Home

Decision Theoretic Troubleshooting Using Bayesian Networks

image

Contents

1. 65 65 65 65 66 67 68 69 71 71 72 72 72 73 75 10 1 The unit interval in relation to the marginalized test probability 10 2 The active model for simulation A 00000 10 3 The cost distributions for simulation cycle A 10 4 The active model for simulation B 0 06 10 5 The cost distributions for simulated repair of component 16 10 6 The active model for simulation C 204 10 7 The cost distributions for simulated repair of component 17 10 8 The active model for simulation D 04 10 9 The cost distributions for simulated repair of component 4 10 10The active model for simulation E 06 10 11The cost distributions for simulated repair of component 9 List of Tables 2 1 The CPT for the node S in Examplel 2 2 The CPT for the node H in Example 1 2 3 The CPT for the node B in Examplel 7 1 Level of disassembly for the components in Example 2 9 1 Levels of disassembly at which repairs and observations can be made 10 1 The sorting criteria used for the different simulations 10 2 Components and corresponding DTCs used in the simulations 10 3 Generated test outcome by a random variable r 10 4 The obtained repair sequences in simulation cycle A 10 5 The obtained repair sequences in simulat
2. Sorting Criterion Random 25F T T T T T T N an T T l Frequency 8 T 1 o L IL LLUM eee WALAI u siais suw as wm dii LIL uui Mi L IL LU wi Ie lwi 1000 2000 3000 4000 5000 6000 Cost of Repair SEK o Figure 10 7 The cost distributions for simulated repair of component 17 57 CHAPTER 10 SIMULATING THE REPAIR PROCESS 10 4 4 Simulation Cycle D Component 4 Faulty The active model for cycle D The active model for simulation cycle D presented below in Figure 10 8 also has a large number of connections because of the generated trouble code being DTC1 The non specific DTC returns a great number of possibly faulty components ae Generated DTC Figure 10 8 The active model for simulation D The three cost distributions for cycle D The resemblance to the results from component 17 is due to the same generated DTC The difference is the cost for the spare part and replacing procedure which is lower for component 4 and as a consequence the range of the cost distributions are smaller almost half the cost compared to cycle C We also see that the frequencies are higher and the number of sequences are fewer which implies a higher probability for component 4 to be faulty 58 10 4 SIMULATION RESULTS Component 4 Sorting Criterion Efficiency 50 T T T T T T 40 l 4 gt 2 3f 4 S 5 g 20l LL 10 l 4 o ALLE
3. Does the fact that tests can shorten the repair sequence conflict with an optimal solution for this theory One could argue that there exists a limit where a large number of reliable tests simplifies the troubleshooting process so much that the need for a troubleshooting prototype will disappear but considering the complicated systems in a truck today this is unlikely 62 10 5 CONCLUSIONS to happen The truck market is as much a computerised business as any market today The quality of a test is another interesting part of this project It would be very profitable to find a way to measure how well a test has to perform to actually contribute to making a troubleshooting program more cost efficient Inefficient tests could be removed and further developed which could make tests more valuable to the troubleshooting process For further discussion of the tests and their characteristics see Lotz 2007 10 5 2 Specificity of DTCs The five different simulation cycles correspond to five different active models where the generated DTCs have varying specificity i e the ability to exclude components as non faulty For the cycles with a relatively specific DTC A and B the trou bleshooting process was more efficient and the number of different sequences were low The opposite case cycles C and D where DTC1 was connected to all compo nents meant a more cumbersome troubleshooting process and higher repair costs These results describe the ge
4. 10 7 that the cost distribution for all sortings is distributed rather equally on the cost interval The repair costs are high when compared to costs for other cases This is partly because component 17 is an expensive spare part is hard expensive to exchange and has quite low probability of being faulty These are characteristics that render low efficiency and thereby a position at the end of the repair strategy Despite these facts we can find the same behaviour as in the two previous cases The two highest bars 2641 and 5631 SEK in the efficiency topmost plot corresponds to sequences which are equal until the 11th action which is the test T1 a test only connected to component 17 The outcome of this test determines the sequence to end test indication or to continue with 14 additional actions no indication It is important to note that many of the bars with a frequency of 1 can be explained by being sequences where test outcomes are un realistic as they have a strong physical connection but are simulated to indicate differently due to the randomised test outcome 56 10 4 SIMULATION RESULTS Component 17 Sorting Criterion Efficiency T T T T N NM om G T T T T il t Frequency ae l E l 1000 2000 3000 4000 5000 6000 Cost of Repair SEK o d o Sorting Criterion Probability este JAG JRE oF w ER ii Frequency 0 1000 2000 3000 4000 5000 6000 Cost of Repair SEK
5. 56 ISSN 0001 0782 Hillier amp Lieberman 2005 HILLIER F S LIEBERMAN G J 2005 Introduction To Operations Research Eighth edition The McGraw Hill Com panies Inc ISBN 007 123828 X Jaynes 2001 JAYNES E T 2001 Probability Theory the Logic of Science Cam bridge University Press Cambridge ISBN 052 159271 2 Jensen 2001 JENSEN F V 2001 Bayesian Networks and Decision Graphs Springer Verlag New York Inc ISBN 0 387 95259 4 Jensen et al 2000 JENSEN F V KJAERULFF U KRISTIANSEN B LANGSETH H SKAANNING C VOMLEL J VOMLELOVA M 2000 The SACSO methodology for troubleshooting complex systems Artificial Intelligence for Engineering Design Analysis and Manufacturing 2001 15 4 321 333 ISSN 0890 0604 Langseth amp Jensen 2003 LANGSETH H JENSEN F V 2003 Decision Theo retic Troubleshooting of Coherent Systems Reliability Engineering and System Safety 80 1 49 62 67 BIBLIOGRAPHY Lotz 2007 Lotz K 2007 Optimizing Guided Troubleshooting Using Interactive Tests and Bayesian Networks with an Application to Diesel Engine Diagnosis Master s Thesis Department of Mathematics Royal Institute of Technology Mossberg 2007 MOSSBERG J 2007 Bayesian Modeling of A Diesel Injection System for Optimal Troubleshooting Master s Thesis Department of Mathe matics Royal Institute of Technology Murphy 2001 MURPHY K P 2001 A Brief Introduction to Graphical Models and Bayesia
6. and thereby the whole system resulting in an additional cost of Cz C With probability 1 p2 c2 is functioning properly and we then move on to observe the next component in S c3 With probability EA we find that c3 is faulty and we repair it and in this way we continue the repair process until the component causing the faulty behaviour is found and repaired 5 3 The Optimal Sequence If the objective is to minimise the expected cost of repair in a long term perspective there exists an optimal way to order and repair the components in the system This is shown by Heckerman Heckerman et al 1995 and the proof is presented here Heckerman uses the expression for EC R S and considers a case where the order of components x and Xpqa is transposed creating a new sequence called Sy Except for terms i k and i k 1 all terms in ECR S and ECR Sy are the same When subtracting EC R Sn from ECR S these terms will cancel out which results in ECR S ECR Sy ECR 21 2 e g LK ECR x1 oe ey Uk41 Uk LK Pa 4102 Pr Ce 5 2 Tk 1 21 CHAPTER 5 THEORY OF EXPECTED COST OF REPAIR From this expression it is clear that EC R S is lower than EC R Sn if and only if Da Coes gt P42 5 3 Pr Pr H1 gt 5 4 Ci Cry Heckerman calls the ratio pr C2 the efficiency of the kth component in a sequence Heckerman et al 1995 In this thesis the efficiency of the kth component is de n
7. efter dessa relaxeringar Prototypens funktion utv rderades genom att simulera en reparationsprocess d r programmet kunde anv n das f r att s ka efter ett simulerat fel Simuleringar gjordes f r tre olika s tt att sortera komponenterna i en reparationsordning f r vilken en fiktiv reparationskostnad ber knades I j mf relsen mellan de olika sor teringarna visade sig programprototypen ge den l gsta medelkostnaden i tre av fem simuleringscykler Preface This report describes a master s thesis carried out at the School of Computer Science and Communication CSC at the Royal Institute of Technology in Stockholm The work was performed during the spring and summer of 2007 and corresponds to 20 academic points This thesis is part of a project together with two other master s theses and the work was carried out in collaboration with Katja Lotz and Jonatan Mossberg The mandator was Scania CV AB in S dert lje and supervisor at Scania was Anna Pernestal Supervisors at CSC were PhD student Magnus Rosell and Associate Professor Henrik Eriksson and examiner was Professor Johan Hastad Acknowledgements First I would like to thoroughly thank my co workers Katja Lotz and Jonatan Mossberg for support encouragement and great work Jonatan for all our intense discussions and for your wonderful humour always making me laugh Katja for being able to understand me Not only my way of reasoning but also my constant need for food It has been
8. exactly one single fault This assumption is very important throughout this thesis because it simplifies much of the computations If we find a faulty component and repair it we can by assumption 2 be sure that the device is working properly again The single fault assumption also implies that all cases with more than one faulty component can be interpreted as impossible Assuming that there is only one fault clearly is a simplification but Heckerman argues that it is a reasonable assumption Heckerman comments that it is possible but not very likely that two components break at fairly the same time Heckerman et al 1995 Assumption 3 handles the property of observability Depending on the parame ters in the model an observable component may be viewed as unobservable For example if a component is observable but at a very high cost it might be more cost efficient to regard it as being unobservable This can be done without any difficulties Assumption 4 concerns the trouble codes generated by the diagnosis system By this assumption we state that when an alarm is generated there is an underlying fault in acomponent An alarm cannot be generated if the device is functioning properly Assumptions 5 and 6 concern the cost of troubleshooting To use the Expected Cost of Repair as it is described in Section 5 2 these assumptions are essential Used in an application to a diesel engine these assumptions are somewhat hard to fulfil and hence
9. in the XPI System 8 2 2 On Board Diagnosis and Diagnostic Trouble Codes 9 A Model of the XPI System 9 1 9 2 9 3 9 4 9 5 9 6 Componentss ii 26 il ma tie oa ee eae ee a Sa iaa anh AM a Observa bility ris rei Skee Ae ee hn as ee RE ae Be AP ag The Single Fault Constraint Node 0004 Diagnostic Trouble Codes 2 2 ee The Bayesian Model of the XPI System Determining the Levels of Disassembly 9 6 1 Level of Disassembly 2 0202005 9 6 2 Transition Costs ca se dea ee ee ne a ee ee 10 Simulating the Repair Process 10 1 Simulation Objectives 2 2 0 0 0 000 ss vt 10 2 Component Sorting Criteria sosse ses src res rosea 10 3 Carrying Out the Simulations os omer ers ss ss svt 10 3 1 Simulating Component Failure 10 3 2 Simulating Test Outcome 0 00 10 4 Simulation Results 0 0 00000000 00000004 10 4 1 Simulation Cycle A Component 15 Faulty 10 4 2 Simulation Cycle B Component 16 Faulty 10 4 3 Simulation Cycle C Component 17 faulty 10 4 4 Simulation Cycle D Component 4 Faultv 10 4 5 Simulation Cycle E Component 9 Faulty 10 4 6 The Average Cost of Repair 2 105 Conclusions sd sigill banc tt Baten SOF ode et BD eg Ot hr 10 5 1 Importance of Test Outcome 00 10 5 2 Specificity of D
10. is possible to observe the component to determine whether it is faulty or not Such components are called observable An observable compo nent will never be repaired unless it is first observed to be faulty If it is found to be faulty it must be repaired immediately Unobservable components on the other hand cannot be observed When we choose to repair an unobservable component we therefore accept the risk that we might repair a non faulty component To repair a component observable or not means to replace it When we determine the troubleshooting strategy we use the efficiency 7 We present the definition again n KA Ce We see that we use the cost of observation CZ when we determine the efficiency Observation costs cannot be assigned to the unobservable components However it is straightforward to include the unobservable components Let us suppose that an unobservable component c is repaired with a cost Ri We can then view the unobservable component as an observable component that is observed with cost R always found to be faulty and repaired with cost zero That is we can include unobservable components provided we set C R and C7 Heckerman et al 1995 42 9 3 THE SINGLE FAULT CONSTRAINT NODE 9 3 The Single Fault Constraint Node One of the most important simplifications is the single fault assumption This assumption means that exactly one component is faulty and repairing this compo nent leads
