Home
Title 可変剛性システムを導入した建築構造物の性能特性と地 震時応答
Contents
1.
2. 178
3. 1 0 90 3 6 3 1 1970 3 2
4. 200 1970 JTP Yao Srucmnral Control
5. 201
6. 1 SDOF AVS
7. 1 1 2 1 cw 2 1 w 1 2 2
8. 5 6
9. Sensory System Kinetc System Acive Adjustable Snffness System Active Variable Siffness System 1 2
10. 30 1
11. 2 2DOF PAVS SDOF AVS 2DOF PAVS 1
12. 1 1 5 Hardening Fundamental Hardening Displacement cm Stiffness i i State Durauon Time sec 1 5 1
13. 2 1 1 MI CX kt ke x mI 2 1
14. 0 5 1 0 SDOF AVS 3 7 os 1 1 Q 0 8 0 8 0 0 6 0 6 05 04 04 se 1 3 g 0 2 Ss 0 2 3 0 0 Durauon Timc scc Durauon Timc sec 3 6 AVS Rauo 0 5 AVS Ratio 1 0 y 0 5 7 1 0 3 7 SDOF AVS 1 5
15. SDOF AVS 1 0 3 0
16. 1 2
17. 10 1978
18. 1 29 AVS Ratio 0 8 3 a 3 Oo Dan imetsee 2 17 SDOF AVS Transient State 0 05s AVS Ratio 1 0 MTT bd XY kk ee H MHCXY 9 TO i il i Energy LeveKtonf cm s 1 5 1 0 5 0 0 5 1 1 5 Velocity cm s Energy Level tonf cm s
19. 3 0 1 0 SDOF AVS 3 2 34 46 cm s cm s 1000 El
20. PR 1 a 5 a 8 a 7 a 9 3 1 SDOF AVS
21. y 0 0 0 25 0 5 1 0 4 4 1 3 6 3 1 1207 1 079 0 983 0 893 2 0 477 0 426 0 389 0 337 3 0 300 0 269 __0 245 0 212 1 1 207 0 085 0 853 2 0 466 0 417 0 381 0 330 3 0 289 0 259 0 236 0 203 6 2 4 2
22. 1 2 1940 1 3 4 3 Phase Plane 2 1 6 1960 1985 Dynamic Intelligent Buldings DIB 1 15 16 pl
23. SDOF AVS 2
24. 2 2 4 2 94 HH state 0 rj 0 HF state HH state 5 0 FF state lt x1C1 0 xX 1 0 4 2 2DOF AVS
25. 1 1 0 sw vo lt 0 6 0 cos 7 cos ml lin x0 me be cos y x Hi cos 7 2 1 0 lt dy 0 2 f t sin 7 sin t t x jpeg x im rm x Te ldol sinconn x n gi sin xt ee 72 1
26. mI k XD Folt 2 53 Felt kext 2 54 step 1 Ar G A 40 FG AD FR Fe t AN 2 55 AG m 0 5cAr 0 25kAr 2 56 Fi t At m3 t Ar 2 57 F t G X t G2 1 X 1 G x 2 58 Fe t A Fc 2 59 step 2 x Ar t A X t 0 5Ar 7 an 2 60 t AD x t A XD 0 25A7 0 An 2 61 step 3 G Ar x AD gt 0 Fotifr Ah kcxt Arn 2 62 Oxx AD lt 0 Fe fr Ary 0 2 63 step 4 7 Ar 6 A A FC AD Fr Fe A9 2 64 step 5 Ar
27. SDOF AVS
28. 5 2 3 5 2 1 6 3 8 a 0 02 0 64cm s b 0 03 0 96cm s c 0 125 10 96cm s d 0 579 50 7Scm s e 3 78 30 7Scm s 5 5 0 38 41cm s Velocily crm7s Penod sec 1 5 2 2
29. 5 5 1 3 2 El Cenro NS TafEW 50 Velocily cm s 2 5 14 El Cent
30. Hybrid 1 33 34 mI CMD kt ke x mM 1 10 1 1
31. Barrel 10 1 2 Barrel 3
32. 88 3 16 AVS Raiio 1 0 ea MONASA KA AVS Raios 0 nt 05 05 Vclocity cnys Displaccmcnt cm 3 16 89 3 5
33. 1 1 2 1 a 1
34. Trifunac Kesponse Envelope Spectrum FFT 1985 Dynamic Intelligent Buildings DIB
35. 1 0 4 SDOF AVS 2 2 2DOF PAVS
36. 171 6 5 3 1 0 MDOF PAVSD 1 2 6 5 1 i 6 8
37. 1 1 mg 1 Xp k ke gC msin r D 1 lt D 2 WF ps m 26 2 4 iP FO O XO SIn 7 D 4 D 2Jkm k c D 6 kc D 7 Ya D7 1 2 mI kD msin r D 8 ED 2CF OF FDI OF XE sin 7 D 9 2 SDOF AVSD 2 1 0 zr lt T 7 3 80 3 81 2 v 0 194 2 2 7 lt 7 lt
38. k kc 7 gx x 0 X0 X 7 7 Tg g 6 o 7 5 1
39. rp zg a grG gr 2 79 zrlt x Ti FC wpli Tdr 2 80 1 2 81 Ti rn Ti F an Dd 38 5 XD r 72 gt F Dg Tdrt 2 82 gD ED og 7 2 83 2 Ti 22 HD wn Dd F Y FD dr 2 84 7 xy
40. Z 0 lt g lt 1 0 ga lt 6 g gt 1700 1 2g He 1 lo a 1 ei 0 0 lt a lt 1 0 2 8 c 7
41. 4 2 2 4 2 1 1 1 4 12 13 14 1 1 2 4 1 1 Q 1 1 2 A A 1 4 1 2 93 2 1 2 gt 0 4 1 24 5 0 U 0 4 2
42. Sensory System Kinetc System DIB 1985 9
43. cos 3 20 1 0 1 0 144 em em Ve Lc SDOF AVS 2 1 R 2 y 0 0 1 0 1 5 1 0 5 0 ns 8 9 lt 1 5 0 0 25 0 5 0 75 1 Duration Time sec 18 60 50 Fu Velocity cm s 20 1cycle 106 8gal 10 2cyclesy56 8gal 0 3cycles 40gal 0 1 2 3 4 5 dcycles 31 7gal Period sec Scycles 26 8gal 5 19 1
44. 2 3 2 3 1 1 SDOF AVS mx k D hv 0 2 12 x 0 2 13 0 2 14 2 3 2S vv 0 0 2 15 mx 7 kx 0 2 16 b
45. 2 1 1 j y step 1 1 1 step 2
46. 2 46 56 2 7 2 8 1 1 1 10 1
47. 4 3 5 1 1 1 1 7 0 0 5 Ta 4 62 no 10 7 52 2 7 lt 7 lt 105 V t fm m 0 lk n on 4 63 7 zr lt Ver t mi mt lh 0 20 xn Ve 1 Vek 4 64 4 2 1 1 4 63 Vw O 2 20 x0 4 65 1 OT 4 66 TF Cs g 4 67 Vt cos nt in or 4 68
48. 2DOF PAVS 1 2 127 4 6 4 1 T Kobori H Kanayama S Kamagata Rigidity Conctrol System for Variable Rigidity Structure United State Patent 4 964 246 Oct 23 1990 4 2 72489 1993 10 12 4 3 6 76738 1994 9 28 4 4 Takuji KOBORI Shuichi KAMAGATA Dynamic Inielhgent Buildings Analyical Simulator Microcomputers in Civil Engineerng 7 Dp263 281 1992 4 3
49. 6 2 4 2 Barrel 0 200 400 600 800 0 200 400 600 800 0 200 400 600 800 0 200 400 600 800 Acceleraion cmys2 Acceleration cnys2 AcceleratiOn cnys2 Acceleration cnWs2 10 9 8 gt 6 5 3 2 0 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 Velocity cmys Velocity cms Velocity cnys Velocity crVs 6 7 158 to oo arret 5 rofilk ken 9 A Randsds 30 2290 38P 2 PE 0 5 10 15 20 0 10 15 20 Displacement cm Displacernent cm Displacement cm Displacement cm 1 1 5 0 0 5 1 1 3 0 05 1 13 2 Interstory Drft cm Interstory Dnft cm Interstory Drift cm AVS Rano 1 0 5S 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 Absorbed Energy tomf cm s Absorbed Energy tonf cm s Absorbed Energy tonf cm s Absorbed Energy tonf cm s 6 7 139
50. c d DIB
51. 2 10 11 12 10 2 4 N 0 el 4 MO 1 N 1 2 67 2 4 3 2 2 2 nl2r 2 68 df nN 2 69 4 te fe 2 69 f fp 2 70 Acceleralion 0 1 2 3 4 5 Duration Time sec 2 22 2 2 3
52. 1 6 2 5 10 3 1 1 2 R 1 0 20 10 Re expt 27 Tn Cn t T Ta Natural eee 10 20 30 40 50 Number of Cyclic loading 1 6 1
53. 2 8 2 1 on off Rod Sroke Lengh 2 1 a 2 2 2 2
54. 4 4 3 3 SDOF AVS 2 2 4 6 7 2DOF PAVS 4 mm mm M 1 2 1 2 1 2 2 g ey m1 wa 1 2
55. 2 5 6 7 on off 2 2 2 8 2 2 1
56. 3 6 Monitoring 3 7 Kineuc 1 3 8 9 10 11
57. step 3 1 w 67 QQ 1 2 1 1 164 i 1 6 1 2 2 1 25cm s 2 3S0cms
58. OO TG 7 1 20 7 28 TR 7 il 5 4 5 5 133 1 0 0 i 12 54 3 36 0 88 0 25 20 15 17 3 80 1 01 0 5 20 17 45 3 95 1 11 1 0 20 19 58 3 71 1 10 lt hh 0 0 0 054 0 038 0 054 0 25 20 0 082 0 097 0 082 0 5 20 0 104 0 115 0 103 1 0 20 0 123 0 126 0 125 0 0 1 0 Acceleration cnVs2 F 3 Pseudo period sec y 00 amp y 10 oc AVS 5 Rato 00 0 Velacily cm s Pseudo period sec y 0 0 am
59. rT Cr ld 3 6 4 80 Absorbed Energy tonf cm s Story L seeeaee 0 23 ee mm 05 0 50 100 150 200 0 10 20 30 40 Average Acceleration cm s2 Variance of Acceleration cm s2 66 b c 1 Scm d 4
60. 1 2 SRSS 3 1 2 3
61. 0 3 SDOF AVS Restoring Force tonf 1 0 1 0 0 05 0 1 7 74 Velocity cnys 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1 Duration Time sec 02 on to 2 14 SDOF AVS Transient State 0 05sec Transient State 0 05sec AVS Ratio 1 0 FS 1 AV Ratio 1 0 Ya A FPPPPPPPNPPS Velocity cnys 0 0 05 0 1 0 15 0 15 0 1 005 0 005 0 1 0 15 Displacement cm Displacement cm 2 15 2 16 28 3 SDOF AVS
62. Cpw a Spw f T B 5 3 a NS 115 9 cm s b NS 203 5 cm s c NS 205 4 cm s 0 1 0 015 NAOMORI NS 0 010E A H 1 MURORAN NS 1 vw i 1 1 7 1 0 005 i 6 MIYAKO NS 2 0 4 0 6 0 8 0 10 0 Runntng Power Spectra DATs 1 0sec B 5 B IjKobori T State of the Art Report Actve Seismic Response Control 9WCEE Vol 8 pp 435 446 Aug 1988 188 C Ar
63. 10 0 5 1 0 2 0
64. SDOF AVS 0 5 6cycles 2 0 2 0cycles 3 0 1 5cycles 0 5 2 0 3 0 3cycles 0 5sec 40 0c 5 6 2 0sec 28 0cm s 0 5sec 70 0cm s 3 0 sec 25 0cm s 2 0 sec 20 0c 5 3 0sec 13 3cz 5s 800 800 800 a 8 800 600 Bg 600 amp 8 600 Hap 400 a 8S 8 8 400 8 8 4 8 0 9 200 lt lt 8 20 0 0 lt 0 0 Pseudo period sec Pseudo period sec y 0 0 y 1 0 So Velocily CWs Veloc
65. 3 2 2 2 3 6 2 3 4
66. 4 5 3cycles 3 9 5 6 1 3 SDOF AVS AVS 1cycles 2cycles 3cycles 4cycles Scycles 2
67. Taft 8 0 2 0Hz 1 0 10 b EI Cenro 10 Taft 10 182 4 SDOF AVS 0 2 4 0 0 2 20
68. Velocity chys Velocity chyS AVS Ratio 1 0 0 4 T 0 2 0 1 0 0 1 0 2 0 3 0 0 0 0 05 0 1 Displacement cm Displacement cm 3 12 SDOF AVS SDOF AVS SDOF AVS 1 1 y 84 3 162 3 165
69. 4 8 9 10 1 1 SDOF AVS 2 2 2DOF PAVS
70. b 141 Displacemeni cm Accclcralion cnys2 8 Velocity cns 2 8 8 8 cc 8 3 1 Pseudo period sec El Centro NS Pseudo period scc EI Centro NS Pscudo pcriod sec El Centro NS 5 15 S amp amp Qo 8 Pscudo pcriod scc Taft EW 8 gt Pseudo period sec Taft EW EE 4 8 Pseudo period sec Taft EW 142 a El 5 5 3
71. Peak Power 0 21179c 2 secJ at 3 125Hz 1 1 Power Retio i 1 0 75 1 0 0 5 lt Py amp 0 75 1 0L250 0 5 a a a Fr equenc 1 uncontro11ed state 15 0 20 0 10 0 Duretion Time Second 10 0 Duration Time Second 3F TOP TF control El Centro NS 2 38 a 49 15 0 Peak Pover 0 04214cm2 sec3 at 3 125Hz Power Ratio 0 75 1 0 0 5 lt PS 0 75 0 25 _ 0 5 0 sa ata Xeguisition Time gt 2 0geconds FET Analytical Time 5 12seconds Frequency 5 0 10 0 15 0 20 0 Duration Time Second Peak Pover 0 00297cm2 sec3 at 2 617H 10 0 1 g a 5 Lr es gt i 1 5 0
72. 1 13 Karnopp 1 14 Sructural Control JN Yans T T Soong M Abdel Rohman 1 2S 26 27 SE Masri 1970 1 28
