Home

User Manual of SEAWAY - Website van Johan Journee

image

Contents

1. This page shows the output of the frequency characteristics of the basic motions and the added resistance of the ship as a function of WAVE FREQ SQRT SL WL VL pp A ENC FREQ AMPL is the response amplitude operator RAO or transfer function of the motions with dimensions depending on KPR 4 PHASE is the phase lag of the motions in degrees relative to the wave elevation in the centre of gravity G The ADDED RESISTANCE marked by GER BEU and BOESE are obtained by the radiated energy method of Gerritsma and Beukelman 1972 and by the integrated pressure method of Boese 1970 respectively The dimensions depend on 4 88 Frequency Characteristics of Internal Loads KPR 4 1 and NBTM gt 0 ITTC ship 5 175 Test of program SEAWAY release 4 18 SEAWAY 4 18 Date 09 10 1999 23 17 Page 26 FREQUENCY CHARACTERISTICS OF INTERNAL LOADS FORWARD SPEED 20 00 kn nunnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn WAVE DIRECTION 150 deg off stern SECTION NR 01 X APP 131 250 n Y CL 0 000 2 BL 9 550 m EI RER INTERNAL eee eee INTERNAL WAVE SORT Feu diecie FZ dreri M uu e FREQ SL WL FREQ AMPL PHASE AMPL PHASE AMPL PHASE AMPL PHASE A
2. 1 1 3 T 01 T 02 MEAN WAVE 128 000 000 000 000 000 002 026 124 319 562 1 841 8 274 7 960 07 234 1 988 7 876 SWAY m2s 000 8 co Co 1 FORWARD SPEED 20 00 kn WAVE DIRECTION 150 deg off stern HEAVE m2s 000 000 000 000 000 002 025 118 326 682 224 613 968 190 010 6 Ca lt lt lt gt c 1 182 7 488 1 391 ROLL deg2s Co 000 000 000 000 000 005 045 185 411 663 168 131 574 395 222 1 03 a 4 n Cn PO 6 11 1 PITCH 25 000 Cn 1 722 7 254 7 19 SEAWAY 4 18 Date 09 10 1999 23 17 Page 36 ADDED RESISTANCE YAW deg2s 000 mm GER BEU BOESE 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 01 0 00 0 17 0 09 2 06 1 85 12 56 13 28 49 42 55 43 99 45 102 44 54 09 11 46 33 15 13 96 23 23 3 13 17 94 05 14 35 00 11 27 41 8 48 97 6 07 1 20 4 16 1 12 2 77 87 1 81 56 1 16 28 8 331 02
3. SHIP 5 326 403 5 198 co 5 316803 5 569 co 890 03 6 239 03 6 592 403 a 935 03 7 260 03 7 563E 03 8 729E 03 This page shows an example for sway of 2 D and integrated potential mass coefficients defined in a co ordinate system with the origin O in the waterline The frequency range follows from FREQMAX and the dimensions follow from KPR 3 84 Example of 2 D Potential Damping KPR 3 1 ITTC ship 5 175 Test of program SEAWAY release 4 18 SEAWAY 4 18 Date 09 10 1999 23 17 Page 13 2 D VALUES OF POTENTIAL N 33 NNNNNNNNNNNNNNNNNNNNNNNNNNNN FREQUENCY 0 000 0 125 0 25 375 0 50 0 625 0 750 0 875 1 000 1 125 1 250 STATION 0 38 0 000E 01 0 000 01 0 000 01 0 000 01 0 000 01 0 000E 01 0 000 01 0 000E 01 0 000E 01 0 000 01 0 000 01 0 19 0 000E 01 3 661 01 7 134 01 1 034 00 1 324 400 1 585 00 1 816 00 2 020E 00 2 198E 00 2 355 400 2 490 400 0 000E 01 1 208 00 2 317 400 3 296E 00 4 140E 00 4 857E 00 5 459 00 5 962 00 6 377 400 6 717 00 6 992E 00 0 50 0 000E 01 4 665 400 8 707 00 1 201 01 1 462 401 1 6658 01 1 820 01 1 936 01 2 020 401 2 078 01 2 115E 01
4. VERSLUIS 057 Tanker 251 00 42 52 12 25 15 00 meter VERSLUIS 058 Ro Ro Ship 150 00 29 00 6 50 7 80 meter Hull Form VERSLUIS 057 Hull Form VERSLUIS 058 VERSLUIS 059 Yacht 19 18 x 4 24 1 00 1 25 meter VERSLUIS 060 Container Feeder 85 00 13 75 x 4 20 5 00 meter Hull Form VERSLUIS 059 Hull Form VERSLUIS 060 130 VERSLUIS 061 Ro Ro Vessel 157 60 23 40 6 00 7 00 meter VERSLUIS 062 Hopper Dredger 104 60 x 19 60 6 55 7 50 meter Hull Form VERSLUIS 061 Hull Form VERSLUIS 062 VERSLUIS 063 Survey Vessel 46 00 10 00 3 00 3 50 meter Hull Form VERSLUIS 063 131 TT JOURNEE 001 Tanker 310 00 x 42 16 x 18 90 10 90 net Hull For NEE 001 E 19 4 54 6 00 nete Hull Form JOURNEE 002 JOURNEE 002 Trench Setter 94 00 x i JOURNEE 007 Freighter 110 60 x 12 50 6 25 10 58 meter JOURNEE 008 Pilot Vessel 21 00 4 49 x 1 06 1 20 meter Hull Form JOURNEE 007 Hull Form JOURNEE 008
5. WAVE DIRECTION 150 deg off stern WAVE SORT ENC SURGE SWAY HEAVE PITCH YAW ADDED RESISTANCE FREQ SL WL FREQ PHASE AMPL PHASE AMPL PHASE AMPL PHASE AMPL PHASE AMPL PHASE GER BEU BOESE z s r s m m deg m m deg m m deg deg m deg deg m deg deg m deg kN m kN m2 200 0 337 0 236 685 90 9 146 270 0 1 039 356 7 0 398 246 3 0 194 296 7 117 358 6 7 12E 02 0 00 01 233 0 393 0 283 667 89 0 823 269 9 1 031 356 1 0 820 231 7 0 277 286 9 167 355 2 1 01 01 0 00 01 267 0 449 0 331 620 87 5 113 270 3 1 022 355 5 2 093 206 9 0 378 279 7 217 356 0 1 55 01 0 00 01 300 0 506 0 382 566 86 5 713 269 9 1 013 355 1 3 897 116 8 0 498 273 5 244 350 0 3 61 01 0 00 01 333 0 562 0 434 527 85 5 718 269 0 0 995 354 9 2 107 67 0 0 627 268 1 295 352 6 9 25 01 0 00 01 367 0 618 0 489 473 85 4 645 268 7 0 982 355 0 1 530 54 5 0 774 262 6 333 355 4 2 445400 0 00 01 400 0 674 0 545 427 85 1 603 267 9 0 971 355 5 1 311 44 3 0 932 257 0 389 355 5 6 58 00 3 57 00 433 0 730 0 604 376 85 3 533 266 9 0 976 356 1 1 222 10 8 1 103 250 7 424 357 4 1 66 01 1 498401 467 0 786 0 665 327 85 5 456 265 6 1 011 356 4 1 143 37 0 1 286 243 2 450 358 9 3 948401 4 168401 500 0 843 0 727 219 85 7 373 263 6 1 102 354 2 1 086 35 5 1 470 233 7 459 1 1
6. 127 Ux Z 77 d ERSLUIS 047 Motor Yacht 9 10 x 3 01 x 1 54 1 85 meter UERSLUIS 048 Ferry 107 85 x 18 31 x 5 00 6 00 meter Hull Form VERSLUIS 047 Hull Form VERSLUIS 048 128 VERSLUIS 039 Inland Waterway Coaster 60 00 11 30 x 3 80 4 50 m VERSLUIS 050 Motor Yacht 14 56 5 03 1 31 1 60 meter Hull Form VERSLUIS 049 Hull Form VERSLUIS 050 22 T VERSLUIS 051 Container Ship 132 00 21 50 x 7 00 8 50 meter UERSLUIS 052 Lou ir Draft Coaster 6 95 x 12 21 x 5 00 6 00 m Hull Form VERSLUIS 051 Hull Form VERSLUIS 052 UERSLUIS 053 Low Air Draft Coaster 78 00 12 50 4 95 6 00 m UERSLUIS 054 Wooden Ship 17 80 x 4 52 x 1 25 1 50 meter Hull Form VERSLUIS 053 Hull Form VERSLUIS 054 129 MEE 7 VERSLUIS 055 Seagoing Tug 58 50 14 18 5 80 7 00 meter VERSLUIS 056 Bitume Tanker 98 00 14 50 5 90 7 10 meter Hull Form VERSLUIS 055 Hull Form VERSLUIS 056
7. VERSLUIS 013 Inland Waterway Tanker 27 25 x 5 00 1 65 2 00 m VERSLUIS 014 Inland Waterway Ferry 61 40 x 15 75 3 80 4 50 meter Hull Form VERSLUIS 013 Hull Form VERSLUIS 014 VERSLUIS 015 Inland Waterway Ferry 50 00 x 12 29 3 25 3 75 meter VERSLUIS 016 Multi Purpose Ship 132 00 21 00 x 8 53 10 00 meter Hull Form VERSLUIS 015 Hull Form VERSLUIS 016 VERSLUIS 017 Multi Purpose Ship 155 40 x 23 30 x 9 20 11 00 meter VERSLUIS 018 Multi Purpose Ship 104 80 x 18 00 x 7 90 9 50 neter Hull Form VERSLUIS 017 Hull Form VERSLUIS 018 123 155277 Hull Form VERSLUIS 019 VERSLUIS 023 Reefer Ship 88 00 x 16 00 x 4 19 5 00 meter Tug Boat 33 00 x 9 45 x 3 20 4 00 meter Hull Form VERSLUIS 023 Hull Form VERSLUIS 024 124 UERSLUIS 025 Stern Trauler 59 80 12 50 4 80 5 75 meter Hull Form VERSLUIS 025 VERSLUIS 027 Supply Vessel 52 00 11 10 4 15 5 00 meter VERSLUIS 028 Ro Ro Vessel 183 20 32 24 10 00 12 00 meter Hull Form VERSLU
8. vO NWO on i gt O MN OO HH FOYT HH HH NNW 12 12 0000 2464 2011 4267 5040 3872 8731 3467 5500 16 0000 8930 8657 7196 0700 0000 8257 29522 7210 0280 0000 9593 7885 7825 1080 16 0000 0740 4504 4344 6630 16 0000 1253 8876 6521 6850 16 0000 0467 0833 5519 3620 16 0000 8173 9984 0831 6390 16 0000 4249 10 12 6740 3814 7000 16 0000 7141 10 5012 12 9870 7000 16 0000 7551 0315 Ow OOGG STWR oc OO 2157 5242 7212 0000 0145 3226 8024 1520 0000 2299 9072 4550 3655 0000 1003 2400 6363 2994 0000 0904 0374 2444 9843 0000 0752 7257 6414 5614 0000 40559 3296 8753 0242 0000 0365 9322 1066 4851 0000 0170 52335 23392 9443 0000 0001 1829 6572 4688 0000 0085 0094 3216 2339 0000 0097 40152 2740 HH aun oO NNR OO 11 12 4995 0020 4324 2171 1308 1047 8682 0092 4315 4714 8469 1350 2209 6576 2653 4392 5804 5870 23391 7460 8967 2839 9554 0424 41195 7027 1 0963 3056 41821 8569 9
9. JOURNEE 021 Tug Boat 39 00 x 13 00 4 38 0 50 5 00 meter JOURNEE 022 Protection Vessel 24 85 4 85 x 1 62 2 50 meter Hull Form JOURNEE 021 Hull Form JOURNEE 022 MERERI JOURNEE 023 Reefer Ship 114 00 x 20 00 x 7 00 9 00 meter JOURNEE 024 Sail Yacht 41 95 x 11 22 x 5 00 5 00 meter Hull Form JOURNEE 023 Hull Form JOURNEE 024 135 JOURNEE 025 Research Vessel 27 60 8 35 2 90 4 40 meter JOURNEE 026 Tanker Hull Form JOURNEE 025 Hull Form JOURNEE 026 JOURNEE 027 Shallow Draft Vessel 173 00 x 36 00 x 10 00 10 00 m JOURNEE 028 Freighter 122 60 26 00 6 35 0 68 8 00 meter Hull Form JOURNEE 027 Hull Form JOURNEE 028 1 JOURNEE 030 Container Vessel 193 10 x 30 80 x 9 00 10 00 meter Hull Form JOURNEE 029 Hull Form JOURNEE 030 136 JOURNEE 031 Survey Vessel 25 70 x 7 41 2 54 2 60 meter JOURNEE 032 Patrol Vessel 20 34 4 82 x 1 33 2 80 meter Hull Form JOURNEE 031 Hull Form JOURNEE 032 u JOURNEE 033 Catamaran Vessel 3
10. JOURNEE 009 Pilot Vessel 15 10 x 4 81 0 97 1 15 meter JOURNEE 010 Oceanographic Vessel 84 50 x 14 40 5 00 5 00 meter Hull Form JOURNEE 009 Hull Form JOURNEE 010 JOURNEE 012 Lemmster fiak 8 58 x 3 58 x 0 64 0 85 meter Hull Form JOURNEE 01 1 Hull Form JOURNEE 012 133 JOURNEE 013 Ferry 47 00 x 11 00 x 3 00 4 00 meter JOURNEE 014 Trawler 36 00 8 50 x 3 49 3 55 meter Hull Form JOURNEE 013 Hull Form JOURNEE 014 JOURNEE 015 Ferry 146 40 27 60 6 22 8 00 meter JOURNEE 016 Ferry 169 20 x 24 92 6 08 6 50 meter Hull Form JOURNEE 015 Hull Form JOURNEE 016 JOURNEE 017 Freighter 126 4 x 21 29 x 8 00 8 00 meter JOURNEE 018 Trawler 30 53 8 00 2 92 4 00 meter Hull Form JOURNEE 017 Hull Form JOURNEE 018 134 aT T JOURNEE 019 Container Ship 202 00 32 24 9 95 12 00 meter JOURNEE 020 Hopper Dredger 106 00 19 60 6 50 10 00 meter Hull Form JOURNEE 019 f Hull Form JOURNEE 020 puro
11. will be used in the calculations the additional damping is supposed to be zero 0 o N s4 KRD 1 see Figure 17 The non dimensional total roll damping coefficients K and 16 at forward ship speed have been determined at the natural frequency K 6 by model tests This damping will be kept constant for all other oscillation frequencies So at each frequency of encounter the total roll damping coefficient is defined by 2pgV GM 0 KRD 2 see Figure 17 The non dimensional total roll damping coefficients K and at forward ship speed have been determined at the natural frequency K by model tests At this natural frequency the additional damping N44a Gy will be determined and this will be kept constant for all other oscillation frequencies So at each frequency of encounter GQ the roll damping coefficients are defined by 55 2peV GM Nuqa 222 K l 0 Ns 6 Nas Nasa 1 see Figure 17 b The non dimensional total roll damping coefficients K and at forward ship speed have been determined at the natural frequency by model tests The non linear part of this damping is assumed to be proportional to the frequency of oscillation So at each frequency of encounter the total roll dampi
