Home

安彦泰進 - 産業衛生学雑誌

image

Contents

1. L 3 8 10 12 15 21 23 MultiVapor Bf The author wishes to thank Dr Peter Lodewyckx Royal military academy Kingdom of Belgium for cooperation in preparation of Table 3 The author is also grateful to Yasuko Fujimoto Japan Aerospace Exploration Agency JAXA for helpful comments on the manuscript X 1 NIOSH MultiVapor 2013 55 163 71 2 The National Personal Protective Technology Laboratory NPPTL MultiVapor TM Version 2 2 3 Application Online 2014 cited 2014 Jan 21 Available from URL http www cdc gov niosh npptl MultiVapor MultiVapor html 3 MultiVapor TUTORIAL Gerry Wood March 18 2007 On line
2. 3 Table 5 1 22g Table 6 Fig 3 0 11 cm Fig 3a b Table 6 300 1 000 ppm
3. T8152 REL Preconditioned relative humidity iX 30 0 11 cm Table 11 R Fig 6 MultiVapor 2 2 3 MultiVapor
4. Table 4 30 ppm 66 100 ppm 68 MultiVaporTM 577 Table 2 Experimental data of organic vapor breakthrough time of an activated carbon bed by Tanaka et 7 and the results of estima tion by MultiVapor 2 2 3 Measurement Ordinary Minimum Maximum Organic vapor breakthrough estimation by estimation by estimation by time MultiVapor 2 2 3 MultiVapor2 2 3 MultiVapor 2 2 3 min min min min Cyclohexane 124 130 6 105 157 Methanol 1 8 1 6 0 8 Dichloromethane 28 1 42 7 19 66 Acetone 63 5 55 30 80 Methyl acetate 78 65 8 43 89 Ethyl ether Diethyl ether 80 7 58 1 38 78 Chloroform 97 105 7 85 127 n Hexane 109 7 102 8 82 123 Ethyl acetate 126 9 113 3 91 136 Carbon tetrachloride 131 4 136 6 109 164 Pentyl acetate 134 2 158 1 127 190 Isobutyl acetate 142
5. Il MultiVapor 2 2 3 27 MultiVapor Ill 1 MultiVapor 2 2 3 1 2 3 3
6. 9 Table 7 Table 8 Fig 4 33 g Table 7 0 11 cm 0 20 cm 56 2014 Fig 4 0 11 cm 2 2000
7. IV MultiVapor MultiVapor 2 2 3 TYPICAL OV CARTRIDGE Table 6 Experimental data of organic vapor breakthrough time of an activated carbon bed according to change of vapor concentration by Tanaka et al and the results of estimation by MultiVapor 2 2 3 Vapor Measurement Ordinary estimation by Minimum estimation Maximum estimation Organic vapor concentration breakthrough time MultiVapor 2 2 3 by MultiVapor 2 2 3 by MultiVapor 2 2 3 ppm min min min min Ethyl acetate 100 303 9 254 7 204 306 300 117 2 113 3 91 136 500 78 8 76 6 61 92 1 000 41 8 44 2 35 53 Toluene 100 417 5 482 4 386 579 300 142 9 181 1 145 217 500 92 4 113 8 91 137 1 000 43 4 60 48 72 MuliVaporrM 281 Table 7 Input conditions of cartridge or carbon bed data into gt 400 T T T MultiVapor 2 2 3 and the values used for estimation T E Q 30 L min in T
8. 2014 2 6 2014 8 1 J STAGE 2014 9 9 214 8585 6 21 1 Correspondence to H Abiko Work Environment Research Group National Institute of Occupational Safety and Health 6 21 1 Nagao Tama ku Kawasaki Kanagawa 214 8585 Japan e mail abiko h umin ac jp MultiVapor MultiVapor MultiVapor
9. 2011 4 CPC 2011 1 20 23 2014 51 28 34