73. lt b oO 8 21
74. b Taft EW El Cenro NS TaftCEW 169 Story 0 0 5 1 15 0 0 5 1 1 5 Intersory Drift cm Interstory Dnft cm El Centro NS Taft EW Story 0 20 40 0 20 40 60 Absorbed Energy tonf cm s Absorbed Energy tonf cm s El Centrro NS Taft EW 6 18 b c EI Centro NS 6 TaftEW 7 1 0 9
75. 3cycles 1 40 0cm s 2 70 26c s Sv 7 0 45 35 06cm s 172 Velocity cnys 0 1 2 3 4 5 Period sec 6 23 6 5 2 2 SRSS n Xsrss Yoy 6 9 4 0 200 400 600 800 0 20 40 60 80 0 5 4 10 15 Acceleradon cnVs2 Velocity cmys Displacement cm Story 0 0 5 1 1 5 2 0 20 40 60 80 Interstory Drift cm Absorbed Energy tonf cm s 6 24 173 1
76. 1 2 35 4 6 SDOF AVS 5 4 5 6 7 SDOF AVS 5 3 1 20 1 0 2 4 0 2 2 c A 77
77. 1 cost 7 3 87 FF x 3 88 Xp D 1 rr lt 0 3 88 zg D 0 3 89 c 2 7 lt r lt 2 f t sin op t D 3 90 xr 0 3 91 9 r we gt 0 3 92 F d 2 lt tsT 1 cost 7 3 93 ZD Ta a Wg 40g 74 0 3 95 gt 0 3 94 SDOF AVS
78. 4 39 OF 1 4 40 Op Wa2 1 LT 1 O 7 Ei oy a i y 0 4 41 1 6 1 4 42 2 4 1 7 2 T SDOF AVS 1 1 12 SDOF AVS 1 Q 1 1 0 2DOF PAVS 1
79. 0 0Scm 33 5 1 25ms 10ms 3 0 a b c 25ms 10ms cm 3 cm 350 0 6 0 0 6 Experiment Experiment aged EE ies drip
80. 2 1 1 1 1 2 3
81. e 1 0cm gt 3 0 3 Period sec Peri sec Yelocity D 4 2 D 4 SDOF AVSD 4
82. 2 2 2DOF PAVS SDOF AVS 2 3 1 1 2 4 1 2 4
83. 3 1 A Ar 7 A 7 lt 0 D 32 3 2 D 1 ko e A0 Ec EC D 33 kr A t AN f t Ans D 34 e A D35 av 6 a max t gpr 196 0 1 x i 0 01 0 2 3 4 5 6 7 Iteraion Numbcr D 1 3
84. 2 1 7 El Centro NS 142 3 cm s 3 3 Taft EW 101 2 cm is 4 3 2 1 i El Centro NS 142 3gal 6 9 10 15 i 0 10 15 Taft EW 101 2gal De acne S30 El Centro NS Taft EW Penod sec Pe 6 15 0 0 5 1 1 5 6 4 2 Interstory Drift cm Interstory Drift cm El Centro NS Taft EW 4 a 3 0 20 40 60 0 20 0 200 0 200 400 600 s00 Absorbed Encrgy tonf cm s Absorbed Energy tonf cm s Acceleraiion cms2 Acceleration cm s2 El Centro NS Taft EW EI Centro NS Taft EW 6 16b 6 16 a 166 167 3 TaftEW
85. SRSS 8 1 M 4 12 13 14 152 Ro lt Yh 0 s t AO 6 1 r r 7 0 r r 1 2 F T M B 8 1 6 2 6 2 1 1 A pa 6 3 Bb isr j l Q 2z N N 1 Q
86. 5 6 3 3cycles SDOF AVS ee 7 r 0 134 2 xs oz 5 12 3cycles 148 0 54 3 cycles Wp 27 5 4
87. 37 2 8 2 1 ATl 436 pp 33 62 1992 6 2 2 DIB 7 pp 1723 1728 1986 12 2 3 T Kobori H Kanayama S Kamagata A Proposal of New Anii Seismic Structures with Active Seisrnic Response Control Dynarnic Intelhgent Building 9th WCEE Kyoto Aug 8 1988 2 4 AI 416 pp 125 133 1990 10 2 5 T Kobori H Kanayama S Kamagata Rigidity Control System for Variable Rigidity Structure United State Patent 4 964 246 Oct 1990 2 6 6 76738 1994 9 28 2 7
88. cos sin SDOF AVS SDOF AVS 2 1 1 2
89. 1 Transicnt Staei 0 023sec AVS Ratio 3 0 sR Acceleration cn ys2 0 0 1 0 2 0 3 0 4 0 6 0 4 0 2 0 0 2 0 4 0 6 Displacemen cm cm 2 19 32 2 4 2 4 1 step by step
90. SDOF AVS 129 5 2 Freudenthal 5 1
91. 2 SDOF AVS 5
92. 3 Tro lt 7 7 3 136 3 137 3 160 3 169 2 m Flc lz t Tsro OS 3 171 7 7 Fmr c 1 Ve Toro FsTo 320 pc oc eg 3 172 Fim e Ve Tsr 3 173 320 p c c 1 b 71 lt lt 7 3 142 3 143 3 16 3 170 2 Flc l V0 a Ca Lon 3 174 2 14c c 1 2 7 7 VT Fm c 1 457 32o 2c2 e 1 3 17 Fm c 1 V Tor g 77 gt 32g 2 c 3 176 F ma et c 2c AV Vr Tsr Ve Tsro 3 177 32 rc7 c 1 AV Vy Teors Ve Tor ail ala
93. 1 1 1 1 1 y 2 1 17 1 y 2 6 co 2 3 81 2 4 Esc 3 4 1 SDOF AVS
94. b c 2 3 d 2 2 3 2 1 0 45 9p e 2 28 41 400 ton 400
95. 1 2 1 0 6 7 7 0 00 y 1 0 1 1 207 0 853 2 0 477 0 337 Barrel 7 0 0 7 10 1 1 207 0 833 2 0 466 0 330 6 6 Barrel 1 2 6 7 6 8 7 1 0 1 1 0 2 0 4 1 0 1 0 3cycles
96. 4 5 4 6 2DOF PAVS Velocity cm s 0 0 05 0 1 0 15 0 2 0 25 03 0 35 0 4 0 45 Duration Time sec Displacement cm 0 005 0 1 0 15 0 2 0 25 0 3 0 35 0 4 0 45 Duration Time sec 4 5 2 Velocity cm s 0 06 0 04 0 02 0 0 02 0 04 0 06 Displacement cm 4 6 102 et SDOF AVS 2DOF PAVS Ni 4 8 1 2 2DOF PAVS 31 m c 4 60 n 4 7 AVS Ratio Reduced Ratio of Ampiitudc Number of cycles 47 2DOF PAVS
97. SIMOKE 20 3 8 2 50cm s 5 1 0 01 25 Jennings 0 773 Osrs3 8 1 3 lt r lt 12 3 5 1 amp exp 0 24 1 12 5 12 5 lt 7 25 130 leration G Acceleration G 0 5 10 15 20 25 0 5 10 15 20 25 Duration Time sec Duration Time sec No 1 No 2 5 2 oo Pseudo velocity CnVs gt Pcriod scc 5 3 5 3
98. Ar 1 ee lt Step 1 FFT G gr expl iarldt C 1 Step 2
99. ne ke 2 8 a ns 3 157 0 H 3 Or 2 0 5 TT IS 2 25 3 38 4 0 05 1 15 2 25 3 35 4 3 Durauion Time sec Durauon Tirme sec La a a Ls 3 158 4 Sh 0 3 10 82 83 1 0 2 AVS Raiio 1 0 Acceleration cm s2 Velocity cm s 1 0 5 0 0 5 0 2 0 1 0 0 1 0 2 Velocity cn S Displacement cm 3 11 F D H V
100. 1 2 x 0 u C1 0 4 4 2 75 x 0 u 1 O02 1 ust 2 76 x 0 x 0 n 2 77 w FX 6 og r X t FT wp Tdr 2 78
101. 5 10 15 20 0 200 400 600 800 0 20 40 60 80 100 0 Acceleration cnys2 Velocity cms Djsplacemeni cm 0 0 3 1 5 2 0 20 40 60 80 Interstory Dnft cm Absorbcd Energy of AVS tonf cm s 6 8 Barrel Bamel
102. 5 3 2 SDOF AVS xt7zO 7 nT y TD Y 0 3 6 1 20 2 MTG y 5 7 800 8 Acccleration crys2 P 8 0 0 25 0 5 0 75 1 Acceleration Amplification Factor 0 0 25 0 5 0 75 1 AVS Ratio XR 5 8 a 136 80 60 8 6 gt 40 3 5 gt 20 0 gt 0 0 23 0 5 0 75 0 0 25 0 5 0 75 1 AVS Ratio AVS Ratio gE 5 S E QQ s 0 0 25 0 5 0 75 l a 0 0 25 0 5 0 75 1 AVS Ratio AVS Ratio 5 8 b
103. 17 1 AVS R 0 0 AVSK 1i 0 AVSR S3 0 0 25 0 5 0 75 Durauon Time scc 17 1 42 43 44 2 b 2 b
104. A B C 1 D 10 1 3 1 1 Proceedinss of World Conference of Earthduake Engineering Berkeley California June 1956 1 2 1963 4 1 3 AIJ 51 pp 50 60 1955 5 1 4 1 AIJ 52 pp 61 69 1955 9 1 5
105. a b 9 c sjp siip hardening 5 E7 R Bracing 1 Brac1ng Tightening in Tension Slacking in Compressior Slacking tn Compression Tightening in Tension Bracing Bracing GD Bracing 1 Activating
106. 6 2 5 3 y 6 6 5 i Y y 10 160 EE 0 0 25 0 5 0 75 1 AVS Ratio Barrel Reduced Ratio of Interstory Dsiplacement Reduced Ralio of Interstory Dsiplacement 6 9 0 0 25 0 5 0 75 1 AVS Ratio Barrel 6 10 Reduced Ratio of Interstory
107. 2 3 4 1 12 1 ni n m 4 94 4 2 2 2DOF PAVS
108. EI Centro NS Taft EW 100c s 48 3F 2F cem sec2 20 1 0 0 4 Acce1eration Velocity Displacement Tncers ory Disp E1 Centro NS ww nj s fie cm sec 500 20 1 0 0 4 1 0 Acceleration Velocity Displacement Interstory Disp Absorbed Energy Taft Ew TS contro1 TP contro1 2 37 B
109. a t 0 E 0 ee 3 61 E 0 0 3 62 Ec 0 0 3 63 v 3 64 b 0 lt r lt 7 2 2 9 7 i co 3 65 2 2 Et IM k CT pT dr Sin2 jr 3 66 2 E Et 3 67 3 67 c 7 lt r lt 2 Lm YW 3 68 A 2 1 y 1 y 69 Vo EO mir Wir Td tin ei TY 3 69 gz M kT Dip TT dt FE cog op G20 Pc 3 71 20 1 jz Dg d
110. 6 9 11 6 10 6 13 141 6 5 6
111. 1 3 El Cenro 1 36 1 4 gk TL 2 2 2 2 4 PB Period sec 1 3 ee WI 2 nn Mo Tr eriod sec Period sec 1 4 El Cenrro NS
112. 3 2 1 2 1 2 1 a 1 1 1 H We 2 i Ne 1 Hardening Fundamental Hardening Fundamental Displacemeni cm Stiffness i State k Duration Time sec 3 1 60 1
113. Va Ve 4 176 1 2 4 4 4 2 4 4 3 4 4 HH state Tyro 0 45 0 9 0 0 0 5062 HH state To 0 0 0 0675 0 135 0 6557 FF state 7 0 0 0 0675 0 135 0 3278 FF state Ty 0 45 09 0 0 0 5062
114. 1 53 Frenuency Frequency 400 sec2 Peak Power 0 00395cm2 sec3 at 2 930Hz i Power Ratio EE 0 75 1 0 et 1 E05 lt f Ss 0 75 5 5029 0 5 10 0 hess Data Ro Ttpe 2 0geconds FFT Aa RA Time 5 12seconds i i 1 0 1 1 Duration Time Second 3r TOP case H case H 2 00 ec 0 1 Paeax Pover 0 00663cm2 sec3 ac 2 344Hz i i Power Ratio 6 0 75 1 0 wwS0 5 lt Py S 0 75 H H 0 25 0 5 10 0 Date AcQuisition Te 2 0eeconds lt FT Analy tical Time 5 12second i 6 H i 1 5 0 ra ambit NR 1 Co CE H gt nS 5 0 10 0 15 0 20 0 Duration Time gecond 3F TOP case M 15 0
115. fv O x 2 17 i 1 jkx O 0 2 18 c Ot mx k x fp u 0 2 19 Force ton 0 0 05 0 1 0 15 0 2 0 25 0 3 0 35 0 4 Duration Time sec 2 13 2 3 2 SDOF AVS 2 0 lt 7 lt 77 X N _sin gt 2 20 Wg Xglt vo COS OD 2 21 b 7 lt t lt 77
116. 151 6 2 2 3
117. D LB AI No 2420 pp 839 840 1986 8 1 16 DIB 7 pp 1723 1728 1986 12 1 17 Kobori T State of the Art Report Active Seismic Response Control 9WCEE Vol 8 pp 435 446 Aug 1988 1 18 T Kobori H Kanayama S Kamagata A Proposal of New Anti Seismic Structures with Active Seismic Response Control Dynamic Intelligent Building 9th WCEE Kyoto Aug 8 1988 1 19 42 10 1 20 H Kameda H Hayashi N Nojima System Interaction in Seismic Performance of Lifelines and Information Management of Their Post Earthquake Operation Proceedings of US Italy Japan Workshop ymposium DD 126 139 July 1992 1 21 Y Yoshikawa Earthquake Monitoring and Damage Esimation Systems Based on The Online Information for City Gas Pipeline Operation Proceedings of US Italy Japan WorkshopQymposium pp 252 263 July 1992 1 22 1989 12 19 1 23
