Home

View/Open - 東京農工大学学術機関リポジトリ

image

Contents

1.
2. 2 2 1
3. L 144 62 6 21
4. LMS Least Mean Squares
5. LMS 168 6 8 1 4 3 25dB
6. 2010 2 2 174 A SZ SW m m wog 80 9 z m 00 4 1 d 1 E Edi JEA 7 89 LAOSE LAO ENEL E SIE ETAF kan 1 175 A Bellnw G HG I W i 32l 0210009 Fig A 2
7. 15 120cm 5000N 120cm 0 44MPa gt gt s Stress Mpa 8 1 E 04 1 E 05 1 06 1 07 Number Fig 2 3 6 SN 88
8. x mj 1 RV 6
9. 50 80Hz 100 200 2
10. 46 32 321 3 2 1 3 2 2 3 2 3 3 2 4 3 2 1
11. 0 5 1MPa 15 4000 5000 0 5 59529010 0 11m 31 2
12. Tablel 4 1 E a GR na a o o 1 4 1 1 4 3 10 14 4 2 10dB
13. VIBRATION BELLOWS BRACKET MOUNT BRACKET VIBRATION m sec 0 0 1 0 2 0 3 0 4 0 5 FREQUENCY Hz Fig 6 4 4 VIBRATION BELLOWS BRACKET MOUNT BRACKET VIBRATION m sec2 0 0 1 0 2 0 3 0 4 0 5 FREQUENC Y Hz Fig 6 4 5 156 MOUNT BRACKET VIBRATION h without active control with active control VIBRATION dB 1 4 0 100 200 300 400 500 FREQUENC Y Hz Eig 6 4 6 6 4 6
14. 2 3 4
15. 5 5 1 5 51 RS sas gt Z rs 25Hz C o _ s C f j 25Hz 25Hz 227 LMS ERIT 777TA 5 5 1 1 LMS 5 4 1 5 4 9 25Hz 2 SkHz LMS
16. 1 1 1 19 Table1 1 1 19 5 19 08 25 a 5 x r Wi 23 ji b PE hki z Wa 01 20 D 9 3 8 B 3 8 ajaz i 0 D N N 5 9 juz IN 6 5 E EE TE D gt D li
17. Diaphragm Secondary Liquid Chamber Fig 1 4 3 VH rpm Fig 1 4 4 11 1 4 1 1 4 5 O F 1 4 6 4
18. CO NO x PM MK Modulated kinetics PCI Premixed Charged Ignition DPNR Diesel and Simultaneously Reduction Catalytic System DPF Diesel Particulate Filter
19. 0 80 FZ gt 2Z 75 80 85 90 95 2000 2005 2010 2015 E 12 121 800rpm 8 Diesel Engine Gasoline Engine 1 0 60 40 20 0 20 40 60 Crank Angle deg Eig 1 2 1 Cylinder Pressure level MPa 1 2 2 1m
20. 72 4 2 1 Eig 4 2 1
21. 101 52 521 RV 0 52 1 K 5 2 2 521 322 4JX1 5 2 1 r mm wo 5 2 2 2999cc 160PS 3900rpm 34 0 2000 102 Fig 5 2 1 Fig 5 2 2 108
22. MATLAB SIMULINK 90 REDUCTION LEVEL dB N A Go N Measured Calculated 0 PRESSURE inside ACCUMULATOR MPa 0 1 0 2 0 3 0 4 Fig 4 4 8 91 45
23. 3 6 2 1 Table6 2 1 Type of Engine DI Diesel Number of Cylinder 2999 cc Bore amp Stroke 95 4 104 9 6 2 1 6 2 2 6 2 3 6 2 4 Fig 6 2 1 145 Fig 6 2 3 Fig 6 2 4 146 6 2 5
24. FIR Filter LMS Algorithm Fig 4 3 6 LMS 4 3 2 3 82 Table4 3 2 83 mm 104 5 mm cc 297 mm 32 Ma 02 cc 44
25. 6 6 1 L 6 5 1 6 6 2 220 110 ma amp 150 F _ Fig 6 6 1 160 Fig 6 6 2 L 6 6 2 4
26. W500 71000 2000 20 15 10 f Reduction Level dB 25 50 75 100 200 300 400 500 Frequency Hz Fig 5 5 11 LT i 06 10 500 1000 1500 2000 NEW METHOD Number of Tap 1000 0 500 1000 1500 2000 Tap Number Fig 5 5 12 182 5 5 5 LMS LMS 500 1000 2000 Fig 5 5 13 Fig 5 5 14 Critical Step Size Parameter Critical Step Size Param eter LMS Alogrithm New Control Method 1 02
27. NOK 2 3 3 P 1 1 0 2Mpa q 1 F1 0 6 sd AN N 41 1 270 2 3 2 26 2 q 25 0 15 0 736 0 0007362 25mm 1 5mm 2 P 0 52 0 1013 0 6213 MPa 150kgf P
28. 2 4 20 50Hz 10W 167 1
29. 2 7 0 Fig1 3 1 Z 6 2 7 gt G 1277 9 100 2000 3000 4000 5000 rpm Fig 1 3 2 2 14 1 4 1
30. 2 LMS 1 2 lt 168 LMS 2 LMS 3
31. 5 lt 19 1 7 1 7 1 MATLAB
32. LL EZY L Fig 6 2 5 L Bracket Ball B Rail m Housin Fig 6 2 6 Fig 6 2 7 Fig 6 2 6 BB AA 147 LM THK SR1SV 6 2 8 3 Fig 6 2 6 Fig 6 2 5 DR AA 4 Fig 6 2 7 Fig 6 2 6 BB
33. 2 4 150 2 E i 50Hz
34. 5 Displacement of Voice Coil Moto output Voice Coil Motor Force Sensor 4 Rubber mount Fig 2 3 3 80Hz 2 40dB dec 86
35. 1 2 3 4 5 y 6 387 Fig 1 7 1 20
36. 5000N 500kg 3 RV 150kg 0 06kg 0 1m 20 30Hz
37. TEs 4 NF CIE 7 LMS 3
38. Vol 3 2003 03 13 51 54 12 Vol 40 No 10 2004 10 31 p1014 1023 13 142 Vol 33 No 5 1997 05 359 367 14 Vol 91 No 302 NC91 48 64 1991 10 28 59 66 15 KEARE 1
39. LMS H 122 E inactive active ERROR SIGNAL dB 25 50 75 100 200 300 400 500 FREQUENCY Hz Fig 5 4 11 E inactive active ERROR SIGNAL dB 25 50 75 100 200 30 400 500 FREQUENCY Hz Fig 4 12 LMS Fig 5 4 5 128 55 551 LMS
40. 2484 Bi E ye O Fig 4 2 3 77 Table4 3 1 4 4 4 B k K Ka K K m A M M Mp umb s su E s V
41. 2 3 4 99 1
42. 1 msec FFT DS2000 8ch 300Hz 1 28kHz 2048 110 54 LMS Talble5 4 1 C 9 Ef G n N pli Eidlnleln il P P r S x
