Home

卒業論文 単層カーボンナノチューブの近赤外蛍光分光 による構造測定 1

image

Contents

1. 10000 30000 S 0 000 Fig 2 4 Schematic diagram of absorption and emission 25 222 0000 Fig25 Du 70 UUDDUUUDUDUUUUUUUUUUUUUUUUUUUUUUUUUHUUUUUUU DU UU 0 O 0 O U 0 20 1 DUU a EI 4 6 E E Horiba J Y 0 O O O SPEX Fluorolog 3 UUUUUOU O O ll Electro Optical Systems Inc O j O IGA 020 E LN7 8548 detector Fig 2 5 Schematic of fluorescence spectrophotometer 26 lj Ii Bl Ij Il I1 1 IJ j l1 i IJ Ii 000 KV450
2. 10 2 1 2 E EL 0000000000 mol III UU emp D D D U U 5000000070000 A 108 1 1 amp Cb D 2 10 0 00 0 0 0 0 transmittance A D O D absorbance 0 0 0 mor em U molar absorption coefficient D 1 U 0 Minn FU TEZ Mita ES x Fig 2 1 Schematic of absorption spectrophotometer 9 2 1 3 ado Fig210 000000000000 0000000000 p00000 1 00000 O O O O Hitachi O O U 4000 214 pod 11 11 0000000000000 152 E an Sr E 2 BERE LE wi
3. 2 1 1 OO DD 1 1 1 1 11 1 11 1111 11 li 1 aa 808 DD OD 1 1 1 11 11 DUU DODODO DD DD 1 1 1 1 1 1 1 11111 DUU OD 1 1 1 1 1 1 11 11 DUU 1 1 1 1 1 1 11 1 DUU 0 DODODO DD
4. 0 O 0 0 0 O ros n Target Rod Mo Rod 8 Stopper Faf lt gt K Quartz Tube Holder Electric Nd YAG Laser Rotation Quartz Lens Furnace 1064 532nm f 1200mm 1200 Q Feed through Manometer Quartz Windo Fig1 5 Schematic of experimental apparatus of laser oven technique 133 0 CVD 000000 CVD chemical vapor deposition OO DO DI 000000000000000000000 OOO A UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU HDH OU OU OU OU 12 DUUIDDUDDUDUDUDUDUUDUDDUDUDBDDDUUDGUDUDUDUDUDUDUDUDUDUDUDUDUDUU uDUL 1 11 1 1 11 1 1 1 1 111 11 lulu 1 1 DD DDD 1 1 1 1 8 1 1 1 11 1 SWrod0000000000000000000 EBI DU D SWNTOOOGO U
5. Bache D 2111 D U 0 000000 Llam OU UU 30 Chiral angle deg o us 5 2 E OD l 1 151 06 10 12 Tube diameter nm Fig 3 4 Diameter and chiral angle distribution of HiPco sample where the area of the circle at each chiral point denotes fractional intensity of each fluorescence peak 40 UUDUDDDUDDSWNTIUUDDDDUDDDUGUDUDUGUDUUDDUDUUUDUDUDDBDUDUDUDUDUDDUDU UUIDDUDDUDUDUDBUDUUDDUDUDUDBDDBDUUDUDUDUDUDUDUDUDUDUDUDUDUDUDUDU uDLU 000000000 460W cm DU Ub eot 32 1 NaDDBS Bachilo 211 00 0 0 0 E UU O O UU sodium dodecylbenzene sulfonate NaDDBS I sodium dodecyl sulfate SDS 3535 NaDDBS 00000 0 2wt b U 0 5wt O 10w 00000000000000000000000000 a O5 Sirm 9004 o m m o o l 1 1 Excitation wavelength nm 450
6. DU 1 111 SWNT OUUUUUUUUUUUFg41 J El Eds EV ELE E EL 1 1 EI ELE EL ECK EL E L1 L1 L1 L1 E EI ug E Ed 5 1 MET E I EL Ei Ve JEE 5 1 EI Eh EI JE ET ZEE 7 6 Number of IPR cap 07 0 8 0 9 Tube Diameter nm Fig 4 1 Number of IPR isolated pentagon rule cap 53 SWNT U IPRGsolated pentagon rule JDDUUDULDUUDPRUDUUDUDLDUD po000000000000Ff841000000000 SWNTUDUDUUUUUUUUU 5 OD 1 ODOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOG 42 421 SWNT 1 1 1 1 111111 BEH HB d 2 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 88888000 5 0000000000000 9 DODoo00000000000000 SWNTUUUUU rm 4 1 6 1 uuum Fig42 000000000 SPB
7. 9 gt DODODODOOO000000000000000000000000000000000 00080000000 0 0000 0 0 0 ww i li Ii Ii li j ji j li li li i 000000000000 0 00000 0 0 0 0 00000 0 0 0 0000 00 0 0 0 00000 0 BB HD DODODOOOOO000000000000000000000000000000000 9 em DI i 1H 0 0 0 0 2 0 0 0 li 0 0 0 i 0 0 0 li 0 l 0 li 0 l 0 i 0000 O OOO000000 gt 00000 sg00 S K v va lef 1 2 8 K DUDU wl
8. fo 200 it 0 400 0 00000000000000 Energy Separation eV Fig 2 7 Kataura plot 0304 33 31 OOOO 3 1 1 34 Fig3 1 0 I H D D 10 511 1 SWNTD Tight Binding 000000000 1100109000 UUUUUUUUUUUUUU 008000000 SWNTUU 1 1 5 7 1110101000 0 0000 Energy eV o Density of Electronic States Fig 3 1 Electronic density of states and b metallic 10 10 nanotubes fluorescence absorption O O electronic density of states DOSO D 10 C 0000 U Fig 3 1 a 1 1 DO DD 1 1 li i ji 1 8 DD v gt 0 00000000000c po00000000 e gt 400000000000000000 po0000000 SWrog0000000 640000000 00000 SWroo00000000000000000 SWNT 1 1 0000000000000 000000 1 11 1 11 1 SWNTUUUUU 1 1 11111 SWNT absorption Energy e
