l Road Side Antennas NN 422
5. NOT
6. mi 81 1 24 2013 1
7. 3 4 58 3 4 3 4 1
8. 1 n dde he
9. 88
10. L
11. 2 6 2
12. Dr 23 42 2 6
13. 13 17
14. KENY 1 Qd Li n 1
15. ij Y zn D
16. vL aee on x FE H In Wi Ej FEL
17. oo
18. 62 4 4 1 4 1 1 EV
19. 43 3 3 1 3 1 1 EV
20. 4 2 E ff E
21. EV EV EV EV kW kW cm 1m
22. OB
23. vmi g 1 1 3 1 1 1 D 8 4
24. ea Abu Xn M EE C C P M nT l Transmit l Ant Repeater Repeater l s Antenna 1 Antenna 2 Power Ground Side Antennas Source 48 4 9 67 4 2 lt 4 2 2
25. 2 1 2 MIT 13 2 2 LC 2 1 B ek 2 1 2 2 23 2 1
26. D4 D 2 E 1 MANS Eg FEL H
27. C R 0 FEAT E 28 2 6 2 6 2 0 Receiver R C Ly Secondary ERA Ce oW Transmitting distance side Transmitter 2 7 Transmitter Receiver
28. 4 3 4 3 1 1 36 4 14
29. 40 2 5 Lm Lm Lm Lm Lm Lm Secondary current I A 10 100 Load resistance R O a fA 11 3 uH 36 4 uH 179 8 uH 11 3 uH no loss 36 4 uH no loss 179 8 uH no loss lt 10 nT b E 3 o Eu RL 100 z RL 500 8 RL 1000 vi m pese RL 10 Q no loss RL 50 Q no loss RL 100 Q no loss 0 1 1000 10 100 Mutual inductance L uH X 2 16 1000 RL 100 RL 50 6 RL 100 Q x 100 10 RL 10 Q no loss SO Wo T0 RL 50 Q no loss z gt RL 100 Q no loss 5 So E 8 5 2 S D 3 T E Lm 11 3 uH 3 1 Lm 36 4 uH 8 Lm 179 8 uH 3 Lmz 11 3 uH no loss Lm 36 4
30. 1 3 2 1 6 Bh 2 v E d EV EV A 3 2 B E
31. 1 Vea 2 FE gt 3 5 3 6 1 V I Ci a C 1 3 5 1 Vaa I c2 a C 2 3 6 Ci C2 5000pF 6 28 10 rad s 100kHz ARON Lb Vc Ve 3 2 3 7 3 8 17 o 3 5
32. mi 38 Q Qd IN EV
33. fc Vi E LORNA 2 3 2 4 7 100V h 10A 2 16 Bd 2 17 2 16 5 AA 2 17
34. 3 21 15 30
35. 1 EV H
36. 49 50
37. 4 1 64 4 1 power transfer efficiency receiver Source coil Transmitter 43 53 Source coil resonator 2 resonator Transmitter 44 53 P TEE 4 position JS position a b 4 5 53 54 46 47 65 4 1 46
38. 2 BRL A B ER
39. dud 6 f 26 1L s 1 2 1 Power Source 24 Receiveing Antenna Impedance Matching Circuit Impedance Matching Circuit Transmitting Antenna
40. EV ree AE EV 4 1 2 n 30cm 1 6 m 40 cm
41. E E ic L CE a 39 421 JELE Ay V Ay Vv Ay LZ T a ON RR D qs po oe 2 5 Ay 4 Vie 5 4y 4yY Ar 2 30 m R R R at m I i V 2 30 Ri Ri R5 lt lt OLm
42. 78 4 4 4 4 2 EV 2 la NO NU uud EV
43. A ER A POINT S DESEE n EET
44. R 69 4 2 lt 2000 lt 50 2000 1600 T 1600 1200 1200 5 E 800 800 mi m A A 400 400 0 1 10 i 91 10 E Q lul Ln 10uH b L 50uH 50 2000 lt 50 2000 lt 1 5 1600 qq m e 1200 2 c 1200 ic i lt 800 800 a 400 400 oin m 0 o1 M m 0 IR 9 In 9 c Lm 100 uH d Lm 200 uH 4 12 4 13 IC L4 23 10uH Avapmax Riam Ed 4 13 443 4 12 2
45. ra E UE e Iz DA E L Mo 3 8 Transmitting distance 30cm 40cm 50cm Load resistance Q 50 25 15 Power supply efficiency 76 95 6 92 3 90 2 Experimental 93 7 86 8 77 3 Transmitting efficiency 96 Theoretical 92 4 86 5 78 2 Rectifier efficiency 96 98 7 97 2 95 0 DC to DC efficiency 26 88 3 71 8 66 2 Consuming power kW 3 36 1 70 0 846 53 3 8 3 2 6
46. 2 V V v 2 A 4AR Z R 8 14 L m 20 3 3 4 3 5 Ed 3 6 B 3 8 3 14 3 9 20kHz B 3 14 57 3 4 39 IGBT 51 Parameter Symbol Value Unit 2MBII100 060 50 Vcs 600 y Ic 100 A Vp 2 0 Typ V 3 3 5 UE L Re
47. EV 1 EL 71 4 8 p o Receive 7 Antenna E Cur Transmit Antenna Power Ground Side Antennas Repeater Repeater Repeater Antennal Antenna2 Antenna 3 Source
48. SEXTUS RED E R 14 9 10 11 EE T Cup OS 14 m CHR PCHAdeMO ES
49. IC 2010 vol 2010 no 15 pp 35 39 KESA B 1 28 kHz B 1 1 A no 1 p 28 Mar 2010 T C Beh T Imura M Kato and Y Hori Basic study of improving efficiency of wireless power transfer IHR Hb nx y gu ll H n m A E via magnetic resonance coupling based on impedance matching in 2010 IEEE International Symposium on Industrial Electronics 2010 pp 2011 2016 Teck Chuan Beh Takehiro Imura Masaki Kato Yoichi Hori Wireless Power Transfer System via Magnetic Resonant Coupling at Restricted Frequ
50. EE 5 ACD gt E E S n H 2 o 21 DSi CO XE
51. Zin2 4 Zu Zm E 500 Zm 39 v IQ 50
52. c 32 3 2 1 322 Ap 2 20 Zmar KY PL Vr Zmar 3 1 V X Zin24Pmax 7 PL 3 1 Pr b A 3 2 P 7 G2 Y Mone Vi
53. 1 27 1 1m 90 1 1m 75 2 0m 40 Bd 128 1 6 1 48cm 4 96cm D e CEERD 126 32 36824 1b A85 SEI EBY mT B lbs es 1112mmo TEC TOMMA e a b 1 27 32 16 1 2 128 32 Xx L6 32
54. i L4 3 2030 500km 1 BMU