12. E ejojn Tad 0 862 0359 4 75 4 8 83 1 15 48 55 61 11 5 81 41 21 87 93 44 64 0 1 18 61 87 80 53 10 45 97 15 3 1 93 3 31 0 62 oss 4 03 0 00 0 584 446 2 7 3 2 2 75 1 79 co a w a co 33 An example of a result is given below JOURNEE 004 Bulk Carrier 172 00 x 23 10 x 7 86 13 00 meter 1 654E 00 0 000E 01 1 000E 00 0 000E 01 24 2 500E 02 2 500E 02 2 500E 02 2 500E 02 5 000E 02 5 000E 02 5 000E 02 5 000E 02 5 000E 02 5 000E 02 5 000E 02 5 000E 02 5 000 02 5 000 02 5 000 02 5 000 02 5 000 02 5 000E 02 5 000 02 5 000 02 2 500 02 2 500 02 2 500 02 2 500 02 1 0 00 6 0 000 01 0 000 01 0 000 01 7 727 02 6 997 02 1 147 01 1 336 01 1 441 01 1 972 01 1 878 01 3 244 01 2 204 01 4 517 01 2 464 01 5 789 01 etcetera ele e os etcetera XT etcetera 20 00 14 0 000 01 0 000 01 0 000E 01 2 091E 02 3 181E 02 3 896 02 9 542 02 5 390E 02 1 590 01 7 628 02 2 863E 01 8 823 02 4 135E 01 8 970E 02 5 407E 01 7 935E 02 6 679E 01 5 225E 02 7 952E 01 2 130E 02 9 224E 01 4 113E 03 1 050E 00 2 424E 03 1 177E 00 1 156E 02 1 304E 00 3 935E 02 1 431E 00 7 450E 02 1 559E 00 172 000 23 100 7 860 End of file This hull form
13. eee RHO 1 025 ton m3 DEGREES OF FREEDOM CODE MOT 123456 VERSION CODE OF STRIP THEORY METHOD KTH 2 NUMBER OF TERMS IN POTENTIAL SERIES MSER 10 CODE OF USED 2 0 APPROXIMATION 10 NUMBER OF FREE CHOICE SECTIONS NER 4 SECTION NUMBERS SNRFR K CODES KNRER K 1 00 11 19 00 11 19 50 11 20 00 11 NUMBER OF FORWARD SPEEDS 1 FORWARD SPEEDS kn VK NV 20 0 NUMBER OF WAVE DIRECTIONS NWD 1 WAVE DIRECTIONS deg off stern WAVDIR NWD 150 MAX FREQ OF ENCOUNTER IN SERIES FREQMAX 2 500 rad sec range 0 000 3 125 rad sec CODE FOR WAVE FREQUENCY INPUT KOMEG 1 MINIMUM CIRCULAR WAVE FREQUENCY OMMIN 0 200 rad sec MAXIMUM CIRCULAR WAVE FREQUENCY OMMAX 1 500 rad sec INCREMENT IN WAVE FREQUENCIES OMINC 0 033 rad sec The first three pages show the input data in a sequence as it has been given in the input data file for this calculation It is advised to print these data always so it is advised to use KPR 1 1 TX Reflection of Input Data KPR 1 1 Continued ITTC ship 5 175 Test of program SEAWAY release 4 18 SEAWAY 4 18 Date 09 10 1999 23 17 2 INPUT DATA continued NNNNNNNNNNNNNNNNNNNNNN BASE LINE TO CENTRE OF GRAVITY GKGM KG 9 550 m RADIUS OF INERTIA k xx GYR 1 7 620 m RADIUS OF INERTIA k yy GYR 2 42 000 m
14. ARIOME 1 K ARIMOM 1 K ARIEPS 1 K K 0 NARI 1 1 ARIPHI I NARI I ARIOME I K ARIMOM I K ARIEPS I K K 0 NARI I 1 L ARTZ L ARTL L ARTB L ARTH L RHOT L NCAB 104 e Read e Read e Read Read e Read e Read e Read Read e Read e Read In principle input data files created earlier by SEAWAY E will not have these errors but the error error error error error error error error error error CABXYZ J I I 1 3 CABCOF J I I 1 3 NPTS PTS J 1 PTS J 2 PTS J 3 J 1 ABS NPTS NSEA KSEA HW TW K K 1 NSEA HW K TW K GAMMA K K 1 NSEA SPS K L L 0 NF KRIT SLAML SLAMV SLAMC SLAMP user using a normal editor can create these errors The names of the data types are explained in this User Manual These errors can appear in case of an input of a real value for an integer data type or when the array declaration conflicts with the number of input array elements Also these error messages can be a consequence of ignoring the input instruction new line before a data type 105 63 Error Return Messages of Main Program SEAWAY FORTRAN 77 runtime errors when opening the data files are given by e Input error Number of files in SEAWAY FIL too large e Input error File name in SEAWAY FIL too large e Input error Similar file names e Input error False keyboard input e Read error Number of file
15. O 10 ON lt 16 0000 eo FEL 1697 4899 0160 0000 9328 4610 5658 5410 0000 0427 3831 0970 8690 16 0000 5099 6592 6905 0850 W w ODO O NIwWHoo O 2001 0000 0033 1172 9301 3957 0000 0095 3183 0351 7338 0000 0250 6956 6490 1643 0000 0389 9821 2031 5529 0000 0493 1938 6127 8401 0000 0557 3260 8683 0193 0000 40559 3308 8776 0258 0000 0475 1586 5445 983 0000 0357 9159 0751 4631 0000 0250 6957 6491 1644 0000 0019 2200 7112 4477 125 AUN an fo 6210 7406 485472 ETs 125 3973 5483 5862 2485 10 12 7857 1969 3575 3107 7176 3677 1019 2279 3661 1398 8396 0747 7886 5158 5869 9271 1023 6337 3881 9135 5456 7140 2809 3698 3007 9054 2530 LLIS 5180 39 93 2962 2067 3481 0069 4474 6984 4728 4461 c c a BRO BRO Wr O N O O ON O O O N O O 40 5579 0088 2855 2932 6847 0409 6274 7650 9347 1014 0430 3869 2386 21959 4182 9484 5129
16. Fa 020 780 660 SUO 670 100 790 240 300 010 990 240 130 290 420 280 080 770 320 700 700 570 950 960 6800 lt CX O COVED 00 0000 2500 2500 2500 Il 4 00 0 0 0 25 T G E 10090 lt O Ca 109 0 0000 10 0600 2 0000 6 0000 8 0000 9 0400 1 0000 4 0000 6 0000 7 0200 0 0000 3 0000 4 0000 3 0100 0 0000 2 0000 2 0000 3 0000 0 0000 1 0000 1 0000 2 5000 at 0000 1 0000 0 0000 1 5000 0 0000 1 0000 0 0000 0 4 00 0000 0 0000 0 0000 0 9300 0300 3300 0400 5000 3300 7000 1000 212009 5900 3400 2100 7700 2500 3900 5200 8700 1500 7500 2700 0700 0000 5200 8000 2100 6600 3200 3500 2800 meter 5000 5000 5000 0 500 000 8 000 gt C 0 500 4 000 8 000 C30 C5 0 500 4 000 8 000 0 500 4 000 8 000 0 500 4 000 8 000 0 750 4 000 8 000 0 750 000 8 000 gt 0 5000 0 5000 0 5000 Oo 86 C e 279 ll 592 58 99 42 40 1 60 1 30 1 16 1 36 10 oo e 0
17. New definition of sway and roll wave loads 114 Original definition of heave wave loads Addition of velocities and accelerations of and around CoG Inclusion of internal Fx change of sign of Mz and new output of internal loads Some numerical adjustments in subroutine KEIL for potential calculations at shallow water no effect for user 4 15 15 03 1997 Some numerical adjustments subroutine KEIL for potential calculations at shallow water Adjust of wave loads of a bulbous cross section 4 16 01 08 1998 From here All old input data files have to be updated by editor SEAWAY E NPTS increased from 10 to 11 Remove of the dummy value DIST Addition of cubic roll damping coefficient RDK3 K Modified addition of external anti roll moments 4 16 05 12 1998 Modification of strip theory definitions KTH lt 0 similar to release 4 13 Equivalent GM value taking Scribanti effects into account Adaptation for bulbous bows Original wave loads for sway roll and yaw KTH gt 0 similar to releases 4 14 4 16 4 17 26 05 1999 Remove of Scribanti effects in GM Output of natural frequencies for heave and pitch too and natural frequencies of all motions in case of linear springs Possibility to obtain horizontal accelerations in the earth bound axes system defined by MOT lt O 4 18 09 10 1999 Adding diffraction wave loads defined by 0 Adding a new definition of the viscous roll damping KRD A
18. 03 6 791 03 E 01 1 651 06 1 1818 05 2 369 05 8 158 05 7 714405 E 01 2 850 03 5 7 1 461 1 549 4 261 03 5 666 03 E 01 1 652 06 1 152 405 2 369 405 8 117E 05 6 857 05 01 5 462 03 25 9 1 517 1 636 4 439 03 4 606 03 E 01 1 652 06 1 124 405 2 369 405 8 008 405 6 028 05 E 01 7 7378403 38 3 1 573 1 725 4 708 03 3 633 403 E 01 1 653 06 1 098 405 2 369 405 7 845 05 5 285E405 E 01 9 391 03 48 5 1 629 1 816 5 017 03 2 746 03 E 01 1 654 06 1 073 405 2 369405 7 657 05 4 604 05 E 01 1 017 04 57 8 1 685 1 909 5 352 03 1 934 03 E 01 1 656 06 1 050 05 2 369405 7 453 05 3 975E 05 E 01 9 891 03 66 1 1 741 2 003 5 705 03 1 198 03 01 1 657 06 1 029 405 2 369 405 7 243 05 3 408 05 01 8 495403 73 3 1 798 2 100 6 109 03 3 928 402 01 1 657 06 1 014 405 2 369 405 7 075 05 3 046 05 01 6 058 03 79 4 1 854 2 199 6 359 03 1 087 402 01 1 659 06 1 001 405 2 369 405 6 807E 05 2 460E 05 E 01 3 327 03 78 5 1 910 2 300 6 610 03 1 320E 02 E 01 1 660 06 9 909 404 2 369 405 6 559E 05 1 948E 05 01 9 670 02 24 9 1 966 2 403 6 904 03 4 794E 02 E 01 1 661 06 9 855 04 2 369 405 6 370E 05 1 601 05 E 01 2 290 403 304 0 2 022 2 508 7 158 03 7 282E 02 01 1 662 06 9 826 04 2 369 405 6 185E 05 1 291E405 01 3 568 403 296 0 2 079 2 615 7 321 03 8 1118402 01 1 663 06 9 854 404 2 369 405 6 043 05 1 098E 05 01 3 669 03 291 3 2
19. 1963 6954 3634 57157 2214 8685 6224 8422 2224 8748 6318 8468 1896 6493 2943 6819 1433 3315 8187 4495 1014 0431 3871 52387 0112 4183 4271 6932 125 IT p pau pk Cy N N F O on 6725 4359 0140 L 12 8594 6287 1361 3606 3055 I25 3289 6898 3331 10 5524 2829 1892 1272 9432 3602 26731 8200 3306 7447 1739 4998 5694 8462 7784 23771 8969 8798 5601 6234 4894 9863 4977 42995 5508 5506 ETS 2805 9335 8654 7845 22315 2522 opr O Ho O anno aun O gt 0056 0043 5617 1423 0712 1032 9762 6308 2006 2337 4799 2245 3578 3516 9347 7605 4997 4387 2708 1566 6045 4931 4806 4038 6700 4951 4882 4128 6724 4242 2149 0907 5871 3244 8296 6366 4669 2338 4801 2246 3578 0388 7198 2947 0125 22 11 BEDA Ka E ip c WN BH ANE OOD 6943 0437 9879 12 12 1882 6689 6155 3211 7022 12 4024 9732 2441 10 6605 7411 2479 9541 4316 4921 4945 5257 8035 8835 7608 0584 9868 9762 1725 7778 2147 9816 8360
20. 7000 9500 2800 6500 7000 3200 3100 2600 4900 5800 8800 2400 14 9100 9400 1400 8000 gt 000 000 000 500 000 000 500 000 000 500 000 000 500 0000 0000 500 000 000 500 000 000 500 000 000 500 000 000 500 000 000 e Meo E eo DOO O aso 5000 0000 0000 5000 0000 0000 5000 0000 000 lt nd N o 12 12 10 89 12 12 10 70 125 12 10 12 I2 12 55 04 18 29 50 38 377 45 75 79 29 67 19 64 09 93 10 12 28 13 99 Ts 63 252 281 12 36 69 86 70 96 70 10 50 66 80 tis 235 71 10 10 JI 23 44 32 67 10 amp 0 C C Co X Oc Ouro OURO Ben el we ee E OOO WO UT mo 130 000 000 000 000 O lt gt OQ OHIO CO OUO OUO 9 0 8 0 0 10
21. Ship motion calculations can be carried easily by almost any Naval Architect but a professional judgement of the results remains required This is reason why the author does not accept any responsibility for the consequences of using the computational results 117 118 10 Bibliography Boese 1970 Boese P Eine Einfache Methode zur Berechnung der Wiederstandserh hung eines Schiffes in Seegang Technical Report No 258 1970 Instit t f r Schiffbau der Universit t Hamburg Germmany Conolly 1974 Conolly J E Standards of Good Seakeeping for Destroyers and Frigates in Head Seas International Symposium on the Dynamics of Marine Vehicles and Structures in Waves 1974 No 8 London U K Faltinsen and Svensen 1990 Faltinsen and Svensen T ncorporation of Seakeeping Theories in CAD in International Symposium on CFD and CAD in Ship Design MARIN Wageningen 1990 Frank 1967 Frank W Oscillation of Cylinders in or below the Free Surface of Deep Fluids Technical Report No 2375 1967 Naval Ship Research and Development Centre Washington DC U S A Gerritsma and Beukelman 1972 Gerritsma J and Beukelman W Analysis of the Resistance Increase in Waves of a Fast Cargoship International Shipbuilding Progress Volume 18 Page 217 1972 Ikeda et al 1978 Ikeda Y Himeno Y and Tanaka N A Prediction Method for Ship Rolling Technical Report No 00405 1978 Department of Naval Archit
