Home

DMC-30000 User Manual - Ultra Sistemas de Controle

image

Contents

1. T 3 650 00 2 663 1 789 1 18 m 703 2 528 n 2 650 Figure 2 2 DMC 30011 CARD Dimensions Chapter 2 Getting Started e 9 DMC 30000 User Manual DMC 30010 BOX and DMC 30011 BOX Dimensions e 3 88 19 r1 3 500 E DMC 30010 i g 4 20 2 463 1 589 9 550 B mI Y i n L 48 i L m 1 106 4 ir 125 1 128 4 1 36 4 POS 2 953 4 Figure 2 3 DMC 30010 BOX and DMC 30011 BOX Dimensions DMC 30000 User Manual Chapter 2 Getting Started e 10 DMC 30012 BOX DMC 30016 BOX and DMC 30017 BOX JR 83 5g nun 13s3u Dimensions 1 26 1 45 6 32 EARTH NUT 25 1 4 MAX INSERTION DEPT a
2. 3 88 19 3 500 ONG GG n aj f 2 2 Cy QW n eB OO DMC 30012 285 0o20 269 O50 Boe 990 e eseli Ko 5 00 990 4 500 294 iar 2 688 1 814 O 775 Y a Y P SF YY i tt P Y 4 156 I 1 106 4 25 4 PLCS L 1428 4 N Figure 2 4 DMC 30012 BOX DMC 30016 BOX and DMC 30017 BOX Dimensions Chapter 2 Getting Started e 11 DMC 30000 User Manual DMC 30000 Mounting Instructions CARD All 4 standoff locations must be used when mounting the CARD version of the DMC 30000 controllers See Figure 2 1 and Figure 2 2 for mounting screw sizing and locations BOX All 4 mounting holes should be used to mount the controller to a secure base See Figure 2 3 and Figure 2 4 for mounting hole locations and sizes DMC 30012 DMC 30016 and DMC 30017 The bases for the DMC 30012 DMC 30016 and DMC 30017 are used as the heat sync for the internal amplifier The DMC 30012 and DMC 30017 must be mounted to an external heat sync for high duty cycle applications Elements You Need For a complete system Galil recommends the following elements I DMC 30000 2 Motor Amplifier Integrated when using DMC 30012 DMC 30016 DMC 30017 3 Power Supply for Amplifiers and Controller 4 Brush or Brushless Servo motors with Optical Encoders or stepper motors a Cables for connecting to the DMC 30000 5 PC
3. ILNOSI c LOOS OMNLU Nid L LHO 301d OGAOS OcC 90A08 0Z It zr C zr LHO AV I3 IF zc IEF zc Appendices e 189 DMC 30000 User Manual Connectors for DMC 30000 Pin outs J5 I O 44 pin HD D Sub Connector Female Pin Label Description Pin Label Description Pin Label Description Analog Input 2 2 12v Oups GNDIPWR Bani D 15 OPB Output PWR GND Bank 0 30 DO4 Digital Output 4 AOI Analog Output 1 is used as the motor command output for the DMC 3xx10 and DMC 3xx11 Multi Functional Pins MFn The Multi Functional Pins on the DMC 30000 have different functionalities dependent upon how the controller was ordered and how the controller is setup by the user If the controller is ordered with SER serial encoder interface then the MF pins can be used to interface to a serial encoder MF1 and MF2 are only used for the Main serial encoder input MF2 and MF3 are used for the Aux serial encoder input See the SI and SS commands in the command reference for more detail When the controller is setup for stepper motor operation the MF 2 and MF4 pins are used for step and direction respectively Single Description for Multi Functional Pins Label MT 2 or 2 5 SER option with BiSS or SSI Enabled MFI Main Axis Data D0 or SLO
4. E E qa NN kK HW kws K Figure 10 5 Elements of velocity loops DMC 30000 User Manual Chapter 10 Theory of Operation e 168 The resulting functions derived above are illustrated by the block diagram of Figure 10 6 VOLTAGE SOURCE V E m W P L SE x ST 1 ST 1 CURRENT SOURCE V W P VELOCITY LOOP V W P 1 KST 1 S Figure 10 6 Mathematical model of the motor and amplifier in three operational modes Encoder The encoder generates N pulses per revolution It outputs two signals Channel A and B which are in quadrature Due to the quadrature relationship between the encoder channels the position resolution is increased to 4N quadrature counts rev The model of the encoder can be represented by a gain of Ky 4N 21 count rad For example a 1000 lines rev encoder is modeled as K 638 DAC The DAC or D to A converter converts a 16 bit number to an analog voltage The input range of the numbers is 65536 and the output voltage range is 10V or 20V Therefore the effective gain of the DAC is K 20 65536 0 0003 V count Chapter 10 Theory of Operation e 169 DMC 30000 User Manual Digital Filter The digital filter has three element in series PID low pass and a notch filter The transfer function of the filter The transfer function of the filter elements
5. Increase the value of vl Repeat if v1 10001 End After the above program is entered quit the Editor Mode lt cntrl gt Q To start the motion command XO A Execute Program A Example 9 Motion Programs with Trippoints The motion programs may include trippoints as shown below Instruction B DP 0 PR 30000 SP 5000 BGA AP 6000 SP 2000 N E To start the program command XQ B Interpretation Label Define initial position Set target Set speed Start A motion lait until position 6000 Change speed End program Execute Program 4B Example 10 Control Variables Objective To show how control variables may be utilized Instruction A DPO PR 4000 SP 2000 BGA AMA WT 500 B vl TPA PR v1 2 BGA AMA WT 500 MG v1 Interpretation Label Define current position as zero Initial position Set speed Move A Wait until move is complete Wait 500 ms Determine distance to zero Command A move 1 2 the distance Start A motion After A moved Wait 500 ms Report the value of vl Chapter 2 Getting Started e 23 DMC 30000 User Manual C vi1 0 Exit if position 0 Repeat otherwise Label 4C End of Program Cj Q W y UJ E z To start the program command XO A Execute Program A This program moves A to an initial po
6. i m Alge fol an fot DMC 80012 KO ENCODER Q 15 45V 40 HALA 5 GND fac HAC Qaa 4ABe E m 585 suas 30k amas amp 56 A 309 12 AB 7yg 2MB o96 Q oeol fA amp gm M i 090 fu We Wa 259 lo 958 15 OPB o O 44Dos 38 POF wDo2 oo5 43 OPA 3B aour PRST olo 42 ELO 57577 20I8 080 41DI6 38 pr4 DIS ogo GALIL MOTION 40 zon Wo Ioog CONTROL 24 RLS zay 38 FLS 8 LSC MADEINUSA SME aies 7 MEE ap mrs 22MES Mp2 Oy 20 Gp 5MT SAN SNE IO 2 A02 ERR SERIAL L 5 A POWER SUPPLY H zr 2 CD 1 Appendices e 188 DMC 30000 User Manual DMC 30012 BOX ISCNTL DMC 30016 BOX ISCNTL and DMC 30017 BOX ISCNTL Requires two DC power supplies see power requirements for individual configurations in the Appendices OAYAS SRBSLasssssasst BASEESREREEESE FREES SISSERREERBSBS oos SEASHSSEESEESS EPERE PETI ztooe owa Sp RS RSS y B A f oooooooooooooor YVZw 6 Ol 9999999999999 O SA Xe O 2040 O
7. De allocating Array Space Array space may be de allocated using the DA command followed by the array name DA 0 deallocates all the arrays Input of Data Numeric and String NOTE The IN command has been removed from the DMC 30000 firmware Variables should be entered by sending data directly from the host application Sending Data from a Host The DMC 30000 can accept ASCII strings from a host This is the most common way to send data to the controller such as setting variables to numbers or strings Any variable can be stored in a string format up to 6 characters by simply specifying defining that variable to the string value with quotes for example vars STRING Will assign the variable varS to a string value of STRING To assign a variable a numerical value the direct number is used for example varN 123456 Will assign the variable varN to a number of 123 456 All variables on the DMC 30000 controller are stored with 6 bytes of integer and 4 bytes of fractional data Operator Data Entry Mode The Operator Data Entry Mode provides for un buffered data entry through the main RS 232 port In this mode the DMC 30000 provides a buffer for receiving characters This mode may only be used when executing an applications program The Operator Data Entry Mode may be specified for Port 2 only This mode may be exited with the or lt escape gt key NOTE Operator Data Entry Mode cannot be used for high rat
8. MOLEX 39 31 0020 MOLEX 44476 3112 A B C D 4 pin Motor 4 pin Molex Mini Fit Jr Power Connectors MOLEX 39 31 0040 MOLEX 44476 3112 For mating connectors see http www molex com Motor Connector Power Connector Power Connector Pin Number Connection 1 DC Power Supply Ground 2 VS DC Power Phase C Phase B N C for Bushed Motors No Connect Phase A A1 DMC 30012 e 199 DMC 30000 User Manual Operation Setting up the Brushless Mode and finding proper commutation The 6 commands used for set up are the BA BM BX BZ BC and BI commands Please see the command reference for details For detailed information on setting up commutation on the DMC 30012 can be found here 1 Issue the BA command to specify which axis you want to use the sinusoidal amplifier on 2 Calculate the number of encoder counts per magnetic cycle For example in a rotary motor that has 2 pole pairs and 10 000 counts per revolution the number of encoder counts per magnetic cycle would be 10 000 2 5000 Assign this value to BM 3 Issue either the BZ or BX command Either the BX or BZ command must be executed on every reset or power up of the controller e BZ Command Issue the BZ command to lock the motor into a phase Note that this will cause up to a magnetic cycle of motion Be sure to use a high enough value with BZ to ensure the motor is locked into phase properly BX Co
9. JS Jump to subroutin MOVE2 if input 1 is logic level MOVE2 IN 1 1l high After the subroutine MOVE2 is executed th program sequencer returns to the main program location where the subroutine was called JP Jump to BLUE if the absolute value of variable v2 BLUE ABS v2 gt is greater than 2 2 JP Jump to C if the value of vl times v7 is less than C vl v7 lt v8 v2 or equal to the value of v8 v2 JP A Jump to A Example Using JP command Move the X motor to absolute position 1000 counts and back to zero ten times Wait 100 msec between moves BEGIN Begin Program count 10 Initialize loop counter LOOP Begin loop PA 1000 Position absolute 1000 BGX Begin move AMX Wait for motion complete WT 100 Wait 100 msec PA 0 Position absolute 0 BGX Begin move AMX Wait for motion complete WT 100 Wait 100 msec count cou Decrement loop counter nt 1 JP Test for 10 times thru loop LOOP count gt 0 tj N End Program Using If Else and Endif Commands The DMC 30000 provides a structured approach to conditional statements using IF ELSE and ENDIF commands Chapter 7 Application Programming e 117 DMC 30000 User Manual Using the IF and ENDIF Commands An IF conditional statement is formed by the combination of an IF and ENDIF command The IF command has as it s arguments one or more conditional statements If the conditional statement s evaluates true the
10. V with the command V TPA The Command Reference denotes all commands which have an equivalent operand as Operand Usage Also see description of operands in Chapter 7 Application Programming DMC 30000 User Manual Chapter 5 Command Basics e 58 Command Syntax Binary advanced Some commands have an equivalent binary value Binary communication mode can be executed about 20 faster than ASCII commands Binary format can only be used when commands are sent from the PC and cannot be embedded in an application program Binary Command Format All binary commands have a 4 byte header and is followed by data fields The 4 bytes are specified in hexadecimal format Header Format Byte 1 specifies the command number between 80 to FF The complete binary command number table is listed below Byte 2 specifies the of bytes in each field as 0 1 2 4 or 6 as follows 00 No data fields i e SH or BG 01 One byte per field 02 One word 2 bytes per field 04 One long word 4 bytes per field 06 Galil real format 4 bytes integer and 2 bytes fraction Byte 3 specifies whether the command applies to a coordinated move as follows 00 No coordinated motion movement 01 Coordinated motion movement For example the command STS designates motion to stop on a vector move S coordinate system The third byte for the equivalent binary command would be 01 Byte 4 specifies the axis or data field as follows Bit 7 H axis or
11. return the controller responds with a colon Now type TPA RETURN This command directs the controller to return the current position of the A axis The controller should respond with a number such as 0 Step 6 Make Connections to Amplifier and Encoder Once you have established communications between the software and the DMC 30000 you are ready to connect the rest of the motion control system The motion control system typically consists of the controller an amplifier and a motor to transform the current from the amplifier into torque for motion System connection procedures will depend on system components and motor types Configuring the DMC 30012 DMC 30016 and DMC 30017 for External Servo Drive With the controller set to servo mode MT 1 or 1 to drive an external servo amplifier the BR command must be set toa 1 BR 1 This setting will disable the requirement to have the BA BM and BX or BZ commands executed prior to being able to issue the SH command for that axis for internal sinusoidally commutated amplifiers and will configure AOI for the motor command output Connecting to External Amplifiers If the system is run solely by Galil s integrated amplifiers or drivers skip this section the amplifier is already connected to the controller Here are the first steps for connecting a motion control system Step A Connect the motor to the amplifier with no connection to the controller Consult the amplifier do
12. 2l 2 6 OPO Clears all bits of output port to zero OP 15 Sets all bits of output port to one Quem ape coo The output port is useful for setting relays or controlling external switches and events during a motion sequence Example Turn on output after move Instruction Interpretation OUTPUT Label PR 2000 Position Command BG Begin AM After move SB1 Set Output 1 WT 1000 Wait 1000 msec CB1 Clear Output 1 EN End Digital Inputs The general digital inputs for are accessed by using the IN n function or the TI command The IN n function returns the logic level of the specified input n where n is a number through 8 Chapter 7 Application Programming e 147 DMC 30000 User Manual Example Using Inputs to control program flow Instruction Interpretation JP Jump to A if input 1 is low A IN 1 0 JP Jump to B if input 2 is high B IN 2 1 AI 7 Wait until input 7 is high AI 6 Wait until input 6 is low Example Start Motion on Switch Motor A must turn at 4000 counts sec when the user flips a panel switch to on When panel switch is turned to off position motor A must stop turning Solution Connect panel switch to input 1 of DMC 30000 High on input 1 means switch is in on position Instruction Interpretation S JG 4000 Set speed AI 1 BGA Begin after input 1 goes high AI 1 STA Stop after input 1 goes low AMA JP S After motion repeat EN a E The Auxiliary Encoder Inputs Th
13. 5V 5V Theory of Operation Traditional quadrature rotary encoders work by having two sets of lines inscribed radially around the circumference ofan optical disk A light is passed through each of these two sets of lines On the other side of the gratings photo sensors detect the presence or absence of these lines These two sets of lines are offset from each other such that one leads the other by one quarter of a complete cycle as shown in Figure A4 1 below These signals are commonly referred to as the Channels A and B The direction of rotation of the encoder can be inferred by which of the A and B signals leads the other Each rising or falling edge indicates one quadrature count Thus for a complete cycle of the square wave there are a total of four encoder counts Figure A4 1 Quadrature Encoder Signals A sinusoidal encoder is similar to a quadrature encoder in that it produces two signals that are read from two sets of lines inscribed on an optical disk The difference is that the two signals are output as analog sinusoidal waves as shown in Figure A4 2 Figure A4 2 Sinusoidal Encoder Signals When the DMC 40x0 is ordered with the ICM 42100 the position is tracked on two levels First the number of coarse cycles is counted much like is done with a quadrature encoder On the fine level the precise position inside A4 DMC 31000 e 213 DMC 30000 User Manual the cycle is determined from the two sinusoid
14. A2 DMC 30016 e 205 DMC 30000 User Manual Operation The AG command sets the current on each axis the LC command configures each axis s behavior when holding position and the YA command sets the step driver resolution These commands are detailed below see also the command reference for more information Stepper Mode With the DMC 30016 the controller will default to MT 2 stepper motor To set the controller for external servo mode set MT1 The DMC 30016 should be setup for Active High step pulses MT 2 or MT 2 5 Current Level Setup AG Command AG configures how much current the DMC 30016 delivers to each motor It is settable in 7mA increments from 0 5 to 1 4 Amps Low Current Mode LC LC configures the behavior when holding position when RP is constant The settings are shown in Table A2 1 for LC m LC Setting Mode Description m 0 Full Current Motor uses 100 of current at all times when enabled m i Low Current Motor uses 25 of current while at resting state m 2 32767 Delayed Low Current m specifies the number of samples to wait between the end of the move and when the current is cut to 2596 Table A2 1 LC settings for DMC 30016 Step Drive Resolution Setting YA command When using the DMC 30016 the step drive resolution can be set with the YA command as shown in Table A2 2 for YA m YA setting Step Resolution m 1 Full 70 holding current m 2 H
15. Chapter 7 Application Programming e 145 DMC 30000 User Manual 0010 00 New format vi 4 2 Specify hex format 000A 00 Hex value vl ALPHA Assign string ALPHA to vl v1l S4 Specify string format first 4 characters ALPH The local format is also used with the MG command Converting to User Units Variables and arithmetic operations make it easy to input data in desired user units such as inches or RPM The DMC 30000 position parameters such as PR PA and VP have units of quadrature counts Speed parameters such as SP JG and VS have units of counts sec Acceleration parameters such as AC DC VA and VD have units of counts sec2 The controller interprets time in milliseconds All input parameters must be converted into these units For example an operator can be prompted to input a number in revolutions A program could be used such that the input number is converted into counts by multiplying it by the number of counts revolution Instruction Interpretation RUN Label MG ENTER OF Prompt for revs REVOLUTIONS n1 1 rev JP rev n1l 1 Wait until user enters new value for nl PR n1 2000 Convert to counts MG ENTER SPEED IN Prompt for RPMs RPM s1 1 spd JP spd s1l 1 Wait for user to enter new value for sl SP s1 2000 60 Convert to counts sec MG ENTER ACCEL IN Prompt for ACCEL RAD SEC2 al acc JP acc al 1 Wait for user to enter new value for al
16. DMC 30016 DMC 30000 with 1 4 Amp stepper driver The DMC 30016 A2 DMC 30016 includes a microstepping drive for operating two phase bipolar stepper motors The DMC 30016 drive operates a two phase bipolar stepper motor in full step half step 1 4 step or 1 16 step It is user configurable from 0 5A to 1 4A per phase in 7 mA increments at 12 30VDC The dimensions of the DMC 30016 controller and drive package are 3 9 x 5 0 x 1 5 and no external heatsink is required DMC 30017 DMC 30000 with 6Amp stepper driver or 800W Sinusoidal Amplifier The DMC 30017 A3 DMC 30017 includes a microstepping drive for operating two phase bipolar stepper motors the drive can also be configured for a sinusoidally commutated PWM amplifier for driving brushed or brushless servo motors Micro stepping Drive The micro stepping drive produces 256 microsteps per full step or 1024 steps per full cycle which results in 51 200 steps rev for a standard 200 step motor The maximum step rate generated by the controller is 3 000 000 microsteps second The DMC 30017 can drive stepper motors at up to 6 Amps at 20 80VDC There are four selectable current gains 0 75 A 1 5 A 3 A and 6A A selectable low current mode reduces the current by 75 when the motor is not in motion Sinusoidally Commutated Amplifier When set to servo mode the DMC 30017 has the same specs as the DMC 30012 DMC 30000 User Manual Chapter 1 Overview e 4 DMC 30000 Func
17. DMC 30017 e 208 Electrical Specifications Supply Voltage 20 80 VDC Maximum Current 6 0 Amps Maximum Step Frequency 3 MHz Step Resolution 256 steps full step Switching Frequency 33 kHz Minimum Inductance Vsupply 24VDC 0 75 mH Vsupply 48VDC 1 2 mH Mating Connectors On Board Connector Terminal Pins POWER 2 pin Molex Mini Fit Jr MOLEX 39 31 0020 MOLEX 44476 3112 A B C D 4 pin Motor 4 pin Molex Mini Fit Jr Power Connectors MOLEX 39 31 0040 MOLEX 44476 3112 For mating connectors see http www molex com Motor Connector Power Connector Power Connector Pin Number Connection 1 DC Power Supply Ground 2 VS DC Power 1 B 2 B 3 A 4 A Note The stepper motor wiring on the DMC 30017 is not compatible with other Galil stepper drivers such as the SDM 44140 and SDM 44040 A3 DMC 30017 e 209 DMC 30000 User Manual Operation Stepper Mode With the DMC 30017 the controller will default to MT 2 stepper motor To set the controller for servo mode set MTI See Al DMC 30012 for further information regarding running in servo mode Setting the Current AG The DMC 30017 has 4 amplifier gain current settings The gain is set with the AG command as shown in Table A3 1 for AG m AGsetting Gain Value m 0 0 75 A Phase m 1 1 5 A Phase m 2 3 A Phase m 3 6 A Phase Table A3
18. IF ELSE and ENDIF Format Description IF conditional statement s Execute commands proceeding IF command up to ELSE command if conditional statement s is true otherwise continue executing at ENDIF command or optional ELSE command ELSE Optional command Allows for commands to be executed when argument of IF command evaluates not true Can only be used with IF command ENDIF Command to end IF conditional statement Program must have an ENDIF command for every IF command Example using IF ELSE and ENDIF TEST Begin Main Program TEST ELS Enable input interrupts on input 1 and input 2 MG WAITING FOR INPUT 1 Output message INPUT 2 LOOP Label to be used for endless loop JP LOOP Endless loop EN End of main program ININT Input Interrupt Subroutine IF IN 1 0 IF conditional statement based on input 1 IF IN 2 0 2 5 IF conditional statement executed if 1 IF conditional true MG INPUT 1 AND INPUT 2 Message to b xecuted if 2 IF conditional ARE ACTIVE is true ELSE ELSE command for 2 IF conditional statement DMC 30000 User Manual Chapter 7 Application Programming 118 MG ONLY INPUT 1 IS ACTIVE ENDIF ELSE MG ONLY INPUT 2 IS ACTIVE ENDIF WAIT JP WAIT IN 1 0 IN 2 0 RIO Subroutines active Message to b xecuted if 2 IF conditional is false End of 2 co
19. Print vl Interrogation Commands The DMC 30000 has a set of commands that directly interrogate the controller When these command are entered the requested data is returned in decimal format on the next line followed by a carriage return and line feed The format of the returned data can be changed using the Position Format PF and Leading Zeros LZ command For a complete description of interrogation commands see Chapter 5 Using the PF Command to Format Response from Interrogation Commands The command PF can change format of BL DE DP EM FL IP the values returned by theses interrogation commands LE PA PR TN VE TE Chapter 7 Application Programming e 143 DMC 30000 User Manual TP The numeric values may be formatted in decimal or hexadecimal with a specified number of digits to the right and left of the decimal point using the PF command Position Format is specified by PF m n where m is the number of digits to the left of the decimal point 0 thru 10 and n is the number of digits to the right of the decimal point 0 thru 4 A negative sign for m specifies hexadecimal format Hex values are returned preceded by a and in 2 s complement Hex values should be input as signed 2 s complement where negative numbers have a negative sign The default format is PF 10 0 If the number of decimal places specified by PF is less than the actual value a nine appears in all the decimal plac
20. USER MANUAL DMC 30000 Manual Rev 1 0e By Galil Motion Control Inc Galil Motion Control Inc 270 Technology Way Rocklin California 95765 Phone 916 626 0101 Fax 916 626 0102 E mail Address support galilmc com URL www galilmc com Date 08 12 Using This Manual This user manual provides information for proper operation of the DMC 30000 controller A separate supplemental manual the Command Reference contains a description of the commands available for use with this controller It is recommended that the user download the latest version of the Command Reference and User Manual from the Galil Website http www galilmc com support manuals php Your DMC 30000 motion controller has been designed to work with both servo and stepper type motors Installation and system setup will vary depending upon whether the controller will be used with stepper motors or servo motors To make finding the appropriate instructions faster and easier icons will be next to any information that applies exclusively to one type of system Otherwise assume that the instructions apply to all types of systems The icon legend is shown below S Attention Pertains to servo motor use Attention Pertains to stepper motor use WARNING Machinery in motion can be dangerous It is the responsibility of the user to design effective error handling and safety protection as part of the machinery Galil shall not be liable or res
21. iH N C C M A E X DMC 30012 ENCODER OY Ww pi GALIL MOTION CONTROL MADE INUSA oO Figure 2 5 Power Supply Wiring with AC Disconnect WARNING Dangerous voltages current temperatures and energy levels exist in this product and the associated amplifiers and servo motor s Extreme caution should be exercised in the application of this equipment Only qualified individuals should attempt to install set up and operate this equipment Never open the controller box when DC power is applied to it The green power POWER led indicator should go on when proper power is applied Step 5 Establish Communications with Galil Software Communicating through an Ethernet connection The DMC 30000 motion controller is equipped with DHCP If the controller is connected to a DHCP enabled network an IP address will automatically be assigned to the controller See Ethernet Configuration in Chapter 4 for more information Using GalilTools Software for Windows Registering controllers in the Windows registry is no longer required when using the GalilTools software package A simple connection dialog box appears when the software is opened that shows all available controllers Any available controllers with assigned IP addresses can be found under the Available tab in the Conn
22. engineer should design his overall system with protection against a possible component failure on the DMC 30000 Galil shall not be liable or responsible for any incidental or consequential damages Hardware Protection The DMC 30000 includes hardware input and output protection lines for various error and mechanical limit conditions These include Output Protection Lines Amp Enable This signal goes low when the motor off command is given when the position error exceeds the value specified by the Error Limit ER command or when off on error condition is enabled OE1 and the abort command is given Each axis amplifier has separate amplifier enable lines This signal also goes low when the watch dog timer is activated or upon reset Error Output The error output is a TTL signal which indicates an error condition in the controller This signal is available on the interconnect module as ERR When the error signal is low this indicates an error condition and the Error Light on the controller will be illuminated For details on the reasons why the error output would be active see Error Light Red LED in Chapter 9 Chapter 8 Hardware amp Software Protection e 155 DMC 30000 User Manual Input Protection Lines General Abort A low input stops commanded motion instantly without a controlled deceleration For any axis in which the Off On Error function is enabled the amplifiers will be disabled This could cause the motor to co
23. 24 VDC These outputs should not be used to drive inductive loads directly Electrical Specifications Output PWR Max Voltage 24 VDC Output PWR Min Voltage 5 VDC ON Voltage No Load Output PWR 5VDC 0 1 VDC Max Drive Current per Output 4mA Sinking Wiring the Standard 4mA outputs With this configuration the output power supply will be connected to Output PWR labeled OPB and the power supply return will be connected to Output GND labeled OPA Note that the load is wired between Output PWR and DO The wiring diagram for Bank 0 is shown in Error Reference source not found Refer to Connectors for DMC 30000 Pin outs in the Appendix for pin out information Chapter 3 Connecting Hardware e 31 DMC 30000 User Manual Output PWR oel DO 4 1 OPA zl Output GND Figure 3 6 4mA sinking wiring diagram for Bank 0 DO 4 1 25mA Sinking Optoisolated Outputs LSNK Description The 25mA sinking option refereed to as lower power sinking LSNK are capable of sinking up to 25mA per output The voltage range for the outputs is 5 24 VDC These outputs should not be used to drive inductive loads directly Electrical Specifications Output PWR Max Voltage 24 VDC Output PWR Min Voltage 5 VDC ON Voltage No Load Output PWR 5 VDC 1 2 VDC Max Drive Current per Output 25mA Sinking Wiring the 25mA Sinking Outputs The 25mA sinking outputs the load is wired in the same fashion as the 4mA sinking outputs T
24. 4 3 Send the appropriate MB command Use function code 4 as specified per the PLC Start at address 40006 Retrieve 4 modbus registers 2 modbus registers per analog input as specified by the PLC MBB 4 40006 4 myanalog Chapter 4 Software Tools and Communication e 47 DMC 30000 User Manual Results Array elements 0 and 1 will make up the 32 bit floating point value for analog input 3 on the PLC and array elements 2 and 3 will combine for the value of analog input 4 myanalog 0 16412 0x401C myanalog 1 52429 0xCCCD myanalog 2 49347 0xC0C3 og 3 13107 0x3333 myanal Analog input 3 0x401CCCCD 2 45V Analog input 4 0xC0C33333 6 1V Example 3 DMC 30000 connected as a Modbus master to a hydraulic pump The DMC 30000 will set the pump pressure by writing to an analog output on the pump located at Modbus address 30000 and consisting of 2 Modbus registers forming a 32 bit floating point value 1 Begin by opening a connection to the pump which has an IP address of 192 168 1 100 in our example THB 192 168 1 100 lt 502 gt 2 2 Dimension and fill an array with values that will be written to the PLC DM pump 2 pump 0 16531 0x4093 pump 1 13107 0x3333 3 Send the appropriate MB command Use function code 16 Start at address 30000 and write to 2 registers using the data in the array pump MBB 16 30000 2 pump Results Analog output will be set to 0x40933333 which is 4 6V To view an example pr
25. 5000 Command the X axis to absolute position 5000 encoder counts The output from this code can be seen in Figure 6 1 a screen capture from the GalilTools scope z n x Vertical Horizontal didt Source Scale div Offset div _RPA Axis A ref 500 count 5 50000 2 0 221383 m 4 42765 DON xS m 0 442765 0 221383 ese m M 0 221383 TOROS MOC MIO A e e 2 e wx wx ow x x x t 50 ms Trigger Channel W RPAN Edge Level 2500 count Mode Repeat v READY RPA Figure 6 1 Position vs Time msec Motion 1 Chapter 6 Programming e 67 DMC 30000 User Manual Example Motion 2 The previous step showed the plot if the motion continued all the way to 5000 however partway through the motion the object that was being tracked changed direction so the host program determined that the actual target position should be 2000 counts at that time Figure 6 1 shows what the position profile would look like if the move was allowed to complete to 5000 counts The position was modified when the robot was at a position of 4200 counts Figure 6 2 Note that the robot actually travels to a distance of almost 5000 counts before it turns around This is a function of the deceleration rate set by the DC command When a direction change is commanded the controller decelerates at the rate
26. 56 of 1000 PR Request relative mov value Explicit Notation The DMC 30000 provides an alternative method for specifying data Here data is specified individually using the single axis specifier A An equals sign is used to assign data to that axis For example PRA 1000 Specify a position relative movement for the A axis of 1000 ACA 200000 Specify acceleration as 200000 Controller Response to DATA The DMC 30000 returns a for valid commands and a for invalid commands For example if the command BG is sent in lower case the DMC 30000 will return a bg invalid command lower case J DMC 30000 returns a When the controller receives an invalid command the user can request the error code The error code will specify the reason for the invalid command response To request the error code type the command TC1 For example TC1 Tell Code command 1 Unrecognized Returned response There are many reasons for receiving an invalid command response The most common reasons are unrecognized command such as typographical entry or lower case command given at improper time such as during motion or a command out of range such as exceeding maximum speed A complete listing of all codes is listed in the TC command in the Command Reference section Interrogating the Controller Interrogation Commands The DMC 30000 has a set of commands that directly interrogate the controller When the command is entered the request
27. AC al 2000 2 3 14 Convert to counts sec2 BG Begin motion EN End program Hardware I O Digital Outputs The DMC 30000 has 4 bit uncommitted digital outputs output port Each bit may be set and cleared with the software instructions SB Set Bit and CB Clear Bit or OB define output bit DMC 30000 User Manual Chapter 7 Application Programming 146 Example Set Bit and Clear Bit Instruction Interpretation SB3 Sets bit 3 of output port CB4 Clears bit 4 of output port Example Output Bit The Output Bit OB instruction is useful for setting or clearing outputs depending on the value of a variable array input or expression Any non zero value results in a set bit Instruction Interpretation OB1 POS Set Output 1 if the variable POS is non zero Clear Output 1 if POS equals 0 OB 2 IN 1 Set Output 2 if Input 1 is high If Input 1 is low clear Output 2 OB 3 IN Set Output 3 only if Input 1 and Input 1 amp IN 2 2 are high OB 4 COUNT 1 Set Output 4 if element 1 in the array COUNT is non zero The output port can be set by specifying an 16 bit word using the instruction OP Output Port This instruction allows a single command to define the state of the entire 16 bit output port where bit 0 is output 1 bitl is output2 and so on A designates that the output is on Example Output Port Instruction Interpretation OP6 Sets outputs 2 and 3 of output port to high All other bits are 0
28. Anything Correct problem reported by SC Error Light Red LED The red error LED has multiple meanings for Galil controllers Here is a list of reasons the error light will come on and possible solutions Under Voltage If the controller is not receiving enough voltage to power up Under Current If the power supply does not have enough current the red LED will cycle on and off along with the green power LED Chapter 9 Troubleshooting e 161 DMC 30000 User Manual Position Error If any axis that is set up as a servo MT command has a position error value TE that exceeds the error limit ER the error light will come on to signify there is an axis that has exceeded the position error limit Use a DP 0 to set all encoder positions to zero or a SH Servo Here command to eliminate position error Invalid Firmware If the controller is interrupted during a firmware update or an incorrect version of firmware is installed the error light will come on The prompt will show up as a greater than sign gt instead of the standard colon prompt Use GalilTools software to install the correct version of firmware to fix this problem Self Test During the first few seconds of power up it is normal for the red LED to turn on while it is performing a self test If the self test detects a problem such as corrupted memory or damaged hardware the error light will stay on to signal a problem with th
29. D T Assuming a sampling period of T Ims the parameters of the digital filter are KP 82 4 KD 274 The DMC 30000 can be programmed with the instruction KP 82 4 KD 274 In a similar manner other filters can be programmed The procedure is simplified by the following table which summarizes the relationship between the various filters Equivalent Filter Form DMC 30000 Digital D z K z A z Cz z 1 1 B Z B KP KD KI PL K KP KD A KD KP KD C KI B PL Digital D z KP KD 1 z P KI2 1 z 1 PL Z PL Continuous G s P Ds I s a sta PID T P KP D T KD I KI T a I T In 1 PL Chapter 10 Theory of Operation e 175 DMC 30000 User Manual Appendices Electrical Specifications Servo Control AOI and AO2 Amplifier Command MA MA MB MB MI MI Encoder and Auxiliary Stepper Control MF2 MF2 Step MF4 MF4 Direction Input Output Limit Switch Inputs Home Inputs DI thru DI8 Uncommitted Inputs and Abort Input Analog Inputs DOI thru DO4 Outputs DI81 DI82 10 volt analog signal Resolution 16 bit DAC or 0 0003 volts 3 mA maximum Output impedance 500Q TTL compatible but can accept up to 12 volts Quadrature phase on CHA CHB Can accept single ended A B only or differential A A B B Maximum A B edge rate 15 MHz Minimum IDX pulse width 30 nsec Differential 0 3 3 Volts level at 50 duty cycle 3 000 000 pulses sec maxim
30. ID The DMC 30000 provides three levels of Modbus communication The first level allows the user to create a raw packet and receive raw data It uses the MBh command with a function code of 1 The format of the command is MBh 1 len array where len is the number of bytes array is the array with the data The second level incorporates the Modbus structure This is necessary for sending configuration and special commands to an I O device The formats vary depending on the function code that is called For more information refer to the Command Reference The third level of Modbus communication uses standard Galil commands Once the slave has been configured the commands that may be used are IN AN SB CB OB and AO For example AO 2020 8 2 would tell I O number 2020 to output 8 2 volts If a specific slave address is not necessary the I O number to be used can be calculated with the following I O Number HandleNum 1000 Module 1 4 BitNum 1 Where HandleNum is the handle number from 1 A to 8 8 Module is the position of the module in the rack from 1 to 16 BitNum is the I O point in the module from 1 to 4 Modbus Examples Example 1 DMC 30000 connected as a Modbus master to a RIO 47120 via Modbus The DMC 30000 will set or clear all 16 of the RIO s digital outputs 1 Begin by opening a connection to the RIO which in our example has IP address 192 168 1 120 DMC 30000 User Manual Chapter 4 Software Too
31. MF2 6 STEP Main Axis Clock CO or MA MF STEP Main Axis Clock CO or MA MF3 Aux Axis Data D1 or SLO MF4 Aux Axis Clock C1 or MA MF4 7 DIR Aux Axis Clock C1 or MA DMC 30000 User Manual Appendices 190 J4 Encoder 15 pin HD D Sub Connector Female J1 J2 Ethernet RJ45 Pin Label Description 1 MI T Index Pulse Input 2 MB B Main Encoder Input 3 A Main Encoder Input 4 B Aux Encoder Input 5 Digital Ground 6 MI I Index Pulse Input 7 MB B Main Encoder Input 8 MA A Main Encoder Input 9 A Aux Encoder Input 0 HALA A Channel Hall Sensor 1 A Aux Encoder Input 2 AB B Aux Encoder Input 3 HALB B Channel Hall Sensor 4 HALC C Channel Hall Sensor 5 5V 5V Pin Signal 1 TXP 2 TXN 3 RXP 4 5 6 RXN 7 8 The Ethernet connection is Auto MDIX 100bT 10bT Appendices e 191 DMC 30000 User Manual J3 RS 232 Main Port Male Standard connector and cable 9Pin Pin Signal NC TXD RXD NC GND NC CTS RTS NC JP1 Jumper Description for DMC 30000 Label Function If jumpered OPT Reserved MO When controller is powered on or reset Amplifier Enable lines will be in a Motor Off state A SH will be required to re enable the motors 19 2 Baud Rate setting see table below UG Used to upgrade controller firmware when resident firmware is corrup
32. Manual A3 DMC 30017 Description The DMC 30017 includes a microstepping drive for operating two phase bipolar stepper motors the drive can also be configured for a sinusoidally commutated PWM amplifier for driving 3 phase brushless servo motors or a brushed motor Micro stepping Drive The micro stepping drive produces 256 microsteps per full step or 1024 steps per full cycle which results in 51 200 steps rev for a standard 200 step motor The maximum step rate generated by the controller is 3 000 000 microsteps second The DMC 30017 can drive stepper motors at up to 6 Amps at 20 80VDC There are four selectable current gains 0 75 A 1 5 A 3 A and 6A A selectable low current mode reduces the current by 75 when the motor is not in motion Sinusoidally Commutated Amplifier The DMC 30017 can also be used as a sinusoidally commutated amplifier See Al DMC 30012 for specifications To get the DMC 30017 into this mode issue MT 1 Note Do not hot swap the motor power or supply voltage power input connections If the amp is enabled when the motor connector is connected or disconnected damage to the amplifier can occur Galil recommends powering the controller and amplifier down before changing the connector and breaking the AC side of the power supply connection in order to power down the amplifier The ELO input may be used to cut power to the motors in an Emergency Stop or Abort situation DMC 30000 User Manual A3
33. RS 232 programming port General I O The DMC 30000 provides interface circuitry for 8 bi directional optoisolated inputs 4 optoisolated outputs and 2 analog inputs with 12 Bit ADC 16 Bit optional Unused auxiliary encoder inputs may also be used as additional Chapter 1 Overview e 5 DMC 30000 User Manual inputs 2 inputs The general inputs as well as the index pulse can also be used as high speed latches for each axis A high speed encoder compare output is also provided System Elements As shown in Figure 1 2 the DMC 30000 is part of a motion control system which includes amplifiers motors and encoders These elements are described below Power Supply Amplifier Driver Computer DMC 30000 Controller Encoder Motor Figure 1 2 Elements of Servo Systems Motor A motor converts current into torque which produces motion Each axis of motion requires a motor sized properly to move the load at the required speed and acceleration Galil s MotorSizer Web tool can help you with motor sizing www galilmc com support motorsizer The motor may be a step or servo motor and can be brush type or brushless rotary or linear For step motors the controller can be configured to control full step half step or microstep drives An encoder is not required when step motors are used Other motors and devices such as Ultrasonic Ceramic motors and voice coils can be
34. Summary Coordinated Motion Sequence COMMAND DESCRIPTION VM AN Enable Vector Mode VP mn Specify the Vector segment CR 1 0 FAO Specifies arc segment where r is the radius is the starting angle and AO is the travel angle Positive direction is CCW VSs Specify vector speed or feed rate of sequence VAs Specify vector acceleration along the sequence VDs Specify vector deceleration along the sequence VRs Specify vector speed ratio BGS Begin motion sequence CSS Clear sequence AVs Trippoint for After Relative Vector distance AMST Holds execution of next command until Motion Sequence is complete LM Return number of available spaces for linear and circular segments in DMC 30000 sequence buffer Zero means buffer is full 31 means buffer is empty Operand Summary Coordinated Motion Sequence OPERAND DESCRIPTION The absolute coordinate of the axis at the last intersection along the sequence Distance traveled _LM Number of available spaces for linear and circular segments in DMC 30000 sequence buffer Zero means buffer is full 31 means buffer is empty Chapter 6 Programming e 75 DMC 30000 User Manual Segment counter Number of the segment in the sequence starting at zero _VE Vector length of coordinated move sequence When AV is used as an operand AV returns the distance traveled along the sequence The operand _VPX can be used to return the coordinates of the last
35. The first command lt n is equivalent to commanding VS n at the start of the given segment and will cause an acceleration toward the new commanded speeds subjects to the other constraints The second function gt m requires the vector speed to reach the value m at the end of the segment Note that the function gt m may start the deceleration within the given segment or during previous segments as needed to meet the final speed requirement under the given values of VA and VD Note however that the controller works with one gt m command at a time As a consequence one function may be masked by another For example if the function 72100000 is followed by 275000 and the distance for deceleration is not sufficient the second condition will not be met The controller will attempt to lower the speed to 5000 but will reach that at a different point Changing Feed Rate The command VR n allows the feed rate VS to be scaled between 0 and 10 with a resolution of 0001 This command takes effect immediately and causes VS scaled VR also applies when the vector speed is specified with the operator This is a useful feature for feed rate override VR does not ratio the accelerations For example VR 0 5 results in the specification VS 2000 to be divided by two Trippoints The AV n command is the After Vector trippoint which waits for the vector relative distance of n to occur before executing the next command in a program Command