9. li li SWNT 0000000000 6 0 0015 8000000000000 j 0088000080 E k 1 17 gt gt gt cu 0 Ur 3 2 4 m m mr 6 Po Fig 1 10 One dimensional energy dispersion relations for a armchair 5 5 b zigzag 9 0 zigzag 8 0 17 DODOOD DOS WTO O0D000000000000000Fig1900000000000 UU 0000000000000 00000000000000000000000 KO 0000000000 0000000000Fie1100000000 D 5 500 9 000 8 000 00 SWAT 1000000000000000Fi 11000000 5 1 00000000 10 10000000Fig19000000000000 DD 1 1 1 1 1 1 11 1111 UD 0 0 0 O 00000 K00000000Fi18800000000 gt 1 1180000000000 0000000 00 8 000 2 LUMOUUUUUUUUUUUUUUUDUUUUUUUUUUU 0D00Fig11000000550000900D000000000000000000000 Fiz1 100c000000800000000000 o0o00000118000000000 K YKO
10. O O ITF 50S 83IR 223 0000000 DD OD 0000000000000 00000000000 UUDDUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUDUUUUUUUU 8 mia S D S F F s mos 2 20 gt 0000000000000 00000 0 00000 000000 00 9000 0 B OOOOU RUUUUUL 0000000000000 F700000000000000000000 0 0000000 8
11. 75 SWNTI O 505 NaDDBS 0000000 8 SWNTOOOOOOOOOOOOOODO O 0 0 0 0 0 151 HU 56 5 1 57 UU BERBER EEE BE BE BE HE DO BE BE SEBE HE BE BE BE HE BE HE NaDDBS 0 5 wt unn 140 000 183 000 g 3 111 30000000000000000 BiPeo D D D DO UO D BE 7 D O D 7 DI U DO D LI LU UUDDUDDDSWNTIIDDDDUDDUDUUDUUDUDUUUUDUDUDUDUUDDUUDUSWNTI 111 1 52 8 0 SWNTOOOOOOOCOOOOOOOOOOOGO 505 1 1 095 m
12. 000000000000 Kataura plot n I11 OO DD DDD 1 1 1 1 1111 1 1 1 1 808 Hl Uu Absorbance arb units Energy separation eV 2 Photon energy eV Fig 2 2 Optical absorption spectra of HiPco SWNTs in SDS D20 suspension without centrifugation Diameter nm Fig 2 3 Kataura plot transfer energy y 2 9eV 24 2 2 UUUUUUU 221 0 1 1 1 1 11 1 111 1 Bi 1 11 1 1 DD OD 1 1 1 1 aa DUU 1 1 1 1 1 1 DUU DD 1 1 11 1 1 11 11 DUU Fig240 0000000000000000000000000 800000000000 00000000 0000000000000 0000000000000 10000 SO0D00000000000000000000000000000030 DO DD OD DO DD 0000000000000 0000000000 0000000000000 0000000000000000000000000000
13. 8 DOS SWNTI O 5 SWNTUJDDDDUSWNTIDDDUDDUDBDUDUDUDU 11 1 SWNT 11 1 Hn m 3UUUUUUUUUUUUUDUUUUUUUUUDUUDUUUUUU 1 1 1 3111 DOS arb units DOS arb units DOS arb units Fig 1 11 Electronic density of states for a armchair 5 5 b zigzag 9 0 c zigzag 8 0 15 UUDUUUUDUUUUUUUUUUUUUUUUUUUUUDUUUUUUUUUU D00000 U UUUUUUUUUUUUUUUUDUUUUUUUUUHUUUU SWrgod000000000000 SWTog0 0000000000000 SWTro00 0000000 po00000000 SWNT U 0000000000000 000000000000000 po0000000000 SWNTO 0000000000000 0000000000000 DODODO DO DD OD DO DD 0000000000000 0000000000 0 O ccvo go 0000000000000 8 1 000000000000 HiPco 00000 19 0 O 0 O 0 O U O 0 020 OOOH 20 21 2 1 QOUUOUUU
14. 27 m 3 3000000000YK00000000 K0000000000 2 U 39000000000000000000000000000000000 3800000000000000000 m0 300000 3000000000 2 HB 1 ET 21 AA E LEH E EL ET El EI EI YK IK 1 18 1 4 3 SWNTOOOOOOO 1520000 SWNTO 11 11 1 BBD DD 1 1 DIDI USWNTO 10000 O density of states DOS in units of states C atom eV D U MAU T N 22 E k E dE O 1 199 dE dk 18 00000000pbospg00000000 DOST DOST ug 5 00000Fig111000000000 5 510 9 000 800 1 5 7 51111 1 U 0 D OO van Hove singularity vHs SWNTU DOS 00000 UFig 1 110 3000 SWNT 300000000 U 9051011100 Una 0 8000
15. 1 11 Fe OU UUDUDUUOUDUODUDDDUDDUDDUDUUDUDUOUDDUUDDUDDUUU O O HiPco DUUIDDUDDDDUDUDUDUDUDUUDUUDSDSSUDDUDUUUDUUDDDUDUDUDUDUDUDUDDUDUDDUDULU DO DODoOo00000 00000000000 0000 0 000000000000 4 2 Filter 55 NaDDBS 11110 0 0 0 0000 800 900000010000 OOD U SDS 0000000000000 Ll ji l1 ji Ii li ji potential eV atom N 0 8 Tube diameter nm O O O 00 UUUUUUUD Fig 4 3 Calculated potential energy of each SWNT per one Carbon atom O 0 O 0 0 0 0 1 lI 3 U 3 SWT000000 SWNTD 000000 0 0 000 0 0 0 UU swnT 0