43. 2 47 Mot Gear Unbalance Mass Mass Upper Mount Bracket Rubber Mount Lower Mount Bracket Bellows Piston Housing Voice Coil Motor Position Detection Sensor Force Sensor Hig 8 2 1 fig 8 2 2 48 motor 1 IN Hg voice coil m otor hy draulic active Engine mount 49 3 22
44. 34 2312 0 3mm 1 5 2 3 2 2 0 5 19 p 0 45 16 0 4 gt 1 4 J 0 35 12 03 _ 4 5 8 1 J 0259 8 0 8 02 06 7 4 01
45. JET ZTA 4 5 4 4 5 4 Table4 5 4 mm w _ cm2 104 Cm Mpa cc 0 0 5 1 1 5 with active control PISTON DIA 20mm m gt 0 Q oo1 0 0 5 1 1 5 001 s with active control PISTON DIA 26mm 0 f Ap 0 01 0 0 5 1 1 5 2 0 01 with active control PISTON DIA 32mm 2272 0 01 0 0 5 1 1 5 2 TIME sec Fig 4 5 4 96
46. 99 445 lt KU 20 4 4 1 TIT WAREN I HU 4 4 2 h LMS Algorithm Fig 4 4 6 88 RI 4 4 6 4 4 3 4 4 2 4 4 6 LMS
47. 2 20 45Hz 30dB 3 2 4 20 50Hz 10 W
48. 3 3 2 2 Filtered X LMS 33 21 LMS LMS 3 3 6 LMS Reference Signal x n Unknown System Adaptive FIR filter w n LMS algorithm Fig 3 3 6 6 LMS Error Signal e n e n d n y n G n d n x n w n G n 3 3 2 9 e n d n G n x n w n 3 3 2 10 6 e Ete n 4 G n w n 1 3 3 2 11 56 V 2 12191 24n G n 3 3 2 12 3 3 2 4 V z 2 w n 1 w n ue n G n x n 3 3 2 13 3 3 2 13 LMS 3 3 2 3
49. PRESSURE INSIDE BELLOWS MPa 0 5 1 1 5 TIME sec Fig 4 3 1 4 5 2 4 5 2 100dB 98 gt 0 5 1 15 2 with active control V 156cm 001 0 0 5 1 1 5 2 O 001 i zZ 0 0 01 0 5 1 1 5 2 001 with active control V 469cm 2 1 0 01 0 0 5 1 1 5 2 TIME sec Fig 4 5 2 4 5 2 4 5 1
50. 30 i rr 2B P A Fig 2 2 4 2 2 1
51. 2000 0 5 6 8 LMS 20 Reduction Level dB 500 1000 2000 Number of Fig 5 5 8 552 LMS ala 5 5 9 25 2 50 2 75 2 100 2 200Hz 300Hz 400Hz 500Hz 5 5 10 5 5 2 180 Table5 5 2 Control Method Number of New Control Method 50 1000 2000 1 00 07 LMS Algorithm 2000 1
52. 10 20dB 2 RV 2 4 15 1 5 1 4
53. T MOUNT VIBRATION without active control with active control 2 lt gt 0 05 0 1 0 15 0 2 0 25 0 3 0 35 g Z lt m gt h 0 20 40 60 80 100 FREQUENCYK Hz Fig 3 5 4 3 5 5 3 5 5 2 221 6
54. 3 2 1 Table3 2 1 cc Nmm Kg 50 3 3 3 3 1 3 3 1 1 30 25 2 lt 100Hz O LMS Least Mean Squaresy
55. 4 5 3 4 5 1 1 4 5 3 94 a Table4 5 3 mm 5 cmy2 mm 70 cc mm 26 Mpa Go AU N 0 0 5 1 1 5 2 0 01 0 01 0 0 5 1 1 5 2 0 01 with active control BELLOWS PRESSURE INSIDE BELLOWS MPa 0 0 5 1 1 5 TIME sec Fig 4 5 3 95 453
56. 158 65 3 6 5 1 Table6 5 1 mm N mm 3 3 6 7 48W 159 66 L 6 6 1
57. LMS 6 3 2 720rpm FFT 25 LVDT 2 AD C 2242 pc D A TT 9 Fig 6 3 1 150 6 3 1 6 3 2 D 6 3 1 6 3 2 6 3 1
58. Z U LMS 2 4 1 5 1 Z FS Z hl I V GA
59. Main rubber Fluid Orifice Moving plate Permanent magnet Yoke Load sensor Fig 1 4 5 12 Idle boom 4th order 700 800 900 1000 Engine Firing Second Order dB Engine Revolution rpm Fig 1 4 6 X 1 4 7 1 4 8 Main Rubber Main Liquid Chamber 10 Fig 1 4 7 18 Hydraulic Engine Mount Active Control Engine Mount Interior Noise dB 1
60. 32 23 2 3 1 2 3 1 1 A SH03 VSA303 2 3 1 2 3 1 rare ET L E T DC DC
61. LVDT Linear Variable Differential Transformer FTR Fig 3 3 1 51 332 LMS LMS LMS Talble3 3 1 d Ef G n
62. 68 1 Vol 35 No 3 20044609 2004 7 169 174 2 20035043 No 3 03 2003 p 3 8 3 1996 jp186 254 4 2003 5 C 2006 p125 p135 C Q HAX 6 Bernard Widraw ADAPTIVE SIGNAL PROCESSING 1985 p99 140 PRENTICE HALL 7 2003 2004 8 2002 2003 69 4 4 1
63. 2 3 5 25Hz 100Hz 0 20 60 80 10 1000 10000 FREQUENCY Hz GAIN dB Fig 2 3 4 w Maximum Controllable Amplitude of Bellows Plate Rubber Mount Amplitude 10 1000 10000 FREQUENCY Hz 1 AMPLITUDE dB 00 Fig 2 3 5 87 2 3 2
64. Vol 41 10 2005 10 31 p829 837 16 KER KAAR 2 C Vol 73 No 731 2007 07 25 2049 2056 17 KE 1 C Vol 173 No 727 2007 p685 592 18 KRAB Vol 30 No 1 1994 01 p31 38 19 SAC Vol 35 No 6 1996 06 jp409 413 20 MATLAB 1999
65. C 69 2 685 2003 9 No 02 1293 2003 p78 83 2 Chiharu Togashi Ken Ichiryu Study on Hydraulic Active Engine Mount SAE Technical Paper 2003 01 1418 2003 3 1994 p6 7 4 1991 5 RAT 2001 2002 6 C 38 306 47 7 C 38 310 47 8 C 40 335 49 9 10 10 2005 jp146 149 11 Y 2000
66. 1 4 3 254 2 169 7 5W 3 3 170 1
67. 2 2 2 Fig 2 2 2 Table2 2 1 Av A Av F a a 28 2 2 2 PpP 0 2 2 1 u XWOJEJJ P 72 7 VJOJEJJP
68. Fig 6 2 8 LM THK SR1SV 148 6 2 2 6 2 2 4 Table6 2 2 104 5 mm 02 cm2 15 Mpa JRE AJE mm 72 0 2 7 7 15 mm 0 2 4 9 32 30 454 Nmm gt 202701 ANE 1 2 EE EEEO tw 149 6 3 6 3 1