36. Time of Parabolic Velocity Profile Contour Mode The DMC 30000 also provides a contouring mode This mode allows any arbitrary position curve to be prescribed This is ideal for following computer generated paths such as parabolic spherical or user defined profiles The path is not limited to straight line and arc segments and the path length may be infinite Specifying Contour Segments The Contour Mode is specified with the command CM A contour is described by position increments which are described with the command CD x over a time interval DT n The parameter n specifies the time interval The time interval is defined as 2 sample period 1 ms for TM1000 where n is a number between and 8 The controller performs linear interpolation between the specified increments where one point is generated for each sample If the time interval changes for each segment use CD x n where n is the new DT value Consider for example the trajectory shown in Figure 6 11 The position X may be described by the points Point 1 X 0 at T 0ms Point 2 X 48 at T 4ms Point 3 X 288 at T 12ms Point 4 X 336 at T 28ms The same trajectory may be represented by the increments Increment 1 DX 48 Time 4 DT 2 Increment 2 DX 240 Time 8 DT 3 Increment 3 DX 48 Time 16 DT 4 DMC 30000 User Manual Chapter 6 Programming e 86 When the controller receives the command to generate a trajectory along these points it interpolates linearly between the point
37. Troubleshooting e 160 The encoder works correctly when swapped with another encoder input 1 Wrong encoder connections Unable to read main or auxiliary encoder input 2 Encoder configuration incorrect 3 Encoder input or controller is damaged Swapping cables fixes the problem Encoder Position Drifts 1 Poor Connections intermittent cable Check encoder wiring For single ended encoders MA and MB only do not make any connections to the MA and MB inputs Check CE command Contact Galil Review all connections and connector contacts Encoder Position Drifts Significant noise can be 1 Noise Shield encoder cables seen on MA and or MB Avoid placing power cables near encoder signals encoder cables Avoid Ground Loops Use differential encoders Use 12V encoders Stability SYMPTOM DIAGNOSIS CAUSE REMEDY Reversed Motor Type 1 Wrong feedback polarity Servo motor runs away when the loop is closed corrects situation MT 1 Reverse Motor or Encoder Wiring remember to set Motor Type back to default value MT 1 Motor oscillates 2 Too high gain or Decrease KI and KP Increase KD too little damping Operation SYMPTOM DIAGNOSIS CAUSE REMEDY Controller rejects Response of controller 1 Anything Correct problem reported by TC1 commands from TC1 diagnoses error Response of controller from 2 TC1 diagnoses error Motor Doesn t Move
38. V4 20 Compute a proportional speed JG V5 Change the speed JP B Repeat the process EN End Backlash Compensation by Sampled Dual Loop The continuous dual loop enabled by the DV1 function is an effective way to compensate for backlash In some cases however when the backlash magnitude is large it may be difficult to stabilize the system In those cases it may be easier to use the sampled dual loop method described below This design example addresses the basic problems of backlash in motion control systems The objective is to control the position of a linear slide precisely The slide is to be controlled by a rotary motor which is coupled to the slide by a lead screw Such a lead screw has a backlash of 4 micron and the required position accuracy is for 0 5 micron The basic dilemma is where to mount the sensor If you use a rotary sensor you get a 4 micron backlash error On the other hand if you use a linear encoder the backlash in the feedback loop will cause oscillations due to instability An alternative approach is the dual loop where we use two sensors rotary and linear The rotary sensor assures stability because the position loop is closed before the backlash whereas the linear sensor provides accurate load position information The operation principle is to drive the motor to a given rotary position near the final point Once there the load position is read to find the position error and the controller commands the mot
39. Vertical Horizontal didt Source Scale div Offset div B RPAAxiAref v 2000cour 0 Wi v _RPAAxis Aref 10000 co 2 m vl 2 1 m 0 221383 0 m m 4 42765 m 0 442765 COVANHY l v ii p i epe b v lh lt gt 0 x N Channel MB RPA Edge Level Ocounts L Jeo 0 221383 3 m 0 221383 4 t 150 ms 4 F jit N Trigger wa Mode Repeat v READY RPA didt RPA Figure 6 4 Position and Velocity vs Time msec for Motion 3 with IT 0 1 Note the controller treats the point where the velocity passes through zero as the end of one move and the beginning of another move IT is allowed however it will introduce some time delay Trip Points Most trip points are valid for use while in the position tracking mode There are a few exceptions to this the AM and MC commands may not be used while in this mode It is recommended that AR MF MR or AP be used as they involve motion in a specified direction or the passing of a specific absolute position Command Summary Position Tracking Mode COMMAND DESCRIPTION ACn Acceleration settings APn Trip point that holds up program execution until an absolute position has been reached DCn Deceleration settings MF n Trip point to hold up program execution until n number of counts have passed in the forward direction MRn Trip point to hold up program execution until n number of cou
40. WT n 0 and WT n 1 is minimal The difference comes when the servo update rate is changed With a low servo update rate it 1s often useful to be able to time loops based upon samples rather than msec and this is where the unscaled WT and AT are useful For example MAIN abel TM 250 250us update rate MOVE abel PRX 1000 Position Relative Move BGX Begin Motion CX Wait for motion to complete VT 2 1 lait 2 samples 500us SBl Set bit 1 EN End Program In the above example without using an unscaled WT the output would either need to be set directly after the motion was complete or 2 ms after the motion was complete By using WT n 1 and a lower TM greater delay resolution was achieved Conditional Jumps The DMC 30000 provides Conditional Jump JP and Conditional Jump to Subroutine JS instructions for branching to a new program location based on a specified condition The conditional jump determines if a condition is satisfied and then branches to a new location or subroutine Unlike event triggers the conditional jump instruction does not halt the program sequence Conditional jumps are useful for testing events in real time They allow the controller to make decisions without a host computer For example the DMC 30000 can decide between two motion profiles based on the state of an input line Chapter 7 Application Programming e 115 DMC 30000 User Manual Command Format JP and JS F
41. aborted and the motor will come to a controlled stop on that axis with a deceleration specified by the DC command Also PVT mode will be exited and the stop code will be set to 32 During normal operation of PVT mode the stop code will be 30 If PVT mode is exited normally PVA 0 0 0 then the stop code will be set to 31 Additional PVT Information It is the users responsibility to enter PVT data that the system s mechanics and power system can respond to in a reasonable manner Because this mode of motion is not constrained by the AC DC or SP values if a large velocity or position is entered with a short period to achieve it the acceleration can be very high beyond the capabilities of the system resulting in excessive position error The position and velocity at the end of the segment are guaranteed to be accurate but it is important to remember that the required path to obtain the position and velocity in the specified time may be different based on the PVT values Mismatched values for PVT can result in different interpolated profiles than expected but the final velocity and position will be accurate The t value is entered in samples which will depend on the TM setting With the default TM of 1000 one sample is 976us This means that a t value of 1024 will yield one second of motion The velocity value v will always be in units of counts per second regardless of the TM setting Chapter 6 Programming e 83 DMC 30000
42. an interface for a second encoder except when the controller is configured for stepper motor operation or used in circular compare When used the second encoder is typically mounted on the motor or the load but may be mounted in any position The most common use for the second encoder is backlash compensation described below The second encoder may be a standard quadrature type or it may provide pulse and direction The controller also offers the provision for inverting the direction of the encoder rotation The main and the auxiliary encoders are configured with the CE command The command form is CE x where the parameter x is the sum of two integers m and n m configures the main encoder and n configures the auxiliary encoder Using the CE Command For example E E CE Main Encoder n Second Encoder Normal quadrature Pulse amp direction Reverse quadrature EJ Reversed quadrature Reverse pulse amp direction a Pulse amp direction Normal quadrature Reversed pulse amp direction to configure the main encoder for reversed quadrature m 2 and a second encoder of pulse and direction n 4 the total is 6 and the command for the X axis is 6 DMC 30000 User Manual Chapter 6 Programming e 98 Additional Commands for the Auxiliary Encoder The command DE can be used to define the position of the auxiliary encoders For example DE 500 sets the value to 500 Th
43. are K Z 4 CZ PID D z Z Z 1 L L z lag OW pass vA i Z B Notch N z ZED 2 Z pXZ p The filter parameters K A C and B are selected by the instructions KP KD KI and PL respectively The relationship between the filter coefficients and the instructions are K KP KD A KD KP KD C KI B PL The PID and low pass elements are equivalent to the continuous transfer function G s G s P sD I s a s a where P KP D T KD I KI T 1 a 1n L T B where T is the sampling period and B is the pole setting For example if the filter parameters of the DMC 30000 are KP 16 KD 144 KI 2 PL 0 75 T 0 001 s the digital filter coefficients are K 160 A 0 9 C 2 a 250 rad s and the equivalent continuous filter G s is G s 16 0 144s 2000 s 250 s 250 The notch filter has two complex zeros z and z and two complex poles p and P The effect of the notch filter is to cancel the resonance affect by placing the complex zeros on top of the resonance poles The notch poles P and p are programmable and are selected to have sufficient damping It is best to select DMC 30000 User Manual Chapter 10 Theory of Operation e 170 the notch parameters by the frequency terms The poles and zeros have a frequency in Hz selected by the command NF The real part of the poles is set by NB and the real part of the zeros is set by NZ The most simple p
44. arrays DM contains the number of available array elements AB contains the state of the Abort Input _LFx contains the state of the forward limit switch for the x axis _LRx contains the state of the reverse limit switch for the x axis DMC 30000 User Manual Chapter 7 Application Programming 110 Debugging Example The following program has an error It attempts to specify a relative movement while the X axis is already in motion When the program is executed the controller stops at line 003 The user can then query the controller using the command TC1 The controller responds with the corresponding explanation Download Code A Program Label PR1000 Position Relative 1000 BGX Begin PR5000 Position Relative 5000 EN End From Terminal XQ dA Execute 4A 003 PR5000 Error on Line 3 STO Tell Error Code 27 Command Command not valid while running not valid while running Change the BGX line to BGX AMX and re download the program XO 4A Execute A Program Flow Commands The DMC 30000 provides instructions to control program flow The controller program sequencer normally executes program instructions sequentially The program flow can be altered with the use of event triggers trippoints and conditional jump statements Event Triggers amp Trippoints To function independently from the host computer the DMC 30000 can be programmed to make decisions based on the occurrence of an event S
45. button servo tuning and real time display of position and velocity information Designed to solve complex motion problems the DMC 30000 can be used for applications involving jogging point to point positioning vector positioning electronic gearing multiple move sequences contouring and a PVT Mode The controller eliminates jerk by programmable acceleration and deceleration with profile smoothing For smooth following of complex contours the DMC 30000 provides continuous vector feed of an infinite number of linear and arc segments The controller also features electronic gearing with multiple master axes as well as gantry mode operation For synchronization with outside events the DMC 30000 provides uncommitted I O including 8 optoisolated digital inputs 4 optically isolated outputs 2 analog inputs for interface to joysticks sensors and pressure transducers and 1 uncommitted analog output Further I O is available if the auxiliary encoders are not being used 2 inputs each axis Dedicated optoisolated inputs are provided for forward and reverse limits abort home and definable input interrupts Commands are sent in ASCII Additional software is available for automatic tuning trajectory viewing on a PC screen and program development using many environments such as Visual Basic C C etc Drivers for Windows XP Vista and 7 32 amp 64 bit as well as Linux are available Chapter 1 Overview e 1 DMC 30000 User Manual Ove
46. by two commands VP for linear segments and CR for circular segments Once a set of linear segments and or circular segments have been specified the sequence is ended with the command VE This defines a sequence of commands for coordinated motion Immediately prior to the execution of the first coordinated movement the controller defines the current position to be zero for all movements in a sequence Note This local definition of zero does not affect the absolute coordinate system or subsequent coordinated motion sequences The command VP x y specifies the coordinates of the end points of the vector movement with respect to the starting point The command CR r q d define a circular arc with a radius r starting angle of q and a traversed angle d The notation for q is that zero corresponds to the positive horizontal direction and for both q and d the counter clockwise CCW rotation is positive The CR command is useful for producing a sine wave as the move output as a single axis of a circle is a sinusoidal profile Up to 31 segments of CR or VP may be specified in a single sequence and must be ended with the command VE The motion can be initiated with a Begin Sequence BGS command Once motion starts additional segments may be added The Clear Sequence CS command can be used to remove previous VP and CR commands which were stored in the buffer prior to the start of the motion To stop the motion use the instructions STS or ABI ST
47. contain important status information which can help to debug a program Trace Commands The trace command causes the controller to send each line in a program to the host computer immediately prior to execution Tracing is enabled with the command TR1 TRO turns the trace function off Note When the trace function is enabled the line numbers as well as the command line will be displayed as each command line is executed NOTE When the trace function is enabled the line numbers as well as the command line will be displayed as each command line is executed Error Code Command When there is a program error the DMC 30000 halts the program execution at the point where the error occurs To display the last line number of program execution issue the command MG_ED The user can obtain information about the type of error condition that occurred by using the command TC1 This command reports back a number and a text message which describes the error condition The command TCO or TC will return the error code without the text message For more information about the command TC see the Command Reference Stop Code Command The status of motion for each axis can be determined by using the stop code command SC This can be useful when motion on an axis has stopped unexpectedly The command SC will return a number representing the motion status See the command reference for further information Flash Memory Interrogation Commands For debu
48. each command is sent to prevent errors An echo function is provided to enable associating the DMC 30000 response with the data sent The echo is enabled by sending the command EO 1 to the controller Chapter 4 Software Tools and Communication e 41 DMC 30000 User Manual Unsolicited Messages Generated by Controller When the controller is executing a program it may generate responses which will be sent via the RS 232 port or Ethernet handles This response could be generated as a result of messages using the MG command OR as a result of a command error These responses are known as unsolicited messages since they are not generated as the direct response to a command Messages can be directed to a specific port using the specific Port arguments see the MG and CF commands in the Command Reference If the port is not explicitly given or the default is not changed with the CF command unsolicited messages will be sent to the default port The default port is the serial port When communicating via an Ethernet connection the unsolicited messages must be sent through a handle that is not the main communication handle from the host The GalilTools software automatically establishes this second communication handle The controller has a special command CW which can affect the format of unsolicited messages This command is used by Galil Software to differentiate response from the command line and unsolicited messages The command CW1 causes th
49. error of 5 counts which will be eliminated once the motor settles This implies that the correction needs to be only 15 counts since 5 counts out of the 20 would be corrected by the X axis Accordingly the motion correction should be Correction Load Position Error Rotary Position Error The correction can be performed a few times until the error drops below 2 counts Often this is performed in one correction cycle Example INSTRUCTION J E EX A DPO LINPOS 0 PR 1000 BGX B AMX WT 50 LINPOS ERR 1000 LINPOS TEX JP C ABS ERR lt 2 T PR ERR BGX JP B C N tj FUNCTION Label Define starting positions as zero Required distance Start motion Wait Wait Read Find Exit for completion 50 msec linear position the correction if error is small Command correction Repeat the process DMC 30000 User Manual Chapter 7 Application Programming e 154 Chapter 8 Hardware amp Software Protection Introduction The DMC 30000 provides several hardware and software features to check for error conditions and to inhibit the motor on error These features help protect the various system components from damage WARNING Machinery in motion can be dangerous It is the responsibility of the user to design effective error handling and safety protection as part of the machine Since the DMC 30000 is an integral part of the machine the
50. loop control at the application program level SPM mode can be used with Galil and non Galil step drives SPM mode is configured executed and managed with seven commands This mode also utilizes the POSERR automatic subroutine allowing for automatic user defined handling of an error event Internal Controller Commands user can query QS Error Magnitude pulses User Configurable Commands user can query amp change OE Profiler Off On Error YA Step Drive Resolution pulses full motor step YB Step Motor Resolution full motor steps revolution YC Encoder Resolution counts revolution YR Error Correction pulses YS Stepper Position Maintenance enable status A pulse is defined by the resolution of the step drive being used Therefore one pulse could be a full step a half step or a microstep When a Galil controller is configured for step motor operation the step pulse output by the controller is internally fed back to the auxiliary encoder register For SPM the feedback encoder on the stepper will connect to the main encoder port Enabling the SPM mode on a controller with YS 1 executes an internal monitoring of the auxiliary and main encoder registers for that axis or axes Position error is then tracked in step pulses between these two registers QS command TPx YAx YB S TD Q YC Where TD is the auxiliary encoder register step pulses and TP is the main encoder register feedback encoder Additionally YA def
51. mode Finally to select KI start with zero value and increase it gradually The integrator eliminates the position error resulting in improved accuracy Therefore the response to the instruction TE A becomes zero As KI is increased its effect is amplified and it may lead to vibrations If this occurs simply reduce KI Repeat tuning for the B C and D axes NOTE For a more detailed description of the operation of the PID filter and or servo system theory see Chapter 10 Theory of Operation and our Manual Tuning Application Note 3413 http www galilmc com support appnotes optima note3413 pdf Design Examples Here are a few examples for tuning and using your controller These examples have remarks next to each command these remarks must not be included in the actual program Example 1 System Set up This example assigns the system filter parameters error limits and enables the automatic error shut off Instruction Interpretation DMC 30000 User Manual Chapter 2 Getting Started e 20 KP 10 Implicit Method for setting proportional gain KPA 10 Explicit Method for setting proportional gain KPX 10 Explicit Method for setting proportional gain Instruction Interpretation OE 1 Enable automatic Off on Error function ER 1000 Set error limit to 1000 counts KP 10 Set proportional gain Example 2 Profiled Move Rotate the A axis a distance of 10 000 counts at a slew speed of 20 000 counts
52. of Flen 100 len3 len amp 000000FF Let variable len3 bottom byte of len len4 len amp 0000FF0 Let variable len4 second byte of len 0 100 len5 len amp 00FF000 Let variable len5 third byte of len 0 10000 len6 len amp FF00000 Let variable len6 fourth byte of len 0 1000000 G len6 S4 Display len6 as string message of up to 4 chars G lens S4 Display len5 as string message of up to 4 chars G len4 S4 Display len4 as string message of up to 4 chars G len3 54 Display len3 as string message of up to 4 chars G len2 S4 Display len2 as string message of up to 4 chars G lenl S4 Display lenl as string message of up to 4 chars EN This program will accept a string input of up to 6 characters parse each character and then display each character Notice also that the values used for masking are represented in hexadecimal as denoted by the preceding For more information see section Sending Messages To illustrate further if the user types in the string TESTME at the input prompt the controller will respond with the following T Response from command MG len6 Chapter 7 Application Programming e 131 DMC 30000 User Manual tj tj Functions 54 Response from command MG len5 84 Response from command MG len4 84 Response from command MG len3 S4 Response from command MG len2 S4 Response from command MG len
53. position sensor often an encoder and the position feedback is sent to the controller Like the brain the controller determines the position error which is the difference between the commanded position of 90 degrees and the position feedback The controller then outputs a signal that is proportional to the position error This signal produces a proportional current in the motor which causes a motion until the error is reduced Once the error becomes small the resulting current will be too small to overcome the friction causing the motor to stop The analogy between adjusting the water temperature and closing the position loop carries further We have all learned the hard way that the hot water faucet should be turned at the right rate If you turn it too slowly the temperature response will be slow causing discomfort Such a slow reaction is called over damped response The results may be worse if we turn the faucet too fast The overreaction results in temperature oscillations When the response of the system oscillates we say that the system is unstable Clearly unstable responses are bad when we want a constant level What causes the oscillations The basic cause for the instability is a combination of delayed reaction and high gain In the case of the temperature control the delay is due to the water flowing in the pipes When the human reaction is too strong the response becomes unstable Servo systems also become unstable if th
54. referred to in sample code as g represents a single connection to a Galil controller For Ethernet controllers which support more than one connection multiple objects may be used to communicate with the controller An example of multiple objects is one Galil object containing a TCP handle to a DMC 30000 for commands and responses and one Galil object containing a UDP handle for unsolicited messages from the controller If recordsStart is used to begin the automatic data record function the library will open an additional UDP handle to the controller transparent to the user The library is conceptually divided into six categories 1 Connecting and Disconnecting functions to establish and discontinue communication with a controller 2 Basic Communication The most heavily used functions for command and response and unsolicited messages Programs Downloading and uploading embedded programs Arrays Downloading and uploading array data Advanced Lesser used calls Qv ee a Data Record Access to the data record in both synchronous and asynchronous modes DMC 30000 User Manual Chapter 4 Software Tools and Communication e 54 C Library Windows and Linux Both Full and Lite versions of GalilTools ship with a native C communication library The Linux version libGalil so is compatible with g and the Windows version Galill dll with Visual C 2008 Contact Galil if another version of the C library is required
55. sec and an acceleration and deceleration rates of 100 000 counts s In this example the motor turns and stops Instruction Interpretation PR 1000 Distance SP 20000 Speed DC 100000 Deceleration AC 100000 Acceleration BGA Start Motion Example 3 Absolute Position Objective Command motion by specifying the absolute position Instruction Interpretation DP 2000 Define the current position as 2000 PA 7000 Sets the desired absolute positions to 7000 BGA Start A motion Example 4 Velocity Control Objective Drive the motor at a specified speed Instruction Interpretation JG 10000 Set Jog Speed to 10000 counts second AC 100000 Set acceleration to 100000 counts second 2 DC 50000 Set deceleration to 50000 counts second 2 BGA Start motion after a few seconds command JG 40000 New speed and Direction TVA Returns A speed This causes velocity changes including direction reversal The motion can be stopped with the instruction ST Stop Chapter 2 Getting Started e 21 DMC 30000 User Manual Example 5 Operation Under Torque Limit The magnitude of the motor command may be limited independently by the instruction TL Instruction TH 0 2 JG 10000 BGA Interpretation Set output limit of A axis to 0 2 volts Set A speed Start A motion In this example the A motor will probably not move since the output signal will not be sufficient to overcome the friction If the motion starts it can be stop
56. signal AL command arms latch Input 1 is latch A DMC 30000 User Manual Appendices 194 List of Other Publications Step by Step Design of Motion Control Systems by Dr Jacob Tal Motion Control Applications by Dr Jacob Tal Motion Control by Microprocessors by Dr Jacob Tal Training Seminars Galil a leader in motion control with over 500 000 controllers working worldwide has a proud reputation for anticipating and setting the trends in motion control Galil understands your need to keep abreast with these trends in order to remain resourceful and competitive Through a series of seminars and workshops held over the past 20 years Galil has actively shared their market insights in a no nonsense way for a world of engineers on the move In fact over 10 000 engineers have attended Galil seminars The tradition continues with three different seminars each designed for your particular skill set from beginner to the most advanced MOTION CONTROL MADE EASY WHO SHOULD ATTEND Those who need a basic introduction or refresher on how to successfully implement servo motion control systems TIME 4 hours 8 30 am 12 30 pm ADVANCED MOTION CONTROL WHO SHOULD ATTEND Those who consider themselves a servo specialist and require an in depth knowledge of motion control systems to ensure outstanding controller performance Also prior completion of Motion Control Made Easy or equivalent is required Analys
57. specified by the DC command The controller then ramps the velocity in up to the value set with SP in the opposite direction traveling to the new specified absolute position In Figure 6 2 the velocity profile is triangular because the controller doesn t have sufficient time to reach the set speed of 50000 counts sec before it is commanded to change direction The below code is used to simulate this scenario EX2 Pr Le Place the X axis in Position tracking mode AC 150000 Set the X axis acceleration to 150000 counts sec2 DC 150000 Set the X axis deceleration to 150000 counts sec2 SP 50000 Set the X axis speed to 50000 counts sec PA 5000 Command the X axis to abs position 5000 encoder counts MF 4200 PA 2000 Change end point position to position 2000 EN Scope Oo a Vertical Horizontal didt Source Scale div Offset div _RPA Axis Aref 1000 cours 0 m v RPAAxiArefw 10000 coi 2 x a mj 2 i T A m 0 221383 0 s ur v 4 42765 l 1 2 oe mi m 0 442765 t 2 4 Wr 0 221383 3 s 0 221383 t 4 a t 101 562 r 3 923 Trigger Channel Bl RPA Edge w Level Ocounts Mode Repeat v READY RPA djdt RPA Figure 6 2 Position and Velocity vs Time msec for Motion 2 DMC 30000 User Manual Chapter 6 Programming e 68 Example Motion 3 In this motion the host program commands th
58. stops motion at the specified deceleration ABI aborts the motion instantaneously The Vector End VE command must be used to specify the end of the coordinated motion This command requires the controller to decelerate to a stop following the last motion requirement If a VE command is not given an Abort ABI must be used to abort the coordinated motion sequence It is the responsibility of the user to keep enough motion segments in the DMC 30000 sequence buffer to ensure continuous motion If the controller receives no additional motion segments and no VE command the controller will stop motion instantly at the last vector There will be no controlled deceleration LM or LM returns the available spaces for motion segments that can be sent to the buffer 31 returned means the buffer is empty and 31 segments can be sent A zero means the buffer is full and no additional segments can be sent As long as the buffer is not full additional segments can be sent at PC bus speeds The operand CS can be used to determine the value of the segment counter Additional commands The commands VS n VA n and VD n are used for specifying the vector speed acceleration and deceleration Specifying Vector Speed for Each Segment The vector speed may be specified by the immediate command VS It can also be attached to a motion segment with the instructions VP xXy lt n gt m CR 00 8 lt n gt m DMC 30000 User Manual Chapter 6 Programming e 74
59. t TIME to MG TIME t This is about 154ms 2ms Now when the comments inside of the loop routine are changed into REM statements a REM statement must always start on a new line the processing is greatly reduced When executed on the same DMC 30012 the output from the program shown below returned a 84 which indicates that it took 84 samples to process the commands from t TIME to MG TIME t This is about 82ms 2ms and about 50 faster than when the comments where downloaded to the controller fa i 0 initialize a counter t TIME set an initial time reference loop REM this comment is removed upon download and takes no time to process REM this comment is removed upon download and takes no time to process i itl REM this comment is removed upon download and takes no time to process JP loop i lt 1000 G TIME t display number of samples From initial time reference N tj WT vs AT and coding deterministic loops The main difference between WT and AT is that WT will hold up execution of the next command for the specified time from the execution of the WT command AT will hold up execution of the next command for the specified time from the last time reference set with the AT command A ATO set initial AT time reference WT 1000 1 wait 1000 samples DMC 30000 User Manual Chapter 7 Application Programming e 128 tl TIM GI AT 4000 1 wait 4000 samples fro
60. the expiration of the applicable warranty period to Galil Motion Control properly packaged and with transportation and insurance prepaid We will reship at our expense only to destinations in the United States and for products within warranty Call Galil to receive a Return Materials Authorization RMA number prior to returning product to Galil Any defect in materials or workmanship determined by Galil Motion Control to be attributable to customer alteration modification negligence or misuse is not covered by this warranty EXCEPT AS SET FORTH ABOVE GALIL MOTION CONTROL WILL MAKE NO WARRANTIES EITHER EXPRESSED OR IMPLIED WITH RESPECT TO SUCH PRODUCTS AND SHALL NOT BE LIABLE OR RESPONSIBLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES COPYRIGHT 3 97 The software code contained in this Galil product is protected by copyright and must not be reproduced or disassembled in any form without prior written consent of Galil Motion Control Inc Appendices e 197 DMC 30000 User Manual Al DMC 30012 Description The DMC 30012 includes a sinusoidally commutated PWM amplifier for driving 3 phase brushless servo motors or a brushed motor Each amplifier drives motors operating at up to 10 Amps continuous 15 Amps peak 20 80 VDC The gain settings of the amplifier are user programmable at 0 4 Amp Volt 0 8 Amp Volt and 1 6 Amp Volt The switching frequency is 33 kHz The amplifier offers protection for over voltage under voltage over
61. then set the AU setting To verify that the current loop is stable set the PID s to 0 KP KD and KI and then enable the axis SH An unstable current loop will result in oscillations of the motor or a high frequency buzz from the motor Setting Peak and Continuous Current TL and TK Vsupply VDC Inductance L mH m 24 7 0 24 L 1 1 24 1 lt L lt 2 3 2 24 23 L 42 3 24 42 L 4 48 0 48 L lt 2 4 1 48 24 L 42 2 48 42 lt L lt 7 3 48 7 L 4 Table A1 2 Amplifier Current Loop Gain Settings To set TL and TK for a particular motor find the continuous current and peak current ratings for that motor and divide that number by the amplifier gain For example a particular motor has a continuous current rating of 2 0 A and peak current rating of 5 0 A With an AG setting of 1 the amplifier gain of the DMC 30012 is 0 8A V TL setting 2 0A 0 8A V 2 5V TL n 2 5 TK setting 5 0A 0 8A V 7 5V TK n 6 25 A1 DMC 30012 e 201 DMC 30000 User Manual c Vertical Horizontal didt Source Scale div Offset div m Ta Axis A tor 2y S 3 ao w al E ao j 1 Sj 1 m v eo mr I 1 313 Si ao Cae ej amp mri v 1 es mr Iv 1 e amp t 5ms 24 3 Trigger Channel Bi TTA w Edge v Level 0 1 a Mode Repeat v READY dLTI 29 03 V TTA dt 13 ms 1 dt 74 6 Hz Figure A1 2 Peak Current Operation B
62. time clock can be set to a TIME protocol RFC 868 server Using IH the DMC 30000 can connect to a TIME server over TCP on port 37 and receive the 32bit response The firmware will then set the time and calendar if applicable to the TIME server value The command RO is used to set the GMT time zone offset for localization of the current time The TIME protocol synchronization is designed to connect to a server on the local network Contact Galil if a local server is not available e g an Internet Gateway is required to contact NIST See the Error Reference source not found section in the Appendix for further details and specifications for the RTC option DMC 30000 User Manual Chapter 6 Programming 106 Chapter 7 Application Programming Overview The DMC 30000 provides a powerful programming language that allows users to customize the controller for their particular application Programs can be downloaded into the DMC 30000 memory freeing the host computer for other tasks However the host computer can send commands to the controller at any time even while a program is being executed Only ASCII commands can be used for application programming In addition to standard motion commands the DMC 30000 provides commands that allow the DMC 30000 to make its own decisions These commands include conditional jumps event triggers and subroutines For example the command JP LOOP n lt 10 causes a jump to the label LOOP if the variable n i
63. to communicate with the controller to perform basic setup and to develop application code dmc programs that is downloaded to the controller At the Galil API level the GalilTools Communication Library is available for users who wish to develop their own custom application programs to communicate to the controller Custom application programs can utilize API function calls directly to our DLL s At the driver level we provide fundamental hardware interface information for users who desire to create their own drivers Controller Response to Commands Most DMC 30000 instructions are represented by two characters followed by the appropriate parameters Each instruction must be terminated by a carriage return Multiple commands may be concatenated by inserting a semicolon between each command After the instruction is decoded the DMC 30000 returns a response to the port from which the command was generated If the instruction was valid the controller returns a colon or the controller will respond with a question mark if the instruction was not valid For example the controller will respond to commands which are sent via the RS 232 port back through the RS 232 port and to commands which are sent via the Ethernet port back through the Ethernet port For instructions that return data such as Tell Position TP the DMC 30000 will return the data followed by a carriage return line feed and It is good practice to check for after
64. until 10 elements have been stored LOOP count lt 10 tj N End Program The above example records 10 position values at a rate of one value per 10 msec The values are stored in an array named pos The variable count is used to increment the array element counter The above example can also be executed with the automatic data capture feature described below Uploading and Downloading Arrays to On Board Memory The GalilTools software is recommended for downloading and uploading array data from the controller The GalilTools Communication library also provides function calls for downloading and uploading array data from the controller to from a buffer or a file Arrays may also be uploaded and downloaded using the QU and QD commands QU array start end delim QD array start end where array is an array name such as A start is the first element of array default 0 end is the last element of array default last element delim specifies whether the array data is separated by a comma delim 1 or a carriage return delim 0 The file is terminated using lt control gt Z lt control gt Q lt control gt D or V Automatic Data Capture into Arrays The DMC 30000 provides a special feature for automatic capture of data such as position position error inputs or torque This is useful for teaching motion trajectories or observing system performance Up to six types of data can be captured and stored in six arrays The capture
65. used for the communication interrupt For example the DMC 30000 can be configured to interrupt on any character received on Port 2 The COMINT subroutine is entered when a character is received and the subroutine can decode the characters At the end of the routine the EN command is used EN 1 will re enable the interrupt and return to the line of the program where the interrupt was called EN will just return to the line of the program where it was called without re enabling the interrupt As with any automatic subroutine a program must be running in thread 0 at all times for it to be enabled Example A DMC 30000 is used to jog the axis The speed of either axis may be changed during motion by specifying the axis letter followed by the new speed value An S stops motion on both axes Instruction Interpretation AUTO Label for Auto Execute speedA 10000 Initial A speed speedB 10000 Initial B speed CI 2 Set Port 1 for Character Interrupt JG speedA Specify jog mode speed BGX Begin motion PRINT Routine to print message to terminal DMC 30000 User Manual Chapter 7 Application Programming e 140 MG P1 TO CHANG Gl Print message SPEEDS MG P1 TYPE A MG P1 TYPE S TO STOP JOGLOOP Loop to change Jog speeds JG speedA Set new jog speed JP JOGLOOP EN COMINT JP A P2CH A JP C P2CH S ZS1 C12 JP JOGLO End of main program Interrupt routine Check for A Check for S Ju
66. 0 User Manual Analog Inputs DMC 30000 The DMC 30000 has two 0 5V analog inputs The inputs are decoded by a 12 bit A D decoder giving a voltage resolution of approximately 1 22mV The analog inputs are specified as AN x where x is a number or 2 The analog inputs can be set to a differential mode where analog input 2 is the differential input to analog input 1 Electrical Specifications Maximum Voltage 5V Minimum Voltage OV Resolution 12 bit Input Impedance 100 kQ All2 1 Figure 3 11 Analog Inputs for the DMC 30000 DMC 31000 The DMC 31000 has two analog inputs configured for the range between 10V and 10V The inputs are decoded by a 16 bit A D decoder giving a voltage resolution of approximately 0003V The analog inputs are specified as AN x where x is a number 1 thru 2 AQ settings With the DMC 31000 the analog inputs can be set to a range of 10V 5V 0 5V or 0 10V this allows for increased resolution when the full 10V is not required The inputs can also be set into a differential mode where analog input 2 can be set to the negative differential input for analog input 1 See the AQ command in the command reference for more information Electrical Specifications Resolution 16 bit Input Impedance Unipolar 0 5V 0 10V 42kQ Bipolar 5V 10V 31kO DMC 30000 User Manual Chapter 3 Connecting Hardware e 38 External Amplifier Interface Electrical Specifications Max Amplifie
67. 1 S4 FUNCTION SIN n COS n TAN n ASIN n ACOS n ATAN n COM n ABS n FRAC n INTIn RND n SQRIn INIn OUT n ANIN DESCRIPTION Sine of n n in degrees with range of 32768 to 32767 and 16 bit fractional resolution Cosine of n n in degrees with range of 32768 to 32767 and 16 bit fractional resolution Tangent of n n in degrees with range of 32768 to 32767 and 16 bit fractional resolution Arc Sine of n between 90 and 90 Angle resolution in 1 64000 degrees Arc Cosine of n between 0 and 180 Angle resolution in 1 64000 degrees Arc Tangent of n between 90 and 90 Angle resolution in 1 64000 degrees 1 s Complement of n Absolute value of n Fraction portion of n Integer portion of n Round of n Rounds up if the fractional part of n is 5 or greater Square root of n Accuracy is 004 Return digital input at general input n where n starts at 1 Return digital output at general output n where n starts at 1 Return analog input at general analog in n where n starts at 1 Note that these functions are multi valued An application program may be used to find the correct band Functions may be combined with mathematical expressions The order of execution of mathematical expressions is from left to right and can be over ridden by using parentheses Examples v1l ABS V7 v2 5 aS IN pos v3 IN 1 v4 2 5 AN 5 variable
68. 1 Amplifier Gain Settings for DMC 30017 The axis must be in a motor off MO state prior to execution of the AG command The current ratings are peak current per phase Low Current Mode LC LC configures the behavior when holding position when RP is constant The settings are shown in Table A3 2 for LC m LC Setting Mode Description m 0 Full Current Motor uses 100 of current at all times when enabled m 1 Low Current Motor uses 25 of current while at resting state m 2 32767 Delayed Low Current m specifies the number of samples to wait between the end of the move and when the current is cut to 2596 Table A3 2 LC settings for DMC 30017 ELO Input If the ELO input on the controller is triggered the amplifier will be shut down at a hardware level the motors will be essentially in a Motor Off MO state TA3 will return a 3 and the AMPERR routine will run when the ELO input is triggered To recover from an ELO an MO then SH must be issued or the controller must be reset It is recommended that OE1 be used for all axes when the ELO is used in an application Error Monitoring and Protection The amplifier is protected against over voltage under voltage over temperature and over current for brush and brushless operation The controller will monitor the error conditions and respond as programmed in the application The errors are monitored via the TA command TA n may be used to monitor the e