11. pressure being the most important issue a typical symptomatic DTC is the Low pressure DTC In this thesis the symptomatic DTCs are of greatest interest Because of their in ability to specifically point out one component as most probable they are difficult to use on their own without any other information when troubleshooting This makes them suitable for this troubleshooter application The troubleshooter puts the DTCs in a context where other information is available and thereby enables more efficient troubleshooting For the XPI system nine symptomatic DTCs are identified Most of these concern pressure and leakage problems The DTCs are listed and presented in Appendix C 43 CHAPTER 9 A MODEL OF THE XPI SYSTEM 9 5 The Bayesian Model of the XPI System The resulting model consists of 40 nodes The nine DTCs seventeen components and thirteen tests sum to 39 nodes Finally the 40th node is the Single Fault Constraint Node described in detail in Section 9 3 Between these nodes a huge number of edges are drawn connecting the nodes in such a way that the physical dependencies are captured Mossberg 2007 The model is shown in Figure 9 1 Figure 9 1 The XPl model as a Bayesian network The SFC Single Fault Con straint node is connected to all 17 components Each of the 17 components is then connected to a specific set of tests and DTCs The whole model has 13 tests h
12. r is less than this value placed on the left side of the dashed line in figure 10 1 the test outcome is modelled to be indicating I Naturally non indication NI is modeled by the random number being greater than pr P T 1 2 0 i 1 Figure 10 1 The unit interval in relation to the marginalized test probability 49 CHAPTER 10 SIMULATING THE REPAIR PROCESS Random number Test outcome r lt PT I r gt PT NI Table 10 3 Generated test outcome by a random variable r 10 4 Simulation Results To be able to understand the results from the simulations it is important to con sider the model and the connections between the faulty component and other nodes in the model For each simulation cycle the corresponding model here called the active model is presented and discussed in terms of specific DTCs and available tests In these simulations the cost distribution corresponds to the number of different costs that appear These simulations are graphicly presented by plotting the fre quency of a certain repair sequence vs the corresponding cost of repair 10 4 1 Simulation Cycle A Component 15 Faulty The active model for cycle A For component 15 DTC3 was predefined to be generated DTC3 is a rather specific DTC meaning that only 5 out of 17 components are connected to this DTC which can be seen in Figure 10 2 As a consequence the generation of DTC3 makes a troubleshooting case easier since the n
13. the efficiency sorting are presented in Table 10 4 To each test in the sequence the test outcome is denoted Sequence CR SEK Repair sequence Al 968 T9 I 12 13 15 A2 985 T9 NI T10 I 12 13 15 A3 2688 T9 NI T10 NI 16 12 13 10 15 Table 10 4 The obtained repair sequences for the efficiency sorting in simulation cycle A We can see that all sequences begin with test number 9 This test checks whether or not there is an unusually strong smell of diesel which is for test indication a sign of an external diesel leakage The fault of component 15 is leakage and the test indication changes the probability distribution Sequence A1 corresponds to this case where component 12 and 13 are proposed to be repaired first since they have a higher efficiency compared to component 15 52 10 4 SIMULATION RESULTS Sequence A3 which is much more expensive corresponds to the opposite case to Al Test 9 does not indicate diesel smell and test 10 does not indicate a visible diesel leakage When this information is added to the model the probability for component 15 to be faulty decreases and the repair sequence gets longer and thereby more expensive For the middle sequence A2 we can conclude that the indication of T10 is a strong evidence to the model and therefore we get the same behaviour as for sequence A1 But in this case it is important to reflect upon the fact that these two tests both able to
14. the evaluations of the troubleshooter pro totype Chapter 10 presents and discusses the results of the simulations aimed to study whether the expected cost theory is cost efficient or not Discussion and suggestions for future work are found in Chapter 11 Chapter 2 Introduction to Bayesian Networks Bayesian networks are graphical models used for probabilistic reasoning In Murphy 2001 Michael Jordan is cited describing Bayesian networks as a mar riage between probability theory and graph theory providing a natural tool for dealing with two problems that occur throughout applied mathematics and engi neering uncertainty and complexity The injection system of a diesel engine is a complex and complicated system It consists of many different parts with dependencies difficult to grasp When a symp tom of a fault occurs we cannot be sure of which component is broken Instead we can estimate how probable different components are to be faulty In order to create a troubleshooter prototype for the injection system we need a model that handles both the high complexity and the uncertainty Fortunately Bayesian networks have the ability to handle probabilistic reasoning in an efficient way even when systems get more complicated 2 1 The Bayesian Approach to Probabilities In order to understand Bayesian networks we have to understand the Bayesian way of approaching probabilities Following Heckerman the Bayesian probability of an
15. the exhaust gases A drawback of the common rail system is its sensitivity due to very small tolerances Bad fuel quality and unwanted particles can cause leakage Telborn 2007 8 2 1 Fuel Transport in the XPI System The fuel is pressed through the suction side filter marked by 1 in Figure 8 3 before passing the Low Pressure Pump LPP 4 on its way to the Inlet Metering Valve IMV 6 The fuel then passes the pressure side filter 5 The IMV is controlled by the ECU Electric Control Unit described in the following section and regu lates the amount of fuel transported to the High Pressure Pump HPP 7 The fuel pressure is heavily increased in the HPP at maximum reaching 2500 bar The fuel is then accumulated in the rail 8 On the rail the Rail Pressure Sensor RPS 9 is mounted As the name suggests this sensor measures the pressure in the rail From the rail the fuel is transported to the injectors via High Pressure Lines 11 and High Pressure Connectors HPC 12 The fuel is injected into the cylinders by the injectors 13 The fuel injections are electrically controlled by magnet valves which enable high precision regarding fuel amount and injection time As a pre caution the Metering Dump Valve MDV 10 is connected to the rail If the rail pressure gets above 3000 bar this valve will open thereby lowering the pressure to 1000 bar Scania 2006 37 CHAPTER 8 THE EXTREME HIGH PRESSURE INJECTION SYSTEM Figure
16. truck The generated DTC becomes the current state of knowledge The task for the troubleshooting program is to present the strategy by which the actions should be performed The simulated repair process follows this strategy until the faulty component is encountered The order of tests and repairs made during the search for the faulty component is obtained in a repair sequence To each of these repair sequences a specific cost of repair CR is assigned The cost of repair is calculated using the dependent cost approach presented in Section 7 This fictious repair cost is used as a comparison tool in the evaluations of the different component sorting criteria 10 3 1 Simulating Component Failure For each simulation cycle one component in the XPI model is modelled to be faulty The simulation algorithm handles the modelling of the faulty component by a global parameter set to be the component number of the faulty component It is important to mention that the XPl model and the troubleshooting prototype are unaffected by this parameter All probability calculations and the presentation of the next action will be exactly like it would be in a real workshop troubleshooting case The global parameter is used to be able to determine whether a certain repair action has repaired the truck or not 48 10 3 CARRYING OUT THE SIMULATIONS Each time a repair action has been performed the troubleshooter prototype de mands a functional control In a rea
17. valves then close and the compression stroke starts In this phase the air is compressed towards the top of the cylinder by the piston which moves upwards The compression leads to a higher pressure and the temper 36 8 2 OPERATING PRINCIPLE OF THE XPI SYSTEM ature rises Just as the pressure reaches the point at which the fuel spontaneously combusts fuel of very high pressure is injected The mixture of fuel and air then ignites The combustion leads to an expansion forcing the piston back down and the power stroke begins During the power stroke all valves are still kept closed and the piston moves downwards The kinetic energy caused by this movement is transferred to the crankshaft The last phase is called the exhaust stroke At this stage the outlet valves are opened and the piston moves upwards again forcing the exhaust gases out through the outlet valves The outlet valves are then closed the inlet valves opened and the cycle is repeated 8 2 Operating Principle of the XPI System The XPI system is a fuel injection system where all fuel injectors are connected to a high pressure tube called the common rail This rail distributes the fuel at a steady high pressure to the injectors and can maintain a constant high pressure in all injectors simultaneously High pressure fuel injection improves the combustion in the cylinders This results in more efficient fuel consumption and a decreasing amount of particles i e soot in
18. we will also discuss a way to relax the two assumptions in Chapter 7 5 2 Expected Cost of Repair Let as before the system consist of K different components c1 c2 ck Define the probability of component c being faulty given our current state of knowledge as pi P c faultvje At this stage we only allow observations and repairs and tests are not included in the model Let C and C7 denote the costs of observing and repairing component c and let C denote the cost of observing whether the system is functioning normally or not Let the sequence S x1 2 LK denote a specific ordering of the components C1 C2 CK in which we want to make observations and possibly repairs Then we 20 5 3 THE OPTIMAL SEQUENCE can define the Expected Cost of Repair for the sequence as ECR S ECR a1 22 2K C2 Par Cz C 1 Pri ce Or c 1 pr o Px rooms o L pa Pra C2 P CL G i 2 i 1 K C2 Pa Cn CO 61 i 1 j 1 The expression above describes the expected cost incurred during a troubleshoot ing and repair process and is easiest understood through the following example Suppose we have a malfunctioning system with three components ci c2 c3 and we order them in S c2 c3 c1 This means that xi c2 x2 c3 and z3 ci We first observe cz at the cost C and with probability p2 c2 is found to be faulty If cg is faulty we repair it
19. 1 3 Report Outline This thesis can be divided into three parts The first part contains the basic theorv of Bavesian networks decision theorv and the troubleshooting problem The middle part describes the cost approach used in this thesis followed bv an introduction and thereafter the modelling of the Extreme High Pressure Injection svstem The last part presents the results from the simulations of a truck repair procedure First we present the theorv of this thesis Chapters 2 and 3 are to make the reader aquainted to the basics of Bayesian networks and decision theory The theory of Bayesian networks is based on probability theory and some readers might consider it useful to read the basics of probability theory in Appendix B Chapter 4 introduces the concept of troubleshooting and its mathematical formulation In this thesis the cost of the troubleshooting steps are important and one theory for this approach the expected cost of repair is presented in Chapter 5 An introduction to some algorithms based on the expected cost theory is found in Chapter 6 Part two begins with Chapter 7 which describes how the costs of repairing a truck are handled in this thesis and how this differs from existing theory Chapter 8 presents the diesel injection system in a Scania truck and the Bayesian model of this injection system used in the computations in this thesis is presented in Chap ter 9 1 3 REPORT OUTLINE The third part contains the results of
20. 8 lo ps CE 2 C 1 L pa CR h P2 3 8 O 1 7 4 When we study the expression above it is important to consider the dependencies on l This is done in the example below A small device consists of two different components c and c2 The components are faulty with the probabilities pi and pa For this device there are three different levels of disassembly Aa Ab Ac The levels for performing repairs and observations are presented in Table 7 1 The functional control can only be performed at Aa Action Level of Disassembly Observe ci a Observe c2 Ab Repair c rp Repair c2 Ac Table 7 1 Level of disassembly for the components in Example 2 The strategy for this troubleshooting procedure is S c2 c1 and from this we can calculate the ECR S 1 ECR S 1 C2 Aa p C2 Av C Ac L po CAO CR Oa CD 7 5 We start the troubleshooting at Aa the level corresponding to the complete device The cost of observing c2 is obtained from the expression C Aq CE Aa In this cost we include the cost of observation of c gt and the transition cost from level Aa to the level where cz can be observed Ap For this we use the following notation C2 Aa C2 Cy gt With probability po we find the component ca to be faulty and want to repair it We denote the cost of repair as CZ Ap Cao Ab We include the repair cost for cg as wel
21. 8 3 A schematic picture of the XPI system The picture can be found in Scania 2006 8 2 2 On Board Diagnosis and Diagnostic Trouble Codes In modern trucks most operating systems such as the engine and the brake system are controlled by Electric Control Units ECU In these systems there are sensors that measure temperature fuel amount RPM Revolutions per Minute etc These signals are registered by the ECU In the ECU there is also a diagnosis system The principle of the diagnosis system is shown in Figure 8 4 DTC s stored in the ECU aan ae Signals from sensors and gauges ECU a Feedback to actuators Wal y Warnings to the driver Figure 8 4 A sketch of the on board diagnosis 38 8 2 OPERATING PRINCIPLE OF THE XPI SYSTEM Continuously during operation diagnostic tests are performed by the ECU These tests compare measured signals to each other or with reference values If an abnor mality is detected a Diagnostic Trouble Code DTC is generated and stored in the ECU Some DTCs may attract the driver s attention by lighting an indicator on the dash board but that is not always the case Others are used only as information to the workshop mechanic It is possible that no DTC is generated even though there is some fault present In this thesis we assume that the opposite is impossible i e a DTC cannot be generated unless some component is faulty At the workshop a compute