16. a b o o 9 o 9 o Excitation wavelength nm o o o 4 gt amp z 2 s 8 900 1000 1100 1200 1300 900 1000 1100 1200 1300 Emission wavelenqth nm Emission wavelenqth nm c o Fig 3 18 Contour plot of fluorescence intensity versus excitation and emission 1 o wavelength for HiPco sample dispersed in D20 containing 0 5 wt of NaDDBS o eo o passed through filter pore size is a 0 2 Excitation wavelength nm u m b 0 1 m c 0 0241 500 900 1000 1100 1200 1300 Emission wavelength nm 50 DUUIDDUDUDUDUDDUDDUDUDUDUDUDBDDBDUGUDUDUDUDUDUDUDUDUDUDUDUDUDUDUDU uDULU UUIDUUDUDUD 1 1 ZUG NaDDBS SDSI 00000000 000l D uuu O O O E Whatman O anotop 25 a b o 3 3 3 5 lt lt 5 5 E 700 3700 5 5 5 5 8 00 3600 gt lt gt lt LI 500 500 900 1000 1100 1200 1300 900 1000 1100 1200 1300 Emission wavelength nm Emission wavelength nm c Fig 3 19 Contour plot of fluorescence Intensity versus excitation and emission wavelength for HiPco sample dispersed e o in D20 containing 1 0 wt of SDS passed through filter pore size is a 0 2 u m b 0 1 m c 0 024 Excitation wavelength nm o o
17. 08 1 12 Tube diameter nm 46 342 000000000000 Fig3 130000000000000000 cevopo000000000000000 900nm UU 16008 0 0000 11 DU D B U D U 5008 m00000 va co 5 53 ssec OO cn i DB 1000am D 1400nm i D Fig3 11 cot D D v gt 1 1 75060 1 Absorbance arb units 1000 1500 Wavelength nm Fig 3 13 Absorption spectra for alcohol CCVD sample synthesized at a 850 C b 750 C c 650 C 47 3 4 3 Fig 3 14 0 000 635nm i l1 D i l1 U 35 0000 D i l1 li li 0p0000000000D0Fi831200000000000
18. OD 1 1 1 1 1 11 1 HB Hl O 0 ET ET Ewy C 1 ODO OO DD AD 11111 1 1 111 1 1 11 u aE 2 3 1 1110100000 00 Add 0d 0000000000000 00000000000 ET JEV EL E E 28 a a Aa cos 2zv t 2 4 u aE cos 2zv f 2 5 u a Aa cos2zv rJE cos2zv t 2 6 a E cos2zvy Aa E cos2z v cos2a v v Y 2 7
19. kr 841 E SP 5 O 0 T S d OU 2 DUDU 0 0 22 5 0000000000 SWT 23 1 OUUUUUUUUUDUUUUUUUUUUUUUUUU Kataura 111 0SWTgp0000000000000000000000000 0000 SWro UU Tightbinding O0 0 O0 O connel 1210 OOO SDSL sodium dodecyl sulfate D20 0 U 8 00000 SWNTOOOOOOOOOOOOOOSWNTOOOOOOOOOOOOOOOOOGO 1 1 1 111 1 11 HiPcol 000000 SWNT SDS DOJODOD DO D 0D 0 0000000000000 SWro 0000000000 po00000000000Fig230000 Kataura pill NIN D D D D U D Fig220 00000 00000 1 0 01 SWNTO 100 vHs van Hove singularities SIOD00000000000000000152ev0000 0000000 SWNTQ 2000 j 0000 20000000 25sv00000000 00000 SWNTOOU M00000000000Si0s20mM2p00000000 1
20. 000 de n0 m i i li li l1 40000 d d if n m is mutiple of 3d 34 if n m is not mutiple of 3d 3 mie 1 6 Hj Li 3 101000000 4 533 0 D 0 0000 1000 D 000 4 10 11 000000 10 500 0 0 0 d 4 5 H 0007000000000 3 3a _ 0 37a 0000000 DI aal D 0 8 0 0 0 0 8 88 i i 0 0 0 0 0 8 0 0 0 0 D UD 0 1000 IC x T 2N 2 la xa 1 7 DUDU 10 13 swnT 00000 DUDU CVD Catalytic Chemical Vapor Deposition DUUIDDUDUDUDUDUDUDUDUDDUDUDBDDBDUDUDUDUDUDUDUDUDUDDUDUDUDUDUDUU uDLU HiPco 00 CNDUUUDDUDUDDUDDUDUOOUDDUDUODUUDUDUOUDDDUDO DUU 131 DoO0000 Fig 14 00 0000000000000 00000000000000000000000 poo00000 100 Hepo0000000000000000000 2000 1020000000 00000000000000000000 DODODO DD OD DO DD 0D 0000000000000 000000000 OU OU OU 1 1 000000000 1
21. OD DO DD 0D 0000000000000 000000000 1101901010 U U Tight Binding 00000000000 nm 141 SWNT 0 30 11 111 111111111111111 1 1 utu j Ji jj 20d 0000000000 0000000000000 uu det H ES 0 1 8 OOO 77 Ezp ys k T y f k Ezp Au 1 s sf k l 1 10 0000 e nna foo 3 ik a 243 k a f k e Ze 1 11 0000 l a a V3a 0 0 0 0 0 0 0 8 6 6 8 8 6 6 8 8 8 7000007000 0000000000 EL 0 0 15 Fig 1 8 The energy dispersion relations for 2D graphite with y ol 2 9 eV s 0 129 and 5 20 in the hexagonal Brillouin zone A contour plot B 3D diagram E graphite EV k ut r 5 1Fso k 00000000 o k fJ Jexo i a 8 2exp ik a 245 kosk a 2 1 13 00 0 0 0 00050000 70000 0 H Hi i Bi i li i i Fig 1 jj i li i i i li ji 2000000000 ELA k O O O 1 4 2
22. n UUUUUU L1 29 1 BB SEH 2 9 a t y hi 2 10 Ej EQ Ad p00000 el HHHH Hi D0000 Jl 0000000 1 vid L 1 1 1 41 UD 0 1 1 1 1 1 1 1 1 1 1 Hj 1 TI 0 li li i lI l i li Ii 0 li ll Ii 0 li i 0 0 D l iii DI S mm ji S cm 00000000 4 em mm D 5 2 11 ll 0 0 0 0 0 Il 8 0 8080 Il I 8808 00 0 7 0000000000 4 ammm 00 d V 2 12 000000000000 000000000000000000000000000000 00000 f mf DD D DD DD D mm 000000 Il D 10 d 4 fNm 2 13 OOOOGOOOOOOOOOOOOOOOOOOOOOOOOS cm 00000000000 30 232 OOOO UDUUUUUUUUUUUUUUUUUUUU Fie260000Ar000000 He Ne DUIDDUDDDUDUDUDUDUDDUDUDBDD