69. 127 9999 with a fractional resolution of 0001 There are two modes standard gearing and gantry mode The gantry mode enabled with the command GM allows the gearing to stay enabled even if a limit is hit or an ST command is issued GR 0 turns off gearing in both modes Electronic gearing allows the geared motor to perform a second independent move in addition to the gearing For example when a geared motor follows a master at a ratio of 1 1 it may be advanced an additional distance with PR or JG commands or VP or LI Ramped Gearing In some applications especially when the master is traveling at high speeds it is desirable to have the gear ratio ramp gradually to minimize large changes in velocity on the slave when the gearing is engaged For example if the master is already traveling at 500 000 counts sec and the slave will be geared at a ratio of 1 1 when the gearing is engaged the slave will instantly develop following error and command maximum current to the motor This can be a large shock to the system For many applications it is acceptable to slowly ramp the engagement of gearing over a greater time frame Galil allows the user to specify an interval of the master axis over which the gearing will be engaged For example the same master X axis in this case travels at 500 000 counts sec and the gear ratio is 1 1 but the gearing is slowly engaged over 30 000 counts of the master axis greatly diminishing the initial shock to the slave
70. 2 Tell Position in hexadecimal format 4 2 FFFB 00 5 0005 00 5 0000 00 Response from Interrogation 90007 00 Command Formatting Variables and Array Elements The Variable Format VF command is used to format variables and array elements The VF command is specified by VF m n where m is the number of digits to the left of the decimal point 0 thru 10 and n is the number of digits to the right of the decimal point 0 thru 4 A negative sign for m specifies hexadecimal format The default format for VF is VF 10 4 Hex values are returned preceded by a and in 2 s complement Instruction Interpretation v1 10 Assign vl vi Return vl 0000000010 0000 Response Default format VF2 2 Change format vl Return vl 10 00 Response New format VF 2 2 Specify hex format vl Return vl 0A 00 Response Hex value VF1 Change format vl Return vl 39 Respons Overflow Local Formatting of Variables PF and VF commands are global format commands that affect the format of all relevant returned values and variables Variables may also be formatted locally To format locally use the command Fn m or n m following the variable name and the symbol F specifies decimal and specifies hexadecimal n is the number of digits to the left of the decimal and m is the number of digits to the right of the decimal Instruction Interpretation v1 10 Assign v1 vl Return vl 0000000010 0000 Default Format vl F4 2 Specify local format
71. 3 DMC 30017 208 Lese EG eus duco ouod e d IQ A ou ul ol Las reer p RUBER 208 Elgetrical Speer Hoa go to oa stc d a d rn i did 209 DIMITTERET A 210 Error Monitoring and PPotectiOni iussi uitiis nea etatis 210 A4 DMC 31000 212 DVS cree cie hi d e n etr Y rhe rhe rae a ies 212 Theor o CIBePa IO saca ui aue d coo coe S e t iia ra 213 DMC 30000 Contents e iv Chapter 1 Overview Introduction The DMC 30000 Series is Galil s latest generation single axis motion controller It uses a 32 bit RISC processor to provide higher speed than older models The DMC 30000 is available as a compact card level or box level unit and connects to a stepper or servo motor amplifier of any power range Or the DMC 300xx can be purchased with an internal drives which minimize space cost and wiring The motion controller operates stand alone or can be networked to a PC via Ethernet Features include PID compensation with both velocity and acceleration feed forward program memory with multitasking for concurrent execution of multiple programs and uncommitted optically isolated inputs and outputs for synchronizing motion with external events Modes of motion include point to point positioning jogging contouring PVT electronic gearing and electronic cam Like all Galil motion controllers these controllers use a simple English like command language which makes them very easy to program GalilTools software further simplifies system set up with one
72. 30000 User Manual The next step is to combine all the system elements with the exception of G s into one function L s L s M s K Ka Kp H s 3 17 10 s s 2000 Then the open loop transfer function A s is A s L s G s Now determine the magnitude and phase of L s at the frequency c 500 L j500 3 17 10 j500 2 j500 2000 This function has a magnitude of L j500 0 00625 and a phase Arg L j500 180 tan 1500 2000 194 G s is selected so that A s has a crossover frequency of 500 rad s and a phase margin of 45 degrees This requires that A j500 1 Arg A j500 135 However since A s L s G s then it follows that G s must have magnitude of GG500 AG500 LG500 160 and a phase arg G j500 arg A j500 arg LG500 135 194 59 In other words we need to select a filter function G s of the form G s P sD so that at the frequency 500 the function would have a magnitude of 160 and a phase lead of 59 degrees These requirements may be expressed as G j500 P j500D 160 and arg G j500 tan 500D P 59 The solution of these equations leads to P 160cos 59 82 4 500D 160sin 59 137 Therefore D 0 274 and G 82 4 0 274s The function G is equivalent to a digital filter of the form D z KP KD 1 z7 where P KP DMC 30000 User Manual Chapter 10 Theory of Operation e 174 D KD T and KD
73. 8 data field Bit 6 G axis or 7 data field Bit 5 F axis or 6 data field Bit 4 E axis or 5 data field Bit 3 D axis or 4 data field Bit 2 C axis or 3 data field Bit 1 B axis or 2 data field Bit 0 A axis or 1 data field Data fields Format Data fields must be consistent with the format byte and the axes byte For example the command PR 1000 500 would be A7 02 00 05 03 E8 FE OC where A7 is the command number for PR 02 specifies 2 bytes for each data field Chapter 5 Command Basics e 59 DMC 30000 User Manual 00 S is not active for PR 05 specifies bit 0 is active for A axis and bit 2 is active for C axis 2 22 5 03 E8 represents 1000 FE OC represents 500 Example The command ST XS would be Al 00 01 01 where Al is the command number for ST 00 specifies 0 data fields 01 specifies stop the coordinated axes S 01 specifies stop X bit 0 2 1 Binary command table Command No Command No pope pec EM KP Em pem pe pem 18 KD Pe ee p E i Command No e MI D rem p E a 99 N DMC 30000 User Manual Chapter 5 Command Basics e 60 EY Ee e pu pem n iM B a S eee o RR RR SH aa reserved d5 Chapter 5 Command Basics e 61 DMC 30000 User Manual Chapter 6 Programming Overview The DMC 30000 provides several modes of motion including independent positioning and jogging coordinated motion electronic cam moti
74. A Latched position _RPA Commanded position SCA Stop code _TEA Position error _TI Inputs _TPA Encoder position _TSA Switches only bit 0 4 valid TTA Torque reports digital value 32544 NOTE X may be replaced by Y Z or W for capturing data on other axes Operand Summary Automatic Data Capture RC _RD Returns a 0 or 1 where 0 denotes not recording 1 specifies recording in progress Returns address of next array element Example Recording into An Array During a position move store the X and Y positions and position error every 2 msec RECORD DM XPOS 300 YPOS 300 DM XERR 300 YERR 300 RA XPOS XERR YPOS Y RD TPX TEX TEY y TEY PR 10000 20000 RC1 BG XY A JP A _RC 1 G DONI tj N TPLAY N 0 JP DONI F a N E N gt 300 msec Begin program Define X Y position arrays Define X Y error arrays Select arrays for capture Select data types Specify move distance Start recording now at rate of 2 Begin motion Loop until done Print message End program Play back Initial Counter Exit if done Print Counter DMC 30000 User Manual Chapter 7 Application Programming e 138 X POS N Print X position Y POS N Print Y position XERR N Print X error YERR N Print Y error N N 1 Increment Counter DONE Done EN End Program
75. AVn Trippoint for After Relative Vector distance n DMC 30000 User Manual Chapter 6 Programming e 72 Operand Summary Linear Interpolation OPERAND DESCRIPTION _AV Return distance traveled _CS Segment counter returns number of the segment in the sequence starting at zero _LE Returns length of vector resets after 2147483647 _LM Returns number of available spaces for linear segments in DMC 30000 sequence buffer Zero means buffer full 31 means buffer empty _VPA Return the absolute coordinate of the last data point along the trajectory To illustrate the ability to interrogate the motion status consider the first motion segment of our example LMOVE where the X axis moves toward the point X 5000 Suppose that when X 3000 the controller is interrogated using the command MG AV The returned value will be 3000 The value of CS and VPA will be Zero Chapter 6 Programming e 73 DMC 30000 User Manual Vector Mode Linear and Circular Interpolation Motion he DMC 30000 provides a vector mode that allows the buffering of absolute moves from the starting position for a single axis The coordinated motion mode is similar to the linear interpolation mode but the linear segments are specified as absolute positions from the starting position of the A axis The command VM AN where A is the A axis and N is the imaginary axis Specifying Vector Segments The motion segments are described
76. B AA AB AA AB AA AB Analog Feedback 0 5V All All All AQ AIl AQ Analog Feedback 16 bit configurable 10V All AQ AII AQ SSI BiSS Channel 0 MF0 Main MF0 Main SSI BiSS Channel 1 MFl Aux MFl Aux Sin Cos Encoder MA MB MA MB e MA MB are the Main Encoder inputs e AA AB are the Aux Encoder Inputs e Allis Analog Input 1 e MFO is Multi Funtion Input 0 e MF lis Multi Function Input 1 Main Encoder Inputs The main encoder inputs can be configured for quadrature default or pulse and direction inputs This configuration is set through the CE command The encoder connections are found on the 15 pin HD D sub Encoder connectors and are labeled MA MA MB MB The negative inputs are the differential inputs to the encoder inputs if Table 3 2 Feedback options for DMC 30000 series controllers the encoder is a single ended 5V encoder then the negative input should be left floating except for the DMC 31000 If the encoder is a single ended and outputs a 0 12V signal then the negative input should be tied to the 5V line on the DMC 30000 When the encoders are setup as step and direction inputs the MA channel will be the step or pulse input and the MB channel will be the direction input The encoder inputs can be ordered with 120Q termination resistors installed See TRES Encoder Termination Resistors in the Appendix for more information Electrical Specifications Maximum Voltage Min
77. BOX DMC 30000 User Manual Appendices e 180 Communication Options RS 422 Serial Port Serial Communication The default serial configuration for the DMC 30000 is to have RS 232 communication on the serial port The controller can be ordered to have RS 422 RS 422 communication is a differentially driven serial communication protocol that should be used when long distance serial communication is required in an application RS 422 Serial Port Pinout Standard connector and cable when DMC 30000 is ordered with RS 422 Option Function If jumpered RS 422 Option Only Connects a 1200hm Termination resistor between the differential Receive inputs on the Aux Serial port Pins 2 and 7 on RS 422 Auxiliary Port RS 422 Option Only Connects a 1200hm Termination resistor between the differential Clear To Send inputs on the Aux Serial port Pins 1 and 6 on RS 422 Auxiliary Port Part number ordering example DMC 30010 CARD 422 Mounting Options DIN DIN Rail Mounting The DIN option on the DMC 30000 motion controller provides DIN rail mounts on the base of the controller This will allow the controller to be mounted to any standard DIN rail Requires BOX option Part number ordering example DMC 30010 BOX DIN Internal Amplifier Options DMC 30012 DMC 30000 with 800W Sinusoidal Amplifier The DMC 30012 A1 DMC 30012 provides an amplifier that drives motors operating at 20 80 VD
78. C up to 10 Amps continuous 15 Amps peak The gain settings of the amplifier are user programmable at 0 4 Amp Volt 0 8 Amp Volt and 1 6 Amp Volt The switching frequency is 33 kHz The amplifier offers protection for over voltage Appendices e 181 DMC 30000 User Manual under voltage over current and short circuit The SR90 SR 49000 Shunt Regulator Option is also available for the DMC 30012 Part number ordering example DMC 30012 BOX DMC 30017 DMC 30000 with 6Amp stepper driver or 800W Sinusoidal Amplifier The DMC 30017 A3 DMC 30017 includes a microstepping drive for operating two phase bipolar stepper motors the drive can also be configured for a sinusoidally commutated PWM amplifier for driving brushed or brushless servo motors Micro stepping Drive The micro stepping drive produces 256 microsteps per full step or 1024 steps per full cycle which results in 51 200 steps rev for a standard 200 step motor The maximum step rate generated by the controller is 3 000 000 microsteps second The DMC 30017 can drive stepper motors at up to 6 Amps at 20 80VDC There are four selectable current gains 0 75 A 1 5 A 3 A and 6A A selectable low current mode reduces the current by 75 when the motor is not in motion Sinusoidally Commutated Amplifier When set to servo mode the DMC 30017 has the same specs as the DMC 30012 Part number ordering example DMC 30017 BOX ISCNTL Isolate Controller Power The ISCNTL option isola
79. CMD XO ENDI IF XQ ENDI Eri zZ Example Communication Interrupt ERR ED2 _EDI 1 F qe _ED3 _EDI 1 E Begin thread 0 continuous loop End of thread O0 Begin thread 1 Create new variable Set KP to value of N an invalid Issue invalid command End of thread 1 Begin command error subroutine If error is out of range KP 1 Set N to a valid number Retry KP N command If error is invalid command TY Skip invalid command End of command error routine A DMC 30000 is used to move the axis back and forth from 0 to 10000 This motion can be paused resumed and stopped via input from an RS 232 device BEGIN Label for beginning of program Chapter 7 Application Programming e 123 DMC 30000 User Manual CL 2 MG P2 Type 0 to stop motion MG P2 Type 1 to pause motion MG P2 Type 2 to resume motion rate 2000 SPA rate LOOP PAA 10000 BGA AMA PAA 0 BGA AMA JP LOOP El N COMINT JP STOP P1ICH 0 JP PAUSE P1CH 1 JP RESUME P1CH 2 EN1 1 STOP STA Z8 1 Es iral Z PAUSI rate _SPA GI SPA 0 RESUME SPA rate EN1 1 Setup communication interrupt for auxiliary serial port Message out of auxiliary port Message out of auxiliary port Message out of Variable to r auxiliary port member speed Set
80. Current Output 5V 10 0 5A 12V 10 10mA 12V 10 10mA Appendices e 177 DMC 30000 User Manual Performance Specifications Minimum Servo Loop Update Time Memory Minimum Servo Loop Update Time DMC 30000 Position Accuracy Velocity Accuracy Long Term Short Term Position Range Velocity Range Velocity Resolution Motor Command Resolution Variable Range Variable Resolution Number of Variables Array Size Program Size Normal 125 usec 1 quadrature count Phase locked better than 0 005 System dependent 2147483647 counts per move Up to 15 000 000 counts sec servo 3 000 000 pulses sec stepper 2 counts sec 16 bit or 0 0003 V 2 billion 1 10 4 510 16000 elements 30 arrays 2000 lines x 80 characters Fast Update Rate Mode The DMC 30000 can operate with much faster servo update rates than the default of every millisecond This mode is known as fast mode and allows the controller to operate at an update rate of 62 5usec In order to run the DMC 30000 motion controller in fast mode the fast firmware must be uploaded This can be done through the GalilTools communication software The fast firmware is included with the original DMC 30000 utilities In order to set the desired update rates use the command TM When the controller is operating with the fast firmware the following functions are disabled Gearing mode Ecam mode Pol
81. E T t R b REM if input 4 is high set bit 1 and clear bit 3 R ti amp 8 gets 4th bit if 4th bit is high result 8 IF ti amp 8 8 bl 1 ELSE R ti amp 7 get lower 3 bits if 011 then result 3 IF ti amp 7 3 b3 1 ENDIF ENDIE R R O R R A J amp Gl En set output bits 1 and 3 accordingly GI EM set outputs at the end for a PLC scan B1 b1 0B3 b3 EM wait 500ms for 500 samples use AT 500 1 EM the will reset the time referenc Chapter 7 Application Programming e 129 DMC 30000 User Manual Mathematical and Functional Expressions Mathematical Operators For manipulation of data the DMC 30000 provides the use of the following mathematical operators Operator Function Addition Subtraction Multiplication Division Modulus amp Logical And Bit wise Logical Or On some computers a solid vertical line appears as a broken line 0 Parenthesis Mathematical operations are executed from left to right Calculations within parentheses have precedence Speed count resul temp The Examples 7 5 V1 2 The variable speed is equal to 7 5 multiplied by V1 and divided by 2 countt2 The variable count is equal to the current value plus 2 t _TPX COS 45 40 Puts the position of X 28 28 in result 40 cosine of 45 is 28 28 IN 1 amp IN 2 temp is equal to 1 only if Input 1 and
82. ES 2 BASSSRRBRRVVVSS o 006 2 T gibsspireengss S FREE D DJ m anyaaonvoS REA FUTT c UJ amp ESUSSRESEHESES FPES Q O f oooooooooooooorY E DX 2 Q K HOODOO OOOO OOOO ON J e o L Nid AV 134 MO amp 3 V 388 Appendices e 185 DMC 30000 User Manual DMC 30011 CARD Requires a 9VDC to 48VDC power supply LLOO OWd f oo0000000000000 Y 0000000000000 0m 100000000000000 ca OQAST 6 AV ped eo 8 3 V 388 U F zr DMC 30000 User Manual Appendices e 186 DMC 30011 BOX Requires a 9VDC to 48VDC power supply NC VSNNI SQV 7OHLNOO NOILOM TIVO 2S82g889585z 55E aBSEG Tog BSSRRRROSEBDSS PSEED SASSSRRBRABNVSS B execs z BSR5SNNSCEERSE O RBERE D aNvaunartvneoSsa bora anoa BSSERSRRSEGSEES EPSE fsoo0o0000000000 0m OIC CO OO 0 OG C0 0008 ess Jo o000oooooo0mJ KOa L002 7 HIJNHSHI3 lI3NU3 O T Ltoog owa op d4yvsdd Appendices 187 DMC 30000 User Manual DMC 30012 BOX DMC 30016 BOX and DMC 30017 BOX See power requirements for individual configurations in the Appendices SERVO psi LO
83. ET T tg can toa cae ego asad geen te 107 Propra Formales oeaan anaa 107 Executing Programs Multt skitig aec tec 109 Debugging Progro ciiin i cete evita ee Ei i acit s p 109 king AA EE E E TEAR LAE 133 Operands Input of Data Numetie aud String aita cand 139 Output of Data Numeric and String ccena 141 Hardware DC uiii arida rne uti acice tonc eco ctia io adita 146 Example Applicaliems iiuiass tas rc ette aces pee Hass c er odiis 151 Chapter 8 Hardware amp Software Protection 155 Wis CH otia dico ac ola o p Godd Coss silio Hai tica din Hardware Protection Bofbuare PEobecUODL e iac etia be bi etii i edes Chapter 9 Troubleshooting 160 RI OH oi cons nica ai sadi as casas A 160 Chapter 10 Theory of Operation 163 DMC 30000 Contents e iii pe Ue HE UT kerk ene ee eee eee ea er te eee 171 System Design and Cormpensatton e ci ee ta es 173 Appendices 176 Elgetrical Sae eaten ecco dace tate ad concor acad 176 Performance Specials usc eiecit a c e sro necu o 178 Connectors for DMC 30000 Pin Son EE d SR ides AEN 190 Sigtial Descriptions for DMC 30000 aite ec ei 193 List of Other Publications 195 A1 DMC 30012 198 escriba mi ic cay hss ccs eae cae hee Stace as 198 Blectnoul Speer deal on eee ee eter eti t Deck ta De cria e 199 ODIO I T T 200 Error Monitonog ad PEOlCCUQ isinin ieni 202 A2 DMC 30016 204 A
84. Figure 3 4 PS2805 5 28VDC RETURN Figure 3 4 Digital Input Wiring for Vs to INC The optoisolated inputs are configured into groups For example the general inputs DI 8 1 inputs 1 8 the ABRT abort input and RST reset and ELO electronic lock out inputs are one group The Limit and Home Switches are in another group The optoisolated inputs are connected in the following groups Chapter 3 Connecting Hardware e 29 DMC 30000 User Manual Group Common Signal DI1 DI8 ABRT RST ELO INC FLS RLS HOM LSC Table 3 1 INC and LSC information Using Voltages gt 28 VDC For voltages greater than 28 Volts a resistor R is needed in series with the input such that 1 mA lt Vs R 2 2KQ lt 11 mA CPU PS2805 Vs RETURN Figure 3 5 Wiring inputs for gt 28VDC Bypassing the Optoisolation If no isolation is needed the internal 5 Volt supply may be used to power the switches This can be done by connecting LSC or INC to 5V To close the circuit wire the desired input to any ground GND pin on the controller DMC 30000 User Manual Chapter 3 Connecting Hardware e 30 Optoisolated Outputs The DMC 30000 has several different options for the uncommitted digital outputs labeled as DO The default outputs are 4mA sinking which are ideal for interfacing to TTL level devices Additional options include 25mA sinking lower power sinking LSNK 25mA sourcing low power so
85. Input 2 are high Mathematical Operation Precision and Range controller stores non integers in a fixed point representation not floating point Numbers are stored as 4 bytes of integer and 2 bytes of fraction within the range of 2 147 483 647 9999 The smallest number representable and thus the precision is 1 65536 or approximately 0 000015 Example Using basic mathematics it is known that 1 4 80 000 112 000 However using a basic terminal a DMC controller would calculate the following var 1 4 80000 Storing the result of 1 4 80000 in var MG var Prints variable var to screen 111999 5117 The reason for this error relies in the precision of the controller 1 4 must be stored to the nearest multiple of 1 65536 which is 91750 65536 1 3999 Thus 91750 65536 80000 111999 5117 and reveals the source of the error By ignoring decimals and multiplying by integers first since they carry no error and then adding the decimal back in by dividing by a factor of 10 will allow the user to avoid any errors caused by the limitations of precision of the controller Continuing from the example above var 14 80000 Ignore decimals MG var Print result 1120000 0000 var var 10 Divide by 10 to add in decimal MG var Print correct result 112000 0000 DMC 30000 User Manual Chapter 7 Application Programming e 130 Bit Wise Operators The mathematical operators amp and are bit wise operators The opera
86. Motion Example The x axis must perform a sinusoidal motion of 10 cycles with an amplitude of 1000 counts and a frequency of 20 Hz This can be performed by commanding the X and N axes to perform circular motion Note that the value of VS must be VS 2n R F where R is the radius or amplitude and F is the frequency in Hz Set VA and VD to maximum values for the fastest acceleration INSTRUCTION INTERPRETATION VMXN Select Axes VA 68000000 Maximum Acceleration VD 68000000 Maximum Deceleration VS 125664 VS for 20 Hz CR 1000 90 Ten Cycles 3600 VE BGS Chapter 6 Programming e 91 DMC 30000 User Manual Stepper Motor Operation When configured for stepper motor operation several commands are interpreted differently than from servo mode The following describes operation with stepper motors Specifying Stepper Motor Operation Stepper motor operation is specified by the command MT The argument for MT is as follows 2 specifies a stepper motor with active low step output pulses 2 specifies a stepper motor with active high step output pulses 2 5 specifies a stepper motor with active low step output pulses and reversed direction 2 5 specifies a stepper motor with active high step output pulse and reversed direction Stepper Motor Smoothing The command KS provides stepper motor smoothing The effect of the smoothing can be thought of as a simple Resistor Capacitor single pole filter The filter occurs after the motion pro
87. ORMAT DESCRIPTION JS destination logical condition Jump to subroutine if logical condition is satisfied JP destination logical condition Jump to location if logical condition is satisfied The destination is a program line number or label where the program sequencer will jump if the specified condition is satisfied Note that the line number of the first line of program memory is 0 The comma designates IF The logical condition tests two operands with logical operators Logical operators OPERATOR DESCRIPTION lt less than gt greater than equal to lt less than or equal to gt greater than or equal to lt gt not equal Conditional Statements The conditional statement is satisfied if it evaluates to any value other than zero The conditional statement can be any valid DMC 30000 numeric operand including variables array elements numeric values functions keywords and arithmetic expressions If no conditional statement is given the jump will always occur Examples Number v1l 6 Numeric Expression vl v7 6 ABS v1 gt 10 Array Element vi lt count 2 Variable vi lt v2 Internal Variable TPX 0 _TVX gt 500 VO v1 gt AN 2 IN 1 0 Multiple Conditional Statements The DMC 30000 will accept multiple conditions in a single jump statement The conditional statements are combined in pairs using the operands amp and The amp opera
88. Personal Computer Serial or Ethernet for DMC 30000 6 GalilTools or GalilTools Lite Software package GalilTools is highly recommended for first time users of the DMC 30000 DMC 30000 User Manual Chapter 2 Getting Started e 12 Installing the DMC 30000 Installation of a complete operational DMC 30000 system consists of 8 steps Step 1 Determine overall motor configuration Step 2 Install Jumpers on the DMC 30000 Step 3 Install the communications software Step 4 Connect DC power to controller Step 5 Establish communications with the Galil Communication Software Step 6 Make connections to amplifier and encoder Step 7a Connect standard servo motors Step 7b Connect step motors Step 8 Tune the servo system Step 1 Determine Overall Motor Configuration Before setting up the motion control system the user must determine the desired motor configuration The DMC 30000 can control either a standard servo motor or stepper motor Other types of actuators such as hydraulics can also be controlled please consult Galil The following configuration information is necessary to determine the proper motor configuration Standard Servo Motor Operation Unless ordered with stepper motor drivers or in a non standard configuration the DMC 30000 has been setup by the factory for standard servo motor operation providing an analog command signal of 10V No hardware or software configuration is required for standard servo motor
89. R jumper is the Master Reset jumper When MR is connected the controller will perform a master reset upon PC power up or upon the reset input going low Whenever the controller has a master reset all programs arrays variables and motion control parameters stored in FLASH will be ERASED The UG jumper enables the user to unconditionally update the controller s firmware This jumper is not necessary for firmware updates when the controller is operating normally but may be necessary in cases of corrupted FLASH FLASH corruption should never occur however it is possible if there is a power fault during a firmware update If FLASH corruption occurs your controller may not operate properly In this case install the UG Jumper and use the update firmware function on the Galil Terminal to re load the system firmware Step 3 Install the Communications Software Using Windows XP Vista and 7 32 amp 64 bit Install the Galil Software Products CD ROM into your CD drive A Galil htm page should automatically appear with links to the software products Select the correct version of GalilTools software for your particular operating system 32 or 64 bit and click Install Follow the installation procedure as outlined The most recent copy of the GalilTools software can be downloaded from the Galil website http www galilmc com products software galiltools html All other Galil software is also available for download at the Galil soft
90. See the getting started guide and the hello cpp example in lib COM Windows To further extend the language compatibility on Windows a COM Component Object Model class built on top of the C library is also provided with Windows releases This COM wrapper can be used in any language and IDE supporting COM Visual Studio 2005 2008 etc The COM wrapper includes all of the functionality of the base C class See the getting started guide and the hello examples in lib for more info For more information on the GalilTools Communications Library see the online user manual http www galilmc com support manuals galiltools library html Chapter 4 Software Tools and Communication e 55 DMC 30000 User Manual Chapter 5 Command Basics Introduction The DMC 30000 provides over 100 commands for specifying motion and machine parameters Commands are included to initiate action interrogate status and configure the digital filter These commands are sent in ASCII The DMC 30000 instruction set is BASIC like and easy to use Instructions consist of two uppercase letters that correspond phonetically with the appropriate function For example the instruction BG begins motion and ST stops the motion Commands can be sent live over the communications port for immediate execution by the DMC 30000 or an entire group of commands can be downloaded into the DMC 30000 memory for execution at a later time Combining commands into gro
91. User Manual Command Summary PVT COMMAND DESCRIPTION PVA p v t Specifies the segment for an incremental PVT segment of p counts an end speed of v counts sec in a total time of t samples _PVA Contains the number of PV segments available in the PV buffer _BTA Contains the number PV segments that have executed PVT Examples Parabolic Velocity Profile In this example we will assume that the user wants to start from zero velocity accelerate to a maximum velocity of 1000 counts second in second and then back down to 0 counts second within an additional second The velocity profile would be described by the following equation and shown in Figure 6 9 v t 1000 1 1000 Desired Velocity Profile a Velocity Velocity counts second Time Seconds Figure 6 9 Parabolic Velocity Profile To accomplish this we need to calculate the desired velocities and change in positions In this example we will assume a delta time of 4 of a second which is 256 samples 1024 samples 1 second with the default TM of 1000 Velocity counts second Position counts v t 1000 r 1 1000 p t C 1000 1 1000 a DMC 30000 User Manual Chapter 6 Programming e 84 v 25 4375 p 0 to 25 57 v 5 459 p 25 to 5 151 v 75 7 937 5 pC5 to 75 214 v l 1999 p 75 to 1 245 v 1 25 9375 p l
92. Voltage 28 VDC Input Command INC and Limit Home Input Max Min Voltage 0 VDC Minimum current to turn on Inputs 1 2 mA Minimum current to turn off Inputs once activated hysteresis 0 5 mA Internal Resistance of Inputs INC and LSC to Inputs 2 2 KQ 5V INC 2 2K CPU DI 8 1 PS2805 Figure 3 1 Uncommitted Digital inputs on the DMC 30000 5V LSC CPU FLS RLS HOM PS2805 Figure 3 2 Limit Switch Inputs on the DMC 30000 DMC 30000 User Manual Chapter 3 Connecting Hardware e 28 5V INC CPU ELO ABRT RST PS2805 Figure 3 3 ELO Abort and Reset Inputs on the DMC 30000 Wiring the Optoisolated Digital Inputs All inputs can be used as active high or low If you are using an isolated power supply you can connect the positive voltage of the supply Vs to INC or supply the isolated ground to INC Connecting Vs to INC will configure the inputs for active low Connecting the isolated ground to INC will configure the inputs for active high If there is not an isolated supply available the Galil 5V and GND may be used It is recommended to use an isolated supply for the optoisolated inputs To take full advantage of optoisolation an isolated power supply should be used to provide the voltage at the input common connection When using an isolated power supply do not connect the ground of the isolated power to the ground of the controller A power supply in the voltage range between 5 to 28 Volts may be applied directly see
93. aiting for each to be complete before executing new moves MOVES Label PR 12000 Distance SP 20000 Speed AC 100000 Acceleration BGX Start Motion AD 10000 lait a distance of 10 000 counts SP 5000 New Speed AMX lait until motion is completed WT 200 Wait 200 ms PR 10000 New Position SP 30000 New Speed AC 150000 New Acceleration BGX Start Motion EN End DMC 30000 User Manual Chapter 7 Application Programming 114 Define Output Waveform Using AT The following program causes Output to be high for 10 msec and low for 40 msec The cycle repeats every 50 msec OUTPUT Program label ATO Initialize time referenc SB1 Set Output 1 LOOP Loop AT 10 After 10 msec from reference CBL Clear Output 1 AT 40 Wait 40 msec from reference and reset reference SB1 Set Output 1 JP LOOP Loop EN End Program Using AT WT with non default TM rates By default both WT and AT are defined to hold up program execution for n number of milliseconds WT n or AT n The second field of both AT and WT can be used to have the program execution be held up for n number of samples rather than milliseconds For example WT 400 or WT 400 0 will hold up program execution for 400 msec regardless of what is set for TM By contrast WT 400 1 will hold up program execution for 400 samples For the default TM of 1000 the servo update rate is 976us per sample so the difference between
94. al signals using bit wise interpolation This interpolation can be set by the user in the range of 2 through 2 points per sinusoidal cycle via AF command See the AF command in the command reference for more informaiton The unique position within one cycle can be read using the following equation 2 V Fine tan 360 V a The overall position can be determined using Position Coarse cycles 2 Fine Where n is the number of bits of resolution that were used in the conversion Coarse cycles is the whole number of cycles counted Fine is the interpolated position within one cycle Vb and Va are the two signals as indicated in Figure A4 2 For example if the encoder cycle is 40 microns AF10 results in 2 1024 counts per cycle or a resolution of 39 nanometers per count DMC 30000 User Manual A4 DMC 31000 214
95. alf m 4 1 4 m 16 1 16 Table A2 2 YA settings DMC 30000 User Manual A2 DMC 30016 e 206 ELO Input If the ELO input on the controller is triggered the amplifier will be shut down at a hardware level the motors will be essentially in a Motor Off MO state TA3 will return a 3 and the AMPERR routine will run when the ELO input is triggered To recover from an ELO an MO then SH must be issued or the controller must be reset It is recommended that OE1 be used for all axes when the ELO is used in an application See the ELO Electronic Lock Out Input section in Chapter 3 Connecting Hardware for information on connecting the ELO input Using External Amplifiers Use the connectors on top of the controller to access necessary signals to run external amplifiers For more information on connecting external amplifiers see Connecting to External Amplifiers in Chapter 2 Protection Circuitry The DMC 30016 has short circuit protection The short circuit protection will protect against phase to phase shorts a shorted load and a short to ground or chassis In the event of any of a fault bit 0 of TAO will be set DMC 30016 will be disabled In the event that power is removed to the DMC 30016 but not to the controller an amplifier error will occur To recover from an error state the controller must be set into MO state LC must set to 0 and then the SH command must be issued A2 DMC 30016 e 207 DMC 30000 User
96. alts program execution until after specified distance from the last AR or AD command has elapsed Halts program execution until after absolute position occurs Halt program execution until after forward motion reached absolute position If position is already past the point then MF will trip immediately Will function on geared axis or aux inputs Halt program execution until after reverse motion reached absolute position If position is already past the point then MR will trip immediately Will function on geared axis or aux inputs Halt program execution until after the motion profile has been completed and the encoder has entered or passed the specified position TW x sets timeout to declare an error if not in position If timeout occurs then the trippoint will clear and the stop code will be set to 99 An application program will jump to label ZMCTIME Halts program execution until after specified input is at specified logic level n specifies input line Positive is high logic level negative is low level n 1 through 8 Halts program execution until the axis has reached its slew speed For m omitted or 0 halts program execution until n msec from reference time AT 0 sets reference AT n waits n msec from reference AT n waits n msec from reference and sets new reference after elapsed time For m 1 Same functionality except that n is number of samples rather than msec Halts program execution until specified distance al
97. am below will execute upon the detection of an error from an internal Galil Amplifier The bits in TAI will be set for all axes that have an invalid hall state even if BRI is set for those axes this is handled with the mask variable shown in the code below AMPERR EM mask out if in brushed mode for TA1 R mask COM BRA m R ask TAl amp mask amp 0000FFFF EM amplifier error status G A ER TAO TAO MG A I TAl1 mask MG A 1 TA2 TA2 G A ER TA3 TA3 WT5000 REM the sum of the amperr bits should be 0 with no amplifier error r TAO mask TA2 TA3 P AMPERR er0O EM Notify user amperr has cleared G AMPERR RESOLVED T3000 E mu C EE Ws EGO JS Subroutine Stack Variables a b c d e f g h There are 8 variables that may be passed on the subroutine stack when using the JS command Passing values on the stack 1s advanced DMC programming and is recommended for experienced DMC programmers familiar with the concept of passing arguments by value and by reference Notes 1 Passing parameters has no type checking so it is important to exercise good programming style when passing parameters See examples below for recommended syntax 2 Do notuse spaces in expressions containing 3 Global variables MUST be assigned prior to any use in subroutines where variables are passed by reference 4 Please refer to the JS command in the controlle
98. ast to a stop If the Off On Error function is not enabled the motor will instantaneously stop and servo at the current position The Off On Error function is further discussed in this chapter The Abort input by default will also halt program execution this can be changed by changing the 5 field of the CN command See the CN command in the command reference for more information ELO Electronic Lock Out Used in conjunction with Galil amplifiers this input allows the user the shutdown the amplifier at a hardware level For more detailed information on how specific Galil amplifiers behave when the ELO is triggered see Error Reference source not found in the Appendices Forward Limit Switch Low input inhibits motion in forward direction If the motor is moving in the forward direction when the limit switch is activated the motion will decelerate and stop In addition if the motor is moving in the forward direction the controller will automatically jump to the limit switch subroutine ZLIMSWI if such a routine has been written by the user The CN command can be used to change the polarity of the limit switches The OE command can also be configured so that the axis will be disabled upon the activation of a limit switch Reverse Limit Switch Low input inhibits motion in reverse direction If the motor is moving in the reverse direction when the limit switch is activated the motion will decelerate and stop In addition if the motor is m
99. ave change per cycle is limited to 2 147 483 647 If the change is a negative number the absolute value is specified For the given example the cycle of the master is 6000 counts and the change in the slave is 1500 Therefore we use the instructions M 6000 EM 1500 Step 3 Specify the master interval and starting point Next we need to construct the ECAM table The table is specified at uniform intervals of master positions Up to 256 intervals are allowed The size of the master interval and the starting point are specified by the instruction EP nO nl where nO is the interval width in counts and n1 is the phase shift For the given example we can specify the table by specifying the position at the master points of 0 2000 4000 and 6000 We can specify that by EP 2000 0 Step 4 Specify the slave positions Next we specify the slave positions with the instruction ET n x where n indicates the order of the point The value n starts at zero and may go up to 256 The parameter x will indicate the corresponding slave position For this example the table may be specified by ET 0 0 ET 1 3000 ET 2 2250 DMC 30000 User Manual Chapter 6 Programming e 80 ET 3 1500 This specifies the ECAM table Step 5 Enable the ECAM To enable the ECAM mode use the command EB n where n 1 enables ECAM mode and n 0 disables ECAM mode Step 6 Engage the slave motion To engage the slave motion us
100. axis Figure 6 6 below shows the velocity vs time profile for instantaneous gearing Figure 6 7 shows the velocity vs time profile for the gradual gearing engagement Chapter 6 Programming e 77 DMC 30000 User Manual Scope tj didt Source Scale div Offset div Zu gM RPA Axis A ref 100000 cct 1 eal E m v RPBAxsBref w 100000 cch 4 mr iv 2 e S e mi 0 221383 0 ao 442765 31 m m 0 442765 2 T m 0 221383 3 m 0 221383 4 s t i0oms 0 e Trigger Channel W RPE x Edge Iv Level 1000 count Mode Repeat v READY Rl didt RPA didt RPB Figure 6 6 Velocity counts sec vs Time msec Instantaneous Gearing Engagement Scope tj didt Source Scale div Offset div 7 m ivl RPA Axis A ref 100000 cc t 1 cal m v RPBAxsBref w 100000cc t 4 B mri j 2 e Ea e m 0 221383 0 B m v 4 427655 2 S oe mr v 0 442765 2 gO 0 221383 3 s i m w 0 221383 4 t 100ms 0 i Trigger didt RPA d dt_RPS Mode Repeat v READY Channel E RPEv Edge p Level 1000 count Figure 6 7 Velocity counts sec vs Time msec Ramped Gearing The slave axis for each figure is shown on the bottom portion of the figure the master axis is shown on the top portion The shock to the slave axis will be significantly less in Figure 6 7 than i
101. be done in a number of ways The first method for setting the IP address is using a DHCP server The DH command controls whether the DMC 30000 controller will get an IP address from the DHCP server If the unit is set to DH1 default and there is a DHCP server on the network the controller will be dynamically assigned an IP address from the server Setting the board to DHO will prevent the controller from being assigned an IP address from the server The second method to assign an IP address is to use the BOOT P utility via the Ethernet connection The BOOT P functionality is only enabled when DH is set to 0 Either a BOOT P server on the internal network or the Galil software may be used When opening the Galil Software it will respond with a list of all DMC 30000 s and other Chapter 4 Software Tools and Communication e 43 DMC 30000 User Manual controllers on the network that do not currently have IP addresses The user must select the board and the software will assign the specified IP address to it This address will be burned into the controller BN internally to save the IP address to the non volatile memory NOTE if multiple boards are on the network use the serial numbers to differentiate them CAUTION Be sure that there is only one BOOT P or DHCP server running If your network has DHCP or BOOT P running it may automatically assign an IP address to the DMC 30000 controller upon linking it to the network In order to ensu
102. brushless servo motor with the internal amplifier AO 1 n where n is a number from 10 to 10 will set analog output 1 with a DMC 30012 and DMC 30017 The analog output can be set with the AO command once MT is set to 1 or 1 and the BA command is set for the A axis BA A DMC 30000 User Manual Chapter 3 Connecting Hardware e 40 Chapter 4 Software Tools and Communication Introduction The default configuration DMC 30000 has one RS 232 port and two Ethernet ports The RS 232 port baud rate defaults to 115200 bps and can be configured for 19200 bps via jumpers on the side of the controller The Ethernet ports are 1OOBASE T connections that auto negotiate half or full duplex The GalilTools software package is available for PC computers running Microsoft Windows or Linux to communicate with the DMC 30000 controller This software package has been developed to operate under Windows and Linux and include all the necessary drivers to communicate to the controller In addition GalilTools includes a software development communication library which allows users to create their own application interfaces using programming environments such as C C Visual Basic and LabVIEW The following sections in this chapter are a description of the communications protocol and a brief introduction to the software tools and communication techniques used by Galil At the application level GalilTools is the basic programs that the majority of users will need
103. by increments of 3 6 The program then computes the values of Y according to the equation and assigns the values to the table with the instruction ET i x INSTRUCTION INTERPRETATION SETUP Label EAN Select X as master EMA 1000 Slave Modulus MN 2000 EP 20 0 Master position increments i 0 Index LOOP Loop to construct table from equation p i 3 6 Note 3 6 0 18 20 s QSIN p 100 Define sine position x i 10 s Define slave position ET i x Define table i i 1 JP LOOP i lt 100 Repeat the process EN DMC 30000 User Manual Chapter 6 Programming e 82 PVT Mode The DMC 30000 controllers now supports a mode of motion referred to as PVT This mode allows arbitrary motion profiles to be defined by position velocity and time This motion is designed for systems where the load must traverse a series of coordinates with no discontinuities in velocity By specifying the target position velocity and time to achieve those parameters the user has control over the velocity profile Taking advantage of the built in buffering the user can create virtually any profile including those with infinite path lengths Specifying PVT Segments PVT segments are commanded using the PV command The PV command includes the target distance to be moved and target velocity to be obtained over the specified timeframe Positions are entered as relati