22. 9 give the same cost of repair they are represented in the same bar 894 SEK If we study the result in the same way as the other simulations we recognise the same behaviour as before The efficiency sorting chooses from two different se quences where the test outcome is what tells them apart The probability sorting always chooses the same sequence not performing any test but to repair the non faulty component before the one modelled as faulty By this we can conclude that the test is rather cheap and is performed by the efficiency sorting since it is consid ered to add valuable information The probability sorting on the other hand not considering costs will not perform the test since the probability of the non faulty component being faulty is high enough 60 10 4 SIMULATION RESULTS Component 9 Sorting Criterion Efficiency T T T T T T Frequency co H kal Oo T L D fee T gt G T 20 l 4 l l l l l L L l l 0 100 200 300 400 500 600 700 800 900 1000 Cost of Repair SEK Sorting Criterion Probability 100 T T T T T T T T T 80 l 60 F 4 Frequency 40h 4 20 4 l l l L L L 1 0 100 200 300 400 500 600 700 800 300 1000 Cost of Repair SEK Sorting Criterion Random 100 T T T T T T T T T 80 l 4 Frequency 60 l 40 l 20 l 4 l 1 l fi L l l 0 100 200 300 400 500 600 700 800 900 1000 Cost of Repair SEK Figure 10 11 The cost distributions for
23. Decision Theoretic Troubleshooting Using Bayesian Networks Guided troubleshooting of a diesel injection system HELENA SUNDBERG A SA KTH X VETENSKAP 32 OCH KONST A ise KTH Computer Science and Communication Master of Science Thesis Stockholm Sweden 2008 Decision Theoretic Troubleshooting Using Bayesian Networks Guided troubleshooting of a diesel injection system HELENA SUNDBERG Master s Thesis in Computer Science 30 ECTS credits at the School of Engineering Physics Royal Institute of Technology year 2008 Supervisors at CSC were Magnus Rosell and Henrik Eriksson Examiner was Johan Hastad TRITA CSC E 2008 026 ISRN KTH CSC E 08 026 SE ISSN 1653 5715 Royal Institute of Technology School of Computer Science and Communication KTH CSC SE 100 44 Stockholm Sweden URL www csc kth se Abstract This thesis presents a study of how the theory of decision theoretic troubleshooting can be applied to the troubleshooting of a truck and the issues attached to this problem The main objective of the project which involves two other theses is to find a cost efficient approach to troubleshooting trucks with newly developed complex systems This study is concentrated on development and evaluation of a trou bleshooter prototype The prototype was evaluated by simulating a repair process of a new diesel injection system here modelled by a Bayesian network Due to objectives of adapting the existing the
24. ECR The repair strategy is found by using the Greedy algorithm 2 Calculate the ECRT for all tests related to possibly faulty components 3 Compare the ECR to all ECRTs Choose the strategy that generates the lowest expected cost 4 If ECR is the best choice Repair the component that comes first in the strategy If the best choice is one of the ECRTs Perform the corresponding test 5 Return to 1 if the device does not work properly 27 CHAPTER 6 ALGORITHMS FOR TROUBLESHOOTING Information update Find the strategy using the Greedy approach Compute ECRT Compute ECR Perform test corresponding to the lowest ECRT Exclude observed Observe first Repair component component componentin End Troubleshooting strategy Figure 6 2 Flowchart of the One Step Look Ahead algorithm 28 Chapter 7 Costs Heckerman assumes that the cost of repairing a component is independent of pre vious actions Heckerman et al 1995 Since the costs by that assumption do not depend on the previous actions we will refer to them as independent costs This section presents one possible way of relaxing the assumption of independent costs developed during this thesis work The relaxation is made to adapt the theory to the process of troubleshooting trucks A process where the cost of repair depends as much on how much we have to dismantle the truck to reach a specific component as on the spare part cost for that
25. TCs LL 29 29 29 31 31 31 32 35 35 37 37 38 Al 41 42 43 43 44 44 44 45 11 Discussion and Future Work 11 1 Performance of the ECR Theory 11 2 Relaxations of General Assumptions 11 2 1 Dependent Costs 2 020 202 0 004 11 2 2 Performance of a Functional Control Bibliography Appendices A List of Notation B Basics of Probability Theory B 1 The Basic Rules 2 da aol aca aa ee B 2 The Joint Probability 2 0 2 2 0200 B 3 The Marginal Probability 20200 B 4 The Chain Riles pos 5 VIL a Bek eve Wee Bote as Ae kon PeP aed C List of Diagnostic Trouble Codes D List of Tests List of Figures 2 1 A simple Bayesian network so mosse esse res soc os rr 2 2 The Bayesian network for Example 1 6 1 Flowchart of the Greedy algorithm 6 2 Flowchart of the One Step Look Ahead algorithm 7 1 Levels of disassembly in a general case css oo es os re so vo 00 5 8 1 A schematic picture of a cylinder and the important parts 8 2 A schematic picture of the four strokes of a diesel engine 8 3 A schematic picture of the XPI system 2 8 4 A sketch of the on board diagnosis sosse rss rss oss vvs 9 1 The model of the XPI system as a Bayesian network 9 2 Transition costs for simple transitions in the truck
26. TER 2 INTRODUCTION TO BAYESIAN NETWORKS S H B P B S H True True True 0 8 False True True 0 4 True False True 0 7 False False True 0 1 True True False 0 2 False True False 0 6 True False False 0 3 False False False 0 9 Table 2 3 The CPT for the node B The states of B are dependent on the states of its parents S and H The probabilities in the rightmost column are the conditional probabilities of the states of B given the states of S and H We see that it is less likely that Jane is on holidays P 0 2 than the opposite P 0 8 and that it is as likely that the sun is shining as that it is not P 0 5 If we use the convention that X indicates true and X indicates false for an event X we can then use marginalisation c f Appendix B to compute the probability that the sun is shining after learning that Jane did go biking today P S B P BIS P S gt P B S H P H P S P BIS H P H P S e P B P B P B 0 8 0 2 0 7 0 8 0 5 0 36 P B P B 28 In this we use Baves Theorem Equation 2 1 and marginalisation B 8 over the values of H In the same wav we compute the probabilititv that the sun is not shining today P BIS P 8 P BIS H P H P 5 _ P B 5 MPDP _ PREISER ISSA IT DA 7 0 4 0 2 0 1 0 8 0 5 0 08 ii P B P B d From the two expressions 2 3 and 2 4 we can now compute the denominator P B because these two expressions must
27. V ESx B 1 B 1 The Basic Rules Two well known facts can be stated about probability mass functions px x 0 1 V rESx B 2 and 5 px x 1 B 3 TESXx As mentioned above the continuous case is analogous except that we use the probabilitv densitv function instead of the probabilitv mass function and that the sums are replaced by integrals The probability density function is defined as the function fx x that satisfies P a lt X lt b i fx r dx B 4 A more comprehensive disquisition can be found in for instance Gut 1995 71 APPENDIX B BASICS OF PROBABILITY THEORY B 2 The Joint Probability The joint probability mass function captures dependencies between two or more random variables For the two random variables X and Y the joint probability mass function is P X 2 Y y pxy 2 y B 5 It is clear that 5 Pxy x y 1 B 6 TESXx yesy where px y x y fulfils the facts mentioned above px y x y 0 1 V rESx y Sy B 7 Furthermore X and Y are said to be independent if px y x y px x py y B 3 The Marginal Probability The marginal distribution of X is calculated by summing the joint probability dis tribution over all possible values of Y px z 5 px x y B 8 yeSy If we are given the value of Y and py y 0 the distribution of X given Y is Pair a Pa B 9 If X and Y are independent we know that pxv r 9 px x py y If we insert this into the formula
28. a great pleasure working with both of you I want to thank Magnus Rosell Henrik Eriksson and Johan Hastad my supervisors and examiner at KTH for detailed and insightful comments upon my report and my supervisor at Scania Anna Pernestal for valuable feedback and long and interesting discussions Thanks to Jonas Biteus and Mattias Nyberg for good comments and many questions that helped develop the work and to all other Scania employees that in different ways have helped me in the course of the work A special thank you to Klas Telborn and Tomas Flink for all the time spent an swering questions and writing excel sheets and for great patience when something had to be done all over again And to Johan for reading and correcting my writing but most importantly for making the problem with missing index files become just a minor issue Thank you Contents 1 Introduction 11 Background oseo ros se a a a a OE Dae es 1 2 ObDJechives i ix a an sie ke be eee ee Ae ey Bue eg ea oh es E3 sReport Outlines isci A le ede a ee De Ee Dee A eh aoe 2 Introduction to Bayesian Networks 2 1 The Bayesian Approach to Probabilities 0 2 2 Bayes Theorem 2 2 e 2 3 The Structure of Bayesian Networks 0 2 4 Probabilities in the Network 202 00 2 5 The State of Knowledge 0 02 0000 2 ae 2 6 Conditional Probability Tables 2 0 3 Decision Theory 3 1 The Decision Make
29. above we see that under these circumstances pxjv r px Xx B 4 The Chain Rule If we rearrange the definition of conditional probability we obtain the Chain Rule Pxy 2 Y px x py y prix y px 2 B 10 Quite often in this thesis some variables have known values At this stage we use the random variable Z The variables with known values can be described by letting the value of Z be z Then the chain rule is written as Pxy z 2 2 y Pxivz 1 Pviz 1 Py x z 2 Y Px z 2 B 11 72 Appendix C List of Diagnostic Trouble Codes DTC Fuel rail pressure is excessively below command is generated if the measured fuel pressure in the rail is excessively below command DTC Fuel rail pressure is excessively above command is generated if the measured fuel pressure in the rail is excessively above command DTC Fuel rail pressure volume leak is generated if the rail pressure varies in a way that makes it likely to be a leak somewhere on the high pressure side DTC Fuel rail pressure sensor stuck or electrical faults is generated if the rail pressure sensor measures exactly the same pressure for a longer time or if there is an electrical fault caused by the sensor DTC Fuel rail pressure is excessively high is generated if the measured fuel pressure in the rail exceeds a limit value over a certain time DTC IMV electrical faults is generated if there is an electrical fault connected to the IMV DTC MDV tr
30. at the ECR theory using an algorithm based on a sorting by efficiency 7 performs rather well in comparison to algorithms based on sorting by probability or a random order However the performance was highly affected by the characteristics of the gener ated DTCs and the test outcomes The importance of the test outcomes is interesting for further studies It is clear that the right test outcome can shorten a repair sequence and thereby the cost of repair From the algorithm point of view tests make the construction of the algorithm more complex but may shorten the troubleshooting process significantly Since we can see several advantages of including tests it would be very interesting to perform a study which aims to find an optimality criterion for a test including ECR theory 11 2 Relaxations of General Assumptions The troubleshooting of a truck is a complex problem and is not easily adapted to existing troubleshooting theory Using the theory of Expected Cost of Repair there are two specific problems that arise during the design of a truck troubleshooter prototype 11 2 1 Dependent Costs Considering the size of a truck and its great number of parts the assumption that no cost of action is dependent on any previous actions is an important simplifica 65 CHAPTER 11 DISCUSSION AND FUTURE WORK tion As a consequence of this we have discussed an approach to handle dependent costs by using different levels of disassembly Sectio
31. component 7 1 Independent and Dependent Costs The assumption that the cost of an action is independent of the previous actions leads to a case with constant costs When assigning the cost of an action we do not consider the current state of the device for example if any parts are disassembled or not When using independent costs we assume that when an action is to be performed no changes have been done to the device beforehand Assuming independent costs clearly is a way to simplify the problem and in order to adjust the troubleshooter to a realistic case this simplification is abandoned The cost of repair will no longer be considered as constant but will be a function of the current state of the device In this thesis we introduce the level of disassembly to describe these states 7 2 Level of Disassembly For a device we identify different levels of disassembly corresponding to different amounts of dismantlement We denote the ith level of disassembly All levels of 29 CHAPTER 7 COSTS disassembly belong to the set A such that A Aj A2 A3 F 7 1 Figure 7 1 shows how a general device can be divided into different levels of disas sembly The graph consists of levels of disassembly and groups of components A group can contain one or many components Every level must contain at least one group Groups on the same level are named a b c First level Most commonly the level where the device is undismantled S
