Home
        User's Guide for CEMC_SFU_AGRO v1.2 The
         Contents
1.                                                 10_  Suspended Sediment  mgfL   i Sim                                        iment  gim  dauy  50  p p 0  Resuspension Rate of Solids  gim  day  40             Burial Rate of Solids  g m day            Mass Transfer Coefficients       o       aa          24  25  26  27    28    2  s  30  Kil  32  33  g  35                            Page 16    Step 4  Confirm the Emissions Parameters    Go to the Emissions tab    Here is what the Emissions tab page should look like when dynamic emission  scenario is selected     EE   ER  S a   Ya DR sa J   yO    p            a  _2  Emission Scenario     Dynamic from PRZM Emission Type 2    4  Emission Type        Constant  average annual emission  kg Ha year   input below       Defined daily emissions  kgtHatday   input from PRZM             y Field Area  Ha 10        pRa  D    w  ralpa rolro        a    RSNA SSSR S  e    wlln  n  n  n  n  2388 388    8  GS              8  8       ike   lt        On the Emissions tab  there are two options  By clicking on either radio  button under the heading    Emission Type    the user may choose one of two  scenarios  The first option is used for steady state calculations or for dynamic  ones requiring that there be constant emission of chemical over the duration of  the model run  The second option is to use the PRZM defined inputs  imported to PRZMforInput and GetPRZMFiles tabs     Dynamic Emissions    To use the PRZM defined inputs and parameters  make su
2.         Chemicalinput OO    Chemical Concentration in Inflow wW   Chemical Concentration in Air       B c D E E G H 1  to Air to Water to Sediment  0 0 05604  0 ngil f  0 ngim  i  Fugacity Z Values Concentrations  Pa molim    Pa kgim  molim  malim    of bulk phare  O 0 320847565 0 0 0 ngim   0 000414541 0 0  16021651213 0 0 ol  3 3471E 13 461063 9515_ 5 33333E 08 154321E 07 53 3332546 ngil  417730 4553  4 83207E 08 139817E 07  3467097389  0 000401054 0 001160457 167 105875 ngfg 1E 03   NIA   0 420619 3555 0 0 0 ngil  0 0  3467097389 0 0 ol  1 1266E 13 1035163310 4 03035E 05 0 000116619 40303495 1_ngim   1 6264E 08  4 70605E 08 16 2640979 ngil  2069908889 8 05907E 05  0 000233191 33 5794692 nglg 0 0004   2069908883  0 0 0 0 ngil    0 0027963   0 00023011   0 01166183   2 353E 06   0 01165954    0     0 01474831__ 0 00509701    20 92725206     0 015954533   79 05679341   CH   700    D    Amount Sorbed   4 of amount in bulk phase     Water  Sediment  Inflow   Air    E       9 39971933  99 979823  0 6869032  99 8707982          57    172          a    I   3  D    A  In the System       3    3       In the Sediment        Total Chemical Inputs  Emission  Inflow  Air to water transfer    Total Chemical Losses  Outflow     Water to air transfer  Total Transformation     Sediment Burial    kalyear  0 05604  0 05604  o  o    0 05604  0 002336023  4 20057E 03  0 052478322   0 001225651    molih  1 85106E 05  185106E 05  0  0    1 85106E 05  7 71613E 07  1 38749E 12  17334E 05  4 04845E
3.   10 000  Environment  U Water_Volume m Volume of water body  Default value  20 000  Environment  V Sediment m Depth of sediment in benthic  layer   Default value  0 05  Environment  W    Concentration       Label for columns associated with  of Solids    concentration of solid particles in  various bulk media  Environment X Aerosol_Particles ug m  Concentration of solid particles in  air bulk media   Default value  30  Environment  Y Particles_Inflow   mg L Concentration of solid particles in  inflow water bulk media   Default Value  2  Environment Z Particles_Water_   mg L Concentration of suspended  Column sediment in water column   Default value  30  Environment AA Volume_Fraction m m Volume fraction of sediment       _Particles_  Surface          particles in benthic   Default value  0 5       Page 13                            Column Parameter Units Notes  Environment AB    Density of Label for columns associated with  Solids    density of solid particles in  various bulk media  Environment  AC Density_Particles kg m    Density of solid particles in water  _Water column bulk media   Default value  2400  Environment  AD Density_ kg m    Density of solid particles in  Sediment_ benthic sediment bulk media   Particles Default value  2400  Environment  AE Density_Aerosol_ kg m    Density of solids particles in air  Particles bulk media   Default value  1500  Environment  AF    Organic Label for columns associated with  Carbon Fraction organic carbon fraction in various  of 
4.  07     Residence Time  not including water sediment exchange as a loss     Water  Sediment     System    Total Chemical Inputs  Emission  Inflow  Air to water transfer  Sediment to water transfer    Total Chemical Losses  Outflow     Water to air transfer     Water to sediment transfer  Transformation in water    Residence Ti    Total Chemical Inputs  Water to sediment transfer    Total Chemical Losses  Sediment to water transfer  Transformation in sediment  Sediment Burial    Residence Ti       1096 796672 hours    318 662481 hours  1321 451669 hours  7396 7496056 hours    kalyear  0 061512436  0 05604  o  o  0 005472496    0 061512496   0 002336023  4 20057E 03  0 032189979   0 02698649    151 9038691 hours    kalyear  0 032189979  0 032189979    0 032189979  0 005472496  0 025491832  0 001225651          13 27760337 days  55 06048621 days  33 19790023 days    molth  2 03182E 05  185106E 05  0    0  1 80762E 06    2 03182E 05  7 71613E 07  138749E 12  1 06327E 05  8 91392E 06    6 329327873    molth  1 06327E 05  1 06327E 05    1 06327E 05  1 80762E 06  8 42022E 06  4 04845E 07     45 69986132 days       0 036377 years  0 15085065 years  0 09095315 years          0 1252051 years                                     z   a  X       I SS results pond   lt        Page 37    SS results pond tab  Rows 92   228  continued           kgtyear molth  Emission to Water 0 05604  1 85106E 05  Water Inflow 0 0  Particle Inflow 0 0  Rain Dissolution 0 0   1  Aerosol Deposition   wet 0 0  A
5.  14  15  16  17  18  19  20  21  22  23   X  M 4  gt  ri  Environment Emissions   Foodweb   FWitiadel   lt   gt    lt  i  gt   Piwi sl reel ad oie cl   mana A fal 11 A d A     Ss we al    Page 11    Splitting the screen after column Environment R and further scrolling right   displays columns Environment  AQ through Environment AW which pertain to  the mass transfer coefficients characterizing intermedia transport      R    o  ad Le  Environm  Selected ental  Environment Propertie  s    1 Sensitivity Analysis 0 5 0 005 0 0008  2 Modeling for EFED Report 1 0 01  0 0004             Page 12    Here is a summary of the input Parameters in the Environment Tab     Table 4  Input Parameters in the Environment Tab  Note  Default values for EPA generic pond scenario are listed in notes column                                               Column Parameter Units Notes  Environment O    Dimensions        Label for columns associated with  dimensions of the water body  Environment P Selected     Numeric identifier of  Environment environmental scenario  Identifier highlighted in the    Select an  Environment    list box   Automatically changes with  change in highlighted selection   Environment Q Environmental     User supplied numeric identifier  Properties of environmental scenario of  Scenario interest  Identifier  Environment R Name of     Name given to the environmental  Environmental scenario  Scenario  Environment T Water_Surface_   m  Surface area of water body  Area Default value
6.  16 0 0 0 0 0 0 0 0  140  137  1961 5  _17 0 0 0 0 0 0 0 0  141  138  1961 5  18 0 0 0 0 0 0 0 0  142  139  1961 6  9 1 0 99 5 0 0 0 0 0  143  140  1961 5  20 0 0 0 0 0 0 0 0  144  141  1961 5  21 0 0 0 0 0 0 0 0  145  142 1961 5  22 0 0 0 0 0 0 0 0  146  143  1961 5  23 0 0 0 0 0 0 0 0  147  144 1961 5  24 0 0 0 0 0 0 0 0  148  145 1961 5  25 0 0 0 0 0 0 0 0  149  146 1961 5  26 1 0 99 5 1 188  3 3E 07 0 08869 2 433E 09 3 71  150  147 1961 5  27 0 0 0 0 4006  852E 08 0 0195 2 276E 10 147  151  148 1961 5 28 0 0 0 0 2194  3 69E 08 0 007882 3 839E 11 1 14  152  149 1961 5  29 0 0 0 0 0255  3 64E 09 0 00028 1 215E 12 0 61  153  150  1961 5 30 0 0 0 0 0 0 0 0  154  151  1961     31 0 0 0 0 0 0 0 0  155  152  1961 a 0 0 0 0 0 0 0 0  156  153  1961 6  2 1 0 99 5 0 0 0 0 0  157  154  1961  amp _3 0 0 0 0 0 0 0 0  158  155  1961 6 4 0 0 0 0 0 0 0 0  159  156  1961  amp _ 65 0 0 0 0 0 0 0 0  160  157  1961 6 6 0 0 0 0 0 0 0 0  161  158  1961 6  7 0 0 0 0 0 0 0 0  162  159  1961 6 8 0 0 0 0 0 0 0 0  163  160 1961 6  9 0 0 0 0 9251  1 55E 07  0 05806 4 29E 10 2 24    a gt  ml   GetPRZM_Files Waa esults 5 reseries iy f PRZM forinput _  PRZM workarea  lt            Click the    Get PRZM data    button located on cells Get_PRZM_Files G 1 2    Get_PRZM_Files H 1 2   Clicking this executes a Visual Basic macro which    Page 4     gt i    allows the user to choose the location of the PRZM3 12 P2E cl D  mass loading  files  Click on any of the P2E C1 D  files and then    Open    to begin the 
7.  32             An example of output contained in columns DYN timeseries A   DYN  timeseries D and then window split to display columns DYN timeseries AL         DYN timeseries AX is displayed below  These columns display the particle  solid fluxes in the water column and benthic sediment along with various water  and sediment daily fluxes in mol basis                 A   Essel ete  Fata AL   am   AN AO l AP AQ AR   AS AT AU AV   aw    AX   1  1 Time th  Year Month Day Sedinflowm3h SedFesuspm3th Sedoutflowm3th SedDepmath Net Sed m3ih timestephh     d_inv_W mol Iny_W mal d inv_Smol Inv_Smol   nv_Puremol   2  Bil 0 1961 s 12  4ese6e 06 0006944444 0 0000625 0 008680556  0 001794444 0 g T 0 0 0 0 0  a  24 1981 S 13  0000410921 0006944444  0 000126042 0008680556  0 001451232 0 3  0 018191747 1 175169452  0 012229953 0 050028206 0 0  EF 48 1961 5 14  416666E 06  0 006944444 0 0000625 0008680556  0 001794444 0 3  0020834582 1 037170317 0 010579719  0 140273347 0 0       72 1961 5 45  416666E 06 0006944444 0 0000625 0 008680556  0 001794444 0 3  0 017727788 0 884802971 0 008759367  0 216522915 0 0  EZI    1961 5 16  416666E 06  0 006944444 0 0000625 0 008680556  0 001794444 0 3  0 015085105 0 755154206 0 007215691 0 279484145 0 0  ET 120 1981 5 47  416666E 06  0 006944444 0 0000625 0 008680556  0 001794444 0 3  0 012837186    0 644827562  0 005907257 0 311799 0 0  2  144 1961 5 18  416666E 06  0 006944444 0 0000625 0 008680556  0 001794444 0 3  0 010925043 0 550937631 0 004798824  0 
8.  Enter  _8  Phytoplankton Enter  _9  Zooplankton Enter  _10  Benthos Enter  _11  Forage Fish A Enter  _12  Forage Fish B Enter  _13  Piscivorous Fish A Enter  14    3  o  36    a7   _18  Aquatic Organisms Parameters  _19  Definition Units Parameter Phytoplankton Zooplankton Benthos Forage Fish A Forage FishB Piscivorous Fish A Action  _20  Weight of biota kg Wb Enter  _21   Lipid fraction in biota    phytoplankton  kg kg vib Enter  _22  Nonlipid organic matter fraction in biota   phytoplankton  kg kg vnb 20 00  20  22  22  20  Enter  _23  Water fraction in biota kg kg wb 79 50  78 00  78 00  74 00  72 00  76 00  Enter  _24  Nonlipid organic matter octanol proportionality constant unitless beta 0 35 0 035 0 035 0 035 0 035 0 035 Enter  _25  Dietary absorption efficiency of lipid   el 75  72  75  92  92  92  Enter  26  Dietary absorption efficiency of nonlipid organic matter   en 75  72  25  55  55  55  Enter  ietary absi iency of water 1  eww 25  25  25  25  25  25  Enter  _28  fraction of the respiratory ventilation that involves overlying wat   mo 95  95  95  100  100  100  Enter  _29  fraction of the respiratory ventilation that involves sediment as    mp 5  5  5  0  0  0  Enter  _30  Particle scavenging efficiency   sigma 100  100 00  100  Enter  _31  resistance to chemical uptake through the aqueous A 0 00006   ma Enter  _32  resistance to chemical uptake through the organic phase B a ae ee O ee O OO O H Enter  _33  Invertebrate growth rate coefficient  T  lt 17 5 deg C  