22. error error error error error error error error error error error error error error error error error error error error error error Error error error error error error error error GKGM equal to zero NBTM out of range NSM out of range KTUN 1 out of range KTUN 2 out of range KTUN 3 out of range ABS 3 gt 0 and 1 lt 0 0 KRD out of range WAVAMP less than zero ROLAMP less than zero XBKF less than XBKA KARD out of range NARI 1 out of range NARM out of range NARI out of range NART out of range NCAB out of range NPTS out of range NSEA out of range NF exceeds limit KSEA out of range HW K less than zero TW K less than zero GAMMA less than zero SPS K L less than zero KRIT out of range MOT out of range Input exhausted in input data file RELINP TEXT80 in UNIT 5 KPR I I 1 5 DRAFT TRIM DIST DEPTH RHO MOT KTH MSER NCOF NFR SNRFR I KNRFR I I 1 NFR NV VK K K 1 NV NND WAVDIR L L 1 NWD FREQMAX KOMEG OMMIN OMMAX OMINC WAVAMP GKGM GYR I I 1 3 NBTM 1 AXTM I 1 1 5 XSM J SM J SGK J SGYRX J J 0 NSM 1 KTUN I I 1 3 KRD ROLAMP ROLAMP WAVAMP RDK1 K RDK2 K K 1 NV HBK XBKA XBKF CORMIL HBK XBKA NPTK PHIAK I RDKV J I J 1 NV KARD NARI 1 NART
23. une 68 3 SEAWAY a seines 69 5 1 Description of Output Data File aa 69 5 2 Non Dimensionalising uisunlskniiuuuh hessische Las 70 5 3 Example of an Output Data File sie iniit aee e edes eee te ea 77 5 4 Restrictions of Linear Strip Theory enne enne enne 98 6 Error Return Messages ooh d t PRODR es co th tn EINEN 101 6 1 Error Return Messages of SEAW AY 102 6 2 Error Return Messages of Editor SEAWAY E 103 6 3 Error Return Messages of Main Program SEAWAY 106 Z Operability Limiting Criteriqa whaling testa de te Eve b Geta 109 TL DefBIDItiOnS 109 Jal f Shipping Water u tasa D 109 741 2 Propeller Racin T ous u D m n 109 7 13 ooa mu ps mansi Db Sie 110 7 1 4 Vol ntary Speed Reduction nannte en 110 3 2 Criteria on Ship Motions pesineen en 111 8 List of Modifications peel eire aide re bte vivet gelegt c bete 113 9 Cl s re Remarks ON Na ERI 117 Bibh eraphy Qo aqa aaa aa
24. 01 7 208 01 5 624 01 4 298E 01 14 000E 01 5 144E 01 8 557E 01 1 0368 02 1 095 402 1 0668 02 9 786 01 8 578 01 7 260E 01 5 993 01 4 870E 01 15 000E 01 3 738 01 6 329E 01 7 799E 01 8 396 01 8 346E 01 7 843 01 7 065 01 6 162 401 5 253 01 4 414E 01 16 000E 01 2 343 01 4 047E 01 5 084 01 5 571 01 5 634E401 5 388 01 4 942 01 4 391 01 3 814 01 3 263E 01 11 000E 01 1 214E 01 2 141 01 2 737 01 3 040 01 3 104E 01 2 990 01 2 756 01 2 457 401 2 140 01 1 835E 01 18 000 01 4 554 00 8 157E 00 1 051 01 1 165E401 1 1748 01 1 1068 01 9 889 00 8 501 00 7 111E 00 5 858E 00 19 000E 01 1 229E 00 2 191E 00 2 762 400 2 933 00 2 771 400 2 387 00 1 905 00 1 431 00 1 030 00 7 267E 01 19 50 0 000E 01 4 057E 01 7 000E 01 8 263E 01 7 859E 01 6 258 01 4 160 01 2 230E 01 8 778 02 1 843E 02 6 139 04 20 000E 01 5 726E 03 3 063E 03 2 473 03 1 294E 02 8 2898 02 2 320 01 4 576 01 7 245 01 9 794E 01 1 173E 00 SHIP 0 000 01 7 765 03 1 277 04 1 525 04 1 583 404 1 507 404 1 347E 04 1 148E 04 9 490E 03 7 716 03 6 248 03 FREQUENCY 1 375 1 500 1 625 1 75 1 875 2 00 2 125 2 250 2 315 2 500 3 125 STATION 0 38 0 000E 01 0 000 01 0 000 01 0 000 01 0 000 01 0 000 01 0 000 01 0 000E 01 0 000E 01 0 000 01 0 000 01 0 19 2 608E 00 2 709E 00 2 795 400 2 868 00 2 929 400 2 979 400 3 019 00 3 050 400 3 074E 00 3 090E 00 3 083E 0 00 7 210E 00 7 380E 00 7 507E 00 7 597E 00
25. 0588 3515 8946 on BR N O Co N CO C CON Ho HH WN 12 12 7443 2434 5365 6618 6205 5384 0470 1172 9276 0571 7348 5233 2955 0799 9396 4019 0069 1169 0195 2762 5964 8000 5822 1101 0109 10 lii 0974 6186 8456 2091 1 15 12 0919 3117 4669 1560 13 12 7349 6068 9601 8728 1893 12 6847 1954 10 12 2085 3128 6931 2288 10 12 2561 3374 3 9694 9 5000 11 00 0000 0296 9701 1901 5000 12 00 0 0000 0 2099 1 4412 4 6253 9 5000 13 00 0000 4289 0137 1543 5000 14 00 0 0000 0 6267 2 5306 5 6318 9 5000 15 00 0000 7729 49125 9846 500 16 0 0 000 0 864 3451 6 204 9 500 TT 0000 8675 1596 2129 5000 18 00 0 0000 0 7486 2 8490 5 9259 9 5000 19 00 0000 5810 4111 5214 5000 19 50 0 0000 0 4290 2 0139 5 1544 9 5000 20 00 0000 203 1453 3069 3700 Oo oO Oo UN OO OO GOON OO O OUN OO O Gy ROO 12 12 HH HHHoo NN HMO o BNO Q O OQ Eo 000 264 702 83 223 00 29 18 20 93 00 3460 5954 3446 0200 0000 1065 0916 7942 0520 5182 12 7000 16 0000 5272 10 12 7792 4093 6810 16 0000 9944 1278 9934 4260 16 0000 1861 0391 0999 6960 e
26. 1 4 Dampno 1 1 1 1 1 1 1 1 KRD amp RD ARD 3 Potenti c p Pa el Camping Jt ents Damping Ponta Dampng s o a b 2 1 aii 25 15 T Frequency of Enooumer Frequency of Encounter 15 T 0 15 Natural Rol KRD 3 cartan forewed ship speed KRD Frequency for all frequencies of encounter I8 NP K M 010 a 1 gt gt B x O 5 XRD 3 Ikeda meted 3 oor 2 KRD 3 Miler method c gt o m 5 stam gt 3 m 2 2 8 2 _ 1 2 Potent Dame Potential Damping cv d 9 05 10 1 Frequency of Encounter E Mean Roll Amplitude Figure 17 Roll Damping Coefficients Ikeda s method KRD 3 and Miller s method KRD 3 are often valuable tools But always judge the printed damping terms in the output data file If these methods can not be used the use of KRD 2 is advised and very rough approximations of K and for conventional ships with a very low potential value are x 0 010 0 030 zero forward ship speed increasing with the breadth draught ratio ky 0 030 0 050 at low forward ship speeds increasing with the breadth draught ratio and the forward ship speed X 0 050 0 100 at higher forward ship speeds increasing with the breadth draught ratio and the forward ship speed 19 0 000 Two final remarks e
27. 179 60 182 86 This page shows the output of an example of the spectral distributions of the waves the basic ship motions and the added resistance Because KSEA is positive these spectra are based here on the frequency of encounter ENC FREQ The dimensions of the spectral values of the motions are m s or deg s Also the significant amplitudes 2 and average wave periods defined by 7 and T gt are given The dimensions of the spectra of the added resistance are Ns or kNs depending on the input value of RHO p Also the mean added resistance is given 92 Statistics of Internal Loads NBTM gt 0 and NSEA gt 0 ITTC ship 5 175 Test of program SEAWAY release 4 18 SEAWAY 4 18 Date 09 10 1999 23 17 Page 42 STATISTICS OF INTERNAL LOADS FORWARD SPEED 20 00 kn WAVE DIRECTION 150 deg off stern SECTION NR 01 X APP 131 250 n Y CL 0 000 2 BL 9 550 m RE esrb ss SIGNIFICANT VALUBS en een Fearne released INTERNAL eee INTERNAL MOMENTS SEA mu MET UN EMT gas nl Rise wre wer Zee HEIGHT PER AMPL PER AMPL PER AMPL PER AMPL PER AMPL AMPL PER m s kN s kN s kN 8 kNm 8 kNm s kNm 8 1 10 5 35 5 307E 02 3 62 6 6868402 4 42 1 078E 03 2 88 2 318E 03 4 49 1 690 04 2 53 1 842E 04 4 38 1 20 5 45 5 846 02 3 68 7 528E 02 4 48 1 1768403 2 94 2 613E 03 41 55 1 818 04 2 56 2 077 04 4 46 1
28. 20 21 22 23 H 25 26 27 28 29 30 31 3 33 34 35 3 37 38 39 0 41 42 E u 45 46 4 E 49 50 s Survey Vessel Hopper Dredger m a a als par a a w co a a co a L 152 5 187 300 302 gt a co m m alo w a 198 138 133 21 61 132 155 4 104 234 73 42 33 118 183 2 134 161 17 211 198 12 116 5 30 a 9 1 107 85 277 9 14 56 132 16 17 251 150 157 104 6 m ele m Ea w a D gt alo ojoj Bale 1 gt co wl ola ale a melo ojoj m 2 3 22 80 29 00 925 puni o a a 5 00 1 6 3 8 3 25 8 53 20 20 16 90 a 11 2 m a o 545 25 15 1 0 7 0 28 00 22 86 10 87 32 26 32 2 12 0 4 99 14 320 07 5 1 599 15 co ules w co a 4 04 C EKA 1 12 635 Ls EES 18 3 EUN 12 2 a C o B 88 5 9 2 2 5 1 6 3 2 1 13 6 39 3 3 01 I 03 I 8 5 13 7 m lt gt w
29. is the distance of a selected point from APP positive forwards PTSXYZ J 2 is the distance of a selected point from the centre plane positive to port side PTSXYZ J 3 is the distance of a selected point from the base line positive upwards Depending on the values of the parameters KPR 4 and KPR 5 the frequency characteristics and the energy distributions of the displacements in the three directions and the vertical relative displacements of these selected points will be printed too The statistics will be printed always New line NSEA If NSEA 0 New line Write End of File Save and Quit File NSEA is the number of sea states 0 NSEA lt 12 If NSEA 0 then no further information has to be read New line KSEA is the code for the type of the irregular sea input defined by KSEA l or 1 Analytical Neumann wave spectra KSEA 2 or 2 Analytical Bretschneider spectra also called Modified Pierson Moskowitz 1 5 5 or I T T C wave spectra KSEA 3 or 3 Analytical Mean JONSWAP wave spectra KSEA 4 or 4 Discretised measured wave spectra 63 The sign of KSEA arranges the definition of the periods of the wave spectra If KSEA 0 Wave spectra are based on the zero upcrossing period 75 If KSEA gt 0 Wave spectra are based on the centroid period 77 All wave and response statistics in the output will be expressed in the periods as defined above New line If K
30. it is expected that the program is free of significant errors But in case of problems or doubts about the reliability of the calculated data please feel free to contact the author Criticisms remarks or proposals for additions to this program are very welcome J M J Journee wbmt tudelft nl Some extensions and modifications of the computer code SEAWAY are still in mind for the future e Except for Lewis hull forms the hydrodynamic coefficients are calculated for an infinite water depth An extension will be made to calculate all hydrodynamic coefficients for arbitrary water depths as has been done here already for Lewis hull forms Keil s method and for the wave potential e Extra attention will be paid to viscous effects on all motions by appendages and various anti rolling devices The second order wave drift forces will be included e Until now only uni directional irregular waves can be used This will be extended with directional spread energy of the irregular waves Finally extra attention will be paid to an inclusion of several sea keeping criteria But a time schedule can not be given The author has tried to create a personal computer program based on scientific developments as published in the open literature while fulfilling user s requirements It is believed that the result is a user s friendly and fairly reliable tool for ship designers and operators But when using this computer program please keep in mind