69. 3 3 2 e n d n y n 4 Pl i 3 3 2 1 ka y n i 3 3 2 2 nm 3 3 4 n ntl Fig 3 3 4 E e Ele n Eld n 5walz i 3 3 2 3 w 3 3 5 WM 1 0 E 54 Fig 3 3 5 7 0 1 2 W 1 yl 1
70. H7 MRACS STR O MRACS Fig 1 5 2 MRACS 17 Fig 1 5 3
71. 3 100N 120cm 0 009MPa 5 0 045 SN 2 3 6 SN
72. 5 5 1 2000 1E 7 LMS 124 LMS LMS Without Control Control ERROR m ERROR ERROR TIME sec Fig 5 5 1 LMS 25Hz 5512 LMS LMS 1E 7 500 100
73. 79 gt k C E L 4 3 1 SIMULINK Force Rubber Mount Force Bellows Plate Bellows Piston Pistor Voice Coil Motor Voice Coil Me Housing Housing Position Detection Senso Position Detection Sense Force Snsor Force Snso Fig 4 3 2 Fig 4 3 3 4 3 4 4 3 1 0 2 rii F _ c On 4 3 1 80 165kg 417500N m so Hz 4 3 0 4 3 5 25Hz 0 1304 4 3 4
74. Fig 6 3 2 6 3 3 table6 3 1 G x y n SN 151 LMS 6 3 3 6 3 4 0 5 720rpm 1
75. Dz AAL 0 07728 024 2 251 S gt s A E eg w B B FF 185 Fig C 6 C L awi V i da T LHS EE 1 48 EE EA 09106 TIIS 8 otegs 1 hTI9 70 2 DIn 6 8 027 2 Fig C 7 186 C 1 d 1 188 FY TSS Bad H CE FURI HAY a 3 RASSY O ASSY D Sr SE Bi IERE E HERJE B E 101 gt PF 3838 00 0 8 0 922P IIRAS ARSHI T 0e B 191TESNS i Cas Fig C 8 187 C 2 1 4 5 6 1 1 1 8 1 M otoo TEZ B p EJ E EA H aa
76. 10dB 150Hz S00Hz 1lkHz
77. C 69 685 2003 9 02 1293 78 83 2 3 ERI 4 2 VOL 35 NO3 20044609 2004 7 169 174 3 6 3 Vol 40 No 3 20094368 2009 6 667 673 4 Chiharu Togashi Mitsuo Nakano and Masao Nagai A Study on Active Engine Mount to Reduce Noise and Vibration over Wide Frequency Band of Vehicles Journal LI of Mechanical Systems for Transpotation and Logistics 2010 9 171
78. 2003 2004 165 ZA HHH RV
79. r I without active control with active control SEAT RAIL VIBRATION dB i i 200 300 400 500 FREQUENCY Hz Fig 5 6 7 188 2 200 500Hz 5 6 2 3 5 6 8 5 6 9 LMS 2 25Hz 2 200Hz SdB I T without active control without active control with active control H with active control H T I 5 gt gt m H H z 2 x i x a 4 J amp i
80. D amp D2008 BASE 2008 gt 1 No 17 1990 p122 127 2 Vol 58 No 4 20044245 2004 81 86 3 113 57 2006 p93 97 4 Vol 60 No 7 20060701 2006 85 90 5 EC FE TIE BF ARH Y 2150 20064243 2006 60 65 Vol 60 No 4 178
81. 70mm 104cc 26mm 4 5 5 97 Table4 5 5 cm 2 cc Mpa cc 98 4 6 1
82. Eig 1 4 2 9 1 4 2 9 1 4 1 1 4 1
83. 25 50 75 100 200 300 400 500 2 Reference signal 4 Unknown System Sine Waves ain Transfer Adaptive FIR filter Function G 25Hz LMS Algorithm Error Signal Fig 5 4 1 1 LMS 25 50 75 100 200 300 400 500Hz din Unknown System Sine Waves Transfer G Reference e n a xl Error Signal 25 50 75 100 200 300 400 500 Fig 4 2 LMS 112 500 3E 6 5 4 4 5 4 5 1 25Hz 30dB 2SHzC500Hz ls GAIN dB 10 100 1000 10000
84. 70 42 Table4 2 1 A 4 4 B BREE 7 C F 7 F i K K Kp K 7 LS U 7722 2 m F 1 2 M P P P P 71 R V
85. 454 0 2MPa 0 22mm
86. LMS 127 T Step Size Parameter 1E 8 Q 1074 800 1000 1800 2000 T Step Size Parameter 1E 7 Number Fig 5 5 5 LMS 128 5 5 1 3 LMS 300 1000 2000 Number of 500 ERROR ERROR ERROR Time sec Fig 5 56 0140 500 1000 1500 2000 0104 500 1000 1500 2000 0 800 1000 1500 2000 Number Fig 5 7 129 1E 7 5 5 6 5 5 7 5 5 2 5 5 3 D LMS
87. Fig 5 3 1 108 ss i 10cm 3 Fig 3 2 109 Fig 3 3 Fig 3 2 R 5 3 2 3 2 1 1
88. No 983 9833269 1998 141 144 No 84 03 20035569 2003 H 7 Kyu H Lee Young T Choi Sang P Hong Performance Design of Hydraulic Engine Mount by using bond graph method SAE Technical Paper 951347 1995 8 Douglas A Swanson Active engine mounts for vehicles SAE Transactions Vol 102 932432 1993 9 Jae Yeol Park Rajendra Singh Vibration Analysis of Powertrain Mounting System with Combination of Active Passive Isolators with Spectrally Varying Properties SAE Technical Paper 2009 01 2034 2009 10 Andre Jenesseaux new generation of engine mounts SAE Technical Paper 951296 1995 11 Andrew Hills Andrew Harrison David Stoten Mike Fursdon Active Engine Mounts for Improved Passenger Comfort SAE Technical Paper 2004 05 0098 2004 44 12 M Beruchon New Generation of Engine Mounts SAE Technical Paper 840259 1984 13 R Mattew Brach and Alan G Haddow On the Dynamic Response of Hydraulic Engine Mounts SAE Technical Paper 931321 1993 14 WETE AE 4147783 20 7 4 H 15 BIRTE