104. case variable names so there is no confusion between Galil commands and variable names Examples of valid and invalid variable names are Valid Variable Names posx posi speedZ Invalid Variable Names RealLongName Cannot have more than 8 characters 123 Cannot begin variable name with a number speed Z Cannot have spaces in the name Assigning Values to Variables Assigned values can be numbers internal variables and keywords functions controller parameters and strings The range for numeric variable values is 4 bytes of integer 231 followed by two bytes of fraction 2 147 483 647 9999 Numeric values can be assigned to programmable variables using the equal sign Any valid DMC 30000 function can be used to assign a value to a variable For example v1 QABS v2 or v2 IN 1 Arithmetic operations are also permitted To assign a string value the string must be in quotations String variables can contain up to six characters which must be in quotation Examples posX TPX Assigns returned value from TPX command to variable posx speed 5 75 Assigns value 5 75 to variable speed input IN 2 Assigns logical value of input 2 to variable input Chapter 7 Application Programming e 133 DMC 30000 User Manual v2 vltv3 v4 Assigns the value of vl plus v3 times v4 to the variable v2 var CAT Assign the string CAT to var MG var S3 Displays the variable var CAT Assigning Variable Values to Cont
105. celeration of 20000 counts sec JG 50000 Specify jog speed BG X Begin motion EN Chapter 6 Programming e 65 DMC 30000 User Manual Example Joystick Jogging The jog speed can also be changed using an analog input such as a joystick Assume that for a 10 Volt input the speed must be 50000 counts sec JOY Label JGO Set in Jog Mode BGX Begin motion B Label for loop V1 AN 1 Read analog input VEL V1 5000 Compute speed 0 10 JG VEL Change JG speed JP B Loop Position Tracking The Galil controller may be placed in the position tracking mode to support changing the target of an absolute position move on the fly New targets may be given in the same direction or the opposite direction of the current position target The controller will then calculate a new trajectory based upon the new target and the acceleration deceleration and speed parameters that have been set The motion profile in this mode is trapezoidal There is not a set limit governing the rate at which the end point may be changed however at the standard TM rate the controller updates the position information at the rate of Imsec The controller generates a profiled point every other sample and linearly interpolates one sample between each profiled point Some examples of applications that may use this mode are satellite tracking missile tracking random pattern polishing of mirrors or lenses or any application that requires the ability to change
106. command interpreter will continue executing commands which follow the IF command If the conditional statement evaluates false the controller will ignore commands until the associated ENDIF command is executed OR an ELSE command occurs in the program see discussion of ELSE command below NOTE An ENDIF command must always be executed for every IF command that has been executed It is recommended that the user not include jump commands inside IF conditional statements since this causes re direction of command execution In this case the command interpreter may not execute an ENDIF command Using the ELSE Command The ELSE command is an optional part of an IF conditional statement and allows for the execution of command only when the argument of the IF command evaluates False The ELSE command must occur after an IF command and has no arguments If the argument of the IF command evaluates false the controller will skip commands until the ELSE command If the argument for the IF command evaluates true the controller will execute the commands between the IF and ELSE command Nesting IF Conditional Statements The DMC 30000 allows for IF conditional statements to be included within other IF conditional statements This technique is known as nesting and the DMC 30000 allows up to 255 IF conditional statements to be nested This is a very powerful technique allowing the user to specify a variety of different cases for branching Command Format
107. controlled with the DMC 30000 Amplifier Driver The power amplifier converts a 10 volt signal from the controller into current to drive the motor For stepper motors the amplifier converts step and direction signals into current The amplifier should be sized properly to meet the power requirements of the motor For brushless motors an amplifier that provides electronic commutation is required or the controller must be configured to provide sinusoidal commutation The amplifiers may be either pulse width modulated PWM or linear They may also be configured for operation with or without a tachometer For current amplifiers the amplifier gain should be set such that a 10 volt command generates the maximum required current For example if the motor peak current is 10A the amplifier gain should be 1 A V For velocity mode amplifiers 10 volts should run the motor at the maximum speed Galil offers amplifiers that is integrated into the same enclosure as the DMC 30000 See the Al DMC 30012 A2 DMC 30016 and the A3 DMC 30017 sections in the Appendices or http galilmc com products dmc 300xx php for more information DMC 30000 User Manual Chapter 1 Overview e 6 Encoder An encoder translates motion into electrical pulses which are fed back into the controller The DMC 30000 accepts feedback from either a rotary or linear encoder Typical encoders provide two channels in quadrature known as MA and MB This type of encoder is know
108. ctivated the current application program that is running in thread zero will be interrupted and the controller will automatically jump to the LIMSWI subroutine if one exists This is a subroutine which the user can include in any motion control program and is useful for executing specific instructions upon activation of a limit switch Automatic Subroutines for Monitoring Conditions are discussed in Chapter 7 Application Programming After a limit switch has been activated further motion in the direction of the limit switch will not be possible until the logic state of the switch returns back to an inactive state Any attempt at further motion before the logic state has been reset will result in the following error 22 Begin not possible due to limit switch error The operands LFA and LRA contain the state of the forward and reverse limit switch respectively The value of the operand is either a 0 or 1 corresponding to the logic state of the limit switch Using a terminal program the state of a limit switch can be printed to the screen with the command MG_LFA or MG LRA The logic state of the limit switches can also be interrogated with the TS command For more details on TS see the Command Reference Home Switch Input Homing inputs are designed to provide mechanical reference points for a motion control application A transition in the state of a Home input alerts the controller that a particular reference point has been reac
109. cumentation for instructions regarding proper connections Connect and turn on the amplifier power supply If the amplifiers are operating properly the motor should stand still even when the amplifiers are powered up Step B Connect the amplifier enable signal Before making any connections from the amplifier to the controller you need to verify that the ground level of the amplifier is either floating or at the same potential as earth DMC 30000 User Manual Chapter 2 Getting Started e 16 WARNING When the amplifier ground is not isolated from the power line or when it has a different potential than that of the computer ground serious damage may result to the computer controller and amplifier If you are not sure about the potential of the ground levels connect the two ground signals amplifier ground and earth by a 10 kQ resistor and measure the voltage across the resistor Only if the voltage is zero connect the two ground signals directly The amplifier enable signal is used by the controller to disable the motor Use the command MO to disable the motor amplifiers check to insure that the motor amplifiers have been disabled often this is indicated by an LED on the amplifier This signal changes under the following conditions the watchdog timer activates the motor off command MO is given or the OE3 command Enable Off On Error is given and the position error exceeds the error limit AEN can be used t
110. current short circuit and over temperature A shunt regulator option is available If higher voltages are required please contact Galil If the application has a potential for regenerative energy it is recommended to order the controller with the ISCNTL Isolate Controller Power option and the SR90 SR 49000 Shunt Regulator Option Note Do not hot swap the motor power or supply voltage power input connections If the amp is enabled when the motor connector is connected or disconnected damage to the amplifier can occur Galil recommends powering the controller and amplifier down before changing the connector and breaking the AC side of the power supply connection in order to power down the amplifier The ELO input may be used to cut power to the motors in an Emergency Stop or Abort situation Figure Al 1 DMC 30012 DMC 30000 User Manual Al DMC 30012 e 198 Electrical Specifications The amplifier is a brush brushless transconductance PWM amplifier The amplifier operates in torque mode and will output a motor current proportional to the command signal input Supply Voltage 20 80 VDC Continuous Current 10 Amps Peak Current 15 Amps Nominal Amplifier Gain 0 8 Amps Volt Switching Frequency 33 kHz Minimum Inductance Vsupply 24VDC 0 75 mH Vsupply 48VDC 1 2 mH Brushless Motor Commutation angle 120 Mating Connectors On Board Connector Terminal Pins POWER 2 pin Molex Mini Fit Jr
111. d Specifying Vector Speed for Each Segment The instruction VS has an immediate effect and therefore must be given at the required time In some applications it is necessary to attach various speeds to different motion segments This can be done by two functions lt n and gt m For example LI x lt n gt m Chapter 6 Programming e 71 DMC 30000 User Manual The first command lt n is equivalent to commanding VS n at the start of the given segment and will cause an acceleration toward the new commanded speeds subjects to the other constraints The second function gt m requires the vector speed to reach the value m at the end of the segment Note that the function gt m may start the deceleration within the given segment or during previous segments as needed to meet the final speed requirement under the given values of VA and VD Note however that the controller works with one gt m command at a time As a consequence one function may be masked by another For example if the function gt 100000 is followed by gt 5000 and the distance for deceleration is not sufficient the second condition will not be met The controller will attempt to lower the speed to 5000 but will reach that at a different point As an example consider the following program ALT abel for alternative program DP 0 Define Position of 0 LM XY Enable LM mode LI 4000 lt 4000 gt 1000 Specify first linear segment with a vector speed
112. d in the message command For example MG Analog input is AN 1 MG The Position of A is TPA Specifying the Port for Messages The port can be specified with the specifier P1 for the RS 232 port or En for the Ethernet port MG P1 Hello World Sends message to RS 232 Port Formatting Messages String variables can be formatted using the specifier Sn where n is the number of characters 1 thru 6 For example MG STR S3 This statement returns 3 characters of the string variable named STR Numeric data may be formatted using the Fn m expression following the completed MG statement n m formats data in HEX instead of decimal The actual numerical value will be formatted with n characters to the left of the decimal and m characters to the right of the decimal Leading zeros will be used to display specified format For example MG The Final Value is result F5 2 If the value of the variable result is equal to 4 1 this statement returns the following The Final Value 1s 00004 10 If the value of the variable result is equal to 999999 999 the above message statement returns the following The Final Value is 99999 99 The message command normally sends a carriage return and line feed following the statement The carriage return and the line feed may be suppressed by sending N at the end of the statement This is useful when a text string needs to surround a numeric value Example TA JG 50000 BGA ASA MG The Sp
113. d that generates a response is part of a downloaded program the response will route to whichever port is specified as the default unless explicitly told to go to another port with the CF command To designate a specific destination for the information add Eh to the end of the command Ex MG EC Hello will send the message Hello to handle 3 TP EF will send the z axis position to handle 6 DMC 30000 User Manual Chapter 4 Software Tools and Communication e 44 Multicasting A multicast may only be used in UDP IP and is similar to a broadcast where everyone on the network gets the information but specific to a group In other words all devices within a specified group will receive the information that is sent in a multicast There can be many multicast groups on a network and are differentiated by their multicast IP address To communicate with all the devices in a specific multicast group the information can be sent to the multicast IP address rather than to each individual device IP address All Galil controllers belong to a default multicast address of 239 255 19 56 The controller s multicast IP address can be changed by using the IA u command Using Third Party Software Galil supports DHCP ARP BOOT P and Ping which are utilities for establishing Ethernet connections DHCP is a protocol used by networked devices clients to obtain the parameters necessary for operation in an Internet Protocol network ARP is an applica
114. dering example DMC 30010 CARD LSNK LSRC 25mA Sourcing Outputs The LSRC option modifies the digital outputs on the DMC 30000 to be capable of sourcing up to 25mA per output For detailed information see the 25mA Sourcing Optoisolated Outputs LSRC section in Chapter 3 Connecting Hardware Part number ordering example DMC 30010 CARD LSRC HSRC 500mA Sourcing Outputs The HSRC option modifies the digital outputs on the DMC 30000 to be capable of sourcing up to 500mA per output For detailed information see the 500mA Sourcing Optoisolated Outputs HSRC section in Chapter 3 Connecting Hardware Part number ordering example DMC 30010 CARD HSRC HSNK 500mA Sinking Outputs The HSNK option modifies the digital outputs on the DMC 30000 to be capable of sinking up to 500mA per output For detailed information see the 500mA Sinking Optoisolated Outputs HSNK section in Chapter 3 Connecting Hardware Part number ordering example DMC 30010 CARD HSNK Appendices e 179 DMC 30000 User Manual DMC 31000 Sin Cos and 16 bit Analog Inputs The DMC 31000 provides 16 bit configurable 10V analog inputs in place of the standard 12 bit 0 5V analog inputs See the Analog Inputs section in Chapter 3 Connecting Hardware for more information Part number ordering example DMC 31012 BOX Feedback Options TRES Encoder Termination Resistors The TRES option provides termination resistors on all of the main and auxiliary encoder in
115. e The DMC 30000 provides a command NO for commenting programs or single apostrophe This command allows the user to include up to 38 characters on a single line after the NO command and can be used to include comments from the programmer NOTE The NO and commands are actual controller commands Therefore inclusion of the NO or commands will require process time by the controller see General Program Flow and Timing information for more details Difference between NO and using the GalilTools software The GalilTools software will treat an apostrophe commend different from an NO when the compression algorithm is activated upon a program download line gt 40 characters or program memory gt 1000 lines In this case the software will remove all comments as part of the compression and it will download all NO comments to the controller DMC 30000 User Manual Chapter 7 Application Programming 108 Executing Programs Multitasking The DMC 30000 can run up to 4 independent programs simultaneously These programs are called threads and are numbered 0 through 3 where 0 is the main thread Multitasking is useful for executing independent operations such as PLC functions that occur independently of motion The main thread differs from the others in the following ways 1 When input interrupts are implemented for limit switches position errors or command errors the subroutines are executed as thread 0 To begin
116. e PL Analog Feedback AF Stepper Motor Operation MT 2 2 2 5 2 5 Trippoints in thread 2 and 3 Tell Velocity Interrogation Command TV Aux Encoders TD Dual Velocity DV Peak Torque Limit TK Notch Filter NB NF NZ PVT Mode PV BT DMC 30000 User Manual Appendices 178 Ordering Options for the DMC 30000 Overview The DMC 30000 can be ordered in many different configurations and with different options This section provides information regarding the different options available on the DMC 30000 motion controller interconnect modules and internal amplifiers For information on pricing and how to order your controller with these options see our DMC 30000 part number generator on our website http www galilmc com products dmc 300xx part number php I O Options 4 20mA 4 20mA analog inputs The 4 20mA option converts the analog inputs into 4 20mA analog inputs This is accomplished by installing 237Q precision resistors between the analog inputs and ground The equation for calculating the current is Ima 2 11 V Where Ima current in mA V Voltage reading from DMC 30000 Part number ordering example DMC 30010 CARD 4 20mA LSNK 25mA Sinking Outputs The LSNK option modifies the digital outputs on the DMC 30000 to be capable of sinking up to 25mA per output For detailed information see the 25mA Sinking Optoisolated Outputs LSNK section in Chapter 3 Connecting Hardware Part number or
117. e auxiliary encoder inputs can be used for general use The controller has one auxiliary encoder which consists of two inputs channel A and channel B The auxiliary encoder input is mapped to the inputs 81 and 82 Tthe auxiliary encoder is a differential line receiver and can accept voltage levels between 12 volts The inputs have been configured to accept TTL level signals To connect TTL signals simply connect the signal to the input and leave the input disconnected For other signal levels the input should be connected to a voltage that is 2 of the full voltage range for example connect the input to 5 volts if the signal is a 0 12 volt logic NOTE The auxiliary encoder inputs are not available for any axis that is configured for stepper motor Input Interrupt Function The DMC 30000 provides an input interrupt function which causes the program to automatically execute the instructions following the ININT label This function is enabled using the II m n o command The m specifies the beginning input and n specifies the final input in the range The parameter o is an interrupt mask If m and n are unused o contains a number with the mask For example II 5 enables inputs 1 and 3 A low input on any of the specified inputs will cause automatic execution of the ININT subroutine The Return from Interrupt RI command is used to return from this subroutine to the place in the program where the interrupt had occurred Impo
118. e board To fix this problem a Master Reset may be required The Master Reset will set the controller back to factory default conditions so it is recommended that all motor and I O cables be removed for safety while performing the Master Reset Cables can be plugged back in after the correct settings have been loaded back to the controller when necessary To perform a Master Reset find the jumper location labeled MR or MR on the controller and put a jumper across the two pins Power up with the jumper installed The Self Test will take slightly longer up to 5seconds After the error light shuts off it is safe to power down and remove the Master Reset jumper If performing a Master Reset does not get rid of the error light the controller may need to be sent back to the factory to be repaired Contact Galil for more information DMC 30000 User Manual Chapter 9 Troubleshooting e 162 Chapter 10 Theory of Operation Overview The following discussion covers the operation of motion control systems A typical motion control system consists of the elements shown in Figure 10 1 COMPUTER CONTROLLER DRIVER Figure 10 1 Elements of Servo Systems The operation of such a system can be divided into three levels as illustrated in Figure 10 2 The levels are 1 Closing the Loop 2 Motion Profiling 3 Motion Programming The first level the closing of the loop assures that the motor
119. e controller to begin motion towards position 5000 changes the target to 2000 and then changes it again to 8000 Figure 6 3 shows the plot of position vs time and velocity vs time Below is the code that is used to simulate this scenario EX3 PT 1 Place the X axis in Position tracking mode AC 150000 Set the X axis acceleration to 150000 counts sec2 DC 150000 Set the X axis deceleration to 150000 counts sec2 SP 50000 Set the X axis speed to 50000 counts sec PA 5000 Command the X axis to abs position 5000 encoder counts WT 300 PA 2000 Change end point position to 2000 VT 200 PA 8000 Change end point position to 8000 EN Figure 6 4 demonstrates the use of motion smoothing IT on the velocity profile in this mode The jerk in the system is also affected by the values set for AC and DC Scope tj Vertical Horizontal didt Source Scale div Offset div W RPAAxisArefw 2000cour 0 E _RPA Axis A ref 10000 coi 2 COVSNSHY mr mj 2 1 e m 0 221383 f 0 m w 4 42765 4 1 m m 0 442765 S 2 4 eO x 0 221383 3 2 mi 0 221383 amp 4 z T I t 150 ms Trigger Channel W _RPA Edge w Level Ocounts gt Mode Repeat v READY RPAdidt RPA Figure 6 3 Position and Velocity vs Time msec for Motion 3 Chapter 6 Programming e 69 DMC 30000 User Manual Scope tj
120. e controller to set the high bit of ASCII characters to 1 of all unsolicited characters This may cause characters to appear garbled to some terminals This function can be disabled by issuing the command CW2 For more information see the CW command in the Command Reference RS 232 Port Cable requirements The RS 232 port on the DMC 30000 requires a straight through serial cable The pinout for this cable is indicated below RS232 Main Port P1 DATATERM 1 No Connect 6 No Connect 2 Transmit Data output 7 Clear To Send input 3 Receive Data input 8 Request To Send output 4 No Connect 9 No connect 5 Ground Configuration The GalilTools software will automatically configure your PC for 8 bit data one start bit one stop bit full duplex and no parity The baud rate for the RS 232 communication can be selected by setting the proper switch configuration on the front panel according to the table below Baud Rate Selection JP1 JUMPER SETTINGS 19 2 BAUD RATE ON 19200 OFF recommended 115200 Handshaking The RS 232 main port is set for hardware handshaking Hardware Handshaking uses the RTS and CTS lines The CTS line will go high whenever the DMC 30000 is not ready to receive additional characters The RTS line will inhibit the DMC 30000 from sending additional characters Note the RTS line goes high for inhibit DMC 30000 User Manual Chapter 4 Software Tools and Communication e 42 RS 422 Configura
121. e data transfer To capture and decode characters in the Operator Data Mode the DMC 30000 provides special the following keywords Keyword Function PICH Contains the last character received PIST Contains the received string PINM Contains the received number Chapter 7 Application Programming e 139 DMC 30000 User Manual PICD Contains the status code 1 mode disabled 0 nothing received 1 received character but not lt enter gt 2 received string not a number 3 received number NOTE The value of P1CD returns to zero after the corresponding string or number is read These keywords may be used in an applications program to decode data and they may also be used in conditional statements with logical operators Example Instruction Interpretation JP Checks to see if status code is 3 LOOP PICD lt gt 3 number received JP Checks if last character received was P PlCH V a V PR P1NM Assigns received number to position JS Checks to s if received string is X XAXIS P1ST X Using Communication Interrupt The DMC 30000 provides a special interrupt for communication allowing the application program to be interrupted by input from the user The interrupt is enabled using the CI command The syntax for the command is CI n n 0 Don t interrupt Port 1 n 1 Interrupt on lt enter gt Port 1 n 2 Interrupt on any character Port 1 n l Clear any characters in buffer The COMINT label is
122. e maximum number of labels which may be defined is 510 Valid labels BEGIN SQUARE X1 Chapter 7 Application Programming e 107 DMC 30000 User Manual BEGINI Invalid labels 1Square 123 A Simple Example Program START Beginning of the Program PR 10000 Specify relative distance BG A Begin Motion AM A Wait for motion complete WT 2000 Wait 2 sec JP START Jump to label START EN End of Program The above program moves 10000 counts After the motion is complete the motors rest for 2 seconds The cycle repeats indefinitely until the stop command is issued Special Labels The DMC 30000 have some special labels which are used to define input interrupt subroutines limit switch subroutines error handling subroutines and command error subroutines See section on AMPERR Label for Amplifier error routine AUTO Label that will automatically run upon the controller exiting a reset power on AUTOERR Label that will automatically run if there is an FLASH error out of reset CMDERR Label for incorrect command subroutine COMINT Label for Communications Interrupt See CC Command ININT Label for Input Interrupt subroutine See II Command LIMSWI Label for Limit Switch subroutine MCTIME Label for timeout on Motion Complete trip point POSERR Label for excess Position Error subroutine TCPERR Label for errors over a TCP connection error code 123 Commenting Programs Using the command NO or Apostroph
123. e occurrence of a limit switch Note for the ZLIMSWI routine to function the DMC 30000 must be executing an applications program from memory This can be a very simple program that does nothing but loop on a statement such as LOOP JP LOOP EN Motion commands such as JG 5000 can still be sent from the PC even while the dummy applications program is being executed LOOP Dummy Program JP LOOP EN Jump to Loop LIMSWI Limit Switch Label DMC 30000 User Manual Chapter 7 Application Programming e 120 MG LIMIT OCCURRED T RE E XQ LOOP JG 5000 BGX Print Message Return to main program Jog Begin Motion Download Program Execute Dummy Program Now when a forward limit switch occurs on the X axis the ZLIMSWI subroutine will be executed Notes regarding the LIMSWI Routine 1 The RE command is used to return from the ZLIMSWI subroutine 2 The LIMSWI subroutine will be re executed if the limit switch remains active The LIMSWI routine is only executed when the motor is being commanded to move Example Position Error LOOP JP LOOP EN POSERR Vl TEX MG EXCESS POSITION ERROR MG ERROR V1 RE XQ LOOP JG 100000 BGX Example Input Interrupt TA EEL JG 30000 BGX LOOP JP LOOP EN ININT STX AM TEST JP T IN 1 0 JG 30000 BGX RIO GI ca Hj x Label Loop Position s Print E
124. e positions of the auxiliary encoders may be interrogated with the command DE or the operand DEA The command TD X returns the current position of the auxiliary encoder The command DV 1 configures the auxiliary encoder to be used for backlash compensation Backlash Compensation There are two methods for backlash compensation using the auxiliary encoders 1 Continuous dual loop 2 Sampled dual loop To illustrate the problem consider a situation in which the coupling between the motor and the load has a backlash To compensate for the backlash position encoders are mounted on both the motor and the load The continuous dual loop combines the two feedback signals to achieve stability This method requires careful system tuning and depends on the magnitude of the backlash However once successful this method compensates for the backlash continuously The second method the sampled dual loop reads the load encoder only at the end point and performs a correction This method is independent of the size of the backlash However it is effective only in point to point motion systems which require position accuracy only at the endpoint Continuous Dual Loop Example Connect the load encoder to the main encoder port and connect the motor encoder to the dual encoder port The dual loop method splits the filter function between the two encoders It applies the KP proportional and KI integral terms to the position error based on the load
125. e the instruction EG x where x is the master positions at which the corresponding slave must be engaged If the value of any parameter is outside the range of one cycle the cam engages immediately When the cam is engaged the slave position is redefined modulo one cycle Step 7 Disengage the slave motion To disengage the cam use the command EQ x where x is the master positions at which the corresponding slave axis is disengaged 3000 ees 5250 exin ee nan E 1500 ah tea didt ndis bod TM 0 2000 4000 6000 Master X Figure 6 8 Electronic Cam Example This disengages the slave axis at a specified master position If the parameter is outside the master cycle the stopping is instantaneous Chapter 6 Programming e 81 DMC 30000 User Manual ECAM Example To illustrate the complete process consider the cam relationship described by the equation X 0 5 xN 100 sin 0 18 N where N virtual axis is the master with a cycle of 2000 counts The cam table can be constructed manually point by point or automatically by a program The following program includes the set up The instruction EA N defines virtual axis as the master axis The cycle of the master is 2000 Over that cycle the slave varies by 1000 This leads to the instructions MMN 2000 and EMA 1000 The following routine computes the table points As the phase equals 0 18X and X varies in increments of 20 the phase varies
126. ections Dialog Box If the controller is not connected to a DHCP enabled network or the DH command is set to 0 and the controller has not been assigned an IP address the controller can be found under the No IP Address tab For more information on establishing communication to the controller via the GalilTools software see the GalilTools user manual http www galilmc com support manuals galiltools index html Chapter 2 Getting Started e 15 DMC 30000 User Manual Communicating through the Serial Communications Port Connect the DMC 30000 serial port labeled SERIAL to your computer via the Galil CABLE 9PIN D RS 232 Cable This is a straight through serial cable NOT a NULL modem Using GalilTools Software for Windows Registering controllers in the Windows registry is no longer required when using the GalilTools software package A simple connection dialog box appears when the software is opened that shows all available controllers The serial ports are listed as COMn communication speed ex COM3 115200 The default USB communication speed on the DMC 30000 is 115200Bps For more information on establishing communication to the controller via the GalilTools software see the GalilTools user manual http www galilmc com support manuals galiltools index html Sending Test Commands to the Terminal After you connect your terminal press return or the lt enter gt key on your keyboard In response to carriage return
127. ed data is returned in decimal format on the next line followed by a carriage return and line feed The format of the returned data can be changed using the Position Format PF Variable Format VF and Leading Zeros LZ command See Chapter 7 Application Programming and the Command Reference Summary of Interrogation Commands RP Report Command Position RL Report Latch R V Firmware Revision Information SC Stop Code TA Tell Amplifier Error TB Tell Status TC Tell Error Code TD Tell Dual Encoder TE Tell Error TI Tell Input Chapter 5 Command Basics e 57 DMC 30000 User Manual TV Tell Velocity For example the following example illustrates how to display the current position of the A axis TP A Tell position A 0 Controllers Response Interrogating Current Commanded Values Most commands can be interrogated by using a question mark as the axis specifier PR Request PR setting The controller can also be interrogated with operands Operands Most DMC 30000 commands have corresponding operands that can be used for interrogation Operands must be used inside of valid DMC expressions For example to display the value of an operand the user could use the command MG operand where operand is a valid DMC operand All of the command operands begin with the underscore character For example the value of the current position on the A axis can be assigned to the variable
128. eed E Find edge command BG Begin motion A After complete MG FOUND Send message HOME DP 0 Define position as 0 EN End Command Summary Homing Operation command description FE A Find Edge Routine This routine monitors the Home Input FIA Find Index Routine This routine monitors the Index Input HM A Home Routine This routine combines FE and FI as Described Above SCA Stop Code TS A Tell Status of Switches and Inputs Operand Summary Homing Operation operand Description _HMA Contains the value of the state of the Home Input SCA Contains stop code _TSA Contains status of switches and inputs High Speed Position Capture The Latch Function Often it is desirable to capture the position precisely for registration applications The DMC 30000 provides a position latch feature This feature allows the position of the main or auxiliary encoders of X Y Z or W to be captured within 25 microseconds of an external low input signal or index pulse General inputs 1 is the latch input NOTE To insure a position capture within 25 microseconds the input signal must be a transition from high to low The DMC 30000 software commands AL and RL are used to arm the latch and report the latched position The steps to use the latch are as follows 1 Give the AL A to arm the latch for the main encoder and ALSA for the auxiliary encoder 2 Test to see if the latch has occurred Input goe
129. eed Specifies acceleration rate Specifies deceleration rate Starts motion Stops motion before end of move Changes position target Time constant for independent motion smoothing Trippoint for profiler complete Trippoint for in position The lower case specifiers x represent position values for each axis The DMC 30000 also allows use of explicit notation such as PRX 2000 Operand Summary Independent Axis _ACA _DCA _SPA _PAA _PRA OPERAND DESCRIPTION Return acceleration rate Return deceleration rate Returns the speed Returns current destination if the axis is moving otherwise returns the current commanded position if in a move Returns current incremental distance Example Absolute Position Movement PA AC DC SP BG 10000 Specify absolute position 1000000 Acceleration 1000000 Deceleration 50000 Speed X Begin motion DMC 30000 User Manual Chapter 6 Programming e 64 Independent Jogging The jog mode of motion is very flexible because speed direction and acceleration can be changed during motion The user specifies the jog speed JG acceleration AC and the deceleration DC rate The direction of motion is specified by the sign of the JG parameters When the begin command is given BG the motor accelerates up to speed and continues to jog at that speed until a new speed or stop ST command is issued If the jog speed is changed during moti
130. eed is TVA F5 0 NJ MG counts sec EN When A is executed the above example will appear on the screen as The Speed is 50000 counts sec Using the MG Command to Configure Terminals The MG command can be used to configure a terminal Any ASCII character can be sent by using the format n where n is any integer between 1 and 255 Example DMC 30000 User Manual Chapter 7 Application Programming e 142 MG 07 255 sends the ASCII characters represented by 7 and 255 to the bus Summary of Message Functions function on Fn m P1 or En n m ny tN Sn description Surrounds text string Formats numeric values in decimal n digits to the left of the decimal point and m digits to the right Send message to RS 232 Port or Ethernet Port Formats numeric values in hexadecimal Sends ASCH character specified by integer n Suppresses carriage return line feed Sends the first n characters of a string variable where n is 1 thru 6 Displaying Variables and Arrays Variables and arrays may be sent to the screen using the format variable or array x For example v1 returns the value of v1 Example Printing a Variable and an Array element Instruction DISPLA DM posA PR 1000 BGX AMX vi TPA posA 1 vi Interpretation Y Label 2 Define Array posA with 7 entries Position Command Begin After Motion Assign Variable vl TPA Assign the first entry
131. eedback Amplifiers in Current Mode Amplifiers in current mode should accept an analog command signal in the 10 volt range The amplifier gain should be set such that a 10V command will generate the maximum required current For example if the motor peak current is 10A the amplifier gain should be 1 A V Amplifiers in Velocity Mode For velocity mode amplifiers a command signal of 10 volts should run the motor at the maximum required speed The velocity gain should be set such that an input signal of 10V runs the motor at the maximum required speed Stepper Motor Amplifiers For step motors the amplifiers should accept step and direction signals Chapter 1 Overview 3 DMC 30000 User Manual Overview of the Galil Amplifiers With the DMC 30000 Galil offers amplifiers that are integrated into the same enclosure as the controller Using the Galil Amplifier provides a simple straightforward motion control solution in one box DMC 30012 DMC 30000 with 800W Sinusoidal Amplifier The DMC 30012 Al DMC 30012 provides an amplifier that drives motors operating at 20 80 VDC up to 10 Amps continuous 15 Amps peak The gain settings of the amplifier are user programmable at 0 4 Amp Volt 0 8 Amp Volt and 1 6 Amp Volt The switching frequency is 33 kHz The amplifier offers protection for over voltage under voltage over current and short circuit The SR90 SR 49000 Shunt Regulator Option is also available for the DMC 30012
132. eir gain is too high The delay in servo systems is between the application of the current and its effect on the position Note that the current must be applied long enough to cause a significant effect on the velocity and the velocity change must last long enough to cause a position change This delay when coupled with high gain causes instability This motion controller includes a special filter which is designed to help the stability and accuracy Typically such a filter produces in addition to the proportional gain damping and integrator The combination of the three functions is referred to as a PID filter The filter parameters are represented by the three constants KP KI and KD which correspond to the proportional integral and derivative term respectively The damping element of the filter acts as a predictor thereby reducing the delay associated with the motor response The integrator function represented by the parameter KI improves the system accuracy With the KI parameter the motor does not stop until it reaches the desired position exactly regardless of the level of friction or opposing torque The integrator also reduces the system stability Therefore it can be used only when the loop is stable and has a high gain The output of the filter is applied to a digital to analog converter DAC The resulting output signal in the range between 10 and 10 Volts is then applied to the amplifier and the motor The motor posi
133. en Capture Chapter 4 Software Tools and Communication e 53 DMC 30000 User Manual Creating Custom Software Interfaces GalilTools provides a programming API so that users can develop their own custom software interfaces to a Galil controller Information on this GalilTools Communication Library can be found in the GalilTools manual http www galilmc com support manuals galiltools library html HelloGalil Quick Start to PC programming For programmers developing Windows applications that communicate with a Galil controller the HelloGalil library of quick start projects immediately gets you communicating with the controller from the programming language of your choice In the Hello World tradition each project contains the bare minimum code to demonstrate communication to the controller and simply prints the controller s model and serial numbers to the screen Figure 4 2 GalilClass 1 dll 1 5 0 0 Galil1 dll 1 6 0 445 192 168 1 26 DMC30010 Rev 1 0 26 IHA IHB MG TIME 818000 Figure 4 2 Sample program output http www galilmc com support hello galil html GalilTools Communication Libraries The GalilTools Communication Library Galil class provides methods for communication with a Galil motion controller over Ethernet USB RS 232 or PCI buses It consists of a native C Library and a similar COM interface which extends compatibility to Windows programming languages e g VB C etc A Galil object usually
134. encoder and applies the KD derivative term to the motor encoder This method results in a stable system The dual loop method is activated with the instruction DV Dual Velocity where DV 1 activates dual loop and DV 0 disables dual loop NOTE Dual loop compensation depends on the backlash magnitude and in extreme cases will not stabilize the loop The proposed compensation procedure is to start with KPA 0 KIA 0 and to maximize the value of KD under the condition DV1 Once KD is found increase KP gradually to a maximum value and finally increase KI if necessary Sampled Dual Loop Example In this example we consider a linear slide which is run by a rotary motor via a lead screw Since the lead screw has a backlash it is necessary to use a linear encoder to monitor the position of the slide For stability reasons it is best to use a rotary encoder on the motor Connect the rotary encoder to the X axis and connect the linear encoder to the auxiliary encoder of X Assume that the required motion distance is one inch and that this corresponds to 40 000 counts of the rotary encoder and 10 000 counts of the linear encoder Chapter 6 Programming e 99 DMC 30000 User Manual The design approach is to drive the motor a distance which corresponds to 40 000 rotary counts Once the motion is complete the controller monitors the position of the linear encoder and performs position corrections This is done by the following progra
135. er Manual Reset Electronic Lock Out Forward Limit Switch Reverse Limit Switch Home Switch Input 1 Input 8 Latch A low input resets the state of the processor to its power on condition The previously saved state of the controller along with parameter values and saved sequences are restored Controllers with Internal Amplifiers Only Input that when triggered will shut down the amplifiers at a hardware level Useful for safety applications where amplifiers must be shut down at a hardware level When active inhibits motion in forward direction Also causes execution of limit switch subroutine LIMSWI The polarity of the limit switch may be set with the CN command When active inhibits motion in reverse direction Also causes execution of limit switch subroutine LIMSWI The polarity of the limit switch may be set with the CN command Input for Homing HM and Find Edge FE instructions Upon BG following HM or FE the motor accelerates to slew speed A transition on this input will cause the motor to decelerate to a stop The polarity of the Home Switch may be set with the CN command Uncommitted inputs May be defined by the user to trigger events Inputs are checked with the Conditional Jump instruction and After Input instruction or Input Interrupt Input 1 is latch A if the high speed position latch function is enabled High speed position latch to capture axis position on occurrence of latch
136. er On Board Connector DMC 30011 TE Connectivityf 5 104362 1 DMC 30012 DMC 30016 DMC 30017 Power Controller TE Connectivity 5 104362 1 2 Position DMC 30012 ISCNTL Power Amplifier Molex 39 31 0020 2 Position Motor Molex 39 31 0040 4 Position Power Controller TE Connectivity 5 104362 1 2 Position DMC 30016 ISCNTL Power Amplifier Molex 39 31 0020 2 Position Molex 39 31 0040 4 Position Power Controller TE Connectivity 5 104362 1 2 Position DMC 30017 ISCNTL Power Amplifier Molex 39 31 0020 2 Position Molex 39 31 0040 4 Position Table A 2 Connectors listed by DMC 30000 part number Appendices e 183 DMC 30000 User Manual Power Wiring Diagrams for the DMC 30000 The following diagrams shows how to power the different models of the DMC 30000 family The connectors are keyed and indicate the correct orientation and pin numbers for the power input See Input Power Requirements for detailed Electrical Specifications DMC 30010 CARD Requires a 5VDC and 12VDC triple power supply CW lt C2 CN CO O p o JO U i Duc ae eo H zr O 22 aS mA PI IF zr DMC 30000 User Manual Appendices e 184 DMC 30010 BOX Requires a 5VDC and 12VDC triple power supply CW lt z 2 g WN 2 Py e m sRBPRESESEIELE amaza 9 BaBRESRZEEEESE FRE