118. 2 3 1 1 2 SDOF AVS 4 1 4 SDOF AVS
119. 2 25 1 1 A H H U N a Hardening Fundamental Hardening Fundamental Dispiacemen cm 1 i State ke k i Durauon Time sec Restoring Force x 0 from Hardening to Fundamental stiffness Absorbed Energy by AVYS x 0 Deformation from Fundamenta1 to Hardening stiffness 2 25 1 2 3 mplt cig 0 kt ke xg m3 2 71 b r cXr pr 7 2 72 37 xr 0 2 73 g 0 2 74
120. Taft 6 0 10 0 10 b El Centro 5 Taft 10 300 0 ton 300 0 ton EX GentoK NS Ctaft EN 2 32 y cgse 4 Y 3 0 cgse 7 1 0 20 EI Centro NS Taft EW 100c s2 0 005
121. Xe D BU G D Ya pp lmewc 4 122 0 EMR 7 4 123 7 7 4 124 3 4 2 KEN rad Tr BU 4 125 Mi 2 7 4 4 XF DT 0 4 126 d FF state 2 sint ri t T 27 sin zp 4t DB 4 127 i Xr N Pe yl ia BD oosto 4 128 2 X em Xf7 7 AD nt GG 4 129 4 130 2 Fi Xi 7 0 4 131 nz 1 1 jp 4132 2 7 2 2 4 mm 40F 115 e
122. eee H 1 1 lt a ucFS ev ae et lt er 0 15 0 20 0 5 10 0 Duration Time Second 1F TOP TP contro1 El Centro 8S 2 38 b El Cenro NS 1 0 case M 3 1 a 3 1 3 1Hz 2 5Hz 1 30
123. xcx 2r 7 0 5kcx 7 7 D 12 WH dr D 13 m dr eG ta D 14 Xplt tT dr D 15 3 rt exp For cos WOF pt C4 sin g pt 7 D 16 C FD OFp exp 6 ror Rg G eos pn c st meg gr r D 17 rsr r 7 Ry SIn 7 D 18 Xr FD Ry COS 7 D 19 C C3 3 7 D 20 re D21 D 16 D 17 xr gg EI 7 i Xr 2 7 gg D 22 FD XT FR
124. 2 301 pp 9 15 1981 3 a 3 Takuji KOBORI Hiroo KANAYAMA and S KAMAGATA Active Seismic Response Control Systems for Nuclear Power Plant Equipment Facilities Nuclear Engineering and Design 111 pp 351 356 North Holland Physics Publishing 1989 a 4 416 pp 125 133 1990 10 a 5 420 pp 121 131 1991 2 a 6 436 pp 53 62 1992 6 a 7 438 pp 65 74 1992 8 a 8 Takuji KOBORI and SJKAMAGATA Dynamic Int
125. 2cyc es 56 8cmi 5 4cyc es 31 7c s b lcycles 106 8cm1 s 3cyc es 40 0cm s Scycfey 26 8c s
126. 1 2 c 43 2 5 3 1 3 2 0 3 0 b c 100c EI Cento Taft 2 31 a Displacement 1000p 0 1000 onftem Absorbed Energy Input Energy 1 8 Softening 0 Stiffness State L 5 0 10 0 15 0 20 0 sec El Centro NS 300 cm wwe tonfsem Displacement Absorbed Energy Input Energy Stiffness Srate L 5 0 10 0 15 0 20 0 sec Taft EW 2 31 44 a FI Cenro 5
127. 6 5 3 Barrel Barel 1 2 SRSS 10 200 400 600 0 20 40 60 80 100 0 5 10 15 Acceleration cm s2 Velocity cmy s Displacement cm 0 0 5 1 1 5 2 0 20 40 60 80 Interstory Drift cm Absorbed Energy tonf cm s 6 25 Barrel Barel 1 174 6 6 4
128. 2 9 I 2 2 3 0 2 0 5 5 3 5 1Hz 1 SHlz 100 Gal 100 0 0 1 0 2 0 3 0 4 0 5 0 sec 2 10 2 11 2 12 350 6al 0 350 0 6 cm 0 0 6 0 0 1 0 2 0 3 0 4 0 5 0 sec 350 Gal 1 0 1 350 0 6 cm 0 1 0 6 1 ON
129. 30 Velocity cm s NS 65 61gal EW 63 40gal Period sec 6 20 NS 2 6 EW 2 6 1 2 gt lt lt 1 He 4 gi 4 3 Jntcrstory Dnft cm jntcrstory Drift cm jntcrstory Drift cm Intcrstory Drift cm 6 21 AVS Ratio 0 5 AVS Ratio 1 0 10 10 9 9 9 8 8 gt bardel 7 7 6 PE CY YT TTT TT 6 TE PT 2 BD ST 5 rd nk ie nea Dh 2 4 OX CC 4 3 PPP CEC CT I 3 PP 2 1 1 M 5 0 9 0 2 E 0 0 5 1 15 2 0 0 5 1 13 2 0 05 1 15 2 0 05 1 15 2 Interstory Drift cm Interstory Drift cm 6 22 Barrel Interstory Dnift cm Interstory Drift cm
130. case A 0 5k 1 5k 16 case B 0 5k 2 04 21 Ga b 1 5 2 oo ee 1000 PRC 8 00 DIB Response 5 69 NN 1 k 0 5Sk 1 5k 1 k 0 5k 1 5k 600 k 0 5k 2 0k E 600 i 2 0k 3 AF Response 0 400 Linear Response lt 200 206 gt 9 0 200 O 0 0 2 a 0 9 Per od gec Per 5 60r 60r 40 Velocity Velocity 2 0 3 0 80 1 0 200 3 0 4D a Perfodtsec on 20 20 15 0 Displacement Displacement Wn 0 2 0 3 0 4 r 0O 2 0 3 0 0 Perfod sec PerfTod sec 1 O00 500 Eont om 1000 1000 500 6 500 Input Energy Input Energy 1 0 2 0 3 0 4 0 1 0 2 3 0 EE 0 Period sec Pertod sec El Centro NS Taft EW A S 183 3
131. A 1 416 pp 125 133 1990 10 IR4 B FFT 1 Saw gr expl ior 2r B 7 7 B 2 f B 2 7 T yO TeT B 3 g 0 0 T cieT B 4 7 7
132. 2 2DOF PAVS PAVS Kc y K 4 8 PAVS 2 2 1 2 95 4 3 2 2DOF AVS
133. 2DOF PAVS 4 4 2 3 1 Q A A 1 0 Displacement cm 0 0 3 1 1 5 2 2 5 3 3 5 Duration Time sec m m m k 3m 0 27 amp 2 4 13 4 3 2 J5m 2 J5m i 116 117 4m WT XpiTimra OFi Kgi Tom 4 139 SN 20F 7 TB Xfi Tamr3 Oi 4 2 4 140 8 gt 6 TN i Xpi lamra OFi Xi lamr3 4 141 Do 2 0 6 DL y 7 7 2 0 1 005 0 005 0 1 0 15 7 1 ea 83 4 142 Displacement cm On 40g 2 4 139 4 140 4 141
134. 438 pp 65 74 1992 8 5 6 Takuji KOBORI and SJKAMAGATA Dynamic Intelhgent Buildings Analyucal Simulator Microcomputers in Civil Engineering 7 pp 265 281 Elsevier Science Publishers 1992 5 7 444 pp 33 41 1993 2 S 8 1990 9 5 9 Heki SHIBATA et al Observanon of Damages of Industrial Firms in Niigata Earthquake Proceedings of the Fourth WCEE Vol III J2 Santiago Chile Jan 1969 5 10 Tsuneyoshi NAKAMURA amp Takashi YAMANE Optimum Design and Earthquake resDOnSe Consrained Design of Elastc Shear Buildings Earthquake Engineering and Structural Dynamics Vol 14 797 815 1986 3 11 1992 6 5 12 2 1
135. 20 0 0 25 0 5 1 0 3 0 2 8 Acceleration cmnWs2 Pseudo period sec Velocity cnys 8 8 Pseudo period sec 5 7 a SDOF AVS 135 Displacement cm 1 10 0 Pseudo period sec 5 7 b SDOF AVS 1 0 3 0 0 5 b 0 5 3 0 lt
136. Br 0 4 113 pil 1 2 i 8 0 Xi FT 4 114 b FF state MQ tt T Kep Q t T M sin or 7 7 4 115 i XF 1 le lee 4t 4 116 Fi Xi 1 or Xgi 6 smer 7 4 117 4 118 2 Xp 2 01 4 119 OF 1 mee 7 4 120 2 2 40F hg i c HH state 3z 2 114 F t sin g G D cosf gi 4 121 i
137. SDOF AVS 6 5 6 6 179 A
138. JT P Yao 1970 Structural Conrol 1 7 1 8 1979 1985 IUTAM Sructural Conrol Symposium 1 9 10 MXND CID RK D FG 7 1 1 x M x 7 C x kK tr
139. Barrel 6 4 2 10 6 2 0 0 5 1 1 5 2 0 0 5 1 15 2 Interstory Drift cm Interstory Drift cm Barrel 6 2 153 6 1 aa eee tonf fon cm onfcm 10 25 8 4789 10 5428 9 25 14 5015 14 6001 8 25 19 3496 18 3481 7 25 23 4587 22 2897 6 25 27 0623 25 7114 5 25 30 2642 28 2715 4 25 33 0694 31 3220 3 25 35 4059 33 4335 2 25 37 1409 37 4041 1 25 38 0967 48 5828 10 1 2 6 2 Barel mettre tn mm th ms nA mn 1 1 207 1 398 1 207 1 378 2 0 477 0 614 0 466 0 579 3 0 300 0 326 0 289 0 320 4 0 221
140. EG ha a Y Y 7 3 5 12 a 0 952 5 7 7 Sp Ti h x7 7 5 10 6 1 210 g 0 550 77 7 3 11 ga 1 366 1 1 489y 1 04y 0 437 el 5 i 8 1 0 3 0 a 1 040 g 0 430 8 AVS ratio 5 10 me 138 139 Displacement cm 5 12 5 13 Pseudo period sec AVS Ratio 5 13 140 Ia re Ll mw 5 5
141. 2 pp 241 280 1994 11 15 13 d 1 SLICE 3 pp 133 137 1981 3 d 2 61 pp 108 117 1987 6 d 3 DIB 7 pp 1723 1728 1986 d 4 TL Kobori H Kanayama and S Kamagata New Philosophy of Aseismic Design Approach on Dynamic Intelligent Building Systems ASCE Engineerng Mechanics 6th Conference abstracts Buffalo New York May 1987 d T Kobori H Kanayama and S Kamagata Acive Seismic Response Control System for Nuclear Power Plant Equipment Facilities The 9th International Conference on Structural Mechanics in Reactor Technology Lausanne Switzerland Aug 1987 d 6 T Kobori
142. 4 3 3 1 SDOF AVS5 1
143. 0 01 2500 0 003 5000 03 6 2 4 1 20 10 10DOF AVSD 155 Story Story Story 0 200 400 600 800 0 Accelerauon cmy s2 200 400 600 800 Accelerauon cm s2 0 200 400 600 800 9 Accelerauon cmy s2 200 400 600 800 Accelerauon cm s2 Story G ow AVS Ratio D 25 0 20 40 60 80 100 Velocity cm s AVS Rauo 0 5 0 20 40 60 80 100 Velocity cm s 0 20 40 60 80 100 Velocity cmy s 0 20 40 60 80 100 Velocity cm s ow M no profile AVS Ratio 0 5 AVS Ratio 1 0 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 Displacement cm Displacement cm to Displacement cm
144. 0 5 5 6 Barel 10 3 1 2 3 Barrel
145. 2 TS 6 7 6 1 A M Freudenthal J M Garrelts and M Shinozuka The Analysis of Structural Safety ASCE Vol 92 No ST1 pp 267 323 Feb 1966 6 2 M Shinozuka Maximum Sructural Response to Seismic Excitation ASCE No EM pp 729 738 Oct 1970 6 3 1974 6 4
146. 1987 ASCE Engineering Mechanics Yao Soong Masr 1988 9 Active Seicmic Response Conrol Special Theme Session 1992 1991 3 3 Structural Conrol ASC
147. 4 2 4 key kc2 gt HH state HF state Ke pF i 1 ka 0 FH state Ke FH 0 0 0 0 FF state Kc rr 0 0 4 2 ceasenenssene nes en esssnss nn nnn nn nm nnn Ai 0 874 0 662 0 765 0 618 2 288 2 136 1 848 1 618 i 0 526 0 615 0 383 0 526 0 851 0 788 0 924 0 851 0 851 0 788 0 924 0 851 0 326 0 615 0 383 0 526 Velocity cm s 0 0 5 1 1 5 2 2 5 3 3 5 4 4 5 5 Duration Time sec 4 8 a 104 Displacement cm 0 0 5 1 1 3 2 2 5 3 3 5 4 4 5 5 Duration Time sec 4 8 b ls StopG Velocity cm s 1 15 0 1 005 0 005 0 1 0 15 015 40 1 2005 0 005 01 0 15 Displacement cm Displacement cm 1 2 4 9 4 3 5
148. c s zoo 3 166 a lz p Tsr 7 3 167 J 1 20 Reduced Ratio ww 0 0 5 1 1 5 2 2 5 3 3 5 4 AVS Ratio 3 13 SDOF AVS 6 SDOF AVS 3 4 4 V t m X Nd kx nDx ndt EY kx 3 168 2 2 3 Ve ED 3 169 b 2 2 Vi 3 170 85 3 4 4 1