32. e test and the outcome is an indication of a fault in component c3 or cj The probability distribution has changed and from this change we conclude that the best repair strategy is Sr c3 c1 c2 If we instead suppose that the test does not indicate the probabilities will change in another way The best strategy might then become Sr c2 1 c3 As different strategies Sr and Sr also correspond to different values of ECR 22 5 5 THE VALUE OF INFORMATION Using this information and the test probabilities we calculate the Expected Cost of Repair Including Test ECRT T as ECRT T e CT P T Ile ECR Sr P T NI e ECR Sr 5 5 5 5 The Value of Information Optimal troubleshooting is the task of combining tests repairs and observations in a way that minimises ECR To be able to compare tests to other actions we need a method for evaluating the information the test adds Let us assume that we are troubleshooting a system and are to decide whether to perform a test or to repair a component It is reasonable that we choose the action that at this moment will give the minimal expected cost If we exclude the test from the possible actions the remaining actions could be ordered into a strategy S From this we obtain the ECR S If the test is considered we can compute the ECRT T as the expected cost after performing the test following Section 5 4 To determine the most cost efficient action we introduce the Val
33. econd level Consisting of two groups a and b A reece Re ae RA i res g X A 4 ha 7 X X X Sas a gt f r i I if X H N 5 ith level The numbers of levels l N LX J are specific to the device I I 2 i PEL ee secrete int ETT yee EENES TE TEN TIS i r 4 Figure 7 1 Levels of disassembly in a general case Typical levels of disassembly are complete device which corresponds to the case when no components have been removed from the device and free component level component X which corresponds to the situation when the device is dismantled until component X is free We can define as many levels of disassembly as we want With many levels the costs can be more specifically defined but this will also in crease the complexity of the model It is reasonable to assume that different components can be observed and repaired at different levels of disassembly To each component we assign the level of disassembly at which the component can be repaired If the component is observable we must also specify the level of disassembly at which we can observe the component For these levels the repair and observation costs are specified For each test we must specify the level of disassembly at which the test can be performed and the cost of performing the test 30 7 3 COSTS OF TRANSITION 7 3 Costs of Transition The dismounting and mounting of parts on the device corresponds to transitions between differ
34. ent levels of disassembly To these transitions there are corresponding costs called costs of transition The cost of transition between level A and A is denoted C _ Ae These costs of transition are added to each cost of action to obtain a cost of repair dependent on the different levels of disassembly There are some rules regarding the calculations of the transition costs which we will explain below A simple transition is a transition from one level to an adjacent level Transitions between different groups on the same level must go via an adjacent level connected to both groups A transition between level A and Aj is made via a transition path A transition path from to is the shortest possible sequence of simple transitions from to j The cost of a transition path is the sum of the cost of all simple transitions in the transition path All paths are reversible meaning that the cost of transition from A to Aj equals the cost of transition from A to j 7 4 Functional Control As it is necessary to define a level of disassembly where all repairs observations and tests can be performed it is also necessary to define the level where it is possible to perform the functional control For a complex system it is possible that these functional controls can be performed at different levels depending on the previous action performed The cost for the functional control CS will not only be the cost for per
35. ere represented as the squares to the left The 9 circular nodes to the right models the DTCs Diagnostic Trouble Codes connected to the XPI system 9 6 Determining the Levels of Disassembly The procedures of repairing and observing components in the XPI system are dif ferent depending on the component in question To model these differences we use the approach presented in Section 7 To do this we need to define our approach to the levels of disassembly for a truck 9 6 1 Level of Disassembly For a truck in a workshop three different levels of disassembly are taken into ac count the complete truck level the tilted cab level and the free component level The free component level has six groups of components The complete truck level corresponds to a complete truck where the cab is not tilted and no components are removed It is assumed that a truck arriving at the 44 9 6 DETERMINING THE LEVELS OF DISASSEMBLY workshop is on the complete truck level It is also assumed that when the functional control of the truck is performed the truck is on this level During much of the troubleshooting in a workshop the cab is tilted This is the level on which many of the tests are performed The free component level corresponds to the situation when the truck is dismantled until a specific component or group of components is free It is not necessary that the component is removed from its original position in the truck but in some cases
36. erved at any level and are marked with Component Level of repair Level of observation Fuel tank Aq Al Pipes suction side A3 a Hand pump A2 Filter suction side 3 b Low pressure pump LPP 3 a A2 Pipes pressure side 3 c 2 Main filter 3 b Pipes filter housing 3 b Inlet metering valve IMV A3 c d2 High pressure pump HPP A3 c Air bleed venturi A3 c Pipes high pressure side A3 d A2 Rail z f A2 Rail pressure sensor RPS A2 Mechanical dump valve MDV A2 3 High pressure connector HPC 3 e Injector ze Table 9 1 Levels of disassemblv at which repairs and observations can be made 46 Chapter 10 Simulating the Repair Process To evaluate the choice of using the efficiency as the sorting parameter the program prototype is used to find the faulty component in simulated cases The simulations models the behaviour of the troubleshooter prototype in invented workshop cases 10 1 Simulation Objectives The main goal for the simulations is to conclude whether the ECR theory handles the component sorting in a cost efficient way or not The objective of these simulations is to rate the efficiency sorting to other sorting criteria to see how the ECR approach to troubleshooting performs 10 2 Component Sorting Criteria After the sorting by efficiency is used we change to a Greedy sorting by probabil ity By using this sorting we keep the probabilistic reasoning bu
37. es giving many different cost of repair with low frequency This is an observation that is general throughout these simulation results Let us concentrate on the topmost plot We see that the efficiency sorting has a cost distribution of only three different repair sequences The composition of this distribution can be understood by studying the repair sequences resulting in the specific costs 51 CHAPTER 10 SIMULATING THE REPAIR PROCESS Component 15 Sorting Criterion Efficiency T T T T T aD ao T 1 gt G T 1 Frequency N T 1 o l 1 l 1 l 0 500 1000 1500 2000 2500 3000 Cost of Repair SEK Sorting Criterion Probabilitv T T T T T Frequency oa o o T T fi l N ao T L o 1 1 1 1 500 1000 1500 2000 2500 3000 Cost of Repair SEK o Sorting Criterion Random T T T N mi T Frequency T n T l LL wis i ilu iid ul 1 Luli lin mili l 500 1000 1500 2000 2500 3000 Cost of Repair SEK o o Figure 10 3 The cost distributions for simulation cycle A The topmost plot shows the resulting cost distribution for the efficiency sorting the middle plot shows cor responding result for the probability sorting and in the last plot the results for the random sorting is presented All plots present the frequencies of specific repair se quences on the y axis and the costs of repair for these sequences on the x axis The three repair sequences for
38. event E P E can be considered as a person s degree of belief in that event In stead of making infinitely many experiments to estimate the probability of an event the Bayesian probability is assigned with respect to the knowledge at hand Heckerman 1995 Heckerman points out that the Bayesian definition of probabilities as degrees of belief has been criticised because it seems arbitrary Heckerman 1995 This is dis cussed somewhat further by Pernestal Pernest l 2007 Pernest l refers to Jaynes Jaynes 2001 who has thoroughly discussed this way of viewing probability CHAPTER 2 INTRODUCTION TO BAYESIAN NETWORKS Jaynes treats probability from the point of three basic requirements called the Basic Desiderata These are 1 Probability should be represented by real numbers 2 Probability should qualitatively correspond to common sense 3 Probability must satisfy the following criteria of consistency YN If a probability can be derived in more than one way then every possible way must lead to the same result a b All evidence relevant to a question must always be taken into account and no information can be arbitrarily ignored c Equivalent states of knowledge must be represented by equivalent prob abilities Jaynes shows that the laws of probability c f Appendix B can be derived directly from these desiderata This supports the Bayesian view of probabilities as degrees of belief and conversely this indica
39. forming the actual control it will also depend on which level of disassemblv the previous repair was made i e the transition cost from the level of last repair to the level where the functional control can be performed 7 5 Determining a Strategv using Dependent Costs The changes in costs due to transitions between different levels of disassemblv cause changes in the determination of the troubleshooting strategy The efficiency for each component is no longer constant but needs to be determined by considering 31 CHAPTER 7 COSTS the previous action performed This means that after each chosen action the effi cency needs to be calculated to determine the next component s in the strategy An attempt to formulate this problem in mathematical terms is presented below The troubleshooting case consists of a specific set of possibly faulty components F c f Section 2 4 which we want to order into a strategy S s1 Sn We want to use the efficiency criterion to order the components and therefore it is of great importance to obtain the correct observation cost at each level of disassembly We introduce the variable l as the level of disassembly at step i which can be either of the levels of disassembly A This variable l is linked to the ith component in the repair strategy and we consider all costs as a function of this variable The troubleshooting starts on level l The first component in the strategy s is determined b
40. he plots of the cost frequency show that this kind of probability based reasoning and troubleshooting approach is highly affected by how specific the DTC is For unspecific DTCs we get cycles similar to cycles C and D where all components are possibly faulty In such a case the cost of repair etc is very important for how well the efficiency criterion performs On the other hand the advantages gained from using troubleshooting theory are lost when confronted with very specific DTCs This is due to costs having too large an influence on the sorting as seen in simulation E 10 5 Conclusions From the simulation results presented in this chapter we can conclude that the ef ficiency sorting criterion performs as well as or better than the other two criteria Yet it is important to mention that this comparison only is relative to the sortings studied and can not give a measurement of how the efficiency criterion relates to an optimal sorting We find two important characteristics that affect the results and they are discussed further below 10 5 1 Importance of Test Outcome The most important effect of the results is the importance of the test outcomes For a correct test indication the repair sequence is shortened and the cost of repair is significantly decreased This is interesting and important to investigate further since we know that including tests in the possible actions we can perform no longer guarantees optimality for the ECR theory
41. heory is applied 5 1 General Assumptions In this thesis the formulation of the troubleshooting problem follows the general assumptions presented below These assumptions apart from number 4 are stated by Heckerman Heckerman et al 1995 li 2 At the start of troubleshooting the device is faultv There exists one single fault meaning that exactly one component is abnormal and responsible for the failure of the device All the other components are functioning properly Each component is either observable or unobservable An observable compo nent can be unambiguously tested or inspected to determine if it is functioning properly If it is found to be faulty it is repaired immediately Unobservable components can not be directly observed but are instantly repaired There are no false alarms for the trouble codes alarms from the diagnosis system Immediately following any component repair the function of the system is controlled with cost C The costs of observation and repair of any component do not depend on pre vious repair or observation actions 19 CHAPTER 5 THEORY OF EXPECTED COST OF REPAIR It is worthwhile to comment on these assumptions Assumption 1 is quite natural if the device is functioning properly and there is no sign of a fault we do not start a troubleshooting process Troubleshooting the device becomes important only when a fault is present Assumption 2 states that there is