55. II dle ERE ucc A MMC M DM M C MM 1 IN Li p m 1 El Ros RU BRURRL atop feb D OO Re EE UR ds 1 1 1 2 Erste ie DAE COBRE e ace ote eR EO RR 5 1 1 3 6 L2 8 12 1 eu 8 1 2 2 uuu 12 123 an E eL Bg SIDE DURAS aestu quibm Gern clt a 19 E vo RIDES Ur MER T 20 1 3 1 MMi 20 IE RUMP 78 07 1 CETTE TERR 21 9523 ee 23 P UT E eui E cn Uo at AL NR Le oi tous fu 23 PME ADEM Pc S MH NNI n RP 28 2 1 2 SS 23 2 1 3 KITADA E AIAC OVT euis Laer pel
56. 3 16 3 10 AC200V DC AC DC AC UL PL pc 20cm 30cm AC200V 50Hz 3 3kW max Nissan LEAF DC 0V 315V Receiver DC Power supply Transmitter Rectifier Voltage Sensor Wi 3416
57. 61 3 5 3 5 2 Ie Wi Ap B 1 33 1
58. DE n a 1 6 Moving car _ B L6
59. 22 2 2 1 38 2 7 2 LCR L Ci R Ea LA E
60. Car Watch http car watch impress co jp docs news 20130702_605983 html 2013 12 1 24 SIPS 25 EV WPT2012 22 2012 11 26 vol 67 no 10 pp 47 50 2013 10 27 AGERE WPT2012 17 2012 8 28 H Hasegawa T Murai and T Yamamoto Running Tests of a Combined SC Type Linear Generator IEEJ Trans Ind Appl vol 123 no 2 pp 156 163 Feb 2003 In Japanese 29 1 2 vol 21 no 9 pp 5 10 2007 9
61. aa e 30cm 3 36kW 88 3 40cm 1 70kW 77 8 p xu c i e a Wi
62. 7 K 7 amp E 77 TE Ep c e l p 3 T 37 amp 3000 W T l T M 800 V IRI TE FE M fin R gu d S gm um Hx 3E a8 RSE W a 33 OX A NG y A A Q
63. 1 1 8 4 1
64. V E o Ll c V ue 47 3 2 4000 2000 Primary and Secondary capasitor voltage Vci Vc V Mutual inductance Lm uH 32 3 3kW 3 2 3 T 3 3 Receiver High pea frequency PPY Power suppl Rectifier Transmitter Signal generator X 33 TO y yK
65. 2 8 V h blX C Rz 8 a Primary L L Secondary side side Zm RL Pa Zw R 2 7 2 7 2 8 2 9 2 10 o V Vi Zai Zo 0 Za 2Z22 1 1 aC Z 7R dot Zi 7 jaL 1 Z R Z j 22 2 in2 2 Power source Transmitter and Receiver Load 2 8 2 2 2
66. EU 3 2
67. E 2 4 Et P EY FB U 5B Sua ESI Rs EE 23 2 1 E 4 Lt Rs Zo Rs E Rs
68. 13 1 3 1 20 1 8 J e ELET FEAN
69. H 3 100 2 20 A VAPmax V 3 13 BE 4ys 2 11 3 13 V EHE V 2 LAP max A VAP mx R Riar max RR eL y 56 3 12 3 8
70. i 94 FEL Lv PEE FE ERA H amp L DA EIT TAA mH Eres Nat 15cm i s did im CRV SUV 18 5cm m EE 17 5 cm ind 5 ZA 19 Pa cm gn 16 gw TUUS i NO dd 21 5 cm op Aero Ace g E E 21 cm Ir 1 0 1 7 LN
71. 3 7 3 6 46 Parameter Symbol Value Unit EVS16207UJ2353KSSM murata 35 nF 10 U2J 300 AC Vrms 200kHz 24 Arms a b 3 7 51 3 6 3 2 100kHz 50 60Hz
72. 2 9 2 2 2 3 2 4 wo 6 28 10 rad s 100kHz 29 2 2 Parameter Value Outer diameter mm 450 Inner diameter mm 115 Number of turn turn 50 Pitch mm 34 Wire cross section area mm 2 0 23 Parameter value L uH 650 L uH 650 R Q 1 4 R Q 1 4 31 2 3 K 2 4 Transmitting distance cm Mutual inductance Lm uH 10 180 20 75 7 30 36 4 40 19 5 50 11 4 23 2
73. 2 2
74. EV 4 2 4 2
75. a 7 ro 1 Iransmit Antenna C C Co iiia Power Source R X 4 21 2
76. 2 15 a c Bd 2 15 b 2 15 b V 1 V Bd 2 150 200 V 2 27 OT 38 2 5
77. E EV ERZA AXE Ege HH IA Wi o S E ons igi AER FEL EV H 4 66 E pm FEL E 2
78. 30 k vol 19 no 6 pp 25 30 2005 6 31 19 E 2011 9 32 21 2010 4 33 22 2011 7 34 23 2012 5 35 J Huh and C T Rim KAIST Wireless Electric Vehicles OLEV in EVTeC 11 2011 5 pp 1 7 36 Chun T Rim The Development and Deployment of On Line Electric Vehicles OLEV in ECCE2013 2013 9 37
79. Ss 2 25 KO Zu 2 12 2 zpr 2 26 Puma 2 27 2 27 4ppr 2 28 L Plam 2 9 2 Z in2PLmax lot R 2 26 R T sk V AR 14 Sn 2 27 eL 1 App max RR 2 2 1 2 28 esL Tx P indus n in2 AP max 2 29 IR R R mL Y 35 2 4 dy Kouororyg Sunmusuerrp 10000 100000 le 006 Secondary imput impedance Zim ohm 1000 100 1e
80. 120cm ICNIRP 1 14 Ed 1 15 a b X 1 14 21 50 10cm with Al 50 10cm ly je ded 2 20cm with Al 20cm y 3 ln 30cm with Al A 30cm with A 30cm free 30cm free 30cm withAl 30cm with AI g E z 1 5 200 200 S 200 200 r N 30 eL 40 N 2 in x axis distance cm z axis distance cm X b ZH 1 15 21 11 1 2 NEXCO EV 2013 6 EV 30cm 1 3kW 22 O Bonis 116 23
81. Wireless Power Transfer for Electric Vehicle via Magnetic Resonant Coupling t EV Electric Vehicle EV
82. 4 vol 2 pp I 219 222 2012 8 4 1 M Kato Loss Reduction in Antenna for Wireless Power Transfer by Magnetic Resonant Coupling in The 11th Seoul National University The University of Tokyo Joint Seminar on Electrical Engineering 2011 12 2 M Kato Takehiro Imura and Yoichi Hori The Characteristics when Changing Transmission Condition in Wireless Power Transfer via Magnetic Resonance Coupling in SNU UT Joint Seminar 2013 3 1 RKF 85 Ej 10 11 BS 9 Hz MHz GHz BS 9 SPS 2010 no 1 pp 24 25 Eh EM