10. 2 16 1 56 2014 W 0 5 kan tota 0 W 01 min 0 1 C 0 001Co C g cm3 Co g cm3 Bov vy cm s d em W g g My g mol KOKI OT Wood 101 LAL 1
11. 2 Table 9 10 0 11 cm 22 g 280 T 600 ss Es EE 1 t Q 30L min X S Tanaka etal 500 L T 20 C J Science of Labour 66 199 bil RH 50 i Pa Co 100 1000 ppm estimation 400 c 5 ppm ae a dp 0 11 cm 300 xl Ethyl acetate 290 y an x a0 1 446e 01 al 7 956e01 R 9 991e 01 Calculated breakthrough time min 1 1 1 1 1 1 0 100 200 300 400 500 600 hy Calculated breakthrough time min Ww o Co 100 ppm 200 KE y Dan x a0 1 727e 01 100 a1 9 561e 01 R 9 991e 01 1 500 600 3 0 100 200 300 400 gt 600 i i T E a a 500 400L a L c Toluene S 300r ET oO L 2001 uu UE E 100 Co 300 ppm a0 1 049e 01 3 y 500 ppm a1 9 021e 01 G Y R 9 997e 01 O Cor quon ppm 1 1 0 100 200 300 400 500 600 X Experimental breakthrough time min Fig 3 Comparison of the experimental organic vapor break through times of an activated carbon bed by Tanaka et al and the calculated breakthrough times by Multi Vapor 2 2 3 described in Table 6 56 2014 40 g MultiVapor 2 2 3 1
12. 3 3 1 y aytax ge 2 a min y MultiVapor 2 2 3 min ay min ay 4 2 MultiVapor 2 2 3 JME 2 y x Fig 1 3 MultiVapor
13. Lodewyckx 0 10 0 34 cm koc Ek 0 10 0 19 cm Table 3 1 Table 6 9 Table 4 0 Figure 2
14. 3 278 gt c 400 r tT E Q 30 L min S Tanaka etal a T 20 C Appl Occup Environ Hyg 14 E zi eric Ethylene glycol Ordin estimation c Fugen ppm monoethyl ether 3 50 C gt ppm a 8 d 0 11 cm a 200 4 HIT OOrtrichloroethylene L o y Zan x g 100 o9 Tetrahydrofuran a0 1 037e 01 7 1 1 Dichloroethane a1 1 045e 00 R 9 200e 01 0 1 1 1 n 0 100 200 300 400 gt c 400 1 E L 300r E o b L 2 200 E 2 L a a rz 100r S a0 1 638 01 5 Methanol o a1 8 846e 01 6 R 9 264e 01 9 0 1 1 1 L 1 1 0 100 200 300 400 gt 400 Te L g 300 E Ob 2 t 200 og G v mu B QCOO deles a to 100r a0 3 039e 00 7 E a1 1 207e 00 Methanol If 9 117e 01 0 1 i 1 n l 1 0 100 200 300 400 Lg Experimental breakthrough time min 5 Fig 1 Comparison of the experimental organic vapor breakthrough times of an activated carbon bed by Tanaka et al and the calculated breakthrough times by MultiVapor 2 2 3 described in Table 2 Q average breathing air flow 7 temperature RH relative hu midity Co vapor concentration C breakthrough concentration d carbon granule average diameter R correlation coefficient
15. Experimental breakthrough time min Fig 4 Comparison of the experimental organic vapor break through times of an activated carbon bed by Abiko er MultiVapor al and the calculated breakthrough times by Multi R lt 2 2 3 d 1 in Table 8 od Vee een 4 Table 8 Experimental data of organic vapor breakthrough time of an activated carbon bed by Abiko et al 8 and the results of estimation by MultiVapor 2 2 3 Ordinary Minimum Maximum Ordinary Minimum Maximum Measurement estimation by estimation by estimation by estimation by estimation by estimation by Organic vapor breakthrough MultiVapor 2 2 3 MultiVapor 2 2 3 MultiVapor2 2 3 MultiVapor MultiVapor 2 2 3 MultiVapor 2 2 3 time min min min min 2 2 3 min min min d 0 20 cm dy 0 20cm dy 0 20cm dy 0 llem 9 0 11 cm d 0 11 cm Benzene 250 170 4 44 297 261 3 209 314 Cyclohexane 205 137 7 17 258 220 4 176 265 Acetone 108 28 9 0 105 96 1