31. no further input is required KRIT 1 Calculation of slamming phenomena If KRIT 1 New line SLAML SLAMV SLAMC SLAMP SLAML is the distance of the slam point from APP positive forwards SLAMV is the critical vertical relative velocity in m s SLAMC is the slamming pressure coefficient SLAMP is the critical slamming pressure in N m or kN m Detailed information about these slamming phenomena is given in the theoretical manual see Journee 200101 New line Write End of File Save and Quit File 65 4 2 Examples of Input Data Files Two examples of the input data file are given at the following pages This example of an input data file which includes mechanic load calculations results almost into a maximum of output It includes also all spectral data on the motions and the mechanic loads 4 19 ITTC ship S 175 1 9 500 123456 1 00 19 00 19 50 20 00 1 20 0000 1 150 0 2 500 9 550 1 131 250 27 5 250 3 250 1 625 0 000 4 375 8 750 4 0 16 Q O Q 1 O Or ot co 4 CX o ID 5 00 0 450 0 0 2 148 750 175 000 12 2 NWA E QO E O0 01 4 W 1 0
32. o5 0 734 0 9 w gt to lt gt a TOURNEE 038 3 734 3 09 20 in 0 5 1 JOURNEE 040 Diving Support Vessel 85 50 19 13 620 275 00 JOURNEE 042 Container Ship 32 2 4 1 1 3 JOURNEE 039 High Speed Vessel JOURNEE 041 Container Ship 275 JOURNEE 043 Heavy Lift Vessel JOURNEE 044 Container Ship 2 3 2 a JOURNEE 045 4 2 5 2 67 lt gt a TOURNEE 046 i 07 Es 1 0 360 sailboat 10 0 224 om 03 Sailboat 31 9 ses 435 0825 Cutter suction Dredger 3026 19 00 0 10 JOURNEE 056 Crane Vessel 19833 80 00 14 00 0 962 0 9 9 3 73 571 Rogo Vessel gene 24 5 00 0 00 oso 0 799 JOUER Cruise Vessel 19812 2645 06 0 594 0 59 632 E 130 48 JOURNEE 060 Container Ship 156 00 22 00 8 00 0 602 0 778 0 773 7 09 Ber sa s ect Reset a eem RE a 12 88 3 20 3 711 5 494 870 5 58 2 81 0 622 4 82 1 a 73 9 1 1 85 3535 3 taz v e 527 a7 sar ens ons 0546 Ln 29 0 7 m lt gt lt gt 0 562 0 658 0 006 MXN esr 146
33. period is defined by 77 or 75 93 Example of Spectra of Internal Loads KPR 5 3 NBTM gt 0 and NSEA gt 0 ITTC ship 5 175 Test of program SEAWAY release 4 18 SEAWAY 4 18 Date 09 10 1999 23 17 Page 49 SPECTRA OF LOADS IN SECTION 01 FORWARD SPEED 20 00 kn NNNNNNNNNINNNNNNNNNNNNNNNNNNNNNN WAVE DIRECTION 4150 deg off stern SPECTRUM NR 07 WAVE HEIGHT 3 75 m WAVE PERIOD 7 20 s ENC FREQ WAVE F x F y F z M x M y M z r s 125 kN kN kN kNm kNm kNm 2 000 0 000E 01 0 000 01 0 000 01 0 000 01 0 000 01 0 0008 01 233 000 0 000 01 0 000 01 0 000 01 0 000E 01 0 000 01 0 000 01 267 000 4 088E 10 4 217 09 1 791 13 2 47176E 02 0 000 01 1 6318 14 43 000 4 632 04 1 531 03 5 0168 08 8 679 07 0 000 01 3 129 09 333 000 2 586E 00 1 876 00 1 053E 05 1 2448 11 8 880 01 4 597 06 367 003 5 703E 02 1 172 402 6 445E 06 9 1818412 2 834 01 6 782E 04 A 045 1 804404 1 398 03 1 754E 06 1 240 114 1 396 02 0 0008 01 433 221 1 838 05 6 252 03 2 9068 05 6 103EH4 5 861 03 0 000E 01 467 589 9 157E405 1 538 04 6 4098 07 1 6208415 0 000 01 0 000 01 E 1 072 2 862E 06 2 568 404 4 080E 07 0 000E 01 0 000 01 0 000E 01 533 1 526 6 296 06 3 2778404 5 112E 08 0 000 01 0 000 01 0 000 01 567 1 847 9 429 06 3 421840
34. 0 19 2 854E 01 2 890E 01 2 922 01 2 946 01 2 960 01 2 963E 01 2 951E 01 2 925E 01 2 885E 01 2 832E 01 2 449 01 0 00 7 636E 01 7 652 01 7 607E 01 7 499E 01 7 331E 01 7 113E 01 6 860 01 6 587E 01 6 307E 01 6 031E 01 4 911 01 0 50 2 218 00 2 114E 00 1 994 400 1 869 00 1 749800 1 638E 00 1 539 00 1 453 00 1 379 400 1 316E 00 1 125E 00 1 7 022 01 6 644E 01 6 440E 01 6 344 01 6 315E 01 6 328E 01 6 365 01 6 417 01 6 477 401 6 539 01 6 832E 01 2 6 127 01 5 788E 01 5 609 01 5 536 401 5 536 401 5 589 01 5 680 01 5 798 01 5 934E 01 6 078 01 6 741 01 3 00 5 730E 01 5 458 01 5 321 01 5 272E 01 5 279 01 5 323 01 5 392 01 5 478E 01 5 574E 01 5 676 01 6 185E 01 4 00 5 216E 01 4 9948401 4 900 01 4 885 401 4 919 01 4 982 01 5 062 401 5 149 01 5 240 01 5 330 01 5 725 401 5 4 264 01 4 077 01 4 028 01 4 062 401 4 145E 01 4 255 401 4 378 01 4 506 01 4 633 401 4 756 01 5 267E 01 6 3 324 01 3 199 01 3 221E 01 3 330 01 3 485E 01 3 663E 01 3 849 01 4 033 01 4 210 401 4 376E 01 5 031E 01 1 2 346 01 2 325 01 2 451 01 2 658 01 2 901 01 3 157 401 3 410 01 3 651 01 3 876 401 4 082E 01 4 854E 01 8 00 1 485 01 1 588E 01 1 830 01 2 139 01 2 473 01 2 805 401 3 1218401 3 415 01 3 684 401 3 925 01 4 795E 01 9 00 1 069 01 1 243 01 1 546 01 1 905 01 2 280 01 2 646 401 2 990 01 3 306 01 3 592 01 3 848 01 4 756E 01 10 00 1 001 01 1 185E 01 1 4968 0
35. 000 2 11 11 11 11 T 7 620 9 550 900E 01 300E 01 600E 01 000 01 800 100 270 020 300E 500 840 870E 050 080E 02 100E 02 050 02 140E 02 810 02 620E 02 280E 02 500 01 000 01 100E 01 200E 01 200E 01 300E 01 200E 01 1 1 250 61 250 12 000 5 000 10000 105 24 13 COO CO i0 OO CO OO Xo io J 1 O O1 Test of program 5 1 000 10 200 000 Q OQ gt O i gt O 40 Q QO QO CO C0 00 CO O CO uS PD CO OO OOOO O OUO O Cy o Cy Cy OO 00 00 000 000 000 1 025E O MN CO 4 OO 00 O KO O O OO Q O O O 66 EAWAY 1 00 10 500 000 400 600 800 5 20 30 40 40 90 10 90 30 60 gt 2 4 Or 700 700 600 400 900 000 000 300 500 800 200 000 300 400 release 4 19 3 4 0 033333 KKK NO 1 s 1 Gio OT Oo oO bh 1571450 NO OO 00 1 41 0101 O1 O1 3 End of file 235 45 5029 60 00 65 20 75 30 85 30 65
36. 0000 0 0000 0 0000 0 0000 4 0000 0 0000 8 0000 4 0000 8 0000 8 0000 8 0000 8 0000 6 0830 8 0000 4 1670 14 0000 4 1670 20 0000 4 1670 1 50 8 30 0000 0 0000 0 0000 0 0000 4 0000 0 0000 8 0000 4 0000 8 0000 8 0000 8 0000 8 0000 6 7250 8 0000 5 4560 14 0000 5 4560 20 0000 5 4560 2 00 8 30 0000 0 0000 0 0000 0 0000 4 0000 0 0000 8 0000 4 0000 8 0000 8 0000 8 0000 8 0000 7 1500 8 0000 6 3000 14 0000 6 3000 20 0000 6 3000 2 50 8 30 0000 0 0000 0 0000 0 0000 4 0000 0 0000 8 0000 4 0000 8 0000 8 0000 8 0000 8 0000 6 7250 8 0000 5 4560 14 0000 5 4560 26 0000 0000 0000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 6 0 000 000 000 000 0000 23 0 du 6 0 6 5 n OO OQ CC QM Q6 CX C C UT 69 Or OO O01 OO EO 997919 0 0 Or D LE 4560 0000 0000 1670 0000 0000 0990 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0990 0000 0000 1670 0000 0000 4560 0000 0000 3000 0000 0000
37. 006 110 0 9 281 9 063 8 9 076 253 3 031 287 5 006 197 1 1 118401 3 44 1 067 1 798 2 100 005 84 6 8 283 4 066 5 9 045 263 4 023 302 1 007 19 2 8 348400 2 02E 1 100 1 854 2 199 004 46 5 5 282 1 073 2 8 020 271 5 025 311 5 014 23 3 5 858400 6 45 01 1 133 1 910 2 300 003 8 2 1253 1 082 0 2 001 136 7 036 311 6 015 26 7 3 07 008 01 1 167 1 966 2 403 003 338 1 2 137 3 95 354 6 014 108 0 035 312 9 010 29 2 0 008 01 E 01 1 200 2 022 2 508 004 302 9 3 129 2 111 350 8 019 111 9 036 300 1 004 28 1 0 008 01 E 01 1 233 2 079 2 615 003 274 2 3 127 0 100 349 6 018 113 3 038 281 9 002 236 1 0 00 01 E 01 1 267 2 135 2 724 003 240 9 2 123 6 089 349 0 011 108 3 040 266 2 005 225 2 0 008 01 E 01 1 300 2 191 2 835 002 195 8 1 93 5 078 349 5 005 68 6 041 251 8 006 225 3 0 00 01 E 01 1 333 2 247 2 949 002 152 8 1330 1 069 351 9 007 357 5 040 236 4 004 225 1 0 008 01 E 01 1 367 2 303 3 064 002 121 1 2 321 2 064 357 7 010 342 3 041 210 5 001 215 1 6 698 01 0 00 01 1 400 2 359 3 181 002 87 8 001 315 8 073 0 9 009 335 2 022 273 5 002 66 3 0 00 01 1 11E 00 1 433 2 416 3 300 001 13 3 001 300 8 051 0 7 006 323 5 015 276 1 003 58 5 0 00 01 1 39E 01 1 467 2 472 3 421 001 349 2 000 189 6 033 0 5 002 252 8 009 282 9 003 55 5 0 008 01 E 01 1 500 2 528 3 544 001 312 1 001 157 8 019 0 2 005 184 8 005 295 2 002 46 4 0 008 01 E 01
38. 088 662 0 332 665 319 015 147 1 677 685 022 204 2 311 1 623 4121 562 049 186 3 855 2 202 027 309 5 461 5 109 192 115 118 111 6 640 5 293 028 351 9 580 11 463 858 910 209 130 8 099 9 105 031 334 12 044 17 743 927 959 236 085 5 500 9 131 033 274 8 826 15 596 998 939 140 052 2 047 5 442 022 205 3 590 7 621 1 070 876 053 031 605 2 897 009 3131 1 100 3 018 1 145 189 015 017 176 1 7 3 14 297 1 352 1 222 694 003 009 056 1 129 34 73 858 1 301 601 0 5 25 844 013 026 721 1 381 516 001 2 18 69 4 022 648 1 464 439 001 2 13 581 002 21 536 1 549 373 1 1 9 AY 002 17 A04 1 636 316 1 1 6 406 002 12 289 1 125 268 3 327 001 7 214 1 816 227 i 26 001 003 176 1 909 192 1 204 002 162 2 003 163 0 162 001 154 2 100 139 0 131 000 14 2 199 3119 0 108 000 130 2 300 102 0 090 000 114 2 403 4088 000 076 000 098 2 508 075 001 066 001 080 2 615 065 1 060 001 062 2 724 056 1 056 001 048 2 835 049 0 052 001 039 2 949 043 0 49 001 036 3 064 037 0 045 001 4038 3 181 033 0 038 000 035 3 300 029 0 031 000 032 3 421 025 0 026 000 027 3 544 022 0 022 000 023 1 1 3 1 841 483 497 2 805 3 487 227 143 3 447 4 382 T 01 8 274 6 933 7 763 7 423 6 047 7 462 7 262 7 364 6 548 1 02 7 960 6 876 7 609 1 355 5 699 1 342 1 13 1 298 6 244 This page shows the output of an example of the spectral distributions of the motions in a selected point on the ship
39. 1 E 01 8 222 00 1 491 401 2 001 01 2 380 401 2 660 401 2 861 01 3 000E 01 3 087 01 3 133 01 3 144 401 2 01 2 353 01 4 126 01 5 313 01 6 031 01 6 390 401 6 477E 01 6 358 401 6 082E 01 5 693 01 5 222 401 3 000E 01 3 895 01 6 673E 01 8 402 01 9 341 01 9 7058 01 9 652 401 9 304 01 8 757 401 8 090 01 7 361 01 4 000E 01 5 286E 01 8 899 01 1 101 02 1 202E 02 1 2258 02 1 193 02 1 126 02 1 038 402 9 411 01 8 438E 01 5 E 01 6 295 401 1 044 402 1 269 02 1 356 402 1 346 402 1 269 02 1 1518402 1 015 402 8 757E 01 7 452 01 6 E 01 7 000 01 1 147 402 1 3718402 1 434 402 1 381E 02 1 254 402 1 085 402 9 035 401 7 313E 01 5 802 401 1 E 01 7 283 01 1 1818 02 1 389 02 1 417 402 1 319E 02 1 141 02 9 275 01 7 163E 01 5 312 01 3 824 401 8 000E 01 7 328 01 1 177 402 1 362 02 1 353E 02 1 2095 02 9 878 01 7 448 01 5 236 401 3 473 01 2 200E 01 9 000E 01 7 315E 01 1 169 02 1 338 02 1 308E 02 1 1398402 8 965 01 6 426 01 4 237 401 2 599E 01 1 500E 01 10 000E 01 7 313E 01 1 167E 02 1 3348 02 1 299 02 1 1268402 8 802E 01 6 250 01 4 072E 01 2 462E 01 1 398E 01 11 000 01 7 303 01 1 171 02 1 350 02 1 333E402 1 1818402 9 521 401 7 052 01 4 847 401 3 129 01 1 921E 01 12 000E 01 7 040E 01 1 139E 02 1 332 402 1 346 402 1 2338 02 1 044E 02 8 253 01 6 160 401 4 392E 01 3 029E 01 13 000E 01 6 282 401 1 029E 02 1 225 402 1 268 02 1 2028 02 1 066 02 8 953