9.  Environmental  Science and Technology 33  2390 2394     Skoglund RS  Swackhamer DL  1999  Evidence for the Use of Organic Carbon as  the Sorbing Matrix in the Modeling of PCB Accumulation in Phytoplankton   Environmental Science and Technology 33  1516 1519     Suarez  L A   2006  PRZM 3  A Model for Predicting Pesticide and Nitrogen   Fate in the Crop Root and Unsaturated Soil Zones  Users Manual for Release 3 12 2   National Exposure Research Laboratory U S  Environmental Protection Agency Athens   GA 30605 2700     Page 43    Swackhamer DL  Skoglund RS  1993  Bioaccumulation of PCBs by Algae   Kinetics versus Equilibrium  Environmental Toxicology and Chemistry 12   831 838     Thomann RV  1989  Bioaccumulation Model of Organic Chemical Distribution in  Aquatic Food Chains  Environmental Science and Technology 23  699 707     Thurston RV  Gehrke PC  1990  Respiratory Oxygen Requirements of Fishes   Description of OXYREF  a Data File Based on Test Results Reported in the  Published Literature  Proceedings of an International Symposium    Sacramento  California  USA  1993     Walker CH  1987  Kinetic Models for Predicting Bioaccumulation of Pollutants in  Ecosystems  Environmental Pollution 44  227 240     Wang WX  Fisher NS  1999  Assimilation Efficiencies of Chemical Contaminants  in Aquatic Invertebrates  A Synthesis  Environmental Toxicology and  Chemistry 18  2034 2045     Webster  E   Lian  L   Mackay  D  2005  Application of the Quantitative Water Air  Sediment Intera
10.  Iday kg Calculated  Metabolic transformation rate constant    day km Calculated  total elimination rate constant Jday ktotal 1 121347316  7 048084896 1 465926298 0 082662041 0 060106606 0 021523952 Calculated  time to reach 95  of steady state day 195 2 675353084 0 42564754 2 046487606 36 29235317 49 91131953 139 3796103 Calculated  kd ke  max theoretical BMF  max BMF 6 026244644 2 570618474 10 03352716 14 23990503 6 293190642 Calculated  kd ktotal kg diet kg pred BMF 0 047662546 0 114851383 0 722673681 0 993862174 1 390997522 Calculated  Biota water partition coefficient unitiess Kow     3399 88 3399 88 6005 81 8523 65 5917 71 Calculated  Phytoplankton water partition coefficient unitiess Kpw 9442 7 Calculated  Gut biota partition coefficient unitiess Kgb     0 190608534     0 518681923 0 147303944 0 103791291 0 244276569  Calculated  Gill ventilation rate Uday Gv     0 004401758 0 087826624 7 827556081 7 827556081 156 1802767 Calculated    Feeding rate kg day Gd     6 84547E 08 3 43086E 06 0 001217315 0 001217315 0 061010285 Calculated  Fecal egestion rate kg day Gf     4 47454E 08 2 57315E 06 0 000823635 0 000823635 0 03968719 Calculated  Efficiency of chemical transfer via gill   Ew 54 02  54 02  54 02  54 02  54 02  54 02  Calculated  Efficiency of chemical transfer via intestinal tract   Ed       49 07  49 07  49 07  49 07  49 07  Calculated  Lipid fraction in diet kg kg vid     0 500  0 00000  2 00  2 00  5 0000  Calculated  Lipid fraction in gut kg kg vig     0 00214
11.  Sediment Pore Water 5 88939E 09  1 7041E 08 5 88938534 ng L  115  Sediment Solids 20699088689 2 91827E 05 8 44406E 05 12 1594469 ng g 4 22203E 05   116  Resuspended Solids 2069908889  117  Rain o 0 o O ngl  118  is  Amounts  420   421  Amount Amount Sorbed  122           of amount in bulk phase   423  Buk Water aizies   2 481083033     124  Water Solution 3 36407E 05  2 247868191  Water 9 39971923  125  Water Particles 2 4902E 06  0 233214841  Sediment 99 979823  126 Bulk Sediment 0001459428  97 51891697  Inflow 0 68690263  127  Sediment Pore Water 2 94469E 07  0 019676423  Air 99 8707982  128  Sediment Solids 0 001459134   97 49924054   129 Pure Phase Chemical  H  System Total 0 001496559  100   130 Hi  x  Maag D esults pond M forinput _  PRZM workarea  lt  il   ail  A B c D E     tig K  3 Q S T i E    a  131  Mass Balances    T32   Conditions at time   8757 hours  133  T134   In the System kalyear molh  15  Total Chemical Inputs o o  ne  Emission o o  KEA Inflow o 0  338   Air to water transfer o o       140  Total Chemical Losses 0 01069538 3 59279E 06  m  Outflow 8 13175E 05 2686E 08  w  Water to air transfer 146223E 10 4 82989E 14  143   Total Transformation 0 010170242  3 35934E 06  m  Sediment Burial 000044382 146598E 07  145  Ka Residence Time  not including water sediment exchange as a loss   W7 Water 318 662481 hours 13 27760337 days 0 036377 years  Sediment 1921451663 hours 55 06048621 daus  0 15085065 years  KI System 122574951 hours 5107283624 days 013992574 yea
12.  derived from any source  inflow from another body of water   from groundwater or from runoff water   as long as the corresponding flow for  this concentration is quantified on the Environment worksheet  The net  annual input of chemical to the pond is derived using     Conc inflow ng L   kg 1x10   ng   1000 L m3   Inflow rate m3 h   8760 h yr  8 8 8    The result  kg yr  inflow of chemical is added to the kg yr estimate of direct  emission to the pond via spray drift for a total chemical input rate     Page 18    Step 5     Review the FWModel tab    Go to the FWModel tab  This tab contains the chemical and ecosystem  parameter values used by the Gobas Bioaccumulation model  Review the  assigned input values     Usually  the user will not make any revisions to this tab since the Environmental  Fate Parameters on this worksheet are mostly calculated based on values entered  in the Environment and Chemical tabs and the Food Web Bioaccumulation  Model values are the recommended values for the embedded organism foodweb   Note  There is no database summarizing several possible foodwebs  so any  changes made are permanent and it is suggested that an original version of  the file be maintained at all times to preserve the original information     Columns FWModel A through FWModel G summarize the Chemical and  Environmental Fate input parameters from the QWASI water quality model     For columns FWModel A through FWModel G  rows 4     10  the chemical  parameters required by the Bioa
13.  e c o  E  F eK M   N E L  Fugacity  Pa Bulk Concentrations  natural units     Time  h  Year Month Day Emission Water Sediment Inflow Air    Water  ng L Sediment  ng m3 Inflow  ng L Air  ug m3  kg year  I 1961 5 0 0 0 0 0 0 0 0   1961 5 A 0 1 3E 10 4 83385E 13 3 707E 10 0 20306 92813 172932040 5 71616 50282 0  _5   1961 5 14 O   14E 10  1 35508E 12 o o0 17922 30308 484784687 3 0 0  r6 1961 5 15 0 9 6E 11  2 09168E 12 D p 15289 41262 748303193 9 0 0  1961 5 16 0 8 2E 11 26999E 12 00 13049 06468 965897203 9 0 0  ea  1961 5 17 0 7E 41  3 1993E 12 o o0 11142 62027 1144556663 0 0  9  1961 5 18 0 6E 11  3 60647E 12 0 0 9520 202258 1290224549 0 0  10  168 1961 5 19 182 5 7 1E 11  3 93555E 12 o o0 11264 38615 1407953362 0 0  Hw 192 1961 5 20 0 1 9E 10  4 81545E 12 o o0 29842 88113 1722739580 0 0  BA 216 1961 5 21 0 1 6E 10 5 98684E 12 o 0 25474 53025 2141805650 0 0  13   240 1961 5 2 0 14E 10  6 94633E 12 0 0  21757 15283 2485067301 0 0  14  264 1961 5 23 0 1 2E 10  7 72632E 12     18593 5109 2764108682 0 0  _15   288 1961 5 24 0 1E 10  85432E 12 DY 15900 89572 2988777956 0 0  _16   312 1961 5 25 0 8 5E 11 8 85374E 12 o oa 13608 95676 3167446801 0 0  A  336 1961 5 26 182 5 14 1E 10 9 24447E 12 5 26211E 10 0 16771 90322 3307231133 254081 866 0  18   360 1961 Se 2 0 29E 10 1 05366E 11 4 94791E 10 0 46946 14905 3769507763 164049 663 0  A9 384 1961 5 28 0 2 7E 10 1 23803E 11 416959E 10 0 42979 92547 4429091717 108676 5174 0  20 408 1961 5 29 0 24610 139769E 11 16158E 10 0 37866 30352 500
14.  side evaporation mass transfer coefficient  m day  vew 2 40E 01 Calculated from Environment Tab 0 01m h  zal air side evaporation mass transfer coefficient  m day  vea 2 40E 01 Calculated from Environment Tab m h  _28  water to sediment diffusion mass transfer coefficient  m day  vd 960E 03 Calculated from Environment Tab 0 0004m h  _29  solids settling rate  g m 2 day  vss 50 Enter on Environment Tab  _30  sediment burial mass transfer coefficient  g m 2 day  vb 10 Enter on Environment Tab  _31   sediment resuspension rate  g m 2 day  vs 40 Enter on Environment Tab  _32  dissolved oxygen saturation     S 90  Enter Lake Ontario  _33   Disequilibrium fractor POC  unitless  Dpoc 1 Enter  _ 34   Disequilibrium factor DOC  unitless  Ddoc 1 Enter  _35   POC octanol proportionality constant  unitless  apoc 0 35 Enter Lake Ontario  _36   DOC octanol proportionality constant  unitless  adoc 0 08 Enter Lake Ontario  _37   pH of water pH 7 Enter  _38   water temperature  degC  Tw 17 Enter   39  Sediment OC octanol proportionality constant  unitless  asoc 0 35 Enter    Page 20       PRZM forInput _  ma    lt     An example of columns FWModel A through FW Model G  rows 41     65 looks  like                    A   B G D    F in  41  Simulation Parameters  42   Time Increment  hours  dt 3 From AGRO tab  43  total external loading  g day  L 1 535342466 From Emissions tab  44  45  Initial Enviromental Conditions  46  initial chemical mass in water  g  Mwi 0 Enter  47  initial chemical mass 
15. 0 006944444 40 gim day Dry 0 000002  83   Sediment Burial Rate 00017361 10 gim   day Total 0 000002 a  DYN results  I lt    Eil       Page 27    DYN results pond tab  Rows 92   228 display results from the QWASI water  quality model  These include mass balances over the simulated time for the  chemical in both water and benthic sediment                                                     A  ESQ Ss nie a ee CR            e   T L E N   92 RESULTS  A   N q A Total Mass in 0 001496559fkg   94  Fotai Chemical input over ali simulation time  2169424624 kg Totai Chemical Loss over all simulaton time  2 589798471 k   Ea H from Water from Sediment  96  Emission  kg iVolat kg  1 8791E 07 kg     87  Chemical from inflow Water iAdvection kg   0 18868601 0 05477178 kg   98   Chemical from Background Air iReaction kg  1 2071926___1 1391769 kg  99  400 fZ c  401  Fugacity Z Values Concentrations  102  Pa molim Pa kg m  movm  molim of bulk phase  403  Bulk Air O 0 320847565 0 0 0 ngm   104  Air vapour 0 000414541 0 0  105  Aerosols 16021651213 0 0 ol  108 Bulk Water 1 1651E 14  461063 9515  0 00000000  5 37194E 09 1 85654352 ng L  107  Water Solution 417730 4558  0 00000000 4 86706E 09  108  Water Particles 3467097389 0 00001396  4 03958E 05 5 81699602 ng g 5 04948E 10 a  109  Pure Phase Chemical NA  110 Bulk Inflow O 420619 3531 0 0 0 ngl  111  inflow Water 0 0 a  112  inflow Particles 3467097389 0 0 ol  113 Bulk Sediment 4 0794E 14 1035163310  1 45943E 05  4 22288E 05 14594280 9 ng m   14 
16. 0 454831721 5 5 0  9   144 1961 5 18  8625437785 1 074970183 520658029 0 454831194  0 454831721 5 5 o     10   168 1961 5 19 10 20569304 1 173057733 0 568166389 0 517331194 0517331721 5 5 0  ii  192 1961 5 20  27 03807204 1 435326652 0 695195418 0 954831194 0 954831721 5 5 0  EA 216 1961 5 21 23 08028441 1 784477914 0 864305605 0 954831194  0 954831721 5 5 0  13   240 1961 5 2 19 71228793 2 070471574 1 002825628 0 954831194 0 954831721 5 5 0  14  264 1961 5 23 16 84598363 2 302959139 1 115430163 0 954831194  0 954831721 5 5 0  15   288 1961 5 24 1440643623 2 490145758 1206003344 0 954831194  0 954831721 5 5 0  16   312 1961 5 25 12 32990715 2 63900642 1 278193482 0 954831194  0 954831721 5 5 0  417  336 1961 5 26 15 19558134 2 75546986 133460214 1 058873579     1 058877616 54 5 54 5 0     18   360 1961 5 27  4253387448 3 140622656 1 521149543 1 797845806 17078751331 21 69167 21 69167 0  19   384 1961 5 28  38 94041986 3 690165048 1787318460 1 87718513 1 8772197899   14 14167 14 14167 0  20  408 1961 5 29 34 30740611 4 166042163 2 017807876 1 909914237  1 909950634 6 0625 6 0625 0  E 432 1961 5 30 29 4293211 4 55932499 2 208293031 1 913098522 1 913134945 5 5 0   22   456 1961 5 31 25 17754514 4874781763 2 36108341 1 913098522 1 913134945 5 5 0  23   480 1961 6 1 21 55825564 5 123674285 2 481633628 1 913098522 1913134945 5 5 0   24 504 1961 6 2 5 316327635 2 574944601 1 975598522 5 5 Ol   M4 E       Environment   GetPRZM_Fies   Emi   lt  X AARIA                  _ a f      Page
17. 000 0 01 100  Inflow Outflow  mth mth  Water 5 5  Suspended Particles 4 1667E 06 0 0000625  Sediment Subcompartment Yolumes m     Solids 50  Pore Water 50  Particle Properties  Density Cone  of Volume oc  kgtm  Particles Fraction Fraction  Particles in water Column  2400 30 mail 0 0000125 0 067  Sediment Solids 2400 05 0 04  Inflow Particles 2400 2 mgil 8 33333E 07 0 067  Resuspended Particles 2400 0 04  Aerosols in Air 1500 30 pgim  2E 11 0  Transfer Rates  Mass Transfer Coefficients mih  Yolatilization  air side  1  Yolatilization  water side  0 01     Sediment water Diffusion 0 0004  Aerosol Dry Deposition Velocity 10  Aerosol Scavenging Ratio 200000  mth  Rain Rate 114155251 1 miyear Aerosol Dep mth  Sediment Deposition Rate 0 00868056 50 gim day Wet 4 5662E 06    Sediment Resuspension Ra     0 aim d D  D  amp                       Page 36        SS results pond tab  Rows 92   228 display results from the QWASI water  quality model  These include mass balances for the chemical in both water and    benthic sediment     RESULTS    Emission  kg  yr    f2 2C    Bulk Air  Air vapour  Aerosols  Bulk Water     Water Solution  Water Particles  Pure Phase Chemical  Bulk Inflow  Inflow Water  Inflow Particles  Bulk Sediment  Sediment Pore Water  Sediment Solids  Resuspended Solids  Rain    Amounts    Amount    Bulk Water     Water Solution  Water Particles  Bulk Sediment  Sediment Pore Water  Sediment Solids  Pure Phase Chemical  System Total    Mass Balances                       