89. LMS 140 58 1 2 LMS 2 LMS
90. JSAE Review Vol21 No 9 20004142 2000 4 Vol57 No 9 20034492 2003 59 54 5 DPNR PM NOx Vol60 No 9 20060901 2006 112 116 6 DPF Vol60 No 9 20064612 2006 89 93 7 PM 157 No 9 20034496 2003 88 93 8 NO 157 No 9 20034497 2003 p88 93 9 Nox Strage Catalysts for Diesel Vehicles Vol60 No 9 20064615 2006 107 111 10 http wyww city meguro tokyo jp gyosertoke chosa hokoku kankyochousa hokokusho kankyo_saisin souon shindou index html 11 12
91. LMS 5 53 LMS 5 6 561 LMS 5 62 5 621 121 122 124 124 124 125 129 130 133 135 135 137 137 5 6 2 2 6 2 3 5 7 5 8 6 61 62 6 2 1 6 2 2 6 3 6 3 1 6 3 2 6 3 3 6 4 65 66 L 6 61 L 662 6 63 L 6 7
92. 2 7 5W 3 3 164 1 10 2 Vol 35 No 3 20044609 2004 p169 174 3 NSK Technical Journal No 676 2003 33 41 4 EE 2002 2003 5
93. I I I without active control with active control TRANSMITTED FORCE dB i i i 0 100 200 300 400 FREQUENC Y Hz Fig5 6 3 LMS without active control with active control i 0 100 200 300 400 500 FREQUENCY Hz Fig 6 4 137 SEAT RAIL VIBRATION dB without active control with active control 300 FREQUENCY Hz 5 O e m 2 i lt 0 100 200 Fig 5 6 5 5 6 2 2 o LMS 5 6 6 5 6 7 LMS 2 without active control with active control 300 400 200 0 500 FREQUENCY Hz Fig5 6 6 _ LMS
94. LMS 5 4 2 5 4 10 z 25 50 75 100 200 300 400 500 2 LMS 7 25 50 75 100 200 300 400 500 Reference signal Transfer Function Modified LMS Algorithm Error Signal Feedback Gain Fig 5 4 9 25 50 75 100 200 300 400 500 2 d n Unknown System Sine Waves Transfer Adaptive FIR filter Function G e n LMS Algorithm 25 50 75 100 200 300 400 500Hz Reference signal x n Error Signal Fig 5 4 10 LMS Fig 5 4 2 121 25 50 75 100 200 300 400 300Hz 3 4 1 LMS G 1 500 3E 6 5 4
95. w n 1 w n 01 N 3 3 2 4 V hz w n V z 0 yi z L V z V n 2E e n x n i i 01 N 3 3 2 5 3 3 2 4 3 3 2 5 wlz 1 2 g gfz xlz 3 3 2 6 w n 1 w n 2ue n x n i 3 3 2 7 2 55 mu 1 3 3 2 8 LMS Least Mean Squares
96. 500Hz 1 28kHz FFT 2048 6 6 3 L 20Hz 30Hz 6 6 3 30Hz 30dB 161 50 45 40 35 30 25 R 20 15 K 15 25 35 45 55 Hz Fig 6 6 3 L 162 6 7
97. LMS 2 i 5 6 1 5 6 2 5 6 3 5 6 4 5 5 4 1 P Torque Fluctuation vot Unknown System Manipulated variable Engine with rubber mount oil pressure fluctuation in bellows Reference volt Transfer Function Z Signal Effective Section Area of Bellows G voice coil motor with piston P n Adaptive FIR Filter LMS Algorithm Transmitted Force Error Signal 7 Fig 5 6 1 LMS
98. 25H 500 0 2000 5 5 4 5 5 3 1E 1E 7 1B 8 5 5 4 5 5 5 0 Step Size Parameter 1E 8 ERROR 0 0 5 1 1 5 2 Step 5 Parameter 1E 7 ERROR ERROR 1 0 0 5 1 1 5 2 Time sec 5 54
99. LMS 2 1 2 1msec 2000 3E 6 5 6 21 720 800rpm LMS 5 6 3 5 6 4 5 6 5 LMS 2 25Hz 2 200 500Hz
100. No 882 882130 1988 p 519 522 2 No 944 9436170 1994 p 69 72 3 No 3 03 20035043 2003 5 8 4 BETE 172 No 121 04 20045567 2004 23 26 5 No 41 07 20075011 2007 5 8 6 No 41 07 20075012 2007 9 12 7 No 06 07 JSAE SYMPOSIUM 20074853 2007 p 34 40 8
101. W W IV IR 3 6 1 SRI gt 303 SH03 R 1 2 I Fig 3 6 1 3 6 2 3 6 2 66 N POWER CONSUMPTION W 18 25 35 45 55 EXCITATION FREQUENCY Hz Fig 3 62 67 3 7 1 2
102. 2 x 111 LMS 1 23 50 75 100 200 300 400 500Hz 5 4 1 5 4 2 80Hz 0dB 0 1 04 5 4 3
103. 25Hz 2 3kHz 2000 1 7 441 ON OFF 4 4 1 4 4 2 OFF OFF 4 4 3 4 4 4 ON ON OF
104. 5 Fig 1 4 1 2 2 1 s esa
105. C 69 685 No 02 1293 2003 9 17 BETE 3 03 20035043 2003 5 8 18 Chiharu Togashi Study on Active Engine Mount SAE Technical Paper 2003 01 1418 2003 19 Vol 58 No 4 20044245 2004 81 86 20 RASEN SH03 VSA 303 1997 7 21 Vol 40 No 3 20094368 2009 22 http www nhkspg co jp products industry blws products 001 html 23 NOK Cat No 237 05098 24 2001 2002 45 3 3 1 2
106. X 4 2 3 LVDT Linear Variable Differential Transformer 2 1 8 0 4 2 3
107. 100 5 1 4 RV LMS LMS LMS
108. 1 25 153 6 4 6 4 1 6 4 2 6 4 3 720rpm 720rpm 2 24Hz 27dB TRANSMITTED FORCE FORCE dB 0 20 40 60 80 100 FREQUENC Y Hz Fig 6 4 1 154 PRESSURE INSIDE BELLOWS without active control with active control 3 Im a 0 20 40 60 80 100 FREQUENCYK Hz Fig 6 4 2 PRESSURE INSIDE CHAMBER without active control with active control 3 x a 0 20 40 60 80 100 FREQUENCY Hz Fig 6 4 3 155 6 4 4 6 4 3