83. EV E EV
84. Q 3 B 4 5 1 D ESR Equivalent Series Resistance H POT LC 4 2 EK EO Ri R 4 5S
85. R 2 l0 zo 100 0 10 e xi 0 0 1 10 lR Q in epe a b X 4 13 7 10 uH oo oo ex RIS RLAPmaxl Q A vAPmax AR N N 70 4 8 Rp R
86. 4 10 C C Ri 1 TS RaRIX Li zL Ci C RAR M cub 20d ERES SUE HL COS RS 1 1 LC L C CSA 1 aT L C Ri om R C2 Vi Vi Li La V RL Power source Transmit and Receive antenna Load 4 10
87. 1 G 8 Edw Ea 4
88. L m WEN Metal plates f Sicel 1 25 1 A E pman V H T H p uk f j h mam amp a ul um LC iig j 5 T E T E or PLIS 7428 M tcm 1c iss mmm u Bent a b 1 23 26 Matching Matching circuit 22 circuit 1 Z 20 CT 1 f 780 TEN v Me 2d z 70 Backside s m i 50 51 52 53 54 55 Belt Frequency MHz a b 1 24 1 732 15 27 1 2 125 27 32 33 34 1 26
89. Ms Mai Mra Mpa 355 Receive antenna a e Mre MRX N Lu Lro Lrs Q Ru Rpr2 Rna vi R2 Ina e 8 Cu CR CRs Transmit Repeater Repeater Repeater Antenna Antenna 1 Antenna 2 Antenna 3 X 4 45 P ER k 5 EITHA ERU SE Ec OO Sfi es 72 4 8 4 3 3 5 4 2 4 3 4 14 Vs Zi Z 0 0 Zis fs 0 Zo Z Z 0 Zs Ir 0 2 0 Z4 Z3 Z3 Zs Ir 4 2 0 0 0 Za Zu Zip 10 Zis Zas Z5 Za Zs J 1 Z R j oL 4 3 11 stJ s oC Z
90. V _ R V 3 13 R J m L Y RR JR 3 13 Ry Rs Lm 09 RL RL Ro ey 1 2 4 3 14 3 12
91. 18 19 LI 18 a p 90 TW RHOKA 1 12 19 2011 6 10cm 30cm IKW 10 1 2 88 20 ij B 1 13 20 21
92. 9cm EH K 1 1 200V SOkW 3 H 3kW 8 2 H KEJE HESSD EDDA LAE TER 6
93. 2 1 2T 1 1 2 2 Receiver Zim 1 1 1 1 1 1 1 1 1 e Vs Transmitter 1 1 1 1 1 I I 1 Power Source 2 6 2 1 0O
94. ELT E En vC S
95. 3 1 2 Eq 3 1 18cm 1 30cm 88 WiTncity 20cm TH 44 90 EV 3 1 Yn 3 1 EV
96. S 3 7 3 8 Rectifier input Rectifier output From Receriver To load b X 3 8 3 7 48 Parameter Symbol Value Unit DSEI120 06A IXYS I VanM 600 V Terms 100 A Vp 1 3 Max V tr 35 Typ ns 3 9 52 3 2 3
97. EV 1 A 2 EV EV H H
98. 4y a H Q 7 2 8 2 9 Q 10 E EE Ap mmm Za 4y 2 11 4 2 12 Zn 2 13 17 29 2 3 V A 2 11 1 I ds 2 2 12 1 V VA pr 2 13 Av Ap Zu 4y Ap Zm 2 7 o w o 2 8 2 10 ZZ R Z2 R R Ay 4 2m 2 14 3xXQ 15 16 Z A j m in2 CURZSIHRR
99. 4y Ar Ap 100 10 m Lr CT WT i iAH I rrn r TTT E 1 rrr jc aba bl or grt 1 E sEEBBHEzzEZZIH o Z LUE HHHH o JJEIME 234 p qp oppo o A 5b 1 IIIIHH 1 IIIIIIII 1 IIIIIH Ss 0 1 sbt JALU EEHHH bh444H X SHEARS o Rz5iE 3 EEEHHZGESIH gt ZP OOPNE TITTA CITTA i ETHIC CE TTTIH T t HE 7I7 ttt TII FF 31 p TP TIL T 3 T IH 1 ELANIN 1 1 rr 1 IIIIHH 1 EENI T d M 0 01 Eigzutcdcrrgud EddiH frr Le 180 uH Jd LELULHL H LELE ada EE EDITO Ts IIo Lm 7364 uH 1 TIIIIIH jr ii 11 4uH 0 001 li 10 100 1000 10000 Secondary imput impedance Zi ohm a 71364 uH Priamry input impedance Zin ohm ETAIT ATTAN TF TTTHWVI 1 10 100 1000 10000 Secondary imput impedance Zim ohm 100000 100000 0
100. M iiy E mi 80 5 1
101. 1 20 300 km h 30 400 km h 291 1 20 T 13 1 2 Hi jki a 1 19 kmh T7 10kW fast A a 1 2011 4 ELS S E b 29 kw 0 100 200 300 400 kmh b
102. 4 2 4 2 4 2 1 EV NN 1 Pues 4 9 Fus 4 8
103. 4 1 0 E RN 2 15 2 16 3X 2 18 7 5 E Ry Ry 09 Lm Zm o Rp Rs Lm 4 2 3 Ry Ry Lp Ap Ap 2 10 50 100 200 uH V 100 V NR E 4 11 IL XOR Ap
104. Bii n a e EV 7 45 3 2 3
105. SiC Silicon Carbide FET 34 FET 100kHz 3 2 3 5 48 3 2 Gate Driver IR21834 AC out O To Transmitter Signal in From signal generator Gate Driver IR21834 Photo coupler TLP555 Xd 3 4 b d 3 5 X 3 2 44 Parameter Symbol Value Unit SCT2080KE ROHM
106. 1 2012 3 14 44 SCT2080KE datasheet 45 2011 3 46 EVC 47 T Imura H Okabe T Uchida and Y Hori Wireless Power Transfer during Displacement Using Electromagnetic Coupling in Resonance IEEJ Trans Ind Appl vol 130 no 1 pp 76 83 Jan 2010 In Japanese 48 IXYS DSEU120 06A Data sheet 49 Y Morrwaki T Imura and Y Hori Basic study on reduction of reflected power using DC DC converters E Y in wireless power transfer system via magnetic resonant coupling in 2011 IEEE 33rd International Telecommunications Energy Conference INTELEC 2011 pp 1 5 50 K Takuzaki and N Hoshi Consideration of Operating Condition of Secondary side Converter of Inductive Power Transfer System for Obtaining High Resonant Circuit Efficiency IEEJ Trans Ind Appl vol 132 no 10 pp 966 975 201