18. 0259500   25011 56927 0  Bal 432 1961 5 20 0 2E 10 1 52963E 11 o o0 32482 18771 5472294134 0 0  22  456 1961 5 31 0 1 7E10  1 63547E 11   0 27789 35146 5850918657 0 0  _23   480 1961 6 1 0 14 5E 40  1 71897E 11 o 0 23794 613 6149649959 0 0  24  504 1961 6 2 182 5 14 5E 10  1 7836E 11 o o0 23518 71931 6380880634 0 0  25  528 1961 6 3 0 2 5E 10 1 894E 11 D p 40376 78899 6775843983 0 0  26   9 6 4 0 a a 4549 9   47060994 0 ie   Wad eseries PRZM forInput PRZM workarea   lt  D   gt   An example of output contained in columns DYN timeseries A   DYN    timeseries D and then window split to display columns DYN timeseries R    DYN timeseries Z is displayed below  These columns summarize the daily   chemical concentrations for aquatic organism in the food web    No es  RO  S a ess  e Ve   FV   Xe    Eu Foodweb Concentrations  ng g  Time  h  Year Month Day water  Sediment solids Phytoplankton Zooplankton Benthic Forage Forage Fish Piscivorous  dissolved only  only Invertebrates Fish A B Fish  ug L   2  _3   0 1961 5 12 0 0 0 0 0 0 0  _4   24 1961 5 13 18 3983639 144 0809566 78164 026 62030 63277 35014 77677 6133 13 6173 2782 1045 09162     48 1961 5 14 16 2378599 403 9057268  120730 5011 57853 61079 48710 55016 15653 4 15920 994 2770 38887  Beal 72 1961 5 15 13 8524239 623 4601737  120012 5353 50344 87764 45645 77312 23411 4 24086 13 4529 8241  BEI 96 1961 5 16 11 822637 804 7519288 107526 3843 43278 37173 39801 94883 29311 7 30521 786 6281 82178  _8   120 1961 5 17 10 0953714 953 60477
19. 0298  1 902371883  6 1963 31 01575089 25 44404221 20 14524078  10 7234728 7 318989277  1 85038209  EA 1964 42 71648788 40 13788986 30 72669411  16 53958702  11 281847  2 839358091  _8  Sediment   30 99331665  27 12480927 22 31699371  14 01089096  9 574266434 2 425187826   _9  Year Peak 4day 21day 60day 90day Annual  10  1967 31 47005272  29 92352676 21 74877548 12 22539043  8 339946747 2 108692646  Ei 1968 72 00937653 59 31645966 40 47285461  18 68839645 12 72089481  3 19989419  12  1969 33 16246033  29 44874763  23 94294739  13 3897562  9 12955761  2307548285  a3  1970 42 79794312  35 40646744 28 73197437  14 7636652  10 0782671  2 549487591  14  Pore watern 36 5101738 29 27306557  24 50738907 13 74801922  9 399575233  2 377716303  15  Year Peak 4day 21day 60day 90day Annual  16   1973 51 16928864 41 02540588 27 44241142 15 242342 10 4207468  2 637946844  AT  1974  32 97999954 2653116989 2117629814 11 24765491  7 683871746 1 943422794  18   1975 4474221039 3668009567 2693260765 14 24290848 9721645355 2458840132  19   1976 56 2098465 4697554398 3239645386 15 9214344  10 86883926 2739059687  20  1977  90 52404785 7641593933 4025551987 18 97348595  12 9533186  3 272400856  21  1978 57 40812683 4625005722 27 95661354 15 41656113  10 54681301 2671989918  22  1979  33 71849823  27 07398605 21 93412209 14 25864697  9 78395462 2 477102518  23   1980 58 22719193 4670570755 32 38362122 16 56999779  11 33562374 2858613253  24   1981  46 2473526 38 83179092 28 05111313 14 63220787  9 99
20. 1  432 1981 5 30  416666E 06 0006944444 0 0000625 0 008680556  0 001794444 0 3  0 037128102 1879756233 0 015522398  1 583418442 0 0  22  456 1961 5 3  416666E 06  0 006944444 0 0000625 0 008680556  0 001794444 0 3  0 03160312 1608180061 0 012350224 1692974148 0 0  23  480 1961 6 1  416666606 0 006944444 0 000625 0 008680556  0 001794444 0 3  0 026903269 1 377003067 0 009668677  1 779412604 0 0  24  S04 1961 6 2  416666E 06  0 006944444 0 0000625 0 008680556  0 001794444 0 3 0187939647 1 261026997 0 007404119  1 846319628 0 0  25  528 1961 6 3  416666E 06  0 006944444 0 0000625 0 008680556  0 001794444 0 3  0046155507 2236619733 0 019316059  1 960602004 0 0   26 S52 1961 6 4  416666E 06 __0 006944444 0 0000625 0 008680556  0 001794444 0 3  0 039287102 1999012271 0 015372177  2 096950519 0 0  Fal s76 1961 6 sf 4  er mmen 0 0000625 0 008680556  0 001794444 0 3  0033444463 1 711627212 0 012038226          2 204556707 0 0  28  600 1961 6 6  416666E 06  0 00694 444 0 0000625 0 008680556  0 001794444 0 3  0 028474324 1 466964397  0 009222665  2 287879359 0 0  2  624 1981 6 7  4416666E 06  0 006944444 0 0000625 0 008680556  0 001794444 0 3  0 024246321 1258644301  0 006847639 2350706979 0 0  20  648 1961 6  amp   416666E 06  0 006944444 0 0000625 0008680556  0 001794444 0 3  0020649571 1081240584 0 004846935 2 39625885 0 0  31  672 1961 6 9  0 010081693 0 006944444 0 000544323 0008680556 0 007801259 0 3 0033139065 0 980866484  0 00316424  2 427270155 0 0  22  6  1961 6 10  4 33876E 0
21. 1022     Oliver  B  G  and A  J  Niimi 1988  Trophodynamic Analysis of Polychlorinated  Biphenyl Congeners and Other Chlorinated Hydrocarbons in the Lake Ontario  Ecosystem  Environmental Science and Technology 22  388 397     Parkerton TF  1993  Estimating Toxicokinetic Parameters for Modelling the  Bioaccumulation of Non Ionic Organic Chemicals in Aquatic Organisms   PhD thesis  Rutgers The State University of New Jersey  New Brunswick  NJ   USA     Payne SA  Johnson BA  Otto RS  1999  Proximate Composition of some North   Eastern Pacific Forage Fish Species  Fish Oceanography 8  159 177     Reid  L  2007 pers  comm     AGRO BASF Model Version 1 16    Excel workbook and  Visual Basic model code  Canadian Environmental Modelling Centre  Trent University   Peterborough  Ontario  K9J 7B8  Canada  http   www trentu ca cemc     Roditi HA  Fisher NS  1999  Rates and Routes of Trace Element Uptake in Zebra  Mussels  Limnology and Oceanography 44  1730 1749     Rosen DAS  Williams L  et al  2000  Effect of Ration Size and Meal Frequency on  Assimilation and Digestive Efficiency in Yearling Stellar Sea Lions   Eumetopias jubatus  Aquatic Mammals 26  76 82     Russell RW  Gobas FAPC  Haffner GD  1999  Maternal Transfer and In Ovo  Exposure of Organochlorines in Oviparous Organisms  A Model and Field  Verification  Environ  Sci  Technol  33  416 420     Seth R  Mackay D  Muncke J  1999  Estimating the Organic Carbon Partition  Coefficient and its Variability for Hydrophobic Chemicals 
22. 14 93352 90391 37063 51999 34187 51531 33624 6 35452 438 8003 56073  SRi 144 1961 5 18 8 62543778 1074 970183 80230 63547 31714 04962 29281 80141 36629 6 39120 521 9676 38235  10  168 1961 5 19 10 205693 1173 057733 71987 98925 35137 18164 26675 75931 38721 1 41891 534 11315 8057  11  192 1961 5 20 27 038072 1435 326652 152532 9679 93506 25142 63046 36948 47362 8 51264 594 14135 0053   12 216 1961 5 21 23 0802844 1784 477914 _ 185511 8276 83122 19457 72569 92899 58259 2 63083 711 17518 9007  443   240 1961 5 22 19 7122879 2070 471574  14000 4979  71974 19784 65764 42861 66493 8 72400 716 20831 8332  14   264 1961 5 23 16 8459836 2302 959139  154528 7067 61832 62265 57018 28398 72273 9 79356 182 24044 9195  15   288 1961 5 24 14 4064362 2490 145758  133660 5589 53004 93264 48987 85019 76005 2 84300 292 27132 017  _16   312 1961 5 25 12 3299071 2639 00642  114868 1109 45431 66969 42034 92367 78074 6 87576 734 30073 0551  336 1961 5 26 15 1955813 2755 46986 103868 6877 52049 11296 38701 78198 79059 6 89730 105 32902 6031  18  360 1961 5 27 42 5338745 3140 622656 235288 035 146759 0701 97859 66961 90918 1 102787 3 37580 7892  419  384 1961 5 28 38 9404199 3690 165048 301279 5108 139552 5357 118842 1362 107564 120901 93 43273 4452  20  408 1961 5 29 34 3074061 4166 042163  296263 1154 124823 7845 112323 3712 120998 136055 62 48969 7209  Eza 432 1961 5 30 29 4293211 4559 32499 267006 4187 107893 5729 99106 75061 130635 147569 74 54516 7726  22  456 1961 5 31 25 1775451 4874 781763 
23. 16   226  Water Inflow 2088652 28 0503988833 183 9559239 4414942173   227 Water Particle Inflow 14446 2271 7286729036  26596 56098 638317 4636   228  h   29 z   War is  ai    Page 29       DYN results pond tab  Rows 229   250 display echoes of the input for the Food  Web aquatic organism masses  lip fraction  k rates and feeding table matrix used    by the Bioaccumulation model        i gt        A   B    D   E   F G H      230 FOODWEB RESULTS  231  232 Foodweb Characteristics  233  Organism Mass  kg  Lipid Fraction k1 k2 ke kd km kg kT  234  Phytoplankton 0 0 005 9644 312647 1 021347316 0 0 001  235   Zooplankton 0 0000001 0 02 2377746355   6 993621322 0 041853904 0 33592967 007  236  Benthic Invertebrates 0 00001 0 02 4744 227697 1 395410907 0 065495391 0 16836366 001  237  Forage FishA oof 0 04  422 8297386 0 0704034 0 005953807 0 05973768 000  238  Forage Fish B 0 01 0 06 422 8297386 0 049606681 0 00419509 0 05973768 000  239 Piscivorous Fish 1 0 04 84 36562431 0014256466 0 004757486 0 02993976 000  240  241  Feeding Table  242  Phytoplankton Zooplankton Benthic Invertebrates Forage FishA Forage Fish B Piscivorous Fish  243 Water  dissolved 0 0 0 0 0 0  244  Sediment  particles 1 0 0 0 0 0  245  Phytoplankton 0 0 1 0 0 0  246  Zooplankton 0 1 0 0 0 0  247   Benthic Invertebrates 0 0 0 0 5 0 5 0  248 Forage Fish A 0 0 0 0 5 0 5 0  249 Forage Fish B 0 0 0 0 0 0 5  250  Piscivorous Fish 0 0 0 0 0 05          DYN results pond tab  Rows 251   263 display calculated results of 
24. 1819 0 0 002364765 0 002364765 0 006149116 Calculated  Nonlipid organic matter fraction in diet kg kg vnd     20 000  4 00000  20 00  20 00  22 0000  Calculated  Nonlipid organic matter fraction in gut kg kg vng     0 085672761 0 04 0 133018031 0 133018031 0 152190623 Calculated  Water fraction in diet kg kg vwd _    79 500  96 00000  78 00  78 00  73 0000  Calculated  Water fraction in gut kg kg vwg     0 91218542 0 96 0 864617204 0 864617204 0 841660261 Calculated  Water fraction in phytoplankton kg kg vwp   Calculated  Dissolved oxygen concentration mg O2 L Cox 8 964 8 964 8 964 8 964 8 964 8 964 Calculated  Oxygen consumption mg O2 day Vox     0 027620153 os iosaass 49 1163489 49 1163489 980 Calculated  78  gt      w  4  gt  HN AGRO FWModel      DYN results pond   DYN timeseries  DYN yearly   SS results pond AEETI amas   lt  w g  HEB  gie gdt wew Insert Format Tools Data Window Help AdobePDF Type a queston for hep la gx  AA   i  Ep  85     S    9 E   SE SE         K  79  Concentration at steady state gikg ww 0 004268951  0 001886765 0 001601368 0 003811208 0 005241391 0 008250697 Calculated  80  BAF at steady state Lkg BAF 7756 654023 3412 251612 2995 171193 6892 645996 9479 160943 14921 55016 Calculated  81  BAF  freely dissolved  at steady state Ukg 8600 647196 3783 535036 3314 759391 7642 627386 17143251698 26985921181 Calculated  82  BSAF at steady state kg OC kg lipid BSAF 1 14E 01 9 71E 00 1 16E 01 1 06E 01 2 50E 01 Calculated  83  84  85  86  Lipid Equivalent Conce
25. 2 5 39569E 06 7   199 Sediment Transformation 01524065  5 03414E 05 F   200   201 Sediment Burial 0 00732772 2 42042E 06   202  cr    203 Water Outflow 0 00128111  4 23163E 07   204   Particle Outflow 0 00013291 439023E 08   205    ane        Maar i   ail  A E c M    E G H  ify  kK Nig   208 s   206    207 D Values  amp  Response Times   208    209  D Value Response Time Response Time   210  of Water of Sediment   211  mol Pa h years days hours years days hours   212 Burial 3593591 82 0 0 0 3 28833472 1200 24217 28805 81216   213 Sediment Transformation 74741721 8 0 0 0 0 15810357 57 7078016 1384 987239   214 Sediment Resuspension 14374367 3 0 073231566 26 72952151 641 5085163 0 82208368 300 060543 7201 453039   215 Water to Sediment Diffusion 1670921 82 0 629986041 229 9449048 5518 677716 7 07210391 2581 31793 61951 63026   216 Sediment Deposition 30096331 5 0 03497627 12 76633863 306 3921272 0 39263698 143 312498 3439 499959   217 Water Transformation 26632098 2 0 039525892 14 42695041 346 2468098 0 0 0   218 Volatilization 4 14540877 253933 3229 92685662 85 2224455908 0 0 0   219  Volat   air side  414540918   220  Volat   water side  41773045 6   221 Water Outflow 2088652 28 0503988833 183 9559239 4414942173   222 Water Particle Outflow 216693 587 4857815309 1773 102588  42554 46211   223 Rain Dissolution 0 11415525 11 4166666667 1E 11   224 Wet Particle Deposition O 11415525 11 4166666667 1E 11   225  Dry Particle Deposition 32043 3024 32 85109036  11990 64798  287775 55