109. 2 2 M 0 06kgx2 7 0 1m 2 x25Hz 2 P M mpr 296 1N 296 13 0 1304 38 613 4 3 1 TRANSMISSIBILITY Transmissibility 25Hz 0 13041 0 10 20 30 40 50 FREQUENCY Hz 7 Fig 4 3 4 1 Fig 4 3 5 1 81 4 3 1 LMS 4 4 3 6 MATLAB SIMULINK LMS 2 2 2 3
110. 1 5 2 MRACS RI 15 3 LMS LMS 18 1 6
111. 3 2 1 2 2 20 45Hz 40 30dB 3 LMS
112. 4 48 1 K Aoki K Shikata Y Hyoudo T Hirade T Ihara Application of an active control mount ACM for improved diesel engine vehicle quietness SAE Transactions Vol 108 1999 01 0832 1999 2 Toshiyuki Shibayama Kimio Itoh Toshiyuki Gami Takeshi Oku Zenji Nakajima Akinori Ichikawa Active Engine Mount for a Large Amplitude of Idling Vibration SAE Transactions Vol 104 951298 1995 3 ACM MIH No 983 9833230 1998 137 144 4 ACM No 983 9833241 1998 p 133 136 5
113. glz d n y n G 5 4 1 C s LMS C 1 4 Unknown System Adaptive FIR filter Q LMS Algorithm Error Signal Reference signal x n Fig 5 4 7 LMS Reference signal x n n Unknown System Adaptive FIR filter Modified LMS Algorithm Error Signal Fig 5 4 8 116 G 80Hz 0dB 0 G 1
114. 2 24Hz 0 6 Hz 0 5 1 30 25 2 9 Ni cH FTR H LMS J gt J N PG a VCM A D MM 777777 Fig 6 3 3 Reference Signal x n 25Hz Manupulated variable oil pressure fluctuation in bellows Disturbance Engine Excitation Tranfer Function Effective Section Area Adaptivg FIR Filter voice coil motor of Bellows S with piston LMS Algorithm Transmitted Force Error Signal Fig 6 3 4 152
115. 26 22 9 2 2 1 Piston Voice Coil Motor Housing Position Detection Sensor Force Snsor Fig 2 2 1 2003 240045 4147783 5 20 7 4 27
116. 78 4 2 1 2 3 42 1 42 1 m X 4 2 2 4 2 2 B dP dV dP 4 2 3 42 4 dt AA dV A X 4 A 2 5 42 5 424 4X 4 X V B P 4 2 6
117. 30dB TRANSMITTED FORCE a without active control with active control FORCE N 0 0 1 0 2 0 3 0 4 TIME sec FORCE dB 0 20 40 60 80 100 FREQUENCYXHz Fig 3 3 1 62 PRESSURE MPa PRESSURE dB PRESSURE MPa PRESSURE dB Fig 3 2 Fig 3 5 3 PRESSURE INSIDE BELLOWS 20 40 60 80 FREQUENCY Hz PRESSURE INSIDE HOUSING lt I 20 40 60 80 FREQUENCY Hz 68 100 3 5 4
118. N x y w 2 52 3 3 2 1 LMS O OW 3 3 2 LMS Least Mean Squares LMS 3 3 3 Reference Signal din Unknown System Adaptive FIR filter LMS algorithm Fig 3 3 2 LMS x n Error Signal e n V n wi z wi z 1 en Fig 3 3 3 LMS 53 dg 6
119. LMS 21 TEHTA LITRo 3 7 B 22 1 IPCC 4 19 8 27 2 Vol63 No 7 20094440 2009 14 15 3
120. 40 0 3mm 2 3 8 160 p70 120 3 1mm 4 6mm 20 30mm 2 3 8 233 FR UO
121. 4 4 4 5 1 2 Table4 3 1 E r cc mm Mpa cc Table4 5 2 cc 92 4 5 1 4 5 2 K 4 5 1 4 5 1
122. 6 8 7 138 139 140 141 142 144 144 145 145 149 150 150 150 154 159 160 160 161 161 163 164 165 166 171 174 175 11 IPCC 4 2005 100 0 74C 20 17 cm KN 1997 2005 6 CO 1 CO
123. V MRACS LMS STR Fig 1 3 1 16 PID H
124. 1 z EREA
125. LMS LMS LMS 0 0 4 2 LMS T LMS 2 2 200 500Hz 6
126. 4 4 7 Table4 4 2 cc 89 Measured W Calculated REDUCTION LEVEL dB 0 0 05 0 1 0 15 0 2 0 25 PISTON CLEARANCE mm 447 443 4 4 2 4 4 8 25Hz
127. 6 4 7 15dB 157 TRANSMITTED FORCE rubber with active without active control FORCE dB 0 20 40 60 80 100 FREQUENCY Hz Fig 6 4 7 Lz
128. 90 gt 0 w i 12 g r 0 gi w 2 LMS 2 gt A 5 4 14 N G 1 g w wy 2pli 22 walli j i 12 N 4 15 2 5 4 3 2 yl z i 12 1 ww z 1 V n w n 1 w n n 7 12 5 4 16 3 4 14 V z n 2p i 2 w nF li 5 4 17 j l i 12 N A 5 4 5 119 d n y n gt w j efn 5 4 18
129. O 4000rpm 4000rpm 44 SEJ Sound Pressure Level dBA 105 100 95 90 85 80 75 70 Engine Gasoline Engine 0 1000 2000 3000 4000 5000 6000 Engine Revolution rpm Fig 1 2 2 13 1 3 1
130. 4 2 1 4 2 2 423 424 43 4 3 1 432 4 3 3 LMS 4 4 1 4 42 443 4 5 451 4 5 2 4 53 4 5 4 51 51 52 53 56 57 60 62 66 66 66 68 69 70 70 71 74 74 75 77 78 79 79 84 84 87 90 92 94 96 4 6 J
131. mm mm mm Mpa Nmm mm cc 107 70 50 567 0 2 8 6 34 238 SUS304 0 2 9 697 26 30 53 5 3 1 5 3 1 5 3 2 C Table5 3 1 LVDT 9 PC
132. P 1 1P n 1 39 13 3cc 30cc 42 1 2 3