23. 800 900 1000 1100 1200 1300 1400 0500 1600 800 900 1000 1100 1200 1300 1400 1500 1600 Emission wavelength nm Emission wavelength nm 0 Fig 3 5 Contour plots of normalized fluorescence intensities for HiPco sample dispersed in D2O containing a 0 5 wt of NaDDBS and b 0 2 wt of NaDDBS 41 OOOOGOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 17500 20627g 240 0000 iFig 3 59 0 1 0 9 DUUIDDUDDUDUDDUDUDUDDUDUDBDDUDUGUDUDUDUDUDUDUDUDUDUDUDUDUDUDBUDU uDULU 5 0 SWNTOOOOOOOOOOOOOOOOOOOOOOGO 850 E Z800 5 5750 o amp 7004 5650 6004 8 5504 Excitation wavelengt a N a 2 ai o Tris 5004 i u 500 1 450 1 450 i i i i r 1 800 900 1000 1100 1200 1300 1400 1500 1600 800 900 1000 1100 1200 1300 1400 1500 1600 Emission wavelength nm Emission wavelength nm d 900 4 1 KA F 28504 i 800 56 WN o o 7504 7504 ed 700 z700 2 ZE BER S EID EFS 6001 556004 gt lt gt lt W 550 4 E O 5001 450 450 800 900 1000 1100 1200 1300 1400 1500 1600 800 900 1000 1100 1200 1300 1400 1500 1600 Emission wavelength nm Emission wavelength nm Fig3 6 Contour plots of normalized fluorescence intensities for HiPco sample
24. 1996 471 63 1 63 111 I OOOH 16 2 6 20193
25. U 095am li HE 1 1 O U 0 30 1 T T T T B 8 7 5 7 6 2 q E S 40 em 63 1 E l 8 4 a 6 5 5 12 2 0 1 9 1 114 0 900 1000 1100 1200 1300 Emission wavelength nm 0 0 a 07 08 09 1 Fig 3 16 Contour plot of fluorescence intensity Tube di ter nm ube diameter nm versus excitation and emission wavelength for Fig 3 17 Diameter and chiral angle distribution HiPco sample centrifuged at 450 000 604 0008 of HiPco sample centrifuged at 450 000 604 000g where the area of the circle at each chiral point denotes fractional intensity of each fluorescence peak 49 3 6 Filter UUDUDDDUDDDD Fiter 000000000000 SWNT ODODO 0 0 Fig 3 18 NaDDBSOSwt 00 HiPco D 111090 0 0 0 02 uml 0 1 mi 0 02 D 0 14 mp 0 02 m D 1 D D DU 3 19 1 mi 2 2 SWNT 0000 SWNTOOOOOOOOOOOOOOOOGO 0000 0 1 8 0 24 2 mI l 860000 SWTgp0D000000000000000000000
26. 0 00000000000000000 0000000000 0 0 0000000 8 80000000000000000 0 0000000000 0 00 000000 0 00 00 000 000001 500100100000000 0 27 OOOOGOOOOCOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOGO DD 1 EH 450 DUDU DO 1 1 1 1 11 1 1 UD a 11 UD 1 11 23 000000 231 0 0 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOA 11 1 1 1 11 1 1 UUDDUUUUDUUUUUUUUDUUUUDUUUUUUUDUUUUUUUUUUUU 1 111 1 1 1 1 1 1 1 1 1 1 DD
27. mii li 1 1 11 1 11 1 DO 1 1 1 fis120000000 ADU BO00000000000000000000 l i l 2 ii nn EE 0 o 000000 O O O D chiral vector C O C na ma n m 1 1 D Fig 1 2 The unrolled honeycomb lattice of a SWNT 10 5 000 SWNTI OO OOd0000000080000000 2 2 an nm m 1 2 7 an do x 5 1 3 2n m 6 00000 0000 a lal a 3a N3 x1 42 A D Li li li li 000200 800 0000000000 zigzag T 030 000000 D DUD armchair T i D UD OO hal III I Fis 130 3000 1 11 1 HB DAJI 10 5 10 0 10 10 Fig 1 3 Three chirality types of SWNTs 122 00000 0000000 lattice vector TD U 0 0 8 0000 TOU am tnn Ons mh 14
28. O Multi Walled carbon nanotube MWNTO 199311 1 11 1 1 Fig11000000000000000 210 00000 0 1 1 1001000000 1 1110010900 0 1 1 1 SWNTU DD OD DDD 1 1 1 1 111 11 DD DD 1 1 11 11 DUU 1 1 1 aa aa aa aa 1 0 8 0000001000 0 DU d SWNT e MWNT Fig1 1 CG images of fullerenes and carbon nanotubes 12 0 121 5 20000000 8
29. 00 HiPco 1110101010 00001000000 sosi 1 11 1 1 111 SWNT 1 HB 8 p000000 SWNTOUUUUUUUUUUUUUHUU DJ E Ei E KI EL EH EL Eh REIS EL EL E Ll Ed E EV Ed Ek EL EL EILER EL EL E 59 EL SEN EL ET EI E E EL EL Eh ET E 0 U uuu 1100 U uuu O 0 11 DHL LLL D HD 1 11 11 11 lulu 00000 00000 000000 OU OU OU OU OU OU El ed CET EH EL E DUDU DUDU E E ET Eh ET EI 0 O 0 0 0 0 O 0 U O 0 EL EL E ET EI E O 0 O 0 0 60 Fig A 1 00 20