42. hich amounts to relatively much work The idea behind the demand for a functional control after each repair is to ensure whether the faulty component is found or not Considering a Bayesian network this information is the evidence that is used by the network to compute a new marginalised probability distribution If we choose not to perform a functional control we can no longer provide the information obtained from the control and we are left without the tools we need for computing a new troubleshooting strategy The functional control assumption was never abandoned because of this but it will be an issue for future truck troubleshooting 66 Bibliography Andersson 2006 ANDERSSON J 2006 Minimizing Troubleshooting Costs A Model of the HPI Injection System Master s Thesis School of Electrical Engi neering Royal Institute of Technology Gustavsson 2006 GUSTAVSSON T 2006 Troubleshooting using cost effective al gorithms and bayesian networks Master s Thesis School of Electrical Engi neering Royal Institute of Technology Gut 1995 Gur A 1995 An Intermediate Course in Probability Springer Sci ence Business Media Inc ISBN 0 387 94507 5 Heckerman 1995 HECKERMAN D 1995 A Tutorial on Learning With Bayesian Networks Technical Report MSR TR 95 06 Microsoft Research Heckerman et al 1995 HECKERMAN D BREESE J ROMMELSE K 1995 Decision Theoretic Troubleshooting Communications of the ACM 38 3 49
43. ies P c Fle for the components being faulty 2 Calculate the efficiency ni for each component 3 Sort all components by descending efficiency to obtain the Greedy strategy 25 CHAPTER 6 ALGORITHMS FOR TROUBLESHOOTING Get probabilities and costs from the model Compute efficiencyfor components connected to generated DTC Order components by descending efficiency Assign the obtained order to the strategy Repair component End Troubleshooting Observe first component in strategy Exclude observed Faulty component Figure 6 1 Flowchart of the Greedy algorithm 6 2 The One Step Look Ahead Algorithm The One Step Look Ahead algorithm One Step uses the theory of ECR and ECRT to include the possibility of adding information gathering steps to the troubleshoot ing process To handle the possibility of tests as future actions One Step uses the myopic approach described in the following section 6 2 1 A Myopic Approach Troubleshooting a system where it is possible to perform one or several tests is a difficult problem When tests are introduced a predefined strategy cannot be uniquely determined because the outcome of the test is not certain until the test is performed The test outcome affects the probability distribution for the compo nents to be faulty and thus it might change the preferred order of the components in the strategy One way of handling th
44. indicate external leakage should most certainly give the same result For a visible leakage it is highly probable that there is a distinct smell of diesel as well This means that this case is somewhat unrealistic Studying the middle plot we see that the cost distribution for the probability sort ing has the same properties as the ones mentioned above Since the DTC is rather specific the troubleshooter only chooses between a few number of sequences where the test outcomes can mean the difference between higher and lower costs The random sorting does not show the same properties as the two above here we can see many bars where the frequency is low This is due to the fact that this sorting simply chooses one component out of the possible ones All components are thereby equally probable to be the first one in the repair sequence and the risk for choosing a long repair strategy is higher 10 4 2 Simulation Cycle B Component 16 Faulty The active model for cycle B For cycle B we have both DTC1 and DTC3 generated In Figure 10 4 we see that the active model for cycle B looks like the model for cycle A and the reason for this is that the no false alarm assumption means that the faulty component must be connected to all generated DTCs 53 CHAPTER 10 SIMULATING THE REPAIR PROCESS Set to be faulty Generated DTCs Figure 10 4 The active model for simulat
45. ion B The three cost distributions for cycle B In the same way that the active models for simulation cycles A and B are similar we can see great resemblance between the resulting plots presenting the three dif ferent cost distributions The results for component 16 being faulty are presented in Figure 10 5 If we study the sequences for this simulation cycle the results from the previous cycle are repeated The two topmost plots showing efficiency and probability sortings have few sequences with high frequencies whereas the random sorting has a wider range of repair sequences The sequences for the efficiency sorting in cycle B are presented in Table 10 5 Sequence CR SEK Repair sequence Bl 436 T9 NI T10 NI 16 B2 744 T9 I 12 13 15 16 B3 761 T9 NI T10 I 12 13 15 16 Table 10 5 The obtained repair sequences for the efficiency sorting in simulation cycle B The plots for cycle A and B are similar but we can detect a difference in the actual sequences which is that the tests indicate in the opposite way in cycle B This is explained by the fault of component 16 being internal leakage Internal leakage will not produce diesel smell and visible leakage and no test indication makes the troubleshooter find the right component quickly We can see the indication of a strong dependence between the two tests T9 and T10 like we could do in cycle A if we study sequence B2 and B3 The only diffe
46. ion cycle B 10 6 The average cost of repair for all simulation cycles 49 51 52 54 55 56 57 58 59 60 61 Chapter 1 Introduction To introduce the reader to this master s thesis and to the report this chapter gives a brief view of the background and a description of the thesis outline 1 1 Background Modern truck development contains as much advanced computer programming as it contains construction and design of mechanical parts All systems in a truck e g the brake system and the hydraulic system are controlled by control units designed to discover malfunctioning behaviour These control systems make the operating diagnosis effective As a consequence of computerised diagnosis the repair process at the workshop becomes more aggravated since the cause of a failure may be diffi cult to find without help from specially developed software to retrieve information from the control systems An extension of such software which does not only retrieve information from the truck but also acts as a help in the repair process is of great interest to the truck in dustry as a means to obtain a more efficient repair procedure Guided troubleshoot ing which means searching for a cause of failure following a pre defined strategy can be a competitive edge since it contributes to efficient repair and thereby good customer service Guided troubleshooting may even become a necessity in the fu ture since many new sys
47. ipped is generated if the MDV is tripped which it should be only when the rail pressure exceeds a limit value DTCs Plausable leakage in the IMV is generated if the rail pressure increases when the IMV is commanded to be fully closed DTC Cylinder balancing compensation has reached min or max is gener ated when the cylinder balancing compensation value has reached the mini mum or maximum value for any of the cylinders 73 Appendix D List of Tests Ti To Ts Ta Ts Te Tz Ts Cylinder balancing test ECU test to test the injectors Fall down test ECU test to test the injectors Cylinder cut off test ECU test to test the injectors Raise in rail pressure test ECU test to analyse the behaviour when the rail pressure is increased by the ECU Pressure measurement in rebound strip Measurement of the pressure in the rebound strip LPP pressure measurement Measurement of the pressure at the LPP Control of air in fuel Measurement to see if there are bubbles of air in the fuel Injector test Measurement The injector is mounted in a specific test envi ronment Smell of diesel Inspection observing whether there is an abnormal smell of diesel or not Visible diesel leakage Inspection searching for visible leakage Fuel in tank Inspection of fuel amount in fuel tank MDV pipe hot Inspection to observe whether the MDV pipe is heated Control of connectors pre LPP Inspection of pipes and connect
48. is problem is to use a myopic approach when troubleshoot ing The name myopic refers to the algorithm s ability to look one step ahead and evaluate the benefit from performing different actions before an action is chosen When this evaluation is made only observations and repair actions are allowed which is a simplyfying assumption 26 6 2 THE ONE STEP LOOK AHEAD ALGORITHM Closely following Jensen in Jensen 2001 the myopic approach is described as fol lows Assume that we are at any stage of troubleshooting At this stage we allow tests to be performed but in the future we allow only repair and observation ac tions In this case the task reduces to calculating expected costs given the various outcomes of the possible tests This conveniently enables us to use the theory of Expected Cost of Repair even in the case where tests are allowed Jensen 2001 6 2 2 General Description of the One Step Algorithm In each step of One Step two different calculations are performed Firstly the greedy approach is used to calculate an order of component repair that minimises ECR Secondly ECRT is calculated for all related tests One Step always chooses one of the actions perform a test make an observation or make a repair that in this step generates the lowest expected cost A graphic representation of One Step is shown in Figure 6 2 and can be described by the following steps 1 Decide the strategy for the components and calculate its
49. ith high failure rates Including components that break very infrequently will only increase the model complexity without capturing any significant behaviour How vital is the component in terms of system performance We want to capture the characteristic behaviour of the real world system as effi ciently as possible Therefore we concentrate on the components that are the most important parts of the system Al CHAPTER 9 A MODEL OF THE XPI SYSTEM Is the component available as a spare part In the XPI system most of the components are very complex and constructed with extremely small tolerances Therefore it is not possible to repair such parts at the workshop If such a component is found to be faulty it must be replaced with a new one since the workshops do not have the equipment to repair it An example of this is the injectors where the tolerance at the injection needle is only a few um Small particles in the diesel might cause leakage in the injector which will lead to decreasing system pressure and a Low pressure DTC will be generated The extremely small tolerance in the injector is not possible to maintain in an ordinary workshop With this in mind only components available as spare parts are included in the model In total 17 components are identified as important and included in the model A more detailed description of how this is done can be found in Mossberg 2007 9 2 Observabilitv For some components it
50. l as the transition cost from the current level Ay to the level where cz can be repaired Ac C b CZ Cap After a repair is made we perform a functional control corresponding to the cost C2 Ac 33 CHAPTER 7 COSTS Cec The cost of the functional control adds the cost of the functional control CS and the transition cost from Ae Aa where the functional control is performed Ce Ae Ce CX With the probability 1 p2 is c2 non faulty and we get the remaining terms for c To determine the cost of observation of c1 C A we need to consider whether Co is observable or not co is observable If c is observable the level we are to continue from is considered to be the level of observation for c2 We get the observation cost for ci as C2 Ay C2 Cyyar a C2 is unobservable If co is unobservable we know that a functional control has been performed before continuing to c and therefore we get the observation cost for ci as C2 Aa Ce Car In this case the cost of transition will not correspond to a cost since it is the same level and no groups of components exists on this level 34 Chapter 8 The Extreme High Pressure Injection System In this section the reader is provided with a short description of the XPI Extreme High Pressure Injection system the diesel engine and the on board diagnosis sys tem 8 1 The Diesel Engine This description of the diesel engine is based on an ar
51. l workshop scenario this means that the me chanic controls if the truck is behaving normally after the specific repair In the simulations this is handled by comparing the number of the newly repaired com ponent to the number assigned to the global parameter If they are identical the troubleshooting is terminated In total five components from the XPl model are chosen to in turn be modelled as faulty These components constitute simulation cycles named A to E in Table 10 2 below which also shows the given combinations of faulty components and generated DTCs Cycle Component Generated DTC A MDV C15 DTC3 B HPC cig DTC1 DTC3 C Injectors c17 DTCI D Filter suction side c4 DTCI E IMV co DTC8 Table 10 2 Components and corresponding DTCs used in the simulations 10 3 2 Simulating Test Outcome When a test is performed during program execution the user is asked to provide information about the test outcome In a computerised simulation this feedback needs to be provided in another way To obtain a somewhat realistic test outcome the marginalised test probability pr P T Ile from the Bayesian network needs to be considered The test outcome is therefore generated as follows A random number r is generated from the uniform distribution on the unit interval U 0 1 The random number r is compared to pr which constitutes the limit value for the outcome to be indication or no indication If