133. gt 1 No 42 136 1989 1 85 89 2 BETIE PEHR VOL 27 NO1 9630787 1996 1 3 C 66 648 2000 8 2570 2575 lt gt 1 Chiharu Togashi Teruo Nakada A study on the noise generating mechanism of a fuel injection pump SAE Noise and Vibration Conference and Exhibition 951345 1995 2 Chiharu Togashi Ken Ichiryu Study on Hydraulic Active Engine Mount SAE Noise and Vibration Conference and Exhibition 2003 01 1418 2003 3 Chiharu Togashi Mitsuo Nakano Masao Nagai Study on Active Control Method to Reduce Car Interior Noise Vibration 13th Asia Pacific Vibration Conference 2009 lt gt 1
134. 143 tU r OO 3 61 3 5 1
135. 825 1 2 3 166 4
136. 1 E 03 1 04 1 05 1 06 0 500 1000 1500 2000 2500 Number of 25 Hz LMS Alogrithm New Control Method 1 02 1 03 1 04 1 05 1 06 0 500 1000 1500 2000 2500 Number of 188 25Hz 5 5 13 5 5 14 LMS 184 56 5 61 LMS
137. 78 431 4 2 1 4 2 2 42 6 4 2 19 4 3 1 25Hz Fig 4 3 1 432 43 1 4 4 3 1 4 3 2 Fig 4 3 3
138. 117 5 4 31 2 gt e 5 4 5 e Ete n 4 2 4 5 4 6 546 1 1 E Eid n 4 2 i 5 4 7 wein i wiBtd n eln 1 5 4 8 4 1 pli 120 s OM 5 4 9 Eld n y n gt 5 4 10 3 3 5 4 11 54 7 25 E y nh Z N N gt Z wiw E e n j 5 4 12 i lj 118 1 5 4 13 547 1 3 2 2 5 4 14 1 11 3 7
139. 2 dP 4 2 14 A a A 4213 ER 4214 X 4 2 15 4 Aa NE F 2 4 2 16 Xa Vo Aa P K Xa 4 2 17 AX SAX 4 2 18 4 2 17 4 2 18 P A X 4 2 19 76 424
140. 176 B TableB 1 272 08 ER SS VCM 1 Eb ZNZ PIR Y FFT Fig B 1 DC Fig B 2 177 B Fig B 4 5 Fig B 6 Fig B 7 gig B 8 178 B Fig B 9 FFT 179 C 8 3 8 zel 1 LHS sm 30 H s x G ag E zn 11029 z W Y Dry E 170 z PETALE TEHTY FE Im t
141. Pl 74 423 7 PV I A 2 7 Const A 2 8 PW dV 0 4 2 9 yPdV 0 4 2 10 Fa dV dP 4 2 11 yP Fig 4 2 2 75 X 4 A X dV 4 2 12 421 4212 gt 4 2 13 A V
142. VSAS0O08 S H 0 3 Fig 2 3 1 88 Table2 3 1 e 31NPa OO 2 3 TE 0 C 2 1 860 12mH 90 150Hz 3 3 2 3 1 SH03 LVDT Linear Variable Differential Transformer 2 3 1 2 2 4 2 3 1 10 60 130 C
143. 5 4 3 5 4 1 5 4 6 5 4 7 5 4 8 5 4 7 LMS y n d n 0 5 4 2 1 2ue n x n i 5 4 3 5 4 8 5 4 3 x e i 0 e n d n w e n 5 4 4 lt lt G d n we n 4 6 an d n 5 4 5 2 5 4 5 i 12 N 5 4 2 N LMS 54 3 e 3 3 2 1 LMS
144. gz 4 1 gt il xw j l 0 5 4 19 5 4 19 5 4 9 C K D E d n e n p i pli w n lli j 00 5 4 20 5 420 5 417 2E fe n e n 1 5 4 21 5 416 5 4 21 w n 1 w n 2u E eln e n i 1 12 N 5 4 22 w n 1 wi z 2 e z elz i 1 12 N 4 23 LMS 4 3 5 423 4 3 xl gz 7 0L W 12 120 5 4 4 LMS 5441 LMS 5 4 9
145. 9 15 16 1 6 19 1 7 20 23 2 25 21 25 22 27 2 3 33 231 33 2 3 1 1 33 2312 35 2313 36 2 3 2 38 233 41 2 4 43 44 3 46 3 1 46 3 2 47 3 2 1 47 3 2 2 50 3 3 3 3 1 332 LMS 3 3 2 1 LMS 3 322 Filtered X _ LMS 3 3 2 3 34 35 3 6 3 6 1 3 62 3 7 4 4 1 42
146. 20 1996 21 1989 22 ILD Landau 1981 24 2 21 2 1 1 2 1 2 Table2 1 1 saa 3 a lo CEARN x x x x 2 25 Table2 1 2 7
147. 3 3 9 FIR 58 25Hz 3 3 9 3 3 2 1 Unknown System Manipulated variable Engine with rubber mount oil pressure fluctuation in bellows Torque Fluctuation x n volt Reference Transfer Function Signal volt G Effective Section Adaptive FIR Filter voice coil motor Area of Bellows with piston LMS Algorithm Transmitted Force Error Signal 5 Fig 3 3 9 Talble3 3 2 1 e 29
148. 1 T H 1I i E HE t 182 Fig C 3 C a 57 3 IHS 4 02 THFIBEEIOgL rm 1541 E IFIHH 5 x uB 3 1T EER H AA DETA UITE E EEL TA I OH Tu 12 E Y llm BA 2 H Fig C 4 183 C t Z 51 gu rf TX E IS w y EEst F EE H R _ a 5 BB rA ATA H Fig C 5 184 C 8 2 8 1 1 8 i 9218 1 d a 1713 81 EHLE HH gh E E 11 21 2 k o rr
149. LMS LMS 4 1 LMS x e Reference Unknown System signal Sine Waves din 1 1 Transfer Function G Error Signal Adaptive FIR filter Modified LMS Algorithm saus Fig 4 6 115 543 LMS LMS en
150. 2 3 6 _ 1 5 0 9 2 3 2 x 2 x h 2 x t mm A kgf7mm 2 p mm Table2 3 2 mm Mpa mm Fig 2 3 7 39 h mm n Table2 3 3 mk Bellows Diameter 70 Bellows Diameter 0120 Critical Pressure when n 1E7 500 T 400 300 200 5 2 100 i 27 0 0 1 2 3 4 5 6 7 8 9 10 Deflection Amplitude mm Fig 2 3 8 10 K 2 3 3 2 c 2 3 8 2 3 6 SN 10 160
151. DST 752 100 200 0 400 500 600 BWWU ARDY 2 ARTDIR BRDY pR 102720590 8 812 Fig1 1 1 CE 19 6 1 1 1 2 2015
152. s 8996 ERE Amay R3B S D aat AERA SusstL wm A 4 1 DF 1 LZH B 7 8 Fig C 9 VERRI 188 C Table C 1 827777 ma LN ope Atm u VCM SH63 N SH03 077777 ES ESE E o 6 _ 189 Table D 1 STAT D FFT CF 6400 NF Corporation 3611 Multi Function RIRI 0 VCM 5 3 190
