Home
User's Guide for CEMC_SFU_AGRO v1.2 The
Contents
1. 10_ Suspended Sediment mgfL i Sim iment gim dauy 50 p p 0 Resuspension Rate of Solids gim day 40 Burial Rate of Solids g m day Mass Transfer Coefficients o aa 24 25 26 27 28 2 s 30 Kil 32 33 g 35 Page 16 Step 4 Confirm the Emissions Parameters Go to the Emissions tab Here is what the Emissions tab page should look like when dynamic emission scenario is selected EE ER S a Ya DR sa J yO p a _2 Emission Scenario Dynamic from PRZM Emission Type 2 4 Emission Type Constant average annual emission kg Ha year input below Defined daily emissions kgtHatday input from PRZM y Field Area Ha 10 pRa D w ralpa rolro a RSNA SSSR S e wlln n n n n 2388 388 8 GS 8 8 ike lt On the Emissions tab there are two options By clicking on either radio button under the heading Emission Type the user may choose one of two scenarios The first option is used for steady state calculations or for dynamic ones requiring that there be constant emission of chemical over the duration of the model run The second option is to use the PRZM defined inputs imported to PRZMforInput and GetPRZMFiles tabs Dynamic Emissions To use the PRZM defined inputs and parameters make su
2. Chemicalinput OO Chemical Concentration in Inflow wW Chemical Concentration in Air B c D E E G H 1 to Air to Water to Sediment 0 0 05604 0 ngil f 0 ngim i Fugacity Z Values Concentrations Pa molim Pa kgim molim malim of bulk phare O 0 320847565 0 0 0 ngim 0 000414541 0 0 16021651213 0 0 ol 3 3471E 13 461063 9515_ 5 33333E 08 154321E 07 53 3332546 ngil 417730 4553 4 83207E 08 139817E 07 3467097389 0 000401054 0 001160457 167 105875 ngfg 1E 03 NIA 0 420619 3555 0 0 0 ngil 0 0 3467097389 0 0 ol 1 1266E 13 1035163310 4 03035E 05 0 000116619 40303495 1_ngim 1 6264E 08 4 70605E 08 16 2640979 ngil 2069908889 8 05907E 05 0 000233191 33 5794692 nglg 0 0004 2069908883 0 0 0 0 ngil 0 0027963 0 00023011 0 01166183 2 353E 06 0 01165954 0 0 01474831__ 0 00509701 20 92725206 0 015954533 79 05679341 CH 700 D Amount Sorbed 4 of amount in bulk phase Water Sediment Inflow Air E 9 39971933 99 979823 0 6869032 99 8707982 57 172 a I 3 D A In the System 3 3 In the Sediment Total Chemical Inputs Emission Inflow Air to water transfer Total Chemical Losses Outflow Water to air transfer Total Transformation Sediment Burial kalyear 0 05604 0 05604 o o 0 05604 0 002336023 4 20057E 03 0 052478322 0 001225651 molih 1 85106E 05 185106E 05 0 0 1 85106E 05 7 71613E 07 1 38749E 12 17334E 05 4 04845E
3. 10 000 Environment U Water_Volume m Volume of water body Default value 20 000 Environment V Sediment m Depth of sediment in benthic layer Default value 0 05 Environment W Concentration Label for columns associated with of Solids concentration of solid particles in various bulk media Environment X Aerosol_Particles ug m Concentration of solid particles in air bulk media Default value 30 Environment Y Particles_Inflow mg L Concentration of solid particles in inflow water bulk media Default Value 2 Environment Z Particles_Water_ mg L Concentration of suspended Column sediment in water column Default value 30 Environment AA Volume_Fraction m m Volume fraction of sediment _Particles_ Surface particles in benthic Default value 0 5 Page 13 Column Parameter Units Notes Environment AB Density of Label for columns associated with Solids density of solid particles in various bulk media Environment AC Density_Particles kg m Density of solid particles in water _Water column bulk media Default value 2400 Environment AD Density_ kg m Density of solid particles in Sediment_ benthic sediment bulk media Particles Default value 2400 Environment AE Density_Aerosol_ kg m Density of solids particles in air Particles bulk media Default value 1500 Environment AF Organic Label for columns associated with Carbon Fraction organic carbon fraction in various of
4. 07 Residence Time not including water sediment exchange as a loss Water Sediment System Total Chemical Inputs Emission Inflow Air to water transfer Sediment to water transfer Total Chemical Losses Outflow Water to air transfer Water to sediment transfer Transformation in water Residence Ti Total Chemical Inputs Water to sediment transfer Total Chemical Losses Sediment to water transfer Transformation in sediment Sediment Burial Residence Ti 1096 796672 hours 318 662481 hours 1321 451669 hours 7396 7496056 hours kalyear 0 061512436 0 05604 o o 0 005472496 0 061512496 0 002336023 4 20057E 03 0 032189979 0 02698649 151 9038691 hours kalyear 0 032189979 0 032189979 0 032189979 0 005472496 0 025491832 0 001225651 13 27760337 days 55 06048621 days 33 19790023 days molth 2 03182E 05 185106E 05 0 0 1 80762E 06 2 03182E 05 7 71613E 07 138749E 12 1 06327E 05 8 91392E 06 6 329327873 molth 1 06327E 05 1 06327E 05 1 06327E 05 1 80762E 06 8 42022E 06 4 04845E 07 45 69986132 days 0 036377 years 0 15085065 years 0 09095315 years 0 1252051 years z a X I SS results pond lt Page 37 SS results pond tab Rows 92 228 continued kgtyear molth Emission to Water 0 05604 1 85106E 05 Water Inflow 0 0 Particle Inflow 0 0 Rain Dissolution 0 0 1 Aerosol Deposition wet 0 0 A
5. 14 15 16 17 18 19 20 21 22 23 X M 4 gt ri Environment Emissions Foodweb FWitiadel lt gt lt i gt Piwi sl reel ad oie cl mana A fal 11 A d A Ss we al Page 11 Splitting the screen after column Environment R and further scrolling right displays columns Environment AQ through Environment AW which pertain to the mass transfer coefficients characterizing intermedia transport R o ad Le Environm Selected ental Environment Propertie s 1 Sensitivity Analysis 0 5 0 005 0 0008 2 Modeling for EFED Report 1 0 01 0 0004 Page 12 Here is a summary of the input Parameters in the Environment Tab Table 4 Input Parameters in the Environment Tab Note Default values for EPA generic pond scenario are listed in notes column Column Parameter Units Notes Environment O Dimensions Label for columns associated with dimensions of the water body Environment P Selected Numeric identifier of Environment environmental scenario Identifier highlighted in the Select an Environment list box Automatically changes with change in highlighted selection Environment Q Environmental User supplied numeric identifier Properties of environmental scenario of Scenario interest Identifier Environment R Name of Name given to the environmental Environmental scenario Scenario Environment T Water_Surface_ m Surface area of water body Area Default value
6. 16 0 0 0 0 0 0 0 0 140 137 1961 5 _17 0 0 0 0 0 0 0 0 141 138 1961 5 18 0 0 0 0 0 0 0 0 142 139 1961 6 9 1 0 99 5 0 0 0 0 0 143 140 1961 5 20 0 0 0 0 0 0 0 0 144 141 1961 5 21 0 0 0 0 0 0 0 0 145 142 1961 5 22 0 0 0 0 0 0 0 0 146 143 1961 5 23 0 0 0 0 0 0 0 0 147 144 1961 5 24 0 0 0 0 0 0 0 0 148 145 1961 5 25 0 0 0 0 0 0 0 0 149 146 1961 5 26 1 0 99 5 1 188 3 3E 07 0 08869 2 433E 09 3 71 150 147 1961 5 27 0 0 0 0 4006 852E 08 0 0195 2 276E 10 147 151 148 1961 5 28 0 0 0 0 2194 3 69E 08 0 007882 3 839E 11 1 14 152 149 1961 5 29 0 0 0 0 0255 3 64E 09 0 00028 1 215E 12 0 61 153 150 1961 5 30 0 0 0 0 0 0 0 0 154 151 1961 31 0 0 0 0 0 0 0 0 155 152 1961 a 0 0 0 0 0 0 0 0 156 153 1961 6 2 1 0 99 5 0 0 0 0 0 157 154 1961 amp _3 0 0 0 0 0 0 0 0 158 155 1961 6 4 0 0 0 0 0 0 0 0 159 156 1961 amp _ 65 0 0 0 0 0 0 0 0 160 157 1961 6 6 0 0 0 0 0 0 0 0 161 158 1961 6 7 0 0 0 0 0 0 0 0 162 159 1961 6 8 0 0 0 0 0 0 0 0 163 160 1961 6 9 0 0 0 0 9251 1 55E 07 0 05806 4 29E 10 2 24 a gt ml GetPRZM_Files Waa esults 5 reseries iy f PRZM forinput _ PRZM workarea lt Click the Get PRZM data button located on cells Get_PRZM_Files G 1 2 Get_PRZM_Files H 1 2 Clicking this executes a Visual Basic macro which Page 4 gt i allows the user to choose the location of the PRZM3 12 P2E cl D mass loading files Click on any of the P2E C1 D files and then Open to begin the
7. 32 An example of output contained in columns DYN timeseries A DYN timeseries D and then window split to display columns DYN timeseries AL DYN timeseries AX is displayed below These columns display the particle solid fluxes in the water column and benthic sediment along with various water and sediment daily fluxes in mol basis A Essel ete Fata AL am AN AO l AP AQ AR AS AT AU AV aw AX 1 1 Time th Year Month Day Sedinflowm3h SedFesuspm3th Sedoutflowm3th SedDepmath Net Sed m3ih timestephh d_inv_W mol Iny_W mal d inv_Smol Inv_Smol nv_Puremol 2 Bil 0 1961 s 12 4ese6e 06 0006944444 0 0000625 0 008680556 0 001794444 0 g T 0 0 0 0 0 a 24 1981 S 13 0000410921 0006944444 0 000126042 0008680556 0 001451232 0 3 0 018191747 1 175169452 0 012229953 0 050028206 0 0 EF 48 1961 5 14 416666E 06 0 006944444 0 0000625 0008680556 0 001794444 0 3 0020834582 1 037170317 0 010579719 0 140273347 0 0 72 1961 5 45 416666E 06 0006944444 0 0000625 0 008680556 0 001794444 0 3 0 017727788 0 884802971 0 008759367 0 216522915 0 0 EZI 1961 5 16 416666E 06 0 006944444 0 0000625 0 008680556 0 001794444 0 3 0 015085105 0 755154206 0 007215691 0 279484145 0 0 ET 120 1981 5 47 416666E 06 0 006944444 0 0000625 0 008680556 0 001794444 0 3 0 012837186 0 644827562 0 005907257 0 311799 0 0 2 144 1961 5 18 416666E 06 0 006944444 0 0000625 0 008680556 0 001794444 0 3 0 010925043 0 550937631 0 004798824 0
8. Enter _8 Phytoplankton Enter _9 Zooplankton Enter _10 Benthos Enter _11 Forage Fish A Enter _12 Forage Fish B Enter _13 Piscivorous Fish A Enter 14 3 o 36 a7 _18 Aquatic Organisms Parameters _19 Definition Units Parameter Phytoplankton Zooplankton Benthos Forage Fish A Forage FishB Piscivorous Fish A Action _20 Weight of biota kg Wb Enter _21 Lipid fraction in biota phytoplankton kg kg vib Enter _22 Nonlipid organic matter fraction in biota phytoplankton kg kg vnb 20 00 20 22 22 20 Enter _23 Water fraction in biota kg kg wb 79 50 78 00 78 00 74 00 72 00 76 00 Enter _24 Nonlipid organic matter octanol proportionality constant unitless beta 0 35 0 035 0 035 0 035 0 035 0 035 Enter _25 Dietary absorption efficiency of lipid el 75 72 75 92 92 92 Enter 26 Dietary absorption efficiency of nonlipid organic matter en 75 72 25 55 55 55 Enter ietary absi iency of water 1 eww 25 25 25 25 25 25 Enter _28 fraction of the respiratory ventilation that involves overlying wat mo 95 95 95 100 100 100 Enter _29 fraction of the respiratory ventilation that involves sediment as mp 5 5 5 0 0 0 Enter _30 Particle scavenging efficiency sigma 100 100 00 100 Enter _31 resistance to chemical uptake through the aqueous A 0 00006 ma Enter _32 resistance to chemical uptake through the organic phase B a ae ee O ee O OO O H Enter _33 Invertebrate growth rate coefficient T lt 17 5 deg C
9. Environmental Science and Technology 33 2390 2394 Skoglund RS Swackhamer DL 1999 Evidence for the Use of Organic Carbon as the Sorbing Matrix in the Modeling of PCB Accumulation in Phytoplankton Environmental Science and Technology 33 1516 1519 Suarez L A 2006 PRZM 3 A Model for Predicting Pesticide and Nitrogen Fate in the Crop Root and Unsaturated Soil Zones Users Manual for Release 3 12 2 National Exposure Research Laboratory U S Environmental Protection Agency Athens GA 30605 2700 Page 43 Swackhamer DL Skoglund RS 1993 Bioaccumulation of PCBs by Algae Kinetics versus Equilibrium Environmental Toxicology and Chemistry 12 831 838 Thomann RV 1989 Bioaccumulation Model of Organic Chemical Distribution in Aquatic Food Chains Environmental Science and Technology 23 699 707 Thurston RV Gehrke PC 1990 Respiratory Oxygen Requirements of Fishes Description of OXYREF a Data File Based on Test Results Reported in the Published Literature Proceedings of an International Symposium Sacramento California USA 1993 Walker CH 1987 Kinetic Models for Predicting Bioaccumulation of Pollutants in Ecosystems Environmental Pollution 44 227 240 Wang WX Fisher NS 1999 Assimilation Efficiencies of Chemical Contaminants in Aquatic Invertebrates A Synthesis Environmental Toxicology and Chemistry 18 2034 2045 Webster E Lian L Mackay D 2005 Application of the Quantitative Water Air Sediment Intera