149. 2 1 xn 0 1 0 20 4 3 0 lt zr lt T Ci 0 4 43 C 0 4 44 Cs 0 4 45 4 Qa Cg a 4 46 i sin 1 4 47 WO 2 1 ol oe 4 48 7 6 4 2 gg2 2 2 1 a 7 a OF 2 4 30 7 sr lt Cr 0 4 51 Cs 0 4 52 4 a 2 2 Cr Cg4 mio M2422 4 53 Op Cr 0 4 54 1 _ 1 ol Ws cos1 t T 4 55 CC gt _ 1 2 Og2 Sn 4 4 7 2 gt 101 a 4 58 2 Wg 2 1 4 59 75 Wp 1
150. b c 3 103 2 0 4 06 0 8 0 20 c a 4 5 112 ao 3 190 3 2 2 0 sin sin g 7 sin 7 0 0 lt 7 lt 2 0 0 5Hz g 7 sin 277 2 0 7 lt 440 1 0Hz g 7 sin 477 4 0 7 lt 6 0 2 0Hz g t sin 107 6 0Sr lt 8 0 5 0Hz g t sin 20r 8 0S7 lt 10 0 10 0Hz g 3 sin 3 0 z 0 097656Hz a 100 105
151. 1 et NS SL Ao SDOF AVS 4 2 2DOF AVS 2DOD PAVS 1
152. 6 Barrel 10 a 4
153. 2 6 HH UL Na Force tonf 0 i 0 0 05 0 1 0 15 0 2 0 25 0 3 0 35 0 4 Duration Time sec 2 6 a lt 47 1 2 11 lp HR NN lg Rod Length otlg A 2 7 b
154. No 900 42 1990 7 8 42 1992 3 1 24 Proceedinss of the 1st Motion and Vibration Control Japan Sep 1992 11 1 2SjJJN Yang Applicaton of Optmal Conrol Theory to Civil Engineerine Structures ASCE Vol 101 No EM6 Dec 1975 1 26 C R Martin T T Soong Modal Control of Multi story Structures ASCE Vol 102 No EM4 Aug 1976 1 27 M Abdel Rohman H H E Leipholz Active Control of Flexible Structure ASCE Vol 104 No ST8 Aug 1978 1 28 S F Masri G A Bekey and F E Udwadia Online Pulse Control of Tall Buildings STRUCTURAL CONTROL H H E Leipholz ed North Holand Publishing Company 1980 1 29 J T P Yao T T Soong Importance of Experimental Studies in Structural Control ASCE Atlanta Georgia May 14 18 1984 1 30 A M Reinhom T T Soong and J N Yang Active Control of Structures During Earthquakes EAEE Lisbon The 8th ECEE 1986 1 31 J N Yang A Akbarpour P Ghaemmaghami New Optimal Conrol Algorithms for Structural Control Journal of Engineering Mechanics ASCE No 119 9 pp 1369 1386 September 1987 1 32 T Kobori et al Study on Active Mass Driver AMD System Part 1 2 Active Seismic Response Controlled Structure Tall Buildings 2000 Beyond Fourth World
155. ROA 2 3 1 0z 40 0 0 0 1 0 5 1 0 3 0 1 i 1 40 3 30 H 10 0 Ss 2 0 1 1 0 Period T sec Periad T sec Period T sec Acceleration Yelocity Displacement soe 40 30 20 10 i 1 0 2 0 1 0 Period T sec Pered Te sec Period T sec Acceleration Yelocity Displacement 8 o s 0 2 0 1 Pznog Ty sec 1 Acceleration AM Perind T sec Ye
156. SLICE 1982 1983 6 S C Goel R D Hanson MARC
157. 100 80 S 60 Level 2 40 TTY11 Level 1 Penod sec 6 13 2 1 1 5cm 400cm 1 67 1 250 2 2 12 1 0 1 0 2 0 0 5 1 1 3 2 0 0 5 1 1 5 2 Intcrstory Dnft cm Intcrstory Drilt cm Barrel 6 14 1 0 2 2
158. Tp FFT 2 sm FFT 2 1 sin fr sindO0zrr Osr lt 7 T 0 2 sec 0 4sec 0 6 sec 0 8 sec 1 0 sec 3 x x nl D 4 T 1 0sec 8 0 8sec Bg A T 1 0sEc lt 0 65ec 85ecC 0 4sec gt bsec 0 2sec C as
159. 0 lt y SDOF AVS SDOF AVS 4 SDOF AVS 0 lt y 80 3 4 9 2 SDOF AVS 7o Tor Tor2 Ter3 fora 7yo a Tyo S7 77 6p z 2nz x ro _F ts eestore Tro 3 136 20F en rx Co For 2 jewere 77o 3 138
160. b c d 5
161. 1 17 18 Artificial Satellite oe Ss Active Mass Driver System Radio Network Active Seismic 1 2 Earthquake Response j a Sensor Controller____ Vibration 2 System Eau 1 Sensor iBRATN System Decision Logici lt Active Adjustable Closed Loop StHffness Systen iStructurali iVibrationi iResponSe cL ha Ti pt et Prt ts Qs dtc sett te 1 1 DIB a 1 19 20 21 b
162. Vt 1 V gp 4 69 Vg Sm 4 71 3 a 20 Va co Wnt sin wnt PT sin 4 73 2 2 3 2 Va co nr im oir cos wnt 4 74 77 1 1 y 106 oc 4 75 Vz 2 1 VE T ry 4 76 7 lt r lt 1h 3 0 212 0 a 4 77 4 78 len i a C 1 4 80 Vel Te on DI or r re oa gin 4 81 Vr t sin for rt 7 V Dae lp 1 7 4 82
163. SDOF AVS CO B sin xy 1 4 100 Wn PA 4 101 2 la cos wi sin cestaniD 4 102 4 103 X 4 yi SINWOnN D B Wn COS WON I ea i i 3 4 104 A mh 8 B 0 4 105 j l 5 gt 1 X U 4 106 2 p Ci 4 107 112 4 4 2 2DOF PAVS 4 4 2 1 i 4 14 a i b
164. 5 2 1 5 Interstory Drifi cm Interstory Drift cm Interstory Drift cm Interstory Drift cm 6 17 168 6 4 3 Barrel 0 200 400 600 800 0 200 400 600 800 Acceleration cns2 Acceleration cnVs2 El Centro NS Taft EW 10 9 8 7 6 gs ss 3 2 13 3 0 20 240 60 80 100 0 20 40 60 80 100 Velocity cm s Velocity cm s El Centro NS Taft EW 0 5 10 15 0 5 10 15 Displacement cm Displacement cm El Centro NS Taft EW 6 18 a 3 TaftEW EIl Cenro NS Taft 1 0
165. SDOF AVS 3 4 1 SDOF AVS SDOF AVS 1 a 1 7 Sr lt xr 76 gt 0 3 82 0 3 83 2 7 sin 6 3 84 7 x 0 3 85 daar 0 3 86 b 1 7 lt 7 lt
166. 2 22 1 7 77 Yk 223 26 2 19 hl D Tj mxp t kxplr T 2 24 4 2 24 7 Z weG TR a 2 25 C xp tr CGr T D 2 26 fs T 7 at 7 2 27 Tek 7 2 28 xpt Acosf or r T gsinf r7 CO 2 29 4 z sinlwora T BoF coslor t F C 2 30 7 A xg T D 2 31 2 32 WF sin op H 0 7 2 33 we se 6ryjewere CF a i r sinf 7 ig 2 34 c p lt t lt sin r 7 2 3 w w fOeosfore 0 FE XD OF sinf or7 D 7 cost 7 2 36 ns 0
167. 1976 3 3 1994 3 4 2 52 pp41 48 1936 3 3 5 1 66 pp 257 260 1960 10 3 6 1 1994 3 7 T Kobori H Kanayama S Kamagata A Proposal of New Anti Seismic Sructures with AcHve Seismic Response Control Dynamic Intelligent Building the Proceedings of 9th WCEE vol 8 pp 465 470 Aug 1988 3 8 DIB 11 No 2550 Vol B pp 1099 1100 1994 9 3 9
168. 3 4 4 2 3 5 3 6 ee 4 2 4 2 2 FFP FPP PT 4 2 1 4 2 2 43 4 3 1 4 3 2 1 4 3 3 2 4 3 4 4 3 5 4 3 5 1 1 4 3 5 2 44 44 1 4432 KK 144 1 K 4 4 22 4 4 2 3 4 3 120 4 4 4
169. 1 14 2 1 1 3 2 1 4 3 1 2 120 1 0 5286 0 5 6 5 4 1 4 1 0 837cmys 3
170. 1990 9 6 5 420 pp 121 131 1991 2 6 6 438 pp 6 74 1992 8 6 7 Takuji KOBORI and SKKAMAGATA Dynamic Intelligent Buildings Analytcal Simulator Microcormputers in Civil Engineering 7 pp 265 281 Elsevier Science Publishers 1992 6 8 444 pp 33 41 1993 2 6 9 Tsuneyoshi NAKAMURA amp Takashi YAMANE Optimum Design and Earthquake response Constrained Design of Elastc Shear Buildings Earthquake Engineering and Structural Dynamics Vol 14 797 813 1986 6 10 1992 6 6 11 2
171. SDOF AVS 1 4 3 3 TstsT Ff sinfor t T sin 0 0 i TSI cost gg cos 0 1 ml Es 7 sin er sin 0 0 mam 1 sis costggGC 5 cos 0 1 co 0 SDOF AVS 1 1 1 1 1 J 7 7 7 7 UE 3 96 74 SDOF AVS 1 0
172. 151 61 151 6 2 152 6 2 1 152 6 2 2 152 6 2 3 155 6 2 4 155 6 2 4 1 155 6 2 4 2 Barel 158 6 2 5 160 6 3 164 jj 64 166 6 4 1 166 6 4 2 166 6 4 3 Banel 169 6 4 4 171 6 5 172 6 5 1 172 6 5 2 173 6 5 3 Barel 174 6 6 175 6 7 176 177 A 180 B ee 185 C 189 D SDOF AVSD
173. 1 SDOF AVS 2 2 2 2 SDOF AVS 1
174. 0 5 149 5 8 3 1 A M Freudenthal J M Garrelts and M Shinozuka The Analysis of Structural Safety ASCE Vol 92 No ST1 pp 267 325 Feb 1966 3 2 M Shinozuka Maximum Structural Response to Seismic Excitation ASCE No EM pp 729 738 Oct 1970 5 3 1974 5 4 420 pp 121 131 1991 2 5 5
175. 1 2 3
176. 7 lt 0 DE ET Et ED ID 9 g 3 9 r r 0 3 10 DT xF D lt 0 3 11 state V 0 E kx state VD 7 gt 3 2 x 0 7 7 state III 62 3 3 SDOF AVS 3 14 15
177. AT 420 pp 121 131 1991 2 4 6 AT 438 pp 65 74 1992 8 4 7 AT 444 pp 33 41 1993 2 4 8 2 8 1994 11 13 4 9 Shuichi KAMAGATA Takuii KOBORI Autonomous Adaptive Control of Actve Variable Suffmess System for Seismic Ground Motion he proceedings of he 1WCSC vol 2 TA4 33 Los Angeles CA August 1994 4 10 9 pp 1981 1986 1994 12 4 11 4 12 Tsuneyoshi NAKAMURA Takashi YAMANE Optmum Design and Earthquake respDonse Consrrained Design of Elastic Shear Buildings Earthquake Engineering and Stuctur
178. xp t 4 CG T coslwrlt T Bsinfort D H E 2 46 pt F A CG TF sin orG T Bor C cosfort T D 2 47 A x Eh E 1 Yy do 2 48 FF UY 2 49 OF 2mOF OFIc Xa t Y do cosl gr t Ff 7 mlere n 7 7 2 50 31 0 7 ord GT hsinfort 7 Lh oslora T LL 2 51 Tc Tc Xs t er10 Y lesfeze F 7 rl 2 2 1 SDOF AVS 0 25 0 5 25ms 0 3cm 2 19
179. j Ez Ec V V do vo c J1 y Tro Tors Tena Tor3 Tora 59 3 1 3 1 3 2 3 3 1950 Bi linear Phase Plane 3 41 3 51 1976
180. 1994 1 5 13 2 3 1994 1 5 14 Tsuneyoshi NAKAMURA amp Takashi YAMANE Optimum Design and Earthquake response Consrained Design of Elastic Shear Buildings Earthquake Engineering and Structural Dynamics Vol 14 797 815 1986 150 EE it CTR ee ll RE pa 6 6 4 11 12 6 a as m 2 7 kc xk 7 7
181. 2DOF PAVS 4 4 1 2 Mm 0 XX my 0 1 k LOD 4 95 _ _ 92 4 96 ge i i ii oi 4 97 2 111 7 B sin 4 98 0 M U M lg 2 2 2 B 2 1 i l 4 99 1 i
182. gt 3 3 1 2 1 SDOF AVS 2 a RED OF x 0 3 12 b OD 0 XE 0 3 13 SDOF AVS 3 12 3 13 3 16 17 C coS C5 sin 3 14 On G sin wt C2 cos 3 15 x C
183. i KURENAI Kyoto University Research Information Repository KYOTO UNIVERSITY AAAI RR Yo Author s Citaton Kyoto University lssue Date 1997 05 23 nttp hdl handlene 24337157013 Right Type Thesis or Dissertation Textversion author es Kyoto University 1997 1 3 RE 1 1 EEE 1 2 1 2 2 2 2 2 2 1 2 2 2 2 2 3 2 3 2 3 1 2 3 2 2 3 3 ee 2 4 2 4 1 2 4 2 2 4 3 2 5 1