137. er has a built in function which can turn off the motors under certain error conditions This function is known as Off On Error To activate the OE function for each axis specify 1 2 or 3 for that axis To disable this function specify 0 for the axes When this function is enabled the specified motor will be disabled under the following 3 conditions 1 The position error for the specified axis exceeds the limit set with the command ER 2 A hardware limit is reached 3 The abort command is given 4 The abort input is activated with a low signal NOTE If the motors are disabled while they are moving they may coast to a stop because they are no longer under servo control To re enable the system use the Reset RS or Servo Here SH command Examples OE 1 Enable off on error Automatic Error Routine The POSERR label causes the statements following to be automatically executed if error on any axis exceeds the error limit specified by ER a encoder failure is detected or the abort input is triggered The error routine must be closed with the RE command The RE command returns from the error subroutine to the main program NOTE The Error Subroutine will be entered again unless the error condition is cleared Example TA JP A EN Dummy program POSERR Start error routine on error MG error Send message SB 1 Fire relay STX Stop motor AMX After motor stops SHX Servo motor here to clear error RE Return
138. er parameters in a tabular format and includes units and scale factors for easy viewing The Tuning Tool helps select PID parameters for optimal servo performance The Communication Library provides function calls for communicating to Galil Controllers with C Windows and Linux and COM enabled languages such as VB C and Labview Windows only GalilTools runs on Windows and Linux platforms as standard with other platforms available on request GalilTools Lite is available at no charge and contains the Editor Terminal Watch and Communcition Library tools only The latest version of GalilTools can be downloaded from the Galil website at http www galilmc com products software galiltools html For information on using GalilTools see the help menu in GalilTools or the GalilTools user manual http www galilmc com support manuals galiltools index html DMC 30000 User Manual Chapter 4 Software Tools and Communication e 52 3 1 26 DMC30010 Rev 1 0 26 IHA IH Tools Help Degexoseevwaa s Source Value Units 57 _LRA 58 MOA 59 QHA 60 RPA 61 SCA 0o0 00 0oNMmP ol 192 168 1 26 DMC30010 Rev 1 0 26 IHA IHB 1000000 1000000 20000 40000 _RPA TPA TEA TTA Figure 4 1 GalilTools Scre
139. er with a 2 diameter Also assume that the encoder resolution is 1000 lines per revolution Since the circumference of the roller equals 2x inches and it corresponds to 4000 quadrature one inch of travel equals 4000 27 637 count inch This implies that a distance of 10 inches equals 6370 counts and a slew speed of 5 inches per second for example equals 3185 count sec The input signal may be applied to I1 for example and the output signal is chosen as output 1 The motor velocity profile and the related input and output signals are shown in Figure 7 1 The program starts at a state that we define as A Here the controller waits for the input pulse on Il As soon as the pulse is given the controller starts the forward motion Upon completion of the forward move the controller outputs a pulse for 20 ms and then waits an additional 80 ms before returning to A for a new cycle INSTRUCTION FUNCTION TA Label AI Wait for input 1 PR 6370 Distance SP 3185 Speed BGX Start Motion AMX After motion is complete SB1 Set output bit 1 WT 20 Wait 20 ms CB1 Clear output bit 1 WT 80 Wait 80 ms JP A Repeat the process Chapter 7 Application Programming e 151 DMC 30000 User Manual START PULSE 11 a Iu MOTOR VELOCITY OUTPUT PULSE Se E output TIME INTERVALS move wait ready move Figure 7 1 Motor Velocity and the Associated Input Output signals Speed Control by Joystick The speed of a motor is con
140. es Example Instruction Interpretation DP21 Define position TPA Tell position 0000000021 Default format PF4 Change format to 4 places TPA Tell position 0021 New format PF 4 Change to hexadecimal format TPA Tell Position 0015 Hexadecimal value PF2 Format 2 places TPA Tell Position 99 Returns 99 if position greater than 99 Adding Leading Zeros from Response to Interrogation Commands The leading zeros on data returned as a response to interrogation commands can be added by the use of the command LZ The LZ command is set to a default of 1 LZ0 Disables the LZ function TP Tell Position Interrogation Command 0000000009 Response With Leading 0000000005 Zeros LZz1 Enables the LZ function TP Tell Position Interrogation Command 9n u5 Response Without Leading Zeros Local Formatting of Response of Interrogation Commands The response of interrogation commands may be formatted locally To format locally use the command Fn m or n m on the same line as the interrogation command The symbol F specifies that the response should be returned DMC 30000 User Manual Chapter 7 Application Programming e 144 in decimal format and specifies hexadecimal n is the number of digits to the left of the decimal and m is the number of digits to the right of the decimal TP F2 2 Tell Position in decimal format 2 2 05 00 05 00 00 00 Response from Interrogation 07 00 Command TP 4
141. es position increment over time interval Range is 32 000 CD 0 0 ends the contour buffer This is much like the LE or VE commands Specifies time interval 2 sample periods 1 ms for TM1000 for position increment where n is an integer between 1 and 8 Zero ends contour mode If n does not change it does not need to be specified with each CD Amount of space left in contour buffer 511 maximum General Velocity Profiles The Contour Mode is ideal for generating any arbitrary velocity profiles The velocity profile can be specified as a mathematical function or as a collection of points The design includes two parts Generating an array with data points and running the program Generating an Array An Example Consider the velocity and position profiles shown in Figure 6 12 The objective is to rotate a motor a distance of 6000 counts in 120 ms The velocity profile is sinusoidal to reduce the jerk and the system vibration If we describe the position displacement in terms of A counts in B milliseconds we can describe the motion in the following manner 0 1 cos 2z B X 4 4sin 27 B Note is the angular velocity X is the position and T is the variable time in milliseconds In the given example A 6000 and B 120 the position and velocity profiles are X 50T 6000 27 sin 2x T 120 Note that the velocity in count ms is 50 1 cos 2x T 120 Figure 6 12 Velocity Profile with S
142. example DP 0 defines the reference position of the X axis to be zero DMC 30000 User Manual Chapter 6 Programming e 92 Stepper Smoothing Filter Output Buffer rm Output Motion Profiler Adds a Delay To Stepper Driver Reference Position RP Step Count Register TD g Motion Complete Trippoint When used in stepper mode the MC command will hold up execution of the proceeding commands until the controller has generated the same number of steps out of the step count register as specified in the commanded position The MC trippoint Motion Complete is generally more useful than AM trippoint After Motion since the step pulses can be delayed from the commanded position due to stepper motor smoothing Using an Encoder with Stepper Motors An encoder may be used on a stepper motor to check the actual motor position with the commanded position If an encoder is used it must be connected to the main encoder input Note The auxiliary encoder is not available while operating with stepper motors The position of the encoder can be interrogated by using the command TP The position value can be defined by using the command DE Note Closed loop operation with a stepper motor is not possible Command Summary Stepper Motor Operation COMMAND DESCRIPTION DE Define Encoder Position When using an encoder DP Define Reference Position and Step Cou
143. execution of the various programs use the following instruction XQ A n Where n indicates the thread number To halt the execution of any thread use the instruction HX n where n is the thread number Note that both the XQ and HX commands can be performed by an executing program The example below produces a waveform on Output independent of a move TASK1 Task1 label ATO Initialize reference tim CB1 Clear Output 1 LOOP1 Loopl label AT 10 Wait 10 msec from reference tim SB1 Set Output 1 AT 40 Wait 40 msec from reference time then initialize reference CB1 Clear Output 1 JP LOOP1 Repeat Loopl TASK2 Task2 label XO TASK1 1 Execute Taskl LOOP2 00p2 label PR 1000 Define relative distance BGX Begin motion AMX After motion done WT 10 Wait 10 msec JP Repeat motion unless Input 2 is low LOOP2 IN 2 1 HX Halt all tasks The program above is executed with the instruction XQ TASK2 0 which designates TASK2 as the main thread i e Thread 0 TASK1 is executed within TASK2 Debugging Programs The DMC 30000 provides commands and operands which are useful in debugging application programs These commands include interrogation commands to monitor program execution determine the state of the controller and Chapter 7 Application Programming e 109 DMC 30000 User Manual the contents of the controllers program array and variable space Operands also
144. fic rate will not allow the user to create a custom profile The following example will demonstrate the possible different motions that may be commanded by the controller in the position tracking mode In this example there is a host program that will generate the absolute position targets The absolute target is determined based on the current information the host program has gathered on the object that it is tracking The controller must be placed in the position tracking mode to allow on the fly absolute position changes This is performed with the PT command To place the X axis in this mode the host would issue PT1 to the controller The next step is to begin issuing PA command to the controller The BG command isn t required in this mode the SP AC and DC commands determine the shape of the trapezoidal velocity profile that the controller will use DMC 30000 User Manual Chapter 6 Programming e 66 Example Motion 1 The host program determines that the first target for the controller to move to is located at 5000 encoder counts The acceleration and deceleration should be set to 150 000 countts sec2 and the velocity is set to 50 000 counts sec The command sequence to perform this is listed below EX1 BT s Place the X axis in Position tracking mode AC 150000 Set the X axis acceleration to 150000 counts sec2 DC 150000 Set the X axis deceleration to 150000 counts sec2 SP 50000 Set the X axis speed to 50000 counts sec PA
145. filer and has the effect of smoothing out the spacing of pulses for a more smooth operation of the stepper motor Use of KS is most applicable when operating in full step or half step operation KS will cause the step pulses to be delayed in accordance with the time constant specified When operating with stepper motors you will always have some amount of stepper motor smoothing KS Since this filtering effect occurs after the profiler the profiler may be ready for additional moves before all of the step pulses have gone through the filter It is important to consider this effect since steps may be lost 1f the controller is commanded to generate an additional move before the previous move has been completed See the discussion below Monitoring Generated Pulses vs Commanded Pulses The general motion smoothing command IT can also be used The purpose of the command IT is to smooth out the motion profile and decrease jerk due to acceleration Monitoring Generated Pulses vs Commanded Pulses For proper controller operation it is necessary to make sure that the controller has completed generating all step pulses before making additional moves This is most particularly important if you are moving back and forth For example when operating with servo motors the trippoint AM After Motion is used to determine when the motion profiler is complete and 1s prepared to execute a new motion command However when operating in stepper mode the co
146. follows the commanded position This is done by closing the position loop using a sensor The operation at the basic level of closing the loop involves the subjects of modeling analysis and design These subjects will be covered in the following discussions The motion profiling is the generation of the desired position function This function R t describes where the motor should be at every sampling period Note that the profiling and the closing of the loop are independent functions The profiling function determines where the motor should be and the closing of the loop forces the motor to follow the commanded position The highest level of control is the motion program This can be stored in the host computer or in the controller This program describes the tasks in terms of the motors that need to be controlled the distances and the speed Chapter 10 Theory of Operation 163 DMC 30000 User Manual LEVEL MOTION 3 PROGRAMMING MOTION 2 PROFILING CLOSED LOOP 1 CONTROL Figure 10 2 Levels of Control Functions The three levels of control may be viewed as different levels of management The top manager the motion program may specify the following instruction for example PR 6000 SP 20000 AC 200000 BG X N Eri This program corresponds to the velocity profiles shown in Figure 10 3 Note that the profiled positions show where the motors must be at any instant of time Finally
147. gging the status of the program memory array memory or variable memory the DMC 30000 has several useful commands The command DM will return the number of array elements currently available The command DA will return the number of arrays which can be currently defined For example a standard DMC 30000 will have a maximum of 3000 array elements in up to 6 arrays If an array of 100 elements is defined the command DM will return the value 2900 and the command DA will return 5 To list the contents of the variable space use the interrogation command LV List Variables To list the contents of array space use the interrogation command LA List Arrays To list the contents of the Program space use the interrogation command LS List To list the application program labels only use the interrogation command LL List Labels Operands In general all operands provide information which may be useful in debugging an application program Below is a list of operands which are particularly valuable for program debugging To display the value of an operand the message command may be used For example since the operand ED contains the last line of program execution the command MG ED will display this line number ED contains the last line of program execution Useful to determine where program stopped _DL contains the number of available labels UL contains the number of available variables DA contains the number of available
148. he amplifier at a hardware level For more detailed information on how specific Galil amplifiers behave when the ELO is triggered see individual sections in the Appendices DMC 30000 User Manual Chapter 3 Connecting Hardware e 26 Reset Input Reset Button When the Reset line is triggered the controller will be reset The reset line and reset button will not master reset the controller unless the MRST jumper is installed during a controller reset Uncommitted Digital Inputs The DMC 30000 has 8 optoisolated inputs These inputs can be read individually using the function IN x where x specifies the input number 1 thru 8 These inputs are uncommitted and can allow the user to create conditional statements related to events external to the controller For example the user may wish to have the motor move 1000 counts in the positive direction when the logic state of DII goes high Digital Input 1 can be used has a high speed position latch see High Speed Position Capture The Latch Function for more information This can be accomplished by connecting a voltage in the range of 5V to 28V into INC of the input circuitry from a separate power supply Chapter 3 Connecting Hardware e 27 DMC 30000 User Manual Optoisolated Input Electrical Information Electrical Specifications Input Common INC and Digital Input Max Voltage 28 VDC Input Common INC and Digital Input Min Voltage 0 VDC Limit Common LSC and Limit Home Input Max
149. he output power supply will be connected to Output PWR labeled OPB and the power supply return will be connected to Output GND labeled OPA Note that the load is wired between Output PWR and DO The wiring diagram for Bank 0 is shown in Figure 3 7 Refer to Connectors for DMC 30000 Pin outs in the Appendix for pin out information 383v Output PWR opal DO 4 1 OPA Output GND Figure 3 7 25mA sinking wiring diagram for Bank 0 DO 4 1 25mA Sourcing Optoisolated Outputs LSRC Description The 25mA sourcing option refereed to as low power sourcing LSRC are capable of sourcing up to 25mA per output The voltage range for the outputs is 5 24 VDC These outputs should not be used to drive inductive loads directly DMC 30000 User Manual Chapter 3 Connecting Hardware e 32 Electrical Specifications Output PWR Max Voltage 24 VDC Output PWR Min Voltage 5 VDC Max Drive Current per Output 25mA Sourcing Wiring the 25mA Sourcing Outputs With this configuration the output power supply will be connected to Output PWR labeled OPA and the power supply return will be connected to Output GND labeled OPB Note that the load is wired between DO and Output GND The wiring diagram for Bank 0 is shown in Figure 3 8 Refer to Connectors for DMC 30000 Pin outs in the Appendix for pin out information 3 3V Output GND Figure 3 8 25mA sourcing wiring diagram for Bank 0 DO 4 1 500mA Sourcing Optoisolated Ou
150. he polarity of the feedback is incorrect the user must invert the loop polarity and this may be accomplished by several methods If you are driving a brush type DC motor the simplest way is to invert the two motor wires typically red and black For example switch the M1 and M2 connections going from your amplifier to the motor DMC 30000 User Manual Chapter 2 Getting Started e 18 When driving a brushless motor the polarity reversal may be done with the encoder If you are using a single ended encoder interchange the signal MA and MB If on the other hand you are using a differential encoder interchange only MA and MA The loop polarity and encoder polarity can also be affected through software with the MT and CE commands For more details on the MT command or the CE command see the Command Reference section To Invert Polarity using Hall Commutated brushless motors invert motor phases B amp C exchange Hall A with Hall B and invert encoder polarity as described above Sometimes the feedback polarity is correct the motor does not attempt to run away but the direction of motion is reversed with respect to the commanded motion If this is the case reverse the motor leads AND the encoder signals If the motor moves in the required direction but stops short of the target it is most likely due to insufficient torque output from the motor command signal AOI This can be alleviated by reducing system friction on the motors The in
151. hed by a moving part in the motion control system A reference point can be a point in space or an encoder index pulse Chapter 3 Connecting Hardware e 25 DMC 30000 User Manual The Home input detects any transition in the state of the switch and toggles between logic states 0 and 1 at every transition A transition in the logic state of the Home input will cause the controller to execute a homing routine specified by the user There are three homing routines supported by the DMC 30000 Find Edge FE Find Index FI and Standard Home HM The Find Edge routine is initiated by the command sequence FEX BGX The Find Edge routine will cause the motor to accelerate and then slew at constant speed until a transition is detected in the logic state of the Home input The direction of the FE motion is dependent on the state of the home switch High level causes forward motion The motor will then decelerate to a stop The acceleration rate deceleration rate and slew speed are specified by the user prior to the movement using the commands AC DC and SP When using the FE command it is recommended that a high deceleration value be used so the motor will decelerate rapidly after sensing the Home switch The Find Index routine is initiated by the command sequence FIX BGX Find Index will cause the motor to accelerate to the user defined slew speed SP at a rate specified by the user with the AC command and slew until the controller senses a cha
152. heir program to handle amplifier errors As long as a program is executing in thread zero and the AMPERR label is included when an error is detected the program will jump to the label and execute the user defined routine Note that the TA command is a monitoring function only and does not generate an error condition DMC 30000 User Manual Al DMC 30012 e 202 See the TA command for detailed information on bit status during error conditions Under Voltage Protection If the supply to the amplifier drops below 18 VDC the amplifier will be disabled The amplifier will return to normal operation once the supply is raised above the 18V threshold NOTE If there is an AMPERR routine and the controller is powered before the amplifier then the AMPERR routine will automatically be triggered Over Voltage Protection If the voltage supply to the amplifier rises above 94 VDC then the amplifier will automatically disable The amplifier will re enable when the supply drops below 90 V The over voltage condition will not permanently shut down the amplifier or trigger the AMPERR routine The amplifier will be momentarily disabled when the condition goes away the amplifier will continue normal operation assuming it did not cause the position error to exceed the error limit Over Current Protection The amplifier also has circuitry to protect against over current If the total current from a set of 2 axes ie A and B or C and D exceeds 20 A
153. igger external events The output lines are toggled by Set Bit SB and Clear Bit CB instructions The OP instruction is used to define the state of all the bits of the Output port Encoder MA MB Encoder Index MI Encoder MA MB MI Auxiliary Encoder AA AB Aux A Aux B Abort Position feedback from incremental encoder with two channels in quadrature CHA and CHB The encoder may be analog or TTL Any resolution encoder may be used as long as the maximum frequency does not exceed 15 000 000 quadrature states sec The controller performs quadrature decoding of the encoder signals resulting in a resolution of quadrature counts 4 x encoder cycles Note Encoders that produce outputs in the format of pulses and direction may also be used by inputting the pulses into CHA and direction into Channel B and using the CE command to configure this mode Once Per Revolution encoder pulse Used in Homing sequence or Find Index command to define home on an encoder index Differential inputs from encoder May be input along with CHA CHB for noise immunity of encoder signals The CHA and CHB inputs are optional Inputs for additional encoder Used when an encoder on both the motor and the load is required Not available on axes configured for step motors A low input stops commanded motion instantly without a controlled deceleration Also aborts motion program Appendices e 193 DMC 30000 Us
154. imum Voltage Maximum Frequency Quadrature 15 MHz P inputs are internally pulled up to 5V through a 4 7 KQ resistor 12 VDC 12 VDC inputs are internally biased to 1 3V pulled up to 5V through a 7 1 kQ resistor pulled down to GND through a 2 5 kQ resistor Chapter 3 Connecting Hardware e 35 DMC 30000 User Manual The Auxiliary Encoder Inputs The auxiliary encoder inputs can be used for general use The controller has one auxiliary encoder which consists of two inputs channel A and channel B The auxiliary encoder inputs are mapped to the inputs 81 and 82 The Aux encoder inputs are not available when the controller is configured for step and direction outputs stepper Each input from the auxiliary encoder is a differential line receiver and can accept voltage levels between 12 volts The inputs have been configured to accept TTL level signals To connect TTL signals simply connect the signal to the input and leave the input disconnected For other signal levels the input should be connected to a voltage that is of the full voltage range for example connect the input to the 5 volts on the Galil if the signal is 0 12V logic Electrical Specifications Maximum Voltage 12 VDC Minimum Voltage 12 VDC P inputs are internally pulled up to 5V through a 4 7kQ resistor inputs are internally biased to 1 3V pulled up to 5V through a 7 1kQ resistor pulled down to GND through a 2 5kQ resistor M
155. ines the step drive resolution where YA 1 for full stepping or YA 2 for half stepping The full range of YA is up to YA 9999 for microstepping drives Error Limit The value of QS is internally monitored to determine if it exceeds a preset limit of three full motor steps Once the value of QS exceeds this limit the controller then performs the following actions 1 The motion is maintained or is stopped depending on the setting of the OE command If OEA 0 the axis stays in motion if OEA 1 the axis is stopped 2 YS is set to 2 which causes the automatic subroutine labeled ZPOSERR to be executed Correction A correction move can be commanded by assigning the value of QS to the YR correction move command The correction move is issued only after the axis has been stopped After an error correction move has completed and DMC 30000 User Manual Chapter 6 Programming e 94 QS is less than three full motor steps the YS error status bit is automatically reset back to 1 indicating a cleared error Example SPM Mode Setup The following code demonstrates what is necessary to set up SPM mode for a full step drive a half step drive and a 1 64th microstepping drive for an axis with a 1 8 step motor and 4000 count rev encoder Note the necessary difference is with the YA command Full Stepping Drive X axis SET UP O pa Tz KS16 MT YA1 YB20 YC40 00 SHX WT50 YS1 error drive re
156. instructions functions and keywords Array elements are addressed starting at count 0 For example the first element in the posx array defined with the DM command DM posx 7 would be specified as posx 0 Values are assigned to array entries using the equal sign Assignments are made one element at a time by specifying the element number with the associated array name NOTE Arrays must be defined using the command DM before assigning entry values Examples DM Dimension speed Array speed 10 speed 0 76 Assigns the first element of the array 5042 speed the value 7650 2 speed 0 Returns array element value posx 9 TP Assigns the 10 element of the array posx X the returned value from the tell position command con 1 COS Assigns the second element of the array pos 2 con the cosine of the variable POS multiplied by 2 timer 0 TI Assigns the first element of the array timer ME the returned value of the TIME keyword Using a Variable to Address Array Elements An array element number can also be a variable This allows array entries to be assigned sequentially using a counter Example TA Begin Program count 0 DM Initialize counter and define array pos 10 LOOP Begin loop WT 10 Wait 10 msec pos count Record position into array element TPX pos count Report position DMC 30000 User Manual Chapter 7 Application Programming 136 count countt Increment counter JP Loop
157. inusoidal Acceleration The DMC 30000 can compute trigonometric functions However the argument must be expressed in degrees Using our example the equation for X is written as X 50T 955 sin 3T DMC 30000 User Manual Chapter 6 Programming e 88 A complete program to generate the contour movement in this example is given below To generate an array we compute the position value at intervals of 8 ms This is stored at the array POS Then the difference between the positions is computed and is stored in the array DIF Finally the motors are run in the contour mode Contour Mode Example INSTRUCTION POINTS DM POS 16 DM DIF 15 C 0 T 0 A V1 50 T V2 3 T V3 955 SIN V2 V1 POS C t V4 INT V3 POS C V4 T T 8 C C 1 JP A C lt 16 B C 0 C D C 1 DIF C POS D C C41 JP C C lt 15 RUN CMX DT3 C 0 Fl D DIF C C 1 P E C lt 15 D 0 0 lait JP Wai QA a 2 0 CM lt gt 511 N tj INTERPRETATION Program defines X points Allocate memory Set initial conditions C is index T is time in ms Argument in degrees Compute position Integer value of V3 Store in array POS Program to find position differences Compute the difference and store Program to run motor Contour Mode 8 millisecond intervals Contour Distance is in DIF End contour buffer Wait until path is done End the program Chapter 6 Pr
158. ion e 159 DMC 30000 User Manual Chapter 9 Troubleshooting Overview The following discussion may help you get your system to work Potential problems have been divided into groups as follows 1 Installation 2 Stability and Compensation 3 Operation 4 Error Light Red LED The various symptoms along with the cause and the remedy are described in the following tables Installation SYMPTOM Motor runs away with no connections from controller to amplifier input Motor is enabled even when MO command is given Unable to read main or auxiliary encoder input DIAGNOSIS Adjusting offset causes the motor to change speed The SH command disables the motor The encoder does not work when swapped with another encoder input CAUSE 1 Amplifier has an internal offset REMEDY Adjust amplifier offset Amplifier offset may also be compensated by use of the offset configuration on the controller see the OF command 2 D d lifier since se Replace amplifier 1 The amplifier requires the a different Amplifier Enable setting on the Interconnect Module Refer to Chapter 3 or contact Galil 1 Wrong encoder connections Check encoder wiring For single ended encoders CHA and CHB only do not make any connections to the CHA and CHB inputs Replace encoder 2 Encoder is damaged 3 Encoder configuration incorrect Check CE command DMC 30000 User Manual Chapter 9
159. ion for Galil programming REM vs NO or comments There are 2 ways to add comments to a dmc program REM statements or NO comments The main difference between the 2 is that REM statements are stripped from the program upon download to the controller and NO or comments are left in the program In most instances the reason for using REM statements instead of NO or is to save program memory The other benefit to using REM commands comes when command execution of a loop thread or any section of code is critical Although they do not take much time NO and comments still take time to process So when command execution time is critical REM statements should be used The 2 examples below demonstrate the difference in command execution of a loop containing comments Chapter 7 Application Programming e 127 DMC 30000 User Manual Note Actual processing time will vary depending upon number of axes communication activity number of threads currently executing etc da i 0 initialize a counter t TIME set an initial time reference loop NO this comment takes time to process this comment takes time to process i itl this comment takes time to process JP loop i lt 1000 G TIME t display number of samples from initial time reference N El When executed on a DMC 30012 the output from the above program returned a 158 which indicates that it took 158 samples TM 1000 to process the commands from
160. ion or pressure The following examples show programs which cause the motor to follow an analog signal The first example is a point to point move The second example shows a continuous move Example Position Follower Point to Point Objective The motor must follow an analog signal When the analog signal varies by 5V motor must move 5000 counts Method Read the analog input and command A to move to that point Instruction Interpretation POINTS Label SP 7000 Speed AC 80000 DC Acceleration 80000 LOOP VP AN 1 1 Read and analog input compute position 000 Chapter 7 Application Programming e 149 DMC 30000 User Manual PA VP BGA AMA JP LOOP N El Command position Start motion After completion Repeat End Example Position Follower Continuous Move Method Read the analog input compute the commanded position and the position error Command the motor to run at a speed in proportions to the position error Instruction Interpretation CONT Label AC Acceleration rate 80000 DC 80000 JG 0 Start job mode BGX Start motion LOOP vp AN 1 Compute desired position 1000 ve vp TPA vel ve 20 JG vel JP LOOP N tj Find position error Compute velocity Change velocity Change velocity End Example Low Pass Digital Filter for the Analog inputs Because the analog inputs on the Galil controller can be used to close a position loop they have a very high bandwid
161. is and design tools as well as several design examples will be provided TIME 8 hours 8 00 am 5 00 pm PRODUCT WORKSHOP WHO SHOULD ATTEND Current users of Galil motion controllers Conducted at Galil s headquarters in Rocklin CA students will gain detailed understanding about connecting systems elements system tuning and motion programming This is a hands on seminar and students can test their application on actual hardware and review it with Galil specialists Attendees must have a current application and recently purchased a Galil controller to attend this course TIME Two days 8 30 4 30pm http www galilmc com learning training at galil php Appendices e 195 DMC 30000 User Manual Contacting Us Galil Motion Control 270 Technology Way Rocklin CA 95765 Phone 916 626 0101 Fax 916 626 0102 E Mail Address support galilmc com Web http www galilmc com DMC 30000 User Manual Appendices e 196 WARRANTY All controllers manufactured by Galil Motion Control are warranted against defects in materials and workmanship for a period of 18 months after shipment Motors and Power supplies are warranted for 1 year Extended warranties are available In the event of any defects in materials or workmanship Galil Motion Control will at its sole option repair or replace the defective product covered by this warranty without charge To obtain warranty service the defective product must be returned within 30 days of
162. is torque analog input 1 A Hall Input Status Reserved A User defined variable ZA 1 Not all I O shown in the data record are available on the standard DMC 30000 controller Contact a Galil Application Engineer for customization options Chapter 4 Software Tools and Communication e 49 DMC 30000 User Manual Explanation Data Record Bit Fields Header Information Byte 0 1 of Header I Block S Block Present Present in Data in Data EA Ec BIT6 6 BITS 5 BIT4 4 BIT3 3 BIT2 2 BIT1 1 N A N A N A N A N A N A A EUM Present in Data Record Bytes 2 3 of Header Bytes 2 and 3 make a word which represents the Number of bytes in the data record including the header Byte 2 is the low byte and byte 3 is the high byte NOTE The header information of the data records is formatted in little endian reversed network byte order Thread Status 1 Byte BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 N A N A N A N A Thread 3 Thread 2 Thread 1 Thread 0 Running Running Running Running ee E EM Status 2 ESSET BITIS 15 BTI 14 BITI3 13 BITI2 12 BITH 11 BiT10 10 Bro O 9 BITS 8 Move in Progress BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 Motion Motion is is slewing stopping due to ST or Limit Switch DMC 30000 User Manual Chapter 4 Software Tools and Communication e 50 Axis Status 1 Word BIT 15 BIT 14 BIT 13 BIT 12 BIT 11 BIT 10 BIT 9 BIT 8 Move i
163. it remains up to the servo system to verify that the motor follows the profiled position by closing the servo loop The following section explains the operation of the servo system First it is explained qualitatively and then the explanation is repeated using analytical tools for those who are more theoretically inclined DMC 30000 User Manual Chapter 10 Theory of Operation e 164 X VELOCITY Y VELOCITY X POSITION ae Y POSITION M ud TIME Figure 10 3 Velocity and Position Profiles Chapter 10 Theory of Operation e 165 DMC 30000 User Manual Operation of Closed Loop Systems To understand the operation of a servo system we may compare it to a familiar closed loop operation adjusting the water temperature in the shower One control objective is to keep the temperature at a comfortable level say 90 degrees F To achieve that our skin serves as a temperature sensor and reports to the brain controller The brain compares the actual temperature which is called the feedback signal with the desired level of 90 degrees F The difference between the two levels is called the error signal If the feedback temperature is too low the error is positive and it triggers an action which raises the water temperature until the temperature error is reduced sufficiently The closing of the servo loop is very similar Suppose that we want the motor position to be at 90 degrees The motor position is measured by a
164. keywords are listed in the Command Reference Examples of Keywords vi Assign V1 the logical state of the Forward Limit _LFA Switch v3 Assign V3 the current value of the time clock TIME v4 Assign V4 the logical state of the Home input HMA Arrays For storing and collecting numerical data the DMC 30000 provides array space for 3000 elements The arrays are one dimensional and up to 6 different arrays may be defined Each array element has a numeric range of 4 bytes of integer 2 followed by two bytes of fraction 2 147 483 647 9999 Arrays can be used to capture real time data such as position torque and analog input values In the contouring mode arrays are convenient for holding the points of a position trajectory in a record and playback application Chapter 7 Application Programming e 135 DMC 30000 User Manual Defining Arrays An array is defined with the command DM The user must specify a name and the number of entries to be held in the array An array name can contain up to eight characters starting with an uppercase alphabetic character The number of entries in the defined array is enclosed in Example DM posx 7 Defines an array names posx with seven entries DM Defines an array named speed with 100 speed 100 entries DA posx Frees array space Assignment of Array Entries Like variables each array element can be assigned a value Assigned values can be numbers or returned values from
165. ls and Communication e 46 IHB 192 168 1 120 502 2 Issued to DMC 30000 2 Dimension an array to store the commanded values Set array element 0 equal to 170 and array element 1 equal to 85 array element 1 configures digital outputs 15 8 and array element 0 configures digital outputs 7 0 DM myarray 2 myarray 0 170 which is 10101010 in binary myarray 1 85 which is 01010101in binary 3 a Send the appropriate MB command Use function code 15 Start at output 0 and set clear all 16 outputs based on the data in myarray MBB 2 15 0 16 myarray 3 b Setthe outputs using the SB command SB2001 SB2003 SB2005 SB2007 SB2008 SB2010 SB2012 SB2014 Results Both steps 3a and 3b will result in outputs being activated as below The only difference being that step 3a will set and clear all 16 bits where as step 3b will only set the specified bits and will have no affect on the others Bit Number Status Bit Number Status Status Status o 4 C o C o 0 o0 o Example 2 DMC 30000 connected as a Modbus master to a 3rd party PLC The DMC 30000 will read the value of analog inputs 3 and 4 on the PLC located at addresses 40006 and 40008 respectively The PLC stores values as 32 bit floating point numbers which is common 1 Begin by opening a connection to the PLC which has an IP address of 192 168 1 10 in our example IHB 192 168 1 10 lt 502 gt 2 2 Dimension an array to store the results DM myanalog
166. m INSTRUCTION INTERPRETATION DUALOOP Label CE 0 Configure encoder DEO Set initial value PR 40000 Main move BGX Start motion Correct Correction loop AMX Wait for motion completion V1 10000 Find linear encoder error _DEX V2 Compensate for motor error _TEX 4 V1 JP END ABS Exit if error is small V2 lt 2 PR V2 4 Correction move BGX Start correction JP CORRECT Repeat END EN Motion Smoothing The DMC 30000 controller allows the smoothing of the velocity profile to reduce the mechanical vibration of the system Trapezoidal velocity profiles have acceleration rates which change abruptly from zero to maximum value The discontinuous acceleration results in jerk which causes vibration The smoothing of the acceleration profile leads to a continuous acceleration profile and reduces the mechanical shock and vibration Using the IT Command S When operating with servo motors motion smoothing can be accomplished with the IT command This command filters the acceleration and deceleration functions to produce a smooth velocity profile The resulting velocity profile has continuous acceleration and results in reduced mechanical vibrations The smoothing function is specified by the following command IT x Independent time constant The command IT is used for smoothing independent moves of the type JG PR PA and to smooth vector moves of the type VM and LM The smoothing parameter x is a numbe
167. m last time reference t2 TIME t1 REM in the above scenario t2 will be 3000 because AT 4000 1 will have REM paused program execution from the time reference of ATO RI since the WT 1000 1 took 1000 samples there was only 3000 samples left REM of the 4000 samples for AT 4000 1 MG t t2 this should output 1000 3000 3 Gl EN End program Where the functionality of the operation of the AT command is very useful is when it is required to have a deterministic loop operating on the controller These instances range from writing PLC type scan threads to writing custom control algorithms The key to having a deterministic loop time is to have a trippoint that will wait a specified time independent of the time it took to execute the loop code In this definition the AT command is a perfect fit The below code is an example of a PLC type scan thread that runs at a 500ms loop rate A typical implementation would be to run this code in a separate thread ex XQ plcscan 2 FH this code will set output 3 high if EM inputs 1 and 2 are high and input 3 is low EM else output 3 will be low EM if input 4 is low output 1 will be high jus and ouput 3 will be low regardless of the R R R RE R R EM states of inputs 1 2 or 3 plcscan ATO set initial time reference scan RI mask inputs 1 4 i _TIO amp SF EM variables for bit 1 and bit 3 1 0 b3 0
168. ment counter JP Repeat 5 times REPEAT n lt 5 SIX Stop EN End Event Trigger Start Motion on Input This example waits for input 1 to go low and then starts motion Note The AI command actually halts execution of the program until the input occurs If you do not want to halt the program sequences you can use the Input Interrupt function II or use a conditional jump on an input such as JP GO IN 1 1 INPUT Program Label ALT ET Wait for input 1 low PR 10000 Position command BGX Begin motion EN End program Chapter 7 Application Programming e 113 DMC 30000 User Manual Event Trigger Set output when At speed ATSPEED Program Label JG 50000 Specify jog speed AC 10000 Acceleration rate BGX Begin motion ASX lait for at slew speed 50000 SB1 Set output 1 EN End program Event Trigger Change Speed along Vector Path The following program changes the feed rate or vector speed at the specified distance along the vector The vector distance is measured from the start of the move or from the last AV command VECTOR Label VM XN VS Coordinated path 5000 VP Vector position 10000 20000 VP Vector position 20000 30000 VE End vector BGS Begin sequenc AV 5000 After vector distance VS 1000 Reduce speed EN End Event Trigger Multiple Move with Wait This example makes multiple relative distance moves by w
169. minimum value of 0 5 implies the least filtering resulting in trapezoidal velocity profiles Larger values of the smoothing parameters imply heavier filtering and smoother moves Note that KS is valid only for step motors Homing The Find Edge FE and Home HM instructions may be used to home the motor to a mechanical reference This reference is connected to the Home input line The HM command initializes the motor to the encoder index pulse in addition to the Home input The configure command CN is used to define the polarity of the home input The Find Edge FE instruction is useful for initializing the motor to a home switch The home switch is connected to the Homing Input When the Find Edge command and Begin is used the motor will accelerate up to the slew speed and slew until a transition is detected on the Homing line The motor will then decelerate to a stop A high deceleration value must be input before the find edge command is issued for the motor to decelerate rapidly after sensing the home switch The Home HM command can be used to position the motor on the index pulse after the home switch is detected This allows for finer positioning on initialization The HM command and BG command causes the following sequence of events to occur Stage 1 Upon begin the motor accelerates to the slew speed specified by the JG or SP commands The direction of its motion is determined by the state of the homing input If HMX reads 1 ini
170. mmand Issue the BX command The BX command utilizes a minimal movement algorithm in order to determine the correct commutation of the motor Setting Amplifier Gain and Current Loop Gain The AG command will set the amplifier gain Amps Volt and the AU command will set the current loop gain for the DMC 30012 The current loop gain will need to be set based upon the bus voltage and inductance of the motor and is critical in providing the best possible performance of the system AG command The DMC 30012 has 3 amplifier gain settings The gain is set with the AG command as shown in Table A1 1 for AG n m AG setting Gain Value m 0 0 4 A V m 1 0 8 A V m 2 1 6 A V Table A1 1 Amplifier Gain Settings for DMC 30012 The axis must be in a motor off MO state prior to execution of the AG command With an amplifier gain of 2 1 6A V the maximum motor command output is limited to 5V TL of 5 AU command Proper configuration of the AU command is essential to optimum operation of the DMC 30012 This command sets the gain for the current loop on the amplifier The goal is to set the gain as high as possible without causing the current loop to go unstable In most cases AU 0 should not be used Table A1 2 indicates the recommended AUn m settings for 24 and 48 VDC power supplies DMC 30000 User Manual Al DMC 30012 e 200 To set the AU command put the axis in a motor off MO state set the preferred AG setting and