16. 1 Table 1 MultiVapor 2 2 3 TYPICAL OV CARTRIDGE Carbon granule average diameter b m 276 Table 1 Input conditions of cartridge or carbon bed data into MultiVapor 2 2 3 and the values used for estimation in Table 2 Table 4 Table 6 Fig 1 Fig 2 and Fig 3 Input condition Value Bed diameter cm 8 0 Bed depth cm 2 0 Carbon weight per cartridge or bed g 22 Micropore volume cm g 0 533 Preconditioned relative humidity 50 Carbon granule average diameter cm 0 11
17. Table 4 Table 2 7 Isobutyl alcohol Isopentyl alcohol 36 0 Fig 1 Fig la Wood Wheeler Jonas aX L 105
18. Bj EHE 1990 66 568 74 8 Abiko H Furuse M Takano T Reduction of adsorption ca pacity of coconut shell activated carbon for organic vapors due to moisture contents Ind Health 2010 48 427 37 9 Abiko H Water vapor adsorption and desorption isotherms of activated carbon products used in Japanese gas respirators TANSO 2011 127 32 10 Wood GO Estimating service lives of organic vapor cartridg es II a single vapor at all humidities J Occup Environ Hyg 2004 1 472 92 11 Wheeler Jonas 2011 133 43 12 Wheeler Jonas Wood 2011 185 90 13 Yoon YH Nelson JH Application of gas adsorption kinetics E 285 I A theoretical model for respirator cartridge service life Am Ind Hyg Assoc J 1984 45 509 16 14 Yoon YH Nelson JH Application of gas adsorption kinetics II A theoretical
19. 2014 56 6 275 285 NIOSH MultiVapor Effect of Average Diameter of Activated Carbon Granules on Estimation of Organic Vapor Breakthrough Time Using NIOSH MultiVapor Software and Discussion of Its Practical Use Hironobu Asiko Work Environment Research Group National Institute of Occupational Safety and Health Japan 2014 56 6 275 285 doi 10 1539 sangyoeisei L14001 Activated carbon Breakthrough time Estimation Organic vapor Respirator Wheeler Jonas equation 1 7 NIOSH MultiVapor MultiVapor 5 MultiVapor CORR MultiVapor
20. 9 Fig 5 1 Fig 30 100 ppm MultVapor 2 2 3 1 3 97 Table 9 10 3
21. 2007 cited 2014 Jan 21 Available from URL http MultiVaporTW 283 Table 11 Experimental data of organic vapor breakthrough times of gas filters for Japanese respirators with change in vapor concentra tion according to their instruction manuals and the results of estimation by MultiVapor 2 2 3 Carbon Relative Vapor Experimental Ordinary Minimum Maximum Gas weight per Temperature e estimation by estimation by estimation by Organic vapor x humidity concentration breakthrough filter cartridge C 1 ppm umen MultiVapor MultiVapor MultiVapor or bed g 22 3 min 223 min 2 2 3 min A Carbon tetrachloride 22 20 50 100 288 7 329 2 263 395 200 158 8 189 7 152 228 400 80 8 107 9 86 129 600 56 3 77 62 92 800 43 3 60 4 48 12 B Cyclohexane 22 20 50 150 121 2 232 186 278 300 50 130 6 105 