10. Iday kg Calculated Metabolic transformation rate constant day km Calculated total elimination rate constant Jday ktotal 1 121347316 7 048084896 1 465926298 0 082662041 0 060106606 0 021523952 Calculated time to reach 95 of steady state day 195 2 675353084 0 42564754 2 046487606 36 29235317 49 91131953 139 3796103 Calculated kd ke max theoretical BMF max BMF 6 026244644 2 570618474 10 03352716 14 23990503 6 293190642 Calculated kd ktotal kg diet kg pred BMF 0 047662546 0 114851383 0 722673681 0 993862174 1 390997522 Calculated Biota water partition coefficient unitiess Kow 3399 88 3399 88 6005 81 8523 65 5917 71 Calculated Phytoplankton water partition coefficient unitiess Kpw 9442 7 Calculated Gut biota partition coefficient unitiess Kgb 0 190608534 0 518681923 0 147303944 0 103791291 0 244276569 Calculated Gill ventilation rate Uday Gv 0 004401758 0 087826624 7 827556081 7 827556081 156 1802767 Calculated Feeding rate kg day Gd 6 84547E 08 3 43086E 06 0 001217315 0 001217315 0 061010285 Calculated Fecal egestion rate kg day Gf 4 47454E 08 2 57315E 06 0 000823635 0 000823635 0 03968719 Calculated Efficiency of chemical transfer via gill Ew 54 02 54 02 54 02 54 02 54 02 54 02 Calculated Efficiency of chemical transfer via intestinal tract Ed 49 07 49 07 49 07 49 07 49 07 Calculated Lipid fraction in diet kg kg vid 0 500 0 00000 2 00 2 00 5 0000 Calculated Lipid fraction in gut kg kg vig 0 00214
11. Sediment Pore Water 5 88939E 09 1 7041E 08 5 88938534 ng L 115 Sediment Solids 20699088689 2 91827E 05 8 44406E 05 12 1594469 ng g 4 22203E 05 116 Resuspended Solids 2069908889 117 Rain o 0 o O ngl 118 is Amounts 420 421 Amount Amount Sorbed 122 of amount in bulk phase 423 Buk Water aizies 2 481083033 124 Water Solution 3 36407E 05 2 247868191 Water 9 39971923 125 Water Particles 2 4902E 06 0 233214841 Sediment 99 979823 126 Bulk Sediment 0001459428 97 51891697 Inflow 0 68690263 127 Sediment Pore Water 2 94469E 07 0 019676423 Air 99 8707982 128 Sediment Solids 0 001459134 97 49924054 129 Pure Phase Chemical H System Total 0 001496559 100 130 Hi x Maag D esults pond M forinput _ PRZM workarea lt il ail A B c D E tig K 3 Q S T i E a 131 Mass Balances T32 Conditions at time 8757 hours 133 T134 In the System kalyear molh 15 Total Chemical Inputs o o ne Emission o o KEA Inflow o 0 338 Air to water transfer o o 140 Total Chemical Losses 0 01069538 3 59279E 06 m Outflow 8 13175E 05 2686E 08 w Water to air transfer 146223E 10 4 82989E 14 143 Total Transformation 0 010170242 3 35934E 06 m Sediment Burial 000044382 146598E 07 145 Ka Residence Time not including water sediment exchange as a loss W7 Water 318 662481 hours 13 27760337 days 0 036377 years Sediment 1921451663 hours 55 06048621 daus 0 15085065 years KI System 122574951 hours 5107283624 days 013992574 yea
12. derived from any source inflow from another body of water from groundwater or from runoff water as long as the corresponding flow for this concentration is quantified on the Environment worksheet The net annual input of chemical to the pond is derived using Conc inflow ng L kg 1x10 ng 1000 L m3 Inflow rate m3 h 8760 h yr 8 8 8 The result kg yr inflow of chemical is added to the kg yr estimate of direct emission to the pond via spray drift for a total chemical input rate Page 18 Step 5 Review the FWModel tab Go to the FWModel tab This tab contains the chemical and ecosystem parameter values used by the Gobas Bioaccumulation model Review the assigned input values Usually the user will not make any revisions to this tab since the Environmental Fate Parameters on this worksheet are mostly calculated based on values entered in the Environment and Chemical tabs and the Food Web Bioaccumulation Model values are the recommended values for the embedded organism foodweb Note There is no database summarizing several possible foodwebs so any changes made are permanent and it is suggested that an original version of the file be maintained at all times to preserve the original information Columns FWModel A through FWModel G summarize the Chemical and Environmental Fate input parameters from the QWASI water quality model For columns FWModel A through FWModel G rows 4 10 the chemical parameters required by the Bioa
13. e c o E F eK M N E L Fugacity Pa Bulk Concentrations natural units Time h Year Month Day Emission Water Sediment Inflow Air Water ng L Sediment ng m3 Inflow ng L Air ug m3 kg year I 1961 5 0 0 0 0 0 0 0 0 1961 5 A 0 1 3E 10 4 83385E 13 3 707E 10 0 20306 92813 172932040 5 71616 50282 0 _5 1961 5 14 O 14E 10 1 35508E 12 o o0 17922 30308 484784687 3 0 0 r6 1961 5 15 0 9 6E 11 2 09168E 12 D p 15289 41262 748303193 9 0 0 1961 5 16 0 8 2E 11 26999E 12 00 13049 06468 965897203 9 0 0 ea 1961 5 17 0 7E 41 3 1993E 12 o o0 11142 62027 1144556663 0 0 9 1961 5 18 0 6E 11 3 60647E 12 0 0 9520 202258 1290224549 0 0 10 168 1961 5 19 182 5 7 1E 11 3 93555E 12 o o0 11264 38615 1407953362 0 0 Hw 192 1961 5 20 0 1 9E 10 4 81545E 12 o o0 29842 88113 1722739580 0 0 BA 216 1961 5 21 0 1 6E 10 5 98684E 12 o 0 25474 53025 2141805650 0 0 13 240 1961 5 2 0 14E 10 6 94633E 12 0 0 21757 15283 2485067301 0 0 14 264 1961 5 23 0 1 2E 10 7 72632E 12 18593 5109 2764108682 0 0 _15 288 1961 5 24 0 1E 10 85432E 12 DY 15900 89572 2988777956 0 0 _16 312 1961 5 25 0 8 5E 11 8 85374E 12 o oa 13608 95676 3167446801 0 0 A 336 1961 5 26 182 5 14 1E 10 9 24447E 12 5 26211E 10 0 16771 90322 3307231133 254081 866 0 18 360 1961 Se 2 0 29E 10 1 05366E 11 4 94791E 10 0 46946 14905 3769507763 164049 663 0 A9 384 1961 5 28 0 2 7E 10 1 23803E 11 416959E 10 0 42979 92547 4429091717 108676 5174 0 20 408 1961 5 29 0 24610 139769E 11 16158E 10 0 37866 30352 500
14. side evaporation mass transfer coefficient m day vew 2 40E 01 Calculated from Environment Tab 0 01m h zal air side evaporation mass transfer coefficient m day vea 2 40E 01 Calculated from Environment Tab m h _28 water to sediment diffusion mass transfer coefficient m day vd 960E 03 Calculated from Environment Tab 0 0004m h _29 solids settling rate g m 2 day vss 50 Enter on Environment Tab _30 sediment burial mass transfer coefficient g m 2 day vb 10 Enter on Environment Tab _31 sediment resuspension rate g m 2 day vs 40 Enter on Environment Tab _32 dissolved oxygen saturation S 90 Enter Lake Ontario _33 Disequilibrium fractor POC unitless Dpoc 1 Enter _ 34 Disequilibrium factor DOC unitless Ddoc 1 Enter _35 POC octanol proportionality constant unitless apoc 0 35 Enter Lake Ontario _36 DOC octanol proportionality constant unitless adoc 0 08 Enter Lake Ontario _37 pH of water pH 7 Enter _38 water temperature degC Tw 17 Enter 39 Sediment OC octanol proportionality constant unitless asoc 0 35 Enter Page 20 PRZM forInput _ ma lt An example of columns FWModel A through FW Model G rows 41 65 looks like A B G D F in 41 Simulation Parameters 42 Time Increment hours dt 3 From AGRO tab 43 total external loading g day L 1 535342466 From Emissions tab 44 45 Initial Enviromental Conditions 46 initial chemical mass in water g Mwi 0 Enter 47 initial chemical mass
15. 0 006944444 40 gim day Dry 0 000002 83 Sediment Burial Rate 00017361 10 gim day Total 0 000002 a DYN results I lt Eil Page 27 DYN results pond tab Rows 92 228 display results from the QWASI water quality model These include mass balances over the simulated time for the chemical in both water and benthic sediment A ESQ Ss nie a ee CR e T L E N 92 RESULTS A N q A Total Mass in 0 001496559fkg 94 Fotai Chemical input over ali simulation time 2169424624 kg Totai Chemical Loss over all simulaton time 2 589798471 k Ea H from Water from Sediment 96 Emission kg iVolat kg 1 8791E 07 kg 87 Chemical from inflow Water iAdvection kg 0 18868601 0 05477178 kg 98 Chemical from Background Air iReaction kg 1 2071926___1 1391769 kg 99 400 fZ c 401 Fugacity Z Values Concentrations 102 Pa molim Pa kg m movm molim of bulk phase 403 Bulk Air O 0 320847565 0 0 0 ngm 104 Air vapour 0 000414541 0 0 105 Aerosols 16021651213 0 0 ol 108 Bulk Water 1 1651E 14 461063 9515 0 00000000 5 37194E 09 1 85654352 ng L 107 Water Solution 417730 4558 0 00000000 4 86706E 09 108 Water Particles 3467097389 0 00001396 4 03958E 05 5 81699602 ng g 5 04948E 10 a 109 Pure Phase Chemical NA 110 Bulk Inflow O 420619 3531 0 0 0 ngl 111 inflow Water 0 0 a 112 inflow Particles 3467097389 0 0 ol 113 Bulk Sediment 4 0794E 14 1035163310 1 45943E 05 4 22288E 05 14594280 9 ng m 14
16. 0 454831721 5 5 0 9 144 1961 5 18 8625437785 1 074970183 520658029 0 454831194 0 454831721 5 5 o 10 168 1961 5 19 10 20569304 1 173057733 0 568166389 0 517331194 0517331721 5 5 0 ii 192 1961 5 20 27 03807204 1 435326652 0 695195418 0 954831194 0 954831721 5 5 0 EA 216 1961 5 21 23 08028441 1 784477914 0 864305605 0 954831194 0 954831721 5 5 0 13 240 1961 5 2 19 71228793 2 070471574 1 002825628 0 954831194 0 954831721 5 5 0 14 264 1961 5 23 16 84598363 2 302959139 1 115430163 0 954831194 0 954831721 5 5 0 15 288 1961 5 24 1440643623 2 490145758 1206003344 0 954831194 0 954831721 5 5 0 16 312 1961 5 25 12 32990715 2 63900642 1 278193482 0 954831194 0 954831721 5 5 0 417 336 1961 5 26 15 19558134 2 75546986 133460214 1 058873579 1 058877616 54 5 54 5 0 18 360 1961 5 27 4253387448 3 140622656 1 521149543 1 797845806 17078751331 21 69167 21 69167 0 19 384 1961 5 28 38 94041986 3 690165048 1787318460 1 87718513 1 8772197899 14 14167 14 14167 0 20 408 1961 5 29 34 30740611 4 166042163 2 017807876 1 909914237 1 909950634 6 0625 6 0625 0 E 432 1961 5 30 29 4293211 4 55932499 2 208293031 1 913098522 1 913134945 5 5 0 22 456 1961 5 31 25 17754514 4874781763 2 36108341 1 913098522 1 913134945 5 5 0 23 480 1961 6 1 21 55825564 5 123674285 2 481633628 1 913098522 1913134945 5 5 0 24 504 1961 6 2 5 316327635 2 574944601 1 975598522 5 5 Ol M4 E Environment GetPRZM_Fies Emi lt X AARIA _ a f Page
17. 000 0 01 100 Inflow Outflow mth mth Water 5 5 Suspended Particles 4 1667E 06 0 0000625 Sediment Subcompartment Yolumes m Solids 50 Pore Water 50 Particle Properties Density Cone of Volume oc kgtm Particles Fraction Fraction Particles in water Column 2400 30 mail 0 0000125 0 067 Sediment Solids 2400 05 0 04 Inflow Particles 2400 2 mgil 8 33333E 07 0 067 Resuspended Particles 2400 0 04 Aerosols in Air 1500 30 pgim 2E 11 0 Transfer Rates Mass Transfer Coefficients mih Yolatilization air side 1 Yolatilization water side 0 01 Sediment water Diffusion 0 0004 Aerosol Dry Deposition Velocity 10 Aerosol Scavenging Ratio 200000 mth Rain Rate 114155251 1 miyear Aerosol Dep mth Sediment Deposition Rate 0 00868056 50 gim day Wet 4 5662E 06 Sediment Resuspension Ra 0 aim d D D amp Page 36 SS results pond tab Rows 92 228 display results from the QWASI water quality model These include mass balances for the chemical in both water and benthic sediment RESULTS Emission kg yr f2 2C Bulk Air Air vapour Aerosols Bulk Water Water Solution Water Particles Pure Phase Chemical Bulk Inflow Inflow Water Inflow Particles Bulk Sediment Sediment Pore Water Sediment Solids Resuspended Solids Rain Amounts Amount Bulk Water Water Solution Water Particles Bulk Sediment Sediment Pore Water Sediment Solids Pure Phase Chemical System Total Mass Balances