107. vol 67 no 10 pp 51 57 2013 10 38 T Imura H Okabe T Uchida and Y Hori Study of Magnetic and Electric Coupling for Contactless Power Transfer Using Equivalent Circuits IEEJ Trans Ind Appl vol 130 no 1 pp 84 92 2010 In Japanese 39 T C Beh M Kato T Imura S Oh and Y Hori Automated Impedance Matching System for Robust Wireless Power Transfer via Magnetic Resonance Coupling IEEE Transactions on Industrial Electronics vol 60 no 9 pp 3689 3698 Sep 2013 40 M Kato T Imura and Y Hori New characteristics analysis considering transmission distance and load variation in wireless power transfer via magnetic resonant coupling in ntelec 2012 2012 pp 1 5 41 H Irie N Minami H Minami and H Kitayoshi Non Contact Energy Transfer System Using Immittance Converter IEEJ Trans Ind Appl vol 120 no 6 pp 789 794 Jun 2000 In Japanese 42 BFAK ETAR 25 SPC13 13 83 pp 77 82 2013 1 43
108. 20cm 40cm 3 15 20cm 40cm R Ar T 1 1 o oo 0 6 0 4 Transmitting efficiency Ap 3 3 6 40cm with DC DC e 40cm w o DC DC 20cm with DC DC Load Resistance R Q dx
109. 371 4 60cm 80cm 60cm 1 33
110. pass Impedance Matching Circuit Resonators C 128pF TA n 1 C2pF L 14 H C 1 kL 1 kL C JL Cl i i E Z a Zo kL 9H 0 X4 Cp 1pF Cp 2pF Cp11 1024pF a b 2 5 39 f 100kHz 1 BEV
111. 17 19 1 8 BE 133 15 1 7 15
112. 1 21 Da 31 14 x 1 21 E 1 2 HEEL 26 X 1 22 1 23 271 1 32 7 1 24 EE
113. E LS em e E 1 1 Ex re 4 o 6 Vp o emnt b B 1 5 MR 1 1
114. Electromagnetic Microwave Magnetic induction power transfer resonant coupling Range Low Very High Mid Range few cm km 10 cm 2m Efficiency High High Application F m 8 Low de EO X17 12 13 1 2 12 Massachusetts Institute of Technology MIT Marin Solja i 2007 14 1 1 6mm OH 60cm 525 9 90MHz 2 1m 60W 1m 90 2m 40 Bd 1 8 1 2 a b 1 8 MIT
115. 3 19 3 18 DC Arduino UNO PI liy 3 18 60 3 5 2 5 a AEA 3 19 3 5 3 5 1
116. d ON p 55 3 8 Primary s1de Power source Rectifier 3 3 3 Driver Secondary side Two quadrant chopper X 3 13 1 1 Receiver pee 1 rectifier 2 i Transmitter quadrant chopper 1 1 EDLC Mo RENE 1 D 2 20 3 10
117. H NA 33 3 3 1 i Sn Eni AL
118. I Ze D EO P z 4 M VW 1V 1 EZ Z wv 53 St P V 2 25 VO 2 Mi FEL 3 mp FEL HEJ PLUX P 2 Vj Ry 4y 2 lz SEN x o 2 24 2 25 1 V FN AR lV E 2 12 b Hbi
119. Ap y 68 4 2 01 10 01 1 10 50 ET Ri Q a Lm 10uH b Lm 50uH 0 8 0 6 _ E 0 4 0 2 0 9 0 0 1 10 0 1 1 10 50 9 Ri Q c Lm 100 uH d Lm 200 uH 4 11 4 12
120. 3 10 LV25P LEM OP AMP PI OP AMP DC HX0500 30 0V 500V 30A 7 ACDC NS 3K 18Z2S DC 200V 300V EAB LEAF nissan b 3 17 59 3 4 3 4 2 2013 ITS 2013 13 10 14 18
121. B 2013 7 5 2013 12 9 En A zm HJ Wrmr x E Pa EA J xd E 86 1 2011 1 Vol 7 pp 8 9 2011 2014 4 1 2012 27132
122. 125 82kHz 2 0cm 2 Xx 40cm 3 1 0 3 2 80 4 2 40 4 120 X I XE 75 4 8
123. 2 Ix 2 8 d Cl Ap ZZ 7 Znam 2 20 4 2 21 2 Z n2APmax fe 2 20 1 laL y 4 max 2 21 t mL y T 2R R Para T 2R lL y AA Ap 2 3 3
124. gt 2020 gt 2030 20304 30 50Whkg 1 400 2 000 W 200 Wh kg 2 500 Wikg 10 15 kWh 2 kWh 5 10 2 000 4 000 10 15 4 000 6 000 PHEV PHEV 25 60 km 60 km EV 100 180kg 50kg 6096 5 12 kWh 10 kWh 505A 20 60 100Wh kg 330 600 W kg 250 Wh kg 1 500 Wikg 500 Wh kg 1 500 W kg 700 Wh kg 1 500 W kg 7 10 KWh gt 2 kWh gt 1 kWh 5 gt 5 10 500 1 000 10 15 1 000 1 500 gt 10 15 1 000 1 500 10 15 1 000 1 500 gt EV FRM 120 200 km 250 350 km Tad 200 300 kg 100 440 kg 80 kg 80kg NR REINICLNA 16 24 kWh 25 35 kWh 40 kWh 56 RW z 110 240 260 376 50 80 200 230 40 190 28 180 8 CC
125. 120 160 A o E E e n 4 20 NN 4 20 4 18 4 20b 77 4 4 Re Zin with CC Re Zin w o CC Im Zin with CC Im Zin w o CC 40 0 40 80 120 160 X em X em a b X 420 4 3 4
126. _135 LO N T130 2 5125 0 5 z D120 E 115 E 40 0 40 80 120 160 X em a 1 48 135 LO N T130 2 5125 0 5 D120 E 115 40 0 40 80 120 160 X em c 3 x 4 18 KRZ 1 W CA c N c Frequency kHz N EN 40 120 160 9 k ln b 2 40 120 160 9 n O N Frequency kHz to m CA em d 4 f A A a 76 4 19 4 18 4 8 _135 0 _135 N N T130 22130 pA gt 2D 0 5 8125 D D S S 9120 2120 m 115 115 40 120 160 9 40 120 160 9 E e E o 2 1 b 2 1995 0 135 r T 22130 22130 2 gt g125 0 5 g125 3 3 7120 2120 m m 115 115 40 120 160 9 40 y lem F M c 3 d 4 f X 4 19