171. mmunication resource within a device The DMC 30000 can have a maximum of 6 Ethernet handles open at any time When using TCP IP each master or slave uses an individual Ethernet handle In UDP IP one handle may be used for all the masters but each slave uses one Pings and ARPs do not occupy handles If all 6 handles are in use and a 7 master tries to connect it will be sent a reset packet that generates the appropriate error in its windows application NOTE There are a number of ways to reset the controller Hardware reset push reset button or power down controller and software resets through Ethernet or RS 232 by entering RS When the Galil controller acts as the master the IH command is used to assign handles and connect to its slaves The IP address may be entered as a 4 byte number separated with commas industry standard uses periods or as a signed 32 bit number A port number may also be specified but if it is not it will default to 1000 The protocol TCP IP or UDP IP to use must also be designated at this time Otherwise the controller will not connect to the slave Ex IHB 151 25 255 9 lt 179 gt 2 This will open handle 2 and connect to the IP address 151 25 255 9 port 179 using TCP IP Which devices receive what information from the controller depends on a number of things If a device queries the controller it will receive the response unless it explicitly tells the controller to send it to another device If the comman
172. motion on X Begin Y End subroutine It is possible to manipulate the subroutine stack by using the ZS command Every time a JS instruction interrupt or automatic routine such as POSERR or LIMSWI is executed the subroutine stack is incremented by 1 Normally the stack is restored with an EN instruction Occasionally it is desirable not to return back to the program line where Chapter 7 Application Programming e 119 DMC 30000 User Manual the subroutine or interrupt was called The ZS1 command clears 1 level of the stack This allows the program sequencer to continue to the next line The ZS0 command resets the stack to its initial value For example if a limit occurs and the LIMSWI routine is executed it is often desirable to restart the program sequence instead of returning to the location where the limit occurred To do this give a ZS command at the end of the LIMSWI routine Auto Start Routine The DMC 30000 has a special label for automatic program execution A program which has been saved into the controller s non volatile memory can be automatically executed upon power up or reset by beginning the program with the label AUTO The program must be saved into non volatile memory using the command BP Automatic Subroutines for Monitoring Conditions Often it is desirable to monitor certain conditions continuously without tying up the host or DMC 30000 program sequences The controller can monitor several important conditi
173. mp if not X Y S OP TA JS NUM speedx val New X speed ZS1 C1I2 IP PRINT Jump to Print C ST AMX CI 1 Stop motion on S MG 8 THE END ZS EN l1 End R nable interrupt NUM Routine for entering new jog speed MG Prompt for value ENTER PICH S AXIS SPEED N NUMLOOP CI 1 Check for enter NMLP Routine to check input from terminal JP NMLP P1CD lt 2 Jump to error if string JP ERROR P1CD 2 Read value val P1NM EN End subroutine ERROR CI 1 Error Routine MG INVALID TRY Error message AGAIN JP NMLP EN End Output of Data Numeric and String Numerical and string data can be output from the controller using several methods The message command MG can output string and numerical data Also the controller can be commanded to return the values of variables and arrays as well as other information using the interrogation commands the interrogation commands are described in chapter 5 Chapter 7 Application Programming e 141 DMC 30000 User Manual Sending Messages Messages may be sent to the bus using the message command MG This command sends specified text and numerical or string data from variables or arrays to the screen Text strings are specified in quotes and variable or array data is designated by the name of the variable or array For example MG The Final Value is result In addition to variables functions and commands responses can be use
174. n BGN Begin motion Chapter 6 Programming e 79 DMC 30000 User Manual Electronic Cam The electronic cam is a motion control mode which enables the periodic synchronization the motor The master axis encoder can be the auxiliary encoder input or the virtual axis The electronic cam is a more general type of electronic gearing which allows a table based relationship between the axes It allows synchronizing all the controller axes To illustrate the procedure of setting the cam mode consider the cam relationship shown in Figure 6 8 Step 1 Selecting the master axis The first step in the electronic cam mode is to select the master axis This is done with the instruction EAp where p DA or N p is the selected master axis For the given example since the master is the aux encoder input we specify EA DA Step 2 Specify the master cycle and the change in the slave axis or axes In the electronic cam mode the position of the master is always expressed modulo one cycle In this example the position of the master axis is always expressed in the range between 0 and 6000 Similarly the slave position is also redefined such that it starts at zero and ends at 1500 At the end of a cycle when the master is 6000 and the slave is 1500 the positions of both x and y are redefined as zero The MM command specifies the master modulus and the EM command specifies the slave modulus The cycle of the master is limited to 8 388 607 whereas the sl
175. n Progress Mode of Motion PA or Mode of Motion PA only PR FE Find Edge in Progress Home HM in Progress 1 Phase of HM complete 2 Phase of HM complete Mode of Motion Coord or FI command issued Motion BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 Mode of Motion Motion is slewing Negative Direction Move Contour Axis Switches 1 Byte Motion is stopping due to ST of Limit 3rd Phase of HM in Progress Motion Latch is Motor is armed Off making final decel Latch Occurred State of Reverse Limit State of Forward Limit State of Home Input Stepper Mode Notes Regarding Velocity and Torque Information The velocity information that is returned in the data record is 64 times larger than the value returned when using the command TV Tell Velocity See command reference for more information about TV The Torque information is represented as a number in the range of 32767 Maximum negative torque is 32767 Maximum positive torque is 32767 Zero torque is 0 QZ Command The QZ command can be very useful when using the QR command since it provides information about the controller and the data record The QZ command returns the following 4 bytes of information INFORMATION number of axes present 1 for the DMC 30000 number of bytes in general block of data record 18 for the DMC 30000 number of bytes in coordinate pla
176. n Figure 6 6 The ramped gearing does have one consequence There isn t a true synchronization of the two axes until the gearing ramp is complete The slave will lag behind the true ratio during the ramp period If exact position synchronization is required from the point gearing is initiated then the position must be commanded in addition to the gearing The controller keeps track of this position phase lag with the GP operand The following example will demonstrate how the command is used DMC 30000 User Manual Chapter 6 Programming e 78 Command Summary Electronic Gearing COMMAND DESCRIPTION GAn Specifies master axes for gearing where n DA S or N GDa Sets the distance the master will travel for the gearing change to take full effect _GPA This operand keeps track of the difference between the theoretical distance traveled if gearing changes took effect immediately and the distance traveled since gearing changes take effect over a specified interval GRa Sets gear ratio 0 disables electronic gearing for specified axis GM a a 1 sets gantry mode 0 disables gantry mode MR x Trippoint for reverse motion past specified value MF x Trippoint for forward motion past specified value Example Simple Master Slave Master axis is the imaginary axis and moves 10000 counts A axis will move 50000 counts GA N Specify master axes as the N axis GR 5 Set gear ratio of 5x PRN 10000 Specify N positio
177. n as a quadrature encoder Quadrature encoders may be either single ended MA and MB or differential MA MA and MB MB The DMC 30000 decodes either type into quadrature states or four times the number of cycles Encoders may also have a third channel or index for synchronization The DMC 30000 can be ordered with 120Q termination resistors installed on the encoder inputs See the Ordering Options for the in the Appendix for more information The DMC 30000 can also interface to encoders with pulse and direction signals Refer to the CE command in the command reference for details There is no limit on encoder line density however the input frequency to the controller must not exceed 3 750 000 full encoder cycles second 15 000 000 quadrature counts sec For example if the encoder line density is 10 000 cycles per inch the maximum speed is 200 inches second If higher encoder frequency is required please consult the factory The standard encoder voltage level is TTL 0 5v however voltage levels up to 12 Volts are acceptable If using differential signals 12 Volts can be input directly to the DMC 30000 Single ended 12 Volt signals require a bias voltage input to the complementary inputs The DMC 30000 can accept analog feedback 10v instead of an encoder for any axis For more information see the command AF in the command reference To interface with other types of position sensors such as absolute encoders Galil ca
178. n customize the controller and command set Please contact Galil to talk to one of our applications engineers about your particular system requirements Watch Dog Timer The DMC 30000 provides an internal watch dog timer which checks for proper microprocessor operation The timer toggles the Amplifier Enable Output AEN which can be used to switch the amplifiers off in the event of a serious DMC 30000 failure The AEN output is normally high During power up and if the microprocessor ceases to function properly the AEN output will go low The error light will also turn on at this stage A reset is required to restore the DMC 30000 to normal operation Consult the factory for a Return Materials Authorization RMA Number if your DMC 30000 is damaged Chapter 1 Overview e 7 DMC 30000 User Manual Chapter 2 Getting Started DMC 30010 CARD Dimensions M3x0 5 THREAD 3 00 j 4 PLCS 3 650 4 00 7 2 663 1 789 Oo D 750 T TT o 1414 e e s 18 84 18 681 1 11 703 2 528 2 650 Figure 2 1 DMC 30010 CARD Dimensions DMC 30000 User Manual Chapter 2 Getting Started e 8 DMC 30011 CARD Dimensions M3x0 5 THREAD 4 PLCS e 3 00
179. nd 45 The phase margin of 70 given above indicated over damped response Next we discuss the design of control systems System Design and Compensation The closed loop control system can be stabilized by a digital filter which is preprogrammed in the DMC 30000 controller The filter parameters can be selected by the user for the best compensation The following discussion presents an analytical design method The Analytical Method The analytical design method is aimed at closing the loop at a crossover frequency c with a phase margin PM The system parameters are assumed known The design procedure is best illustrated by a design example Consider a system with the following parameters K 0 2 Nm A Torque constant J 2 104 kg m System moment of inertia R 2 Q Motor resistance K 2 Amp Volt Current amplifier gain N 1000 Counts rev Encoder line density The DAC of theDMC 30000 outputs 10V for a 16 bit command of 32768 counts The design objective is to select the filter parameters in order to close a position loop with a crossover frequency of 500 rad s and a phase margin of 45 degrees The first step is to develop a mathematical model of the system as discussed in the previous system Motor M s P I Kt Js 1000 5 Amp K 2 Amp V DAC K4 10 32768 0003 Encoder K 4N 2n 636 ZOH H s 2000 s 2000 Compensation Filter G s P sD Chapter 10 Theory of Operation e 173 DMC
180. nd LE command must be used to specify the end of a linear move sequence This command tells the controller to decelerate to a stop following the last LI command If an LE command is not given an Abort AB1 must be used to abort the motion sequence It is the responsibility of the user to keep enough LI segments in the DMC 30000 sequence buffer to ensure continuous motion If the controller receives no additional LI segments and no LE command the controller will stop motion instantly at the last vector There will be no controlled deceleration LM or LM returns the available spaces for LI segments that can be sent to the buffer 31 returned means the buffer is empty and 31 LI segments can be sent A zero means the buffer is full and no additional segments can be sent As long as the buffer is not full additional LI segments can be sent The instruction CS returns the segment counter As the segments are processed CS increases starting at zero This function allows the host computer to determine which segment is being processed Additional Commands The commands VS n VA n and VD n are used to specify the vector speed acceleration and deceleration An Example of Linear Interpolation Motion LMOVE label DP 0 Define position of 0 LM X Enable LM mode LI 5000 Specify first linear segment LI 10000 Specify second linear segment E End linear segments VS 4000 Specify vector speed BG S Begin motion sequence EN Program en
181. nd between any two conditions requires that both statements must be true for the combined statement to be true The operand between any two conditions requires that only one statement be true for the combined statement to be true NOTE Each condition must be placed in parentheses for proper evaluation by the controller In addition the DMC 30000 executes operations from left to right See Mathematical and Functional Expressions for more information For example using variables named v1 v2 v3 and v4 JP TEST vl lt v2 amp v3 v4 In this example this statement will cause the program to jump to the label ZTEST if v1 is less than v2 and v3 is less than v4 To illustrate this further consider this same example with an additional condition JP TEST vl lt v2 amp v3 lt v4 v5 v6 DMC 30000 User Manual Chapter 7 Application Programming 116 This statement will cause the program to jump to the label TEST under two conditions 1 If v1 is less than v2 and v3 is less than v4 OR 2 If v5 is less than v6 Using the JP Command If the condition for the JP command is satisfied the controller branches to the specified label or line number and continues executing commands from this point If the condition is not satisfied the controller continues to execute the next commands in sequence Conditional Meaning JP Jump to Loop if the variable count is less than Loop count lt 10 10
182. nd error utility Check if error on line 2 Check if out of range Send message Send message Adjust stack Return to main program End program if other error Zero stack End program The above program prompts the operator to enter a jog speed If the operator enters a number out of range greater than 8 million the ZCMDERR routine will be executed prompting the operator to enter a new number In multitasking applications there is an alternate method for handling command errors from different threads Using the XQ command along with the special operands described below allows the controller to either skip or retry invalid commands OPERAND _EDI _ED2 ED3 FUNCTION Returns the number of the thread that generated an error Retry failed command operand contains the location of the failed command Skip failed command operand contains the location of the command after the failed DMC 30000 User Manual Chapter 7 Application Programming e 122 command The operands are used with the XQ command in the following format 7 EDL XQ ED2 or ED3 Where the 1 at the end of the command line indicates a restart therefore the existing program stack will not be removed when the above format executes The following example shows an error correction routine which uses the operands Example Command Error w Multitasking A JP A N m TY m Z
183. nd in the Multi Function Pins MF section of Chapter 3 External Servo Amplifiers With the controller set to servo mode MT 1 or 1 to drive an external servo amplifier the BR command must be set toa 1 This setting will disable the requirement to have the BA BM and BX or BZ commands executed prior to being able to issue the SH command for that axis Analog Outputs Motor Command Output Electrical Specifications Voltage Range 10V Output Impedance 500 Q Resolution 16 bit Overview The DMC 30000 has 2 analog outputs AO 1 and AO 2 AO 2 is always used as a general purpose output AO 1 is used as the motor command output when using the DMC 30000 to interface to an external amplifier Chapter 3 Connecting Hardware e 39 DMC 30000 User Manual If the controller is set to control stepper motors MT 2 2 2 5 or 2 5 then AOI will be 10V depending on MT setting and the commanded speed to the motor See the AO command in the DMC 30000 Command Reference for more information AOI with the DMC 30012 and DMC 30017 AO1 as External Motor Command To configure the DMC 30012 and DMC 30017 to interface to an external servo amplifier set MT1 or 1 and set BR 1 In this mode AOI will be the motor command output to the external drive and will not be available as a general purpose output AOI as a General Purpose Output With a DMC 30012 and DMC 30017 AOI can be used as a general purpose output when the controller is set to drive a
184. nditional statement ELSE command for 1 IF conditional statement Message to b xecuted if 1 IF conditional statement is false End of 1 conditional statement Label to be used for a loop Loop until both input 1 and input 2 are not End Input Interrupt Routine without restoring trippoints A subroutine is a group of instructions beginning with a label and ending with an end command EN Subroutines are called from the main program with the jump subroutine instruction JS followed by a label or line number and conditional statement Up to 8 subroutines can be nested After the subroutine is executed the program sequencer returns to the program location where the subroutine was called unless the subroutine stack is manipulated as described in the following section Example An example of a subroutine to draw a square 500 counts per side is given below The square is drawn at vector position 1000 1000 fM CBL VP 1000 1000 LE BGS AMS SB1 JS Square CB1 N El Square vl 500 JS L vi v1 JS L N L PR vl v1 BGX AMX BGY AMY N El El Stack Manipulation Begin Main Program Clear Output Bit 1 pick up pen Define vector position move pen Wait for after motion trippoint Set Output Bit 1 put down pen Jump to square subroutine End Main Program Square subroutine Define length of side Switch direction End subroutine Define X Y Begin X After
185. ne block of data record 16 for the DMC 30000 number of bytes the axis block of data record 36 for the DMC 30000 Chapter 4 Software Tools and Communication e 51 DMC 30000 User Manual GalilTools Windows and Linux The DMC 30000 requires GalilTools version 1 6 0 0 or newer GalilTools is Galil s set of software tools for current Galil controllers It is highly recommended for all first time purchases of Galil controllers as it provides easy set up tuning and analysis GalilTools replaces the WSDK Tuning software with an improved user interface real time scopes and communications utilities The Galil Tools set contains the following tools Scope Editor Terminal Watch and Tuner and a Communication Library for development with Galil Controllers The powerful Scope Tool is ideal for system analysis as it captures numerous types of data for each axis in real time Up to eight channels of data can be displayed at once and additional real time data can be viewed by changing the scope settings This allows literally hundreds of parameters to be analyzed during a single data capture sequence A rising or falling edge trigger feature is also included for precise synchronization of data The Program Editor Tool allows for easy writing of application programs and multiple editors to be open simultaneously The Terminal Tool provides a window for sending and receiving Galil commands and responses The Watch Tool displays controll
186. ng at this point to zero DMC 30000 User Manual Chapter 6 Programming e 102 The 4 different motion possibilities for the home sequence are shown in the following table Direction of Motion Switch Type Stage 3 Normally Open oe fess fata Forward Normally Open Lets O o 2 Forward Forward Nomally Closed e ce remm HRes Forvard Normally Closed CN 1 Reverse Forward Forward Example Homing Instruction Interpretation HOME Label CN 1 Configure the polarity of the home input AC 1000000 Acceleration Rate DC 1000000 Deceleration Rate SP 5000 Speed for Home Search HM Home BG Begin Motion AM After Complete G AT Send Message HOME EN End Figure 6 14 shows the velocity profile from the homing sequence of the example program above For this profile the switch is normally closed and CN 1 Chapter 6 Programming e 103 DMC 30000 User Manual HOME SWITCH _HMX 0 _HMX 1 POSITION VELOCITY MOTION BEGINS IN FORWARD DIRECTION e POSITION VELOCITY MOTION CHANGES DIRECTION POSITION VELOCITY MOTION IN FORWARD DIRECTION TOWARD INDEX Suze AS O L POSITION Figure 6 14 Homing Sequence for Normally Closed Switch and CN 1 INDEX PULSES POSITION DMC 30000 User Manual Chapter 6 Programming 104 Example Find Edge EDGE Label AC 2000000 Acceleration rate DC 2000000 Deceleration rate SP 8000 Sp
187. nge in the index pulse signal from low to high The motor then decelerates to a stop at the rate previously specified by the user with the DC command and then moves back to the index pulse and speed HV Although Find Index is an option for homing it is not dependent upon a transition in the logic state of the Home input but instead is dependent upon a transition in the level of the index pulse signal The Standard Homing routine is initiated by the sequence of commands HMX BGX Standard Homing is a combination of Find Edge and Find Index homing Initiating the standard homing routine will cause the motor to slew until a transition 1s detected in the logic state of the Home input The motor will accelerate at the rate specified by the command AC up to the slew speed After detecting the transition in the logic state on the Home Input the motor will decelerate to a stop at the rate specified by the command DC After the motor has decelerated to a stop it switches direction and approaches the transition point at the speed of HV counts sec When the logic state changes again the motor moves forward in the direction of increasing encoder count at the same speed until the controller senses the index pulse After detection it decelerates to a stop moves back to the index and defines this position as 0 The logic state of the Home input can be interrogated with the command MG HMX This command returns a 0 or 1 if the logic state is low or high respecti
188. nt Initialize array counter Loop counter Specify contour data I I 1 Increment array counter Loop until done End countour buffer DMC 30000 User Manual Chapter 6 Programming e 90 Wait JP Wai Wait until path is done t CM lt gt 511 N End program tj For additional information about automatic array capture see Chapter 7 Application Programming Virtual Axis The DMC 30000 controller has an additional virtual axis designated as the N axis This axis has no encoder and no DAC However it can be commanded by the commands AC DC JG SP PR PA BG IT GA VM VP CR ST DP RP The main use of the virtual axis is to serve as a virtual master in ECAM mode and to perform an unnecessary part of a vector mode These applications are illustrated by the following examples ECAM Master Example Suppose that the motion of the XY axes is constrained along a path that can be described by an electronic cam table Further assume that the ecam master is not an external encoder but has to be a controlled variable This can be achieved by defining the N axis as the master with the command EAN and setting the modulo of the master with a command such as EMN 4000 Next the table is constructed To move the constrained axes simply command the N axis in the jog mode or with the PR and PA commands For example PAN 2000 BGN will cause the XY axes to move to the corresponding points on the motion cycle Sinusoidal
189. nt Register IT Motion Profile Smoothing Independent Time Constant KS Stepper Motor Smoothing MT Motor Type 2 2 2 5 or 2 5 for stepper motors RP Report Commanded Position TD Report number of step pulses generated by controller TP Tell Position of Encoder Operand Summary Stepper Motor Operation OPERAND DESCRIPTION _DEA Contains the value of the step count register _DPA Contains the value of the main encoder ITA Contains the value of the Independent Time constant _KSA Contains the value of the Stepper Motor Smoothing constant _MTA Contains the motor type value _RPA Contains the commanded position generated by the profiler _TDA Contains the value of the step count register _TPA Contains the value of the main encoder Chapter 6 Programming e 93 DMC 30000 User Manual Stepper Position Maintenance Mode SPM The Galil controller can be set into the Stepper Position Maintenance SPM mode to handle the event of stepper motor position error The mode looks at position feedback from the main encoder and compares it to the commanded step pulses The position information is used to determine if there is any significant difference between the commanded and the actual motor positions If such error is detected it is updated into a command value for operator use In addition the SPM mode can be used as a method to correct for friction at the end of a microstepping move This capability provides closed
190. ntroller may still be generating step pulses when the motion profiler is complete This is caused by the stepper motor smoothing filter KS To understand this consider the steps the controller executes to generate step pulses First the controller generates a motion profile in accordance with the motion commands Second the profiler generates pulses as prescribed by the motion profile The pulses that are generated by the motion profiler can be monitored by the command RP Reference Position RP gives the absolute value of the position as determined by the motion profiler The command DP can be used to set the value of the reference position For example DP 0 defines the reference position of the X axis to be zero Third the output of the motion profiler is filtered by the stepper smoothing filter This filter adds a delay in the output of the stepper motor pulses The amount of delay depends on the parameter which is specified by the command KS As mentioned earlier there will always be some amount of stepper motor smoothing Fourth the output of the stepper smoothing filter is buffered and is available for input to the stepper motor driver The pulses which are generated by the smoothing filter can be monitored by the command TD Tell Dual TD gives the absolute value of the position as determined by actual output of the buffer The command DP sets the value of the step count register as well as the value of the reference position For
191. nts have passed in the reverse direction PTn Command used to enter and exit the Trajectory Modification Mode PAn Command Used to specify the absolute position target SPn Speed settings DMC 30000 User Manual Chapter 6 Programming e 70 Linear Interpolation Mode The DMC 30000 provides a linear interpolation mode that allows the buffering of relative moves for a single axis In linear interpolation mode the motion path is described in terms of incremental distances for each axis An unlimited number of incremental segments may be given in a continuous move sequence making the linear interpolation mode ideal for following a piece wise linear path There is no limit to the total move length The LM LM A command selects the Linear Interpolation mode Specifying Linear Segments The command LI x specifies the incremental move distance This means motion is prescribed with respect to the current axis position Up to 31 incremental move segments may be given prior to the Begin Sequence BGS command Once motion has begun additional LI segments may be sent to the controller The clear sequence CS command can be used to remove LI segments stored in the buffer prior to the start of the motion To stop the motion use the instructions STS or AB The command ST causes a decelerated stop The command AB causes an instantaneous stop and aborts the program and the command ABI aborts the motion only The Linear E
192. ny combination of motor types providing maximum flexibility Standard Servo Motor with 10 Volt Command Signal The DMC 30000 achieves superior precision through use of a 16 Bit motor command output DAC and a sophisticated PID filter that features velocity and acceleration feed forward an extra pole filter and integration limits The controller is configured by the factory for standard servo motor operation In this configuration the controller provides an analog signal 10 volts to connect to a servo amplifier This connection is described in Chapter 2 DMC 30000 User Manual Chapter 1 Overview e 2 Stepper Motor with Step and Direction Signals The DMC 30000 can control stepper motors In this mode the controller provides two signals to connect to the stepper motor Step and Direction For stepper motor operation the controller does not require an encoder and operates the stepper motor in an open loop fashion Chapter 2 describes the proper connection and procedure for using stepper motors If encoders are available on the stepper motor Galil s Stepper Position Maintenance Mode may be used for automatic monitoring and correction of the stepper position See Stepper Position Maintenance Mode SPM in Chapter 6 for more information Overview of External Amplifiers The amplifiers should be suitable for the motor and may be linear or pulse width modulated An amplifier may have current feedback voltage feedback or velocity f
193. o disable the amplifier for these conditions The AEN signal from the DMC 30000 is 5V active high or high amp enable In other words the AEN signal will be high when the controller expects the amplifier to be enabled Connecting the Encoders Step A Connect the encoders For stepper motor operation an encoder is optional For servo motor operation if you have a preferred definition of the forward and reverse directions make sure that the encoder wiring is consistent with that definition The DMC 30000 accepts single ended or differential encoder feedback with or without an index pulse The encoder signals are wired to that axis associated 26pin DSub connector found on top of the controller The signal leads are labeled MA channel A MB channel B and MI For differential encoders the complement signals are labeled MA MB and MI For complete pin out information see in the Appendices NOTE When using pulse and direction encoders the pulse signal is connected to MA and the direction signal is connected to MB The controller must be configured for pulse and direction with the command CE See the command summary for further information on the command CE Step B Verify proper encoder operation Start with the A encoder first Once it is connected turn the motor shaft and interrogate the position with the instruction TPA lt return gt The controller response will vary as the motor is turned At this point if TPA does not va
194. o move a 300 counts the position error will cause the motor command voltage to be increased to a value that will be greater than the OV value 3 volts in this case Once the motor command output is greater than the OV threshold for more than than the 500ms defined by the OT command AND there has been less than 4 counts of change on the encoder then the controller will turn off that axis due to an encoder failure The motor will have moved some distance during this operation but it will be shut down before a full runaway condition occurs Using Encoder Failure to detect a hard stop or stalled motor The encoder failure detection can also be used to detect when an axis is up against a hard stop In this scenario the motor command will be commanded above the OV threshold but because the motor is not moving the controller will detect this scenario as an encoder failure Programmable Position Limits The DMC 30000 provides programmable forward and reverse position limits These are set by the BL and FL software commands Once a position limit 1s specified the DMC 30000 will not accept position commands beyond the limit Motion beyond the limit is also prevented Example DP 0 Define Position BL 2000 Set Reverse position limit FL 2000 Set Forward position limit JG 2000 Jog BG X Begin motion stops at forward limits Chapter 8 Hardware amp Software Protection e 157 DMC 30000 User Manual Off On Error The DMC 30000 controll
195. o the controller read the following discussion on setting Error Limits and Torque Limits Note that this discussion only uses the A axis as an examples Step B Set the Error Limit as a Safety Precaution Usually there is uncertainty about the correct polarity of the feedback The wrong polarity causes the motor to run away from the starting position Using a terminal program such as GalilTools the following parameters can be given to avoid system damage Input the commands ER 2000 Sets error limit on the A axis to be 2000 encoder counts OE 1 Disables A axis amplifier when excess position error exists If the motor runs away and creates a position error of 2000 counts the motor amplifier will be disabled NOTE This function requires the AEN signal to be connected from the controller to the amplifier Step C Set Torque Limit as a Safety Precaution To limit the maximum voltage signal to your amplifier the DMC 30000 controller has a torque limit command TL This command sets the maximum voltage output of the controller and can be used to avoid excessive torque or speed when initially setting up a servo system When operating an amplifier in torque mode the voltage output of the controller will be directly related to the torque output of the motor The user is responsible for determining this relationship using the documentation of the motor and amplifier The torque limit can be set to a value that will limit the motors output tor
196. ocedure for communicating with an OPTO 22 rack refer to List of Other Publications in the Appendices DMC 30000 User Manual Chapter 4 Software Tools and Communication e 48 Data Record The DMC 30000 can provide a binary block of status information with the use of the QR and DR commands These commands along with the QZ command can be very useful for accessing complete controller status The following is the byte map for the binary data See the QR QZ and DR command for specific command usage information NOTE UB Unsigned Byte 1 UW Unsigned Word 2 SW Signed Word 2 SL Signed Long Word 4 UL Unsigned Long Word 4 ADDR TYPE 1 Byte of Header 2 Byte of Header 3 Byte of Header 4 Byte of Header sample number general input block 0 inputs 1 16 general output block 0 outputs 1 16 error code thread status see bit field map below analog input 2 analog output 1 analog output 2 amplifier status Segment Count for Contour Mode Buffer space remaining Contour Mode segment count of coordinated move for S plane coordinated move status for S plane see bit field map below distance traveled in coordinated move for S plane Buffer space remaining S Plane A axis status see bit field map below A axis switches see bit field map below A axis stop code A axis reference position A axis motor position A axis position error A axis auxiliary position A axis velocity A ax
197. of 4000 and end speed 1000 LI 1000 lt 4000 gt 1000 Specify second linear segment with a vector speed of 4000 and end speed 1000 LI 5000 lt 4000 gt 1000 Specify third linear segment with a vector speed of 4000 and end speed 1000 E End linear segments Ud ES Q f n Begin motion sequence Eri z Program end Changing Feed Rate The command VR n allows the feed rate VS to be scaled between 0 and 10 with a resolution of 0001 This command takes effect immediately and causes VS to be scaled VR also applies when the vector speed is specified with the lt operator This is a useful feature for feed rate override VR does not ratio the accelerations For example VR 5 results in the specification VS 2000 to be divided in half Command Summary Linear Interpolation COMMAND DESCRIPTION LMA Enable linear interpolation LM or LMS Returns number of available spaces for linear segments in DMC 30000 sequence buffer Zero means buffer full 31 means buffer empty LI x lt n gt m Specify incremental distances relative to current position and assign vector speed n and m VSn Specify vector speed VAn Specify vector acceleration VDn Specify vector deceleration VRn Specify the vector speed ratio BGS Begin Linear Sequence CS Clear sequence LE Linear End Required at end of LI command sequence LE Returns the length of the vector resets after 2147483647 AMS Trippoint for After Sequence complete
198. ogramming e 89 DMC 30000 User Manual Teach Record and Play Back Several applications require teaching the machine a motion trajectory Teaching can be accomplished using the DMC 30000 automatic array capture feature to capture position data The captured data may then be played back in the contour mode The following array commands are used DM C n RA C RD TPX RC n m RC or RC Dimension array Specify array for automatic record up to 4 for DMC 30000 Specify data for capturing such as TPX or _ TPZ Specify capture time interval where n is 2 sample periods 1 ms for TM1000 m is number of records to be captured Returns a 1 if recording Record and Playback Example RECORD DM XPOS RA XPOS RD _TPX MOX RC2 COMPUT 501 A JP A RC C 0 D C41 TA X J ial p z XPOS C Erj DM DX 500 POS D DX C D C C 1 ELTA JP L C lt 500 PLAYBCK CMX DT2 I 0 B CD DX I I I 1 Ae JP B 1 lt 500 CD 0 0 Begin Program Dimension array with 501 elements Specify automatic record Specify X position to be captured Turn X motor off Begin recording 4 msec interval at TM1000 Continue until done recording Compute DX Dimension Array for DX Initialize counter Label Compute the differenc Store difference in array Increment index Repeat until done Begin Playback Specify contour mode Specify time increme
199. on and electronic gearing Each one of these modes is discussed in the following sections EXAMPLE APPLICATION MODE OF MOTION COMMANDS Absolute or relative positioning where each axis is Independent Axis Positioning PA PR independent and follows prescribed velocity profile SP AC DC Velocity control where no final endpoint is prescribed Motion stops on Stop command Absolute positioning mode where absolute position targets may be sent to the controller while the axis is in motion Motion Path described as incremental position points versus time Motion Path described as incremental position velocity and delta time Coordinated motion where path is described by linear segments 2 D motion path consisting of arc segments and linear segments such as engraving or quilting Electronic gearing where slave axes are scaled to master axis which can move in both directions JG AC DC ST PA PT SP AC DC CM CD DT PV BT LM LI LE VS VR VA VD VM VP CR VS VR VA VD VE GA GD _GP GR GM if gantry Independent Jogging Position Tracking Error Reference source not found PVT Mode Linear Interpolation Mode Vector Mode Linear and Circular Interpolation Motion Electronic Gearing DMC 30000 User Manual Chapter 6 Programming e 62 Master slave where slave axes must follow a master such as Electronic Gearing and Ramped Gearing conveyer speed Moving al
200. on the controller will make a accelerated or decelerated change to the new speed An instant change to the motor position can be made with the use of the IP command Upon receiving this command the controller commands the motor to a position which is equal to the specified increment plus the current position This command is useful when trying to synchronize the position of two motors while they are moving Note that the controller operates as a closed loop position controller while in the jog mode The DMC 30000 converts the velocity profile into a position trajectory and a new position target is generated every sample period This method of control results in precise speed regulation with phase lock accuracy Command Summary Jogging COMMAND DESCRIPTION ACx Specifies acceleration rate BGX Begins motion DCx Specifies deceleration rate IPx Increments position instantly IT x Time constant for independent motion smoothing JG x Specifies jog speed and direction STA Stops motion Parameters can be set with explicit notation such as JGA 2000 Operand Summary Independent Axis OPERAND DESCRIPTION _ACA Return acceleration rate _DCA Return deceleration rate _SPA Returns the jog speed _TVA Returns the actual velocity averaged over 256 samples Example Jog in X only Jog motor at 50000 count s TA AC 20000 Specify acceleration of 20000 counts sec DC 20000 Specify de
201. on to the controller may be utilized instead of a TCP connection With UDP there is less overhead resulting in higher throughput Also there is no need to reconnect to the controller with a UDP connection Because handshaking is built into the Galil communication protocol through the use of colon or question mark responses to commands sent to the controller the TCP handshaking is not required Packets must be limited to 512 data bytes including UDP TCP IP Header or less Larger packets could cause the controller to lose communication NOTE In order not to lose information in transit the user must wait for the controller s response before sending the next packet Addressing There are three levels of addresses that define Ethernet devices The first is the MAC or hardware address This is a unique and permanent 6 byte number No other device will have the same MAC address The DMC 30000 MAC address is set by the factory and the last two bytes of the address are the serial number of the board To find the Ethernet MAC address for a DMC 30000 unit use the TH command A sample is shown here with a unit that has a serial number of 11 Sample MAC Ethernet Address 00 50 4C 40 00 0B The second level of addressing is the IP address This is a 32 bit or 4 byte number that usually looks like this 192 168 15 1 The IP address is constrained by each local network and must be assigned locally Assigning an IP address to the DMC 30000 controller can
202. ong a coordinated path has occurred For m omitted or 0 halts program execution until specified time in msec has elapsed For m 1 Same functionality except that n is number of samples rather than msec The AM trippoint is used to separate the two PR moves If AM is not used the controller returns a for the second PR command because a new PR cannot be given until motion is complete TWOMOVE PR 2000 BGX GI Position Command Begin Motion DMC 30000 User Manual Chapter 7 Application Programming e 112 AMX lait for Motion Complete PR 4000 Next Position Move BGX Begin 2 move EN End program Event Trigger Set Output after Distance Set output bit 1 after a distance of 1000 counts from the start of the move The accuracy of the trippoint is the speed multiplied by the sample period SETBIT Label SP 10000 Speed is 10000 PA 20000 Specify Absolute position BGX Begin motion AD 1000 Wait until 1000 counts SB1 Set output bit 1 EN End program Event Trigger Repetitive Position Trigger To set the output bit every 10000 counts during a move the AR trippoint is used as shown in the next example TRIP Label JG 50000 Specify Jog Speed BGX n 0 Begin Motion REPEAT Repeat Loop AR 10000 Wait 10000 counts TPX Tell Position SB1 Set output 1 WT50 Wait 50 msec CBl1 Clear output 1 n nt 1 Incre
203. ong arbitrary profiles or mathematically prescribed Error Reference source not found profiles such as sine or cosine trajectories Teaching or Record and Play Back Error Reference source not found with Teach Record and Play Back Backlash Correction Dual Loop Auxiliary Encoder DV Following a trajectory based on a master encoder position Electronic Cam EA EM EP ET EB EG EQ Smooth motion while operating in independent axis IT positioning Smooth motion while operating in vector or linear Motion Smoothing IT interpolation positioning Smooth motion while operating with stepper motors Stepper Motion Smoothing KS Gantry two axes are coupled by gantry Electronic Gearing Error Reference source not GR found GM Independent Axis Positioning In this mode motion between the specified axes is independent and each axis follows its own profile The user specifies the desired absolute position PA or relative position PR slew speed SP acceleration ramp AC and deceleration ramp DC for each axis On begin BG the DMC 30000 profiler generates the corresponding trapezoidal or triangular velocity profile and position trajectory The controller determines a new command position along the trajectory every sample period until the specified profile is complete Motion is complete when the last position command is sent by the DMC 30000 profiler Note The actual motor motion may not be complete when the p