26. 2247   14 38877758 5251 903816  126045 6916  Dry Particle Deposition 32043 3024 32 85109036 1990 647998  2877755516  Water Inflow 208865228  0 503988833  183 9559239 4414 942173  Water Particle Inflow 14446 2391 7286722964  26596 53882  638316 9317       Page 38    SS results pond tab  Rows 230   250 display echoes of the input for the Food  Web aquatic organism masses  lip fraction  k rates and feeding table matrix used  by the Bioaccumulation model             A  FOODWEB RESULTS          Foodweb Characteristics  Organism Mass  kg  Lipid Fraction k1 k2 ke kd km kg kT       Phytoplankton 0 0005 9644 312647 1021347316 0 0 0 0A 11213473  Zooplankton 0 0000001 002  23777 46355 6993621322 0 048539 0 33592967  O 00126097 7 0480849  Benthic Invertebrates 0 00001 O02 4744 227697 1395410907  0 06549539 0 16336366 O 000502 14659263  Forage Fish A 0 0 0 04 422 8297386 0 0704034 0 00595381 0 05973768  O 00063048 0 082662  Forage Fish B 0 01 0 06 4228297386 0049606681 0 00419509 0 05973768 O 00063048 0 0601066  Piscivorous Fish 1 004 8436562431 0014256466 0 00475749 002993976  0 0 00251 0 021524  Feeding Table  Phytoplanktc Zooplankton Benthic Invertet Forage Fish A Forage Fish Piscivorous Fish   Water  dissolved 0 0 0 0 0   Sediment  particles 0 0 1 0 0 0   Phytoplankton 0 1 0 0 0 0   Zooplankton 0 0 0 05 05 0   Benthic Invertebrates 0 0 0 05 05 0   Forage Fish A 0 0 0 0 0 05   Forage Fish B 0 0 0 0 0 05   Piscivorous Fish 0 0 0 0 0 0    SS results pond tab  Rows 251   263 display calcu
27. 232734 7769 92627 09826 85579 76433 136799 155678 36 59835 0704  23  480 1961 6 1 21 5582556 5123 674285  200606 8726 79461 94202 73552 68943 140104 160919 68 64888 0964   24 504 1961 6 2 21 3082921 5316 327635 175613 9479 76196 64357 64804 72924 141267 163955 8 69681 969             Page 31       An example of output contained in columns DYN timeseries A   DYN   timeseries D and then window split to display columns DYN timeseries AA    DYN timeseries AJ is displayed below  These columns display the daily  concentrations in the dissolved water column  benthic sediment and pore water  along with the total daily input of chemical mass  total daily output of chemical  mass  daily water inflow rate  daily water outflow rate  and net daily water  volume flux                                                                          A  Bem ce Enel A   AL   A ia   1      ltime  h  Year Month Day N   Sediment solids only c porewater   Suminput  kg SumLoss  kg    Water inflow Water Net water  ng g g m3 h outflow m3 h m3 h                        Ea  0 1961 5 12 0 0 0 5 5 0  Ee 24 1961 5 13 18 39836386 0 144080957 0 069785105 0 439666399 0 439666465ff 10 08333 10 08333 0  a 48 1961 5 14 16 23785987 0 403905727 0 195630319 0 454831194  0 454831721 5 5 0     72 1961 5 15 13 8524239 0 623460174 0 301970743 0 454831194  0 454831721 5 5 0   7 96 1961 5 16 11 82263701 0 804751929 _0 389778768 0 454831194 0 454831721 5 5 0     8   120 1961 5 17 10 09537143 0 953604771  9 461875119  0 454831194  
28. 373328863 0 0  40   168 1961 S 19   416666E 06  0 006044444 0 000625 0 008680556  0 001794444 0 3 04715464 0651874198 0 003860419   0 407393913 0 0  1  192 1961 5 20 4 16666E 06 0 006944444 0 0000625 0 008680556  0 001794444 0 3  0 03456618 1 727018584 0 016888687 0 498477888  0 0  12  216 1981 5 24  416666E 06  0 006944444 0 0000625 0 008680556  0 001794444 0 3  0 029414053 1 4742205 0 013882886  0 619725421 0 0  33 240 1961 5 22   416666E 06 0 006944444 0 0000625 0 008680556  0 001794444 0 3  0 025031535 1259094492 0 011335629  0 719058826 0 0  44  264 1961 5 23  416666E 06 0 006044444 0 000625 0 008680556  0 001794444 0 3  0 021303633 1 076013362 0 009178214  0 799799966 o 0  As  288 1961 5 24 4 16666E 06 0 006944444 0 0000625 0 008680556  0 001794444 0 3  0 018132534 0 920190725 0 007352208 0 864808436 0 0  a8  312 1961 5 25  416666E 06  0 006944444 0 0000625 0 008680556  0 001794444 0 3  0015435043 0 787555368 0 005807914  0 916506598 0 0  a7  336 1961 5 26  0015397385 0006944444  0 00068125 0008680556 0 012980024 0 3 0 282811488 0 970596251 0 004503065  0 956953453 0 0  a8  30 1961 5 27  0003389054 0006944444  0 000271146 0008680556 0 001381797 0 3  0 029731371 2716791033 002547187  1 090714052 0 0  49   384 1961 S 28   0 001372436 0 006944444 0 000176771 0 008680556  0 000540446 0 3  0 030438499 2487264205 0 022670049 1 28156589 0 0  20  408 1961 5 29 S 276E 05 0 006944444  7 57813E 05 0 008680556  0 001759132 0 3  0 042492527 2191337009  0 01918162  1 446824346 0 0  2
29. 6     87 looks  like                                        B   c   D l E l F   G F   Steady state Mass Balance   E  90  total mass of chemical into water  9  dMwi dt 1 62E 00 Calculated  _91  total mass of chemical out of water  9  dMwo dt 1 62E 00 Calculated  _92  total mass of chemical into sediment  g  dMsi dt 7 86E 01 Calculated  _93  total mass of chemical out of sediment  g  dMso dt 7 86E 01 Calculated  94  5  _96   Steady State Evaluation Steady State Results from AGRO  _97  total mass of chemical in water  9  Mw 11 06 Calculated  _98  total mass of chemical in sediment  g  Ms 39 59 Calculated  99  100 Concentrations  101  freely dissolved concentration of chemical in water  g L     Cwdo 4 9868E 07 Caloulated  102  concentration of chemical in water  g L  Cw 5 5294E 07 Caloulated  103  concentration of chemical in sediment  g kg dry  Cs 3 2988E 04 Calculated   104 concentration of chemical in sediment solids  g kg dry  Cssolids 3 2973E 04 Calculated  105 concentration of chemical in sediment normalized with orga Csoc 8 2470E 03 Calculated  106  concentration of chemical in pore water  g L  Cwdp 1 8717E 07 Calculated  107 concentration of chemical in phytoplankton  g kg ww  Cp 4 2890E 03 Caloulated  108  concentration of chemical in zooplankton  g kg ww  cz 1 8868E 03 Calculated   109 concentration of chemical in Benthos  g kg ww  Cb 1 6014E 03 Caleulated  110  concentration of chemical in forage fish A  g kg ww  Cffa 3 8112E 03 Calculated  411  concentration of chemic
30. 6  0 006944444  6 2787E 05 0 008680556  0 001794559 0 3  0 022240408 1 168028363 0 005578557 2 462823059 0 0  33  720 1961 6 11  416666E 06  0 006944444 0 0000625 0 008680556  0 001794444 0 3  0019054415 1 004534551 0 003750887  2 500019031 0 0  a  744 1961 6 12  416666E 06 0 006944444 0 0000625 0 008680556  0 001794444 0 3  0 01623345 0 865092688 0 002213726 2 82283208 0 0  35  768 1961 6 13  4 166666 06  0 006944444 0 000625 0 008680556  0 001794444 0 3  0 013833499 0 746279294  0 000925293  2 534693729 0 0  2  792 1961 6 14  416666E 06  0 006944444 0 0000625 0 008680556  0 001794444 0 3  0 011791662 0645015985   0 00015195  2 537120983 0 0  37  816 1981 6 15  4416666E 06  0 006944444 0 0000625 0 008680556  0 001794444 0 3  0 010054426 0558684289  0 001049923 2531756296 0 0  Ea 840 1961 6 16  416666E 06  0 006944444 0 0000625 0 008680556  0 001794444 0 3  0008576315 0 485056925  0 001795771  2 519908786 0 0  339  864 1961 6 17  416666E 06  0 006944444 0 0000625 0 008680556  0 001794444 0 3  0007318592  0 42223935  0 002412576  2 502689134 0 0   40 888 1961 6 4 16666E 06 0 006944444 0 0000625 0 008680556  0 001794444 0 3  0 006248341 0 268620041  0 002919962 2 481039288 0 0          Page 33       The following table summarizes the columns in the columns of the DYN   timeseries tab     Table 6  Summary of timeseries output parameters included with  the model    Time  h    Year From PRZM3 12   Month From PRZM3 12   Day From PRZM3 12   Emission kg year  if it occurs at this out
31. 9668121 2526949883  25   1982  51 69116211 4257536697 30 68570709 14 87016392  10 1333828 2560455799   26   1983 46 56212997  40 17373657 2760877991  14 2075367  9 6854496 2447705746  27  1984 46 14097214  42 36930084  31 020895  15 72977829 10 74557114 2 709403038  28  1985 40 90264511  32 82274246 24 83531189 12 7513876 8 761656761 2 217543602  29  1986  30 98724174  24 91360474 20 51253891 12 08961105 8 243132591  2 085828304  30  1987 31 25631714  25 13958168 21 07585144 12 667 7243 8 728728294 2 209665537  31  1988 48 05846405  40 38293076 30 06317139 15 91494083  10 85391903 2735218048  32  1989 30 9382782  24 92571449 19 96682739 11 05440617 7 610530376 1 928925633  33   1990 61 74824142  50 65732574 32 09967804  15 67603207 10 6972456 2702696323    Moa   lt     A B c D E F N P ry  40  1985 3 481950998 3 474330187 3 306331873  2 759078264  2 332169056 0 74858433 E  41  1986  3 265149117  3 258912802  3 135131121  2 592978477  2 188745499 0 702758729  42  1987  3 235586166 3 228167534 3 078638315  2 670116901  2 289322615 0 742867887  43  1988 4 564675808  4 55505085  4 333564281  3477374792 2 8973279  0 91848278  44  1989 2936492682  2 930020094 2788197756  2 360131502  2 009531975 0 652857423  45   1990 4476986885  4 468397617 4 254661083 3 457499266 2 871734619 0 90665102  46  AT   48       Steady state Results    The results presented in the SS results pond tab are in the  same format as the QWASI model with the foodweb results output at the  bottom     The followin
32. Emissions  worksheet     Enter the number of years of the simulation in cell AGRO B 14     To output daily  enter    24    in cell AGRO B15     Page 25    Use the    calculate timestep    button to fill in the appropriate timestep for the  modelled system in cell AGRO B16     Select the    Outputs in separate file    option     Cell AGRO P2 will read 1 if steady state mode is selected or 2 if dynamic mode  is selected     Cell AGRO P3 should be set to    TRUE    so that the Bioaccumulation model is  run in addition to the QWASI water quality model     Also  cell AGRO P4 should also be set to    True    so the timestep set as constant  for the entire simulation  otherwise the model attempts to recalculate the timestep  required at each iteration     Examine cells AGRO B4     AGRO B8 to make sure that the correct chemical   environmental scenario  foodweb  and dynamic simulation model options are  selected     Click the    Run AGRO    button to run the simulation     To monitor the progress of a simulation  each simulation day number is displayed  on the lower left hand corner as it is being processed     Upon completion of a simulation  Cells AGRO B24     AGRO B33 display the  model run time and simulation mass balance     Step 8     Examine the output from the simulation    The output from the dynamic mode simulation is displayed in tabs  DYN results pond  DYN timeseries  and DYN yearly  The output from the  steady state mode simulation is displayed in the tab named SS result
33. Page 40    Organic Chemicals in Aquatic Food webs  Application to Lake Ontario   Ecological Modelling 69  1 17     Gobas FAPC  Mackay D  1987  Dynamics of Hydrophobic Organic Chemical  Bioconcentration in Fish  Environmental Toxicology and Chemistry 6  495   504     Gobas FAPC  Muir DCG  Mackay D  1988  Dynamics of Dietary Bioaccumulation  and Faecal Elimination of Hydrophobic Organic Chemicals in Fish   Chemosphere 17  943 962     Gobas FAPC  McCorquodale JR  Haffner GD  1993a  Intestinal Absorption and  Biomagnification of Organochlorines  Environmental Toxicology and  Chemistry 12  567 576     Gobas FAPC  Zhang X  Wells R  1993b  Gastrointestinal Magnification  The  Mechanism of Biomagnification and Food Chain Accumulation of Organic  Chemicals  Environmental Science and Technology 27  2855 2863     Gobas FAPC  Wilcockson J  et al  1999  Mechanism of Biomagnification in Fish  under Laboratory and Field Conditions  Environmental Science and  Technology 33  133 141     Gobas FAPC  Maclean LG  2003  Sediment Water Distribution of Organic  Contaminants in Aquatic Ecosystems  The Role of Organic Carbon  Mineralization  Environmental Science and Technology 37  735 741     Gordon DCJ  1966  The Effects of the Deposit Feeding Polychaete Pectinaria  gouldii on the Intertidal Sediments of Barnstable harbor  Limnology and  Oceanography 11  327 332     Koelmans AA  Anzion SFM  Lijklema L  1995  Dynamics of Organic  Micropollutant Biosorption to Cyanobacteria and Detritus  Environmenta