18. 0259500 25011 56927 0 Bal 432 1961 5 20 0 2E 10 1 52963E 11 o o0 32482 18771 5472294134 0 0 22 456 1961 5 31 0 1 7E10 1 63547E 11 0 27789 35146 5850918657 0 0 _23 480 1961 6 1 0 14 5E 40 1 71897E 11 o 0 23794 613 6149649959 0 0 24 504 1961 6 2 182 5 14 5E 10 1 7836E 11 o o0 23518 71931 6380880634 0 0 25 528 1961 6 3 0 2 5E 10 1 894E 11 D p 40376 78899 6775843983 0 0 26 9 6 4 0 a a 4549 9 47060994 0 ie Wad eseries PRZM forInput PRZM workarea lt D gt An example of output contained in columns DYN timeseries A DYN timeseries D and then window split to display columns DYN timeseries R DYN timeseries Z is displayed below These columns summarize the daily chemical concentrations for aquatic organism in the food web No es RO S a ess e Ve FV Xe Eu Foodweb Concentrations ng g Time h Year Month Day water Sediment solids Phytoplankton Zooplankton Benthic Forage Forage Fish Piscivorous dissolved only only Invertebrates Fish A B Fish ug L 2 _3 0 1961 5 12 0 0 0 0 0 0 0 _4 24 1961 5 13 18 3983639 144 0809566 78164 026 62030 63277 35014 77677 6133 13 6173 2782 1045 09162 48 1961 5 14 16 2378599 403 9057268 120730 5011 57853 61079 48710 55016 15653 4 15920 994 2770 38887 Beal 72 1961 5 15 13 8524239 623 4601737 120012 5353 50344 87764 45645 77312 23411 4 24086 13 4529 8241 BEI 96 1961 5 16 11 822637 804 7519288 107526 3843 43278 37173 39801 94883 29311 7 30521 786 6281 82178 _8 120 1961 5 17 10 0953714 953 60477
19. 0298 1 902371883 6 1963 31 01575089 25 44404221 20 14524078 10 7234728 7 318989277 1 85038209 EA 1964 42 71648788 40 13788986 30 72669411 16 53958702 11 281847 2 839358091 _8 Sediment 30 99331665 27 12480927 22 31699371 14 01089096 9 574266434 2 425187826 _9 Year Peak 4day 21day 60day 90day Annual 10 1967 31 47005272 29 92352676 21 74877548 12 22539043 8 339946747 2 108692646 Ei 1968 72 00937653 59 31645966 40 47285461 18 68839645 12 72089481 3 19989419 12 1969 33 16246033 29 44874763 23 94294739 13 3897562 9 12955761 2307548285 a3 1970 42 79794312 35 40646744 28 73197437 14 7636652 10 0782671 2 549487591 14 Pore watern 36 5101738 29 27306557 24 50738907 13 74801922 9 399575233 2 377716303 15 Year Peak 4day 21day 60day 90day Annual 16 1973 51 16928864 41 02540588 27 44241142 15 242342 10 4207468 2 637946844 AT 1974 32 97999954 2653116989 2117629814 11 24765491 7 683871746 1 943422794 18 1975 4474221039 3668009567 2693260765 14 24290848 9721645355 2458840132 19 1976 56 2098465 4697554398 3239645386 15 9214344 10 86883926 2739059687 20 1977 90 52404785 7641593933 4025551987 18 97348595 12 9533186 3 272400856 21 1978 57 40812683 4625005722 27 95661354 15 41656113 10 54681301 2671989918 22 1979 33 71849823 27 07398605 21 93412209 14 25864697 9 78395462 2 477102518 23 1980 58 22719193 4670570755 32 38362122 16 56999779 11 33562374 2858613253 24 1981 46 2473526 38 83179092 28 05111313 14 63220787 9 99
20. 1 432 1981 5 30 416666E 06 0006944444 0 0000625 0 008680556 0 001794444 0 3 0 037128102 1879756233 0 015522398 1 583418442 0 0 22 456 1961 5 3 416666E 06 0 006944444 0 0000625 0 008680556 0 001794444 0 3 0 03160312 1608180061 0 012350224 1692974148 0 0 23 480 1961 6 1 416666606 0 006944444 0 000625 0 008680556 0 001794444 0 3 0 026903269 1 377003067 0 009668677 1 779412604 0 0 24 S04 1961 6 2 416666E 06 0 006944444 0 0000625 0 008680556 0 001794444 0 3 0187939647 1 261026997 0 007404119 1 846319628 0 0 25 528 1961 6 3 416666E 06 0 006944444 0 0000625 0 008680556 0 001794444 0 3 0046155507 2236619733 0 019316059 1 960602004 0 0 26 S52 1961 6 4 416666E 06 __0 006944444 0 0000625 0 008680556 0 001794444 0 3 0 039287102 1999012271 0 015372177 2 096950519 0 0 Fal s76 1961 6 sf 4 er mmen 0 0000625 0 008680556 0 001794444 0 3 0033444463 1 711627212 0 012038226 2 204556707 0 0 28 600 1961 6 6 416666E 06 0 00694 444 0 0000625 0 008680556 0 001794444 0 3 0 028474324 1 466964397 0 009222665 2 287879359 0 0 2 624 1981 6 7 4416666E 06 0 006944444 0 0000625 0 008680556 0 001794444 0 3 0 024246321 1258644301 0 006847639 2350706979 0 0 20 648 1961 6 amp 416666E 06 0 006944444 0 0000625 0008680556 0 001794444 0 3 0020649571 1081240584 0 004846935 2 39625885 0 0 31 672 1961 6 9 0 010081693 0 006944444 0 000544323 0008680556 0 007801259 0 3 0033139065 0 980866484 0 00316424 2 427270155 0 0 22 6 1961 6 10 4 33876E 0
21. 1022 Oliver B G and A J Niimi 1988 Trophodynamic Analysis of Polychlorinated Biphenyl Congeners and Other Chlorinated Hydrocarbons in the Lake Ontario Ecosystem Environmental Science and Technology 22 388 397 Parkerton TF 1993 Estimating Toxicokinetic Parameters for Modelling the Bioaccumulation of Non Ionic Organic Chemicals in Aquatic Organisms PhD thesis Rutgers The State University of New Jersey New Brunswick NJ USA Payne SA Johnson BA Otto RS 1999 Proximate Composition of some North Eastern Pacific Forage Fish Species Fish Oceanography 8 159 177 Reid L 2007 pers comm AGRO BASF Model Version 1 16 Excel workbook and Visual Basic model code Canadian Environmental Modelling Centre Trent University Peterborough Ontario K9J 7B8 Canada http www trentu ca cemc Roditi HA Fisher NS 1999 Rates and Routes of Trace Element Uptake in Zebra Mussels Limnology and Oceanography 44 1730 1749 Rosen DAS Williams L et al 2000 Effect of Ration Size and Meal Frequency on Assimilation and Digestive Efficiency in Yearling Stellar Sea Lions Eumetopias jubatus Aquatic Mammals 26 76 82 Russell RW Gobas FAPC Haffner GD 1999 Maternal Transfer and In Ovo Exposure of Organochlorines in Oviparous Organisms A Model and Field Verification Environ Sci Technol 33 416 420 Seth R Mackay D Muncke J 1999 Estimating the Organic Carbon Partition Coefficient and its Variability for Hydrophobic Chemicals
22. 14 93352 90391 37063 51999 34187 51531 33624 6 35452 438 8003 56073 SRi 144 1961 5 18 8 62543778 1074 970183 80230 63547 31714 04962 29281 80141 36629 6 39120 521 9676 38235 10 168 1961 5 19 10 205693 1173 057733 71987 98925 35137 18164 26675 75931 38721 1 41891 534 11315 8057 11 192 1961 5 20 27 038072 1435 326652 152532 9679 93506 25142 63046 36948 47362 8 51264 594 14135 0053 12 216 1961 5 21 23 0802844 1784 477914 _ 185511 8276 83122 19457 72569 92899 58259 2 63083 711 17518 9007 443 240 1961 5 22 19 7122879 2070 471574 14000 4979 71974 19784 65764 42861 66493 8 72400 716 20831 8332 14 264 1961 5 23 16 8459836 2302 959139 154528 7067 61832 62265 57018 28398 72273 9 79356 182 24044 9195 15 288 1961 5 24 14 4064362 2490 145758 133660 5589 53004 93264 48987 85019 76005 2 84300 292 27132 017 _16 312 1961 5 25 12 3299071 2639 00642 114868 1109 45431 66969 42034 92367 78074 6 87576 734 30073 0551 336 1961 5 26 15 1955813 2755 46986 103868 6877 52049 11296 38701 78198 79059 6 89730 105 32902 6031 18 360 1961 5 27 42 5338745 3140 622656 235288 035 146759 0701 97859 66961 90918 1 102787 3 37580 7892 419 384 1961 5 28 38 9404199 3690 165048 301279 5108 139552 5357 118842 1362 107564 120901 93 43273 4452 20 408 1961 5 29 34 3074061 4166 042163 296263 1154 124823 7845 112323 3712 120998 136055 62 48969 7209 Eza 432 1961 5 30 29 4293211 4559 32499 267006 4187 107893 5729 99106 75061 130635 147569 74 54516 7726 22 456 1961 5 31 25 1775451 4874 781763
23. 16 226 Water Inflow 2088652 28 0503988833 183 9559239 4414942173 227 Water Particle Inflow 14446 2271 7286729036 26596 56098 638317 4636 228 h 29 z War is ai Page 29 DYN results pond tab Rows 229 250 display echoes of the input for the Food Web aquatic organism masses lip fraction k rates and feeding table matrix used by the Bioaccumulation model i gt A B D E F G H 230 FOODWEB RESULTS 231 232 Foodweb Characteristics 233 Organism Mass kg Lipid Fraction k1 k2 ke kd km kg kT 234 Phytoplankton 0 0 005 9644 312647 1 021347316 0 0 001 235 Zooplankton 0 0000001 0 02 2377746355 6 993621322 0 041853904 0 33592967 007 236 Benthic Invertebrates 0 00001 0 02 4744 227697 1 395410907 0 065495391 0 16836366 001 237 Forage FishA oof 0 04 422 8297386 0 0704034 0 005953807 0 05973768 000 238 Forage Fish B 0 01 0 06 422 8297386 0 049606681 0 00419509 0 05973768 000 239 Piscivorous Fish 1 0 04 84 36562431 0014256466 0 004757486 0 02993976 000 240 241 Feeding Table 242 Phytoplankton Zooplankton Benthic Invertebrates Forage FishA Forage Fish B Piscivorous Fish 243 Water dissolved 0 0 0 0 0 0 244 Sediment particles 1 0 0 0 0 0 245 Phytoplankton 0 0 1 0 0 0 246 Zooplankton 0 1 0 0 0 0 247 Benthic Invertebrates 0 0 0 0 5 0 5 0 248 Forage Fish A 0 0 0 0 5 0 5 0 249 Forage Fish B 0 0 0 0 0 0 5 250 Piscivorous Fish 0 0 0 0 0 05 DYN results pond tab Rows 251 263 display calculated results of
24. 1819 0 0 002364765 0 002364765 0 006149116 Calculated Nonlipid organic matter fraction in diet kg kg vnd 20 000 4 00000 20 00 20 00 22 0000 Calculated Nonlipid organic matter fraction in gut kg kg vng 0 085672761 0 04 0 133018031 0 133018031 0 152190623 Calculated Water fraction in diet kg kg vwd _ 79 500 96 00000 78 00 78 00 73 0000 Calculated Water fraction in gut kg kg vwg 0 91218542 0 96 0 864617204 0 864617204 0 841660261 Calculated Water fraction in phytoplankton kg kg vwp Calculated Dissolved oxygen concentration mg O2 L Cox 8 964 8 964 8 964 8 964 8 964 8 964 Calculated Oxygen consumption mg O2 day Vox 0 027620153 os iosaass 49 1163489 49 1163489 980 Calculated 78 gt w 4 gt HN AGRO FWModel DYN results pond DYN timeseries DYN yearly SS results pond AEETI amas lt w g HEB gie gdt wew Insert Format Tools Data Window Help AdobePDF Type a queston for hep la gx AA i Ep 85 S 9 E SE SE K 79 Concentration at steady state gikg ww 0 004268951 0 001886765 0 001601368 0 003811208 0 005241391 0 008250697 Calculated 80 BAF at steady state Lkg BAF 7756 654023 3412 251612 2995 171193 6892 645996 9479 160943 14921 55016 Calculated 81 BAF freely dissolved at steady state Ukg 8600 647196 3783 535036 3314 759391 7642 627386 17143251698 26985921181 Calculated 82 BSAF at steady state kg OC kg lipid BSAF 1 14E 01 9 71E 00 1 16E 01 1 06E 01 2 50E 01 Calculated 83 84 85 86 Lipid Equivalent Conce
25. 2 5 39569E 06 7 199 Sediment Transformation 01524065 5 03414E 05 F 200 201 Sediment Burial 0 00732772 2 42042E 06 202 cr 203 Water Outflow 0 00128111 4 23163E 07 204 Particle Outflow 0 00013291 439023E 08 205 ane Maar i ail A E c M E G H ify kK Nig 208 s 206 207 D Values amp Response Times 208 209 D Value Response Time Response Time 210 of Water of Sediment 211 mol Pa h years days hours years days hours 212 Burial 3593591 82 0 0 0 3 28833472 1200 24217 28805 81216 213 Sediment Transformation 74741721 8 0 0 0 0 15810357 57 7078016 1384 987239 214 Sediment Resuspension 14374367 3 0 073231566 26 72952151 641 5085163 0 82208368 300 060543 7201 453039 215 Water to Sediment Diffusion 1670921 82 0 629986041 229 9449048 5518 677716 7 07210391 2581 31793 61951 63026 216 Sediment Deposition 30096331 5 0 03497627 12 76633863 306 3921272 0 39263698 143 312498 3439 499959 217 Water Transformation 26632098 2 0 039525892 14 42695041 346 2468098 0 0 0 218 Volatilization 4 14540877 253933 3229 92685662 85 2224455908 0 0 0 219 Volat air side 414540918 220 Volat water side 41773045 6 221 Water Outflow 2088652 28 0503988833 183 9559239 4414942173 222 Water Particle Outflow 216693 587 4857815309 1773 102588 42554 46211 223 Rain Dissolution 0 11415525 11 4166666667 1E 11 224 Wet Particle Deposition O 11415525 11 4166666667 1E 11 225 Dry Particle Deposition 32043 3024 32 85109036 11990 64798 287775 55