153. 9 95 7 5 62 7 13 14 52 2007 2004 9 H D 28 15 57 12 99 105 16 ACM No 983 9833250 1998 p 137 140 17 No 983 9833269 1998 141 144 18 Toshiyuki Shibayama Kimio Itoh Toshiyuki Gami Takeshi Oku Zenji Nakajima Akinori Ichikawa Active Engine Mount for a Large Amplitude of Idling Vibration SAE Transactions Vol 104 951298 1995 19 3
154. CAE 200Hz 4 2 4 2 2 1 3 2 2
155. Reference d n signal Unknown System x n Transfer 25Hz Adaptive FIR filter Function O LMS Algorithm Error Signal Fig 5 6 2 LMS 135 7 7 5 r Torque Fluctuation x n volt NS volt Transfer Function P n Manipulated variable oil pressure fluctuation in bellows Unknown System Engine with rubber mount Effective Section Adaptive FIR Filter Area of Bellows voice coil motor with piston Modified LMS Algorithm Transmitted Force n 1 Error Signal F Fig 5 6 3 Reference signal x n Unknown System Adaptive FIR filter Modified LMS Algorithm Fig 5 6 4 186 56 2 LMS
156. G n xn x n Z G n e 3 3 7 x n clj Reference Signal x n Unknown System Adaptive FIR filter w n ras LMS algorithm Fig 3 3 7 Filtered X LMS Error Signal e n 3 3 2 3 3 3 2 5 c 3 3 8 25SHz 1 3dB 8 Filtered X LMS LMS 57 FREOUENCY RESPONSE FUNCTION OF VCM 1 10 100 1000 FREQUENCY Hz PHASE deg 120 180 1 10 100 1000 FREQUENCY Hz
157. i i 0 100 200 300 400 500 0 100 200 300 400 500 FREQUENCYKHz FREQUENCY Hz Fig 6 8 LMS Fig 3 6 9 189 57 LMS LMS8 LMS LMS LMS
158. 185 G p x y FIR 59 34 3 4 1 3 4 1 3 4 2 B 3 4 1 3 4 2 B FFT DC 3 4 2 Table3 4 1 LVDT eS g
159. 522 5 2 3 5 2 4 Fig 5 2 3 Fig 5 2 4 104 5 2 5 Bracket Bellows
160. EEJ F P A P Ay Fp 2 2 2 2 2 3 2 2 1 2 2 2 2 2 3 F A 2 2 4 F F Ay P A 2 2 5 4 4 A 4 2 2 6 F PA 2 2 7 P 2 2 3 Jese 29 Fig 2 2 3
161. Plate SS Accumulator i Housing PA Outer Side Plate F z T Guide Rod Bellows Inner Side Plate Side View Section A A 5 2 5 Fig 5 2 6 _ 105 5 2 5 4 5 2 6 R 5 2 7 R 5 2 8 Fig 5 2 8 106 5 2 3 TableS5 2 3 TN
162. 0 2000 2 5 5 2 5 5 3 5 5 2 125 2000 0 0 0 0 Number of Tap 500 ERROR ERROR ERROR Time sec Fig 5 5 2 LMS Humber of 500 Q 10 800 1000 1800 2000 Number of 1000 0 1079 500 1000 1500 2000 umber of 2000 0 800 1000 1500 2000 Number Fig 5 53 LMS 126 F 5 5 3
163. 00E 07 5 5 11 X 5 5 12 LMS Without Control ERROR TIME Fig 5 5 9 5 NEW METHOD Number of 500 0 5 0 0 5 1 1 5 2 NEW METHOD Number of Tap 1000 50 0 5 1 1 5 2 NEW METHOD Number of Tap 2000 n 0 TIME sec 5 510 LMS 181 300dB
164. 00rpm Engine Revolution rpm Fig 1 4 8 10dB 1 4 9 09 0 03mm Small Piston Liquid Chamber w X Large Piston Seal Rubber rr Piezo Actuator Cushion Rubber Casing Fig 1 4 9 14 T Without control g gt Q 5 20 8 gt 0 800 700 800 900 Engine Revolution rpm Fig 1 4 10 0 3mm
165. 3 3
166. 4 MOUNT VIBRATION Cwithout active control lt o lt gt o 0 05 0 1 0 15 0 2 MOUNT VIBRATIONCwith active control To z lt aq m gt o 0 05 0 1 0 15 0 2 TIME sec Fig 3 5 5 3 5 6 50dB 60 T jai REDUCTION LEVEL dB N 15 20 25 30 35 40 45 50 EXCITATION FREQUENCY Hz Fig 3 5 6 65 36 3 6 1 3 6 1 VSA 303 SHO03 12 120 2 X
167. 4 2 LMS 2 LMS 5 4 11 5 4 12 25 500Hz 12dB LMS 25 500Hz 30dB LMS LMS LMS
168. 578 04 0 2 0 05 0 0 20 24 25 30 35 40 45 50 FREQUENCY Hz Eig 2 3 2 0 4 2 3 1 0 3mm 2 3 1 35 2 313 500Hz SV 2 3 3 20Hz 10kHz 2 3 4
169. Aoki K Shikata Y Hyoudo T Hirade T Ihara Application of an active control 98 5 BIGHORN UBS 5 mount ACM for improved diesel engine vehicle quietness SAE Transactions Vol 108 1999 01 0832 1999 4 Toshiyuki Shibayama Kimio Itoh Toshiyuki Gami Takeshi Oku Zenji Nakajima Akinori Ichikawa Active Engine Mount for a Large Amplitude of Idling Vibration SAE Transactions Vol 104 951298 1995 5 EEA Honda R amp D Technical Review Vol 15 2 2003 201 208 6 Toshio Inoue Akira Takahashi Hisashi Sano Masahide Onishi Yoshio Nakamura NV countermeasure technology for a cyhnder on demand engine Development of active booming noise control system applying adaptive notch filter SAE Technical Paper 03 08 2004 2004 7 2003 C 2006 jp123 p135 C Q 9 Widraw ADAPTIVE SIGNAL 55 1985 99 140 PRENTICE HALL 10 1996 jp186 254 11