157 500 30 3 84 8 68 102 750 212 59 9 48 72 1 000 18 2 46 6 37 56 C Cyclohexane 22 20 50 100 200 323 2 259 388 300 83 3 130 6 105 157 500 53 84 8 68 102 750 33 3 59 9 48 72 1 000 242 46 6 37 56 D Cyclohexane 22 20 50 200 149 4 183 1 146 220 300 98 9 130 6 105 157 400 73 6 102 5 82 123 500 59 8 84 8 68 102 600 50 6 72 6 58 87 700 43 7 63 5 51 76 800 36 8 56 6 45 68 900 34 5 511 41 61 1 000 322 46 6 37 56 E Cyclohexane 22 20 50 200 284 4 183 1 146 220 300 200 130 6 105 157 400 159 7 102 5 82 123 500 126 9 84 8 68 102
22. 400 Vapor concentration ppm 0 100 200 300 400 1200 1000 H Gas filter G al v Gas filter H 9 Gas filter Cyclohexane 600 400 Vapor concentration ppm 200 200 400 600 Experimental breakthrough time min Fig 5 Breakthrough curves of gas filter products for Japa nese respirators as reported in their instruction manuals printed in the 2000s Input condition Value Temperature C 20 30 Atmospheric pressure atm 1 0 Relative humidity 50 70 Number of cartridges on a respirator 1 Average breathing air flow L min 30 Vapor concentration ppm described in Table 11 Breakthrough concentration ppm 5
23. 600 105 72 6 58 87 800 70 56 6 45 68 1 000 54 7 46 6 37 56 30 70 500 95 71 4 57 86 F Cyclohexane 22 20 50 200 149 2 183 1 146 220 300 95 2 130 6 105 157 400 63 5 102 5 82 123 600 397 72 6 58 87 800 30 2 56 6 45 68 1 000 254 46 6 37 56 30 70 500 47 71 4 57 86 G Cyclohexane 40 20 50 300 253 238 1 190 286 400 202 4 187 1 150 225 500 166 3 154 9 124 86 600 141 132 6 106 59 700 119 3 116 2 93 39 800 108 4 103 6 83 24 900 97 6 93 5 75 112 1 000 90 4 85 4 68 02 H Cyclohexane 40 20 50 100 500 587 6 470 705 300 233 1 238 1 190 286 500 139 8 154 9 124 86 750 93 2 109 5 88 31 1 000 72 85 4 68 02 I Cyclohexane 40 20 50 200 285 7 333 2 267 400 300 196 4 238 1 190 286 400 150 187 1 150 225 600 96 4 132 6 106 159 800 67 9 103 6 83 124 1 000 53 6 85 4 68 102 30 70 500 95 132 3 106 159 284 gt y ty y gt y Calculated breakthrough time min FR Calculated breakthrough time min Calculated breakthrough time min Calculated breakthrough time min Calculated breakthrough time min 56 2014 400 i 300 i Q 30 L min 4 T 20C RH 50 T 20C RH 5096 L Co 150 1000 ppm rd J 300 L Co 100 800 ppm 7 a C 5 ppm Cyclohexane 2 d 0 11 cm 200 o J 7 A COND 4 00 ww s 200 Carbon tetrachloride y Danx 4 y Zanx a0 1 314e 01 P a0 2 162e 01 a1 8 684e 01 100 L Ov a1 1 394e 00 R 9 9
24. Adsorption potential for Benzene kJ mol 18 666 Affinity coefficient for water dimensionless number 0 06 MultiVapor 2 2 3 TYPICAL OV CARTRIDGE 0 11 cm 0 2 cm 0 22 cm 0 11 cm MultiVapor 2 2 3 Wood 1 0