30. 1200 1300 1400 1500 1600 Emission wavelength nm 45 UUDDUDDUDDUDDUBUDDUDFg3JIJUDDUBDDDUDDUDUDDDDDUUDUDUUUUUDUUDLU 850 0 8 6 O 650 01 0000 FSM 0 000000000000000006500 Fig 312 00000000000 0000000000 Fig 3 3 Fig3 4 HiPeo 0000000000 HiPco 8 600000 000 0000 00 a b S 20 p o o E 5 e 124 1 s Ag 5 Bes is 5 5 452 5 e 2 15 2 e 118 2 iU d A ash 0 X 0 1 Y Y 0 Y 0 8 1 1 2 0 8 1 1 2 Tube diameter nm Tube diameter nm c m Fig 3 12 Diameter and chiral angle distribution Ke of alcohol CCVD sample synthesized at a A a ja 5 850 C 7 750 C 8 650 C where the area of 125 11a 4 133 the circle at each chiral point denotes fractional 9 4 13 3 7 intensity of each fluorescence peak Chiral angle deg
31. 135 00000 CCVD Fig 1 70 000000 8 OOOO 27mm DUUDDUDUDUDDUDDUUDUDUDDUDUUU DD l 200 sccm 0000 UUDDUDDDBDUUDUDUUDDDUDUDDUUDUDDBUUDUDDBUUDUDDBUUDUBDBDUDDUUODIDULL UUIDDDUDDDDDBDBDUDDUDUDDBDDDGDUDDUDUDUDBUDUDDUDUDUDUDBDUDUGUDUDUUUDU U Shinohara QOOOS6OOOOUOOOOOOOOOOOOFOCoOOOOOO 25 U pod000000 5 0 00 5 90 111111001000 unm CH COO Fe 0 O U CH COO Co 4H O 1 HHH 180000 9 0 10 0000000008 00000 20000000000000000 OUUUUUUUUUUU SWNTs OOOO 8 sSwNrsOOOOOOOOOOOCOOOOOOOOOOOOOOOG DODO000000000000000000000000000000 SWNTs OOO 0 U 0 O Pirani Gage Electric Furnace Masin 1 Carbon source Mass How 1 ES Hi Pirani Gage controller Ar flow Vacuum pump Fig 1 7 Experimental apparatus of alcohol CCVD technique 14 1 4 DODODOD 00D 0000000 SWTO0D000000sSWwwTr gg 00000000000000000000000SwNT DODODO DD
32. 2 2 311 1 000000 000000000000 T T T T T T T T T T 1 08 06 1 l 1 1 1 1 1 1 1 800 1000 1200 1400 1600 500 750 Emission wavelength nm Excitation wavelength nm T T T T T T T T T T T T T Fg Is C le L 1 1 1 1 1 L L 0800 1000 1200 1400 600 800 Emission wavelength nm Excitation wavelength nm Fig A 1 Correction functions 61 D UU 1 S Ijima Nature 352 1991 56 2 S Ijima T Ichihara Nature 363 1993 603 3 1 1 1 11 1 1 0 U 2001 4 P Nikolaev M J Bronikowski R K Bradley F Rohmund D T Colbert K A Smith and R E Smalley Chem Phys Lett 313 1999 91 5 K Mukhopadhyay A Koshio N Tanaka H Shinohara Jpn J Appl Phys 37 1998 L1257 6 K Mukhopadhyay A Koshio T Sugai N Tanaka H Shinohara Z Konya J B Nagy Chem Phys 7 M S Dresselhaus G Dresselhaus Ph Avouris Eds Carbon Nanotubes Synthesis Structure Properties and Applications Springer 2001 JI Di LI III 2002 9 U 3500 U 4000 I D D U D Hitachi Ltd 1996 10 J Chen M A Hamon H Hu Y Chen A M Rao P C Eklund R C Haddon Science 282 1998 95 11 H Kataura Y Kumazawa Y Maniwa I Umezu S Suzuki Y Ohtsuka and Y Achiba S
33. 88 8 8 8 8 i il 8 8 8 8 i i il 8 8 8 8 i i 8 il 8 i i i i 8 il i i i i 8 08 8 8 i 8 8 888 8 8 88 8 8 8 8 8 8 8 ii il 8 88 0 Il 0 6 D G band D band 0 D 0 6 0 0 8 0 0 6 G band D D i i i li i li li 8 0 8 8 8 8 0 il 08 8 8 8 8 i il 8 8 8 8 i 8 il 8 8 8 8 i i i ii 8 8 i i i 8 il 8 i i i 000 200 cm 00 88 4 0 0 0 SWNT 0 8 8 8 0 0 8880 0000000000 l i l 8 8 i 8 i i i i l 8 88 8 0 i 000000000000000 0 RBM 8 8 08 8 8 0 8 8 8 88 0 8 8 8 swNT j 8 8 8 8 8 8 8 8 8 0 0 RBM 0 8 li 8 8 0 8 8 8 8 8 0 88 8 0 0 000000000000 00000000000000000 wem g 4nm 0 0 D w cm 248 d nm 2 13 0 00 5 0000000000 15 171050 8 8 0 8 8 8 8 8 0 8 6 8 8 0 i i 8 8 8 8 i 8 8888 il 8 88 8 88 I 6 RM 0 8 li li 8 8 0 8 8 i 8 i 0 8 8 8 8 0 i i 0 0 0 0 RBM 00 li 0 SWNT j 00000000 5 68 8088 0 0 0 0 Blue 488 nm 2 54 eV D D 0 0 0 DO kataura piot 0 D D 0 0 0 00 li CO Ger l 0 0 62 7 0 0 0 08 Il 3000000 ER E J 000000000000000 Kataura plot Io I 00 OU OU OU Io T T 0 o o SE 1 DODOD DD 0000000 Kataura plot Nu Kataura 0000000000 DD SWNT i j TI UU UU Li U U U li Lo SWNT D D BU UO D U 00000000
34. j DU U 00000 810nm 1550nm 0 000 450nm 930m 1 U Fig 3 2 HHH HHH 11111 1111111111 1111 1111 1111 BEE EEE MATLAB H D U UL D U D U 32 0000 v 02000 c v Bopp REE Po BR BD D B DEU Ag Tg B 0000000 v DH U O PL E a a 0 poo0018000000000000 SWNT nm HI SWNTOOOOO 10 1000000000000000000000 00000 1 1 1 1 11 DUU D Uu E EE ET ER ET ELE Et H E E EV ET Kb ET EI ELE EL EL ESI Excitation wavelength nm 3 1 4 UUDUUDDUDDUUOUDUUDDUUDD 1300nm 00000 800 900 Emission wavelength nm 1000 1100 1200 1300 1400 1500 37 1 6 1500 1400 1300 oo 1200 000 nm 400 900 veleng h Emission wa Fig 3 2 Contour plot and 3 D plot of normalized fluorescence inte