26. 2247 14 38877758 5251 903816 126045 6916 Dry Particle Deposition 32043 3024 32 85109036 1990 647998 2877755516 Water Inflow 208865228 0 503988833 183 9559239 4414 942173 Water Particle Inflow 14446 2391 7286722964 26596 53882 638316 9317 Page 38 SS results pond tab Rows 230 250 display echoes of the input for the Food Web aquatic organism masses lip fraction k rates and feeding table matrix used by the Bioaccumulation model A FOODWEB RESULTS Foodweb Characteristics Organism Mass kg Lipid Fraction k1 k2 ke kd km kg kT Phytoplankton 0 0005 9644 312647 1021347316 0 0 0 0A 11213473 Zooplankton 0 0000001 002 23777 46355 6993621322 0 048539 0 33592967 O 00126097 7 0480849 Benthic Invertebrates 0 00001 O02 4744 227697 1395410907 0 06549539 0 16336366 O 000502 14659263 Forage Fish A 0 0 0 04 422 8297386 0 0704034 0 00595381 0 05973768 O 00063048 0 082662 Forage Fish B 0 01 0 06 4228297386 0049606681 0 00419509 0 05973768 O 00063048 0 0601066 Piscivorous Fish 1 004 8436562431 0014256466 0 00475749 002993976 0 0 00251 0 021524 Feeding Table Phytoplanktc Zooplankton Benthic Invertet Forage Fish A Forage Fish Piscivorous Fish Water dissolved 0 0 0 0 0 Sediment particles 0 0 1 0 0 0 Phytoplankton 0 1 0 0 0 0 Zooplankton 0 0 0 05 05 0 Benthic Invertebrates 0 0 0 05 05 0 Forage Fish A 0 0 0 0 0 05 Forage Fish B 0 0 0 0 0 05 Piscivorous Fish 0 0 0 0 0 0 SS results pond tab Rows 251 263 display calcu
27. 232734 7769 92627 09826 85579 76433 136799 155678 36 59835 0704 23 480 1961 6 1 21 5582556 5123 674285 200606 8726 79461 94202 73552 68943 140104 160919 68 64888 0964 24 504 1961 6 2 21 3082921 5316 327635 175613 9479 76196 64357 64804 72924 141267 163955 8 69681 969 Page 31 An example of output contained in columns DYN timeseries A DYN timeseries D and then window split to display columns DYN timeseries AA DYN timeseries AJ is displayed below These columns display the daily concentrations in the dissolved water column benthic sediment and pore water along with the total daily input of chemical mass total daily output of chemical mass daily water inflow rate daily water outflow rate and net daily water volume flux A Bem ce Enel A AL A ia 1 ltime h Year Month Day N Sediment solids only c porewater Suminput kg SumLoss kg Water inflow Water Net water ng g g m3 h outflow m3 h m3 h Ea 0 1961 5 12 0 0 0 5 5 0 Ee 24 1961 5 13 18 39836386 0 144080957 0 069785105 0 439666399 0 439666465ff 10 08333 10 08333 0 a 48 1961 5 14 16 23785987 0 403905727 0 195630319 0 454831194 0 454831721 5 5 0 72 1961 5 15 13 8524239 0 623460174 0 301970743 0 454831194 0 454831721 5 5 0 7 96 1961 5 16 11 82263701 0 804751929 _0 389778768 0 454831194 0 454831721 5 5 0 8 120 1961 5 17 10 09537143 0 953604771 9 461875119 0 454831194
28. 373328863 0 0 40 168 1961 S 19 416666E 06 0 006044444 0 000625 0 008680556 0 001794444 0 3 04715464 0651874198 0 003860419 0 407393913 0 0 1 192 1961 5 20 4 16666E 06 0 006944444 0 0000625 0 008680556 0 001794444 0 3 0 03456618 1 727018584 0 016888687 0 498477888 0 0 12 216 1981 5 24 416666E 06 0 006944444 0 0000625 0 008680556 0 001794444 0 3 0 029414053 1 4742205 0 013882886 0 619725421 0 0 33 240 1961 5 22 416666E 06 0 006944444 0 0000625 0 008680556 0 001794444 0 3 0 025031535 1259094492 0 011335629 0 719058826 0 0 44 264 1961 5 23 416666E 06 0 006044444 0 000625 0 008680556 0 001794444 0 3 0 021303633 1 076013362 0 009178214 0 799799966 o 0 As 288 1961 5 24 4 16666E 06 0 006944444 0 0000625 0 008680556 0 001794444 0 3 0 018132534 0 920190725 0 007352208 0 864808436 0 0 a8 312 1961 5 25 416666E 06 0 006944444 0 0000625 0 008680556 0 001794444 0 3 0015435043 0 787555368 0 005807914 0 916506598 0 0 a7 336 1961 5 26 0015397385 0006944444 0 00068125 0008680556 0 012980024 0 3 0 282811488 0 970596251 0 004503065 0 956953453 0 0 a8 30 1961 5 27 0003389054 0006944444 0 000271146 0008680556 0 001381797 0 3 0 029731371 2716791033 002547187 1 090714052 0 0 49 384 1961 S 28 0 001372436 0 006944444 0 000176771 0 008680556 0 000540446 0 3 0 030438499 2487264205 0 022670049 1 28156589 0 0 20 408 1961 5 29 S 276E 05 0 006944444 7 57813E 05 0 008680556 0 001759132 0 3 0 042492527 2191337009 0 01918162 1 446824346 0 0 2
29. 6 87 looks like B c D l E l F G F Steady state Mass Balance E 90 total mass of chemical into water 9 dMwi dt 1 62E 00 Calculated _91 total mass of chemical out of water 9 dMwo dt 1 62E 00 Calculated _92 total mass of chemical into sediment g dMsi dt 7 86E 01 Calculated _93 total mass of chemical out of sediment g dMso dt 7 86E 01 Calculated 94 5 _96 Steady State Evaluation Steady State Results from AGRO _97 total mass of chemical in water 9 Mw 11 06 Calculated _98 total mass of chemical in sediment g Ms 39 59 Calculated 99 100 Concentrations 101 freely dissolved concentration of chemical in water g L Cwdo 4 9868E 07 Caloulated 102 concentration of chemical in water g L Cw 5 5294E 07 Caloulated 103 concentration of chemical in sediment g kg dry Cs 3 2988E 04 Calculated 104 concentration of chemical in sediment solids g kg dry Cssolids 3 2973E 04 Calculated 105 concentration of chemical in sediment normalized with orga Csoc 8 2470E 03 Calculated 106 concentration of chemical in pore water g L Cwdp 1 8717E 07 Calculated 107 concentration of chemical in phytoplankton g kg ww Cp 4 2890E 03 Caloulated 108 concentration of chemical in zooplankton g kg ww cz 1 8868E 03 Calculated 109 concentration of chemical in Benthos g kg ww Cb 1 6014E 03 Caleulated 110 concentration of chemical in forage fish A g kg ww Cffa 3 8112E 03 Calculated 411 concentration of chemic
30. 6 0 006944444 6 2787E 05 0 008680556 0 001794559 0 3 0 022240408 1 168028363 0 005578557 2 462823059 0 0 33 720 1961 6 11 416666E 06 0 006944444 0 0000625 0 008680556 0 001794444 0 3 0019054415 1 004534551 0 003750887 2 500019031 0 0 a 744 1961 6 12 416666E 06 0 006944444 0 0000625 0 008680556 0 001794444 0 3 0 01623345 0 865092688 0 002213726 2 82283208 0 0 35 768 1961 6 13 4 166666 06 0 006944444 0 000625 0 008680556 0 001794444 0 3 0 013833499 0 746279294 0 000925293 2 534693729 0 0 2 792 1961 6 14 416666E 06 0 006944444 0 0000625 0 008680556 0 001794444 0 3 0 011791662 0645015985 0 00015195 2 537120983 0 0 37 816 1981 6 15 4416666E 06 0 006944444 0 0000625 0 008680556 0 001794444 0 3 0 010054426 0558684289 0 001049923 2531756296 0 0 Ea 840 1961 6 16 416666E 06 0 006944444 0 0000625 0 008680556 0 001794444 0 3 0008576315 0 485056925 0 001795771 2 519908786 0 0 339 864 1961 6 17 416666E 06 0 006944444 0 0000625 0 008680556 0 001794444 0 3 0007318592 0 42223935 0 002412576 2 502689134 0 0 40 888 1961 6 4 16666E 06 0 006944444 0 0000625 0 008680556 0 001794444 0 3 0 006248341 0 268620041 0 002919962 2 481039288 0 0 Page 33 The following table summarizes the columns in the columns of the DYN timeseries tab Table 6 Summary of timeseries output parameters included with the model Time h Year From PRZM3 12 Month From PRZM3 12 Day From PRZM3 12 Emission kg year if it occurs at this out
31. 9668121 2526949883 25 1982 51 69116211 4257536697 30 68570709 14 87016392 10 1333828 2560455799 26 1983 46 56212997 40 17373657 2760877991 14 2075367 9 6854496 2447705746 27 1984 46 14097214 42 36930084 31 020895 15 72977829 10 74557114 2 709403038 28 1985 40 90264511 32 82274246 24 83531189 12 7513876 8 761656761 2 217543602 29 1986 30 98724174 24 91360474 20 51253891 12 08961105 8 243132591 2 085828304 30 1987 31 25631714 25 13958168 21 07585144 12 667 7243 8 728728294 2 209665537 31 1988 48 05846405 40 38293076 30 06317139 15 91494083 10 85391903 2735218048 32 1989 30 9382782 24 92571449 19 96682739 11 05440617 7 610530376 1 928925633 33 1990 61 74824142 50 65732574 32 09967804 15 67603207 10 6972456 2702696323 Moa lt A B c D E F N P ry 40 1985 3 481950998 3 474330187 3 306331873 2 759078264 2 332169056 0 74858433 E 41 1986 3 265149117 3 258912802 3 135131121 2 592978477 2 188745499 0 702758729 42 1987 3 235586166 3 228167534 3 078638315 2 670116901 2 289322615 0 742867887 43 1988 4 564675808 4 55505085 4 333564281 3477374792 2 8973279 0 91848278 44 1989 2936492682 2 930020094 2788197756 2 360131502 2 009531975 0 652857423 45 1990 4476986885 4 468397617 4 254661083 3 457499266 2 871734619 0 90665102 46 AT 48 Steady state Results The results presented in the SS results pond tab are in the same format as the QWASI model with the foodweb results output at the bottom The followin
32. Emissions worksheet Enter the number of years of the simulation in cell AGRO B 14 To output daily enter 24 in cell AGRO B15 Page 25 Use the calculate timestep button to fill in the appropriate timestep for the modelled system in cell AGRO B16 Select the Outputs in separate file option Cell AGRO P2 will read 1 if steady state mode is selected or 2 if dynamic mode is selected Cell AGRO P3 should be set to TRUE so that the Bioaccumulation model is run in addition to the QWASI water quality model Also cell AGRO P4 should also be set to True so the timestep set as constant for the entire simulation otherwise the model attempts to recalculate the timestep required at each iteration Examine cells AGRO B4 AGRO B8 to make sure that the correct chemical environmental scenario foodweb and dynamic simulation model options are selected Click the Run AGRO button to run the simulation To monitor the progress of a simulation each simulation day number is displayed on the lower left hand corner as it is being processed Upon completion of a simulation Cells AGRO B24 AGRO B33 display the model run time and simulation mass balance Step 8 Examine the output from the simulation The output from the dynamic mode simulation is displayed in tabs DYN results pond DYN timeseries and DYN yearly The output from the steady state mode simulation is displayed in the tab named SS result
33. Page 40 Organic Chemicals in Aquatic Food webs Application to Lake Ontario Ecological Modelling 69 1 17 Gobas FAPC Mackay D 1987 Dynamics of Hydrophobic Organic Chemical Bioconcentration in Fish Environmental Toxicology and Chemistry 6 495 504 Gobas FAPC Muir DCG Mackay D 1988 Dynamics of Dietary Bioaccumulation and Faecal Elimination of Hydrophobic Organic Chemicals in Fish Chemosphere 17 943 962 Gobas FAPC McCorquodale JR Haffner GD 1993a Intestinal Absorption and Biomagnification of Organochlorines Environmental Toxicology and Chemistry 12 567 576 Gobas FAPC Zhang X Wells R 1993b Gastrointestinal Magnification The Mechanism of Biomagnification and Food Chain Accumulation of Organic Chemicals Environmental Science and Technology 27 2855 2863 Gobas FAPC Wilcockson J et al 1999 Mechanism of Biomagnification in Fish under Laboratory and Field Conditions Environmental Science and Technology 33 133 141 Gobas FAPC Maclean LG 2003 Sediment Water Distribution of Organic Contaminants in Aquatic Ecosystems The Role of Organic Carbon Mineralization Environmental Science and Technology 37 735 741 Gordon DCJ 1966 The Effects of the Deposit Feeding Polychaete Pectinaria gouldii on the Intertidal Sediments of Barnstable harbor Limnology and Oceanography 11 327 332 Koelmans AA Anzion SFM Lijklema L 1995 Dynamics of Organic Micropollutant Biosorption to Cyanobacteria and Detritus Environmenta