52. n 7 2 and thereby considering the transition costs Section 7 3 between these levels The different levels of disassembly create a more realistic representation of a truck but they also create the need for always knowing the current or previous state of the truck This is important when e g determining the troubleshooting strategy The efficiency criterion demands observation costs for all components which for dependent costs change as we move between different levels of disassembly This means that we get an uncertainty in the strategy determination since the previous level of disassembly might be either the repair level or the control level for the pre viously chosen component This will affect the observation costs The dependent costs are a new approximation and make the ECR theory even more uncertain After the introduction of tests into the troubleshooting system the guarantee for optimality no longer holds and the introduction of dependent costs is only an approach to model reality The question of optimality for cases like this has to be studied throughly 11 2 2 Performance of a Functional Control Another assumption not adapted to the troubleshooting of trucks is the perfor mance of a functional control after each repair action When repairing a truck it is common to replace several parts before performing a functional control because the functional control often means that the cab has to be tilted back into its correct position w
53. n Networks URL http www cs ubc ca murphyk Papers intro_gm pdf Pernestal 2007 PERNESTAL A 2007 A Bayesian Approach to Fault Isolation with Application to Diesel Engine Diagnosis Licentiate Thesis School of Electrical Engineering Royal Institute of Technology Scania 2006 2006 Funktionsbeskrivning XPI Internal Scania document Wikipedia 2007 Wikipedia 2007 08 02 Search term Diesel engine http en wikipedia org wiki Diesel_engine Unprinted References Flink 2007 FLINK T 2007 Tomas Flink employed at Scania CV AB Interviews during April to June 2007 Telborn 2007 TELBORN K 2007 Klas Telborn employed at Scania CV AB Interviews during April to June 2007 Picture References Figure 8 1 http www1 eere energy gov vehiclesandfuels pdfs basics jtb_diesel_engine pdf Figure 8 2 http www britannica com eb art 19423 Four stroke diesel engine The tvpical sequence of cvcle events7 articleTypeId 1 68 Appendix A List of Notation XPI LPP HPP IMV MDV HPC DTC ECU BNT TS VOI SFC CPT Extreme High Pressure Injection Low Pressure Pump High Pressure Pump Inlet Metering Valve Metering Dump Valve High Pressure Connector Diagnostic Trouble Code Electric Control Unit Bayesian Network Toolbox for Matlab Troubleshooting strategy the order of actions in which the troubleshooting process works Value Of Information Single Fault Constraint Conditional Probabilit
54. neral problems of troubleshooting a truck rather well The specificity of a DTC is important when troubleshooting a truck since we can choose to either use a troubleshooter program or do it manually If every DTC was able to correctly point out exactly one component as faulty it would be easier for the mechanic to find the faulty component and a program of this kind would be unnecessary Unfortunately such specific diagnosis is hard to manage especially for closed systems where components of the same type may be almost impossible to tell apart using only electrical diagnosis An advantage we can achieve by using a troubleshooting program is that it might be possible that even small improvements in DTC specificity can be considered as an improvement in the performance of a troubleshooter program The simulations showed that the best results were achieved for a generated DTC that singled out five components as possibly faulty If this is generalised it is reasonable to believe that further DTC development towards DTCs which are good but not excellent in collaboration with correct test outcomes would make a program like this valuable when troubleshooting trucks 63 Chapter 11 Discussion and Future Work This chapter concludes the work and discusses some of the issues related to the relaxations of the assumptions in existing ECR theory 11 1 Performance of the ECR Theory The results from the simulations presented in Section 10 indicate th
55. ore i l l l 0 1000 2000 3000 4000 5000 6000 Cost of Repair SEK Sorting Criterion Probability 50 40 gt 2 30 S g 20 uu 10 0 0 1000 2000 3000 4000 5000 6000 Cost of Repair SEK Sorting Criterion Random 20 T T T T T T 15 l H gt G e 3 10 4 Fi ru 5 ond o lu rewia w an a w o oe AAAA WALAANI MANAM 0 1000 2000 3000 4000 5000 6000 Cost of Repair SEK Figure 10 9 The cost distributions for simulated repair of component 4 59 CHAPTER 10 SIMULATING THE REPAIR PROCESS 10 4 5 Simulation Cycle E Component 9 Faulty The active model for cycle E This simulation cycle is special since the generated DTC8 is very specific As shown in Figure 10 10 the generated DTC8 only points out two components as possibly faulty With only one test available the troubleshooter has three different actions to choose from Pome sec MMEH A Set to be faulty 1 2 3j 4i 5 6JL 708 9 1110 e 07000100D Generated DTC i Figure 10 10 The active model for simulation E The three cost distributions for cycle E In total there are five different troubleshooting strategies available for a repair pro cedure in this simulation cycle We can see that neither efficiency nor probability sorting uses all five repair sequences The random sorting has generated all five se quences but as the sequences 712 11 Cg and c11 T12 c
56. ors on the suction side 75 TRITA CSC E 2008 026 ISRN KTH CSC E 08 026 SE ISSN 1653 5715 www kth se
57. ory of troubleshooting to the specific troubleshooting of a truck some relax ations from the original assumptions were made These relaxations were then used in the evaluation of the performance of the troubleshooter prototype which was evaluated by a simulated repair process where the prototype was used to find the faulty component The costs of the sim ulated repairs were computed and compared to the costs of two other predefined ways of choosing an order in which to repair components Considering the average costs for the repair procedures the prototype presented the lowest average cost in three out of five simulation cycles Referat Kostnadseffektiv felsokning med Bayesianska natverk Guidad fels kning av ett dieselinsprutningssystem Detta examensarbete r en studie av hur beslutsteori och sannolikhet steori kan anv ndas f r att fels ka en lastbil Examensarbetet r till sammans med tv andra examensarbeten en del i ett st rre projekt med m let att hitta ett kostnadseffektivt s tt att fels ka lastbilar d r de inbyggda systemen blir mer och mer komplexa Detta arbete koncentrerades p utveckling och utv rdering av en pro gramprototyp f r fels kning Prototypen utvecklades f r fels kning av ett dieselinsprutningssystem som modellerats med hj lp av ett Bayesian skt n tverk Som ett led i anpassningen till fels kning i lastbilar har vissa antaganden i den existerande teorin relaxerats och prototypen r utv rderad
58. oted ng If we construct the sequence S by ordering the components with respect to descending efficiency we are guaranteed to have the optimal sequence as long as the sequence only consists of observations and repairs If tests are included this is no longer guaranteed to be true Heckerman et al 1995 5 4 Expected Cost of Repair Including Tests To the model consisting of K components we add Nr tests 7 7 gt Typ The addition of tests changes the properties of the troubleshooting process radically Most importantly by the addition of tests as possible troubleshooting actions we can no longer be sure that an optimal repair strategy will be obtained even though the efficiency sorting criterion is used To all tests we assign probabilities and test costs For each test T we denote the specific cost corresponding to performing the test CT We need the probability that the test does indicate J a fault given the current state of information P T Ile We also need the probability that the test does not indicate NI given the same state of information P T NIle Consider the small system consisting of three components cj C2 c3 In Section 5 2 a sorted repair strategy S c2 c3 C1 was chosen Assume that we now have the possibility of performing the test T before deciding on the strategy This might change the preferred order since the test outcome gives us additional information about the system Suppose that we perform th
59. pair when looking for the preferred order for the troubleshooting steps This type of troubleshooting balancing costs and probabilities to find the best next repairing step is called decision theoretic troubleshooting Heckerman et al 1995 As the name decision theoretic implies the troubleshooting theory is based on decision theory and the basics of probability Langseth and Jensen Langseth amp Jensen 2003 present the following definition of a troubleshooting system A device consists of K components X X1 Xx that can be either non faulty NF or faulty F The status of the components is unknown as the troubleshoot ing is initialised hence X is considered a set of random variables As the search for the faulty component begins the goal is to determine the states of these random variables following a predefined order of actions discussed further below This order is called the troubleshooting strategy S 4 2 Actions When determining the troubleshooting strategy one can choose from NA different actions each being either an observation a repair or a test An observation is 17 CHAPTER 4 THE TROUBLESHOOTING PROBLEM an action through which we can determine with certainty whether a component is faulty or not A repair is either a replacement or a repair of a possibly broken component A repair will guarantee that the component is non faulty when the repair is made If the component is the faulty one the repair action
60. posite way performing Test 1 does not change the actual state of the node Comp 1 For changes in probability the situation is different from that of physical influence Probabilities can spread in both directions of an edge This is easy to understand by considering the case where the outcome of Test 1 indicates that it is very unlikely that the node Comp 1 is causing the failure Our state of knowledge is changed and the marginalised probabilities for Comp 1 and Comp 2 change which implies that changes in probability can travel in both directions of the edges Figure 2 1 A basic Bayesian network consisting of two cause nodes one problem defining node and one test node CHAPTER 2 INTRODUCTION TO BAYESIAN NETWORKS 2 4 Probabilities in the Network When using a Bayesian network the objective is to draw conclusions about the probabilities that variables take on certain values given the current state of knowl edge e The state of knowledge will be discussed further in Section 2 5 Assuming that there are K discrete random variables X i 1 K this probability can be written as K P X1 Xo XxKle IILP XilPa Xi 2 2 i 1 To be able to compute 2 2 all dependencies and underlying probabilities need to be specified As stated above the parents of a node i denoted Pa X are the nodes that X is dependent on For each node the probability that the variable takes on different values given the values of its parents and the cu
61. r and the State of Nature 3 2 Maximising Payoff 0 000002 eee ee 3 3 Bayes Decision Rule 2 2 ee 3 4 The Introduction of Experimentation 0 3 5 Decision Making Applied to this Thesis 4 The Troubleshooting Problem 4 1 Decision Theoretic Troubleshooting 42 9 ACTIONS nx oe ee ee Pad a TA eee ee EAS 5 Theory Of Expected Cost Of Repair 5 1 General Assumptions 0000 5 2 Expected Cost of Repair LL 5 3 The Optimal Sequence LL 0000 5 4 Expected Cost of Repair Including Tests 00000000 5 5 The Value of Information ee 6 Algorithms for Troubleshooting 6 1 The Greedy Algorithm 0000 6 2 The One Step Look Ahead Algorithm NN EH O ooon A 13 13 14 14 14 14 17 17 17 19 19 20 21 22 23 6 2 1 A Myopic Approach 2 000 e 6 2 2 General Description of the One Step Algorithm 7 Costs 7 1 7 2 7 3 7 4 7 5 7 6 Independent and Dependent Costs 2 Level of Disassembly 0 0 02 a Costs OF Transition sessi 22 ag an bose a no ey Gee Peo KA Functional Control 2 rer rs sr ss Determining a Strategy using Dependent Costs The Expected Cost of Repair using Dependent Costs 8 The Extreme High Pressure Injection System 8 1 8 2 The Diesel Engine 6 Operating Principle of the XPI System 8 2 1 Fuel Transport
62. r is connected to the ECU and the generated DTCs are retrieved Thereafter the troubleshooting process can begin 39 Chapter 9 A Model of the XPI System Real world systems are often very complex which makes them hard to survey To be able to analyse the behaviour and performance of such systems we use models When creating a model the main goal is to reduce the complexity without losing too much of the characteristics of the real system In Mossberg 2007 a Bayesian model of the XPI system is designed In this section we will discuss some of the issues concerning the creation of the Bayesian model of the XPI system One of the difficulties in designing the model is to determine which parts to include and which to exclude In general the number of DTCs and components must be strictly limited to avoid storage and computational problems Including too many nodes in the Bayesian network makes it too complex and does not simplify the real world system enough On the other hand having very few nodes will make the model too simplified and have it differing too much from the real system 9 1 Components One must take different aspects into account when determining which components to use in the model Important issues can be formulated as the following questions What is the failure rate of the component Since the model is built to be a part of a troubleshooter we are interested in the problematic parts of the system i e components w