127. uuu 45 32 i 46 Sor E E E c m CR 46 quo JA SHE OREaT R R Cad E e aA AL ACE EOLS 46 333 cd dpa die citati nsu dde bi isdduls 48 LU N yp RET 53 aoo uoce E ncc Da dM da ccce d dO dod SS 53 So CERO 54 3 3 uuu 54 R E ENEA NN d dM caue es 54 3 32 LL 54 DX KDA RO TEMA dence MET 56 EEA ror DUE 57 Eo 58 DENIM NC 10 KO 58 QE DIM DE 1 E E DE 58 3 4 1 3 59 342 KO 60 E L e D e ETE E E AE EEE 61 IV EXON ooo p C TENER 61 WS 62 4 EITPIN VE SRREIBIU 0 63 dd EA eq unma e UM M LE ed LU 63 EE c PT 63 4 1 2 ee 63 44 3 i 66 42
128. 43 Witricity HaloIPT Evatran Qu MV 3 3kW IkW IkW 3kW 3 6kW 3kW 30kW 20cm 10 30cm 12 5cm 18 3cm 7 15 10 14 90 88 30cm 38 85 90 85 92 50 x 50 x 3cm 80 x 80 x 16cm 6x9x10cm 80x40x3cm 30cmb x2 5cm 46x46x3cm 139x 139 x 5cm 2 3 102 27 32 0 5 1 9 32 kW 125kHz 13 56MHz 2 45GHz 20kHz 95kHz 2011 6 2011 5 2009 2 H 2010 2011 1 2010 10 2 1 3 1 3
129. 10 i Current ratio Ar 0 001 Transmitting Efficiency Ap 100 10 E a rn o rrr MI ET EEPEE toetati 0 01 E Act Lb mI b ZI iria 11 4 uH n i LUULU Ju AHH idm iu 1 HHH EID ImTiTT FT Tn Tn rrHHH THH ERE mm 9 SE ta rong iu Lu LL Luu Ti nm iu rBGanH 48 ronn EHHH TH TH T THH 1 rn E3348 CEDE C NI EPRIIT XLI Lu nnm 1 100 1000 ql n n n H 100 1000 d X 2 10 2 10 Zu 4y 0 01 100 EEE Lm 180uH Lu lLL 36 4 uH Zu 2 0 10000 100000 Secondary
130. 14 WiTricity WiTricity MIT Marin Solja i 2007 16 16 d 1 9 Bd 1 10 18cm 9096 3 3kW Source Module Enclosure Capture Module Enclosure 12 5kg 17 IHT Wireless electricity Audi WiTricity is commercializing technology developed at MIT that sends power through the air to run devices like laptops DVD players cellphones and other common electronics em 1 Circuit converts standard AC electricity to a higher frequency and feeds it to a WiTricity source The current s WiTricity lt so rce can be installed inside the source sw an oscillating magnetic field d DE Sud have dm AC We source Es Circuit Oscillating magnetic field 1 Q The WiTrici
131. 2 30cm 88 3 3 4kW 40cm 77 8 1 7kW 30cm 3 3kW
132. Q2 3 1 1 E 1 EE 700 000 17 897 PHV caon 2001 2002 2003 2004 2005 F Z 1 3 1 1 iMIEV M G a 1
133. Power Source X 79 S f S 1 1 2
134. 0 2 0 1 0 05 Consuming power Pj W 0 10 100 Mutual inductance Lm uH a V 10000 9000 8000 7000 6000 5000 4000 3000 2000 1000 Consuming power Pj W 10 100 Mutual inductance Lm u c ZKWAJAT C 4 AQ 200 V H x 100000 z 10000 1000 Secondary input impedanceZ ohm 1 V 1 0000 1000 3 P 8 100 3 e 10 s e 8 g 8 0 1 d 215 1 0 2 0 15 Consuming power Pj W o 10 Transmitting efficiency Ap 100 Mutual inductance Lm uH b Vi 1V Transmitting efficiency Ap 100 Mutual inductance Lm uH d Vj 200 V 2 5 2 5 1 41
135. X 414 4 3 2 4 14 EV 4 15 5 4 15 Vs Is Ls Cs As Irs L Cro CL Rgn Ri Igos L Rioap Msgi My Mg 2
136. ESSECLTNETICHETLUUETTUHETDTUINTIUH Feb 27 2009 July 14 2009 Aug 14 2009 Jan 31 2010 Mar 9 2010 2010 development Te me air gap lcm air gap 17cm air gap 17cm air gap 20cm air gap 12cm air gap 20cm efficiency 72 efficiency 71 Efficiency 83 efficiency 74 efficiency 80 lt 10mG 3kW pick up 6kW pick up 15kW pick up 15kW pick up 15kW pick up 25kW pick up 20kg 80kg 110kg 110kg 110kg 80kg 55x18x4 cm 160x60x11 cm 170x80x8 cm 170x80x8 cm 170x80x8 cm 80x100x8 cm 1 29 Overview of developed OLEV IPTS 35 Pick up Power supply rail v ferrite core N a Ltype power supply and pick up z air gap direction Ju Wf Power supply rail b Cross section of the coil X 1 30 I type coil structure 35 18 1 2 a b 1 31 24m test bed for I type IPTS 35 1 32 OLEV Bus 35 1 2 3
137. Bd 3 13 TL DC Ts
138. 1 5 1 34 2 3 4 Bi Er mh i X 1 34 22 2 2 1 2 1 1 EV E
139. 2 11 33 2 4 1 1 r E T E E 1 Zn2 1ohm Zin2 10ohm Zin2 100 ohm y Oner 33e1IOA Mutual inductance Lm uH Mutual inductance Lm uH tfr jim SE b Ep Es a 1 ohm Zi 10 ohm 10000 Zio uyo Z o uepeduirr 3ndur Luweng Mutual inductance Lm uH Mutual inductance Lm uH d X 2 11 p c H o PRK iz E ONG 8 KUE e Q sS A 1E 1J R BR Go ERO X Wd 1J JE 24 o 1 K io C9 Wo pn o dm V 3i HB R N H J 7 K gg 2L R lt 97 E 7 x0 H d 16 PR o UN Bo Wo X e n oW v pct AS Et gat R ox M ae 5 R MOER X6 0 3 i ig ceu pO IS amp 4 Q0 Xx 7 Q E uug HEN He E INE x UHGO omg RREZ SSj Sie Su nA QUA CO HX B4 0 B4 9 J dO M mE Hf 36 48 X X S 1
140. 2 18 oL Js Z R JRZ R R oL 3 in2 o 1 c 2 18 2 3 30 2 3 2 3 1