40. 11 is very valuable for fully submerged cross sections However the method requires a lot of computing time In case of the use of this method for not fully submerged cross sections keep in mind that in spite of an automatic close of the water line of these cross sections by the program the calculated potential coefficients should be checked with KPR 3 0 for the presence of so called irregular frequencies as discussed in the theoretical manual So far these irregular frequencies appear very seldom To obtain the most accurate calculation results a standard use of Ursell Tasai s 10 parameter Close Fit conformal mapping KCOF 10 is advised see Journ e 2001b In case of submerged cross sections and cross sections with too low or too high area coefficients Frank s pulsating source method has to be used for these cross sections only as described below For KCOF 12 the potential coefficients will be calculated by Keil s method using Lewis hull forms at a restricted water depth But always check yourself the RMS values of the deviations between the offsets of the conformally mapped cross sections and those of the actual cross sections in the output NFR is the number of free choice cross sections for the calculation of the two dimensional potential coefficients 0 lt NFR lt NS 1 where NS is given in the hull form data file The parameter KCOF defines the general method used by the program for the calculation of the 2
41. 135 2 724 7 488 03 8 956E 02 E 01 1 664 06 9 882 04 2 369 405 5 898E 05 9 019E 04 E 01 2 736 03 280 5 2 191 2 835 7 657 03 9 8178402 E 01 1 664 06 9 910 404 2 369 405 5 751E405 7 017E 04 E 01 1 624803 242 0 2 247 2 949 7 829E 03 1 069 03 E 01 1 665 06 9 939 404 2 369 405 5 601E 05 4 979E 04 E 01 2 000 403 183 8 2 303 3 064 8 005 03 1 159 03 01 1 666 06 9 969 404 2 369 405 5 448E 05 2 904E 04 01 2 796 03 162 5 2 359 3 181 8 098 03 1 206E 03 01 1 666 06 1 005 405 2 369 405 5 366E 05 1 799E 04 E 01 2 783 403 150 3 2 416 3 300 8 098 03 1 206E 03 01 1 666 06 1 019 05 2 369 405 5 365E 05 1 799E 04 01 1 863 03 131 8 2 472 3 421 8 098 03 1 206 403 01 1 666 06 1 033 405 2 369 405 5 364E405 1 799E 04 E 01 1 013 03 64 5 2 528 3 544 8 098 03 1 206E 03 E 01 1 666 06 1 047405 2 369405 5 364E405 1 799E 04 E 01 1 905 403 6 5 This page shows an example for roll of the coefficients and wave loads in the equations of motion They are given as a function of SQRT SL WL VL pp A and ENC FREQ They are defined in a right handed co ordinate system with the origin in the centre of gravity G The dimensions depend on 3 87 Frequency Characteristics of CoG Motions and Added Resistance KPR 4 1 ITTC ship 5 175 Test of program SEAWAY release 4 18 SEAWAY 4 18 Date 09 10 1999 23 17 Page 25 FREQUENCY CHARACTERISTICS OF CoG MOTIONS FORWARD SPEED 20 00 kn
42. 22 53 8 54 1 94 7 33 1 80 7 38 2 78 7 25 82 7 08 7 45 8 85 7 39 9 47 57 8 61 4 8 4 2 44 7 55 2 32 7 73 3 43 7 39 1 02 7 30 8 70 9 30 8 64 9 88 11 8 92 93 9 25 2 88 7 71 2 81 8 00 3 97 7 49 1 19 7 47 10 25 9 65 10 19 10 21 87 9 16 1 15 9 48 3 39 7 84 3 40 8 28 4 62 7 56 1 40 7 59 cover eee eee SIGNIFICANT VALUES OF ANGULAR 5 INPUT CALCULATED SURGE SWAY HEIGHT PER HEIGHT PER PER PER AMPL PER PER AMPL PER AMPL PER m s m s m s2 s m s2 s m s2 s d s2 s d s2 s d s2 s 37 m 1 10 5 35 1 04 6 37 02 4 42 03 4 0 20 2 0 16 4 15 0 18 4 23 07 4 68 1 20 5 45 1 13 6 45 02 4 59 03 4 46 0 22 2 77 0 18 4 26 0 21 4 45 08 4 80 1 40 5 55 1 33 6 53 03 4 76 04 4 55 0 25 2 85 0 22 4 36 0 27 4 66 10 4 90 1 70 5 60 1 62 6 58 04 4 84 04 4 61 0 31 2 89 0 27 4 42 0 33 4 76 13 4 95 2 15 6 00 2 07 6 91 06 5 46 07 5 09 0 42 3 32 0 39 4 83 0 53 5 43 19 5 31 2 90 6 65 2 83 7 47 10 6 25 12 5 99 0 66 4 18 0 61 5 44 0 93 6 10 30 5 76 3 75 7 20 3 68 7 96 16 6 75 18 6 68 0 94 4 85 0 87 5 85 1 36 6 43 43 6 05 4 90 7 75 4 83 8 46 23 1 11 28 7 25 1 30 5 38 1 19 6 20 1 89 6 65 58 6 29 6 10 8 30 6 04 8 96 732 1 53 39 7 71 1 66 5 79 1 53 6 51 2 41 6 82 73 6 49 7 45 8 85 7 39 9 47 A 7 85 52 8 11 2 03 6 10 1 89 6 78 2 92 6 94 88 6 66 8 70 9
43. 240 3 128E 405 1 586 02 9 127E 01 0 000E 01 2 089 02 3 497 07 1 233 211 1 838E 05 1 297 02 2 254E 01 0 000E 01 1 869 03 0 000E 01 1 267 186 1 267 05 4 608 01 6 166 05 6 4878409 2 049 06 0 000E 01 1 3 165 1 543E 05 1 212 00 1 298E 06 1 351E 09 1 534 03 0 000 01 1 333 146 2 841E 05 5 245 03 1 323E 09 1 351E 09 3 165 03 2 1968 02 1 367 130 6 093 05 4 461 03 6 250E 12 4 711Et08 1 250 02 5 1868 03 14 116 4 159405 3 981 03 2 0498 13 4 049807 0 000 01 2 829E 05 1 433 103 3 150405 3 487403 0 0008 01 7 305E 06 0 000 01 4 453E 05 1 467 092 2 031E 05 3 128 03 0 000E 01 4 9308407 0 000 01 1 617 06 1 5 083 1 050E 05 2 880 03 7 424E 13 7 221Et07 0 000 01 9 917E 08 1 1 3 1 841 1 881E 03 2 908 03 4 098E 03 9 9648403 4 597 004 8 2898404 1 01 1 841 4 790 5 461 4 84 5 405 3 438 5 552 1 02 1 841 4 546 5 315 4 333 5 282 3 132 5 392 This page shows the output of example of the spectral distributions of the internal loads in a cross section of the ship Because KSEA is positive these spectra are based here on the frequency of encounter ENC FREQ The dimensions of the spectral values of the loads are N Nm kN kNm depending on the kind of load and the input value of RHO pi Also the significant amplitudes and average wave periods defined by 7 or T are given 94 Statistics of Local Motions NPTS gt 0 and NSEA gt 0 ITTC sh
44. 30 8 64 9 88 50 8 10 63 8 40 2 34 6 31 2 20 7 00 3 33 7 03 1 00 6 79 10 25 9 65 10 19 10 21 60 8 29 76 8 60 2 71 6 45 2 58 7 16 3 84 7 09 1 16 6 88 This page shows the output of the significant amplitudes and average periods of the centre of gravity CoG motions and the mean added resistance of the ship as a function of the sea state parameters HEIGHT and PER T2 depending on the sign of KSEA These sea state parameters are printed as they were given in the input data file and as they were calculated from the wave spectra in the frequency range defined by OMMIN nax and OMINC Always use the input sea state as a reference AMPL is the significant amplitude 2 of the motions in meters or degrees PER is the average period of the motions in seconds Depending on the sign of KSEA this period is defined by 7 72 The MEAN ADDED RESISTANCE has dimensions depending on RHO p 91 Example of Spectra of CoG Motions and Added Resist KPR 5 3 and NSEA gt 0 ITTC ship 8 175 Test of program SEAWAY release 4 18 SPECTRA OF CoG MOTIONS SPECTRUM NR WAVE HEIGHT 3 75 m WAVE PERIOD 7 20 s ENC FREQ 2 8 236 283 331 382 AM 489 545 604 665 121 4192 858 4921 4998 070 145 222 301 381 464 549 636 4125 816 909 003 100 199 300 413 508 615 724 835 949 064 181 300 421 3 544 CO CO CO
45. 7 654E 00 7 683 00 7 686 00 7 668 00 7 630E 00 7 576E 00 7 130E 0 50 2 133 01 2 136 01 2 127 401 2 107 01 2 079E 01 2 044801 2 004 01 1 959 01 1 912 401 1 862E 01 1 602E 01 1 3 126 01 3 087 01 3 032 01 2 963 01 2 886E 01 2 803 401 2 717 01 2 629 01 2 541 01 2 455 01 2 056E 01 2 4 696 01 4 135 01 3 558 01 2 981 01 2 420 01 1 893E 01 1 4168401 1 004 01 6 652E 00 4 050E 00 2 625 02 3 00 6 614E401 5 876E 01 5 165 01 4 491 01 3 860 01 3 276 01 2 741 01 2 258 01 1 828 401 1 451 401 3 089 4 00 7 514E401 6 668 01 5 909 01 5 239 401 4 651 01 4 137 01 3 689 01 3 297 401 2 954 01 2 652E 01 1 596 401 5 6 290 01 5 289 01 4 447 01 3 747 01 3 170 01 2 694 01 2 303 401 1 979 01 1 710 01 1 486 401 7 923 6 4 544 01 3 536 01 2 745 01 2 135 01 1 666 01 1 308 01 1 034 01 8 236 00 6 610E 00 5 348E 00 2 077E 7 2 699E 01 1 883 01 1 308 01 9 100 00 6 366E 00 4 495 400 3 212 00 2 328 00 1 713 00 1 281 00 3 788E 01 8 00 1 345 01 8 003E 00 4 671 00 2 690 00 1 536E 00 8 749 01 4 992 01 2 867 01 1 667 01 9 868E 02 1 190E 02 9 00 8 220 00 4 303E 00 2 161 00 1 042 00 4 829 01 2 148 01 9 138 02 3 707 02 1 431E 02 5 316 03 5 125E 04 10 00 7 513E 00 3 845E 00 1 880 400 8 783 01 3 917 01 1 662 01 6 668E 02 2 515E 02 8 798 03 3 159 03 1 604 03 11 00 1 133 01 6 484E 00 3 626 00 1 996 00 1 089 400 5 937 01 3 264
46. 751 06 1 149 405 2 369 405 1 045 06 1 358 05 01 7 554 03 174 3 730 0 604 2 205 04 1 333 03 E 01 1 751 06 1 230 05 2 369 405 1 098 06 2 940 405 01 9 847 03 172 4 4186 0 665 2 242E 04 3 725 03 E 01 1 745 06 1 305 405 2 369 05 1 033 06 5 291 405 01 1 182 04 169 2 843 0 727 2 188E 04 6 876E 03 E 01 1 734 06 1 3628405 2 369 405 8 872E 05 8 114 405 01 1 339 04 168 0 899 0 792 1 940E 04 9 625 03 E 01 1 718 06 1 362 405 2 369 405 6 079 05 1 047 06 E 01 1 4018404 168 6 955 0 858 1 574 04 1 218E 04 01 1 699 06 1 453 405 2 369 05 2 481 05 1 259 406 01 1 397 04 169 5 1 011 0 927 1 240 04 1 301 04 E 01 1 684 06 1 471 05 2 369 405 6 884E 04 1 321E406 01 1 323 04 172 9 1 067 0 998 9 095 03 1 327 404 E 01 1 669 06 1 464 05 2 369 405 3 725 05 1 334 406 E 01 1 205 04 176 2 1 124 1 070 7 289 03 1 242404 E 01 1 662 06 1 418 405 2 369 405 5 380E 05 1 253E 06 01 1 042404 182 7 1 180 1 145 5 758 03 1 146 404 01 1 656 06 1 368 405 2 369 405 6 746E 05 1 164E406 01 8 417 03 189 4 1 236 1 222 4 943 03 1 034 404 01 1 653 06 1 314 05 2 369 405 7 458 05 1 061 06 E 01 6 048 03 198 9 1 292 1 301 4 453 03 9 179 03 E 01 1 652 06 1 262 05 2 369 405 7 882 405 9 597 05 01 3 447 03 214 6 1 348 1 381 4 181 03 7 990E 03 E 01 1 651 06 1 214 05 2 369 405 8 118 05 8 593 05 E 01 1 200 03 275 5 1 404 1 464 4 169
47. 786 0 665 0 218 169 8 500 0 843 0 727 0 296 184 4 533 0 899 0 792 0 391 186 8 567 0 955 0 858 0 479 179 9 600 1 011 0 927 0 496 163 4 633 1 067 0 998 0 386 146 5 667 1 124 1 070 0 246 137 6 700 1 180 1 145 0 137 137 3 133 1 236 1 222 0 063 149 8 167 1 292 1 301 0 029 203 6 800 1 348 1 381 0 039 255 5 833 1 404 1 464 0 049 270 0 867 1 461 1 549 0 049 275 8 900 1 517 1 636 0 041 278 9 933 1 573 1 725 0 029 281 1 967 1 629 1 816 0 018 283 1 1 000 1 685 1 909 0 008 286 1 1 033 1 741 2 003 0 002 311 8 1 067 1 798 2 100 0 002 358 9 1 100 1 854 2 199 0 005 320 7 1 133 1 910 2 300 0 010 308 0 1 167 1 966 2 403 0 011 309 4 1 200 2 022 2 508 0 013 296 8 1 233 2 079 2 615 0 013 281 1 1 267 2 135 2 724 0 012 264 4 1 300 2 191 2 835 0 010 245 3 1 333 2 247 2 949 0 010 224 4 1 367 2 303 3 064 0 010 198 4 1 400 2 359 3 181 0 004 273 7 1 433 2 416 3 300 0 004 284 8 1 467 2 472 3 421 0 003 292 9 1 500 2 528 3 544 0 002 296 0 This page shows the output of the frequency characteristics of the absolute displacements in the three directions and the vertical relative displacements in a point defined in the input data file as a function of WAVE FREQ SQRT SL WL VL pp A ENC FREQ AMPL is the response amplitude operator RAO or transfer function of the displacements with dimensions depending on KPR 4 PHASE is the phase lag of the displacements in TIE AMPL PHASE m m deg P