63. rence 54 10 4 SIMULATION RESULTS between these two sequences is that in B2 the test indicating is T9 in B3 it is T10 which indicates The component order is the same Component 16 Sorting Criterion Efficiency T T T T gt D G T T L 1 Frequency N T 1 1 1 1 o 500 1000 1500 2000 Cost of Repair SEK Sorting Criterion Probability Frequency a 500 1000 1500 2000 Cost of Repair SEK Sorting Criterion Random 30 T T T T gt 2 20 4 3 gt Fi il 10 l 4 o wid huw w 1 1 l viliitli i te o 500 1000 1500 2000 Cost of Repair SEK Figure 10 5 The cost distributions for simulated repair of component 16 55 CHAPTER 10 SIMULATING THE REPAIR PROCESS 10 4 3 Simulation Cycle C Component 17 faulty The active model for cycle C Simulation cycle C is more complex since the generated DTCI is connected to all components as we can see in Figure 10 6 and as a consequence all tests are also available This naturally makes the troubleshooting more complex AA SFC Set to be faulty i Generated DTC Figure 10 6 The active model for simulation C The three cost distributions for cycle C The results from these simulations are not as clear as the two previous ones The fact that DTCI is generated enabling all components to be possibly faulty makes it hard for the algorithm to find a small number of repair sequences We see in Figure
64. rrent state of knowledge must be given Let us introduce some notation that will be used in the diagnosis problem With the assumption that there are K components in the system we define K as the set containing all components We can then define F as a subset of K consisting of the F components that might be faulty The remaining N K F components are assumed to be normally functioning and are said to belong to the set M They will not be examined during the troubleshooting because they are known to function correctly We represent this by setting the probability of these components being faulty to zero P X faulty 0 VX EN 2 5 The State of Knowledge In the context of probabilistic inference in Bayesian networks our state of knowl edge denoted is important The variable e contains all the information gathered so far during the inference process The state of knowledge can contain any kind of background information available to us about the system but also information collected by performing different kinds of information gathering actions In this thesis these information gathering actions are observing components performing tests and repairing components When the troubleshooting process starts we have retrieved information about the state of the truck from the diagnosis system From the Bayesian network we get information about the components that may have caused the faulty behaviour namely the components belonging to
65. s The edges are most often directed from cause to effect Jensen 2001 In a directed acyclic graph there is at least one node which does not receive input from any other node This node is often called the root There must also be at least one node which does not give input to any other node and nodes of this type are often called leaves The direction of the edges implies a dependence between the nodes such that the state of a node N depends on the state of its parents Pa N Jensen 2001 Acyclic graphs have as the name suggests no cycles This means that there exists no directed path that ends in its own starting point Jensen 2001 The small Bayesian network in Figure 2 1 is a simplified example of a Bayesian net work used in this thesis In this network there is a problem defining node labelled Alarm This node tells us whether the system is working or not The problem defining node in this case can be in one of two possible states yes if the system is working properly and no if it exhibits some faulty behaviour The two nodes Comp 1 and Comp 2 are called cause nodes because they have a causal physical impact on the state of Alarm Comp 1 also affects the node Test 1 These dependencies are illustrated by the directed edges The direction of each edge indicates how the physical influence can spread between the nodes connected by the edge The physical influence can only spread in the direction given by the edges and not in the op
66. simulated repair of component 9 One thing that becomes important in these simulations is the fact that the random ordering places the faulty component first in 20 five possible troubleshooting strategies of the sequences This happens in all simulations but is not of great importance since the number of sequences that start with the faulty component is small In this case where the faulty component can be repaired immediately with a probability of 1 3 the random sorting performs well in comparison to the other sortings 10 4 6 The Average Cost of Repair As a final comparison the average costs for all simulation cycles are presented The average value is used as a rough estimation and rating of the different sortings The values are presented in Table 10 6 61 CHAPTER 10 SIMULATING THE REPAIR PROCESS Simulation A B C D E Component C15 16 C17 CA C9 Efficiency 1625 670 4627 967 693 Probability 2015 596 5187 1117 874 Random 1779 1165 3610 3443 705 Table 10 6 The average cost of repair for all simulation cycles We can see that the efficiency sorting criterion gives the lowest average cost in three out of five simulation cycles In a small example like this it can be considered rather good but if one was to use this sorting criterion in a troubleshooter program one would prefer it to produce the lowest average cost in a larger number of cases The average costs and t
67. sum to one 1 P S B P S B 0 36 0 08 0 44 2 5 P B P B PCB a This gives that P B 0 44 Thus learning that Jane did go biking today has changed the probability that the sun is shining from P S 0 5 to 0 36 10 2 6 CONDITIONAL PROBABILITY TABLES When the Bayesian network is known there are efficient methods for computing any conditional probabilities in the network Pernest l 2007 11 Chapter 3 Decision Theory A repair procedure can be a complex task since the cause of a failure can be hard to find When repairing a device a number of choices have to be made e g where to start and if to perform some kind of test that can indicate what is causing the problem The way these choices are made can hasten or delay the repair procedure and in the search for an efficient repair procedure it might be interesting to consider these choices theoretically Decision theory divides decision making into two parts decision making with and without experimentation The former includes the possibility of performing tests to reduce the level of uncertainty in a choice Hillier and Lieberman Hillier amp Lieberman 2005 discuss among others two different decision criteria the Maximum Payoff criterion and Bayes decision rule Bayes decision rule is the most commonly used its advantage being its ability to incorporate all the available information Hillier amp Lieberman 2005 3 1 The Decision Maker and the S
68. t do not add the information about the observation cost This will affect the component ordering and it is interesting to see whether or not this makes a difference in the total repair cost Second we change the sorting criterion to be a completely random order this to model a repair procedure where no information is taken into account It is reasonable to assume that a random ordering of the components will give a total repair cost higher than a cost efficient sorting The random ordering can therefore be seen as somewhat of a worst case repair scenario 47 CHAPTER 10 SIMULATING THE REPAIR PROCESS The different sorting criteria used are stated in Table 10 1 a Efficiency n Components sorted by descending efficiency b Probability P c faultvle sorted in descending order c Random order All components randomised Table 10 1 The sorting criteria used for the different simulations 10 3 Carrying Out the Simulations The simulation algorithm is constructed as a virtual mechanic that can provide the right information to the troubleshooter prototype For one simulation cycle we ob tain 100 fictious workshop cases where the same component is modelled as faulty The modelling of component failure is described more in detail in Section 10 3 1 The simulated repair is initialised by giving a DTC thereby simulated as generated as input to the program This corresponds to the information the mechanic gets from the diagnosis system in the
69. tate of Nature In a decision making situation there is always a decision maker who must choose an alternative from a set of possible decision alternatives Because of uncertainty the decision maker cannot fully predict or control the outcome of the decision chosen The outcome is instead affected by random factors and these random factors deter mine the situation resulting when the decision is executed Each of these possible situations is referred to as a possible state of nature Hillier amp Lieberman 2005 If we consider the state of nature a random variable we can translate the information into a probability distribution assigning each state of nature a probability When making decisions the decision maker takes into account the information about the relative possibility of the possible states of nature 13 CHAPTER 3 DECISION THEORY 3 2 Maximising Payoff The decision maker knows the resulting payoff for each combination of a decision alternative and state of nature The payoff is used to quantitatively measure the value of the consequences of the outcome The payoff is often represented by net monetary gain thereby creating a goal of maximising the profit 3 3 Bayes Decision Rule Bayes decision rule is one way to make a decision based on the expected costs of the different outcomes The probabilities for the different states of nature are computed and the expected values for all possible decision alternatives are calc
70. tems tend to be more and more complex Troubleshooting software forms the interface between parts of the mechanical de vices in the truck the electrical diagnosis system and the mechanic at the workshop The software must be designed to handle both disturbances in diagnosis data and the risk of human errors occurring in the mechanic s interpretation of the software output To create such a program deep knowledge of the mechanical system in question must be used CHAPTER 1 INTRODUCTION 1 2 Objectives This thesis is part of a project aiming to construct a prototype for guided trou bleshooting of a diesel injection system The goal of the troubleshooting pro gram is to minimise the expected cost of repairing a faulty truck The study is concentrated on evaluations of algorithms adapted to theory of troubleshooting IHeckerman et al 1995 using a different approach to costs of repair In parallel to this thesis two complementarv studies were made an evaluation of Bavesian mod eling of a diesel injection system Mossberg 2007 and a study of how tests can be implemented into the troubleshooting process Lotz 2007 The main objectives of this thesis are to Adapt existing troubleshooting theory to the troubleshooting of trucks Present and discuss an application on including costs into troubleshooting theory Study the performance of a troubleshooting algorithm with respect to cost efficiency using a different cost approach
71. tes that probability can be used to measure beliefs Pernestal 2007 Jaynes 2001 2 2 Bayes Theorem One of the most frequently used probability formulas is Bayes theorem It can be used to compute P X 2 Y y from P Y y X zx and is useful when computing probabilities in Bayesian networks P Y y X z P X z Pir y P X x Y y 2 1 Bayes theorem is as Pernest l states fundamental in probabilistic reasoning Pernest l 2007 The case of troubleshooting a malfunctioning truck is no excep tion With only one or a few observations at hand we want to determine which component is faulty To do this we want to compute the probabilities of the different faults being present given the observations Typically it is easier to determine the probability that a fault causes a certain observation rather than the probability that a certain fault is present given an observation Bayes theorem enables us to use the information easier obtained to determine the probability we are actually interested in Pernestal 2007 2 3 The Structure of Bayesian Networks A Bayesian network is a directed acyclic graph DAG which can be used to model probabilistic relationships between variables The network consists of nodes each 2 3 THE STRUCTURE OF BAYESIAN NETWORKS representing a variable and directed edges which connect the nodes Each variable is assigned to be discrete and have a finite set of mutually exclusive state
72. the set F This means that we also know which components belong to N Into the variable e we insert the knowledge about the N non faulty components As we proceed with the troubleshooting during which tests are performed and components are found to be functioning properly the value of changes as more information is obtained 2 6 CONDITIONAL PROBABILITY TABLES 2 6 Conditional Probability Tables When dealing with discrete stochastic variables the conditional probabilities of dif ferent variables are presented in a Conditional Probability Table CPT To understand how CPTs are used we will present an example where probabilistic reasoning is used in an everyday situation This example is found in Pernestal 2007 The Bayesian network used in the example is shown in Figure 2 2 The network consists of three nodes Sun S Holiday H and Biking B They are defined as S The sun is shining H Jane is on holidays B Jane goes biking Figure 2 2 A simple Bayesian network describing the dependencies between the weather and the facts that Jane is on holidays and that she goes biking The CPTs for S and H are shown in Tables 2 1 2 2 P s True 0 5 False 0 5 Table 2 1 The CPT for the node S A P H True 0 2 False 0 8 Table 2 2 The CPT for the node H Tables 2 1 2 2 2 3 and the Bavesian network in Figure 2 2 represent our knowledge of the situation CHAP