34. RZM       8  Run Food Web  TRUE Run AGRO  9  Run model in   10   C steady state mode  11    Z  SOynamiomode PRZM Inputs Calculate Timestep  13          14   Total Time of simulation  years  T p Recalc timestep  15  Output every  h  24 at start   T timestep  h  3 p Data Source  For normal  l Dw k  47  Number of iterations  approx  2922 ee  18   Steps per day 8 uses GetPRZM Files as data source  19 Using data from GetPRZM_Files is recommended for Dynamic Runs  P C Outputs in newworkbook  defaut  Turn this option off to experiment with modified values in PRZM forinput          GH       Outputs in this workbook FALSE    nN    1          Outputs in separate file    Model start time 8 28 2007 13 47 01  5  Model end time 8 28 2007 13 47 04   Model run time    7  28  Model Mass in  9       PRZM forInput            M 4  gt   gt    AGRO  lt    5    Select either dynamic mode or steady state mode  If Steady state mode is  selected then the emission scenario automatically changes to    Constant Inputs    as  defined on the Emissions tab  When the dynamic mode is selected a message  box appears to remind the user to select the appropriate emissions scenario as the  PRZM  based scenario is NOT automatically selected when the model runs in  dynamic mode     DYNAMIC EMISSION SCENARIO CHECK       Please confirm that the type of dynamic emission  scenario you wish to run is either     Constant Inputs  or  PRZM Inputs    by checking cell  B12   Choose the appropriate  Emission Scenario on the  
35. Solids  bulk media  Environment  AG Fraction _OC_     Fraction of organic carbon in  Water water column bulk media     Default value  0 067       Environment  AH    Fraction_OC_  Sediment    Fraction of organic carbon in  benthic sediment bulk media  Default value  0 014          Environment  AI    Environment  AJ       Fraction_OC_  Inflow    Fraction_OC_  Resuspended       Fraction of organic carbon in  inflow water bulk media  Default value  0 067          Fraction of organic carbon in  resuspended sediment   Default value  0 014       Page 14                                                    Column Parameter Units Notes  Environment  AK    Flows    Label for columns associated with  flow rates in various bulk media  Environment AL River_Water_ m h Flow rate of inflow water into  Inflow water body   Default value  5  Environment AM   Water _Outflow_ mh Flow rate of outflow water out of  Rate the water body   Default value  5  Environment AN   Deposition_Rate   g m  Deposition rate of solid particles  to benthic sediment   Default value  80  Environment  AO Burial_Rate_ g m  Burial rate of solid particles in  Solids benthic sediment   Default value  40  Environment  AP Resuspension_ g m Resuspension rate of solid  Rate particles out of the benthic and  back into the water column   Default value  40  Environment  AQ    Mass Transfer Label for columns associated with  Coefficients    Mass transfer Coefficients  between various bulk media  Environment AR   Aerosol_Dry_ m h De
36. User   s Guide for CEMC_SFU_AGRO  v1 2    The Combined Canadian Environmental  Modelling Centre Water Quality Model and the  Simon Fraser University Food Web Model    Version 1 2    September 18  2007    TABLE OF CONTENTS    DN CrOCUC CON iieeisisuineservedensciikcussinnesvans Qanenusussuacedesnaiaesncanaseanuans  System Requirements  Computation Flow Overvie V   Step 1   Import Daily Mass Loading Data Generated by PRZM3 12 for use in the  COW IAS T MOOS sa Ger 4  Step 2     Enter or Select Chemical Input Parameters                 6  Step 3     Enter or Select Environment Input Parameters                          10  Step 4     Confirm the Emissions Parameter            cccccesssecesseceeeeceeneeceeeeeeceeeeeeeeeeesaes 17  Dynamic EMISSIONS gggg eae tal ete eats 17  Constant EMISSIONS a a a ace E E E 66 18  Step 5     Review the FWModel tab                                        19  Step 6     Review the Foodweb tab  ijcssscescaciicscdeasscnssaccvenhecesannceasstened ca cputeca ents coatacupeacts 24  Step 7    Confirm Run Parameters and Run Simulation       p   25  Step 8     Examine the output from the simulation         26  Dynamic Results  sonnes nin annaa eeaeee a A EE a EEA EAE 26  Steady state RESULIES nesti ese eane 35  Referents vesera aa 40    TABLES  Table 1  Summary of daily input values for AGRO model derived from PRZM  OUtP  t  ene onerose sosse ENE a EEES 5  Table 2  Chemical Parameters for Type I Partitioning Simulations                 7  Table 3  Chemical Pa
37. al in forage fish B  g kg ww  Cffb 5 2414E 03 Calculated  112 concentration of chemical in piscivorous fish A  g kg ww  Cpfa 8 2507E 03 Caloulated  113  T4  concentration of chemical in prey item for Zooplankton  g kg PCDIZ 0 00428895 Calculated  115  concentration of chemical in prey item for Benthos  g kg foot PCDIb 0 00032988 Calculated  116  concentration of chemical in prey item for forage fish A  g kg PCDIffa 0 00174407 Caloulated  117  concentration of chemical in prey item for forage fish B  g kg PCDIffb 0 00174407 Calculated  118 concentration of chemical in prey item for piscivorous fish A PCDipfa  0 0045263 Calculated  119  120 BAF at steady state BAF logBAF  121  122 Benthos 2995 17119 3 47642165  123 Forage Fish A 6892 646 3 83838597 Calculated H  124 Forage Fish B 9479 16094 3 9767699 Calculated  125 Piscivorous Fish A 14921 5502 4 17381394 Calculated  126 Note  the steady state evaluation is based on constant chemical emission with the loading amount entered in cell  C43   427  Ma  gt    Food Web input values for the Bioaccumulation model are included in columns  FWModel G through FWModel L   The food web structure is included in rows 5 through 13    The food web aquatic  organism individual parameters are included in rows 18 38  The below page  displays the recommended values for these rows      _ oe KT M   N   o   P ala    E  _5  Food Web Structure Action  _6  Species oplanktcZooplanktor_ Benthos _ Forage Fish A Forage Fish B__Piscivorous Fish A  _T  Sediment
38. and its ambient environment can be described  by a single equation for a large number of aquatic organisms  For each aquatic organism   this equation estimates bioaccumulation as a function of intake of pesticide via  respiration and ingestion of prey  and outflow of pesticide via excretion  metabolism to a  daughter product and respiratory exhalation     Page 3    System Requirements    The AGRO modeling system is designed to run using MicroSoft Excel   2003 with at  least 10 MB of hard disk space     Computation Flow Overview    Using Visual Basic for Applications  VBA  as the programming language allows for the  AGRO modeling system to function within the framework of EXCEL spreadsheets  thus  facilitating the entry and viewing of both the input parameters and the display and  analysis of the subsequent output  The following steps detail how to run the AGRO  modeling system     To run the AGRO modeling system in dynamic mode     Step 1   Import Daily Mass Loading Data Generated by PRZM3 12 for  use in the QWASI model     Go to the Get_PRZM_ Files Tab    Here is an example of a Get_PRZM_Files page                           Collected Data for verification against textfiles   2  Field Area Ha     SUA EE a Ea  ero soil  a loss  app rate pet runoff flux tonnes Ha  ero pest flux  3  135  132  1961 5  12 1 0 99 5 0 0 0 0 0  136  133  1961 6 n 0 0 0 0 122  1 72E 08  0 002343 1 019E 10 1 65  137  134 1961 5  14 0 0 0 0 0 0 0 0  138  135  1961 5  15 0 0 0 0 0 0 0 0  139  136 1961 5 
39. b i      Organism Mass  kg    Pie kl k2 ke kd km kg kT   4  Phytoplankton o   0 50    9 6443E 03 1 02135 o o 0 01 112135  5  Zooplankton 100E 07   2  23777 4636  6 99362  0 04185 0 33593  0  0 01261  7 04808     6      Benthic Invertebrates   1 00E 08   2    4744 2277 1 39541 0 0655  0 168364 O 0 00502  1 46593    FormgeFihA pao OL   Ate   422 829739 0 0704  0 00595  0 059738 0  0 0063  0 08266   B  Forage FishB 0 016    422 829739  0 04961  0 0042  0 059738 0  0 0063  0 06011     9   Piscivorous Fish i 4   843656243 0 01426  0 00476 0 02994 0  0 00251  0 02152  10    Feeding Matrix  Benthic Forage Forage Piscivorous    Phytoplankton Zooplankton jwertebrates  Fish A  FishB_  Fish    Zooplankton    Benthic Invertebrates       Y ripigielelelalaisislalelals  S DE  o RBBS8B358355323258  D       b       eC  gt    AGRO  Chemical Z Environment   GetPRZN_Fies   Emssons   Foodweb  lt  FWMode   iD VIFFESUSBBma Di  STGseH  D YNIVERH   SS EEUESOnG AE LEATTTNPA    lt     Page 24    Step 7     Confirm Run Parameters and Run Simulation    Go to the AGRO tab             B u am E  ES  G     o   Q Eg  CEMC Agrochemical Model F   2 1 16 05   BETA version Steadystate or dynamic 2 1 ss 2 dyn  3 Simulation Name  Updated Foodweb calcs from Aug3 Gobas model run foodweb  TRUE  4  Run for Chemical  testazole   Additional Comments  BETA version   mods by LKR CEMC keep timestep constant TRUE  5  in Environment Modeling for EFED Repot  6  for Foodweb  Agro Pond Foodweb  7_ Emission Scenario  DynamicfromP
40. ccumulation model are automatically summarized  based on input values entered in the Chemical tab     An example of columns FWModel A through FW Model G  rows 4     10 looks  like     1 Environmental Fate Model           EE    Model Input Parameters    _4  Chemical Specific Properties Symbol Value Action Alternative Value  Ei Molecular Weight MolW 345 6 Enter on Chemical Tab  _6  Henry s Law Constant  Pa m3 mol  H 2 39E 06 Calculated from Chemical Tab  7_ log Kow of the chemical log Kow 5 1 Enter on Chemical Tab     8  chemical half life in water  days  hlw 10 Enter on Chemical Tab  9  chemical half life in sediment  days  his 40 Enter on Chemical Tab  10  log transformed organic carbon water partition coefficientn log Koc 4 644068044 Calculated from Chemical Tab original 0 35 Kow       11  a gt        Page 19    For columns FWModel A through FWModel G  rows 12     31  the chemical  parameters required by the Bioaccumulation model are automatically summarized  based on input values entered in the Environment tab     The following additional environmental input parameters along with their    recommended values are required by the Bioaccumulation model     Table 5  Additional Environmental Input parameters in    FW Model       Input Parameter    Dissolved oxygen saturation      Disequilibrium factor POC  unitless   Disequilibrium factor DOC  unitless   POC octanol proportionality constant  unitless   DOC octanol proportionality constant  unitless   pH of water   water temperatu
41. concentrations  the food web model estimates bioaccumulation of  pesticide in aquatic organisms     The water quality model component of the AGRO modeling system is the Quantitative  Water  Air  Sediment Interaction  QWASI  Fugacity model developed by Mackay et al   at the Canadian Environmental Modelling Centre  Mackay  Joy and Paterson  1983    Mackay  Paterson and Joy  1983   Mackay and Diamond  1989   Webster  Lian and  Mackay  2005    The QWASI model is based on a single receiving water body of user   defined size and depth with an active sediment layer  This model can be run in dynamic  mode which involves daily input of water from field runoff  dissolved pesticide in field  runoff  eroded sediment  pesticide sorbed to eroded sediment  pesticide emissions  resulting from application drift and rainfall  These dynamic daily inputs are generated  outside of the AGRO modeling system using the EPA PRZM3 12  The AGRO modeling  system has built in capability to import annual mass loading files output from PRZM3 12  and convert these values into the units and configurations needed by the QWASI  Fugacity model     The food web model in AGRO is based on the Bioaccumulation model developed by  Frank A P C  at Simon Fraser University  Gobas  2007   The Bioaccumulation model is a  dynamic or time dependent interpretation of Arnot and Gobas  2004  bioaccumulation  equation  This model is based on the assumption that the exchange of hydrophobic  organic chemicals between the organism 
42. ction  QWASI  Model to the Great Lakes  Report to the Lakewide  Management Plan  LaMP  Committee CEMC Report 200501  Trent University   Peterborough  Ontario     Weininger D  1978  Accumulation of PCBs by Lake Trout in Lake Michigan  PhD  thesis  University of Wisconsin  Madison  WI  USA     Xie WH  Shiu WY  Mackay D  1997  A Review of the Effect of Salts on the    Solubility of Organic Compounds in Seawater  Marine Environmental  Research 44 4   429 444     Page 44    