204. ons in the background These conditions include checking for the occurrence of a limit switch a defined input position error or a command error Automatic monitoring is enabled by inserting a special predefined label in the applications program The pre defined labels are SUBROUTINE DESCRIPTION LIMSWI Limit switch on any axis goes low ININT Input specified by II goes low POSERR Position error exceeds limit specified by ER MCTIME Motion Complete timeout occurred Timeout period set by TW command CMDERR Bad command given AUTO Automatically executes on power up AUTOERR Automatically executes when a checksum is encountered during AUTO start up Check error condition with RS bit 0 for variable checksum error bit 1 for parameter checksum error bit 2 for program checksum error bit 3 for master reset error there should be no program AMPERR Error from internal Galil amplifier For example the POSERR subroutine will automatically be executed when any axis exceeds its position error limit The commands in the POSERR subroutine could decode which axis is in error and take the appropriate action In another example the ININT label could be used to designate an input interrupt subroutine When the specified input occurs the program will be executed automatically NOTE An application program must be running for CMDERR to function Example Limit Switch This program prints a message upon th
205. operation Stepper Motor Operation To configure the DMC 30000 for stepper motor operation the controller requires that the command MT must be given Further instruction for stepper motor connections are discussed in Step 7b Step 2 Install Jumpers on the DMC 30000 Motor Off Jumper The state of the motor upon power up may be selected with the placement of a hardware jumper on the controller With a jumper installed at the MO location the controller will be powered up in the motor off state The SH command will need to be issued in order for the motor to be enabled With no jumper installed the controller will immediately enable the motor upon power up The MO command will need to be issued to turn the motor off unless an error occurs that will turn the motors off The MO jumper is located on JP1 the same block as the Master Reset MR and Upgrade UG jumpers Communications Jumpers for DMC 30000 The baud rate for RS 232 communication can be set with jumpers found on JP1 of the communication board same set of jumpers where MO MR and UG can be found There are two options for baud rate 19200 and 115200 To set the baud rate to the desired value see Table 2 1 below Chapter 2 Getting Started e 13 DMC 30000 User Manual 19 2 BAUD RATE ON OFF 115200 Table 2 1 Baud Rate settings for RS 232 communication Master Reset and Upgrade Jumpers JP1 on the main board contains two jumpers MR and UG The M
206. or to move to a new rotary position which eliminates the position error Since the required accuracy is 0 5 micron the resolution of the linear sensor should preferably be twice finer A linear sensor with a resolution of 0 25 micron allows a position error of 2 counts The dual loop approach requires the resolution of the rotary sensor to be equal or better than that of the linear system Assuming that the pitch of the lead screw is 2 5mm approximately 10 turns per inch a rotary encoder of 2500 lines per turn or 10 000 count per revolution results in a rotary resolution of 0 25 micron This results in equal resolution on both linear and rotary sensors To illustrate the control method assume that the rotary encoder is used as a feedback for the X axis and that the linear sensor is read and stored in the variable LINPOS Further assume that at the start both the position of X and the value of LINPOS are equal to zero Now assume that the objective is to move the linear load to the position of 1000 The first step is to command the X motor to move to the rotary position of 1000 Once it arrives we check the position of the load If for example the load position is 980 counts it implies that a correction of 20 counts must be made However when the X axis is commanded to be at the position of 1000 suppose that the actual position is Chapter 7 Application Programming e 153 DMC 30000 User Manual only 995 implying that X has a position
207. oving in the reverse direction the controller will automatically jump to the limit switch subroutine LIMSWI if such a routine has been written by the user The CN command can be used to change the polarity of the limit switches The OE command can also be configured so that the axis will be disabled upon the activation of a limit switch Software Protection The DMC 30000 provides a programmable error limit as well as encoder failure detection It is recommended that both the position error and encoder failure detection be used when running servo motors with the DMC 30000 Along with position error and encoder failure detection then DMC 30000 has the ability to have programmable software limit Position Error The error limit can be set for any number between 0 and 2147483647 using the ER n command The default value for ER is 16384 Example ER 200 Set X axis error limit for 200 The units of the error limit are quadrature counts The error is the difference between the command position and actual encoder position If the absolute value of the error exceeds the value specified by ER the controller will generate several signals to warn the host system of the error condition These signals include Signal or Function State if Error Occurs POSERR Jumps to automatic excess position error subroutine Error Light Turns on OE Function Shuts motor off if OE1 or OE3 AEN Output Line Switches to Motor Off state DMC 30000 User Man
208. pare The output compare signal is TTL and is available on the I O D Sub connector as CMP Output compare is controlled by the position of the main encoder input on the controller The output can be programmed to produce an active low pulse 510 nsec based on an incremental encoder value or to activate once when an axis position has been passed When setup for a one shot the output will stay low until the OC command is called again For further information see the command OC in the Command Reference Electrical Specifications Output Voltage 0 5 VDC Current Output 20mA Sink Source Error Output The controller provides a TTL signal ERR to indicate a controller error condition When an error condition occurs the ERR signal will go low and the controller LED will go on An error occurs because of one of the following conditions 1 At least one axis has a position error greater than the error limit The error limit is set by using the command ER 2 The reset line on the controller is held low or is being affected by noise 3 There is a failure on the controller and the processor is resetting itself 4 There is a failure with the output IC which drives the error signal The ERR signal is found on the I O A D D Sub connector For additional information see Error Light Red LED in Chapter 9 Troubleshooting Electrical Specifications Output Voltage 0 5 VDC Current Output 20mA Sink Source Chapter 3 Connecting Hardware e 37 DMC 3000
209. ped easily by a touch of a finger Increase the torque level gradually by instructions such as Instruction TL 1 0 TL 9 998 Interpretation Increase torque limit to 1 volt Increase torque limit to maximum 9 998 volts The maximum level of 9 998 volts provides the full output torque Example 6 Interrogation The values of the parameters may be interrogated Some examples Instruction KP MG _KPA Interpretation Return proportional gain Return proportional gain Many other parameters such as KI KD FA can also be interrogated The command reference denotes all commands which can be interrogated Example 7 Operation in the Buffer Mode The instructions may be buffered before execution as shown below Instruction PR 600000 SP 10000 WT 10000 BGA Interpretation Distance Speed Wait 10000 milliseconds before reading the next instruction Start the motion Example 8 Motion Programs with Loops Motion programs may include conditional jumps as shown below Instruction A DP 0 v1 1000 LOOP PA v1 Interpretation Label Define current position as zero Set initial value of vl abel for loop Move A motor vl counts DMC 30000 User Manual Chapter 2 Getting Started e 22 BGA AMA WT 500 TPA vl v1 1000 JP LOOP v1 lt 10001 N E Start A motion After A motion is complete Wait 500 ms Tell position A
210. point specified along the path Example Sine Wave Output The CR command can be used to command sinusoidal motion to the axis The below code and scope output shown in Figure 6 5 show an example of how this can be achieved The frequency and amplitude of the output can be modified by changing the radius in the CR command and by changing the vector speed REM frequency output Hz VS pi 2 r 10 REM ex VS 12000 and r 1590 REM frequency Hz 12000 1 57 1590 10 1 18Hz SinWv vector speed VS12000 1 2 amplitude of sine wave r 1590 VM AN CR r 90 90 CR r 0 720 CR r 0 720 CR r 0 720 VE BGS Continue to create sine wav LOOP CR r 0 720 CR r 0 720 wt JP wt LM lt 30 JP LOOP DMC 30000 User Manual Chapter 6 Programming e 76 Vertical Horizontal d dt Source Scale div _RPA Axis Are w 500 count gt 500 v X HoOaad Trigger Channel Edge Level 0 counts Mode TRIGGERED Stops Figure 6 5 Sine Output with Vector Mode Electronic Gearing This mode allows up the axis to be electronically geared to the Auxiliary encoder or the imaginary axis The master may rotate in both directions and the axis will follow at the specified gear ratio The gear ratio may be changed during motion The GA command specifies the master axes and the GR command specifies the gear ratio for the slave where the ratio may be a number between
211. ponsible for any incidental or consequential damages DMC 30000 Contents e i Contents Contents iii Chapter 1 Overview 1 Ekrene y oH DIGNI onu pL ea ee erry E iL 12 Installms the DNIC SQQUU ss ce sts ccs aa A Eois 13 Chapter 3 Connecting Hardware 25 dolo E E 25 Overview of Optoisolated Inputs eic cocn 25 Optoisolated Input Electrical Information ssssss 28 Optoisolated Qutpults aerias cesta errans 31 ec ora n e A id uiii E 38 External Ampli Ner pee eae aoei 39 Chapter 4 Software Tools and Communication 41 DMC 30000 Contents ii Chapter 5 Command Basics 56 Tutte DER ccc c raa Cus aaa n c addu cb ir tc d 56 Command Syntax ASCI eoa i cata ctr t ea Past ceca 56 Controller Response to DATA aea oce oia sisi tacita stt Interrosatimg the Controller aaiacucci esistenti cac 57 Command Syntax Binary advanced ssssssss 59 Chapter 6 Programming 62 Position Tinting ostiis edi a cantica ee aa iie 66 Lincar Interpolstinm Mode aisi ci etat etie aee 71 Vector Mode Linear and Circular Interpolation Motion 74 Electronic Cone Do casu oues iqunit ues Aui Ova pax i LE Rc Oc TI UCR Bite DEDE fates ia festa au bap d ol c cR oaa ECL uu i 80 Chapter 7 Application Programming 107 ONN
212. puts on the DMC 30000 motion controller The termination resistors are 120 and are placed between the positive and negative differential inputs on the Main A B Index channels as well as the Auxiliary A and B channels as in Figure A 1 MAMB MAAAB MAMB MAAAB Installed whenTRES option is ordered Figure A 1 Encoder Inputs with TRES option Single Ended Encoders Single ended encoders will not operate correctly with the termination resistors installed If a combination of differential encoder inputs with termination resistors and single ended encoders is required on the same controller contact Galil directly DMC 31xxx When ordered with the DMC 31xxx Sin Cos Encoder option termination resistors will be placed on the Aux Encoder inputs By default the DMC 31xxx already has termination resistors on the Main Encoder Inputs Part number ordering example DMC 30010 CARD TRES SER Serial Encoder Interface The SER enables the DMC 30000 controller to interface to BiSS and SSI encoders Electrical specifications can be found in the Multi Function Pins MF section of Chapter 3 Connecting Hardware see the SS and SI commands in the DMC 30000 Command Reference for command information Part number ordering example DMC 30010 CARD SER DMC 31000 Sin Cos and 16 bit Analog Inputs The DMC 31000 provides an interface for 1Vpp Sin Cos Encoder feedback See A4 DMC 31000 for more information Part number ordering example DMC 31011
213. que When operating an amplifier in velocity or voltage mode the voltage output of the controller will be directly related to the velocity of the motor The user is responsible for determining this relationship using the documentation of the motor and amplifier The torque limit can be set to a value that will limit the speed of the motor For example the following command will limit the output of the controller to 1 volt on the X axis Td NOTE Once the correct polarity of the feedback loop has been determined the torque limit should in general be increased to the default value of 9 99 The servo will not operate properly if the torque limit is below the normal operating range See description of TL in the command reference Step D Connect the Motor Command Output to the Controller If the system is run solely by Galil s integrated amplifiers or drivers skip this section the amplifier is already connected to the controller Once the parameters have been set connect the analog motor command signal AO1 to the amplifier input To test the polarity of the feedback command a move with the instruction PR 1000 Position relative 1000 counts BGA Begin motion on A axis When the polarity of the feedback is wrong the motor will attempt to run away The controller should disable the motor when the position error exceeds 2000 counts If the motor runs away the polarity of the loop must be inverted Inverting the Loop Polarity When t
214. r Return f Download Execute Dummy Program Error Routine Read Position Error Print Message I OT rom Error program Dummy Program Jog at High Speed Begin Mo Input Interrupt Jog Begin Motion Loop Input Interrupt Stop Motion Test Restore Jog Begin motion tion on 1 for Input 1 still low Return from interrupt routine to Main Program and do not re enable trippoints Chapter 7 Application Programming e 121 DMC 30000 User Manual Example Motion Complete Timeout BEGIN TW 1000 PA 10000 BGX CX N MCTIM G X fell tj LH short tj N Begin main program Set the time out to 1000 ms Position Absolute command Begin motion Motion Complete trip point End main program Motion Complete Subroutine Send out a message End subroutine This simple program will issue the message X fell short if the X axis does not reach the commanded position within 1 second of the end of the profiled move Example Command Error BEGIN speed 2000 JG speed BGX LOOP JG speed WT100 JP LOOP CMDERR JP DONE JP DONE TC lt gt 6 ED lt gt 2 I MG SPEED TOO HIGH MG TRY AGAIN ZS1 JP BEGIN DONE ZSO N El Begin main program Set variable for speed Begin motion Update Jog speed based upon speed variable End main program Comma
215. r 10 Theory of Operation e 171 DMC 30000 User Manual D z 1030 z 0 95 Z Accordingly the coefficients of the continuous filter are P 50 D 0 98 The filter equation may be written in the continuous equivalent form G s 50 0 98s 098 st 51 The system elements are shown in Figure 10 7 FILTER ZOH DAC AMP MOTOR EN d A 50 0 980s 2000 0 0003 4 200 e p i S 2000 i g ENCODER 318 Figure 10 7 Mathematical model of the control system The open loop transfer function A s is the product of all the elements in the loop A s 390 000 s 51 s2 s 2000 To analyze the system stability determine the crossover frequency c at which A j equals one This can be done by the Bode plot of AG as shown in Figure 10 8 Magnitude 50 200 2000 W rad s 0 1 Figure 10 8 Bode plot of the open loop transfer function For the given example the crossover frequency was computed numerically resulting in 200 rad s DMC 30000 User Manual Chapter 10 Theory of Operation e 172 Next we determine the phase of A s at the crossover frequency A j200 390 000 j200 51 j200 2 j200 2000 a Arg A j200 tan 1200 5 1 180 tan 1 200 2000 a 76 180 6 110 Finally the phase margin PM equals PM 180 a 70 As long as PM is positive the system is stable However for a well damped system PM should be between 30 a
216. r Enable Voltage 5V Max Amplifier Enable Current sink source 20mA Overview The motor command output on the DMC 30010 and DMC 30011 controllers is labeled AOI The DMC 30000 command voltage ranges between 10V and is output on the motor command line AO1 This signal along with GND provides the input to the motor amplifiers The amplifiers must be sized to drive the motors and load For best performance the amplifiers should be configured for a torque current mode of operation with no additional compensation The gain should be set such that a 10 volt input results in the maximum required current The DMC 30000 also provides an amplifier enable signal AEN This signal changes under the following conditions the motor off command MO is given the watchdog timer activates or the OE command Enable Off On Error is set and the position error exceeds the error limit or a limit switch 1s reached see OE command in the Command Reference for more information The amplifier enable signal is 5V active high amp enable HAEN In other words the AEN signal will be high when the controller expects the amplifier to be enabled NOTE Many amplifiers designate the enable input as inhibit Settings for DMC 30012 and DMC 30017 External Stepper Drivers With the controller set to stepper mode MT 2 2 2 5 or 2 5 the step and direction outputs are found on the I O connector list as MF2 and MF4 Details and pinout information can be fou
217. r between 0 and 1 and determine the degree of filtering The maximum value of 1 implies no filtering resulting in trapezoidal velocity profiles Smaller values of the smoothing parameters imply heavier filtering and smoother moves DMC 30000 User Manual Chapter 6 Programming e 100 The following example illustrates the effect of smoothing Figure 6 13 shows the trapezoidal velocity profile and the modified acceleration and velocity Note that the smoothing process results in longer motion time Example Smoothing PR Position 20000 AC Acceleration 100000 DC Deceleration 100000 SP Speed 5000 EU 2 5 Filter for smoothing BG X Begin ACCELERATION D E Oo g VELOCITY 77 O Z ACCELERATION VELOCITY D cC O O E o u O un Q 2 d Figure 6 13 Trapezoidal velocity and smooth velocity profiles Chapter 6 Programming e 101 DMC 30000 User Manual Using the KS Command Step Motor Smoothing When operating with step motors motion smoothing can be accomplished with the command KS The KS command smoothes the frequency of step motor pulses Similar to the command IT this produces a smooth velocity profile The step motor smoothing is specified by the following command KSx where x is an integer from 0 5 to 128 and represents the amount of smoothing The smoothing parameters x y z w and n are numbers between 0 5 and 128 and determine the degree of filtering The
218. r s command reference for further important information Example A Simple Adding Function Add JS SUM 1 2 3 4 5 6 7 8 MG JS EN Chapter 7 Application Programming e 125 DMC 30000 User Manual SUM EN at bt ct dt et ft gt h Executed program from programl dmc 36 0000 Example Variable and an Important Note about Creating Global Variables Var value 5 global 8 JS SUM amp value 1 2 3 4 5 6 7 MG value MG _JS EN SUM a b c d e f g h global EN a Executed program from program2 dmc 36 0000 36 0000 Example Working with Arrays Array DM speeds 8 DM other 256 JS zeroAry speeds 0 JS zeroAry other 0 EN zeroAry a b 0 p b 1 JP zeroAry b a 1 EN Example Abstracting Axes Axes JS runMove 0 10000 1000 100000 100000 MG Position JS EN runMove a a PR a b SP a c AC a d DMC 30000 User Manual Chapter 7 Application Programming 126 DC a e BG a MC a EN TP a Example Local Scope Local JS POWER 2 2 MG JS JS POWER 2 16 MG JS JS POWER 2 8 MG JS POWER c 1 F b 0 EN 1 ENDIF F b lt 0 d 1 b ABS b ELSE d 0 ENDIF PWRHLPR C erta b b 1 JP PWRHLPR b gt 0 IF d 1 c 1 c ENDIF EN c Executed program from programl dmc 4 0000 65536 0000 0 0039 General Program Flow and Timing information This section will discuss general programming flow and timing informat
219. rate or time interval may be specified Recording can done as a one time event or as a circular continuous recording Command Summary Automatic Data Capture Command Description RA n m o p Selects up to eight arrays for data capture The arrays must be defined with the DM command RD typel type2 type3 type4 Selects the type of data to be recorded where typel type2 type3 and type 4 represent the various types of data see table below The order of data type is important and corresponds with the order of n m o p arrays in the RA command RC n m The RC command begins data collection Sets data capture time interval where n is an integer between 1 and 8 and designates 2 msec between data m is optional and specifies the number of elements to be captured If m is not defined the number of elements defaults to the smallest array defined by DM When m is a negative number the recording is done continuously in a circular manner _RD is the recording pointer and indicates the address of the next array element n 0 stops recording RC Returns a 0 or 1 where 0 denotes not recording 1 specifies recording in progress Chapter 7 Application Programming e 137 DMC 30000 User Manual Data Types for Recording Data type Description TIME Controller time as reported by the TIME command _AFA Analog input _DEA 2 encoder position dual encoder NO Status bits OP Output _RL
220. re that the IP address is correct please contact your system administrator before connecting the I O board to the Ethernet network The third method for setting an IP address is to send the IA command through the RS 232 port Note The IA command is only valid if DHO is set The IP address may be entered as a 4 byte number delimited by commas industry standard uses periods or a signed 32 bit number e g IA 124 51 29 31 or IA 2083724575 Type in BN to save the IP address to the DMC 30000 non volatile memory NOTE Galil strongly recommends that the IP address selected is not one that can be accessed across the Gateway The Gateway is an application that controls communication between an internal network and the outside world The third level of Ethernet addressing is the UDP or TCP port number The Galil board does not require a specific port number The port number is established by the client or master each time it connects to the DMC 30000 board Typical port numbers for applications are Port 23 Telnet Port 502 Modbus Communicating with Multiple Devices The DMC 30000 is capable of supporting multiple masters and slaves The masters may be multiple PC s that send commands to the controller The slaves are typically peripheral I O devices that recetve commands from the controller NOTE The term Master is equivalent to the internet client The term Slave is equivalent to the internet server An Ethernet handle is a co
221. return to the main code The drive is a full step drive with a 1 8 step motor and 4000 count rev encoder OOP SETUP OE1 KS16 MT 2 YA2 YB200 YC4000 SHX WT100 MOTION SP512 PR1000 BGX LOOP JP L Set the profiler to stop axis upon error Set step smoothing Enable Motor resolution Encoder resolution Motor type set to stepper Step resolution of the drive full steps per revolution counts per revolution axis Allow slight settle time Perform motion Set the speed Prepare mode of motion Begin motion Keep thread zero alive for POSERR to run in DMC 30000 User Manual Chapter 6 Programming e 96 REM When error occurs the axis will stop due to OE1 In REM fPOSERR query the status YS and the error QS correct REM and return to the main code POSERR WT100 spsave _SP X JP RETURN _YSX lt gt 2 SP64 MG ERROR OSX YRX _QSX MCX MG CORRECTED WT100 RETURN SPX spsave R E 0 Example Friction Correction Automatic subroutine is called when YS 2 Wait helps user s the correction Save current speed setting Return to thread zero if invalid error Set slow speed setting for correction Else error is valid use QS for correction Wait for motion to complete ERROR NOW QSX Wait helps user s the correction Return the speed to previous set
222. rocedure for setting the notch filter identify the resonance frequency and set NF to the same value Set NB to about one half of NF and set NZ to a low value between zero and 5 ZOH The ZOH or zero order hold represents the effect of the sampling process where the motor command is updated once per sampling period The effect of the ZOH can be modeled by the transfer function H s 1 1 sT 2 If the sampling period is T 0 001 for example H s becomes H s 2000 s 2000 However in most applications H s may be approximated as one This completes the modeling of the system elements Next we discuss the system analysis System Analysis To analyze the system we start with a block diagram model of the system elements The analysis procedure is illustrated in terms of the following example Consider a position control system with the DMC 30000 controller and the following parameters K 0 1 Nm A Torque constant J22 10 kg m System moment of inertia R 2 Q Motor resistance K 4 Amp Volt Current amplifier gain KP 12 5 Digital filter gain KD 245 Digital filter zero KI 0 No integrator N 500 Counts rev Encoder line density T 1 ms Sample period The transfer function of the system elements are Motor M s P I KyJs 500 s rad A Amp K 4 Amp V DAC K 0 0003 V count Encoder K 4N 27 318 count rad ZOH 2000 s 2000 Digital Filter KP 12 5 KD 245 T 0 001 Therefore Chapte
223. rofile has been completed however the next motion command may be specified The Begin BG command can be issued for all axes either simultaneously or independently XYZ or W axis specifiers are required to select the axes for motion When no axes are specified this causes motion to begin on all axes The speed SP and the acceleration AC can be changed at any time during motion however the deceleration DC and position PR or PA cannot be changed until motion is complete Remember motion is complete when the profiler is finished not when the actual motor is in position The Stop command ST can be issued at any time to decelerate the motor to a stop before it reaches its final position An incremental position movement IP may be specified during motion as long as the additional move is in the same direction Here the user specifies the desired position increment n The new target is equal to the old target plus the increment n Upon receiving the IP command a revised profile will be generated for motion towards the Chapter 6 Programming e 63 DMC 30000 User Manual new end position The IP command does not require a begin Note If the motor is not moving the IP command is equivalent to the PR and BG command combination Command Summary Independent Axis PRx PA x SP x ACx DCx BGA STX IP x IT x AMX MCA COMMAND DESCRIPTION Specifies relative distance Specifies absolute position Specifies slew sp
224. roller Parameters Variable values may be assigned to controller parameters such as SP or PR PR v1 Assign vl to PR command SP vS 2000 Assign vS 2000 to SP command Displaying the value of variables at the terminal Variables may be sent to the screen using the format variable For example vl returns the value of the variable v1 Example Using Variables for Joystick The example below reads the voltage of an X Y joystick and assigns it to variables vX and vY to drive the motors at proportional velocities where 10 Volts 3000 rpm 200000 c sec Speed Analog input 200000 10 20000 JOYSTI Label K JG 0 Set in Jog mode BGX Begin Motion ATO Set AT time reference LOOP Loop VX AN Read joystick X 1 20000 JG vX Jog at variable vX AT 4 Wait 4ms from last time reference creates a deterministic loop time JP LOOP Repeat EN End Operands Operands allow motion or status parameters of the DMC 30000 to be incorporated into programmable variables and expressions Most DMC commands have an equivalent operand which are designated by adding an underscore _ prior to the DMC 30000 command The command reference indicates which commands have an associated operand Status commands such as Tell Position return actual values whereas action commands such as KP or SP return the values in the DMC 30000 registers The axis designation is required following the command Examples of Internal Variables posX TPX As
225. rrors with n 0 2 or 3 The command will return an eight bit number representing specific conditions TAO will return errors with regard to under voltage over voltage over current and over temperature TA2 will monitor if the amplifier current exceeds the continuous setting and TA3 will return if the ELO input has been triggered DMC 30000 User Manual A3 DMC 30017 e 210 The user also has the option to include the special label ZAMPERR in their program to handle amplifier errors As long as a program is executing in thread zero and the AMPERR label is included when an error is detected the program will jump to the label and execute the user defined routine Note that the TA command is a monitoring function only and does not generate an error condition See the TA command for detailed information on bit status during error conditions See the the DMC 30012 Error Monitoring and Protection section for information regarding functionality of the specific types of protection on the DMC 30017 A3 DMC 30017 211 DMC 30000 User Manual A4 DMC 31000 Description The DMC 31000 is an option that allows for the controller to accept sinusoidal encoder signals instead of digital encoder signals The DMC 31000 provides interpolation of up to four 1 volt differential sinusoidal encoders resulting in a higher position resolution The AFn command selects sinusoidal interpolation where n specifies 2 interpolation counts per encoder c
226. rtant Use the RI command not EN to return from the ININT subroutine Example Input Interrupt Instruction Interpretation A Label A DMC 30000 User Manual Chapter 7 Application Programming e 148 TI Enable input 1 for interrupt function JG 30000 20000 Set speeds on A and B axes BG AB Begin motion on A and B axes B Label 4B TP AB Report A and B axes positions VT 1000 lait 1000 milliseconds JP 4B Jump to 4B EN End of program ININT Interrupt subroutine G Interrupt has Displays the message occurred ST AB Stops motion on A and B axes LOOP JP Loop until Interrupt cleared LOOP IN 1 0 JG 15000 10000 Specify new speeds VT 300 lait 300 milliseconds BG AB Begin motion on A and B axes RI Return from Interrupt subroutine Jumping back to main program with ININT To jump back to the main program using the JP command the RI command must be issued in a subroutine and then the ZS command must be issued prior to the JP command See Application Note 2418 for more information http www galilmc com support appnotes optima note2418 pdf Analog Inputs The DMC 30000 provides two analog inputs The value of these inputs in volts may be read using the AN n function where n is the analog input 1 through 2 The resolution of the Analog to Digital conversion is 12 bits Analog inputs are useful for reading special sensors such as temperature tens
227. rushed Motor Operation The AMP 43540 can be setup to run brushed motors by setting the BR command to 1 for a particular axis Wire the motor power leads to phases A and C on the motor power connector Do not set BA BM or use the BX command for any axis that is driving a brushed motor ELO Input If the ELO input on the controller is triggered the amplifier will be shut down at a hardware level the motors will be essentially in a Motor Off MO state TA3 will return a 3 and the AMPERR routine will run when the ELO input is triggered To recover from an ELO an MO then SH must be issued or the controller must be reset It is recommended that OE1 be used for all axes when the ELO is used in an application Error Monitoring and Protection The amplifier is protected against over voltage under voltage over temperature and over current for brush and brushless operation The controller will monitor the error conditions and respond as programmed in the application The errors are monitored via the TA command TA n may be used to monitor the errors with n 0 2 or 3 The command will return an eight bit number representing specific conditions TAO will return errors with regard to under voltage over voltage over current and over temperature TA2 will monitor if the amplifier current exceeds the continuous setting and TA3 will return if the ELO input has been triggered The user also has the option to include the special label ZAMPERR in t
228. rview of Part Numbers The below table shows the main categories of the DMC 30000 controller family Other options and modifications are available see Ordering Options for the DMC 30000 and the DMC 30000 part number generator http www galilmc com products dmc 300xx part number php for more information Controller Model Description DMC 30010 Card Single Axis Controller card Requires 5V 12VDC Triple Supply MC 30011 Card Single Axis Controller card with DC to DC D DMC 30010 Box Single Axis Controller box Requires 5V 12VDC Triple Supply DMC 30011 Box Single Axis Controller box with DC to DC Single Axis Controller box with internal 800W sine drive with 20 80VDC Input DMC 30012 Box See A1 DMC 30012 for Amplifier Specifications Single Axis Controller box with internal 1 4A stepper driver DMC 30016 B d See A2 DMC 30016 for Driver Specifications Single Axis Controller box with internal 6Amp phase 256 microstepping DMC 30017 Box stepper driver or internal 800W side drive with 20 80VDC Input See A3 DMC 30017 for Driver Specifications Overview of Motor Types The DMC 30000 can provide the following types of motor control 1 Standard servo motors with 10 volt command signals 2 Step motors with step and direction signals 3 Other actuators such as hydraulics and ceramic motors For more information contact Galil The user can configure each axis for a
229. ry with encoder rotation there are three possibilities 1 The encoder connections are incorrect check the wiring as necessary 2 The encoder has failed using an oscilloscope observe the encoder signals Verify that both channels A and B have a peak magnitude between 5 and 12 volts Note that if only one encoder channel fails the position reporting varies by one count only If the encoder failed replace the encoder If you cannot observe the encoder signals try a different encoder 3 There is a hardware failure in the controller connect the same encoder to a different axis If the problem disappears you may have a hardware failure Consult the factory for help Step 7a Connect Standard Servo Motors The following discussion applies to connecting the DMC 30000 controller to standard servo motors The motor and the amplifier may be configured in the torque or the velocity mode In the torque mode the amplifier gain should be such that a 10 volt signal generates the maximum required current In the velocity mode a command signal of 10 volts should run the motor at the maximum required speed For Galil amplifiers see Al DMC 30012 Step A Check the Polarity of the Feedback Loop Chapter 2 Getting Started e 17 DMC 30000 User Manual It is assumed that the motor and amplifier are connected together and that the encoder is operating correct Step 6 Make Connections to Amplifier and Encoder Before connecting the motor amplifiers t
230. s The resulting interpolated points include the position 12 at 1 msec position 24 at 2 msec etc The programmed commands to specify the above example are A CMX Specifies X axis for contour mode CD 48 2 Specifies first position increment and time interval 2 ms CD 24023 Specifies second position increment and time interval 2 ms CD 48 4 Specifies the third position increment and time interval 2 ms CD 020 End Contour buffer Wait JP Wait Wait until path is done _CM lt gt 511 EN POSITION COUNTS 336 ee eee eee ee ee l LM T 240 192 96 di oon TIME ms J S 4 8 12 16 20 24 28 SEGMENT 1 SEGMENT 2 SEGMENT 3 Figure 6 11 The Required Trajectory Additional Commands _CM gives the amount of space available in the contour buffer 511 maximum Zero parameters for DT followed by zero parameters for CD will exit the contour mode If no new data record is found and the controller is still in the contour mode the controller waits for new data No new motion commands are generated while waiting If bad data is received the controller responds with a Specifying a 1 for the DT or as the time interval in the CD command will pause the contour buffer Issuing the CM command will clear the contour buffer Command Summary Contour Mode COMMAND DESCRIPTION Chapter 6 Programming e 87 DMC 30000 User Manual Specifies contour mode Specifi
231. s less than 10 For greater programming flexibility the DMC 30000 provides user defined variables arrays and arithmetic functions For example with a cut to length operation the length can be specified as a variable in a program which the operator can change as necessary The following sections in this chapter discuss all aspects of creating applications programs The program memory size is 40 characters x 1000 lines Program Format A DMC 30000 program consists of DMC instructions combined to solve a machine control application Action instructions such as starting and stopping motion are combined with Program Flow instructions to form the complete program Program Flow instructions evaluate real time conditions such as elapsed time or motion complete and alter program flow accordingly Each DMC 30000 instruction in a program must be separated by a delimiter Valid delimiters are the semicolon or carriage return The semicolon is used to separate multiple instructions on a single program line where the maximum number of instructions on a line is limited by 80 characters A carriage return enters the final command on a program line Using Labels in Programs All DMC 30000 programs must begin with a label and end with an End EN statement Labels start with the pound sign followed by a maximum of seven characters The first character must be a letter after that numbers are permitted Spaces are not permitted in a label Th
232. s low by using the ALX command Example VI _ALX returns the state of the latch into V1 V1 is 1 if the latch has not occurred 3 After the latch has occurred read the captured position with the RLX command or RLX Chapter 6 Programming e 105 DMC 30000 User Manual NOTE The latch must be re armed after each latching event Example Latch Latch program JG Jog 5000 BG Begin motion AL A Arm Latch Wait Wait label for loop JP Jump to Wait label if latch has not occurred Wait ALA 1 Result Set value of variable Result equal to the report RLA position G Print result Result EN End Real Time Clock The DMC 30000 is equipped with a real time clock feature The real time clock provides true time in seconds minutes and hours The RT command provides a method to set the time and operands to return the current time The default real time clock does not persist through a power cycle and must be set whenever power is restored The DMC 30000 can be ordered with a clock upgrade RTC including a higher precision clock than the default and a battery backup for the time hardware All hardware is within the standard sheet metal footprint The RTC clock will continue to run when power is removed from the cotnroller The RTC option also provides a calendar function including year month of year day of month and day of week This feature can be set and queried through the RY command Both versions of the real
233. signs value from Tell Position X to the variable posX DMC 30000 User Manual Chapter 7 Application Programming e 134 deriv KDX Assigns value from KDX multiplied by two to 2 variable deriv JP Jump to LOOP if the position error of X is LOOP TEX gt 5 greater than 5 JP Jump to ERROR if the error code equals 1 ERROR TC 1 Operands can be used in an expression and assigned to a programmable variable but they cannot be assigned a value For example KDX 2 is invalid Special Operands Keywords The DMC 30000 provides a few additional operands which give access to internal variables that are not accessible by standard DMC 30000 commands Keyword Function _BGA Returns a 1 if motion on the axis otherwise returns 0 _BN Returns serial of the board _DA Returns the number of arrays available _DL Returns the number of available labels for programming _DM Returns the available array memory _HMA Returns status of Home Switch equals 0 or 1 _LFA Returns status of Forward Limit switch input equals 0 or 1 _LRA Returns status of Reverse Limit switch input equals 0 or 1 _UL Returns the number of available variables TIME Free Running Real Time Clock off by 2 4 Resets with power on Note TIME does not use an underscore character _ as other keywords These keywords have corresponding commands while the keywords LF LR and TIME do not have any associated commands All
234. sition of 1000 and returns it to zero on increments of half the distance Note _TPA is an internal variable which returns the value of the A position DMC 30000 User Manual Chapter 2 Getting Started e 24 Chapter 3 Connecting Hardware Overview The DMC 30000 provides optoisolated digital inputs for forward limit reverse limit home and abort signals The controller also has 8 optoisolated uncommitted inputs 4 optoisolated outputs 2 analog inputs 0 5V 12 bit ADC and 1 uncommitted analog output 10V 16 bit DAC This chapter describes the inputs and outputs and their proper connection Pinout Information can be found in the Connectors for DMC 30000 Pin outs section in the Appendices Overview of Optoisolated Inputs Limit Switch Input The forward limit switch FLS inhibits motion in the forward direction immediately upon activation of the switch The reverse limit switch RLS inhibits motion in the reverse direction immediately upon activation of the switch If a limit switch is activated during motion the controller will make a decelerated stop using the deceleration rate previously set with the SD command The motor will remain on in a servo state after the limit switch has been activated and will hold motor position The controller can be configured to disable the axis upon the activation of a limit switch see the OE command in the command reference for further detail When a forward or reverse limit switch is a
235. speed of A axis motion Label for Loop ove to absolu Begin Motion o Wait for motio ove to absolu Begin Motion o Wait for motio te position 10000 n A axis n to be complete te position 0 n A axis n to be complete Continually loop to make back and forth motion End main program Interrupt Routine Check for S stop motion Check for P pause motion Check for R resume motion Do nothing Routine for stopping motion Stop motion on A axis Zero program Stack End Program Routine for pausing motion Save current speed setting of A axis motion Set speed of A axis to zero allows for pause Re enable trip point and communication interrupt Routine for resuming motion Set speed on A axis to original speed Re enable trip point and communication interrupt For additional information see section on Using Communication Interrupt Example Ethernet Communication Error This simple program executes in the DMC 30000 and indicates via the serial port when a communication handle fails By monitoring the serial port the user can re establish communication if needed fLOOP Simple program loop DMC 30000 User Manual Chapter 7 Application Programming e 124 TCPERR Ethernet communication error auto routine MG P1 IA4 Send message to serial port indicating which handle did not receive proper acknowledgment R Gl Example Amplifier Error The progr
236. struction TTA Tell torque on A reports the level of the output signal It will show a non zero value that is below the friction level Once you have established that you have closed the loop with the correct polarity you can move on to the compensation phase servo system tuning to adjust the PID filter parameters KP KD and KI It is necessary to accurately tune your servo system to ensure fidelity of position and minimize motion oscillation as described in the next section Step 7b Connect Step Motors In Stepper Motor operation the pulse output signal has a 50 duty cycle Step motors operate open loop and do not require encoder feedback When a stepper is used the auxiliary encoder for the corresponding axis is unavailable for an external connection If an encoder is used for position feedback connect the encoder to the main encoder input corresponding to that axis The commanded position of the stepper can be interrogated with RP or TD The encoder position can be interrogated with TP For connecting the stepper motor with the DMC 30016 and DMC 30017 see A2 DMC 30016 and A3 DMC 30017 respectively If encoders are available on the stepper motor Galil s Stepper Position Maintenance Mode may be used for automatic monitoring and correction of the stepper position See Stepper Position Maintenance Mode SPM in Chapter 6 Programming for more information The frequency of the step motor pulses can be smoothed with the filter parame
237. t MR Master Reset enable Returns controller to factory default settings and erases FLASH Requires power on or RESET to be activated Baud Rate Jumper Settings 19 2 BAUD RATE ON OFF 115200 Recommended DMC 30000 User Manual Appendices e 192 Signal Descriptions for DMC 30000 Outputs Inputs Analog Outputs 1 2 Motor Command Amplifier Enable MF2 Step Output MF4 Direction Error Output 1 Output 4 10 Volt range signal for driving amplifier or for a general purpose analog output In servo mode motor command output is updated at the controller sample rate In the motor off mode this output is held at the OF command level Signal to disable and enable an amplifier Amp Enable goes low on Abort and OE1 5V HAEN onl For stepper motors When MT is set to 2 2 2 5 or 2 5 the MF2 pins produces a series of pulses for input to a step motor driver The pulses may either be low or high The pulse width is 50 With an internal amplifier BR 1 must be set as well as MT For stepper motors When MT is set to 2 2 2 5 or 2 5 the MF2 pins produces the direction output for stepper motors With an internal amplifier BR 1 must be set as well as MT The signal goes low when the position error on any axis exceeds the value specified by the error limit command ER The optically isolated outputs are uncommitted and may be designated by the user to tr