170. F ON OFF 84 without active control 0 06 calculated measured 0 04 4 4 1 0 06 0 9 0 8 0 7 0 6 0 5 OFF hi Fig 4 4 1 without active control 0 06 calculated measured BuisnoH 0 04 1 2 4 4 21 2 2 2 4 0 06 0 9 0 8 0 7 0 6 0 5 OFF Fig 4 4 2 85 with active control calculated measured z aa 4 9 9 0 5 0 6 0 7 0 8 0 9 1 TIME sec Fig 4 4 3 w
171. FREQUENCY Hz PHASE deg 10 100 1000 10000 FREQUENCY Hz Fig 5 4 3 118 ERROR SIGNAL dB Fig 5 4 4 1 ERROR SIGNAL dB Fig 5 4 5 5 10 15 20 25 30 5 50 75 100 20 300 400 Il inactive active 2 500 FREQUENCY Hz E inactive O active 25 50 75 100 200 300 400 500 FREQUENCY Hz 114 5 42 546 LMS 541
172. H HHI 51 52 5 2 1 5 2 2 5 3 5 4 541 LMS 5 42 543 5 431 5 43 2 99 100 101 101 102 102 104 108 111 112 115 116 118 119 5 44 LMS 121 5441 5442 LMS 55 551 Ll 5 5 1 1 5 512 LMS 5 5 1 3 5 5 2
173. HHHHHHHHHHHHHHI HHHHHHHHHHHHHHHHHHHHHHHHH Title Study on structure Of hydraulic active engine mount and active control method Author s Citaton Issue Date 2010 03 25 URL http hdl handleney10636 146 Thesis or Dissertation Textversion ETD Study on Structure of Hydraulic Active Engine Mount and Active Control Method BE 22 2 Study on Structure of Hydraulic Active Engine Mount and Active Control Method Abstract To date conventional active engine mounts have been applied to diesel passenger cars recreational vehicles to reduce idle vibration However they have not been used for truck engines The authors have developed a new type of active engine mount system based on the use of a voice coil motor the bellows and an accumulator The voice coil is adjacent to a permanent magnet that is located in the case The oil pressure inside the hydraulic active mount supports the engine load This configuration for the mount has the advantage of being able to support the load without any external power sources The piston with an actuator is located between the upper and lower chambers This results in e
174. LMS 7 LMS LMS 4 LMS T LMS 25Hz 25Hz 200 500 2 141 1 27 1998 2 NSK Technical Journal 676 33 41 2003 3 K
175. arw HI zld a C 1x0TH F FTE OT AATETTA gt STEH Fig C 1 180 C 5 ml mme H H leFt He A ur E ghenas En ee Fig C 2 181 C 8 L 9 z 1 do IHE ELE 16 041 H 0 02108 Gr E X 7 adje 9 q E z 552 oN sss www WE Gad 69 gpg PE T FL E r 8 H ja MERE 1 10 44 H HH Hilh l l ETE zd i E 2 ho T TT 1 11 1 1 1 1 1 I Vel T T 1 1 1
176. ith active control 0 06 0 04 0 02 2 9 2 0 02 8 0 0 04 0 06 05 0 6 0 7 0 8 0 9 1 TIME sec Fig 4 4 4 86 442 Table4 4 1 7 a em Piston Housing Fig 4 4 5 87
177. qual pressure acting on the upper and the lower sides of the voice coil motor consequence of this design is that the system requires a reduced current consumption The LMS Least Mean Squares algorithm has been used for an active control in the past or in other applications But it can only reduce the first and second firing order in order to reduce booming noise The authors developed the new method by means of modifying the LMS algorithm in order to reduce wide frequency band for comfortable vehicle interior space This control method and the hydraulic active engine mount were applied to a vehicle It was obtained that the interior noise the seat rail vibration level and the transmitted force between the mount and the frame were reduced in the frequency domain of not only the first firing order but also over a wide frequency band from 200 to 500Hz The final design has been shown to support a heavy load and to reduce the transmitted forces significantly while having a relatively small electrical power consumption 1 1 1 12 4 1 3 6 14
178. t FF J 7 1 7 e CVD es Fig 3 4 1 60 3 Fig 3 4 2 Table3 4 2 61 35 20 45Hz 5Hz 25Hz 3 5 1 3 5 2 3 5 3 40dB

Download Pdf Manuals

image

Related Search

Related Contents

Bosch SMS58E32GB dishwasher  Avoca-30 SPIDER unit User Manual  Hitachi Blower RB160EF User's Manual  スタイリッシュボスト (鍵有) 取ー寸説明書  E-5 取扱説明書  high power audiophile amplifier with dac and preamp  Télécharger le mode d`emploi  Les arbres remarquables en Loire-Atlantique  MB-8N  VPCEB290X - Configure-to-Order  

Copyright © All rights reserved.
Failed to retrieve file