43. d   PRZM workarea  This worksheet is used by the AGRO Visual Basic module to  store internal variable values during processing  It is always cleared at the end of  each instance of retrieval of PRZM files     Page 5       Step 2     Enter or Select Chemical Input Parameters    Go to the Chemical tab    The chemical parameters are defined here  A    database    of chemical parameters  is listed in columns Chemical Q through Chemical AK     Here is an example of columns Chemical Q through Chemical  AK in the  Chemical Tab     1 Test Chenoa          2 Food Web Sensitivity Analysis 300  3 Modeling for EFED Report   300       More chemicals can be added to this database or existing chemicals can be  modified by entering data into the appropriate columns in the    tan    shaded areas   The names of the newly added chemicals will appear in the list box entitled     Select a Chemical    in columns Chemical D Chemical F of this tab     Page 6    To enter a new chemical with Type I partitioning into the chemical database  enter  the following chemical information into the first available empty row     Table 2  Chemical Parameters for Type I Partitioning                                        Simulations  Column Parameter Units Notes  Chemical Q   Chemical     The row number plus 1  This  Identifier will be used as the chemical  number identifier   Chemical R   Chemical     Name of chemical of interest  Name  Chemical S Chemical Type       1 for Type I partitioning and 2  for Type II pa
44. d Particles Wate 8299 84245 3458 268106   32   Sediment Water 4955 13062 2064 637675     33  Resuspended Particles We 4955 13062 2064 637675  734   Acrosol Air 3 86849E 13     35   Organic Carbon Water  Ko  51615 94188  EA  37  Halt ives  Half life Rate Constant  hours 1h  240 0 002888113  960 0 000722028     i  f  parameters   A Be   c ji D E m i   mass i Lijs  K T u a      4   ENVIRONMENT PARAMETERS a  5  48  Lake Data  w   w  Area Depth Volume      m m  50   Water 10000 2 20000     51   Sediment 10000 oot 100  oa      53   Inflow Outflow  se  mth mith  55   Water 5 5  _56   Suspended Particles 4 16666E 06 0 0000625 3  57     58   Sediment Subcompartment Volumes m      58   Solids 50     80   Pore Wwater 50  Ta   ez   63   Particle Properties  er      65   Density Cone  of Volume oc     88   kgm    Particles Fraction Fraction  _67   Particles in Water Column 2400 30 mgl 0 0000125 0 067  _68   Sediment Solids 2400 05 0 04  68   Inflow Particles 2400 2 mgl 8 330096 07 0 087  _70   Resuspended Particles 2400 0 04  _71_  Aerosols in Air 1500 30 pgtm  et    n o  z   z      74   Transfer Rates  os   _76  Mass Transfer Coefficients mih     27   Volatiization  air side  1  _78   Volatilization  water side  0 01  _73   Sediment water Diffusion 0 0004  80   Aerosol Dry Deposition Velo 0   82   Aerosol Scavenging Ratio 200000        lt   85   mth  86   Rain Rate o 1 miyeat Aerosol Depe m h  _87   Sediment Deposition Rate 0 008680556 50 gim day Wet 0     88   Sediment Resuspension Rat 
45. erosol Deposition   Dry 0 0  Absorption 0 0  Yolatilization 4 2006E 09 138749E 12  Sediment Deposition 0 03049682  1 00734E 05  Sediment Resuspension 0 0049026 1 61938E 06  Water to Sediment Diffusion 0 00169316 _    59267E 07  Sediment to water Diffusion 0  00056989  1 88242E 07  Water Transformation 002698649   8 91392E 06  Sediment Transformation 0 02549183   8 42022E 06  Sediment Burial 0 00122565  4 04845E 07   Water Outflow 0 00211645   6 99084E 07  Particle Outflow 0 00021958  7 25286E 08    7 D   alues  amp  Response Times  D Value Response Time Response Time  of Water of Sediment   molfPah years days hours years days hours  Burial 359359182  0 0 O 328833472 1200 24217 28806  Sediment Transformation 747417218 0 0 O 015810357  57 7078016  1385  Sediment Resuspension 14374367 3  O 073231566  26 72952151 6415085163 0 82208368 300 060543  7201 5  Water to Sediment Diffusion 167092182  O 629986041 229 9449048 5518 677716 7 07210391  258191793  61952  Sediment Deposition 300963315  0 03497627  12 76633863  306 3921272 0 39263698 143 312498 3439 6  Water Transformation 26632098 2  0 039525892 14 4269504 346 2468098 0 0 0  Yolatilization 414540877 253933 3229 9268566285 2224455903 0 0 0  Volat   air side  414540318  Volat   water side  41773045 6     Water Outflow 208865228    0 503988833  183 9559239 4414 942173  Water Particle Outflow 216693 587 4857815309  1773 102588 42554 4621  Rain Dissolution 476961251 2207471086  805 7269465 19337 44672  Wet Particle Deposition 73158 
46. ficient  unitless  Kaw 5 69E 10 Calculated  71  temperature dependence of Henry law constant  H  In H Tw   1 35E 01 Calculated  72  fraction of freely dissolved chemical in water  unitless  fDW 90 46  Calculated  73   fraction of freely dissolved chemical in sediment  unitless  fDS 0 05  Calculated  74   settling of sediment solids flux  kg day  SetFlux 2 00E 01 Calculated  75   burial flux of sediment solids  kg day  BurFlux 5 00E 03 Calculated  76  temperature dependence of Henry law constant  H  H Tw  1 37213E 06 Calculated  77  sediment soids mass balance and resuspension flux  kg day  ResFlux  4977 60751 Calculated  78   water volume of lake  m 3  Vw 2 00E 04 Calculated  79   sediment volume  m 3  Vs 1 00E 02 Calculated  80   Octanol water partition coefficient  unitless  Kow 1 26E 05 Calculated  81   organic carbon water partition coefficientn  L Kg  Koc 4 41E 04 Calculated  82   Bioavailable solute fraction  unitless  co  0 901868644 Calculated  83   Concentration of particulate organic carbon  kg L  Xpoc 0 00000201 Calculated  84   Concentration of dissolved organic carbon  kg L  Xdoc 2 01E 06 Calculated  85   volume of sediment solids  kg  Vss 1 20E 05 Calculated  86  volume of sediment solids  L  Vssl 5 00E 04 Calculated  87   volume of pore water in sediment  L  Vws 5 00E 04 Calculated  8           gt  m  AGRO Z Chemical   Environment   GetPRZM_Files   Emissions   Foodweb   FWModel       Page 21        1    An example of columns FWModel A through FW Model G  rows 6
47. g series of pages display an example of output contained in the SS   results pond tab     Page 35    SS results pond tab  Rows 1   44 display the model version number  scenario  descriptors  and echoes of the che                  mical input parameters   E F G H 1                                       B c D      a  CEMC SFU Agrochemical Model    Version 12  Simulation ID Enter simulation name 3  Additional Comments Enter user name or additional information 7  Date  18 09 2007 Time  10 35 51 AMI  Chemical  Test Chemical    Environment  Modeling for EFED Report  CHEMICAL PARAMETERS  Phgsical Properties  Chemical Type 1  Molar Mass 345 6 gimol  Temperature vec 290 15 K  LogKow 54  Solubility 179 gim  0 005179398 molim      Vapour Pressure 12399E 08 Pa  Melting Point 125 C 398 15 K  Fugacity Ratio 0 07986781  Sub cooled Liquid Y P  15524E 07 Pa  Henry s Law Constant 2 3939E 06 Pam tmol  Partition Coefficients  Dimensionle  Likg  Air Water  Kaw  9 9236E 10    Suspended Particles Wwater 8299 894345 3458 268106  Sediment Water 4955 13042 2064 637675  Resuspended Particles Water 4955 13042 2064 637675  Aerosol Air 3 8649E 13    Organic Carbon Water  Koc  z 51615 94188  Half lives   Half life Rate Constant  hours th  Water 240 0 002888113  Sediment 9360 0 000722028  ENVIRONMENT PARAMETERS v  Marn SS results pond ms  a  SS results pond tab  Rows 44   88 display echoes of the environment input  ENVIRONMENT PARAMETERS  Lake Data  Area Depth Volume  m m m  Water 10000 2 20000  Sediment 10
48. gy and Chemistry  23 10   2343 2355     Berg DJ  Fisher SW  Landrum PF  1996  Clearance and Processing of Algal  Particles by Zebra Mussels  Dreissena polymorpha   Journal of Great Lakes  Research 22  779 788     Branson DR  Blau GE  et al  1975  Bioconcentration of 2 2 4 4 Tetrachlorobiphenyl  in Rainbow Trout as Measured by an Accelerated Test  Transactions of the  American Fisheries Society 104  785 792     Bruner KA  Fisher SW  Landrum PF  1994  The Role of the Zebra Mussel   Dreissena polymorpha  in Contaminant Cylcing  II  Zebra Mussel  Contaminant Accumulation from Algae and Suspended Particles and Transfer    to the Benthic Invertebrate  Gammarus fasciatus  Journal of Great Lakes  Research 20  735 750     Burkhard LP  2000  Estimating Dissolved Organic Carbon Partition Coefficients for  Nonionic Organic Chemicals  Environmental Science and Technology 34   4663 4668     Ernst W  Goerke H  1976  Residues of Chlorinated Hydrocarbons in Marine  Organisms in Relation to Size and Ecological Parameters  I  PCB  DDT  DDE  and DDD in Fishes and Molluscs from the English Channel  Bulletin of  Environmental Contamination and Toxicology 15  55 65     Fisk AT  Norstrom RJ  et al  1998  Dietary Accumulation and Depuration of  Hydrophobic Organochlorines  Bioaccumulation Parameters and their  Relationship with the Octanol Water Partition Coefficient  Environmental  Toxicology and Chemistry17  951 961     Gobas FAPC  1993  A Model for Predicting the Bioaccumulation of Hydrophobic    
49. hemical g mol Molecular weight of chemical  Molecular  Mass  Chemical AD   Chemical days Aqueous aerobic half life  Half life in  Water  Chemical AE   Chemical days Aqueous anaerobic half life  Half life in  Sediment  Chemical AG   Air Water dimensionless  Partition  Coefficient   Kaw       Chemical  AH    AerosolWater  Kaw    dimensionless                Chemical AI   Sediment  L kg  Water   Chemical  AJ   Suspended L kg  Sediment Water   Chemical  AK   Resuspended L kg       Sediment Water             Now  go to the list box    Select a Chemical    in columns Chemical D Chemical F   Highlight the chemical of interest and click the    OK    button  This will cause the  appropriate values of the selected chemical to appear in column Chemical B  where the user can easily review them and where the model actually reads the  values used in the upcoming simulation   If the user wishes to make temporary  changes to a chemical data  these can be made directly in column Chemical B  without affecting the original values in the database  although these value will be    overwritten each time the    OK    button is clicked     Page 8       Here is an example of columns Chemical A through Chemical N  Rows 1 21  in  the Chemical tab     A          Chemical properties       2  Chemical Name   3  Chemical Type  Ea Property Temperature C i   5  Molecular Mass  g mol   Tell Melting Point  C   Solubility  g m     Vapour Pressure  Pa   Partitioning             Select a Chemical     testazole  Fo
50. iment Interaction  Fugacity Model to the Dynamics of Organic and  Inorganic Chemicals in Lakes  Chemosphere  18  1343 1365     Mackay  D   Joy  M   Paterson  S  1983  A Quantitative Water  Air  Sediment  Interaction  QWASI  Fugacity Model for Describing The Fate of Chemicals in  Lakes  Chemosphere  12  981 997     Mackay  D   Paterson  S   Joy  M  1983  A Quantitative Water  Air   Sediment Interaction  QWASI  Fugacity Model for Describing the Fate of  Chemicals in Rivers  Chemosphere  12  1193 1208     Mayer LM  Weston DP  Bock MJ  2001  Benzo a pyrene and Zinc Solubilization  by Digestive Fluids of Benthic Invertebrates   A Cross Phyletic Study   Environmental Toxicology and Chemistry 20  1890 1900     McCarthy JF  Jimenez BD  1985  Reduction in Bioavailability to Bluegills of  Polycyclic Aromatic Hydrocarbons Bound to Dissolved Humic Material   Environmental Toxicology and Chemistry 4  511 521     McCarthy JF  1983  Role of Particulate Organic Matter in Decreasing  Accumulation of Polynuclear Aromatic Hydrocarbons by Daphnia magna     Archives of Environmental Contamination Toxicology  12  559 568     Morrison HA  Gobas FAPC  et al  1996  Development and Verification of a  Bioaccumulation Model for Organic Contaminants in Benthic Invertebrates     Page 42    Environmental Science and Technology 30 11   3377 3384     Nichols JW  Fitzsimmons PN  et al  2001  Dietary Uptake Kinetics of 2 2  5 5    Tetrachlorobipheny  in Rainbow Trout  Drug Metabolism and Disposition 29   1013 
51. import of  the mass loading values and to store them in this tab  This macro also converts  the data into the units and variables compatible with the QWASI model  These  converted values are stored in the PRZMforInput tab     Table 1 below summarizes the conversion of massing loading values in the P2E   C1 D  files into the values stored in the PRZMforInput tab     Table 1  Summary of daily input values for AGRO model derived          from PRZM output  Parameter Description  Simday assigned to evaluate and loop through the total number of    days of data provided by PRZM       Year Month Day    from PRZM       E to Pond kg y  Inflow W Conc  ng L    this is the 5  spray drift from PRZM expressed as kg y  from PRZM expressed in ng L       Inflow P Conc  ng L   Bulk Inflow Conc  ng L    from PRZM expressed in ng L    uses Inflow W Conc and Inflow P Conc with the respective  volume fractions to calculate a bulk water concentration of  chemical       Water Inflow rate  m3 h    Standard rate defined on Environment worksheet   PRZM  runoff       Particulate Inflow    Standard rate derived from Environment worksheet  P RZM             rate m3 h erosion rate   Inflow P derived Inflow and Particulate inflow rates  concentration   VF W Inflow Volume Fraction of water in the inflow  VF P Inflow Volume Fraction of particulate in the inflow            3  rain rate m h       converted from cm day in PRZM to m3 h       The AGRO modeling system also contains a blank worksheet with tab entitle