48. 83 8 46 39 8 35 50 8 67 1 78 7 64 1 63 7 66 2 52 7 39 0 73 7 32 335 8 351 6 6 10 8 30 6 04 8 96 59 8 82 77 9 13 2 44 7 88 2 32 8 09 3 36 7 58 1 00 7 63 528 6 562 1 7 45 8 85 7 39 9 47 84 9 29 1 12 9 57 3 17 8 13 3 17 8 57 4 24 7 76 1 29 7 92 760 4 815 5 8 70 9 30 8 64 9 88 1 09 9 68 1 47 9 93 3 83 8 35 4 04 9 01 5 01 7 91 1 55 8 15 980 0 1054 9 10 25 9 65 10 19 10 21 1 38 9 98 1 88 10 21 4 61 8 53 5 10 9 41 5 90 8 01 1 85 8 32 1286 1 1386 5 EIER SEN s xa eee SIGNIFICANT VALUES OF ANGULAR VELOCITIES INPUT CALCULATED SURGE SWAY ROLL PITCH YAW HEIGHT PER HEIGHT PER PER AMPL PER PER AMPL PER AMPL PER m s m s m s s m s s m s s dis s d s s d s s 1 10 5 35 1 04 6 37 02 5 35 02 4 87 0 12 3 67 0 12 4 83 0 16 5 56 06 5 28 1 20 5 45 1 13 6 45 02 5 53 02 5 01 0 13 3 88 0 14 4 96 0 19 5 73 07 5 38 1 40 5 55 1 33 6 53 03 5 69 03 5 17 0 17 4 11 0 18 5 10 0 25 5 87 09 5 48 1 70 5 60 1 62 6 58 03 5 77 04 5 25 0 21 4 23 0 22 5 16 0 32 5 94 11 5 53 2 15 6 00 2 07 6 91 06 6 31 06 5 95 0 34 5 15 0 35 5 64 0 54 6 33 18 5 85 2 90 6 65 2 83 7 47 11 6 96 13 6 95 0 65 6 21 0 61 6 25 1 00 6 70 30 6 27 3 75 7 20 3 68 7 96 19 7 41 22 7 59 1 00 6 73 0 92 6 66 1 50 6 92 45 6 57 4 90 7 75 4 83 8 46 29 7 83 36 8 10 1 46 7 07 1 4 7 03 2 14 7 10 63 6 84 6 10 8 30 6 04 8 96 42 8
49. B2 g B2 k 11 655 11 2 C55 1 pV B 2 g B 2 pV L eL TP Kunst Table 4 Non Dimensional Coefficients of Vertical Plane Motions 72 The non dimensional frequencies of oscillation and the coefficients of the sway roll and yaw equations in the output are obtained by dividing it through the values given below C22 m pv f 278 2 i pV g L pv a Ha H La pv B2 N EI g L los 11 lpv B2 fe B 2 8 2 52711 pV B2 N amp g B2 _ pV L 7 csl I pVL 80 647 Br g L ZES pV 8 2 g B 2 PVE g L E pV B 2 pV at pV B 2 g B 2 pV 12 g L s 462 y 1 pV B 2 pV B2 52 g L 62 1 PVE g B 2 PYL g L alae 1 pV B2 Vfe B 2 pV 12 Nfe L pve 11 pv B 2 g B2 pvL gb pV ov 828 ___ NE 11 pV B2 C66 7 1 8 2 8 2 pV L 61 Xw l Table 5 Non Dimensional Coefficients of Horizontal Plane Motions 73 If KPR 3 gt 0 the coefficients to include the solid mass or inertia terms Then the coefficients c to are pure spring coefficients If KPR 3 lt 0 the coefficients c to include the solid mass or inertia terms Then
50. Because KSEA is positive these spectra are based here on the frequency of encounter ENC FREQ Also the significant amplitudes and average wave periods defined by 7 or 7 are given 96 Additional Statistics of Slamming NSEA gt 0 and KRIT 1 ITTC ship 5 175 Test of program SEAWAY release 4 18 SEAWAY 4 18 Date 09 10 1999 23 17 Page 69 ADDITIONAL STATISTICS OF SLAMMING FORWARD SPEED 20 00 kn MUNIN NNN NNN NNR WAVE DIRECTION 150 deg off stern X APP 157 500 m MOINS VERTICAL RELATIVE MOTIONS SLAMMING DEFINED BY SIGNIFICANT VALUES OF BOW EMERGENCE AND SEA DISPLACEMENT VELOCITY EMERGENCE VELOCITY PRESSURE HEIGHT PER AMPL PER AMPL PROB NR H PROB NR H PROB NR H m s m s m s s s 1 h s 1 1 s 1 h 1 10 5 35 0 65 3 71 0 63 3 25 0 0 0 0 0 0 0 0 1 20 5 45 0 73 3 84 0 70 3 35 0 0 0 0 0 0 0 1 40 5 55 0 89 3 99 0 84 3 46 0 0 0 0 0 0 0 1 70 5 60 1 10 4 06 1 03 3 52 0 0 0 0 0 0 0 2 15 6 00 1 61 4 63 1 43 4 01 0 0 0 0 0 0 0 2 90 6 65 2 65 5 42 2 23 1 76 0 0 0 0 0 0 0 3 75 7 20 3 81 5 90 3 11 5 26 0 0 2 4 0 0 0 0 4 90 7 15 5 26 6 23 4 20 5 63 1 0 8 1 0 3 0 1 0 6 6 10 8 30 6 67 6 48 5 25 5 91 1 7 9 6 8 47 1 6 1 3 7 45 8 85 8 08 6 66 6 28 6 11 6 3 33 9 3 8 20 4 6 0 26 8 8 70 9 30 9 23 6 78 1 12 6 24 12 0 63 9 8 0 42 6 11 6 51 5 10 25 9 65 10 63 6 86 8 15 6 33 20 3 106 3 14 8 77 7 19 7 86 8 This page sh
51. Bilge keels will increase these approximations of kj values with about 0 010 0 030 e The value should always be larger than the calculated potential value which is printed in the output of the program Check this If KRD gt 0 New line ROLAMP WAVAMP ROLAMP is the roll amplitude in degrees WAVAMP 0 0 No iteration with WAVAMP will be used and the program takes ROLAMP as the roll amplitude with which the equivalent 58 linear the additional roll damping coefficients will be determined WAVAMP gt 0 0 Iteration with WAVAMP will be used and ROLAMP will be used for the representation of the different parts of Kin the output only This option can be used to simulate the results of a free rolling experiment with the Ikeda method WAV AMP is a mean wave amplitude in meters used for linearisation In case of non linear roll damping coefficients or anti roll devices WAVAMP will be used to determine the equivalent linear roll damping coefficients or anti roll moments An iterative method will be used to determine the frequency dependent roll amplitude at this wave amplitude In fact this wave amplitude WAVAMP has to differ per sea state but this 18 not done here An average sea state has to be chosen and the mean wave amplitude 25 so about 1 3 of the significant wave height 4 mo appeared to be a fairly good approximation of WAVAMP When verifying calculated frequency characteristics with model test
52. N N FO N O1 wo on s O 1 00 75 28 276 00 40 45 81 00 43 78 82 00 88 39 87 00 44 45 40 00 532 16 80 00 82 10 3800 gt pa O A 05 OO O O O k O O QC O k O O C O ki O O O O i O O O O F O O O O FF O O O lt 0000 End of Eile bey NN Q 0o O Oy 0000 0000 0300 0000 0000 0000 0000 0200 0000 0000 0000 0000 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 2500 0000 0000 0000 0000 2500 0000 0000 0000 0000 nd nd nd nd nd nd nd 3 2 2 Rectangular Barge 4 19 Rectangular 1 000 00 000 000 00 00 00 00 00 00 00 GOPRO GH FAE ENG Ele 0 2 5000 2 0 0 0 Barge 30 00 50 0000 5000 O O OO ROO 8 0000 90 00 x 30 0 1 0000 0 0000 0 0000 0 0000 0 0000 0 0000 0 0000 4 0000 3 2 3 Semi submersible 10 CO C0 C
53. This program uses the hull form data file as input and displays the cross sectional shapes on the screen for a visual input control In the future correction features will be build into this program However some features have been built in already After starting program SEAWAY H the user has to select the screen mode of the computer with the vertical arrow keys Then it asks for the name of the hull form data file to be entered by the keyboard After pressing the ENTER key the plot procedure will start For the subsequent control steps of SEAWAY H the lt ENTER gt or the lt ESC gt key has to be used During these control steps the offsets are plotted on the display The offsets with even indices are displayed with somewhat larger points All offsets are multiplied already with the scale factors given at the end of the hull form data file The Y en Z values of the offsets are printed on the display too However all Z values are printed and plotted with respect to the base line of the ship defined by the draught and trim given in the hull form data file 42 4 Input Data This chapter describes the input data file as the input editor SEAWAY E will create it and the main program SEAWAY will use it 4 1 Description of Input Data File On first line of data set RELINP RELINP is the program release number when creating the input data file Old input data files can be updated with the input editor SEAWAY E New line
54. above water hull forms In general the overall wave loads and resulting ship motions will be calculated fairly well by the linear strip theory but this is not always the case for the local loads The next 98 figure shows a comparison between computed linear and non linear amidships bending moments in a frigate A E A b 2 13 ya UN n Y 1 A 2 7 X n FX 3 T 100 110 020 30 149 150i 4 160 o J 1 1 2 V 1 1 Time s 5 c 1 2 s v 5 5 Nonlinear program Linear program Figure 19 Linear and Non Linear Bending Moments e Because of the added resistance of a ship due to the waves is proportional to the relative motions squared its inaccuracy will be gained strongly by inaccuracies in the predicted motions Nevertheless these limitations seakeeping prediction methods based upon the linear strip theory provide a sufficiently good basis for optimization studies at an early design stage of the ship At a more detailed design stage it can be considered to carry out additional model experiments to investigate for instance added resistance bending moments or extreme event phenomena such as shipping green water and slamming 99 100 6 Error Return Messages The hull form controller SEAWAY H is written in Quick Basic and consequently Quick Basic error numbers on the screen will reflect the errors In case of an
55. also depend on the type of the ship and on its cargo but the author has found in the past generally fair realistic voluntary speed reduction data with these criteria 112 8 List of Modifications 4 00 21 03 1992 e First edition of the new release series of SEAWAY L SEAWAY H SEAWAY E and SEAWAY 4 01 21 04 1992 e An update of SEAWAY E Some small errors have been removed Modifications in some output sequences of SEAWAY 12 06 1992 e Standard writing of LOTUS output to SEAWAY DAT Optional writing of calculated data in a format specified by the users e Inclusion of an equivalent linear GM value e Adjustment of the spring term for pitch equivalent to roll 20 06 1992 e Second degree interpolation in body plan plot of SEAWAY H e Small modifications in the IKEDA routine 4 04 19 09 1992 e Internal modifications in SEAWAY with respect to an implementation of SEAWAY routines in SEAWAY D a pre processing program for time domain calculations e The original optional print of the offsets KPR 1 has been removed Because of SEAWAY H has been made available this option is not required anymore The new KPR 1 arranges an optional print of input data In case of old input data files KPR 1 1 will be used e An inclusion of local half distances of centerlines in the hull form data file The program SEAWAY and the editor SEAWAY E will transform old hull form data files into new ones with distances equal to zero autom