34. RZM 8 Run Food Web TRUE Run AGRO 9 Run model in 10 C steady state mode 11 Z SOynamiomode PRZM Inputs Calculate Timestep 13 14 Total Time of simulation years T p Recalc timestep 15 Output every h 24 at start T timestep h 3 p Data Source For normal l Dw k 47 Number of iterations approx 2922 ee 18 Steps per day 8 uses GetPRZM Files as data source 19 Using data from GetPRZM_Files is recommended for Dynamic Runs P C Outputs in newworkbook defaut Turn this option off to experiment with modified values in PRZM forinput GH Outputs in this workbook FALSE nN 1 Outputs in separate file Model start time 8 28 2007 13 47 01 5 Model end time 8 28 2007 13 47 04 Model run time 7 28 Model Mass in 9 PRZM forInput M 4 gt gt AGRO lt 5 Select either dynamic mode or steady state mode If Steady state mode is selected then the emission scenario automatically changes to Constant Inputs as defined on the Emissions tab When the dynamic mode is selected a message box appears to remind the user to select the appropriate emissions scenario as the PRZM based scenario is NOT automatically selected when the model runs in dynamic mode DYNAMIC EMISSION SCENARIO CHECK Please confirm that the type of dynamic emission scenario you wish to run is either Constant Inputs or PRZM Inputs by checking cell B12 Choose the appropriate Emission Scenario on the
35. Solids bulk media Environment AG Fraction _OC_ Fraction of organic carbon in Water water column bulk media Default value 0 067 Environment AH Fraction_OC_ Sediment Fraction of organic carbon in benthic sediment bulk media Default value 0 014 Environment AI Environment AJ Fraction_OC_ Inflow Fraction_OC_ Resuspended Fraction of organic carbon in inflow water bulk media Default value 0 067 Fraction of organic carbon in resuspended sediment Default value 0 014 Page 14 Column Parameter Units Notes Environment AK Flows Label for columns associated with flow rates in various bulk media Environment AL River_Water_ m h Flow rate of inflow water into Inflow water body Default value 5 Environment AM Water _Outflow_ mh Flow rate of outflow water out of Rate the water body Default value 5 Environment AN Deposition_Rate g m Deposition rate of solid particles to benthic sediment Default value 80 Environment AO Burial_Rate_ g m Burial rate of solid particles in Solids benthic sediment Default value 40 Environment AP Resuspension_ g m Resuspension rate of solid Rate particles out of the benthic and back into the water column Default value 40 Environment AQ Mass Transfer Label for columns associated with Coefficients Mass transfer Coefficients between various bulk media Environment AR Aerosol_Dry_ m h De
36. User s Guide for CEMC_SFU_AGRO v1 2 The Combined Canadian Environmental Modelling Centre Water Quality Model and the Simon Fraser University Food Web Model Version 1 2 September 18 2007 TABLE OF CONTENTS DN CrOCUC CON iieeisisuineservedensciikcussinnesvans Qanenusussuacedesnaiaesncanaseanuans System Requirements Computation Flow Overvie V Step 1 Import Daily Mass Loading Data Generated by PRZM3 12 for use in the COW IAS T MOOS sa Ger 4 Step 2 Enter or Select Chemical Input Parameters 6 Step 3 Enter or Select Environment Input Parameters 10 Step 4 Confirm the Emissions Parameter cccccesssecesseceeeeceeneeceeeeeeceeeeeeeeeeesaes 17 Dynamic EMISSIONS gggg eae tal ete eats 17 Constant EMISSIONS a a a ace E E E 66 18 Step 5 Review the FWModel tab 19 Step 6 Review the Foodweb tab ijcssscescaciicscdeasscnssaccvenhecesannceasstened ca cputeca ents coatacupeacts 24 Step 7 Confirm Run Parameters and Run Simulation p 25 Step 8 Examine the output from the simulation 26 Dynamic Results sonnes nin annaa eeaeee a A EE a EEA EAE 26 Steady state RESULIES nesti ese eane 35 Referents vesera aa 40 TABLES Table 1 Summary of daily input values for AGRO model derived from PRZM OUtP t ene onerose sosse ENE a EEES 5 Table 2 Chemical Parameters for Type I Partitioning Simulations 7 Table 3 Chemical Pa
37. al in forage fish B g kg ww Cffb 5 2414E 03 Calculated 112 concentration of chemical in piscivorous fish A g kg ww Cpfa 8 2507E 03 Caloulated 113 T4 concentration of chemical in prey item for Zooplankton g kg PCDIZ 0 00428895 Calculated 115 concentration of chemical in prey item for Benthos g kg foot PCDIb 0 00032988 Calculated 116 concentration of chemical in prey item for forage fish A g kg PCDIffa 0 00174407 Caloulated 117 concentration of chemical in prey item for forage fish B g kg PCDIffb 0 00174407 Calculated 118 concentration of chemical in prey item for piscivorous fish A PCDipfa 0 0045263 Calculated 119 120 BAF at steady state BAF logBAF 121 122 Benthos 2995 17119 3 47642165 123 Forage Fish A 6892 646 3 83838597 Calculated H 124 Forage Fish B 9479 16094 3 9767699 Calculated 125 Piscivorous Fish A 14921 5502 4 17381394 Calculated 126 Note the steady state evaluation is based on constant chemical emission with the loading amount entered in cell C43 427 Ma gt Food Web input values for the Bioaccumulation model are included in columns FWModel G through FWModel L The food web structure is included in rows 5 through 13 The food web aquatic organism individual parameters are included in rows 18 38 The below page displays the recommended values for these rows _ oe KT M N o P ala E _5 Food Web Structure Action _6 Species oplanktcZooplanktor_ Benthos _ Forage Fish A Forage Fish B__Piscivorous Fish A _T Sediment
38. and its ambient environment can be described by a single equation for a large number of aquatic organisms For each aquatic organism this equation estimates bioaccumulation as a function of intake of pesticide via respiration and ingestion of prey and outflow of pesticide via excretion metabolism to a daughter product and respiratory exhalation Page 3 System Requirements The AGRO modeling system is designed to run using MicroSoft Excel 2003 with at least 10 MB of hard disk space Computation Flow Overview Using Visual Basic for Applications VBA as the programming language allows for the AGRO modeling system to function within the framework of EXCEL spreadsheets thus facilitating the entry and viewing of both the input parameters and the display and analysis of the subsequent output The following steps detail how to run the AGRO modeling system To run the AGRO modeling system in dynamic mode Step 1 Import Daily Mass Loading Data Generated by PRZM3 12 for use in the QWASI model Go to the Get_PRZM_ Files Tab Here is an example of a Get_PRZM_Files page Collected Data for verification against textfiles 2 Field Area Ha SUA EE a Ea ero soil a loss app rate pet runoff flux tonnes Ha ero pest flux 3 135 132 1961 5 12 1 0 99 5 0 0 0 0 0 136 133 1961 6 n 0 0 0 0 122 1 72E 08 0 002343 1 019E 10 1 65 137 134 1961 5 14 0 0 0 0 0 0 0 0 138 135 1961 5 15 0 0 0 0 0 0 0 0 139 136 1961 5
39. b i Organism Mass kg Pie kl k2 ke kd km kg kT 4 Phytoplankton o 0 50 9 6443E 03 1 02135 o o 0 01 112135 5 Zooplankton 100E 07 2 23777 4636 6 99362 0 04185 0 33593 0 0 01261 7 04808 6 Benthic Invertebrates 1 00E 08 2 4744 2277 1 39541 0 0655 0 168364 O 0 00502 1 46593 FormgeFihA pao OL Ate 422 829739 0 0704 0 00595 0 059738 0 0 0063 0 08266 B Forage FishB 0 016 422 829739 0 04961 0 0042 0 059738 0 0 0063 0 06011 9 Piscivorous Fish i 4 843656243 0 01426 0 00476 0 02994 0 0 00251 0 02152 10 Feeding Matrix Benthic Forage Forage Piscivorous Phytoplankton Zooplankton jwertebrates Fish A FishB_ Fish Zooplankton Benthic Invertebrates Y ripigielelelalaisislalelals S DE o RBBS8B358355323258 D b eC gt AGRO Chemical Z Environment GetPRZN_Fies Emssons Foodweb lt FWMode iD VIFFESUSBBma Di STGseH D YNIVERH SS EEUESOnG AE LEATTTNPA lt Page 24 Step 7 Confirm Run Parameters and Run Simulation Go to the AGRO tab B u am E ES G o Q Eg CEMC Agrochemical Model F 2 1 16 05 BETA version Steadystate or dynamic 2 1 ss 2 dyn 3 Simulation Name Updated Foodweb calcs from Aug3 Gobas model run foodweb TRUE 4 Run for Chemical testazole Additional Comments BETA version mods by LKR CEMC keep timestep constant TRUE 5 in Environment Modeling for EFED Repot 6 for Foodweb Agro Pond Foodweb 7_ Emission Scenario DynamicfromP
40. ccumulation model are automatically summarized based on input values entered in the Chemical tab An example of columns FWModel A through FW Model G rows 4 10 looks like 1 Environmental Fate Model EE Model Input Parameters _4 Chemical Specific Properties Symbol Value Action Alternative Value Ei Molecular Weight MolW 345 6 Enter on Chemical Tab _6 Henry s Law Constant Pa m3 mol H 2 39E 06 Calculated from Chemical Tab 7_ log Kow of the chemical log Kow 5 1 Enter on Chemical Tab 8 chemical half life in water days hlw 10 Enter on Chemical Tab 9 chemical half life in sediment days his 40 Enter on Chemical Tab 10 log transformed organic carbon water partition coefficientn log Koc 4 644068044 Calculated from Chemical Tab original 0 35 Kow 11 a gt Page 19 For columns FWModel A through FWModel G rows 12 31 the chemical parameters required by the Bioaccumulation model are automatically summarized based on input values entered in the Environment tab The following additional environmental input parameters along with their recommended values are required by the Bioaccumulation model Table 5 Additional Environmental Input parameters in FW Model Input Parameter Dissolved oxygen saturation Disequilibrium factor POC unitless Disequilibrium factor DOC unitless POC octanol proportionality constant unitless DOC octanol proportionality constant unitless pH of water water temperatu
41. concentrations the food web model estimates bioaccumulation of pesticide in aquatic organisms The water quality model component of the AGRO modeling system is the Quantitative Water Air Sediment Interaction QWASI Fugacity model developed by Mackay et al at the Canadian Environmental Modelling Centre Mackay Joy and Paterson 1983 Mackay Paterson and Joy 1983 Mackay and Diamond 1989 Webster Lian and Mackay 2005 The QWASI model is based on a single receiving water body of user defined size and depth with an active sediment layer This model can be run in dynamic mode which involves daily input of water from field runoff dissolved pesticide in field runoff eroded sediment pesticide sorbed to eroded sediment pesticide emissions resulting from application drift and rainfall These dynamic daily inputs are generated outside of the AGRO modeling system using the EPA PRZM3 12 The AGRO modeling system has built in capability to import annual mass loading files output from PRZM3 12 and convert these values into the units and configurations needed by the QWASI Fugacity model The food web model in AGRO is based on the Bioaccumulation model developed by Frank A P C at Simon Fraser University Gobas 2007 The Bioaccumulation model is a dynamic or time dependent interpretation of Arnot and Gobas 2004 bioaccumulation equation This model is based on the assumption that the exchange of hydrophobic organic chemicals between the organism