184. 2 8 9 1 2 35 2 35 2 6 1 2 36 PN IS a TP BR 2 36 a 1S b TP
185. AI 420 pp 121 131 1991 2 2 8 Vol 35B pp 37 66 1989 3 2 9 AT 438 pp 65 74 1992 8 2 10 AT 444 pp 33 41 1993 2 2 11 4 pp 1961 1962 1981 2 12 1 pp 1969 1970 1982 2 13 K Sato S Kamagata The Aseismic Behavior of Steel Column base The 9th World Conference on Earthquake Engineer
186. 1250 165 6 4 10 7 5 3 2 4 1 0 20 240 60 80 100 Velocity cm s Velocity cm s 6 4 1 EI Centro NS Taft EW El Centro NS Taft EW 2
187. At 1 200 MG 2 2 4 0 5cAr 0 251 2 3 0 0 0 7 A7 Y 7 AT 2 4 F t G XD G2 XM Gx 2 5 G t 0 5cAr 0 25 k ke t HAr 2 6 Ga t c 1k AY 2 7 G 2 8 2 2 z Ar 7 Az 17 4 7 2 3 lt 2 4 A
188. 194 200 1 Dh gt Dynamic Intelligent Buildings DIB 1 mm M i cc C i KK i x i x 1 i x 0 x Cr Ft F 7 Ar 4 4
189. 1 1994 11 6 12 2 3 1994 11 6 13 Tsuneyoshi NAKAMURA amp Masaaki TSUJI Inverse Damping Pertarbation for Siffness Design of Shear Buildings the Journal of Sructural Engineering Vol 122 No 6 June 1996 6 14 Masaaki TSUJI amp Tsuneyoshi NAKAMURA Opdmum Viscous Dampers for Siffness Design of Shear Buildings he Structural Design of Tall Buildings Vol 3 217 234 1996 176 7 1 Dynamic Intelligent Buildings DIB
190. Peak Pover 0 01855cm2 pec3 at 2 344Hz Power Ratio 1 0 75 1 0 0 5 lt Ph H 2 0 25 _ 0 5 Ey ET Dets Acquisition Tinme 2 Oseconds TFT RE Time 5 12geconds 0 0 t H 1 1 H 5 0 H H pn eee 1 H 1 5 0 10 0 15 0 20 0 eS Duration Time Second 3F TOP case S CaSe S 3F TOP 2 44 a 54 250 cm aec2 15 0 Peak Tower 0 00237cm2 sec at 1 758Hz 10 0 SADwzYterSpss 1 H 1 S 1 H 1 H 1 1 1 H H 5 0 I OTS oo cr gt i i 1 1 1 10 0 15 0 20 0 Duration Time Second 1F TOP case H 250 em secz 15 0 Ee oi A AES bcs RA TE i Peak Bou 0 00297cm sec3 ac 7 617Hz 1 10 0 gt rtd TS te SR 0 1 4 0 1 1 1 5 0 0
191. io 0 v Vio a 5 0 0 V20 2 Cn 0 4 25 Cg 4 2 pg2 mM M2 5 Mi m2j2 a 4 26 Cin 0 4 27 c n Vio V20 _ a i H4 Mika 77272 1 2 gt 2 0 4 28 g2 gt 2 me pm 4 29 2 on 9 cos A 4 00 2 0 7 1 7 T 1 2 4 31 LT 1 Gm 432 1 4 04 Cr Cp mm 5 4 33 Wn Cs 0 4 34 Crs Cg mb m0 0 4 35 Cr 0 4 36 98 512 a an 4 37 1 coS1 a 4 37 or J si 4 38 1
192. 1 0 40 0c 2 3cycles 3cycles 145 40 8 30 5 30 80 5 20 8 20 a 8 10 0 Pseudo period sec Pseudo period sec a y 0 0 y 1 0 5 21 b 3cycles Penod sec 5 20 0 5 1 0 AVS 2 0 3 0 AVS 5 6 2
193. Masri 3 1992 10 IASC 1994 1 F Casciati JJRodellar 1989 1995 6
194. SDOF AVSD EE MI MIPSI RS ER DE ON 199
195. 0 4cm 400cm 1 1000 00cz s2 1 200 1 2 43 cae H M S 3 1 2 44 a b c
196. 4 168 SDOF AVS 2DOF PAVS 4 19 SDOF AVS Ampiitude of Stationary State cm s AVS Ratio 4 19 4 4 4 SDOF AVS 1 2 2DOF PAVS 1 2 0 Vg O Vg 4 170 0 MrO 0 4 171 2 Va aa 4172 2 2 te 4 173 4 2 VE 4 174 gt 2 VF mi 1 4 175 4 4 4 1 4 4 2 2 1 Q
197. 43 4 X Y aiU 4 61 CC C 1 0 C C 0 C 0 1549 C 0 0366 1 2 J C C 1 0236 103 HF FH state 4 8 2 1 1 2
198. b 1 1 2 7 3Hz 2 2 0 3 0 1 14 3 12 50 2 6 2 2 10 a 3 1 0tonf 1 0tonfcm 1 0 b c gt y 0 5 case y 1 0 case M y 2 0 case H 3
199. 1 1 y 2DOF PAVS 9 1 4 Hi 2 SDOF AVS 17 1 I 4 4 3 77 Teor Ter2 or 77 4 Xai Tsro 0 4 145 ig Tro U 4 146 a amp Tro BG Tro Xt a a U sin g 1 Toro 4 147 lt Ka a Gr cos g 1 To 4 148 Tr Tr 4 149 nt fro l yen 0 a 4 150 Xi
200. 1991 7 d 13 T Kobori S Kamagata Dynamic Intelligent Buildings Research on Active Seismic Response Controlled Structures The 4th International Conference on Computing in Civil and Building Engineering pp 387 394 Tokyo Japan July 29 31 1991 d 14 T Kobori S Kamagata Active Variable Stiffness System Proceedings of the U S Italy Japan Workshop Symposium on Structural Control and Intelligent Systems Edited by G W Housner S F Masri F Casciati and H Kameda pp 140 150 July 1992 d 15 pp 41 48 1992 3 d 16 pp 279 286 1992 3 d 17 S Kamaeata T Kobon Autonomous Adapnve Control of Active Variable Stffness System for Seismic Ground Motion Proceedings of First World Conference on Structural Control Vol 2 TA4 33 Los Angeles CA 3 5 August 1994 d 18 9 pp 1981 1986 1994 14
201. Taft EW El Centro NS 1 0 El Cenro b TaftEW El Cenro NS c El Cenro NS Taft EW d EI Centro NS
202. 1 1 2DOF PAVS 4 20 2 4 21 123 3 2 1 b
203. 1 0 3cycles 3cycles 4 16cm 3cycles y 0 25 y 0 0 5 7 SDOF AVS
204. 1 2 Soil Profile Station 7 Type 1 Hard Type H Medium Type Soft Spectral Acceleration 0 00 0 5 1 0 1 5 Z 9 2 5 3 0 3 5 4 0 4 Period T 12 1985 Secondary System 1 40 41 42 43 2 Sensory System Health Monitonng
205. 2 2 uj 1 j i j X X i CC CC C 1 2 ka 1 2 7 gg rr 7 7 c Vgg Vep 4 77o Isr 7 775 Tora 92 3 1 SDOF AVS
206. 420 pp 121 131 1991 2 3 10 438 pp 65 74 1992 8 3 11 444 pp 33 41 1993 2 3 12 T Kobori H Kanayama S Kamagata Rigidity Control System for Variable Rigidity Structure United State Patent 4 964 246 Oct 23 1990 3 13 6 76738 1994 9 28 3 14 9 Vol 2 pp 1981 1986 1994 12 3 15 2 pp 241 280 1994
207. Gi O O xpe pc 5 7 Cpr Cer 9 kc Ke Dj 1 1 y 1930 1950 ij lt
208. 4 2 6 7 8 7 3 9
209. D IB 6 pp 837 838 1990 e 18 D 1 B 7 pp 839 840 1990 15 e 19 D 1 B 8 AC pp 1105 1106 1991 e 20 D IB 9 AC II pp 919 920 1992 ie 21 D 1 B 10 Vol B pp 719 720 1993 e 22 D IB 11
210. Taft EW EI Centro NS 9 3 1 rN 9 Nt 9 ee 3 e 6 a nd NE 0 0 8 ji eedipug lt EN i oh 5 ni sa CN a Ce HGH gg ON RE SS ha CO a CC HE Ec ag ar CE aso k 2 0 a 0 s 0 05 1 15 2 0 0 5 1 15 2 0 05 1 1 5 2 0 035 JInterstory Drift cm Interstory Drift cm Intcrstory Drift cm SR 6 19 170 Story Story 6 4 4 El Cenro Taft
211. 2 AIJ 52 pp 41 48 19S6 3 1 6 AJ 66 pp 257 260 1960 10 1 7 JT P Yao Concept of Sructural Control ASCE Vol 98 No ST7 July 1972 1 8 C M Harris C E Crede Shock and Vibration Handbook Vol 2 Data Analysis Teshng and Method of Control McGRAW HILL BOOK COMPANY INC 1961 1 9 H H E Leipholz ed STRUCTURAL CONTROL Norh Holland Publnshing Company Amsterdam The Netherland 1980 1 10 H H E Leipholz ed STRUCTURAL CONTROL Martnus Nijhoff Publishers The Netherlands 1987 1 11 M J Crosby D C Karnopp The Actve Damper A New Concept for Shock and Vibration Control 43rd Shock and Vibration Bulletin Part H June 1973 1 12 pp 180 18 1990 7 1 13 NE 3523 1981 2 1 14 D C Karnopp M J Crosby and R A Harwood Vibraton Control Using Semiactive Force Generators ASME Journal of Engineering for Indusry Vol 98 pp 914 918 1974 1 13
212. 2 5 1 2 5 2 2 5 3 2 6 2 6 1 2 6 2 2 6 3 2 7 2 3 1 EE 3 2 3 3 3 3 1 3 3 2 3 3 3 3 3 4 3 4 3 4 1 3 4 2 ree 3 4 2 1 1 3 4 2 2 1 3 4 2 3 2 3 4 3 3 4 3 1 3 4 3 2 3 4 4 ee 3 4 4 1
213. 2 79 2 80 2 82 2 83 1 2 3 kc x EE Ec 0 5kcx 1 2 85 39 2 5 2 1 SDOF AVS SDOF AVS 3 2 0 3 0
214. A A m m k 3mQ 4 11 k 2mQ 4 12 1 2 4 13 gt y 682 4 14 M1 Fn 4 15 2 Uj2 TF 4 16 2 4 a 4 17 a 1 Js 4 18 96 b MX YKXG 0 4 19 m 0 M K Ke YK F i 0 y On 1 7 0 4 20 6 1 NR 4 21 1 On On 2 4 22 O gt Op2 2 4 23 2DOF PAVS Ln On fy 4 24 Op 2DOF PAVS 2DOF PAVS
215. 1 0 lt v vo 0 0 cos 7 cos 2 0 lt 9 dy lt 0 2 sin sin AVS R 0 0 AVS R 1 0 AVSR 5 0 0 5 0 75 Duration Tirmc SCc 4 14 0 25 4 4 2 2 a 7 CDI Ky Qa t sin gp 4 108 a t oso 4 109 i 20g Hi 113 i Xi tc0s g DU 4 110 Xi PrsintonD 4 111 7 4 112 Op
216. i 7 F t F t 7 A7 4 4 Gi O C kc Kc 7 fv fg 7 x 7 7 7 gp g E 7 Ar or 0r 17 2 1
217. pp 1099 1100 1994 E1 USA Italy Japan Workshop on Structural Control and Intelligent Systems No 127 1992 11 f 2 10WCEE Special Theme Session Control of Seismic Response of Structures No 129 1993 3 16 2 2 m m j ecc C i kk K i xX 7 7 i i x ri
218. x 0 2 9 0 2 10 a b 2 b a
219. Amplitude 0 0 25 0 3 0 75 1 Durauon Time 3 8 3 4 2 SDOF AVS 3 0 xg 3 97 i 3 98 m b 00 xr fer 3 99 0 3 100 77 y 3 101 3 4 2 1 1 z lt 0 rsin srs7 3 102 75 F x Fg OCW 3 103 i Ft p 0 3 104 Xt cOS 3 105
220. EI Centro NS 1 0 0 2z El Cenrro NS 1 0 5 6
221. ETe AD G Ar 05 2 65 A ESEpy 2 66 gp step 2 step 5 333 2 4 2 a A A C B B D
222. Ff 3 182 ts 2 WW mF xs 3 183 R 3 183 4 3 14 3 V 7 Vy Tsro PT He 3 184 2 2 0 1 ric 1 Vn ES a 3 185 Ws 8 c 1 TT a 3 186 _ sr c 1 3 187 SW 8c 1 3 18 3 186 7gy 7sro Rg 7 Aus Ryy 3 188 c 1 Ryavs 3 3 189 3 14 87 0 8 8
223. 3 x 0 1 x 0 0 coS 3 16 Ox S1n 3 17 b x 0 0 x 0 1 5 nO 3 18 cos 3 19 At cx 7Az 2 63 3 3 2 v SDOF AVS
224. C C C 2 1 fj af lt f lt f af Bf o 0 fcfj af fjr af lt f 7 E 2YAr 2 lt Number of steps lt 27 Step 3 FFT C 3 g 7 G a expliar dw FFT 80 FFT 2 0 0977Hz 1 10 24 0 0488Hz 1 20 48 0 0244Hz 1 40 96 0 0122Hz 1 81 92 189 2 Step 1 3 FFT Srtep 2
225. 6 2 1 20 6 a 0 02 0 64cm s b 0 03 0 96cm s c 0 125 10 96cm s d 0 579 30 7Scm s e 3 78 50 75cm s 5 0 38 4lcm s Velocity cn s Period sec 6 1 6 2 2 6 11 12