141. 2007 Im 90 2m 60 60W 1 2 EV
142. l em Avmax 2 22 Fg V o Lx y 5 VEEE Avmax FB PE c K 2 23 Q 22 2 23 34 2 4 2 4 DC DC dg E pr P2 o 2 4 1
143. 332 3 11 V 39 VL VW V Vp AL 2 VV 3 10
144. JET E AX a 1 0 8 04 c y Oner aSe1IOA T T T T T T T T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 I I 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 E EE ES E S E E E ERE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 TUM C 4e od 4 We bo M o 0 lode cu c os 1 1 1 1 I 1 1 1 1 1 I 1 1 I 1 1 1 ek li Gee 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 EE EOE NE le hl lb 1 1 1 1 1 1 1 I 1 i 1 r T T 1 1 I 1 1 EE E a 1 1 1 1 1 A And Iamod Furunsuod DaZITBULION 10 100 Mutual inductance Lm uH b Mutual inductance Lm uH ZELEBREA g J JERKE RD E D c il x 2 13 2 4 3
145. A 3 2
146. 67 dod pp EC sehe er ROM DR DR 67 4 2 2 ii 68 4 2 3 Mui 68 ND ME ur EEA RET 71 ae aE E ES A 5 71 du E O e a m CIIM n E EC R 71 4 3 2 asus 72 4 3 3 EE HOWERSU a be ee abe debi CHR SG pA de be 73 7a ERE DO RE AE ENS 78 4d NERO E ES EE HESS aa lt 78 DoD PM CM D M da eG m c c dq M ce 78 aoc EOD T E ratu ofa cba eats bo rfe dtc undc 79 IE MEE c r EP NR NEN 80 EE uoce e Tr Tr REIN TE 80 BE MN NE 82 d cec e undi conim A di ith tte och m A dta 85 VIDE ead toe ARN E teta en lei un a Re un oodd ts ts m vec eS 88 VI 1 d 1 1 1 1 1 1 1 2001 2002 a BERE 1
147. EV 32 1 EV 50W 30 W 4 2 63 4 1 4 1 a 1600 mm 300 mm p b a 4 1 52 J loi T m mam P c d 42 521 Korea Electrotechnology Research Institute KERD 53 4 3 44 4 5
148. 2 18 Vs 2 19 Ava 2 3 a 2 34 Zs 2 35 Z R Ola 2 35 R 1 41 2 6 Power source Transmitter and Receiver Load 3 i Load Thevenin equivalent circuit Power source Transmitter and Receiver X 2 18 2 19 A 12 2 36 T a 2 36 R 2 2 2 35
149. Sa 2 5 XXQ2 5 0 5 5 o 500 E PME CARE 3 tX VNA Vector Network Analyzer S5 2 3 n m mai 7 S4 x100 Q 3 b S 2 4
150. J Power source Transmitter and Receiver Load Norton equivalent circuit Load Power source Transmitter and Receiver x 2 19 2 6 2 6 1 EV E
151. 90 f REA EE 500 Weir de IER D ACE RA TI 0 50Q zd
152. 240 297 1 185 8 327 6 357 7 400 360 1 2 1 3 3 Wh kg o S eo a a a e 2wt R8 ES At c2 H elm o 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 Wh L L2 3 1 1 wW Q o ro o o no o o eo o o o Wh kg WE ri 0 100 200 300 400 500 600 700 800 900 Wh dm 1 3 4 10 15
153. 1 7 3 6 3 3 Description Value Outer diameter mm 434 Inner diameter mm 228 Number of turn turn 34 Pitch mm 3 Wire cross section area mm 2 36 X34 Parameter value L uH 521 L uH 521 Ry 0 78 R Q 0 79 3 5 Transmitting distance cm Mutual inductance Lm uH 10 152 20 65 1 30 32 1 40 17 4 50 10 3 a 50 3 2 47
154. 96 480x480 k 0 05 480x960 k 0 05 960x960 k 0 05 960x960 k 0 037 960x960 k 0 03 KAIST OLEV Korea Advanced Institute of Science and Technology KAIST Online Electric Vehicle OLEV 33 36 1 29 OLEV 4th Generation 20cm 80 25kW 1 30 1 31 80kg 1 32 2013 8 Gumi city 17 1 2
155. 2 31 2 31 421 1 Ll aL V Q 31 4 Ai 4r77 2 32 2 32 Ri lt lt Ar 2 33 V aL I Q 33 2 30 2 31 2 32 2 33 3 2 31 2 33 R w Ar
156. 67 No 8 pp 84 92 2013 8 3 Vol 29 No 4 pp 18 29 2007 1 4 AIST Today Vol 9 No 8 pp 8 9 2009 8 5 NEDO NEDO 2013 2013 8 6 ik pp 83 i 2011 4 7 7 2003 8 CHAdeMO i 20102 9 Honda 74 7 DIVA Life http www honda co jp LIFE webcatalog spec 2013 12 1 10 toyotajp atc http toyota jp crownsedan 005 b 007 spec spec 2013 12 1 11 http www mitsubishi fuso com jp lineup truck canter 10n lineup cargo sp
157. tr e CAS OoOo J mat SRIBO BUG XA2 X MICE ORE V2H LIB 0 Ritt BRIREENE S m 8 WYBHBRAUHE MEENE A DATA S a COHEN 14 5 1 1 2
158. 0 S D 1 54 8 8 3 11 2 V DV 3 9 R 3 10 R KZ lt 68 11 Step down chopper D oa X 3 11 3 12
159. a b Bd 1 17 23 1 2 2 MMS pa ripe 12cm GELS Ed 1 18 2425 1 5 24 1200mm 30kW 60kg 1200mm 33mm 847mm 60kW 37kg RE 847mm 33mm 902mm 150kW 150kg 1854mm 48mm 12 1 2 O d 1
160. 54 a s Frequency MHz y em 0 B 47 54 4 1 3 EDA EV amp j amp j H E HW FB SS spe HLET EAr Ez c V ZOV EV p3 p4 p5 94 AQaior Suniusued p
161. XX Ma Mri Mii Mesi 4 17 4 17 74 4 8 e 20 Ms Mii Mro Mear uH a D x 4 17 4 18 1 X 0cm
162. da uon Ta jka jT a jka 2 1 da wx joa 1g jka jV a jka Q 2 E d a 2 D 2 LC 2 1 AORN S bea 13 S 15 38 S 2 2 2 RLC L k Cr C Rp Ra pi 2 3 Sa 2 4 g bi