56. by a series of offsets defined by Y J D Z J D or Z D Y J D as given The input sequence of the co ordinates of these offsets depends on the preference of the user marked by 1 input sequence is Y J D Z J D so a horizontal value followed by a vertical value as normally will be obtained with digitizers 2 inputsequence is Z J D Y D so a vertical value followed by a horizontal value as naval architects are often used to New line DR TR RLPP RLA DR is the amidships draught of the underwater hull form defined at half the length between the forward and aft perpendiculars TR is the trim by stern defined as the draught at A P P minus draught at F P P The amidships draught and trim are defined with respect to a reference line for instance the ship s base line or the keel line This reference will be used in the input data file of the main program SEAWAY to define the actual draught and trim of the ship at which the calculations have to be carried out Generally it is convenient to use a zero trim in the hull form data file 36 RLPP is the length between the forward and aft perpendiculars RLA is the distance of the aft perpendicular A P P forward of the hindmost cross section see Figure 2 NS For J 1 NS DX J NS is the number of longitudinal cross section intervals 2 lt NS lt 50 Because of using the general rule of Simpson for numerical integration this n
57. can be resized easily to the principal dimensions of any other ship by replacing the scale factors 172 000 m B 23 100 m and 427 860 m at the end of the data file by the principal dimensions of the actual ship 34 3 4 Lewis Hull Form Creator SEAWAY L The two dimensional hydrodynamic coefficients can be calculated in SEAWAY via mapping of the cross section to the unit circle by the Lewis Conformal Mapping Method or the N Parameter Close Fit Conformal Mapping Method or by a direct calculation of the pressures on the actual cross section with the pulsating source method of Frank 1967 The advantage of conformal mapping is that the velocity potential of the fluid around an arbitrary shape of a cross section in a complex plane can be derived from the more convenient circular cross section in another complex plane In this manner the hydrodynamic problems can be solved directly with the coefficients of the mapping function which is much less computer time consuming than the pulsating source method of Frank The advantage of making use of the two parameter Lewis conformal mapping method is that the frequency depending potential coefficients will be determined as a function of the breadth the draught and the area of the cross section only In a preliminary design stage of a ship information on the sectional breadth draught and area is available only A description is given here of a Lewis form creator named SEAWAY L which creates a h
58. certain threshold value Based on model experiments and full scale experiments with frigates Ochi used 12 feet per second as a threshold value for a ship with a length of 520 feet Froude scaling of this threshold value results 0 093 gL with g in m s and Lpp in m Both occurrences emergence of the bow and exceeding the threshold velocity Se are statistically independent In case of slamming both occurrences have to appear at the same time Thus the short term probability P on a slam in a given storm condition is the product of the two independent probabilities and using the Rayleigh distribution for each of these results in Pislamming Pts gt d and or gt 3 4 pla 2m 2m 7 1 4 Voluntary Speed Reduction When a ship enters a severe storm the ship s captain can decide to reduce power and as a consequence the ship s speed or even change course in order to reduce motions When exceeding certain limits shipping green water propeller racing slamming and heavy accelerations forward can damage the ship or the cargo and are therefore often a reason for voluntary speed reduction and or even change of heading 110 7 2 on Ship Motions Criteria for acceptable levels of ship motions in a seaway have been discussed in the Nordic Cooperative Project Seakeeping Performance of Ships see reference NORDFORSK 1987 Considerations have been given there to hull safety operati
59. circular wave frequency OMINC the increment in circular wave frequencies It is obvious that gt OMMIN and for numerical reasons deep water 27g oy it is required that OMMI N gt 0 01 rad sec The size of the frequency series becomes 0 NF and the number of increments NF should not exceed 50 For numerical reasons the minimum value of NF 18 1 So the calculations are carried out at least for the two frequencies OMMIN and OMMIN OMINC For accurate ship motion calculations of normal full scale merchant ships suitable values are OMMI N 0 20 so a maximum wavelength of about 1540 meters OMMAX 1 70 so a minimum wavelength of about 21 meters OMINC 0 033333 so NF 45 frequency intervals It is advised not to use a frequency OMMIN smaller than 0 20 rad s The spectral density of wave components with a length of over 1 5 km is very small For KOMEG 2 input of wavelength to ship length ratios amp L has to be used The range of circular wave frequencies will be calculated from OMMI N the minimum value of pp the maximum value of Z pp OMINC the increment of the L values For KOMEG 3 input of the square roots of the ship length to wavelength ratios VL pp has to be used The range of circular wave frequencies will be calculated from OMMIN the minimum value of V Lpp the maximum value of V L 2 OMINC the increment of the V L
60. data WAVAMP should be taken as the mean regular wave amplitude during the experiments in the natural frequency region If KRD 1 or KRD 2 For K 1 NV New line RDK1 K RDK2 K is the linear roll damping coefficient at speed V K RDK2 K is the quadratic roll damping coefficient at speed V K If KRD 3 New line HBK XBKA is the height Asg of the bilge keels In case of no bilge keels HBK 0 0 with arbitrary values for the aft and forward ends of the bilge keels is the distance from APP to the aft end of the bilge keels is the distance from APP to the forward end of the bilge keels It is obvious that XBKF gt XBKA hence the bilge keel length XBKA If KRD 3 CORMIL 59 CORMIL Cvwiler is a multiplication factor for the forward speed effect in the damping which is 1 00 when using the original Miller definition KRD 4 New line NPTK New line For L 1 NPTK PHIAK L For K 1 NV RDKV K L NPTK is the number of points on each curve 1 NPTK lt 6 PHIAK L is a mean roll angle in degrees of the points on the curves RDKV K L is the value of point L on speed dependent curve A linear interpolation is used between these 6 points and the damping coefficients will be kept constant outside the range of these points New l
61. have to be entered by the keyboard as described before If the file SEAWAY FIL is present it should be formatted as given in the example below Line00 5 Line01 SHIP HUL SHIP INP SHIP OUT Line02 SHIP HUL SHIP IN1 SHIP UT1 13 Line 03 SHIP HUL SHIP IN2 SHIP UT2 Line 04 SHIP HUL SHIP IN3 SHIP UT3 Line05 VESSEL HUL VESSELINP VESSEL OUT Each line with three file names implies a calculation with SEAWAY The three file names on each line have to be separated by one or more blanks The maximum allowable number of characters on each line is 72 The maximum line number or number of calculations is 25 After reading the file SEAW AY FIL this file will be rewritten by the program to the default drive with a number 0 on line 00 When calling this file afterwards by SEAWAY this 0 will be read from the SEAWAY FIL file and a keyboard input of the file names is requested again The disadvantage of this method is that any error in one of the files results in an END OF PROGRAM EXECUTION without carrying out the remaining calculations However this can be avoided by using a batch file with rename structures using several renamed SEAWAY FIL files for one calculation each When carrying out the first calculation for a ship the potential coefficients and two check sum values are automatically written to Two Dimensional Properties file SEAWAY TDP At each following calculation with for instance other print options ship speeds or
62. o m a w a a C a 32 C e gt S 1 a co ala co a gt a a a a 801 171 818 126 888 680 811 188 La 3 Go Wa gt Gof co co io a a ol ola 55 lt 5 2 5 23 23 5158 s S ss ela 1122 872 83 pe ala lt gt gz BERGE et 0 807 6 68 2 50 68 2 8 os 50 7 8 5 3 07 545 245 5 8 B 6 68 7 0 6 6 1 0 878 5 45 246 om se vn 28 9 4 i 1 246 oar oo 348 28 3 2 0 340 400 1 31 269 0 660 3 41 3 43 405 5 36 0 905 6 17 2 89 135 2 2 785 5 11 3 83 80 8 81 748 837 6 63 530 23 2 60 20 3 10 2 90 1 31 31 1 ol Blo gt o le gt 1 a 1 38 2 41 1 81 0 02 0 39 1 51 3 30 1 20 1 1
63. of the offsets This controller can be used to judge the offsets only In the future the hull form controller will be extended with extra features which makes it possible to correct mistakes in the offsets too However some features have been included already At any actual loading of the ship new offsets of the underwater hull form will be calculated by the main program SEAWAY from these data by using the actual amidships draught and trim as given in the input data file In this chapter detailed descriptions of the hull form data file of SEAWAY the hull form controller SEAWAY H and the Lewis form creator SEAWAY L will be given followed by some examples of the data files Parameters in this chapter starting with Z J K L M and N are integer data types All other parameters are real data types which can be given with an integer format too A new line is required at some places in the input which has been marked in the description 15 3 1 Description of Hull Form Data File On first line of data set RELINP RELINP is the program release number when creating the hull form data file New line TEXT TEXT is a text line with a maximum of 80 characters with general information about the ship such as the name of the ship and its main dimensions for instance Containership S175 175 00 x 25 40 x 9 50 11 00 meter The draught information here means that the hull form is given until a draught of 11 00 meter for a
64. ordinates of these offsets depends on the preference of the user marked by 17 e KCON I input sequence is Y J D Z J D a horizontal value followed by a vertical value as normally will be obtained with digitizers KCON 2 input sequence is Z J D Y J D a vertical value followed by a horizontal value as naval architects are or were used to The contour of each cross section has to be given by a series of offsets For local twin hull cross sections such as those of semi submersibles or catamarans these offsets represent the local mono hull cross section This cross section has to be symmetric with respect to its local centre line Half the distance between the two local centre lines will be used to define the local mono hull or twin hull cross section Section J Y J 4 Z J 4 arbitrary Figure 4 Offsets of Cross Sections and Sequence of Input For J 0 NS New line SNR J NWL J SDIST J New line For I 0 NWL J If KCON 1 Y J I Z J I If KCON 2 Z J I Y J I SNR J is the station number 18 This real value is printed in the output with two decimals A negative station number for cross sections behind A P P often indicated in lines drawings or body plans by the characters A B etc is permitted too NWL J is the number of offset intervals along the contour of the cross section 2 lt NWL J lt 22 The value of this parame