35. o 500 900 1000 1100 1200 1300 Emission wavelength nm 141 00 51 52 4 1 DOOOOOOOO 0000 evbgod00000000 Swropo00000000000000000 0O00 3000000000000 000000000000000000000000 ACCNDUDDUDUUDDU DU j i Im li Ii i 1 045an DU 11 1 11 po0o0000000 000000000 15 D U D 65 7 5 8 3 840 4 9 1 920 200 00 000 000000000000 HiPco 6 4 000000 UDUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU 0 85nm 000 0 0 0 9 DDD 0 9 0 O 0 0 1 DU
36. 00 15000000 5 go0000000 SWNT O 000000000 000000000000000 uut 1 Graphite Electrodes A Power Stepping motor am Fig 1 4 Schematic of experimental apparatus of arc discharge technique He gas 11 132 Fig 15 SWNTOOOOOOOOOOOOOOOOOOOOOOCOOOOOOOOOOO SWNT 00000 NO 000000 2 Il Ii ji 0000000000 1200701 0 1 500 Tor j i Ii DUU OOOOOOOOOCOOOOOOOOOOCOOOOOOOOOOCOOOOOOOOO DD 1 1 1a 000000000000000 WOOO SWNTO 000 60 00 78 000000000000 SWAT 1
37. 0000000000000000 DODODOD OD DO DD 0D 0000000000000 0000000000 SWTO 00000000000 00000000000 OU OU OU OU OU OU 7 6 7 5 metallic 40 3 8 6 a L _ 10 3 2 2 5 2 S GS b S 2 68 o 5 3 o 1 1 1 1 2 200 300 400 Photon energy eV Raman Shift cm Fig 3 15 Resonant Raman scattering spectra of Fig 3 14 Fluorescence intensities for alcohol SWNTs suspended in aqueous NaDDBS for CCVD sample synthesized at a 850 C b 750 C alcohol CCVD sample synthesized at a 850 C c 650 C Excitation at 635 nm b 750 C c 650 C Excitation at 633nm 48 35 SWNTOOOOOOGO SDS UDUUDUDUUODUDUODUDDDUDUDUDDUDUUDDUDUODUDDUDUDUDDUUUUD po0000000000000000000000 Fig 3 160 Fig3 17Q HiP cop 0000000 000000 SDS1 0wt hom 4 U 60 450 000 604 000 0 0 8 5000 0 900nm 0000 900nm 00 13006 UO HD 102 D B Fig 3 16 1 00000 0 li 7509Q1 650101 00 OD 317 1 D UD 0000 2 50 9 4 7600000 7 500 11 1090 0 9an
38. 1 63 111 I 16 2 6 20193 UU ul LINUUUUUUUUUUL I 28WNT 1 O00000 12100000000 122000000 1 3SWNT OOOO 131000000 132000000000 1 3 3 CVD 1 3 4HiPco 13500000 CCVD 1400 000 000000000000 141000 0000000000 1 4 2SWNT OOOO 1 4 3SWNT 000000 1500000 HOU UUUL 210000000 21100 2 1 2000 2130 U U 2 220000000 22100 2220000 22300000000 23000000 23100 2320000 2330 UUUUUUUUUUUUUUUUUHUU uum UUUUL 310000 3 1 1SWNT DD D D 31200000000000 3130000000000000 0 3140000000 0000000 0000000 315000000000 3 20000 3 2 1NaDDBS 0 322000 3 3SDS O 0 O 0 0 3400000 34100000 342000000000000 343000000000000 355 0 3 6Filter 040 UU 41000000000 4 2515 DH D 00000 4 2 1 SWNT O 4 222SDS SWNT Hl D D LH 4 3Filter 51 UU 5100 5200000 UD 11 1 1111 1111111111111 TI 0000 010 HU 1 1 UDUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUDUDUDUUNUUHU UUDUUUUDUUUUUUUUUUUUUDUUUUUUUUUUUUUUUUUUUHUU D U poo00000000000000U single walled carbon nanotube SWNTU
39. 858 6 59 r 1414 809 9 8 800 900 1000 1100 1200 1300 1400 1500 1600 1425 927 15 1 issi 1474 868 10 8 Emission wavelength nm 1266 1 1 1496 795 12 5 Fig 3 3 Fluorescence spectra and assignments ER 360 is 1555 892 10 9 Table 3 1 Spectral data and assignment for SWNTs 18 315 Fg34 0000 3 0000 DD 1 1 1 1 1 1 1 11 11 DUU 11 11 DUU 00 1 00000 SWNTUOUUUUUUDUDUUUUMUUUUUUUUUUUDUUUUUUUU SwwITDUDUDDUDDUUUODUDUODUDDUUDUDUDDU DUU 000Fig3400000000000000000 09320 OOOOOOOOOOOOOOOOGO 150000 SWNT 39 DUUIDDUDUDDDDUDDUDUDDUDUUDUU 150000 SWNTOOOOOOOOOOOOOOOGO
40. BDUGDUDUDUDUDUDUDUDDUDUDUDUDUDUDU uDULDLU OOOOOOOOOOOOOOOOOOOOCOOOOOOOOOOOOOCOOOOOOOGO DD 1 1 1 1 1 111 11 DD 1 11 DUU 1 1 1 0 1 0 0 pea 000000000 CCDUUUUUUUUUUUUUDUUUUUUUUUDUUUUHUU OD DO DD 0D 0000000000000 000000000 UDUUUUUUUUUUUUUUUUUU 0000 O O O Chromex O O 50015 2 0419 optic fiber CCD camera X C polarization i plate laser coupler notch filter Y Ay dichroic Ea Ar laser s mirror lt k 488 514 nm y Ld 5 filter Micro Raman He Ne laser 633 nm laser coupler p CCD detector mono