163. 2 eR jos
164. IW Qc 30cm 88 3 3 4kW 40cm 77 8 1 7kW DC DC DC DC EV 4 EV EV
165. 10 200uH V 100V lt D pam H Ju g 37 2 4 5000 800 700 4000 E z 600 5 500 amp 9 3000 8 400 amp 2000 300 J E 200 8 1000 100 0 0 10 100 Mutual inductance Lm uH Bl 2 14 2 120 Zm Ap
166. 300 20 29 31 31 600 amp 4 ES E 10 kHz ET i FEDD BCIE A 3m EX 1 km 0 505km h H ICNIRP 1 10m 1 28 dg
167. a 2 Se 1 Q 5 Lol R for J oC 24 2 1 Hel a 2 2 38 100 80 60 40 20 0 15 16 17 18 19 20 15 Frequency MHz 2 g 100mm k 0 136 100 100 80 80 60 60 40 40 20 20 0 0 15 16 17 18 19 20 15 Frequency MHz c g 200mm amp 0 057 2 3 BR 38 2 1 3 B 135 b 1 16 17 18 19 20 Frequency MHz b z 150mm amp 0 083 16 Frequency MHz 17 18 19 20 d g 250mm amp 0 037 pm FEL E 24
168. aL eH in2 OyL A essi 24 ELS ST 2 15 L 2 Zm R i2 2 16 Za tR in2 2 14 2 15 2 10 Av Ar Zm 90 Za 1 2 17 XE Ap 4 4y 4 gosse E ceo a Q 17 Vi V I 4 Ay A
169. kWh 3 1 1 2 ue 6 EP DRHRRORIERBORSE KR RU 12 346 775 6 20 391 7 4 282 3 NMP 11 173 4 535 5 683 80 h H 16 550 31 4 2 039 25 411 429 B CUESTA V
170. v Vpss 1200 V Ip 35 A Roson 80 Typ ma O 106 Typ nC 49 3 2 3 6 b 45 3 6 a 3 3 3 4 3 5 0 1mm 43
171. 006 100000 Secondary imput impedance Zin ohm a 100 1000 10000 10 0 x 2 12 2 4 2 gt 4Q o em E Da EE PES S SEN 3x Q E R AJ R tg JRE LRAD 4 213 z 300V Ed 2 43 Z7 RA E L 4p 4 2 13 i E 3 36 2 4 1 08 F z LL LE mais i a Cm St Ot Eo a 0 6 H 4 oo urqo avez oouepeduur Indur AreDuooas Kouororgjo XEN 10 Mutual inductance Lm uH Mutual inductance Lm uH amp 29 b
172. 1 2 EV eQ 4 2 4 5 5 5 3395 x 1475 x 1610 mm 3395 x 1475 x 1915 3395 x 1475 x 1820 4445 x 1770 x 1550 3900 x 1695 x 1490 4115 x 1720 x 1580 4445 x 1770 x 1545 GCO8 km 120 180 100 180 110 228 200 225 100 30 30 75 125 120 75 105 16 Li ion 105 16 Li ion 10 5 24 20 20 AC100V 14h 21h AC200V 4 5h 7h AC100V 14h 21h AC200V 4 5 7h AC100V 14h AC200V 4 5h AC200V 8h AC200V 8h AC200V 6h AC200V 3h DCS00V 15 min 30 min 8090 DC500V 15 min 35 min 8096 DCS00V 15 mm 80 DCS00V 30 mm 80 DCS00V 40 min 8096 DC500V 20 min 8096 DCS00V 15 mm 8096 260 75 380
173. 18 2009 8 17 19 98 2010 BP pp 135 137 2010 3 20 2011 6 1 82 V IKW WPT2011 20 2011 12 22 2013 6 27 23 Impress Watch c 21 EV FEN NEXCO EV E CELL
174. 2 4 600 V 97 7kHz 100 50W L 3 2 5 3 8 3 10
175. X Ay 2 11 3 3 V 3 3 7 3 4 3 1 46 3 2 1 1 1 1 1 1 1 1 jj 1 1 1 1 1 1 1 ll 1 1 1 1 1 1 1 M 1 1 1 1 1 1 1 z c 1 1 1 1 1 1 gt 1 1 1 li 1 n i 1 1 1 1 i 1 2 IEEE Er B 300 Lo NEM d B 1 1 1 1 1 1 1 1 3 E o0 0d d d x E UP d 3 S 200 jc f e qze hlc c h2dl E 1 1 1 1 1 1 1 1 8 3 RE quu 4 o 1 1 1 1 1 1 1 1 oo um EN Bates u E B i i OL dod d 8 E MEME amp 1 1 1 V 100 Mutual inductance Lm uH END 2E nz END a ERE a b 3 1 P 2 3 3 kW 2 1
176. imput impedance Zin ohm 10000 100000 Secondary imput impedance Zi ohm EO Zm C Av il EE E E MND Xj l LARA un Cu EE Gana E 4 E 32 Et EA 2 3 4y 2 19 L Ans Rs 2 19 1 Ed 2 8 c CI Zm BEAT 2 1 Zn Mud D
177. uH no loss 0 1 Lm 179 8 uH no loss 1 10 100 Load resistance R Q x 2 17 10 100 Mutual inductance Lm uH b 1000 2 52 d NO 1H d NO
178. ue es rod OUR e De RA ers 25 22 i 28 2 2 1 MMMM 28 222 Mui 29 23 i 30 CNW Up nr i PT 31 232 REDE EHE E eae dtes dum aca tene bc a ee ets 32 23 3 edet costs o hito enu diuturni 33 n BIS ESOS quc Hi secet ti AE uae 35 24 E EE e T oa ORT Cds MEA DI EE UR BAN rte de ean EE 35 EE 36 DAS AMEE EI DIN Nu lt E cte s eq qu 37 2 5 i 39 pk ME c a cuta aD c RRS EE E 39 2 5 0 i 41 PIE darcPaci N ME 42 26 rone tol xd corel it a 42 PEE 00r T EBERT RS 43 PIT AIREJAR ATA RR uino naO ARRO OR 44 EX 09 PNE EN E TEE ASAE EP 44 Su Ela t md tad ccn dae ic ex 44 312 MMi 44 3 1 3
179. 18 SIPS 24 28 30 1 19 28
180. 2 In Japanese 51 2MBI100TA 060 SPECIFICATION 52 K Throngnumchai A Hanamura Y Naruse K Takeda Design and Evaluation of a Wireless Power Transfer System with Road Embedded Transmitter Coils for Dynamic Charging of Electric Vehicles in The 27 International Electric Vehicle Symposium and Exhibition 2013 11 53 J W Kim H C Son D H Kim J R Yang K H Kim K M Lee and Y J Park Wireless power transfer for free positioning using compact planar multiple self resonators in 2072 IEEE MTT S International Microwave Workshop Series on Innovative Wireless Power Transmission Technologies Systems and Applications 2012 pp 127 130 D4 em MRAZA E WPT2012 09 d 55 E Den AT XD DETIN Y VCAGTEOOTR BURG 2e RS UT SERT WPT2012 38 2012 12 56 T Imura Equivalent Circuits of Repeater Antennas for Wireless Power Transfer via Magnetic Resonant Coupling IEEJ Trans Ind Appl vol 131 no 12 pp 137