25. 131 105 157 1 1 1 Trichloroethane 137 8 128 3 103 154 2 Propanol Isopropyl alcohol 142 3 143 7 115 172 Isopentyl acetate 145 153 3 123 184 2 Butanone Methyl ethyl ketone 145 113 6 91 136 Isopropyl acetate 145 9 128 7 103 154 1 1 Dichloroethane 154 1 91 4 73 110 Propyl acetate 158 6 148 3 119 178 Tetrahydrofuran 165 98 4 79 118 Butyl acetate 169 5 172 5 138 207 4 Methyl 2 pentanone MIBK 173 1 157 8 126 189 Toluene 175 8 181 1 145 217 Tetrachloroethylene 176 7 198 5 159 238 Trichloroethylene 184 9 157 7 126 189 1 1 2 2 Tetrachloroethane 191 3 225 3 180 270 Ethylene glycol monomethyl ether Methyl cellosolve 194 232 4 186 279 Isobutyl alcohol Isobutanol 195 8 197 2 158 237 2 Butanol 198 5 190 2 152 228 Isopentyl alcohol 202 1 219 7 176 264 Chlorobenzene 203 9 212 5 170 255 Styrene 208 5 205 5 164 247 Ethylene glycol monoethyl ether Cellosolve 212 1 265 4 212 318 Ethylene glycol monoethyl ether acetate Cellosolve acetate 219 4 181 7 145 218 Cyclohexanone 223 225 8 181 271 1 Butanol 224 8 232 4 186 279 MultiVapor 2 2 3
26. 72 121 Methyl acetate 151 43 1 0 137 113 4 91 136 n Hexane 216 101 8 0 212 174 8 140 210 n Heptane 222 133 2 24 242 209 4 167 251 Ethyl acetate 228 110 2 0 236 192 9 154 231 Carbon tetrachloride 214 144 8 21 269 230 3 184 276 2 Propanol 235 144 7 0 291 242 4 194 291 Isopropyl alcohol 2 Butanone 235 108 8 0 237 193 2 155 232 Methyl ethyl ketone 4 Methyl 2 pentanone 88 176 56 296 264 2 211 317 MIBK Toluene 288 209 90 328 302 3 242 363 282 1200 T T T T T T T 56 2014 Table 9 Input conditions of cartridge or carbon bed data into MultiVapor 2 2 3 and the values used for estimation E 1000 Q 30 l min Breakthrough curves in Table 11 and Fig 6 lt RH 50 o Gas filter A Input condition Value 5 800 C 5 ppm Carbon tetrachloride Bad diameter ic 80 8 Gas filter B Bed depth cm 2 0 9 eee Gas filter C Carbon weight per cartridge or bed g 22 40 5 Cyclohexane Micropore volume cm g 0 533 5 400 Preconditioned relative humidity 50 o Carbon granule average diameter cm 0 11 200 E a Adsorption potential for Benzene kJ mol 18 666 a i a Affinity coefficient for water dimensionless number 0 06 0 100 200 300 400 1200 1000 v Gas filter D Table 10 Use conditions data of cartridge or carbon bed input 9 Gas filter E into MultiVapor 2 2 3 and the values used for esti 4 Gas filter F mation in Table 11 and Fig 6 800 Cyclohexane 600
27. 97e 01 24 R 9 884e 01 100 4 o Minimum estimation g Minimum estimation 4 Gas filter A 7 Gas filter B 0 1 1 1 1 1 0 L 1 1 1 L 0 100 200 300 400 0 100 200 300 400 200 i T 20 C RH 50 Es T 20 C RH 5096 Co 100 1000 ppm P Co 200 1000 ppm 300 b 4 L J Cyclohexane y Cyclohexane L J Fa 2 2 p Nw 200r a y Zanx J 100r y Zanx ee a0 3 439e 01 a0 1 066e 01 Pa a1 1 269e 00 1 a1 9 267e 01 R 9 994e 01 R 9 978e 01 100 9 t 1 cy Minimum estimation Minimum estimation Je Gas filter C Gas filter D 0 1 1 L 1 n 1 n 0 1 1 0 100 200 300 400 0 100 200 400 1 i 200 i T 20 30 C T 20 30 C Co 200 1000 ppm Co 200 1000 ppm WOR Cyclohexane Cyclohexane RH50 d RH50 200 RH70 P NN 100b RH70 y Zanx n 7 y Zanx a0 1 996e 01 a0 549e401 a1 8 668e 01 a1 7 074e 01 R1 9 933e 01 100 R 9 980e 01 H Maximum estimation Minimum estimation Gas filter E Gas filter F 0 1 1 1 1 1 0 1 0 100 200 300 400 0 100 200 400 y T T T T T y 600 T T T T T T 4 T j T T 20 C RH 50 F T 20 C RH 50 Co 300 1000 ppm 500 Co 100 1000 ppm 4 3007 Cyclohexane Cyclohexane 400 4 200 y Zanx 7 300 ysXanx a0 3 479e 00 a0 6 607e 00 4 a1 9 195e 01 200L a1 9 373e 01 R 9 994e 01 1R 9 970e 01 100 4 L Ordinary estimation 100 Minimum estimation 300 200r 100 Gas filter G 1 Gas