226. 77 3 106 Wj 1 2 Fr ry 7 3 107 7 0 3 108 G 109 3 4 2 2 1 2 f Fsin or t T 3 110 lt lt 2 rGD f elee 9 loostore 7 3 111 2 20F rn orxe Fsinfort 7 ti J ee 3 112 Jeostart 7 oss Far OF eere 3 113 4 76 7 3 114 2
227. 7 m 37 4 2 62 4 1 gt 1242 Y 60 7 1 5m 1 J5m 7 2 J5m 2 45m 2 J5m 2 4J5m SD a A 99 1 4 3 4 4 1 0 HiF see FFEOF Velocity cm s 0 0 1 0 2 03 0 4 0 5 0 6 0 7 0 8 09 1 Duration Time sec 0 15 0 1 cc FCL ee oe Displacement cm H 1 1 amp 6 PU ae CK KT PT YY XPKYLYPKKYKL KK 1st mode 1 0 0 1 02 0 3 04 0 5 0 6 0 7 0 8 09 1 Duration Timet sec 4 3 1 i er ees a TrY Velocily cm s HH itate IsLimode FFistate 0 15 0 1 005 0 005 0 1 0 15 Dispiacement cm 4 4 1 100 4 3 3 2 2
228. 2 lt lt B minlt B nT 1 dr A og log 3 72 ME 7 kge dt we ora D 3 73 E Et G74 1 e lt 7 lt A AE 7 3 75 ac T rt 3 75 yo YM Ee T AEse ht AE c ht TE 3 76 gr 3 77 21 R mit T k t D dr sin ol 3 78 2 8 mv Er X T Ts iplT 7 7 EE a a 3 79 70 4 Er 3 80 1 0 3 6
229. 3 SDOF AVS 8 El Cenro NS TaftCEW 100 cm s 20 0 005 4000steps b 10 15 kL kay Lx ke kc 0 1x ko ax 2 0x ko Ls c 3 d SDOF AVS 1 0 lt 10 181 2 k k 5 k 0 5k 2 0k Stiffness Srace L 10 15 0 20 lt D El Centro NS St1ffness State L 9 530 10 0 1 2 Taft EW A 4 3 EI Centro 4 0 1 5Hz 1 0
230. 3390 10cc 20ms 30 gt m on o 1 1 gt FC9801V 24 2 8 20 22 2 2 3 2 Hardening Fundamental Hardening Fundamental Displacement cm Stiffness State Durauon Time sec 2 5
231. 7 7 7 0 20 20F 2 xr D 0 3 34 zr T a us 3 35 HH 0 3 36 c lt r lt Wp i DD cosl g rt D 3 38 i Don sinfos T 3 39 3 37 3 38 3 35 x 9 3 40 Wg Og 3 38 nD 3 41 _ 2 Or 20F a 3 42 AH 0 3 43 nD OV 3 44 d lt 7 lt FD x Ts cos r 1 D5 3 45 0 xg OF sinfor7 T5 3 46 ED x DOF cosl F t D 3 47 3 44 3 Wr WFv pn EG ro 3 48 Xl 3 1 7 Xt 3 65 3 45 3 46 3 42
232. 2 2 1 2 sin g t 0 0 0 0 lt 7 lt 2 0 4 0 lt t1 lt 6 0 S8 0S7 lt 10 0 g t sin 277 2 0 lt 1 lt 4 0 6 0S7 lt 8 0 5 B f a 1 0 fi Qaf Ef lt f af fj 10 a l 2 3 4 5 f 0 097656Hz 1 5 1 1H2 0 9H7 mase ee EE 2 0 4 0 6 0 8 0 10 0 C 1 a a 1 2 60 4 0 6 0
233. e 1 pp 1027 1028 1976 e 2 Analysis of a Beam column Obeyins Hysteretic Uniaxial Sress srain Relations pp 1387 1388 1977 e 3 SLICE 1 pp 1397 1398 1980 e 4 pp 1961 1962 1981 e 5 1 pp 1969 1970 1982 e 6 pp
234. 1 1 2DOF AVS 1 1 4 3 1 2 2DOF AVS X 0 4 9 m 0 7 K xX NN Ro RN i a MX K XG MFG 4 10 1 1 1 Q 1
235. 7 1 7 124 J Wn Energy Level tonf cm sg aS 0 0 5 1 1 5 2 2 5 3 3 5 Duration Time sec 4 20 a Encrgy Leveltonf cm s Energy Level tonf cm s 0 15 0 1 0 05 0 0 05 0 1 0 15 Disjplacement cm 4 21 1 123 Energy Level tonf cm s 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1 Duration Time cm 4 22 vee CPP 4 CFS ss ee 1 ae rea eo 1 Energy Level tonf cm s eh GT ee A 8 lt p 0 2 1 9 II 1 25 0 75 025 025 075 1 25 Velocity cms Energy Level tonf cm s
236. a 2 T 2 6 lorxz Tro pe 3 139 OF 2 Kr 1 t T 8 r i 5 F 5 3 140 7 zp Tsri re 3 141 4 b Tr StSTy2 3772 2nZ nt0 Tn Fn lointont Tm 3 142 Og 20p 0 ian eostont Tm 3 143 kn ontn Tan Fon Sn sintont Ton 3 144 1 1 inn Fm 3 145 2 2 7 2 i G3 146 Og Wp 2 g 81 xr 77o FO Fx Fr To I 3 15 7 Fr Fr TA Csra Op 40 4 0 Xp Tsr A 5 3 147 HR RF HA c 7 lt 7 lt 7 2 2zZ go Or 3 160 r sr ins FE osfort Ta 3 148 F t Tor
237. VMz VF h 4 88 4 10 Veel t Vp VF 4 89 490 ma hn 6 i 4 91 pj dd 7 10 s 0 4 92 3 ba 2 2 5 2 120 VE a 4 93 2DOF PAVS 6 1 2 2DOF PAVS 7 0 2 0 0 0 1 0 2 Displacement cm 4 11 108 109 2 4 13 Encrgy Lcvcl ton cm s tio 0 0 5 1 13 2 2 5 3 35 4
238. 1 1 1 1 2 3 3
239. 1 2DOF PAVS 2 97 4 3 2 1 0
240. 1 10 t A A FG AD FR 1 11 AG m 0 5cAr 0 25 k kc 0jA7 1 12 F t Ar Y 7 A7 1 13 F t G ON GO O Gi Nx 1 14 G r 0 5cAr 0 25 k kcn Ar 1 15 Ga t c lk ke DAr 1 16 G0 kt kc 1 17 1 11 4 1 36 1 37
241. 2 21 3 1 0 25 3 0 1 0 02 case A 0 005 case B 0 2 tonf 0 2 tonf 0 9cm 0 5cm 0 02 04 06 08 1 12 Displaccmcnt case A case B 221 34
242. EIlCenro 1 0Hz 0 5 1 0 2 0 2 0 1 0 Taft 2 0Hz 3 0Hz El Cenro 1 0 Taft 2 0 C 1 2 0 B 4 2 pg sec 20sec 2 4 6 8 10 12 14 16 18sec El Centro NS 1940 NS B 4 a 187 2 200c sec 20sec 4 6 8 10 12 14 16 18sec Taft EM 1952 EW B 4 b 2
243. EiI Cenro NS Taft EW Accelerauon cnys2 P oo 8 8 8 Pseudo period sec y 0 0 Pseudo perind sec y 1 0 Velocily cm s 8 8 Velocity cm s Pseudo pcriod sec Pseudo period sec 7 0 0 y 1 0 gt Displaccmient cm Dispiacement cm 8 Pseudo period sec Pseudo period scc y 0 0 y 1 0 5 16 a 0 0 1 b 1 0 1 0
244. 2 33 lt Cm aec lt Acceieration Acceleration i 3 0 4 0 3 0 2 0 0 3 0 4 0 Pertod AccelLerat On em sec 60 Velocity Velocity 1 0 2 0 3 0 4 0 1 0 2 0 3 0 4 0 Period Period Velocity 2 33 3 45 20 Cm wn Diseplacement Displacement tn 1 0 2 0 3 0 4 0 Period Disp1acemept 1nput Pnergy Tnput Energy 3 0 4 0 Input Energy tonftcm 8 Absorbed Energy Absorbed Energy 8 8 1 0 2 0 3 0 4 0 1 0 2 0 3 0 4 0 Period Tr Absorbed Energy 1 El Cencro NS 8 Taft EWN 2 33 10cm s 2
245. Bounded State conrol DD 1 29 30 1 31 0 7 RG AD Rr AD 3 1 2 x 1 XG Ar A A Rr AD 0 1 3 1 1 KD A FD FR AD FO 1 4 Fplt An G X AND G2X t AN Gx t A7 1 5 a CAr KAr 16 4 17 2 4 G C KAr 1 8
246. xr 1 8s 3 49 WF Wn 3 45 7 3 50 r 74 0 3 51 TT 3 52 RH p T 0 3 53 1 3 1 3 1 2 3 0 Yo 0 0 Vo 0 RH HR WpY wv Wo Wp 0 0 0 2Pe 0 g Wp 3 3 3 1 o 1 1 Wr 3 54 F a 3 54 1 o 2z sec 0 0 0 5 1 0 3 0 3 3 66 Acceleration cim s2 Duralion Timc sec Velocity cm s Duration Time sec Displacement cm
247. D 1 0 1 0 001 3 1 1 0 lt 1 0 2 0 3 0 4 0 1 0 2 0 3 0 40 50 Duration Time sec Duration Time sec 1 7 1 0 2 Tr 1 207sec 10 20 30 4 0 5 0 10 2 0 3 0 40 5 0 Duration Time sec Duration Time sec 1 7 1 0 2 Z T 1 0sec D 2 197
248. H H 1 1 PL a 30 Di i Ml AN SI mreranS Si eS 0 3 0 hn NE 0 I 1 210 lO WC OO 0 i D320 0 7 40 50 80 20 40 60 20 40 60 80 Duration Tige gec Duration Time sec Duration Tise sec C 3 2 1 1 EI Centro NS 3 Amplification Ratio Band Width 8 Af O 1Hz S 0 5 Band Width 2 0 Af 0 1Hz Miyako NS 0 4 Af 0 0488Hz x 0 4 Muroran NS El Centro NS 8 AOmori NS 0 3 Taft 5W 1 0 2 0 3 0 4 0 Period sec C 4 1 0 2 0 3 0 4 0 Period sec Il 192 5 1993 1994 NS 820 56 cm
249. Tr 7 5 2 t i Tg 131 7 Tp y 2 y u Ty 5 3 20 SDOF AVS g gu o a 0 0 1 0 b 2 8 WS Ratio 0 0 Acceleration cmy s2 3 8 Velocity cm s AVS Rauo 0 0 8 8 8 Acceleration cm s2 Pp 8 0 1 2 3 4 Pscudo pcrnod sec Velocity cnys gt 20 AVS Ratio 0 0 0 Pseudo period sec 40 40 30 8 30 E 20 20 3 W 10 10 0 0 0 I 2 3 4 Peudo pcnod scc Pseudo pcriod scc y 0 0 3 4 SDOF AVS 132 a 300 AVS Ratio 1 0 lt Acceleralion cm s2 Pscudo pcrnod sec Velocity cm s 8 Pseudo period sec Displacement cm Pseudo period sec 8 Acceleration cm s2 bb Velocity cm s 8 8 Displacermenl cm Pseudo period scc y 1 0 5 5 SDOF AVS
250. 0 0 5 1 L 5 Duration Tirme scc 3 3 SDOF AVS 1 1 Tp 172 SDOF AVS 7 Tr a 3 56 2 2 SDOF AVS 3 4 67 Velocity cnys Acceleration cnys2 0 2 0 15 0 1 0 05 0 0 05 0 0 15 0 2 1 5 1 05 0 05 1 1 5 Velocity cmms Displacement cm 3 4 1 1 71 2 3 57 3 m n m md Gauss
251. 2DOF PAVS 1 4 1 1 2 SDOF AVS 2
252. 3 18 19 3 0S lt lt 7 rg sin 3 20 Wp Xp vo cos 3 21 VoOg SiN OHD 3 22 3 20 3 21 x HO 3 23 H Og 3 21 7 r 24 2 3 25 TH 0 3 26 ED Vo 3 27 b lt 7 lt xr g cos1 3 28 0 xg 7 rsinf r7 3 29 ED x OF cosl r t F 3 30 3 27 3 25 3 28 3 29 2 2 r 3e 3 32 WF Op 3 28
253. 3 58 3 5 Reduced amplification 1 0 7 1 l y 95 9 n i 0 5 x means maximum integer jm ar less than X 7 0 5 gt yt ke Tali 0 5 4 de 7 3 0 cyclic number i 3 5 4 3 59 1 1 3 2 3 20 3 37 68 3 60 4r flogd 7 1 3 2 0 5 0 064 1 0 0 109 2 0 0 172 0 0 274 3 3 4 SDOF AVS SDOF AVS E 7 4
254. 1960 Servo conrolled System 1 8 1970 Karmopp Karnopp 1 11 1 12
255. 2 3 mg cg 0 kt ke rg my G 1 b mip t cxp 0D kxg 0 my 3 2 xr 0 3 3 lt 0 3 4 1 3 2 Restoring Force eo Displacement Velocity 3 2 state t xp 7 0 p Tlo vo gt 0 M70 26 r gt 7 xy gt 0 7 276 XT go at0 7 0 G5 TI 6 3 1 state II 7
256. 77 2 Bt Tsr3 2 4 157 4 158 4 159 4 160 4 161 4 162 4 163 4 164 4 165 4 166 4 167 TB lc 1 go 4 rre c 1 121 4 168 4 169 4 4 2 3 2DOF PAVS 4 17 4 18 a ke Velocity cnys 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1 Duration Tirne SeC tn gh AVS Ratio 1 0 0 1 a W Rotten be Displacemmen Cm 0 0 1 02 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1 Duration Time sec 4 17 Velocity cnWs 0 15 0 1 005 0 0 05 0 1 0 15 Dispiacerncnt cm 4 18 122 4 168
257. 1 0 c 1 0 2 0 100c s 10 0 45 90 3 2 26 2 cm sec 150 sin 7t 0 5Hz 150 Sin 27 1 0Hz 10 ee 1 1 0 2 150 cm sec sin 27t sin 7t 150 2 sin 27 sin z 150 in 27t si ZZ sin 27t SM 0 5Hz 1Hz 10 2 26 40 2 27 ooo Em sec 100 2 Linear Linear uaa cm 0 5Hz 0 5Bz 1 0Hz 10 UB 10 sec sec amsees Acceleration Cm Dtep1acement AL 0 5Hz 1Hz 10 0 5Hz OHz 10 sec sec Acceleration Displacement 2 27 SDOF AVS a