42. ction QWASI Model to the Great Lakes Report to the Lakewide Management Plan LaMP Committee CEMC Report 200501 Trent University Peterborough Ontario Weininger D 1978 Accumulation of PCBs by Lake Trout in Lake Michigan PhD thesis University of Wisconsin Madison WI USA Xie WH Shiu WY Mackay D 1997 A Review of the Effect of Salts on the Solubility of Organic Compounds in Seawater Marine Environmental Research 44 4 429 444 Page 44
43. d PRZM workarea This worksheet is used by the AGRO Visual Basic module to store internal variable values during processing It is always cleared at the end of each instance of retrieval of PRZM files Page 5 Step 2 Enter or Select Chemical Input Parameters Go to the Chemical tab The chemical parameters are defined here A database of chemical parameters is listed in columns Chemical Q through Chemical AK Here is an example of columns Chemical Q through Chemical AK in the Chemical Tab 1 Test Chenoa 2 Food Web Sensitivity Analysis 300 3 Modeling for EFED Report 300 More chemicals can be added to this database or existing chemicals can be modified by entering data into the appropriate columns in the tan shaded areas The names of the newly added chemicals will appear in the list box entitled Select a Chemical in columns Chemical D Chemical F of this tab Page 6 To enter a new chemical with Type I partitioning into the chemical database enter the following chemical information into the first available empty row Table 2 Chemical Parameters for Type I Partitioning Simulations Column Parameter Units Notes Chemical Q Chemical The row number plus 1 This Identifier will be used as the chemical number identifier Chemical R Chemical Name of chemical of interest Name Chemical S Chemical Type 1 for Type I partitioning and 2 for Type II pa
44. d Particles Wate 8299 84245 3458 268106 32 Sediment Water 4955 13062 2064 637675 33 Resuspended Particles We 4955 13062 2064 637675 734 Acrosol Air 3 86849E 13 35 Organic Carbon Water Ko 51615 94188 EA 37 Halt ives Half life Rate Constant hours 1h 240 0 002888113 960 0 000722028 i f parameters A Be c ji D E m i mass i Lijs K T u a 4 ENVIRONMENT PARAMETERS a 5 48 Lake Data w w Area Depth Volume m m 50 Water 10000 2 20000 51 Sediment 10000 oot 100 oa 53 Inflow Outflow se mth mith 55 Water 5 5 _56 Suspended Particles 4 16666E 06 0 0000625 3 57 58 Sediment Subcompartment Volumes m 58 Solids 50 80 Pore Wwater 50 Ta ez 63 Particle Properties er 65 Density Cone of Volume oc 88 kgm Particles Fraction Fraction _67 Particles in Water Column 2400 30 mgl 0 0000125 0 067 _68 Sediment Solids 2400 05 0 04 68 Inflow Particles 2400 2 mgl 8 330096 07 0 087 _70 Resuspended Particles 2400 0 04 _71_ Aerosols in Air 1500 30 pgtm et n o z z 74 Transfer Rates os _76 Mass Transfer Coefficients mih 27 Volatiization air side 1 _78 Volatilization water side 0 01 _73 Sediment water Diffusion 0 0004 80 Aerosol Dry Deposition Velo 0 82 Aerosol Scavenging Ratio 200000 lt 85 mth 86 Rain Rate o 1 miyeat Aerosol Depe m h _87 Sediment Deposition Rate 0 008680556 50 gim day Wet 0 88 Sediment Resuspension Rat
45. erosol Deposition Dry 0 0 Absorption 0 0 Yolatilization 4 2006E 09 138749E 12 Sediment Deposition 0 03049682 1 00734E 05 Sediment Resuspension 0 0049026 1 61938E 06 Water to Sediment Diffusion 0 00169316 _ 59267E 07 Sediment to water Diffusion 0 00056989 1 88242E 07 Water Transformation 002698649 8 91392E 06 Sediment Transformation 0 02549183 8 42022E 06 Sediment Burial 0 00122565 4 04845E 07 Water Outflow 0 00211645 6 99084E 07 Particle Outflow 0 00021958 7 25286E 08 7 D alues amp Response Times D Value Response Time Response Time of Water of Sediment molfPah years days hours years days hours Burial 359359182 0 0 O 328833472 1200 24217 28806 Sediment Transformation 747417218 0 0 O 015810357 57 7078016 1385 Sediment Resuspension 14374367 3 O 073231566 26 72952151 6415085163 0 82208368 300 060543 7201 5 Water to Sediment Diffusion 167092182 O 629986041 229 9449048 5518 677716 7 07210391 258191793 61952 Sediment Deposition 300963315 0 03497627 12 76633863 306 3921272 0 39263698 143 312498 3439 6 Water Transformation 26632098 2 0 039525892 14 4269504 346 2468098 0 0 0 Yolatilization 414540877 253933 3229 9268566285 2224455903 0 0 0 Volat air side 414540318 Volat water side 41773045 6 Water Outflow 208865228 0 503988833 183 9559239 4414 942173 Water Particle Outflow 216693 587 4857815309 1773 102588 42554 4621 Rain Dissolution 476961251 2207471086 805 7269465 19337 44672 Wet Particle Deposition 73158
46. ficient unitless Kaw 5 69E 10 Calculated 71 temperature dependence of Henry law constant H In H Tw 1 35E 01 Calculated 72 fraction of freely dissolved chemical in water unitless fDW 90 46 Calculated 73 fraction of freely dissolved chemical in sediment unitless fDS 0 05 Calculated 74 settling of sediment solids flux kg day SetFlux 2 00E 01 Calculated 75 burial flux of sediment solids kg day BurFlux 5 00E 03 Calculated 76 temperature dependence of Henry law constant H H Tw 1 37213E 06 Calculated 77 sediment soids mass balance and resuspension flux kg day ResFlux 4977 60751 Calculated 78 water volume of lake m 3 Vw 2 00E 04 Calculated 79 sediment volume m 3 Vs 1 00E 02 Calculated 80 Octanol water partition coefficient unitless Kow 1 26E 05 Calculated 81 organic carbon water partition coefficientn L Kg Koc 4 41E 04 Calculated 82 Bioavailable solute fraction unitless co 0 901868644 Calculated 83 Concentration of particulate organic carbon kg L Xpoc 0 00000201 Calculated 84 Concentration of dissolved organic carbon kg L Xdoc 2 01E 06 Calculated 85 volume of sediment solids kg Vss 1 20E 05 Calculated 86 volume of sediment solids L Vssl 5 00E 04 Calculated 87 volume of pore water in sediment L Vws 5 00E 04 Calculated 8 gt m AGRO Z Chemical Environment GetPRZM_Files Emissions Foodweb FWModel Page 21 1 An example of columns FWModel A through FW Model G rows 6
47. g series of pages display an example of output contained in the SS results pond tab Page 35 SS results pond tab Rows 1 44 display the model version number scenario descriptors and echoes of the che mical input parameters E F G H 1 B c D a CEMC SFU Agrochemical Model Version 12 Simulation ID Enter simulation name 3 Additional Comments Enter user name or additional information 7 Date 18 09 2007 Time 10 35 51 AMI Chemical Test Chemical Environment Modeling for EFED Report CHEMICAL PARAMETERS Phgsical Properties Chemical Type 1 Molar Mass 345 6 gimol Temperature vec 290 15 K LogKow 54 Solubility 179 gim 0 005179398 molim Vapour Pressure 12399E 08 Pa Melting Point 125 C 398 15 K Fugacity Ratio 0 07986781 Sub cooled Liquid Y P 15524E 07 Pa Henry s Law Constant 2 3939E 06 Pam tmol Partition Coefficients Dimensionle Likg Air Water Kaw 9 9236E 10 Suspended Particles Wwater 8299 894345 3458 268106 Sediment Water 4955 13042 2064 637675 Resuspended Particles Water 4955 13042 2064 637675 Aerosol Air 3 8649E 13 Organic Carbon Water Koc z 51615 94188 Half lives Half life Rate Constant hours th Water 240 0 002888113 Sediment 9360 0 000722028 ENVIRONMENT PARAMETERS v Marn SS results pond ms a SS results pond tab Rows 44 88 display echoes of the environment input ENVIRONMENT PARAMETERS Lake Data Area Depth Volume m m m Water 10000 2 20000 Sediment 10
48. gy and Chemistry 23 10 2343 2355 Berg DJ Fisher SW Landrum PF 1996 Clearance and Processing of Algal Particles by Zebra Mussels Dreissena polymorpha Journal of Great Lakes Research 22 779 788 Branson DR Blau GE et al 1975 Bioconcentration of 2 2 4 4 Tetrachlorobiphenyl in Rainbow Trout as Measured by an Accelerated Test Transactions of the American Fisheries Society 104 785 792 Bruner KA Fisher SW Landrum PF 1994 The Role of the Zebra Mussel Dreissena polymorpha in Contaminant Cylcing II Zebra Mussel Contaminant Accumulation from Algae and Suspended Particles and Transfer to the Benthic Invertebrate Gammarus fasciatus Journal of Great Lakes Research 20 735 750 Burkhard LP 2000 Estimating Dissolved Organic Carbon Partition Coefficients for Nonionic Organic Chemicals Environmental Science and Technology 34 4663 4668 Ernst W Goerke H 1976 Residues of Chlorinated Hydrocarbons in Marine Organisms in Relation to Size and Ecological Parameters I PCB DDT DDE and DDD in Fishes and Molluscs from the English Channel Bulletin of Environmental Contamination and Toxicology 15 55 65 Fisk AT Norstrom RJ et al 1998 Dietary Accumulation and Depuration of Hydrophobic Organochlorines Bioaccumulation Parameters and their Relationship with the Octanol Water Partition Coefficient Environmental Toxicology and Chemistry17 951 961 Gobas FAPC 1993 A Model for Predicting the Bioaccumulation of Hydrophobic
49. hemical g mol Molecular weight of chemical Molecular Mass Chemical AD Chemical days Aqueous aerobic half life Half life in Water Chemical AE Chemical days Aqueous anaerobic half life Half life in Sediment Chemical AG Air Water dimensionless Partition Coefficient Kaw Chemical AH AerosolWater Kaw dimensionless Chemical AI Sediment L kg Water Chemical AJ Suspended L kg Sediment Water Chemical AK Resuspended L kg Sediment Water Now go to the list box Select a Chemical in columns Chemical D Chemical F Highlight the chemical of interest and click the OK button This will cause the appropriate values of the selected chemical to appear in column Chemical B where the user can easily review them and where the model actually reads the values used in the upcoming simulation If the user wishes to make temporary changes to a chemical data these can be made directly in column Chemical B without affecting the original values in the database although these value will be overwritten each time the OK button is clicked Page 8 Here is an example of columns Chemical A through Chemical N Rows 1 21 in the Chemical tab A Chemical properties 2 Chemical Name 3 Chemical Type Ea Property Temperature C i 5 Molecular Mass g mol Tell Melting Point C Solubility g m Vapour Pressure Pa Partitioning Select a Chemical testazole Fo
50. iment Interaction Fugacity Model to the Dynamics of Organic and Inorganic Chemicals in Lakes Chemosphere 18 1343 1365 Mackay D Joy M Paterson S 1983 A Quantitative Water Air Sediment Interaction QWASI Fugacity Model for Describing The Fate of Chemicals in Lakes Chemosphere 12 981 997 Mackay D Paterson S Joy M 1983 A Quantitative Water Air Sediment Interaction QWASI Fugacity Model for Describing the Fate of Chemicals in Rivers Chemosphere 12 1193 1208 Mayer LM Weston DP Bock MJ 2001 Benzo a pyrene and Zinc Solubilization by Digestive Fluids of Benthic Invertebrates A Cross Phyletic Study Environmental Toxicology and Chemistry 20 1890 1900 McCarthy JF Jimenez BD 1985 Reduction in Bioavailability to Bluegills of Polycyclic Aromatic Hydrocarbons Bound to Dissolved Humic Material Environmental Toxicology and Chemistry 4 511 521 McCarthy JF 1983 Role of Particulate Organic Matter in Decreasing Accumulation of Polynuclear Aromatic Hydrocarbons by Daphnia magna Archives of Environmental Contamination Toxicology 12 559 568 Morrison HA Gobas FAPC et al 1996 Development and Verification of a Bioaccumulation Model for Organic Contaminants in Benthic Invertebrates Page 42 Environmental Science and Technology 30 11 3377 3384 Nichols JW Fitzsimmons PN et al 2001 Dietary Uptake Kinetics of 2 2 5 5 Tetrachlorobipheny in Rainbow Trout Drug Metabolism and Disposition 29 1013