52. in sediment  g  Msi 0 Enter  48    49  50 Rate Constants  51   outflow   day  ko 6 00E 03 Calculated 0 066352599  0 0242187  52   volatilization   day  kv 6 18E 09 Calculated 6 83193E 08 2 4937E 08  53   overall water to sediment transport   day  kws 7 11E 02 Calculated 0 786359071 0 28702106  54   overall sediment to water transport   day  ksw 2 12E 03 Calculated 0 08390456 0 03062516  55   solids settling   day  kws1 6 68E 02 Calculated 0 738339894 0 26949406 J  56  water to sediment diffusion   day  kws2 4 34E 03 Calculated 0 048019177 0 017527  57  solids resuspension   day  ksw1 1 67E 03 Calculated 0 06594502 0 02406993  58  sediment to water diffusion   day  ksw2 4 54E 04 Calculated 0 01795954 0 00655523  59   burial   day  kB 4 16E 04 Calculated 0 016486255 0 00601748  60   degradation in water   day  kwr 0 069314718 Calculated 0 766535287 0 27978538  61   degradation in sediment   day  ksr 0 01732868 Calculated 0 685968256 0 25037841  62  63    84      l x  4 4  gt      AGRO Z Chemical   Environment   GetPRZM_Files   Emissions   Foodweb    FWModel   lt   gt    An example of columns FWModel A through FW Model G  rows 66     87 looks  like   A   B E D E F ja  65    66 Calculated Parameters  67   volatilization mass transfer coefficient  m day  ve 1 36584E 08 Calculated  68   partition coefficient of suspended particles in the water Kpw 2952 180091 Calculated  69   partition coefficient of bottom sediment particles Kps 1762 495577 Calculated  70  air water partition coef
53. l  Science and Technology 29  933 940     Koelmans AA  Jiminez CJ  Lijklema L  1993  Sorption of Chlorobenzenes to  Mineralizing Phytoplankton  Environmental Toxicology and Chemistry 12   1425 1439     Koelmans AA  van der Woude H  et al  1999  Long term Bioconcentration Kinetics  of Hydrophobic Chemicals in Selensatrum capricornutum and Microcystis  aeruginosa  Environmental Toxicology and Chemistry 18  1164 1172     Kraaij R  Seinen W  et al  2002  Direct Evidence of Sequestration in Sediments    Affecting the Bioavailability of Hydrophobic Organic Chemicals to Benthic  Deposit Feeders  Environmental Science and Technology 36  3525 3529     Page 41    Kukkonen J  Landrum PF  1995  Measuring Assimilation Efficiencies for  Sediment Bound PAH and PCB Congeners by Benthic Invertebrates  Aquatic  Toxicology 32  75 92     Landrum PF  Poore R  1988  Toxicokinetics of Selected Xenobiotics in Hexagenia  limbata  Journal of Great Lakes Research 14  427 437     Lehman JT  1993  Efficiencies of Ingestion and Assimilation by an Invertebrate  Predator using C and P Dual Isotope Labeling  Limnology and Oceanography  38  1550 1554     Lydy MJ  Landrum PF  1993  Assimilation Efficiency for Sediment Sorbed  Benzo a pyrene by Diporeia spp  Aquatic Toxicology 26  209 224     Mackay  D  2001   Multimedia Environmental Models  The Fugacity Approach    Second edition   Lewis Publishers  Boca Raton  pp  201 213     Mackay  D   Diamond  M  1989  Application of the QWASI  Quantitative Water  Air Sed
54. lated results of pesticide  concentrations from the Bioaccumulation model for each aquatic organism in the  food web  Bioconcentration Factors  BCFs   Biomagnification Factors  BMFs   and Bioaccumulation Factors  BAFs  are presented here                                                        251 A  252   FOODWEB Results   253   254   Concentrations   255 ugikg atka BCF BMF BAF to dissolved water  256   Water  dissolved 0 04832068  4 83207E 08   257   Sediment  particles 33 5794692 3 35795E 05   258   Phytoplankton 401803773 0 000401804 _8800 647196 0 8600 6472   259   Zooplankton 176 758634 0 000176759  3373 606292  0047662546 3783 53504   260   Benthic Invertebrates 155 051244 0 000155051 3236 334394   0 114851383 3318 838631   261   Forage Fish A 367 063255 0 000367063  5115 162068  0 722873681 7596 40047   262   Forage Fish B 504 806379  0 000504806 7034 663397  0 993862174 10447 0043   263   Piscivorous Fish 795 782767 0 000795783  3919 615947  1390997522 16468 7816   264   265       Page 39    References    Alpine AE  Cloern JE  1988  Phytoplankton Growth Rates in a Light Limited  Environment  San Francisco Bay  Marine Ecology   Progress Series 44  167   173     Alpine AE  Cloern JE  1992  Trophic Interactions and Direct Physical Effects  Control Phytoplankton Biomass and Production in an Estuary  Limnology and  Oceanography 37 5   946 955     Arnot JA  Gobas FAPC  2004  A Food Web Bioaccumulation Model for Organic  Chemicals in Aquatic Ecosystems  Environmental Toxicolo
55. ntration in organism g kg eq lip Cipredator 0 285809763  0 062879171 0 053367897 0 07472096 0 073816468 0 164994019 Calculated  87   Lipid Equivalent Concentration in prey g kg eq lip Ciprey 0 285809763 0 008247025 0 058123534 0 058123534 0 067366922 Calculated  88  BMF kg eq lipid kg e BMF 0 220003578 6 471169541 1 285554315 1 269992778 2449184472 Calculated  89  Organism Water Fugacity Ratio at steady state unitless BAF 0 220003578 6 471169541 1 285554315 1 269992778 2 449184472 Calculated  s0  s1  2  93  94  96  97  98  39  100  101  102  103  104  105  106  107  108   109  110    111  112  113  114  115  116  117 J  118   119    120l    m  4 4   m  AGRO Z Chemical   Environment 4 GetPRZM_Fies   Emissions   Foodweb   FWModel    DYN results   pond      DYN timeseries   DYN Vearly       l  e       Page 23             Step 6     Review the Foodweb tab    Go to the Foodweb tab  All values in this tab are automatically summarized  from the FWModel tab  Thus  the user will never make any revisions to this tab     The Foodweb tab summarizes the calculated k values and the Feeding Matrix  from the FWModel tab  The Foodweb tab is where the Bioaccumulation model  actually reads in its input values to populate the foodweb and generate organism  concentrations     The page below displays a copy of the Foodweb tab with recommended  calculated masses  lipid fractions  k rates  and feeding matrix for the food web           _Hey a   a               ee  _1_ FoodWeb    _2   Agro Pond Foodwe
56. od Web Sensitivity Analysis  Modeling for EFED Report                Eaa  Bia  8  El       410  09Koy       11  09K aw  12  logKoa          13 Degradation half lives  h   44  Water           15  Sediment             417  Air Water Kaw  dimensionless   18 AerosolWater K   dimensionless     19 Sediment Water  Likg  I    20 Suspended Sediment Water  L kg          21  Resuspended Sediment Water  L kg          PRZM forin    Page 9    Step 3     Enter or Select Environment Input Parameters    Go to the Environment tab    The environment scenario parameters are defined here  A    database    of  environmental scenarios is listed in columns Environment O through  Environment AW  The environmental parameters listed here are those required  to run the QWASI 3 10 model     The user may add environmental scenarios to this database by entering necessary  information into the columns Environment O through Environment  AW  The  names of the newly added environments will appear in the list box entitled     Select an Environment    in this tab     Here is an example of columns Chemical O through Chemical AA of the  environmental database in the Environment tab  Columns Environment S  through Environment  V refer to dimensions of the water body  Columns  Environment  W through Environment AA refer to the concentration of particle  solids in the various bulk media  The    tan    cells indicate that the user may input  data in these cells        1 Sensitivity Analysis 10000  20000  2 Modeling fo
57. pesticide  concentrations from the Bioaccumulation model for each aquatic organism in the  food web  The organism Biomagnificaton Factors  BMFs  and the Theoretical  Maximum BMFs  calculated by kd ke  are presented                                   251  252  FOODWEB Results          253  254  Concentrations   255 ug kg g kg BMF  256  Water  dissolved 0 029249033 2 9249E 08  257   Sediment  particles 200 7595832 0 00020076  258   Phytoplankton 285 0027664 0 000285003  259  Zooplankton 123 7998954 0 0001238  260   Benthic Invertebrates 130 1200778 0 00013012  261  Forage Fish A 316 1773736 0000316177  262 Forage Fish B 492 7512153 0 000492751  263   Piscivorous Fish 6632 415719 0 006632416  264   265   266   267    268   269  270  271  272   273   274  275                      0 047662546  0 114851383  0 722673681  0 993862174  1 390997522    8 026244644  2 570618474  10 03352716  14 23990503  6 293190642                                                       Page 30    Theoretical Max BMF  kd ke    IR    The DYN timeseries tab contains the values of selected output variables for each  day of the simulation     An example of output contained in columns DYN timeseries A   DYN   timeseries P is displayed below  These columns summarize the daily simulation  date  emission  fugacities for each bulk media  and bulk media chemical  concentrations in natural units                                                                                                                         _ M
58. position rate of dry particles  Deposition out of air into water body   Default value  10  Environment AS Scavenging Ratio   Volume of   Scavenging Ratio of air to rain  air Volum   Default value  20 000  e of Rain  Environment AT Rain_Rate m year Rainfall rate in meters per year   Default value  1  Environment  AU Vol_Mass_ m h Volatilization rate     air side  Trans_Coeff_ Default value  1  Air  Environment  AV Vol_Mass_ m h Volatilization rate     water to air  Transfer_Coeff_ Default value  0 01  Water  Environment AW_   Sediment Water    m h Diffusion rate between benthic       Diffusion       Page 15       sediment and water column   Default value  0 0004          Now  go to the list box    Select an Environment    in columns Environment E   Chemical G  Highlight the environment of interest and click the    OK    button   This will cause the appropriate values of the selected environment to appear in  column Environment B where the user can easily review them and where the  model actually reads the values used in the upcoming simulation   If the user  wishes to make temporary changes to a chemical data  these can be made directly  in column Environment B without affecting the original values in the database   although these value will be overwritten each time the    OK    button is clicked     Here is an example of columns Environment A through Chemical N  Rows 1 33   in the Environment tab     FEB  Ele Edt vew Insert Format Toos pata Window Help Adobe PDF              
59. put interval    Fugacity  Pa   Water   Sediment   Inflow   Air   Pure Phase Chemical   Bulk Concentrations  natural units    Water  ng L   Sediment  ng m3   Inflow  ng L   Air  ug m3   Foodweb Concentrations  ng g   Water dissolved only  ug L   Sediment solids only  Phytoplankton  Zooplankton  Benthic Invertebrates  Forage Fish A  Forage Fish B  Piscivorous Fish  Other  SumlInput kg Cumulative system Input of chemical  SumLoss kg Cumulative system Loss of chemical  Water inflow m3 h  Water outflow m3 h  Net water m3 h Inflow Outflow  Sed Inflow m3 h  Sed Resusp m3 h  Sed outflow m3 h  Sed Dep m3 h  Net Sed m3 h Inflow   Resusp     Outflow     Dep                                                                                                             Page 34    The DYN yearly tab contains the Estimated Environmental Concentrations   EECs  for the peak  4 day  21 day  60 day  90 day and Annual running averages  for the chemical dissolved water column  for the highest 4 years of the  simulation   benthic sediment sorbed chemical  for the highest 4 years of the  simulation   and chemical dissolved in benthic pore water  for all years                  ae Se a ee eee ee Ses ae ee   ee ae ee ae ee ee T   1  Summary of Annual Peak Values   units are ppb   ug L  ug kg  and ug L J3  Ballater l  _3  Year  Peak 4day 21day 60day 90day Annual  4j 1961 42 53387451 36 30275345  24 35691643  12 49514771  8 525496483  2 154887676  1962 31 01566124 24 93386078 19 93797112  1102113247 7 52234