28. Mic 330 2 Tf H E 279 Table 3 Average diameters of activated carbon granules used in experiments by Lodewyckx et al 9 contributing to the derivation of Equation 1 Carbon type SCII BPL HA ASC T R1 Extra RBI C Granular BPL Activated carbon granule average 0 10 0 10 0 12 0 15 0 19 0 20 0 34 diameter cm Norit Norit Norit Manufacturers Calgon Calgon Calgon Carbon Calgon Carbon Carbon CABOT CABOT CABOT Carbon BPL carbon Wood based broken Raw materials or Coconut Bituminous MC Bed witt Cylinder Rod peat type cabon rodueed Bituminous shell copper chromium silver peat by chemical activation Remarks coal granular extrudate coal granular granular and triethylenediamine granular extrudate using phosphoric acid process granular Table 4 Experimental data of organic vapor breakthrough time of an activated carbon bed according to change of vapor concentration by Tanaka et g7 9 and the results of estimation by MultiVapor 2 2 3 Vapor Breakthrough Measurement Ordinary oe NNN Organic vapor concentration concentration breakthrough esrimauon by estimation by estimalion Oy 8 p MultiVapor 2 2 3 MultiVapor 2 2 3 MultiVapor 2 2 3 HM ppm e min min min Acetone 50 20 222 179 5 144 215 100 20 147 112 7 90 135 300 20 71 62 8 50 75 Acrylonitrile 50 2 173 180 66 294 100 2 120 138 8 68 210 300 2 65 84 4 55 114 Carbon
29. able 8 and Fig 4 P 20C RH 4 6 UI E 300 Co 300 ppm 4 Input condition Value C 6 ppm Bed diameter cm 7 0 dy AN Bed depth cm 2 5 200L poda o E A aar Carbon weight per cartridge or bed g 35 8 PE S O ET i Micropore volume cm g 0 533 a ysXanx Preconditioned relative humidity 96 4 6 100 o9 as Carbon granule average diameter cm 0 11 0 20 E R 4 543e 01 Adsorption potential for Benzene kJ mol 18 666 8 5 0 Affinity coefficient for water dimensionless number 0 06 0 100 200 300 400 400 i 1 d 0 11 cm 0 11 cm doll amp CAU o PA CLIO MA WU He ddp REM AES 200 e a0 1 299e 02 a1 4 304e 01 Calculated breakthrough time min R 4 665e 01 100 MultiVapor b 0 a DNE LINE
30. filter H 1 1 1 0 100 300 400 i T T T 20 30 C Co 200 1000 ppm Cyclohexane O RH 5096 RH706 ge mires y Zanx a0 2 405e 01 a1 8 483e01 R 9 999e 01 Minimum estimation Gas filter 1 300 1 1 0 100 200 400 Experimental breakthrough time min c 0 1 0 100 1 1 1 200 300 400 500 Experimental breakthrough time min 600 R Fig 6 Comparison of the experimental organic vapor breakthrough times of gas filters for Japanese respirators as report ed in their instruction manuals and the calculated breakthrough times by MultiVapor 2 2 3 described in Table 11 MultiVapor Mic 330 2 Tf H www cdc gov niosh npptl MultiVapor Tutorials Multi Vapor 213Tutorial pdf 4 146 2012 172 9 18 5 Tanaka S Nakano Y Tsunemori K Shimada M Seki Y A study on the relative breakthrough time RBT of a respirator cartridge for forty six kinds of organic solvent vapors Appl Occup Environ Hyg 1999 14 691 5 6 Tanaka S Tsuda Y Kitamura S Shimada M Arito H Seki Y A simple method for detecting breakthroughs in used chemi cal cartridges AIHAJ 2001 62 168 71 7