238. tage power input connections If the amp is enabled when the motor connector is connected or disconnected damage to the amplifier can occur Galil recommends powering the controller and amplifier down before changing the connector and breaking the AC side of the power supply connection in order to power down the amplifier The ELO input may be used to cut power to the motors in an Emergency Stop or Abort situation Figure A2 1 DMC 30016 DMC 30000 User Manual A2 DMC 30016 e 204 Electrical Specifications DC Supply Voltage Max Current per axis Maximum Step Frequency Motor Type Mating Connectors 12 30 VDC In order to run the DMC 30016 in the range of 12 20 VDC the ISCNTL Isolate Controller Power option must be ordered 1 4 Amps Phase Amps Selectable with AG command 3 MHz Bipolar 2 Phase POWER A B C D 4 pin Motor Power Connectors On Board Connector 6 pin Molex Mini Fit Jr MOLEX 39 31 0060 MOLEX 44476 3112 4 pin Molex Mini Fit Jr MOLEX 39 31 0040 Terminal Pins MOLEX 44476 3112 For mating connectors see http www molex com Motor Connector Power Connector Power Connector Pin Number Connection DC Power Supply Ground VS DC Power 1 B 2 B 3 A 4 A3 Note The stepper motor wiring on the DMC 30016 is not compatible with other Galil stepper drivers such as the SDM 44140 and SDM 44040
239. ter KS The KS parameter has a range between 0 5 and 128 where 128 implies the largest amount of smoothing See Command Reference regarding KS The DMC 30000 profiler commands the step motor amplifier All DMC 30000 motion commands apply such as PR PA VP CR and JG The acceleration deceleration slew speed and smoothing are also used Since step motors run open loop the PID filter does not function To connect step motors with the DMC 30000 you must follow this procedure If you have a Galil integrated stepper driver DMC 30016 and DMC 30017 skip Step A the step and direction lines are already connected to the driver Step A Connect step and direction signals from controller to motor amplifier The Multi Function pins are used for the step and direction outputs See the Multi Function Pins MF section in Chapter 3 Connecting Hardware for more information Step B Configure DMC 30000 for motor type using MT command You can configure the DMC 30000 for active high or active low pulses Use the command MT 2 or 2 5 for active low step motor pulses and MT 2 or 2 5 for active high step motor pulses See description of the MT command in the Command Reference Chapter 2 Getting Started e 19 DMC 30000 User Manual Note For the DMC 30012 and DMC 30017 BR 1 must be set prior to setting MT2 BR 1 configures the controller for external amplifier control Step 8 Tune the Servo System Adjusting the tuning parameters is required when
240. tes the power input for the controller from the power input of the amplifiers With this option the power is brought in through the 2 pin Molex connector on the side of the controller as shown in the Power Wiring Diagrams for the DMC 30000 section of the Appendix This option is not valid when Galil amplifies are not ordered with the DMC 30000 Part number ordering example DMC 30012 BOX ISCNTL SR90 SR 49000 Shunt Regulator Option The SR 49000 is a shunt regulator for the DMC 30000 controller and internal amplifiers This option 1s highly recommended for any application where there is a large inertial load or a gravitational load The SR 49000 is installed inside the box of the DMC 30000 controller The Shunt Regulator activates when the voltage supplied to the amplifier rises above 90V When activated the power from the power supply is dissipated through a 5Q 20W power resistor The SR 49000 can be ordered to activate at different voltages 33V 66V and 90V are all standard ordering options and can be ordered as SR33 SR66 and SR90 respectively Part number ordering example DMC 30012 BOX SR90 Miscellaneous Options RTC Real Time Clock The DMC 30000 provides a real time clock feature The RTC option provides an extended feature set For details see the Real Time Clock section in Chapter 6 Real time clock DMC 30000 DMC 30000 RTC RT providing Hours Minutes Seconds Yes RY providing Year Month of year Day of mon
241. th Day of week Yes Settable via TIME protocol server IH and RO commands Yes Clock persists through DMC power loss Yes C No power clock battery life N A week Part number ordering example DMC 30010 BOX RTC DMC 30000 User Manual Appendices e 182 Power Connectors for the DMC 30000 Overview The DMC 30000 uses different connectors depending upon the type of controller used The following section details the part numbers used on the controller for the different ordering options Table A 1 Connector Part Numbers details the connector part numbers used on the DMC 30000 series controllers Table A 2 Connectors listed by DMC 30000 part number lists the on board connectors for the different DMC 30000 controller options On Board Connector Common Mating Connectors Crimp Part Number Type Molex 39 31 0040 Molex 39 01 2045 Molex 44476 3112 4 Position Molex 39 31 0020 Molex 39 01 2025 Molex 44476 3112 2 Position Molex 50 57 9402 Molex 16 02 0103 i5 Adam Tech CDH 02 Adam Tech CDH C B Bulk vu TE Connectivity 5 104362 1 Oupiin 4077 02HB 1k Min Adam Tech CDH C R Reel 2 Position Oupiin 4077 PIN T T15K 15k Reel Molex 50 57 9404 Molex 16 02 0103 ES Adam Tech CDH 04 Adam Tech CDH C B Bulk i TE Connectivity 5 104362 3 Oupiin 4077 04HB 1k Min Adam Tech CDH C R Reel A Eostin Oupiin 4077 PIN T T15K 15k Reel Table A 1 Connector Part Numbers DMC 30000 Part Numb
242. th and will therefor read noise that comes in on the analog input Often when an analog input is used in a motion control system but not for closed loop control the higher bandwidth is not required In this case a simple digital filter may be applied to the analog input and the output of the filter can be used for in the motion control application This example shows how to apply a simple single pole low pass digital filter to an analog input This code is commonly run in a separate thread XQ filt 1 example of executing in thread 1 last filt REM anl filtered output Use this instead of AN 1 anl AN 1 set initial value REM k1 k2 1 this condition must be met REM use division of m 2 n for elimination of round off REM increase kl less filtering REM increase k2 more filtering k1232 64 k2 232 64 AT0 set initial time reference loop REM calculate filtered output and then way 2 samples from REM time reference last AT 2 1 or ATO J D loop anl k1 AN 1 k2 anl1 AT 2 1 DMC 30000 User Manual Chapter 7 Application Programming e 150 Example Applications Wire Cutter An operator activates a start switch This causes a motor to advance the wire a distance of 10 When the motion stops the controller generates an output signal which activates the cutter Allowing 100 ms for the cutting completes the cycle Suppose that the motor drives the wire by a roll
243. the amplifier will be disabled The amplifier will not be re enabled until there is no longer an over current draw and then either SH command has been sent or the controller is reset Since the DMC 30012 is a trans conductance amplifier the amplifier will never go into this mode during normal operation The amplifier will be shut down regardless of the setting of OE or the presence of the ZAMPERR routine NOTE If this fault occurs it is indicative of a problem at the system level An over current fault is usually due to a short across the motor leads or a short from a motor lead to ground Over Temperature Protection The amplifier is also equipped with over temperature protection If the average heat sink temperature rises above 80 C then the amplifier will be disabled The over temperature condition will trigger the AMPERR routine if included in the program on the controller The amplifier will not be re enabled until the temperature drops below 80 C and then either an SH command is sent to the controller or the controller is reset RS command or power cycle A1 DMC 30012 e 203 DMC 30000 User Manual A2 DMC 30016 Description The DMC 30016 contains a drive for operating two phase bipolar step motors The DMC 30016 requires a single 12 30 VDC input The unit is user configurable for 0 5 to 1 4 Amps per phase and for full step half step 1 4 step or 1 16 step Note Do not hot swap the motor power or supply vol
244. the endpoint without completing the previous move The PA command is typically used to command the axis to a specific absolute position For some applications such as tracking an object the controller must proceed towards a target and have the ability to change the target during the move In a tracking application this could occur at any time during the move or at regularly scheduled intervals For example if a robot was designed to follow a moving object at a specified distance and the path of the object wasn t known the robot would be required to constantly monitor the motion of the object that it was following To remain within a specified distance it would also need to constantly update the position target it is moving towards Galil motion controllers support this type of motion with the position tracking mode This mode will allow scheduled or random updates to the current position target on the fly Based on the new target the controller will either continue in the direction it is heading change the direction it is moving or decelerate to a stop The position tracking mode shouldn t be confused with the contour mode The contour mode allows the user to generate custom profiles by updating the reference position at a specific time rate In this mode the position can be updated randomly or at a fixed time rate but the velocity profile will always be trapezoidal with the parameters specified by AC DC and SP Updating the position target at a speci
245. tially the motor will go in the reverse direction first direction of decreasing encoder counts If HMX reads 0 initially the motor will go in the forward direction first CN is the command used to define the polarity of the home input With CN 1 the default value a normally open switch will make HMX read 1 initially and a normally closed switch will make HMxX read zero Furthermore with CN 1 a normally open switch will make HMxX read 0 initially and a normally closed switch will make HMX read 1 Therefore the CN command will need to be configured properly to ensure the correct direction of motion in the home sequence Upon detecting the home switch changing state the motor begins decelerating to a stop NOTE The direction of motion for the FE command also follows these rules for the state of the home input Stage 2 The motor then traverses at HV counts sec in the opposite direction of Stage 1 until the home switch toggles again If Stage 3 is in the opposite direction of Stage 2 the motor will stop immediately at this point and change direction If Stage 2 is in the same direction as Stage 3 the motor will never stop but will smoothly continue into Stage 3 Stage 3 The motor traverses forward at HV counts sec until the encoder index pulse is detected The motor then decelerates to a stop and goes back to the index The DMC 30000 defines the home position as the position at which the index was detected and sets the encoder readi
246. ting Return from POSERR The following example illustrates how the SPM mode can be useful in correcting for X axis friction after each move when conducting a reciprocating motion The drive is a 1 256th microstepping drive with a 1 8 step motor and 4000 count rev encoder SETUP KS16 MT 2 YA256 YB200 YC4000 SHX WT50 YSL MOTION SP16384 PR10000 BGX MCX JS CORRECT MOTION2 Set the profiler to continue upon error Set step smoothing Motor type set to stepper Step resolution of the microstepping drive Motor resolution full steps per revolution Encoder resolution counts per revolution Enable axis Allow slight settle time Enable SPM mode Perform motion Set the speed Prepare mode of motion Begin motion Move to correction Chapter 6 Programming e 97 DMC 30000 User Manual SP16384 PR 10000 BGX MCX JS CORRECT JP MOTION CORRECT Spx SPX LOOP SP2048 WT100 JPFfEND GABS OSX 10 YRX QSX MCX WT100 JP LOOP iral z Set the speed Prepare mode of motion Begin motion Move to correction Correction code Save speed value Set a new slow correction speed Stabilize End correction if error is within defined toleranc Correction move Stabilize Keep correcting until error is within tolerance End CORRECT subroutine returning to code Dual Loop Auxiliary Encoder The DMC 30000 provides
247. tion The DMC 30000 can be ordered with the auxiliary port configured for RS 422 communication RS 422 communication is a differentially driven serial communication protocol that should be used when long distance serial communication is required in an application For more information see RS 422 Serial Port Serial Communication in the in Appendix Ethernet Configuration Communication Protocols The Ethernet is a local area network through which information is transferred in units known as packets Communication protocols are necessary to dictate how these packets are sent and received The DMC 30000 supports two industry standard protocols TCP IP and UDP IP The controller will automatically respond in the format in which it is contacted TCP IP is a connection protocol The master or client connects to the slave or server through a series of packet handshakes in order to begin communicating Each packet sent is acknowledged when received If no acknowledgment is received the information is assumed lost and is resent Unlike TCP IP UDP IP does not require a connection If information is lost the controller does not return a colon or question mark Because UDP does not provide for lost information the sender must re send the packet It is recommended that the motion control network containing the controller and any other related devices be placed on a closed network If this recommendation is followed UDP IP communicati
248. tion whether rotary or linear is measured by a sensor The resulting signal called position feedback is returned to the controller for closing the loop The following section describes the operation in a detailed mathematical form including modeling analysis and design DMC 30000 User Manual Chapter 10 Theory of Operation e 166 System Modeling The elements of a servo system include the motor driver encoder and the controller These elements are shown in Figure 10 4 The mathematical model of the various components is given below CONTROLLER DIGITAL Y ETERS lp hee eas DAC AMP MOTOR ENCODER Figure 10 4 Functional Elements of a Motion Control System Motor Amplifier The motor amplifier may be configured in three modes 1 Voltage Drive 2 Current Drive 3 Velocity Loop The operation and modeling in the three modes is as follows Voltage Drive The amplifier is a voltage source with a gain of K V V The transfer function relating the input voltage V to the motor position P is P V K K S ST ST 1 where T RJ K s and T L R s and the motor parameters and units are K Torque constant Nm A R Armature Resistance Q J Combined inertia of motor and load kg m L Armature Inductance H When the motor parameters are given in English units it is necessary to convert the quantities to MKS units For e
249. tion that determines the Ethernet hardware address of a device at a specific IP address BOOT P is an application that determines which devices on the network do not have an IP address and assigns the IP address you have chosen to it Ping is used to check the communication between the device at a specific IP address and the host computer The DMC 30000 can communicate with a host computer through any application that can send TCP IP or UDP IP packets A good example of this is Telnet a utility that comes with most Windows systems Chapter 4 Software Tools and Communication e 45 DMC 30000 User Manual Modbus An additional protocol layer is available for speaking to I O devices Modbus is an RS 485 protocol that packages information in binary packets that are sent as part of a TCP IP packet In this protocol each slave has a 1 byte slave address The DMC 30000 can use a specific slave address or default to the handle number The port number for Modbus is 502 The Modbus protocol has a set of commands called function codes The DMC 30000 supports the 10 major function codes Read Coil Status Read Bits Read Input Status Read Bits Read Holding Registers Read Words Read Input Registers Read Words Force Single Coil Write One Bit Preset Single Register Write One Word Read Exception Status Read Error Code lis 0 Force Multiple Coils Write Multiple Bits Preset Multiple Registers Write Words Report Slave
250. tional Elements The DMC 30000 circuitry can be divided into the following functional groups as shown in Figure 1 1 and discussed below ISOLATED LIMITS AND HOME INPUTS ETHERNET RISC BASED HIGH SPEED MAIN ENCODER MICROCOMPUTER ha Jf MOTOR ENCODER AUXILIARY ENCODER INTERFACE 10 VOLT OUTPUT FOR SERVO MOTORS PULSE DIRECTION OUTPUT FOR STEP MOTORS RS 232 RS 422 e HIGH SPEED ENCODER COMPARE OUTPUT 2 ANALOG OUTPUTS T O INTERFACE r 4 PROGRAMMABLE TED 8 PROGRAMMABLE OPTOISOLATED OUTPUTS ANALOG INPUTS OPTOISOLATED INPUTS HIGH SPEED LATCH Figure 1 1 DMC 30000 Functional Elements Microcomputer Section The main processing unit of the controller is a specialized Microcomputer with RAM and Flash FLASH The RAM provides memory for variables array elements and application programs The flash FLASH provides non volatile storage of variables programs and arrays The Flash also contains the firmware of the controller which is field upgradeable Motor Interface Galil s GL 1800 custom sub micron gate array performs quadrature decoding of each encoder at up to 15 MHz For standard servo operation the controller generates a 10 volt analog signal 16 Bit DAC For stepper motor operation the controller generates a step and direction signal Communication The communication interface with the DMC 30000 consists of a daisy chainable Ethernet 100 Base T port and a 115kbaud
251. to 1 25 245 v 1 5 259 p 1 25 to 1 5 214 v 1 75 437 5 p 1 5 to 1 75 151 v 2 9 p 1 75 to 2 57 The DMC program is shown below and the results can be seen in Figure 6 10 INSTRUCTION INTERPRETATION PVT Label PVX Incremental move of 57 counts in 256 57 437 256 samples with a final velocity of 437 counts sec PVX Incremental move of 151 counts in 256 151 750 256 samples with a final velocity of 750 counts sec PVX Incremental move of 214 counts in 256 214 937 256 samples with a final velocity of 937 counts sec PVX Incremental move of 245 counts in 256 245 1000 256 samples with a final velocity of 1000 counts sec PVX Incremental move of 245 counts in 256 245 937 256 samples with a final velocity of 937 counts sec PVX Incremental move of 214 counts in 256 214 750 256 samples with a final velocity of 750 counts sec PVX Incremental move of 151 counts in 256 151 437 256 samples with a final velocity of 437 counts sec PVX Incremental move of 57 counts in 256 57 0 256 samples with a final velocity of 0 counts sec PVX Termination of PVT buffer 0 0 0 BTX Begin PVT Chapter 6 Programming e 85 DMC 30000 User Manual Actual Velocity and Position vs Time s Velocity e Position o c o 9 8 o c 76 3 o c o 5 o z O o m D 0 S o a o gt Time Samples Figure 6 10 Actual Velocity and Position vs
252. to main program Limit Switch Routine The DMC 30000 provides forward and reverse limit switches which inhibit motion in the respective direction There is also a special label for automatic execution of a limit switch subroutine The LIMSWI label specifies the start of the limit switch subroutine This label causes the statements following to be automatically executed if any limit switch is activated and that axis motor is moving in that direction The RE command ends the subroutine The state of the forward and reverse limit switches may also be tested during the jump on condition statement The _LR condition specifies the reverse limit and _LF specifies the forward limit X Y Z or W following LR or LF specifies the axis The CN command can be used to configure the polarity of the limit switches Limit Switch Example A JP A EN Dummy Program LIMSWI Limit Switch Utility Vl LFX Check if forward limit V2 LRX Check if reverse limit DMC 30000 User Manual Chapter 8 Hardware amp Software Protection e 158 JP LF V1 0 Jump to LF if forward JP LR V2 0 Jump to LR if reverse JP END Jump to end LF LF MG FORWARD Send message LIMIT STX AMX Stop motion PR ove in reverse 1000 BGX AMX JP END End LR LR MG REVERSE Send message LIMIT STX AMX Stop motion PR1000 BGX ove forward AMX END End RE Return to main program Chapter 8 Hardware amp Software Protect
253. tor amp is a Logical And The operator is a Logical Or These operators allow for bit wise operations on any valid DMC 30000 numeric operand including variables array elements numeric values functions keywords and arithmetic expressions The bit wise operators may also be used with strings This is useful for separating characters from an input string When using the input command for string input the input variable will hold up to 6 characters These characters are combined into a single value which is represented as 32 bits of integer and 16 bits of fraction Each ASCII character is represented as one byte 8 bits therefore the input variable can hold up to six characters The first character of the string will be placed in the top byte of the variable and the last character will be placed in the lowest significant byte of the fraction The characters can be individually separated by using bit wise operations as illustrated in the following example TEST Begin main program len 123456 Set len to a string value Flen FRAC len Define variable Flen as fractional part of variable len Flen 10000 Flen Shift Flen by 32 bits IE convert fraction Flen to integer lenl 2 Flen amp 00FF Mask top byte of Flen and set this value to variable lenl len2 Flen amp FF00 Let variable len2 top byte
254. tputs HSRC Description The 500mA sourcing option refereed to as high power sourcing HSRC is capable of sourcing up to 500mA per output and up to 1 5 A per bank The voltage range for the outputs is 12 24 VDC These outputs are capable of driving inductive loads such as solenoids or relays The outputs are configured for hi side sourcing Electrical Specifications Output PWR Max Voltage 24 VDC Output PWR Min Voltage 12 VDC Max Drive Current per Output 0 5 A not to exceed 1 5 A for all 4 outputs Wiring the 500mA Sourcing Optoisolated Outputs With this configuration the output power supply will be connected to Output PWR labeled OPA and the power supply return will be connected to Output GND labeled OPB Note that the load is wired between DO and Output GND The wiring diagram for Bank 0 is shown in Figure 3 9 Refer to Connectors for DMC 30000 Pin outs in the Appendix for pin out information Chapter 3 Connecting Hardware e 33 DMC 30000 User Manual Output PWR zr OPA ia AJ t x 3 A porn LOAD CPU IRF7342 ioi vOZLOSWW ore d Output GND Figure 3 9 500mA sourcing wiring diagrams for Bank 0 DO 4 1 500mA Sinking Optoisolated Outputs HSNK Description The 500mA sinking option refereed to as high power sinking HSNK is capable of sinking up to 500mA per output and up to 1 5 A per bank The voltage range for the outputs is 12 24 VDC These ou
255. tputs are capable of driving inductive loads such as solenoids or relays The outputs are configured for low side sinking Electrical Specifications Output PWR Max Voltage 24 VDC Output PWR Min Voltage 12 VDC Max Sink Current per Output 0 5 A not to exceed 1 5 A for all 4 outputs Wiring the 500mA Sinking Optoisolated Outputs With this configuration the output power supply will be connected to Output PWR labeled OPB and the power supply return will be connected to Output GND labeled OPA Note that the load is wired between Output PWR and DO The wiring diagram for Bank 0 is shown in Figure 3 10 Refer to Connectors for DMC 30000 Pin outs in the Appendix for pin out information Output PWR OPB 1 3 3V m ZS x 2 a gt LOAD Dott en ER GT a a a A 4 RE OPA 2A I Output GND Figure 3 10 500mA sinking wiring diagram for Bank 0 DO 4 1 DMC 30000 User Manual Chapter 3 Connecting Hardware e 34 Feedback Inputs and Multi Function MF Pins Feedback Options There are many different options for feedback with the DMC 30000 series controllers The indicates which feedback options are available with each configuration and the inputs for those feedback options DMC 30000 Feedback Options DMC 3001x DMC 3001x SER DMC 3101x DMC 3101x SER Main Digital Encoder MA MB MA MB MA MB MA MB Aux Digital Encoder AA A
256. trolled by a joystick The joystick produces a signal in the range between 10V and 10V The objective is to drive the motor at a speed proportional to the input voltage Assume that a full voltage of 10 Volts must produce a motor speed of 3000 rpm with an encoder resolution of 1000 lines or 4000 count rev This speed equals 3000 rpm 50 rev sec 200000 count sec The program reads the input voltage periodically and assigns its value to the variable VIN To get a speed of 200 000 ct sec for 10 volts we select the speed as Speed 20000 x VIN The corresponding velocity for the motor is assigned to the VEL variable Instruction A JGO BGX TB VIN AN 1 VEL VIN 20000 JG VEL JP B EN Position Control by Joystick This system requires the position of the motor to be proportional to the joystick angle Furthermore the ratio between the two positions must be programmable For example if the control ratio is 5 1 it implies that when the DMC 30000 User Manual Chapter 7 Application Programming e 152 joystick voltage is 5 Volts corresponding to 1028 counts the required motor position must be 5120 counts The variable V3 changes the position ratio INSTRUCTION FUNCTION A Label V3 5 Initial position ratio DPO Define the starting position JGO Set motor in jog mode as zero BGX Start 1B VIN AN 1 Read analog input V2 V1 V3 Compute the desired position V4 V2 TPX Find the following error HEX V5
257. ual Chapter 8 Hardware amp Software Protection e 156 The Jump on Condition statement is useful for branching on a given error within a program The position error of X Y Z and W can be monitored during execution using the TE command Encoder Failure detection The encoder failure detection on the controller operates based upon two factors that are user settable a threshold of motor command output OV a time above that threshold OT in which there is no more than 4 counts of change on the encoder input for that axis The encoder failure detection is activated with the OA command When an encoder failure is detected and OA is set to 1 for that axis the same conditions will occur as a position error Conditions for proper operation of Encoder Failure detection The axis must have a non zero KI setting order to detect an encoder failure when the axis is not profiling The IL command must be set to a value greater than the OV setting The TL command must be set to a value greater than the OV setting Example The A axis is setup with the following settings for encoder failure detection OA 1 OT 500 OV 3 OE 1 ER 1000 The A axis is commanded to move 300 counts but the B channel on the encoder has failed and no longer operates Because the ER setting is greater than the commanded move the error will not be detected by using the OE and ER commands but this condition will be detected as a encoder failure When the axis is commanded t
258. uch events include waiting for motion to be complete waiting for a specified amount of time to elapse or waiting for an input to change logic levels The DMC 30000 provides several event triggers that cause the program sequencer to halt until the specified event occurs Normally a program is automatically executed sequentially one line at a time When an event trigger instruction is decoded however the actual program sequence is halted The program sequence does not continue until the event trigger is tripped For example the motion complete trigger can be used to separate two move sequences in a program The commands for the second move sequence will not be executed until the motion is complete on the first motion sequence In this way the controller can make decisions based on its own status or external events without intervention from a host computer DMC 30000 Event Triggers Command Function Chapter 7 Application Programming e 111 DMC 30000 User Manual AM AorS ADA ARA APA MFA MRA MCA AI n ASA AT n m AVn WT n m Event Trigger Examples Event Trigger Multiple Move Sequence Halts program execution until motion is complete on the specified axes or motion sequence s This command is useful for separating motion sequences in a program Halts program execution until position command has reached the specified relative distance from the start of the move H
259. ulti Function Pins MF Multi Functional Pins MFn The Multi Functional Pins on the DMC 30000 have different functionalities dependent upon how the controller was ordered and how the controller is setup by the user If the controller is ordered with SER serial encoder interface then the MF pins can be used to interface to a serial encoder BiSS and SSI MF1 and MF2 are only used for the Main serial encoder input MF2 and MF3 are used for the Aux serial encoder input See the SI and SS commands in the command reference for more detail When the controller is setup for stepper motor operation the MF 2 and MF4 pins are used for step and direction respectively Single Description for Multi Functional Pins Label MT 2 or 2 5 SER option with BiSS or SSI Enabled MFI Main Axis Data D0 or SLO MF2 6 STEP Main Axis Clock C0 or MA MF STEP Main Axis Clock C0 or MA MF3 Aux Axis Data D1 or SLO MF4 Aux Axis Clock C1 or MA MF4 7 DIR Aux Axis Clock C1 or MA m Electrical Specifications MF2 MF4 Output Voltage 0 3 3 VDC Current Output 4mA Sink Source DMC 30000 User Manual Chapter 3 Connecting Hardware e 36 Electrical Specifications MF1 MF3 Maximum Input Voltage 5 VDC Minimum Input Voltage 0 VDC TTL Outputs Step and Direction Outputs The Multi Function Pins MF are used for the external step and direction outputs Output Com
260. um frequency Differential 0 3 3 Volts 2 2K Q in series with optoisolator Active high or low requires at least 1 2mA to activate Once activated the input requires the current to go below 0 5ma All Limit Switch and Home inputs use one common voltage LSCOM which can accept up to 24 volts Voltages above 24 volts require an additional resistor Standard configuration is 0 5 volts 12 Bit Analog to Digital converter Optoisolated 4mA sinking 25mA and 500mA options Auxiliary Encoder Inputs for A X axis Line Receiver Inputs accepts differential or single ended voltages with voltage range of 12 volts DMC 30000 User Manual Appendices 176 Input Power Requirements Controller Model Input Voltage Requirement Current Power Requirement 5 VDC 10 0 5 Amps DMC 30010 12VDC 4 10 0 05 Amps 12VDC 4 10 0 05 Amps DMC 30011 9 48 VDC 3 Watts DMC 30011 P80V 20 80 VDC DMC 30012 20 80 VDC 5 Watts 1 2 specifications Power Requirements the required power with no external connections Does not include power for the motor The power supply should be sized based upon load and motor NOTE The DMC 30000 power should never be plugged in HOT Always power down the power supply before installing or removing the power connector on the controller t5 12V Power Output Specifications DMC 30011 and DMC 30012 Output Voltage Tolerance Max
261. ups for later execution is referred to as Applications Programming and is discussed in the following chapter This section describes the DMC 30000 instruction set and syntax A summary of commands as well as a complete listing of all DMC 30000 instructions is included in the Command Reference http www galilmc com support manuals php Command Syntax ASCII DMC 30000 instructions are represented by two ASCII upper case characters followed by applicable arguments A space may be inserted between the instruction and arguments A semicolon or lt return gt is used to terminate the instruction for processing by the DMC 30000 command interpreter NOTE If you are using a Galil terminal program commands will not be processed until an lt return gt command is given This allows the user to separate many commands on a single line and not begin execution until the user gives the lt return gt command IMPORTANT All DMC 30000 commands are sent in upper case For example the command PR 4000 lt return gt Position relative Implicit Notation PR is the two character instruction for position relative 4000 is the argument which represents the required position value in counts The lt return gt terminates the instruction The space between PR and 4000 is optional To view the current values for each command type the command followed by a PR 1000 Specify a relative move DMC 30000 User Manual Chapter 5 Command Basics e
262. urcing LSRC 500mA sourcing high power sourcing HSRC and 500mA sinking outputs high power sinking HSNK Please refer to your part number to determine which option you have The DMC 30000 has only has a single bank Bank 0 of 4 optoisolated outputs powered through the Output PWR and Output GND pins located on J5 I O 44 pin HD D Sub Connector Female Please see the Connectors for DMC 30000 Pin outs in the Appendix for pin outs Wiring diagrams electrical specifications and details for each output type are provided below Brake Output When using the brake outputs it is recommended to order the controller with 500mA sourcing output option HSRC Outputs 1 is the brake output The BW command sets the delay between when the brake is turned on and when the amp is turned off When the controller goes into a motor off MO state this is the time in samples between when the brake digital output changes state and when the amp enable digital output changes state The brake is actuated immediately upon MO and the delay is to account for the time it takes for the brake to engage mechanically once it is energized electrically The brake is released immediately upon SH See the BW command in the DMC 30000 Command Reference for more information Standard 4mA Sinking Optoisolated Outputs Description The default outputs of the DMC 30000 are capable of 4mA and are configured as sinking outputs The voltage range for the outputs is 5
263. using servo motors standard or sinusoidal commutation The system compensation provides fast and accurate response and the following section suggests a simple and easy way for compensation More advanced design methods are available with software design tools from Galil such as the GalilTools The filter has three parameters the damping KD the proportional gain KP and the integrator KI The parameters should be selected in this order To start set the integrator to zero with the instruction KI 0 Integrator gain and set the proportional gain to a low value such as KP 1 Proportional gain KD 100 Derivative gain For more damping you can increase KD maximum is 4095 875 Increase gradually and stop after the motor vibrates A vibration is noticed by audible sound or by interrogation If you send the command TE A Tell error a few times and get varying responses especially with reversing polarity it indicates system vibration When this happens simply reduce KD by about 20 Next you need to increase the value of KP gradually maximum allowed is 1023 875 You can monitor the improvement in the response with the Tell Error instruction KP 10 Proportion gain TE A Tell error As the proportional gain is increased the error decreases Again the system may vibrate if the gain is too high In this case reduce KP by about 20 Typically KP should not be greater than KD 4 only when the amplifier is configured in the current
264. v7 of the variable pos 5 The variable vl is equal to the absolute value of 5 The variable v2 is equal to five times the sin The variable v3 is equal to the digital value of input 1 The variable v4 is equal to the value of analog input 5 plus 5 then multiplied by 2 DMC 30000 User Manual Chapter 7 Application Programming e 132 Variables For applications that require a parameter that is variable the DMC 30000 provides 254 variables These variables can be numbers or strings A program can be written in which certain parameters such as position or speed are defined as variables The variables can later be assigned by the operator or determined by program calculations For example a cut to length application may require that a cut length be variable Example posx 5000 Assigns the value of 5000 to the variable posx PR posx Assigns variable posx to PR command JG rpmY 70 Assigns variable rpmY multiplied by 70 to JG command Programmable Variables The DMC 30000 allows the user to create up to 254 variables Each variable is defined by a name which can be up to eight characters The name must start with an alphabetic character however numbers are permitted in the rest of the name Spaces are not permitted Variable names should not be the same as DMC 30000 instructions For example PR is not a good choice for a variable name NOTE It is generally a good idea to use lower
265. ve moves similar to the standard PR command in units of encoder counts and velocity is entered in counts second The controller will interpolate the motion profile between subsequent PV commands using a 3rd order polynomial equation During a PV segment jerk is held constant and accelerations velocities and positions will be calculated every other sample Motion will not begin until a BT command is issued much like the standard BG command This means that the user can fill the PVT buffer prior to motion beginning PVT mode has a 127 segment buffer This buffer is a FIFO and the available space can be queried with the operand PVA As the buffer empties the user can add more PVT segments by issuing new PV commands Exiting PVT Mode To exit PVT mode the user must send the segment command PVA 0 0 0 This will exit the mode once the segment is reached in the buffer To avoid an abrupt stop the user should slow the motion to a zero velocity prior to executing this command The controller will instantly command a zero velocity once a PVA 0 0 0 is executed In addition a ST command will also exit PVT mode Motion will come to a controlled stop using the DC value for deceleration The same controlled stop will occur if a limit switch is activated in the direction of motion As a result the controller will be switched to a jog mode of motion Error Conditions and Stop Codes If the buffer is allowed to empty while in PVT mode then the profiling will be
266. vely The state of the Home input can also be interrogated indirectly with the TS command For examples and further information about Homing see command HM FI FE of the Command Reference and the section entitled Homing in the Programming Motion Section of this manual Abort Input The function of the Abort input is to immediately stop the controller upon transition of the logic state NOTE The response of the abort input is significantly different from the response of an activated limit switch When the abort input is activated the controller stops generating motion commands immediately whereas the limit switch response causes the controller to make a decelerated stop NOTE The effect of an Abort input is dependent on the state of the off on error function OE Command If the Off On Error function is enabled the motor will be turned off when the abort signal is generated This could cause the motor to coast to a stop since it is no longer under servo control If the Off On Error function is disabled the motor will decelerate to a stop as fast as mechanically possible and the motor will remain in a servo state All motion programs that are currently running are terminated when a transition in the Abort input is detected This can be configured with the CN command For information see the Command Reference OE and CN ELO Electronic Lock Out Input Used in conjunction with Galil amplifiers this input allows the user the shutdown t
267. vol revol Half Stepping Drive X axis SET UP O GI T KS16 MT YA2 YB20 YC40 00 SHX WT50 YSL error drive revol revol Set the profiler to stop axis upon Set step smoothing Motor type set to stepper Step resolution of the full step otor resolution full steps per ution Encoder resolution counts per ution Enable axis Allow slight settle time Enable SPM mode Set the profiler to stop axis upon Set step smoothing Motor type set to stepper Step resolution of the half step otor resolution full steps per ution Encoder resolution counts per ution Enable axis Allow slight settle time Enable SPM mode Chapter 6 Programming e 95 DMC 30000 User Manual 1 64 Step Microstepping Drive X axis UP Example Error Correction SET O GI Ly error KS16 MT YA64 Set Set the profiler to stop axis upon step smoot thing otor type set Step resolution of t to stepper the microstepping drive YB20 revol YC40 revol SHX WT50 YS1 u ar u otor resolution tion Encoder resolution tion Enable axis full steps per counts per Allow slight settle time Enable SPM mode The following code demonstrates what is necessary to set up SPM mode in order to detect the error stop the motor correct the error and
268. ware downloads page http www galilmc com support download html Using Linux 32 amp 64 bit The GalilTools software package is fully compatible with a number of Linux distributions See the GalilTools webpage and user manual for downloads and installation instructions http www galilmc com products software galiltools html Step 4 Connect Power to the Controller See the Power Wiring Diagrams for the DMC 30000 section in the Appendices for information on wiring specific DMC 30000 configurations Wiring diagrams are shown for DMC 30010 CARD DMC 30010 BOX DMC 30011 CARD DMC 30011 BOX DMC 30012 BOX DMC 30016 BOX and DMC 30017 BOX and the DMC 30012 BOX ISCNTL DMC 30016 BOX ISCNTL and DMC 30017 BOX ISCNTL A list off all of the motor and power connectors can be found in the Power Connectors for the DMC 30000 in the Appendices The DMC 30000 power should never be plugged in HOT Always power down the power supply before installing or removing the power connector to the controller If a disconnect or safety relay is required for an application the disconnect switch or circuit breaker must be placed on the AC power not DC input to the controller and must be installed in a location that is in close proximity to the equipment within easy reach of the operator and must not block the installation of the controller This is shown in Figure 2 5 DMC 30000 User Manual Chapter 2 Getting Started e 14 POWER SUPPLY B l
269. xample consider a motor with the parameters K 14 16 oz in A 0 1 N A Chapter 10 Theory of Operation 167 DMC 30000 User Manual R 2Q J 0 0283 oz in s 2 10 kg m L 0 004H Then the corresponding time constants are Tin 0 04 sec and T 0 002 sec Assuming that the amplifier gain is K 4 the resulting transfer function is P V 40 s 0 04s 1 0 002s 1 Current Drive The current drive generates a current I which is proportional to the input voltage V with a gain of K The resulting transfer function in this case is P V K K Js where Kt and J are as defined previously For example a current amplifier with K 2 A V with the motor described by the previous example will have the transfer function P V 1000 s rad V If the motor is a DC brushless motor it is driven by an amplifier that performs the commutation The combined transfer function of motor amplifier combination is the same as that of a similar brush motor as described by the previous equations Velocity Loop The motor driver system may include a velocity loop where the motor velocity is sensed by a tachometer and is fed back to the amplifier Such a system is illustrated in Figure 10 5 Note that the transfer function between the input voltage V and the velocity is o V K K Js 1 K K K Js 1 K sT 1 where the velocity time constant T equals T J K KK This leads to the transfer function P V V K s sT 1
270. ycle n 5 to 12 For example if the encoder cycle is 40 microns AF10 results in 2 1024 counts per cycle or a resolution of 39 nanometers per count With the DMC 31000 the sinusoidal encoder inputs replace the main digital encoder inputs Any DMC 31000 will be installed with firmware specific for the implementation of Sin Cos encoders With this firmware the maximum speed settings will be increased from 22 000 000 to 50 000 000 counts second Note The encoder must be wired to the machine prior to issuing the AF command Analog Inputs With the DMC 31000 the analog inputs upgraded to 16 bit 10V configurable analog inputs see the Analog Inputs section in Chapter 3 Connecting Hardware for more information DMC 31000 Encoder 15 pin HD D Sub Connector Female Pin Label Description 1 Index Pulse Input Vo Sin Cos or I Digital 2 MB Main Encoder Input V2 Sin Cos or B Digital 3 MA Main Encoder Input V Sin Cos or A Digital 4 Aux Encoder Input B Digital 5 GND Digital Ground 6 Index Pulse Input Vo Sin Cos or I Digital 7 Main Encoder Input V2 Sin Cos or B Digital 8 Main Encoder Input V Sin Cos or A Digital 9 AA Aux Encoder Input A Digital 10 A Channel Hall Sensor 11 AA Aux Encoder Input A Digital 12 AB Aux Encoder Input B Digital 13 B Channel Hall Sensor 14 C Channel Hall Sensor DMC 30000 User Manual A4 DMC 31000 o 212 15

Download Pdf Manuals

image

Related Search

Related Contents

User manual - Techne Calibration  ROTEX Solaris  ボレロⅢ取扱説明書 - Gin Gliders  プレスリリース - 楽しい商品のお店 経堂|音茶楽  ASUS Z87M-Plus (90MB0EF0-M0EAY5)  "user manual"    titres services_FR_fevrier2014_v02.indd  Epson CX6600 Start Here Card  

Copyright © All rights reserved.
Failed to retrieve file