41. SUDDUDUD SwNTUUDUDUUUDUDUDUUDUDUOUU al 111111 2nm D O connell 1211 0 000 0 8 90 SWNT 1 0g cem j i Ii i li Hi li Hi li Hi Ii li l Hi li Hi li li I1 00 593 0000000000 DO 0 0 li i i 0 li 1 0000000000 3nm j 0 i Hi li 0 0 i 5 0 0 1 rn 1 3nm SWNT U O U DLebedkin D 2210 PLV pulsed laser vaporization OO D 0 0 0 0 0 SWNT TI 00 B B D D D DNaDDBS 1 3212 j 0 0 0423730 1 111 11111 010110 101101 000 4 010 00 0 0 11 1 85 1 OU 00 0 3 Density g cm 54 0 6 0 5 Diameter nm Fig 4 2 The approximate density of an individual SWNT encased in a Uu close packed columnar SDS micelle 4 2 2 SDS SWNT BH U EL U 995 DU BiPee l1 1 SWNTO 000000 SWNT SDSUDULDUD 1 3 11 5 i L 1 1 SWNT 1 HiPco
42. SWNT I Ll UUIDDUDDUDUDUDUDDUDUDDBDDBDGDUDDUDUDUDBUDUDDUDUDUDUDDBDUDUUDUDUUDU HDH 000000000 1 1 LUN 1 1 1 SWNT J Hi 1 1 1 n m SWNT i 0 D Fig 2 0000000000 SWNT 1 U OFig190000000000000005 O ET EL dex E EX EI EL 3 O 0 Dn Fig 1 9 Part of the expanded Brillouin zone of EL p El EL EI EI EL 4 E Dn carbon nanotube 16 27 1 27 1 b 1 1 1 14 Ee uds KO K 7 T i EDO DO lt lt DO 1 N 1 15 SWNT 40000 KI K 2n m b 2m n b Nd ODO K mb nb N 1 16
43. UDUUUUUUUUUUUUUUUUUUUUUUUUUUUDUUUUUUUU UU SWroo00000000000000 8 UU 1 3 4 HiPco Fig 1 6 1 1 HiPco 0 00000000 SWNT UU UO HiPco DUDU po00000000000 col 6 0 5 8 li 1000000000 0 0 0 CO CO C co20 000 HiPco 1 1 1 SWNT SWNTOOOOOOOOOOOOOOOOOI 0 0000000 SWNTOO FFOD00000000000000000000000 Cola cos Fe CO s a ei d Se Hot CO Fig 1 6 Layout of CO flow tube reactor of HiPco process 4 13
44. V o 2 Darb units 0 Density of Electronic States arb units DOS calculated in a tight binding model for a semiconductor 10 5 35 UD 1 90 U ae 1 1 1 1 111 1 vHs van Hove singularity O U 8 SWNT SWNT SWNT 11 SWroo00000000000000000000 0 0 OOOO UUDUUUUDUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU p0000 200000Swrgp000000000000 SwWNTOOOOOOOOGO HI ji l1 ji Ii li ji ET Ee Aa EI EE 312 SWNT U O Oconnel 1210 SDS D O
45. centrifuged at a 450 000 604 000g for 1 h b 140 000 183 000g for 1 h c 55 000g 74 000g for 1 h d 18 000 20 627 for 24h 42 322 000 Bachilo 21 Lebedkin Y 221H DD D 0 55 000 74 000g Y O O O 140 000 183 000 J000000000000000000000 10000000 20627200000 20000000 604 000 D U D 18 000 20 627g 450 000 604 000g O 1 1 HiPeop 0000000 U U NaDDBS U 0 5wt lhomn DUDUUODUDUODUDDUDUDUDDU LI OOOO 460W em 6000 000 Fs3600MO000000000000000000000 11 1 3 7 1 11 HDH HB HH Fig 3 7 j 0 0 UU 140 000 183 000 1 1 1 11 1 Hi 0 0 9 1 090400000 ED 00000 1 11 11 11111 11 EBE SWro 0000000000 O 0 0 O 0 0 E ET ER ET EI dE Intensity arb units ji p p j j Poj boj 1 p OL ji 6 x10 2 4 Centrifugal force g Fig 3 7 Fluoresc
46. chromater optic fiber Fig 2 6 Schematic of micro Raman spectroscope 31 CCD Odd O O O O Andor O O O DV401 FI OOO O OOD Seki Technotron O UO STR250 233 00000 ccvop 00000000 SwwrUDHDUUDDUDDUUDUDUDU Fis 2 6 0000 Al E0 O 15000 16000 18 0 1590 cm D 00 G band 1 i 0 0 A D Eng E 0000000000000 1500 300 em 1 0 D D D Radial Breathing Mode RBMO 0 Auf 000 li 00 0 1350 00000 D band 300000 1590 00 6940 Ii 0 li li li Ii 0 0 0 li li li 0 SWNT 0 i li 0 0 li 0 HG band 000000000000 1560 0 0000000000000000 1 1 0 0000000000000000000 l l 031590 000000000000 1560c 94000000 Intensity arb units 1 0 500 1000 1500 Raman Shift cm Fig 2 6 Raman scattering of SWNTS generated from ethanol at 800 C 32 swNr 0 0 ii 8 ii 88 i l 88 i i i 1350 cm D 0 0 D band defect 9 0000000000000000000000 8 0 8 8 8 8 0 8 88 8 8 8 8 i il 8 8 8 8 i i ii 8 8 8 8 i i i il 8 8 8 0 i i il 8 i 0 8 0 8 8 8 8 ii ii
47. ctional intensity of each fluorescence peak 1500 1 1 1 1000 Wavelength nm Fig3 10 Absorption spectra for HiPco sample dispersed in D2O containing a 1 0 wt of SDS and b 0 5 wt of NaDDBS 44 3 4 11111 ecvo 00000000000 a n 65091 750 850 0 U Fe Co2 5wt SWNT O I0me 1900000000000000000 NaDDBS0 5wt hom HEB D DU 000000 460W cm 60 O O 140 000 183 000 600 0 0 0 0 000 0000 000 00000 341 00000 00 0000000000000 3 12 3 11 1 Excitation wavelength nm 450 400 800 900 1000 1100 1200 1300 1400 1500 1600 800 900 1000 1100 1200 1300 1400 1500 1600 Emission wavelenqth nm Emission wavelength nm 0 9504 I Oe pu 2 T ESTER 900 4 ps i n Fig 3 11 Contour plot of fluorescence intensity versus excitation and emission N m o e o o o wavelength for alcohol CCVD sample synthesized at a 850 C b 750 C c 6 5 69 8 4 x Excitation wavelength nm m o o m a o o o o o 1 1 L i i i i i i 800 900 1000 1100