258. 2 42 8 500 Acceleration Velocity Displacement El Centro NS 2 1000 9 6 Acceleration Ve1ocity Disp1acement TnterstorY Disp Taft EV 2 42 3F 3F 2F 2 1F 1F cm sec2 cmsec kU cm cm tonf cnm 500 Acceleration 1 0 0 4 0 5 Displacement Interstory Disp Absorbed Energy El Centro NS 1 cm sec 500 20 1 0 0 4 1 0 Accelerat1on Velocity Displacement Interstory Disp Absorbed Energy Taft EW case U IIL H case W TL case UVTT S 2 43 52 case H 30 0 1 0
259. Yang Bellman 1 35 Na 2 RG Ts 9 2Cjz ax
260. 123 4 4 4 1 123 4 4 4 2 124 4 3 I 127 4 6 128 5 1 129 1 129 5 2 BI 130 5 2 1 130 5 2 2 130 5 3 131 5 3 1 131 5 3 2 136 5 4 139 5 4 1 139 5 4 2 139 5 5 141 5 5 1 141 5 5 2 141 5 5 3 143 5 6 144 5 6 1 144 5 6 2 146 5 6 3 148 5 7 149 5 8 150 6
261. 2 1 Fl a 20 2 4 83 Mir 0 nt 7 a 20 2 4 84 IMA Cy 0049 nt 7 Vy DD VL TD 4 85 4 10 4 11 1 0 8 Y2 107
262. 3 16 1934 3 17 Et 1970 3 18 Shuichi KAMAGATA Takuji KOBORI Autonomous Adaptve Conrol of Active Variable Stiffness System for Seismic Ground Motion the proceedings of First World Conference on Structural Conrol Vol 2 TA4 33 42 Los Angeles CA USA 3 5 August 1994 3 19 17 1963 91 4 2 4 1 4 1 2 3 2 1
263. QoQ 80 6 a 5 04 80 2 sa 0 09 1 1 5 2 2 5 3 3 5 4 0 05 1 15 2 2 5 3 3 5 4 AVS Ratio AVS Ratio 3 14 3 4 4 2 2z sec 1 0 3 15 Encrgy Level tonf cm s Sc ee AVS Ratio 1 0 0 0 25 0 5 0 75 1 Duration Tirme sec 3 15 2z sec
264. r 7 fg g r 3 161 kp orxr Tara F lintor Ta 3 149 7 S70 4 or x Ta For A eostort Ta 3 150 1 y c 1 z TS07 ee 2 rt orss Cra F 3 151 7gr x go EE 3 152 Faoy Pr rFzc c 1 2 X Tsr2 aderrlro Tg el 3 163 je G3 164 5 4c c 1 T Trs ert Fao Pr _ Fr G 153 A 6 FU 9 Trs St STsya 571 2 2nz ws ee C 7 3 7 ST pI 7 154 2 oy 0 me 5 5 310 e 73 7 7 i opin Tia Fn TS sinfo Cr Tra 3 156 Ra 2 8 oe mei
265. xr 0 3 115 0 OFT xr D 3 116 6 0 3 117 3 4 2 3 2 1 1 cos 7 3 118 lt 7 lt nD 1 0 amea6 7 gt WFT 7 ti D sin o s t T 3 119 5 4 mt g7 2 0 i in FR loostonlt OFT 7 cos 7 7 3 120 a 4 2 ost 7 i Onin CE Fo smtoge OT Op 7 7 F HR Sinf zz 7 7 3 121 1 40F i 1 2 7 4 122 7 2 3 122 DFT 7 7 Xi A 5 3 3 123 77 7 0 3 124 OFT WpT FX 3 125 lt i ri 40F
266. 1 0 100 cm s 0 005 2 29 y 0 0 1 3 1 0 3 0 2 30 42 cm sec2 7 SINCTE 2 SIN 2Tt 100 6 1 0 2 0 3 0 4 0 5 0 Seconds 2 29 cm secz cm sec 8 Velocity Displacement 0 1 0 500 LN 0 Acceleration 0 5 1 0 2 0 0 5 2 1 5 2 0 Period i tOn Cm case Aly 0 0 6 g 6000 case Bly 1 3 ee cgse C 1 0 lt O0 6 1 cgsye y 3 0 zoo 2000 0 20 10 9 2 0 Es We 0 5 Period Period 2 30 SDOE AVS a b
267. 1 LL ww Se ft 2 0 D A T 0 6sec DuOoJ393S aMnrL UO n he 2 0 1 PUO23S ur UOT JB1n O Super1mposed Sinuso1da Wave Running Power Spectra B 2 0 8 0 3Hz 3 2 3 186 3 0 5 1 0 2 0 B 3 en See 0 1cm sec D A T 2 0sec D A T 2 0sec D A T 1 0sec D A T 1 0sec D A T 0 5sec D A T 0 5sec 2 0 4 0 6 0 8 0 2 0 4 0 6 0 8 0 Frequency cycle second Frequency cycle second El Centro NS Taft EW B 3 Max Velocity 50cm s
268. 162 163 6 3 f 1 1 1 2 2 1 gw 2 1 3 2 4 2 2 6 3 Barrel 2
269. 7 2DOF PAVS 0 5 2DOF PAVS 4 025 2DOF PAVS 0 7V 1 7 0 0 1 02 03 0 4 0 5 0 6 0 7 0 8 09 1 Duration Time sec 2DOF PAVS 3 AV5 Ratio 1 0 HH state 2 ia 4 3 5 2 4 3 4 4 12 0 0 1 02 0 3 0 4 0 5 06 0 7 0 8 09 1 Duration Time sec Vai Ma Va tt 3 5 Ven t Va D VE 4 87 1 2
270. 8 yg 7 7 64G i xssss SRSS 6 1 6 1 6 2
271. AVS 2 1 0 3cycles 1 0 1 0 3cycles 1 0 3cycles 0 5 AVS
272. El Centro NS Taft EW 143 C Bandwidth 0 1Hz A S 60 pe me 8 5S MME mi012 3 40 N Bandwidthst C2Hz 5 20 H H F 8 20 gp oe oe CC amp 10 PF Oy 0 0 0 1 2 3 4 5 0 1 2 3 4 5 Period sec Period scc Band width 0 1Hz 17 Band width 0 2Hz 0 1 1 0 EIl Cenro NS
273. 0 5 b NOAO NO DA AA A 4 2 48884442 ARR A a te vy Tt oe nt 7 NE yet RAAB CVVND0UUUUUUUUUUUUU Vk NYY C 2 3 3 Sr gt 0 0 C 4 C4 C max Sr C C c C 6 Cr J sin D 6 191 te i 3 NS 115 95 cm
274. 1 0 2 Taft EW 7 e El Cenro NS 6 Taft EW 4 y 1 0 10 EI Centro NS
275. 0 3 3 E kexg 7 61 state IH 76 lt 7 lt gt 0 t x x gt 0 FT sp T gt 0 3 6 7 0 G7 3 4 3 2 3 8 siate IV r xr 0 gt 3 1 gt xy lt 0
276. 0 229 0 214 0 199 5 0 176 0 189 0 173 0 205 6 3 Barrel 154 6 2 3 6 6 8 10 1024 phoGto foG1oGTo GTo to To GTo GTio Go y 4 2
277. HH state 1 0 1 1 0 5 1 J2 sin gr cos 4 133 0 1 0 5Q 2Q Ki 2g Ke K Kris BVG T i sin og tt T4 4 134 OO se 2 1 4 15 4 16 it T Xpi 2 4 ee 9 4 135 m 1 0 3 J5 4 7 74 4 136 a 05 0 gt 5 WF Fi 1 1 Xr 4 zB 4 137 1 1 4 4 a 0 05 1 15 2 25 3 35 Xi Ts 0 4 138 Duration Time sec
278. OE 2 1 40 A 444 pp 33 41 1993 2 1 41 pp 279 286 1992 3 1 42 Tsuneyoshi NAKAMUKRA amp Takashi YAMANE Opnmum Design and Earthquake response Constrained Desisn of Elastic Shear Buildings Earthquake Engineering and Structural Dynamics Vol 14 797 813 1986 1 43 1990 9 1 44 2 1 1994 11 a 1 1 300 pp 11 18 1981 2 a 2
279. Slacking Under driving to prepare next half cycle Slacking i Activating Under driving ro prepare next hsif cycle A 1 180 2 2 Isolation Control from Seismic Components Analytical Method Running Power Spectrum Running Maximum Entropy Spectrum Instantaneous Spectrum Developing Spectrum Mechanical Method L Active Filter Predictive Adaptive Control Analytical Method Predictive Observer A 2 ns Instantaneous Response Predictive va1 Earthquake Observe a Control Command SOE ed Structure Response Earthquake A 3
280. Tramsient State 0 05sec AVS Rato 1 0 Ii Il 0 0 15 0 1 005 0 43 05 0 1 0 15 Displacement cm 2 18 2 0 05 30 2 3 3 f T do 2 37 TF 0 2 38 7 2 39 4 gt 0 fa Fsin ora T 2 40 2 7 7 mp xg Pamfere 2 41 C 2 41 7 CG cosfozG 7 2 42 2 43 2 p 7 2 44 Te E Yy do 2 45
281. s NS 203 47 cm s NS 205 36 cm s 8 A 17z 1 1 2 3 20 30 10 0r Peak Ratior28 ea Dai 9 0 95 pn Wat chr Peak Ranos20 Peak Eatnos39 i 001228z Band ith G0 ik Band Vidth tf i 8 Ragnar i iE Sa 2 01 SE EE Ne 1 ken 5 5 et gt 1 eS EN 5 6 0 sion UI Sk a SERRE amp EE re N 4 H Wt i 8 8 TS KO EO 0S 01 lt
282. 1425 1426 1983 e 7 pp 1453 1454 1984 e 8 pp 899 900 1983 e 9 PP 871 872 1986 e 10 D IB pp 839 840 1986 e 11 Dynamic Intelligent Buildings as Active Seismic Response Controlled Structure Vol 1 Theoreucal Control Concept Vol 2 Analytical Verification of Theorehcal Control Concept Vol 3 Experimental Venfication of Theorencal Control Concept Vol 4 Analytcal Study on Japanes
283. 20 0 Duration Time Second 1F TOP case LTT ca amp e 1 case M 2 200 cm sec 15 0 pire Pealk Pover 0 00504cm2 sec3 at 2 344Hz 1 1 1 1 H 95 i 1 1 H 1 amp 1 1 et gt 5 0 gt i 2 1 1 i 5 1 3 0 10 0 15 0 20 0 Duretion Time Second 1F TOP case S case S 1F TOP 2 44 b 55 2 6 3 case U III case T III 2 45 J tonf cm 500 20 1 0 0 4 0 5 Acceleration Velocity Displacement Interstory Disp Absorbed Energy El Centro NS ee 1 cm sec cm tonf cm 500 20 1 0 0 4 1 0 Acce1eration Velocity Displacement Interstory Disp Absorbed Energy Taft EW SP Cont case T IIL M yp rt 5 case U TT M 246
284. 4 142 1 is Sipp Top HH FF state 2 2 24 OFi Kgi Timnn Fr 0p XB U Xpi Tacmr r gz 5 A 4 143 8 8 1 gt Wp Xi Tacmern Xai amn Xni Tans YX i Ticm 1 1 1 0 15 0 1 005 0 005 0 1 0 15 i a Displacement cm 1 y an a_yr 1 YY 4 16 5 X T 4 144 2DOF PAVS 8 2DOF PAVS 2DOF PAVS 10 12 1
285. Displacement Reduced Ratio of Interstory Displacement 4 6 4 y 0 0 1 0 1 0 y 0 25 0 73297 0 73059 y 0 5 0 60124 0 59476 1 0 0 47046 0 47223 4 1 EEE 7 1 7 957 gd3 6 3 4 g 2 g Barrel a 1 608 a 1 635 0 644 g 0 571 0 162 g 0 0541 161 6 7 _ Banel y 0 0 1 0 1 0 y 0 25 0 71128 0 71268 y 0 5 0 58638 0 58879 y 1 0 0 475686 0 45758 6 3 4 g g 0 0 23 0 5 0 75 0 0 25 0 5 0 75 1 AVS Ratio AVS Ratio Barrel Barel a 1 905 a 1 902 6 11 go 1 259 a 1 304 a 0 544 0 587 1 Sc
286. S 5 5 11 8 gt Sv TFi h xT a i 5 9 Sp Tiih 2z 7 8 8 1 40 830 lt 8 8 2 10 0 0 23 0 5 0 75 1 0 AVS Ratio Period sec 5 9 b 1 0 3 0 11 3 3 5 2 i Ss 0 579 3 78 MM NH PO ni 025 0 854 0784 0761 0 5 0 805 0 690 0 650 1 0 0 774 0 598 0 532 5 4 2 7 2 5 EE OE RE SDOE AVS 7 i 7 7 1 5 8
287. SDOEF AVS 1 F SDOEF AVS 2 1 SDOF AVS 3 1 2 ar rlon tp 3 126 7 i Op 4 OF 1 2 2 1 1 al 3 127 4 OF Og 78 0 5 1 0 2 0 5 0 Accclcration cin s2 0 0 5 1 1 5 2 2 5 3 3 5 4 Duration Time sec Velocity cm s 0 05 1 5 2 2 5 3 35 4 Duration Time sec Displacemeni cm 0 0 5 1 1 3 2 25 3 3 3 4 D
288. Ton 0 4 151 b Tro ZB Ba Tn en U cos g t Tr 4 152 OpiC Tiro OriZB BG T Yr 7 UT sin F 4 Tor 4 153 Te snr2 4s7i 2 4 134 r CO Tro OpiTB Bt Tr Rt 4 4 Wg 404 2 0 120 c Xi iD 7 Ty2 ri rb LTsn2 U X t et re 40g 40Fi 2 U a 7 77 gt S73 S72 2 ri Ce Ori ri BiG Tsn2 40 A407 OF 20g 2 6 a Wg 407 4 OF Xii Trs 10 d Na DpiC Tro Ori B xb zx 2 4 AO OF 4 U cos Fg 1 Tr3 Wp C Csro zi ZB BB OFiTB RY 4 S74 S73 2 Xei Tsr4 10 1 Op WF Tora Isro