51. import of the mass loading values and to store them in this tab This macro also converts the data into the units and variables compatible with the QWASI model These converted values are stored in the PRZMforInput tab Table 1 below summarizes the conversion of massing loading values in the P2E C1 D files into the values stored in the PRZMforInput tab Table 1 Summary of daily input values for AGRO model derived from PRZM output Parameter Description Simday assigned to evaluate and loop through the total number of days of data provided by PRZM Year Month Day from PRZM E to Pond kg y Inflow W Conc ng L this is the 5 spray drift from PRZM expressed as kg y from PRZM expressed in ng L Inflow P Conc ng L Bulk Inflow Conc ng L from PRZM expressed in ng L uses Inflow W Conc and Inflow P Conc with the respective volume fractions to calculate a bulk water concentration of chemical Water Inflow rate m3 h Standard rate defined on Environment worksheet PRZM runoff Particulate Inflow Standard rate derived from Environment worksheet P RZM rate m3 h erosion rate Inflow P derived Inflow and Particulate inflow rates concentration VF W Inflow Volume Fraction of water in the inflow VF P Inflow Volume Fraction of particulate in the inflow 3 rain rate m h converted from cm day in PRZM to m3 h The AGRO modeling system also contains a blank worksheet with tab entitle
52. in sediment g Msi 0 Enter 48 49 50 Rate Constants 51 outflow day ko 6 00E 03 Calculated 0 066352599 0 0242187 52 volatilization day kv 6 18E 09 Calculated 6 83193E 08 2 4937E 08 53 overall water to sediment transport day kws 7 11E 02 Calculated 0 786359071 0 28702106 54 overall sediment to water transport day ksw 2 12E 03 Calculated 0 08390456 0 03062516 55 solids settling day kws1 6 68E 02 Calculated 0 738339894 0 26949406 J 56 water to sediment diffusion day kws2 4 34E 03 Calculated 0 048019177 0 017527 57 solids resuspension day ksw1 1 67E 03 Calculated 0 06594502 0 02406993 58 sediment to water diffusion day ksw2 4 54E 04 Calculated 0 01795954 0 00655523 59 burial day kB 4 16E 04 Calculated 0 016486255 0 00601748 60 degradation in water day kwr 0 069314718 Calculated 0 766535287 0 27978538 61 degradation in sediment day ksr 0 01732868 Calculated 0 685968256 0 25037841 62 63 84 l x 4 4 gt AGRO Z Chemical Environment GetPRZM_Files Emissions Foodweb FWModel lt gt An example of columns FWModel A through FW Model G rows 66 87 looks like A B E D E F ja 65 66 Calculated Parameters 67 volatilization mass transfer coefficient m day ve 1 36584E 08 Calculated 68 partition coefficient of suspended particles in the water Kpw 2952 180091 Calculated 69 partition coefficient of bottom sediment particles Kps 1762 495577 Calculated 70 air water partition coef
53. l Science and Technology 29 933 940 Koelmans AA Jiminez CJ Lijklema L 1993 Sorption of Chlorobenzenes to Mineralizing Phytoplankton Environmental Toxicology and Chemistry 12 1425 1439 Koelmans AA van der Woude H et al 1999 Long term Bioconcentration Kinetics of Hydrophobic Chemicals in Selensatrum capricornutum and Microcystis aeruginosa Environmental Toxicology and Chemistry 18 1164 1172 Kraaij R Seinen W et al 2002 Direct Evidence of Sequestration in Sediments Affecting the Bioavailability of Hydrophobic Organic Chemicals to Benthic Deposit Feeders Environmental Science and Technology 36 3525 3529 Page 41 Kukkonen J Landrum PF 1995 Measuring Assimilation Efficiencies for Sediment Bound PAH and PCB Congeners by Benthic Invertebrates Aquatic Toxicology 32 75 92 Landrum PF Poore R 1988 Toxicokinetics of Selected Xenobiotics in Hexagenia limbata Journal of Great Lakes Research 14 427 437 Lehman JT 1993 Efficiencies of Ingestion and Assimilation by an Invertebrate Predator using C and P Dual Isotope Labeling Limnology and Oceanography 38 1550 1554 Lydy MJ Landrum PF 1993 Assimilation Efficiency for Sediment Sorbed Benzo a pyrene by Diporeia spp Aquatic Toxicology 26 209 224 Mackay D 2001 Multimedia Environmental Models The Fugacity Approach Second edition Lewis Publishers Boca Raton pp 201 213 Mackay D Diamond M 1989 Application of the QWASI Quantitative Water Air Sed
54. lated results of pesticide concentrations from the Bioaccumulation model for each aquatic organism in the food web Bioconcentration Factors BCFs Biomagnification Factors BMFs and Bioaccumulation Factors BAFs are presented here 251 A 252 FOODWEB Results 253 254 Concentrations 255 ugikg atka BCF BMF BAF to dissolved water 256 Water dissolved 0 04832068 4 83207E 08 257 Sediment particles 33 5794692 3 35795E 05 258 Phytoplankton 401803773 0 000401804 _8800 647196 0 8600 6472 259 Zooplankton 176 758634 0 000176759 3373 606292 0047662546 3783 53504 260 Benthic Invertebrates 155 051244 0 000155051 3236 334394 0 114851383 3318 838631 261 Forage Fish A 367 063255 0 000367063 5115 162068 0 722873681 7596 40047 262 Forage Fish B 504 806379 0 000504806 7034 663397 0 993862174 10447 0043 263 Piscivorous Fish 795 782767 0 000795783 3919 615947 1390997522 16468 7816 264 265 Page 39 References Alpine AE Cloern JE 1988 Phytoplankton Growth Rates in a Light Limited Environment San Francisco Bay Marine Ecology Progress Series 44 167 173 Alpine AE Cloern JE 1992 Trophic Interactions and Direct Physical Effects Control Phytoplankton Biomass and Production in an Estuary Limnology and Oceanography 37 5 946 955 Arnot JA Gobas FAPC 2004 A Food Web Bioaccumulation Model for Organic Chemicals in Aquatic Ecosystems Environmental Toxicolo
55. ntration in organism g kg eq lip Cipredator 0 285809763 0 062879171 0 053367897 0 07472096 0 073816468 0 164994019 Calculated 87 Lipid Equivalent Concentration in prey g kg eq lip Ciprey 0 285809763 0 008247025 0 058123534 0 058123534 0 067366922 Calculated 88 BMF kg eq lipid kg e BMF 0 220003578 6 471169541 1 285554315 1 269992778 2449184472 Calculated 89 Organism Water Fugacity Ratio at steady state unitless BAF 0 220003578 6 471169541 1 285554315 1 269992778 2 449184472 Calculated s0 s1 2 93 94 96 97 98 39 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 J 118 119 120l m 4 4 m AGRO Z Chemical Environment 4 GetPRZM_Fies Emissions Foodweb FWModel DYN results pond DYN timeseries DYN Vearly l e Page 23 Step 6 Review the Foodweb tab Go to the Foodweb tab All values in this tab are automatically summarized from the FWModel tab Thus the user will never make any revisions to this tab The Foodweb tab summarizes the calculated k values and the Feeding Matrix from the FWModel tab The Foodweb tab is where the Bioaccumulation model actually reads in its input values to populate the foodweb and generate organism concentrations The page below displays a copy of the Foodweb tab with recommended calculated masses lipid fractions k rates and feeding matrix for the food web _Hey a a ee _1_ FoodWeb _2 Agro Pond Foodwe
56. od Web Sensitivity Analysis Modeling for EFED Report Eaa Bia 8 El 410 09Koy 11 09K aw 12 logKoa 13 Degradation half lives h 44 Water 15 Sediment 417 Air Water Kaw dimensionless 18 AerosolWater K dimensionless 19 Sediment Water Likg I 20 Suspended Sediment Water L kg 21 Resuspended Sediment Water L kg PRZM forin Page 9 Step 3 Enter or Select Environment Input Parameters Go to the Environment tab The environment scenario parameters are defined here A database of environmental scenarios is listed in columns Environment O through Environment AW The environmental parameters listed here are those required to run the QWASI 3 10 model The user may add environmental scenarios to this database by entering necessary information into the columns Environment O through Environment AW The names of the newly added environments will appear in the list box entitled Select an Environment in this tab Here is an example of columns Chemical O through Chemical AA of the environmental database in the Environment tab Columns Environment S through Environment V refer to dimensions of the water body Columns Environment W through Environment AA refer to the concentration of particle solids in the various bulk media The tan cells indicate that the user may input data in these cells 1 Sensitivity Analysis 10000 20000 2 Modeling fo
57. pesticide concentrations from the Bioaccumulation model for each aquatic organism in the food web The organism Biomagnificaton Factors BMFs and the Theoretical Maximum BMFs calculated by kd ke are presented 251 252 FOODWEB Results 253 254 Concentrations 255 ug kg g kg BMF 256 Water dissolved 0 029249033 2 9249E 08 257 Sediment particles 200 7595832 0 00020076 258 Phytoplankton 285 0027664 0 000285003 259 Zooplankton 123 7998954 0 0001238 260 Benthic Invertebrates 130 1200778 0 00013012 261 Forage Fish A 316 1773736 0000316177 262 Forage Fish B 492 7512153 0 000492751 263 Piscivorous Fish 6632 415719 0 006632416 264 265 266 267 268 269 270 271 272 273 274 275 0 047662546 0 114851383 0 722673681 0 993862174 1 390997522 8 026244644 2 570618474 10 03352716 14 23990503 6 293190642 Page 30 Theoretical Max BMF kd ke IR The DYN timeseries tab contains the values of selected output variables for each day of the simulation An example of output contained in columns DYN timeseries A DYN timeseries P is displayed below These columns summarize the daily simulation date emission fugacities for each bulk media and bulk media chemical concentrations in natural units _ M
58. position rate of dry particles Deposition out of air into water body Default value 10 Environment AS Scavenging Ratio Volume of Scavenging Ratio of air to rain air Volum Default value 20 000 e of Rain Environment AT Rain_Rate m year Rainfall rate in meters per year Default value 1 Environment AU Vol_Mass_ m h Volatilization rate air side Trans_Coeff_ Default value 1 Air Environment AV Vol_Mass_ m h Volatilization rate water to air Transfer_Coeff_ Default value 0 01 Water Environment AW_ Sediment Water m h Diffusion rate between benthic Diffusion Page 15 sediment and water column Default value 0 0004 Now go to the list box Select an Environment in columns Environment E Chemical G Highlight the environment of interest and click the OK button This will cause the appropriate values of the selected environment to appear in column Environment B where the user can easily review them and where the model actually reads the values used in the upcoming simulation If the user wishes to make temporary changes to a chemical data these can be made directly in column Environment B without affecting the original values in the database although these value will be overwritten each time the OK button is clicked Here is an example of columns Environment A through Chemical N Rows 1 33 in the Environment tab FEB Ele Edt vew Insert Format Toos pata Window Help Adobe PDF
59. put interval Fugacity Pa Water Sediment Inflow Air Pure Phase Chemical Bulk Concentrations natural units Water ng L Sediment ng m3 Inflow ng L Air ug m3 Foodweb Concentrations ng g Water dissolved only ug L Sediment solids only Phytoplankton Zooplankton Benthic Invertebrates Forage Fish A Forage Fish B Piscivorous Fish Other SumlInput kg Cumulative system Input of chemical SumLoss kg Cumulative system Loss of chemical Water inflow m3 h Water outflow m3 h Net water m3 h Inflow Outflow Sed Inflow m3 h Sed Resusp m3 h Sed outflow m3 h Sed Dep m3 h Net Sed m3 h Inflow Resusp Outflow Dep Page 34 The DYN yearly tab contains the Estimated Environmental Concentrations EECs for the peak 4 day 21 day 60 day 90 day and Annual running averages for the chemical dissolved water column for the highest 4 years of the simulation benthic sediment sorbed chemical for the highest 4 years of the simulation and chemical dissolved in benthic pore water for all years ae Se a ee eee ee Ses ae ee ee ae ee ae ee ee T 1 Summary of Annual Peak Values units are ppb ug L ug kg and ug L J3 Ballater l _3 Year Peak 4day 21day 60day 90day Annual 4j 1961 42 53387451 36 30275345 24 35691643 12 49514771 8 525496483 2 154887676 1962 31 01566124 24 93386078 19 93797112 1102113247 7 52234