181. 2826 RE OO e ANE E 2 v7 1 3 1 1 F Es 3 tt pg D 13 500km 30 20 A agde Ine FHRORERO T
182. 3 1382 Dec 2011 In Japanese 84 1 2 3 Y 3 220g ESSE X E Gli 1 Masaki Kato Takehiro Imura Toshiyuki Uchida Yoichi Hori Loss Reduction in Antenna for Wireless Power Transfer by Magnetic Resonant Coupling in EVIeC 11 2011 5 pp 1 5 2 M Kato T Imura and Y Hori New characteristics analysis considering transmission distance and load variation in wireless power transfer via magnetic resonant coupling in ntel
183. 5 2012 12 12 1 BS 2010 64 87 6 K X 3 IM Les
184. ec 2012 2012 10 pp 1 5 3 M Kato T Imura and Y Hori Study on Maximize Efficiency by Secondary Side Control Using DC DC Converter in Wireless Power Transfer via Magnetic Resonant Coupling in The 27 International Electric Vehicle Symposium and Exhibition 2013 11 1 IIC 2010 no 15 pp 41 44 2010 3 2 2 BE 3 i di 2012 12 vol 22 vol 2 pp IL 289 II 292 2010 8
185. ecification index html 2013 12 1 12 3D ES8003 13 AR No 1099 pp 38 40 2013 1 14 A Kurs A Karalis R Moffatt J D Joannopoulos P Fisher and M Soljacic Wireless power transfer via strongly coupled magnetic resonances Science vol 317 no 5834 pp 83 6 Jul 2007 vol 2 s iE AT i X Hh 15 Aristeidis Karalis J D Joannopoulos and Marin Solja i Efficient wireless non radiative mid range energy transfer Annals of Physics Volume 323 Issue 1 January 2008 Pages 34 48 January Special Issue 2008 16 WiTricity WiTricity Corp About the Company http www witricity com pages company html 2013 12 1 17 WiTricity WiT 3300 Deployment Kit datasheet
186. ency Range Fixing Resonance Frequency With Impedance Matching 22 vol 2 pp 11 263 II 266 2010 8 Takehiro Imura Takuya Koyanagi Masaki Kato Teck Chuan Beh Yusuke Moriwaki Yoichi Hori Wireless Power Transfer via Magnetic Resonance Coupling from the Standpoint of an Equivalent Circuit in ISAP2011 2011 10 AUN 25 2013 3 WPT2013 11 2013 6 ANES DEED EERI SIE 2013 2013 9 T C Beh M Kato T Imura S Oh and Y Hori Automated Impedance Matching System for Robust Wireless Power Transfer via Mag
187. netic Resonance Coupling IEEE Transactions on Industrial Electronics vol 60 no 9 pp 3689 3698 Sep 2013 Y Tanikawa M Kato T Imura and Y Hori Experiment of Magnetic Resonant Coupling Three phase Wireless Power Transfer in The 27 International Electric Vehicle Symposium and Exhibition 2013 11 2011 4 5 2011 4 7 ad 3d 2011 6 17 MRBS 2012 7 6
188. o R j oL 4 4 29 T FRI RE LAS E OC Z R j oL l 4 5 33 qQ2 RI QC Za Rg j 1 4 6 44 R3 R3 oC Z R R j l 4 7 55 L LoAD T J L oC Zi jM sqm 4 8 Z7 JOM pn 4 9 Z4 jOM y 4 10 Zis joM 4 11 Zs jOM piz 4 12 Zi JOM s 4 13 Zs JOM pz 4 14 4 3 R Ap Za 4p Zn 4 15 4 16 73 4 8 b e Ap 4 15 P Nou V LANES 4 16 I Zs Lr Lro Lgs 800uH Cs Cri Cro Cro CLUX2000 pF Rs Rgi Rro Rrs A
189. r 12Q 125 82 kHz RroAp X 500 Hi HANSER 40cm 30cm 4 16 X cml 0cm Receive Antenna 30 cm Transmit Repeater Repeater Repeater Antenna Antenna 1 Antenna 2 Antenna 3 40 0 40 80 120 160 X cm X 4 46 Mrs Ma Mez 25 uH Ms Map Me Maa X
190. ty device to be powered is tuned to the same frequency as the source and in a process called resonant magnetic coupling power is transferred from the The energy of the source to the device oscillating magnetic field induces an electrical current in the WiTricity WiTricity device device lighting the bulb SOURCE WiTricity Corp B 19 RF Amplifier Assembly On Vehicle Rectifier Assembly Source Capture Resonator Pair a WiT 3300 b AARON ATENCIO GLOBE STAFF X 1 10 WiT 3300 17 1 2 2009 8 1m 30W 40cm 95
Download Pdf Manuals
Related Search
Related Contents
Rotuladora Portátil PL300 Guía del usuario R&S FSV Analizador de señal y espectro Guía Academy of Sciences Malaysia ~取扱説明書~ ハンドブレーキ付アルミ製介護車<背折れタイプ> 5. zenbakia Copyright © All rights reserved.
Failed to retrieve file