73. this is needed Some tests and observations require that the component is removed and mounted in some special test equipment 9 6 2 Transition Costs Figure 9 2 shows the different levels of disassembly and the costs corresponding to simple transitions 50 100 k 75 75 87 5 Figure 9 2 Transition costs for simple transitions between different levels of di assembly of a truck Costs are given in SEK The numbers correspond to the following levels of disassembiv Ar Complete truck level Ag Tilted cab level A3 Free component level za The components on the suction side are free 3 The filter housing is open A3 c The components on the pressure side are free 45 CHAPTER 9 A MODEL OF THE XPI SYSTEM A3 q The pipe between the HPP and the rail is free A3 e One injector and its HPL and HPC are free A3 f The rail is free Using information from time measurements and experts the costs of transitions between level Ay and 2 and between Ag and the groups on level A3 are defined These costs are presented in Figure 9 2 From these costs the cost of any transition can be calculated following the rules presented in Section 7 3 When dealing with dependent costs we must also specify the levels of disassembly at which the components can be repaired This data is presented in Table 9 1 There we also find the levels of disassembly at which the observable components can be observed Unobservable components cannot be obs
74. ticle in Wikipedia 2007 The diesel engine is an internal combustion engine that uses compression ignition There are two classes of diesel engines one with a two stroke cycle and one more com monly used using a four stroke cycle The four stroke engine is the type used in Scania trucks Internal combustion engines require a combustion chamber where pressure is built up This chamber is the cylinder in which the piston moves Attached to the cylin der head are two valves for the inlet of air and two valves for the outlet of exhaust gases An injector valve which injects the fuel into the cylinder is also attached to each cylinder head The parts are shown in the schematic picture of a cylinder in Figure 8 1 Most truck engines have five six or eight cylinders 35 CHAPTER 8 THE EXTREME HIGH PRESSURE INJECTION SYSTEM Diesel Fuel Ignition Intake Fuel Bhat Vali j Vali ii Figure 8 1 A schematic picture of a cylinder and the important parts Each cycle consists of four phases called strokes which are shown in Figure 8 2 intake valve fuel injector exhaust valve intake compression power exhaust 2007 Encyclopedia Britannica Inc Figure 8 2 A schematic picture of the four strokes of a diesel engine The first stroke is called the intake stroke During this phase the piston moves down reducing the pressure in the cylinder Thereby air is drawn into the cylinder through the inlet valves The intake
75. to a complete repair of the device As previously stated the single fault assumption is often a good approximation because it is not likely that two com ponents will fail at roughly the same time Heckerman et al 1995 Furthermore without this assumption filling in the CPTs would be much more cumbersome This assumption simplifies the problem but it also implies strong dependencies between the components Mossberg 2007 In the Bayesian model this assumption is met by the SFC node short for Single Fault Constraint node This node does not represent a physical component In stead its only purpose is to guarantee that only one component is faulty at a time For a model with K components the SFC node has K 1 states The first K states handle the cases where one of the K components is faulty in a way that the ith state corresponds to the ith component being faulty The K 1 th state handles the case where none of the components are faulty In the CPT for this node we specify the prior probability for each component to be faulty 9 4 Diagnostic Trouble Codes There are different kinds of DTCs Diagnostic Trouble Codes Some DTCs are very specific and can point out a faulty component with very high precision These DTCs usually handle electrical faults There are also DTCs that handle mechanical faults and these are often not as precise They do not point out a specific compo nent but rather a troublesome symptom In the XPI system with
76. ual and the probability that the fuel tank is broken is twice the probability of the high pressure pump Then the decision maker would 14 3 5 DECISION MAKING APPLIED TO THIS THESIS prefer to repair the fuel tank first because that alternative would be the most prof itable In the example above we might want to perform a test before we repair any of the components Given the state of nature this test has the ability to point out the high pressure pump as the faulty component with some probability By the nature of probabilistic reasoning there is always a risk that the test will not provide us with the information that we want since most tests are non perfect The issues of non perfect tests and the uncertainty of deciding which component to repair can be handled by an application of decision theory 15 Chapter 4 The Troubleshooting Problem Finding a faulty component in a non working device can be both difficult and time consuming Such time consuming tasks are expensive and it is desirable to find a sequence of actions that will repair the device in an efficient way Finding this plan of action which includes replacing faulty components as well as making observations and tests is the process that is called troubleshooting TS IHeckerman et al 1995 4 1 Decision Theoretic Troubleshooting In some cases the cost of the troubleshooting process might be significant For this reason it is preferable to consider the costs of re
77. ue of Information VOI Hillier amp Lieberman 2005 of test T as VOI T ECR S ECRT T 5 6 If the difference between ECR and ECRT is positive it can be considered to be the gain we make by performing the test If the value of VOI T is negative there is no gain of performing the test Instead performing the test will only give rise to a higher repair cost 23 Chapter 6 Algorithms for Troubleshooting In Gustavsson 2006 four different algorithms for cost efficient troubleshooting are studied Considering the algorithm characteristics like complexity and perfor mance discussed by Gustavsson two algorithms are chosen for the continued study of the ECR performance As a development of this previous study the computa tions of the ECR are different c f Chapter 7 due to an adjustment to the specific process of troubleshooting a truck The algorithms are presented in the following sections 6 1 The Greedy Algorithm The greedy approach is a naive way to troubleshoot The components can only be sorted by a certain criterion decided upon in advance and no tests can be integrated into the strategy As the name indicates the Greedy algorithm aims to choose each step to maximise the utility Which from the ECR point of view means an ordering of components by descending efficiency The Greedy algorithm can be described by three steps which also are illustrated in the flowchart in figure 6 1 1 Calculate the probabilit
78. ulated The alternative that renders the maximum expected payoff is the one to choose Hillier amp Lieberman 2005 3 4 The Introduction of Experimentation In many cases decision making without experimentation is not good enough since the estimates of the probabilities are too rough and unspecific To achieve more information in order to improve and refine the the probabilities we introduce exper imentation to the decision making process Experimentation gives the decision maker more alternatives to choose from since he she or it can choose to either perform an experiment or not In general the outcome of an experimentation is not certain but instead based on probabilities and can thus be considered a random variable Given the outcome of the experiment we can determine new estimates of the probabilities of the different states of nature using Bayes theorem Section 2 2 Thus experimentation is used to provide more information to the decision maker 3 5 Decision Making Applied to this Thesis In the context of this thesis the decision maker is the prototype designed and each state of nature is a state where exactly one component is out of order For instance for a certain broken truck two states of nature could be Fuel tank faulty and High pressure pump faulty and two decision alternatives could be Repair fuel tank and Repair high pressure pump Now assume that the repair costs for the fuel tank and the high pressure pump are eq
79. umber of possible actions decrease At the beginning of troubleshooting there are 9 different actions to chose from 4 tests and 5 components The small number of possibly faulty components decreases the number of repair strategies 50 10 4 SIMULATION RESULTS Generated DTC Figure 10 2 The active model for simulation A We see that DTC3 is the generated DTC out of the 9 possible DTCs modelled by the nine nodes down to the right From the 17 nodes representing the components there are 5 that are connected to DTC3 e g component 10 12 13 15 and 16 Component 15 is modelled to be faulty The square nodes to the left are the 13 tests in the XPl model out of which tests 4 5 9 and 10 are available for this combination of DTC and components The Three Cost Distributions for Cycle A Figure 10 3 is a representation of the resulting costs from the three sorting criteria We can observe that there are fewer unique costs for the efficiency sorting topmost plot and probability sorting middle plot and that these costs have higher fre quency than the costs associated with random sorting last plot High frequency means that many repair procedures correspond to the same cost and thereby the same repair strategy Both efficiency and probability sortings have been able to use only a few different repair sequences The random sorting has used a large number of repair sequenc
80. will repair the device A test will give us additional information about the system when it is performed Tests in general do not indicate correctly in all cases Only perfect tests will always have correct outcomes The difference between an observation and a test is therefore that an observation will with certainty point out the component as being faulty or non faulty while a test will do this with some probability Since we do not know the state of an action before it is performed the actions are considered random variables These actions are modelled by the set A Aj An For example let us consider the action A observe X Before the observation is made we do not know the state of X Thus A can take on two different values either X is faulty or X is non faulty As the action is performed the state of the random variable is determined Then we know the value of Aj namely A a This adds information to the current state of knowledge 18 Chapter 5 Theory Of Expected Cost Of Repair Chapter 4 presents the troubleshooting process and the idea of ordering compo nents that might be faulty into a strategy There are many different ways to order the components and in this section we present the sorting criterion used in the troubleshooter prototype We will present the theory behind a way of minimising troubleshooting costs namely the theory of Expected Cost of Repair We begin by presenting some assumptions under which the t
81. y Table system component numbered i component is faulty component is not faulty cost of observation for component c cost of reparation for component c cost of performing test T cost of observing whether the system is functioning normally action in troubleshooting process i e repair observation or test Expected Cost of Repair for the strategy S Expected Cost of Repair Including Test for the test T efficiency ratio between probability and cost of observation given state of knowledge evidence probability for component to be faulty given the evidence P c le probability for test outcome 69 NI Nr Na APPENDIX A LIST OF NOTATION test outcome indicating failure test outcome not indicating failure number of possible tests belonging to a system number of possible actions in a troubleshooting case level of disassembly at step i jth level of disassembly 70 Appendix B Basics of Probability Theory In this appendix we go through some fundamental rules of probability theory Some basic rules in probability theory are necessary in this thesis and in this section we will briefly discuss the joint probability the marginal probability and the Chain Rule We will assume X Y and Z to be discrete random variables the continuous case being analogous The range of X Y and Z are denoted Sx Sy and Sz respectively To each of these we assign a probability mass function which for X is written as P X x px x
82. y considering the component with the highest efficiency based on this level usually the complete device level Di max for i such that c EF 7 2 cm Oe When the first component s1 has been determined the level of assembly is changed from l l The level l is where we can observe the component corresponding to si The efficiency of the remaining components is then calculated using the cost of observation for the current level li max Li for j such that c F ci 7 3 Cs 11 Each time a component is ordered into the strategy it is removed from the set F In each step the efficiency is consequently calculated for components not yet ordered into the strategy This follows Equation 7 3 where more and more components are excluded from the set F 7 6 The Expected Cost of Repair using Dependent Costs As the independent cost approach is abandoned we obtain a more flexible repre sentation of the repair procedure This approach means that all costs are varying with the different levels of disassembly Thus the calculation of the ECR has to be changed The variable I is significant in the computation of the ECR since all costs are said to be a function of this variable The probabilities for the components to be faulty are unaffected by I and are left unchanged 32 7 6 THE EXPECTED COST OF REPAIR USING DEPENDENT COSTS For a strategy S s1 52 the ECR for dependent costs is ECR S 1 C

Download Pdf Manuals

image

Related Search

Related Contents

Samsung 27" SyncMaster SB750V LS27B750VS/EN Käyttöopas  Dataram DRSX6270-13/4GB memory module  jm rutd  Sony DSC-W710/B Marketing Specifications  Conception électronique et informatique d`un robot  

Copyright © All rights reserved.
Failed to retrieve file