31. model for respirator cartridge service life and its practical applications Am Ind Hyg Assoc J 1984 45 517 24 15 JOH TEE F DI BIY BABA A WE HH 2013 55 69 72 16 Wood GO Affinity coefficients of the Polanyi Dubinin ad sorption isotherm equations A review with compilations and correlations Carbon 2001 39 343 56 17 Wood GO Lodewyckx P An extended equation for rate coef ficients for adsorption of organic vapors and gases on activat ed carbons in air purifying respirator cartridges AIHA J Fairfax Va J 2003 64 646 50 18 Lodewyckx P Vansant EF Estimating the overall mass trans fer coefficient k of the Wheeler Jonas equation a new and simple model Am Ind Hyg Assoc J 2000 61 501 5 19 T8152 1972 1994 2007 2007 20 3M 3M 4 Online 2014 cited 2014 Jul 11 Available from URL http csrv 3m com esrv home jsp 21 Abiko H Furuse M Takano T Quantitative evaluation of the effect of moisture contents of coconut shell activated carbon used for respirators on adsorption capacity for organic va pors Ind Health 2010 48 52 60 22
32. tetrachloride 50 5 557 568 454 682 100 5 355 3292 263 395 300 5 138 136 6 109 164 Toluene 50 5 1 198 887 6 710 1 065 100 5 624 482 4 386 579 300 5 220 181 1 145 217 gt c 1500 ipm Table 5 Use conditions data of cartridge or carbon bed input 1 E Q 30 L min s acetone i 4 into MultiVapor 2 2 3 and the values used for estima P 20C RH 50 shay fae tion in Table 6 and Fig 3 B 50 100 30 ppm 9 Carbon tigirachidride B 6 C 5 20 ppm OX Input condition Value amp 1000 d 0 11 cm e RE Temperature C 20 2 S Tanaka et al pid n Am Ind Hyg Assoc 62 20007 y Xan x Atmospheric pressure atm 1 00 S 1 PSA Relative humidity 50 amp 500 R 9 9806 01 m Number of cartridges on a respirator 1 d O Y Maximumestimation Average breathing air flow L min 30 E F A O Ordinary estimation Vapor concentration ppm 100 300 500 1 000 8 a Breakthrough concentration ppm 3 Experimental breakthrough time min 500 1000 1500 x Fig 2 Comparison of the experimental organic vapor break through times of an activated carbon bed by Tanaka et al9 and the calculated breakthrough time by Multi Vapor 2 2 3 described in Table 4 1

Download Pdf Manuals

image

Related Search

Related Contents

  Sistema de Audio e Video - SAV - MD - v4  Oxygénothérapie : mode d`emploi en salle de réveil - Euro  Istruzioni per l`uso  Manual  E1950S E2050S E2250S E2350S  ARRI ALEXA  Le Ferretcapien, mode d`emploi  Descargar - Notifier by Honeywell  View this Manual - Neopost Technologies Ltd  

Copyright © All rights reserved.
Failed to retrieve file