60. r EFED Report 10000 20000       Page 10    Splitting the screen after column Environment R and scrolling right  displays  columns Environment  AB through Environment  AE which pertain to the density  of solids in the various bulk media  Columns Environment AF through  Environment  AJ which pertain to the fraction of organic carbon in the various                                                                                                                               bulk media   AVI        gx  fe  P    R AB AC AD AE   AF   AG AH   Al   A F   Environm x Organic a  a Sane es Ve et Fart oop Canon  Fal    Fen o  maalon o     Reupe ov  1   Kkam    r cles es Solids nded  a 1 Sensitivity Analysis 2400 2400 1500 0 067 0 014 0 067 0 014  3 2 Modeling for EFED Report 2400 2400 1500 0 067 0 04 0 067 0 04  4  5  z    6  i  8  g  10   41  12  13  14  15  16  17  18  19  20  21  22  23   x     gt  91   Environment EMSS    lt   gt   lt   gt   A r         m a   a a                Splitting the screen after column Environment R and further scrolling right   displays columns Environment AK through Environment AP which pertain to the  flow rates for the water and sediment in various bulk media   ALI     Ruet Water Inflov  O  P  _  R AK AM AN AO   AP AGFomasr   as   7  Environm   A   Mass Aerosol_Dr   E   aare AAA O eA Powa Dee E CE MA     yet  1 s ts    2   1 Sensitivity Analysis   5 80 40 40 10  200000  3 2 Modeling for EFED Report 5 5 50 10 40 10  200000  4  5  6  T  8  g  10       12  13 
61. rameters for Type I Partitioning Simulations                 8  Table 4  Input Parameters in the Environment Tab               ccscccsscccecsscces 13 15  Table 5  Additional Environmental Input parameters in FWModel                20    Table 6  Summary of timeseries output parameters included with the model   34    Page 2    Introduction    The Canadian Environmental Modelling Centre   s AGRO modeling system  AGRO  is a  MicroSoft Excel   based application that combines a water quality model with a food  web model to estimate risk to aquatic species from pesticide exposure in a user defined  water body  A major feature of this system is its capability to incorporate dynamic  functionalities which allow the user to introduce changing environmental and emission  conditions so that the fate and bioaccumulation results of numerous chemicals can easily  and efficiently be compared     The AGRO modeling system is written in Visual Basic and has an EXCEL    interface for  parameter input and output display  This system can be run in dynamic mode which uses  daily input of water  sediment  and pesticide from predicted daily mass loadings  generated by US EPA Pesticide Root Zone Model  version 3 12  PRZM3 12   Suarez   2006    Note  AGRO can also be run in a steady state mode   Daily loading and  emission values from PRZM3 12 are then used to generate predicted daily pesticide  concentrations in the water column  benthic pore water and benthic sediment of the water  body  From these 
62. re  degC     initial chemical mass in water  g   initial chemical mass in sediment  g        Sediment OC octanol proportionality constant  unitless        Recommended  Value  90    1   1   0 35  0 08  7   17  0 35  0   0          An example of columns FWModel A through FW Model G  rows 4     10 looks       E             like   A l B   c   D E   F   12  System Specific Characteristics  _13   water body surface area  m2  Saw 1 00E 04 Enter on Environment Tab  _14  sediment surface area  m 2  Sas 1 00E 04 Equal to Water Surface Area  15   average water depth  m  Dw 2 Calculated from Environment Tab  _16   depth of active sediment layer  m  Ds 0 01 Enter on Environment Tab  _17  water in  and out flow  L day  F 1 20E 05 Calculated from Environment Tab    4m   3 h  _ 18  Concentration of particles in water  kg L  Cpw 3 00E 05 Calculated from Environment Tab   30ma L   19  Concentration of DOC in water  kg L  Cdoc 2 01E 06 Calculated from Environment Tab  _20   concentration of solids in sediment  kg L  Css 1 20E 00 Calculated from Environment Tab  _21   density of suspended solids  kg L  dpw 2 40E 00 Calculated from Environment Tab  _22  density of sediment solids  kg L  dss 2 40E 00 Calculated from Environment Tab  _23   organic carbon content of suspended solids  unitless  Ocpw 6 70E 02 Enter on Environment Tab   24   organic carbon content of bottom sediment  unitless  Ocss 4 00E 02 Enter on Environment Tab  _25   density of organic carbon  kg L  doc 1 00E 00 Enter   26   water
63. re that the    Defined  daily emissions  kg Ha day   input from PRZM    is selected so that the  Emission Type in cell Emissions P2 is set to 2  Cell Emissions B2 should say     Dynamic from PRZM    and the cells Emissions A8 Emissions E12 appear as  though    grayed out     The above set up with    Defined daily emissions     selected activates the dynamic mode execution of the model where daily  values are read from the PRZMforInput tab     Page 17    The internal model code automatically navigates through the PRZMforInput  daily values until it reaches the first non zero emissions occurrence in  PRZMforInput E column at which time the model iterations begin     Constant Emissions    If the    Constant Emission  average annual emission  kg Ha yr   input below     radio button is selected  the cells Emissions A8 Emissions E12 appear with a  white background  except cells Emissions B8  B11 and B12 which are    tan     in colour  indicating that they are user defined inputs  The model reads in the  value for calculated direct inputs from spray drift to the pond from cell  Emissions B9  Note that the value of 5  of the application rate to 1 Ha is  used to estimate the net input of chemical to the pond from all inputs  This is  based on the US EPA EXAMS model treatment of spray drift inputs to an  agricultural pond     The user may choose to enter any ambient air concentration of chemical in  Emissions B11 or inflow water concentration  Inflow water can be in the  form of inflow
64. rs  In the Water kgtyear molth  Total Chemical Inputs 0001981643  6 54557E 07  Emission o o  Inflow o o  Air to water transfer 0 o  Sediment to water transfer 0001981643  6 54557E 07  0 002141265 7 07282E 07 3  8 13175E 05 2686E 08       Water to air transfer 1 46223E 10 4 82989E 14     Water to sediment transfer 0 001120541 3 70126E 07  Transformation in water 0 000939406 3 10296E 07  6 329327878   In the Sediment molih  Total Chemical Inputs 0 0012054 3 70126E 07  Water to sediment transfer 0 00112054 3 70126E 07  Total Chemical Losses 00656299    _3 85026 08  Sediment to water transfer  0 001981643  6 54557E 07  Transformationin sediment  0 009230838  3 04304E 06  Sediment Burial 0 00044382    1485986 07  Residence Ti_1096 796672 hours 45 89986132_days  77     REA   lt  m      Page 28       DYN results pond tab  Rows 92   228  continued                            A   B5   c EEE        F   e    wu M K Na   T  s   178 Rate Details   179    180  kg year mol h   181 Emission to Water 0 0   182 Water Inflow 0 0   183 Particle Inflow 0 0   184    185 Rain Dissolution 0 0   186 Aerosol Deposition   Wet 0 0   187 Aerosol Deposition   Dry 0 0   188    189 Absorption 0 0    190  volatilization 25427E 09 8 39864E 13 J    191   192 Sediment Deposition 0 01846006 6 09755E 06   193 Sediment Resuspension 0 0293109 9 68169E 068   194   195 Water to Sediment Diffusioi 0 00102489 3 3853E 07   196 Sediment to Water Diffusio  0 00340719 1 12543E 06   197 4   198 Water Transformation 0 0163352
65. rtitioning  For  regulatory modeling  Type I  partitioning is employed   Chemical T   Property   C Default 17  C  Temperature  Chemical U   Chemical g mol Molecular weight of chemical  Molecular  Mass  Chemical V   Chemical 4e  Melting Point  Chemical  W   Solubility g m     Water solubility of chemical   Equivalent units are kg L   Chemical X   Chemical Pa  Vapor Pressure  Chemical Z   Log Kow  mg L   mg L    Log 10 of the Octanol Water  Partition Coefficient  Kow  Chemical AD   Chemical days Aqueous aerobic half life  Half life in  Water  Chemical AE   Chemical days Aqueous anaerobic half life  Half life in  Sediment             For Type I chemicals  Columns Chemical  AG Chemical AK are left blank  For  Type I chemicals  those with little or no volatility  only the Molar Mass   Property Temperature  Degradation Half lives and partition coefficients defined  in Chemical  AG Chemical AK  with appropriate units  are used  Please see  Mackay  2001  for more information on modelling Type I and Type II chemicals     Page 7       Table 3  Chemical Parameters for Type I Partitioning                            Simulations  Column Parameter Units Notes  Chemical Q   Chemical     The row number plus 1  This  Identifier will be used as the chemical  number identifier   Chemical R   Chemical     Name of chemical of interest  Name  Chemical S Chemical Type       1 for Type I partitioning and 2  for Type II partitioning   Chemical T   Property Ke Default 17  C  Temperature  Chemical U   C
66. s pond  An  overview of the format of the dynamic results is presented  followed by an  overview of the steady state results     Dynamic Results    The results presented in the DYN results pond tab are in the  same format as the QWASI model with the foodweb results output at the  bottom  These results reflect the conditions at the end of the simulation     The following series of pages display an example of output contained in the  DYN results pond tab     Page 26    DYN results pond tab  Rows 1   43 display the model version number  scenario  descriptors  and echoes of the che                   mical inp  Es more    ut parameters   L                 fs    Eg  gal Model     _2 Version 1 16 05   BETA version  3  4  Simulation D Updated Foodweb calcs from Aug3 Gobas model E  TE  Additional Comments BETA version   mods by LKR CEMC  _ amp   Date  28 08 2007 Time  13 47 04  7  E  Chemicat  testazole  79 Environment  Modeling for EFED Report     10  Total Simulation Time   1  TIZ  CHEMICAL PARAMETERS  13     14 Physical Properties  15  16   Chemical Type 1  47  Molar Mass 345 6 g mol  18  Temperature 17  C 290 15 K  19   20  Log Kow 51  21   Solubility 1 79 gim   0 005179398 molm      22  Vapour Pressure 1 2399E 08 Pa  23  Meting Point 125   C 398 15 K   24 Fugacity Ratio 0 07986781   25  Sub cooled Liquid V P  1 5524E 07 Pa  126  Henry   s Law Constant 2 3939E 06 Pa m  mol  27   28   Partition Coefficients  29  Dimensiones Lkg     30   Air water  Kaw  9 9236E 10       31  Suspende
67. unitless igr 0 000502 0 000502 0 000502 0 000502 Enter  _34  Invertebrate growth rate coefficient  T  gt 17 5 deg C  unitless Fgr 0 00251 0 00251 0 00251 0 00251 0 00251 Enter  _35  Constant Aew unitless Aew 1 85 1 85 1 85 1 85 1 85 Enter  _36  Constant Bew unitless Bew 155 155 155 155 155 Enter  _37  Constant Aed unitless Aed 0 0000003 0 0000003 0 0000003 0 0000003 0 0000003 Enter  38  Constant Bed unitless Bed 2 2 2 2 2 Enter   v   gt         Page 22    The calculated parameters for each aquatic organism in the food web are included    in rows 40 through 77 and 79 89  The below pages display the recommended    values for these rows                                                                                                                                                                                                               H 1   J li K l 5 l M N o P a    Calculated Parameters E  Definition Units Parameter Phytoplankton Zooplankton Benthos Forage Fish A Forage Fish B Piscivorous Fish A  volume of lipid in organism kg vi     2 00E 09 0 0000002 0 0004 0 0006 0 04 Calculated  volume of NLOM in organism kg Vnlom     2 00E 08 0 000002 0 0022 0 0022 02 Calculated  volume of water in organism kg Vw     0 0000078 0 0074 0 0072 0 76 Calculated  Gill uptake rate constant Lkg day k1 Calculated  Dietary uptake rate constant kg kg day kd Calculated  Gill elimination rate constant iday k2 Calculated  Fecal egestion rate constant iday ke Calculated  Growth dilution rate constant
    
Download Pdf Manuals
 
 
    
Related Search
    
Related Contents
S1-1052 Comprobador de Resistencia de Aislamiento de 10  Widespread Lavatory Faucet, 8” Center Grifo de Lavabo Ancho, 8  Newstar iPad 2 wall mount    Copyright © All rights reserved. 
   Failed to retrieve file