60. r EFED Report 10000 20000 Page 10 Splitting the screen after column Environment R and scrolling right displays columns Environment AB through Environment AE which pertain to the density of solids in the various bulk media Columns Environment AF through Environment AJ which pertain to the fraction of organic carbon in the various bulk media AVI gx fe P R AB AC AD AE AF AG AH Al A F Environm x Organic a a Sane es Ve et Fart oop Canon Fal Fen o maalon o Reupe ov 1 Kkam r cles es Solids nded a 1 Sensitivity Analysis 2400 2400 1500 0 067 0 014 0 067 0 014 3 2 Modeling for EFED Report 2400 2400 1500 0 067 0 04 0 067 0 04 4 5 z 6 i 8 g 10 41 12 13 14 15 16 17 18 19 20 21 22 23 x gt 91 Environment EMSS lt gt lt gt A r m a a a Splitting the screen after column Environment R and further scrolling right displays columns Environment AK through Environment AP which pertain to the flow rates for the water and sediment in various bulk media ALI Ruet Water Inflov O P _ R AK AM AN AO AP AGFomasr as 7 Environm A Mass Aerosol_Dr E aare AAA O eA Powa Dee E CE MA yet 1 s ts 2 1 Sensitivity Analysis 5 80 40 40 10 200000 3 2 Modeling for EFED Report 5 5 50 10 40 10 200000 4 5 6 T 8 g 10 12 13
61. rameters for Type I Partitioning Simulations 8 Table 4 Input Parameters in the Environment Tab ccscccsscccecsscces 13 15 Table 5 Additional Environmental Input parameters in FWModel 20 Table 6 Summary of timeseries output parameters included with the model 34 Page 2 Introduction The Canadian Environmental Modelling Centre s AGRO modeling system AGRO is a MicroSoft Excel based application that combines a water quality model with a food web model to estimate risk to aquatic species from pesticide exposure in a user defined water body A major feature of this system is its capability to incorporate dynamic functionalities which allow the user to introduce changing environmental and emission conditions so that the fate and bioaccumulation results of numerous chemicals can easily and efficiently be compared The AGRO modeling system is written in Visual Basic and has an EXCEL interface for parameter input and output display This system can be run in dynamic mode which uses daily input of water sediment and pesticide from predicted daily mass loadings generated by US EPA Pesticide Root Zone Model version 3 12 PRZM3 12 Suarez 2006 Note AGRO can also be run in a steady state mode Daily loading and emission values from PRZM3 12 are then used to generate predicted daily pesticide concentrations in the water column benthic pore water and benthic sediment of the water body From these
62. re degC initial chemical mass in water g initial chemical mass in sediment g Sediment OC octanol proportionality constant unitless Recommended Value 90 1 1 0 35 0 08 7 17 0 35 0 0 An example of columns FWModel A through FW Model G rows 4 10 looks E like A l B c D E F 12 System Specific Characteristics _13 water body surface area m2 Saw 1 00E 04 Enter on Environment Tab _14 sediment surface area m 2 Sas 1 00E 04 Equal to Water Surface Area 15 average water depth m Dw 2 Calculated from Environment Tab _16 depth of active sediment layer m Ds 0 01 Enter on Environment Tab _17 water in and out flow L day F 1 20E 05 Calculated from Environment Tab 4m 3 h _ 18 Concentration of particles in water kg L Cpw 3 00E 05 Calculated from Environment Tab 30ma L 19 Concentration of DOC in water kg L Cdoc 2 01E 06 Calculated from Environment Tab _20 concentration of solids in sediment kg L Css 1 20E 00 Calculated from Environment Tab _21 density of suspended solids kg L dpw 2 40E 00 Calculated from Environment Tab _22 density of sediment solids kg L dss 2 40E 00 Calculated from Environment Tab _23 organic carbon content of suspended solids unitless Ocpw 6 70E 02 Enter on Environment Tab 24 organic carbon content of bottom sediment unitless Ocss 4 00E 02 Enter on Environment Tab _25 density of organic carbon kg L doc 1 00E 00 Enter 26 water
63. re that the Defined daily emissions kg Ha day input from PRZM is selected so that the Emission Type in cell Emissions P2 is set to 2 Cell Emissions B2 should say Dynamic from PRZM and the cells Emissions A8 Emissions E12 appear as though grayed out The above set up with Defined daily emissions selected activates the dynamic mode execution of the model where daily values are read from the PRZMforInput tab Page 17 The internal model code automatically navigates through the PRZMforInput daily values until it reaches the first non zero emissions occurrence in PRZMforInput E column at which time the model iterations begin Constant Emissions If the Constant Emission average annual emission kg Ha yr input below radio button is selected the cells Emissions A8 Emissions E12 appear with a white background except cells Emissions B8 B11 and B12 which are tan in colour indicating that they are user defined inputs The model reads in the value for calculated direct inputs from spray drift to the pond from cell Emissions B9 Note that the value of 5 of the application rate to 1 Ha is used to estimate the net input of chemical to the pond from all inputs This is based on the US EPA EXAMS model treatment of spray drift inputs to an agricultural pond The user may choose to enter any ambient air concentration of chemical in Emissions B11 or inflow water concentration Inflow water can be in the form of inflow
64. rs In the Water kgtyear molth Total Chemical Inputs 0001981643 6 54557E 07 Emission o o Inflow o o Air to water transfer 0 o Sediment to water transfer 0001981643 6 54557E 07 0 002141265 7 07282E 07 3 8 13175E 05 2686E 08 Water to air transfer 1 46223E 10 4 82989E 14 Water to sediment transfer 0 001120541 3 70126E 07 Transformation in water 0 000939406 3 10296E 07 6 329327878 In the Sediment molih Total Chemical Inputs 0 0012054 3 70126E 07 Water to sediment transfer 0 00112054 3 70126E 07 Total Chemical Losses 00656299 _3 85026 08 Sediment to water transfer 0 001981643 6 54557E 07 Transformationin sediment 0 009230838 3 04304E 06 Sediment Burial 0 00044382 1485986 07 Residence Ti_1096 796672 hours 45 89986132_days 77 REA lt m Page 28 DYN results pond tab Rows 92 228 continued A B5 c EEE F e wu M K Na T s 178 Rate Details 179 180 kg year mol h 181 Emission to Water 0 0 182 Water Inflow 0 0 183 Particle Inflow 0 0 184 185 Rain Dissolution 0 0 186 Aerosol Deposition Wet 0 0 187 Aerosol Deposition Dry 0 0 188 189 Absorption 0 0 190 volatilization 25427E 09 8 39864E 13 J 191 192 Sediment Deposition 0 01846006 6 09755E 06 193 Sediment Resuspension 0 0293109 9 68169E 068 194 195 Water to Sediment Diffusioi 0 00102489 3 3853E 07 196 Sediment to Water Diffusio 0 00340719 1 12543E 06 197 4 198 Water Transformation 0 0163352
65. rtitioning For regulatory modeling Type I partitioning is employed Chemical T Property C Default 17 C Temperature Chemical U Chemical g mol Molecular weight of chemical Molecular Mass Chemical V Chemical 4e Melting Point Chemical W Solubility g m Water solubility of chemical Equivalent units are kg L Chemical X Chemical Pa Vapor Pressure Chemical Z Log Kow mg L mg L Log 10 of the Octanol Water Partition Coefficient Kow Chemical AD Chemical days Aqueous aerobic half life Half life in Water Chemical AE Chemical days Aqueous anaerobic half life Half life in Sediment For Type I chemicals Columns Chemical AG Chemical AK are left blank For Type I chemicals those with little or no volatility only the Molar Mass Property Temperature Degradation Half lives and partition coefficients defined in Chemical AG Chemical AK with appropriate units are used Please see Mackay 2001 for more information on modelling Type I and Type II chemicals Page 7 Table 3 Chemical Parameters for Type I Partitioning Simulations Column Parameter Units Notes Chemical Q Chemical The row number plus 1 This Identifier will be used as the chemical number identifier Chemical R Chemical Name of chemical of interest Name Chemical S Chemical Type 1 for Type I partitioning and 2 for Type II partitioning Chemical T Property Ke Default 17 C Temperature Chemical U C
66. s pond An overview of the format of the dynamic results is presented followed by an overview of the steady state results Dynamic Results The results presented in the DYN results pond tab are in the same format as the QWASI model with the foodweb results output at the bottom These results reflect the conditions at the end of the simulation The following series of pages display an example of output contained in the DYN results pond tab Page 26 DYN results pond tab Rows 1 43 display the model version number scenario descriptors and echoes of the che mical inp Es more ut parameters L fs Eg gal Model _2 Version 1 16 05 BETA version 3 4 Simulation D Updated Foodweb calcs from Aug3 Gobas model E TE Additional Comments BETA version mods by LKR CEMC _ amp Date 28 08 2007 Time 13 47 04 7 E Chemicat testazole 79 Environment Modeling for EFED Report 10 Total Simulation Time 1 TIZ CHEMICAL PARAMETERS 13 14 Physical Properties 15 16 Chemical Type 1 47 Molar Mass 345 6 g mol 18 Temperature 17 C 290 15 K 19 20 Log Kow 51 21 Solubility 1 79 gim 0 005179398 molm 22 Vapour Pressure 1 2399E 08 Pa 23 Meting Point 125 C 398 15 K 24 Fugacity Ratio 0 07986781 25 Sub cooled Liquid V P 1 5524E 07 Pa 126 Henry s Law Constant 2 3939E 06 Pa m mol 27 28 Partition Coefficients 29 Dimensiones Lkg 30 Air water Kaw 9 9236E 10 31 Suspende
67. unitless igr 0 000502 0 000502 0 000502 0 000502 Enter _34 Invertebrate growth rate coefficient T gt 17 5 deg C unitless Fgr 0 00251 0 00251 0 00251 0 00251 0 00251 Enter _35 Constant Aew unitless Aew 1 85 1 85 1 85 1 85 1 85 Enter _36 Constant Bew unitless Bew 155 155 155 155 155 Enter _37 Constant Aed unitless Aed 0 0000003 0 0000003 0 0000003 0 0000003 0 0000003 Enter 38 Constant Bed unitless Bed 2 2 2 2 2 Enter v gt Page 22 The calculated parameters for each aquatic organism in the food web are included in rows 40 through 77 and 79 89 The below pages display the recommended values for these rows H 1 J li K l 5 l M N o P a Calculated Parameters E Definition Units Parameter Phytoplankton Zooplankton Benthos Forage Fish A Forage Fish B Piscivorous Fish A volume of lipid in organism kg vi 2 00E 09 0 0000002 0 0004 0 0006 0 04 Calculated volume of NLOM in organism kg Vnlom 2 00E 08 0 000002 0 0022 0 0022 02 Calculated volume of water in organism kg Vw 0 0000078 0 0074 0 0072 0 76 Calculated Gill uptake rate constant Lkg day k1 Calculated Dietary uptake rate constant kg kg day kd Calculated Gill elimination rate constant iday k2 Calculated Fecal egestion rate constant iday ke Calculated Growth dilution rate constant
Download Pdf Manuals
Related Search
Related Contents
S1-1052 Comprobador de Resistencia de Aislamiento de 10 Widespread Lavatory Faucet, 8” Center Grifo de Lavabo Ancho, 8 Newstar iPad 2 wall mount Copyright © All rights reserved.
Failed to retrieve file