48. ence intensities for a 8 6 tubes b 7 6 tubes c 9 4 tubes 3 3 Fig 3 8 Fig 3 9 HiPco U SDS1 0wt 0 O 140 000 183 0008 E E 1 009000 NaDDBS O D SED an 9004 e m NT co o o o m o o l l l 650 Excitation wavelength nm m o m o o o 1 5004 sps pul 1 0 8 0 8 0 7 0 6 0 5 0 4 0 3 0 2 0 1 450 1 T 800 90 0 1500 1400 1300 1200 1100 1000 0 Emission wavelength nm Fig 3 8 Contour plots of normalized fluorescence intensities for HiPco sample dispersed in D2O containing 1 0 wt of SDS 43 T Fig 3 10 0 0 0 0 0000 Fig3 10 0 U 1400nm 1 D I1 30 o m E a gt S 5 s 4 ra 6 0 0 8 1 0 1 2 Fig3 9 Diame HiPco sample of SDS where the area of the circle at each chiral point denotes Tube diameter nm ter and chiral angle distribution of dispersed in D2O containing 1 0 wt fra
49. ji DB D SWNTUUUUUUU 8 SWNTL 80mm DU D 5 5 1 1 1 111 DL DD 0000000 SWTrp 00000000 000000 DOUDUU go 0000000000000 UU HiPco 0000 Imdo00000 CCVD 1 1 10m 1 Dr U B D U 16D U U D 0 10 li i li li li i li HI i li li rag 0 60 0 00000000000 DU L 100000000000000 DU Uu 36 U O U O Dr Hielscher GmbH O O UP 400S 000 10 OOOO SIGMA 0 0 2 160 0 D 0 0 000 20 O D D Hitachi Koki O O O 651206 O O O D 5100 6 313 00000 300000000 HiPco O00000 SWT00000000000000000000000000000 Fige430000000000000000000 00 8 000000000000000 4 so00MOO00000 10000000 18000 20 6272 0 241111 101010 0010010000000 00080 0 10nm
50. nsity versus excitation and emission wavelength for SWNTs synthesized by HiPco process Bachilo 18 11111 1 0 DH DU Tight binding QQ UU 1 1 1 1 nm OOOO Li Li 1 2 3 1811 U U 33 HiPeo II SWNTOOOOOOOOOOOOOOOG UU DUDU 10000000000 0000 40 60 00000000000 2000000 140 000g 183000 0 100000000000000000000000000000 Sami 470nm D 75000000 810nm O 650nm 930nm T O HH UU 1150nm O 1550 U O O Fig 3 3 UU Bi HiPco DH D ud SWNT UU UBachio UDUDUODUDUDDUDDUDDUDUDU DUU 1 38 Emission Excitation Assignment Alam Azlnm n m 833 483 5 4 873 581 6 4 912 693 9 1 952 663 8 3 975 567 6 5 1023 644 7 5 1053 734 10 2 1101 720 9 4 1113 587 8 4 1122 647 7 6 1139 551 9 2 1171 797 12 1 1172 716 8 6 1197 792 11 3 1244 671 9 5 1250 633 10 3 1250 786 10 5 1263 611 11 1 1267 728 7 1307 859 13 2 1323 790 9 7 1342 857 12 4 1372 714 11 4 Liedern emere 1376 685 12 2 DCX 1380 756 10 6 1397
51. ynth Met 103 1999 2555 12 M J O Connell S M Bachilo C B Huffman V C Moore M S Strano E H Haroz K L Rialon P J Boul W H Noon C Kittrell J Ma R H Hauge R B Weisman R E Smalley Science 297 2002 593 13 00 OOO 1 19880 14 1 19940 15 A M Rao E Richter S Bandow B Chase P C Eklund K A Williams S Fang K R Subbaswamy M Menon A Thess R E Smalley G Dresselhaus M S Dresselhaus Science 275 1997 187 191 16 R Saito G Dresselhaus M S Dresselhaus Phys Rev B 61 2000 2981 2990 17 A Jorio R Saito J H Hafner C M Lieber M Hunter T McClure G Dresselhaus M S Dresselhaus Phys Rev Lett 86 2001 1118 1121 18 S M Bachilo M S Strano C Kittrell R H Hauge R E Smalley R B Weisman Science 298 2002 2361 2366 19 S Reich C Thomsen P Ordejon Phys Rev B 65 2002 155411 62 20 S Reich J Maultzsch C Thomsen P Ordejo n Phys Rev B 66 2002 035412 21 S M Bachilo L Balzano J E Herrera F Pompeo D E Resasco and R B Weisman J Am Chem Soc Submitted 22 S Lebedkin K Arnold F Hennrich R Krupke B Renker and M M Kappes New Journal of Phisics 5 2003 140 1 140 11 23 H Dai A G Rinzler P Nikolaev A Thess D T Colbert and R E Smalley Chem Phys Lett 260

Download Pdf Manuals

image

Related Search

Related Contents

Smeg FA55PCIL3 side-by-side refrigerator  LT-USB User Manual - Lynx Studio Technology, Inc.  Nettoyant Multi  Manual de Instalação e Utilização    標準カムクラッチMAシリーズ取扱説明書  GPS Car Alarm & Tracking System USER MANUAL  Philips SHS4848  Samsung VP-MM11S manual de utilizador  

Copyright © All rights reserved.
Failed to retrieve file