289. a 1 0 0 6 0 8 0 7 b 1 0 0 4 0 7 0 6 c 1 0 0 4 0 6 0 55 2 1 0 3 0 11 Acccleration Ampiification Faclor 0 0 25 0 5 0 75 1 AVS Raio 5 9 a 1 0 3 0 137 5 4 54 1 1 r 77 lt
290. b Ar A B O C C Deformanon Deformaton From Hardening State to Fundamental State From Fundamental State to Hardening State 2 20 2 9 110
291. iN k a ma A A iA 4 4 1 pb A Ai 45 2 Ai A 1 A A m m k 3mQ 4 6 kb 2mQ 4 7 1 1 4 2 2 a 4 6 7 4 2 b
292. pC Xr Fh Fh 2sr F D 23 7 7 0 rn rr Tart TIT kr FT AE rt Dkr D 24 1 rn Gr Trin Tr TI Eo Thr D 25 195 2 3 7 lt 7 lt C C C 7 g 7 D 26 CF 7 T 1 Xn F a sr D2 Pr pt DB E Dir Da ft DB kr 0 D 27 D 28 i XCD Ig Det DB eh kr gD Bat DB kg D 29 rs7 Ry rn SIn 7 D 30 Xr Ry goCOSCOW Bp D 31 b c 3 D 24 D 25 D 28 D 29 Ar
293. ton 0 5Hz 1 0Bz sin 7z Sin 2Z7 400 ton 400 ton 400 ton Bardening Bar 0 SHz Bz 40 5Rz 1Bz 0 5HBz sin 2zt sin zt sin 27zrt sin zt Sin 277 S1n 77 2 28 N M NX M C Ce Ceac SDOF AVS 2 7 CZO 7 max lr TE YON 2 86 TOO YG TG yG CatalTE YG max cb TO YO 2 87 cf TO YG TO yG 2 2 4
294. 0mm 210xg cm S80ks 10cc gt iN RodSuroke Length OUT IN OUT IN OUT IN OUT Hydraulic Cylinder 2 2 19 b 0 25 1710 2030ms cy 4 210kg cm2 180kg cm2 200cc 20
295. 1 4 Fz A7 w 1 2 Fp 4a 1 2
296. 3 178 a 17 H Vpltsra 32p 22 1 Fm c 1 y 32o 0 cn1 0 AV AV yk Cry Fm c AVS 0 2 320 ce c 1 0 86 SDOF AVS SDOF AVS 7 SDOF AVS 8 x
297. 4 5 5 Duralion Time Scc 4 12 Encrgy Leveil tonf cm s Energy Lcvcl 0 1 0 0 05 0 0 15 Displacement 4 13 110 4 4 4 1 3 1 SDOF AVS 2 2DOF PAVS 1 2DOF PAVS
298. 5 EW 922 2 cm s NS 115 95 c 5 NS 203 47 cm s NS 205 36 cm s El Cenyro NS 341 7 cm s Taft EW 175 9 cm s Accelcration Amplitude Frequency C 5 Vclocily Amplitude 7 Kobc Kushjro Ntiyako Muroran Aomor El Ceniro Taft Frcquency C 1 Shuichi KAMAGATA Takuji KOBORI Autonomous Adaptive Control of Active Variable Suffness System for Seismic Ground Motion the proceedings of First World Conference on Structural Control Vol 2 TA4 33 42 Los Angeles CA USA 3 5 August 1994 193 D SDOF AVSD 1 AVSD
299. Centro NS 800 7 kc k 1 0 9 600 7 a Te 400 de pi linear 1 0 2 0 3 0 4 0 1 0 2 0 3 0 4 0 Period sec Period sec 1 0 2 0 3 0 4 0 Period sec tonf cm El Centro NS 7 skc k 1 0 1 0 2 0 3 0 4 0 1 0 0 2 0 4 Period sec Period sec 2 34 a 1 0 b 47 2 6
300. Conference Hong Kong Nov 1990 1 33 T Kobori et al Shaking Table Experiment and Practical Application of Active Variable Stiffness System Proceedings of 2nd Conference of Tall Buildings in Seismic Regions 35th Regional Conference Los Angeles CA May 1991 1 34 AMD pp 209 214 1992 3 1 35 R Bellman Dynamic Programming Prnceton University Press Pnnceton N J 1957 1 36 A 436 pp 53 62 1992 6 1 37 AIJ 416 pp 125 133 1990 10 1 38 AT 420 pp 121 131 1991 2 1 39 AT 438 pp 65 74
301. Energy Levcl tonf cm s 0 2 0 1 0 0 1 0 2 Displacement cm 4 23 1 126 4 5 1 1 1 2 2 2DOF PAVS 2DOF PAVS 1 2
302. H Kanayama and S Kamagata A Proposal of New Ann Seismic Structures with Active Seismic Response Control Dynamic Intelhgent Building The 9th World Conference on Earthquake Engineering Dp 387 394 Kyoto Japan August 8 1988 d 7 K Sato S Kamagata The Aseismic Behavior of Steel Column base The 9th World Conference on Earthquake Engineering Vol 4 pp 193 198 Tokyo Japan August 7 1988 d 8 T Koborn H Kanayama and S Kamagata On Active Seismic Response Controlled Structures Dynamic Intelligent Building System Proceedings of the Internanonal Workshop on Nondestructive Evaluation for Performance of Civil Structures Los Angeles California Feb 1988 d 9 Vol 3 No 2 pp 15 20 1989 d 10 26 pp 9 17 1989 3 17 d 11 8 pp 1875 1880 1990 d 12 Pari A pp 85 89
303. RT ommend Deedenees i 0 0 1 0 2 0 3 0 0 0 1 0 2 0 3 0 350 cp 5 06 cm 0 023sec 0 023sec 2 222 1 0 2 0 3 0 1 0 2 0 3 0 Duration Time Sec Duraton Time sec 25ms 30 0 cm 0 01sec 0 01sec 1 0 2 0 3 0 1 0 2 0 3 0 Duraton Time sec Duraton Time sec 10ms 2 23 25ms 10ms 2 24 36 2 5 1 1 1 2 2 5 1
304. Story A Wl 0 0 3 1 3 2 0 0 5 lS 2 1 0 5 1 5 2 0 5 1 3 2 Interstory Dnift cm Interstory Drift cm Interstory Drift cm 6 4 a Interstory Drifi cm 156 Story Story Story 6 Ri 0 AVS RE0 55 AS Ra Co 0 3 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 Absorbed Energy tonf cm s Absorbed Energy tonf cm s Absorbed Energy tonf cm s 6 4 b Story Story 400 600 800 0 20 40 60 80 100 0 3 20 40 60 10 15 0 200 Acceleration cnys2 Velocity crys Displacement cm Ft inif rm pr fi 0 0 5 1 5 2 0 20 40 60 80 Jnicrstory Drift cm Absorbed Encrgy ton cm s 6 5 a
305. ag OFF ae Er 0 0 1 0 2 0 3 0 4 0 5 0 sec 2 11 2 8 Gal 300 200 100 0 100 200 300 0 6 0 4 0 2 0 0 2 0 4 0 6 0 6 0 4 0 2 0 0 2 0 4 0 6 1 cm 2 12 2 8 3 1 0 S b 1 0 2 5 70 c 2 3
306. al Dynamics Vol 14 797 813 1986 4 13 2 1 1994 11 4 14 2 3 1994 11 4 15 440 pp 43 56 1992 10 4 16 TSuneyoshi NAKAMURA ITAKEWAKI amp Y ASAOKA Sequental Stiffness Design for Seismic Drift Ranges of A Shear Building Pile Soil System Earthquake Engineering and Structural Dynamics Vol 25 pp 1405 1420 1996 128 5 1
307. case U TILS case WVTLM case WTTTH 2 39 d e EI Cenro NS 20 0 100 cm s 0 005 8 2 40 CaSe 1 CaSe 2 case 3 case 4 C34Se case 6 case 7 case 8 2 40 Frequency 5 0 10 0 15 0 case case case H case case case H 1st 2nd 3rd 2 41 51 8 1 case M H 2 3 2 41 case M 2 31 8
308. e High rise Building with Acive Mass Driver against Mexico Earthquake pp 891 898 1987 e 12 D IB 1 DIB pp 11 512 1988 e 13 D IB 2 DIB pp 513 514 1988 e 14 D1B 3 DIB Feedback pp 515 516 1989 e 15 D IB 4 pp 535 536 1989 e 16 DIB pp 537 S38 1990 e 17
309. ec 2 3 1 0 ea gn Nt rd cd NA 1 6 0 10 C rrequency cycle seco nd Frequency cycie seconc Fourier Specir Tier SpeCcra Power Spectra B1 185 3 2 2 sin sin 67 0 5 lt 7 lt 1 3 sin 107 1 0 lt 7 lt 2 0 0 4 0 6 0 8 B 2 Frequency cyc1e second 2 2 0Cm sec 3 0cycle second D A T 0 8sec DuoJgS 9UIT uoOT B nH nn Fw 5 CK YY
310. ellisent Buildings Analytical Simulator Microcomputers in Civil Engineerng 7 pp 265 281 Elsevier Science Publishers 1992 a 9 444 pp 33 41 1993 2 b 1 T Kobon H Kanayama M Sakamoto S Yamada and S Kamagata Method of Controlhng Buildins aeainst Earthquake United State Patent 4 799 339 Jan 24 1989 b 2 T Kobon H Kanayama S Kamagata Rigidity Control System for Variable Rigidity Sructure United State Patent 4 964 246 0ct 1990 b 3 5 61427 1993 9 6 b 4 5 72489 1993 10 12 b 5 6 76738 1994 9 28 c 1 T Kobon S Kamagata Dynamic Intelligent Buildings Actve Seismic Response Control INTELLIGENT STRUCTURES 2 Monitoring and Conrol pp 279 292 Elsevier Applied Science 1992 lc 2
311. ing Vol 4 pp 193 198 Tokyo Japan August 7 1988 58 3 1 3 m kx 0 xr 0 0 zp oz x 7 c k kc fG 7 x 7 7 7 1 7 i cycle
312. ity cnmys Velocity cm s 2 Velocity cmy s Pseudo period sec Pseudo period sec 0 DE 7 0 0 y 1 0 y 0 0 y 1 0 5 21 a 3cycles 5 22 a 146 147 uy Displacement cm G Djsplacement cm 3 Pseudo period sec Pseudo period sec y 0 0 y 1 0 5 22 b 0 0 CT 2 TMAX DRIMAX OR IMAX 1 0 1 0 2 0 3 0 AVS 0 5
313. losity Displacement GL D 3 3 198 SDOF AVSD a SDOF AVSD b c d
314. m 1 207 10 Q 39 2 6 5 Barel tonf on9cm ton cm 10 25 12 2602 15 2445 9 25 20 9686 21 1112 8 25 27 9788 26 5307 0 0 25 0 5 0 75 0 0 25 0 5 0 75 7 25 33 9204 32 2300 i I 6 25 43 7608 37 1777 Barel 5 25 47 8170 41 5302 6 12 4 25 51 1956 45 2904 3 25 51 1956 48 3435 2 25 53 7043 54 0848 1 25 55 0863 70 2488 6 6 Barrel 1 1 00 1 14 1 00 1 38 2 0 40 0 63 0 466 0 58 3 0 25 0 33 0 289 0 32 4 0 19 0 24 0 214 0 20 5 0 15 0 19 0 173 0 20 1 1 0 4
315. p y 1 0 6 A SDOF AVS 20 134 em nv ve ee os Fn Anassatetsn nnd ers cereesee ee AVS Rne o 0 a Displacemeni cm et Pseudo period sec y 0 0 amp y 1 0 5 6 b SDOF AVS 20 SDOF AVS
316. ro NS 142 3 cm s Taft EW 101 2 cm s El Centro NS 1 0 1 0 TaftEW 0 4 0 8 70 5 5 2 El Centro NS Taft EW 4 0 0 0 23 0 5 1 0 SDOF AVS 2 a
317. urauon Time scc 3 9 79 3 4 3 SDOF AVS 3 4 3 1 3 126 3 127 1 1 Ta ET 000 G3 128 1 Ta x T te 3 129 N 1 p Ty zg Ty 1 ro 3 130 N 4 1 san tn 3 131 i l V a 1 2 lt 3 132 nas 3 133 l y 2 3 134 jst 1 kT CT 3 135
Download Pdf Manuals
Related Search
Related Contents
InStructIonS for: video bore scope Model no. vs8196 Table of Contents 取扱説明書 BLENDER - Russell Hobbs LC828 Professional Portable Radio- Module Manual© RCA 20V412T User's Manual DXG Technology DXG-595V Camcorder User Manual EYEZONE P102-12 User Manual Copyright © All rights reserved.
Failed to retrieve file