65. ship with a fully laden draught of 9 50 meter A P P F P P SNR J 0 6 0 0 5 1 2 18 19 19 5 20 Figure 2 Definition of Longitudinal Values New line DR TR RLPP RLA DR is the amidships draught of the measured underwater hull form defined at half the length between the aft and forward perpendiculars APP and FPP TR is the trim by stern defined as the draught at APP minus draught at FPP The amidships draught and trim are defined with respect to a reference line for instance the ship s base or the keel line This reference will be used in the input data file to define the actual draught and trim of the ship at which the calculations have to be carried out Here after this reference line is called base line Generally it is convenient to use a zero trim in the hull form data file RLPP is the length between the forward and aft perpendiculars Lpp 16 RLA is the distance of the aft perpendicular APP forward of the hindmost cross section NS For J 1 NS DX J NS is the number of longitudinal cross section intervals 2 lt NS lt 50 Because of using the general rule of Simpson for numerical integration this number has to be even In short waves the interval lengths will not affect the numerical longitudinal integration of the wave loads An advised value for a normal ship is 24 intervals 20 equal intervals between the perpendiculars 2 added cross sections aft and 2 added cross sections f
66. speeds the wave or sea conditions and the user s requirements on the output data of the program e the name of the output data file the file to which the calculated data have to be written It is advised to use file names that contain the abbreviated name of the ship for instance Hull form data SHIP HUL Input data file SHIP INP or SHIP INI etc Output data file SHIP OUT or SHIP UTI etc in which SHIP is the name of the ship with a maximum of eight characters and HUL INP INI OUT and UT1 are the extension names of the data files with a maximum of three characters Note that any existing file in the same directory with the same output file name will be overwritten The maximum number of characters in the ASCII output data file is 129 A successful normal end of a program execution will be accompanied by the message END OF PROGRAM EXECUTION see Figure 1 SEAWAY Release 4 19 12 02 2001 Date 09 10 1999 Time 23 Hull form data file SHIP Input data file SHIP Output data file SHIP Execution terminated END OF PROGRAM EXECUTION Use licensed only to Delft University of Techn Shiphydromech Laboratory O Journ e 011 Figure1 Screen Dump of Execution of Program SEAWAY Also it is possible to carry out up to 25 subsequent calculations automatically After calling SEAWAY the program searches on the default drive for a file named SEA WA Y FIL If this file is not present the file names
67. the sum of the intervals of the cross sections as defined in the hull form data file In case of submerged cross sections this length is not the actual water plane length in fact it is the ordinate length The beam B is the maximum breadth of the waterline The longitudinal prismatic coefficient is the volume of displacement V divided by the product of the length Lpp and the cross sectional area at half the length between the perpendiculars Lpp The vertical prismatic coefficient is the volume of displacement V divided by the product of the amidships draft DR and the area of the water plane Aw Also the transverse and longitudinal stability parameters are given The vertical position of the centre of buoyancy KB is given with respect to the base line as defined in the hull form data file 80 Load Distribution Data KPR 2 1 and NBTM gt 0 ITTC ship 175 Test of program SEAWAY release 4 18 ORIGINAL AND MODIFIED LOAD DISTRIBUTION DATA NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN ORIGINAL DISTRIBUTION X APP MASS KG k xx m ton m m m 5 25 3 900 01 12 4 0 4 53 23 4 300 01 11 4 0 6 1 625 1 6008401 11 4 0 8 0 0 5 000 01 10 3 1 2 4 375 5 800E 01 8 3 2 3 8 75 8 1008401 7 2 3 4 11 5 1 2708402 5 5 5 4 17 844 1 260 02 5 528 5 459 26 25 1 0208402 6 2 6 9 35 0 6 300 01 7 3 8 1 40 937 8 471 01 7 096 8 643 43 15 9 5008
68. value of 0 450 see Figure 14 Re entrant and non symmetric Lewis forms are prohibited These Lewis coefficients are used in the method of Ikeda for obtaining the eddy making roll damping If the conformal mapping coefficients are missing on the next page these Lewis coefficients are also used to obtain the potential coefficients as far as not marked with F which indicates the use of Frank s method 82 Close Fit Conformal Mapping Coefficients 2 1 and KCOF 10 ITTC ship 8 175 Test of program SEAWAY release 4 18 N PARAMETER CLOSE FIT CONFORMAL MAPPING COEFFICIENTS NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN STATION M S m 0 38 40 0035 0 19 40 5654 0 1 0016 0 50 41 9646 1 0 0000 2 7 0911 3 8 2593 4 9 3091 5 00 10 3133 6 00 11 1608 7 00 11 8137 8 00 412 3267 9 00 12 5803 10 00 12 6238 11 00 412 4062 12 00 11 9181 13 00 11 1486 14 00 10 2132 15 59 1768 16 18 0848 17 17 1201 18 16 3874 19 50 0000 19 50 40 0000 20 10 0000 A 1 Hu Hu 0 Hu 0 0 0 1 ce ce oce o A 1 0105 3376 3969 4543 0000 1965 0526 0220 0763 1080 1235 1322 1376 1388 1340 1162 0766 0172 0738 2003 3621 5394 0000 0000 0000 0840 0
69. wave spectra energy distributions significant amplitudes and average periods of all responses of which the frequency characteristics have been calculated e Probability as well as number per hour of exceeding threshold values by the relative motions to be used for the calculation of shipping green water propeller racing etc Probability and number per hour of slamming according to a formulation by a vertical relative velocity and by a pressure criterion With print options a choice can be made for the desired output A lot of attention has been paid to an well ordered output of the calculated data The ASCII output data are given in a format that can be made suitable for other programs spreadsheets and plot routines by a usual editor easily Optionally an ASCII data file named SEAWAY DAT will be filled with data in a format defined by the user The user has to inform the author about the required data in this file Exclusive for each individual user these formats can be fixed into program SEAWAY Post processing programs spreadsheets or plot routines can read this personal SEAWAY DAT file directly Standard the SEAWAY file will be filled with LOTUS or QUATRO PRO data The programs are written in FORTRAN 77 suitable for any MS DOS Personal Computer Easily the main program SEAWAY can be made suitable for other computer systems because all system related parts have been assembled in one subroutine The PC version of t
70. 0 1 89 3 31 2 69 40 1 2 32 2 28 4 11 1 1 co m o wool a ola e 10 91 13 a lt gt 331 a File Name Ship Type m 1 C Cu Cop 18 90 0 850 0 907 0 0 780 0 962 0 15 0 1 8 3 65 0 634 0 852 0 4 08 0 97 32 4 6 w 0 e KUTI JOURNEE 002 french Setter wm TOTRNEE 00 Ei 9 8 10 72 JOURNEE 004 172 00 23 1 a w gt to JOURNEE 005 survey Vessel wmf 113 TOTRNEE 006 126 0 TOORNEE 07 ala 3 36 0 27 0 68 vu 8 3 mm ES a e SCORE JOURNEE 09 JOURNEE 010 Oceanographic Vessel 8 50 14 4 OT TOURNEE 112 JOURNEE 013 TOURNEE 01 pun H a lt gt w 29 e vr ser 0 006 1 vim 05 0 2 2 8 11 7 0 006 ve 135 t 68 1 olo 7 TOTRNEE 15 ca 2 21 10 72 4 02 2 1 1 8 s saj 3 02 0 I I 5 3 4 10 0 889 JOURNEE 016 169 2 889 JOURNEE 017 126 1 1 2 0 757 0 911 0 832 5 94 3 8 63 74 83 48 53 73 83 JOURNEE 018 30 83 0 19 06 302 Pu 88 2 53 13 31 64 91 81 63 JOURNEE 019 Container Ship 202 00 32 2 JOURNEE 020 19 6 JOURNEE
71. 0 20 0000 0 0000 9 01 8 30 0000 0 0000 0 0000 0 0000 4 0000 0 0000 8 8 0000 8 0000 8 0000 4 0000 8 0000 0 20 0000 0 0000 9 50 8 30 0000 0 0000 0 0000 0 0000 4 0000 0 0000 8 8 0000 8 0000 8 0000 4 0000 8 0000 0 20 0000 0 0000 10 00 8 30 0000 0 0000 0 0000 0 0000 4 0000 0 0000 8 8 0000 8 0000 8 0000 4 0000 8 0000 0 20 0000 0 0000 1 1 T End of file The jumps at the columns are located at cross sections 28 0000 0000 0000 0000 0000 0990 0000 1670 0000 4560 0000 3000 0000 4560 0000 1670 0000 0990 0000 0000 0000 0000 0000 0000 0000 0000 1 00 2 00 3 00 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 8 0000 0 0000 8 0000 0 0000 8 0000 1 0990 8 0000 4 1670 8 0000 5 4560 8 0000 6 3000 8 0000 5 4560 8 0000 4 1670 8 0000 1 0990 8 0000 0 0000 8 0000 0 0000 8 0000 0 0000 8 0000 0 0000 3 3 Hull Form Series The table below shows the definitions of the various parameters used in this section L B d v C V LBd Cwi Aw L B d C Cp Cy V Awd or LcoG D Length between perpendiculars Lpp Maximum moulded breadth of the waterline Fully laden draft at even keel Volume of displacement Block coefficient Water plane ar
72. 0 1000 3 7500 0 2100 1 0000 10 6600 2 0000 11 6800 3 0000 5 0000 12 5100 6 0000 12 6000 7 0000 9 0000 12 7000 10 0000 12 7000 11 0000 9 00 14 0 0000 0 0000 0 0000 0 1300 4 7200 0 2600 1 0000 11 6200 2 0000 12 2500 3 0000 5 0000 12 7000 6 0000 12 7000 7 0000 9 0000 12 7000 10 0000 12 7000 11 0000 10 00 14 0 0000 0 0000 0 0000 0 1400 4 9500 0 2700 1 0000 11 7400 2 0000 12 4400 3 0000 5 0000 12 7000 6 0000 12 7000 7 0000 9 0000 12 7000 10 0000 12 7000 11 0000 11 00 14 0 0000 0 0000 0 0000 0 1200 4 4800 0 2500 1 0000 11 0400 2 0000 11 8600 3 0000 5 0000 12 6000 6 0000 12 6300 7 0000 9 0000 12 6700 10 0000 12 6900 11 0000 12 00 14 0 0000 0 0000 0 0000 0 1000 3 6600 0 2000 1 0000 9 6600 2 0000 10 6800 3 0000 5 0000 11 9800 6 0000 12 1400 7 0000 9 0000 12 4000 10 0000 12 4500 11 0000 13 00 14 0 0000 0 0000 0 0000 0 0800 2 7900 0 1500 1 0000 8 0200 2 0000 9 1500 3 0000 5 0000 10 7300 6 0000 11 0100 7 0000 9 0000 11 6000 10 0000 11 7800 11 0000 14 00 14 0 0000 0 0000 0 0000 0 0500 1 9700 0 1100 1 0000 6 3400 2 0000 7 4200 3 0000 5 0000 9 1000 6 0000 9 4600 7 0000 24 N oO N N NNN OO NNR NA Li 4100 8500 7400 3000 1800 3000 5800 5300 8800 7900 2700 0300 8800 9000 4500 9100 7900 6200 1500 3300 6700 7500 5200 8300 1100 4000 6800 5000 0900 6600 7000 4300 6100 7000 7000 9100 6800 7000
73. 0 77 9302 0586 T0 12 7040 3368 7099 7432 3076 123 5394 7958 0678 11 5831 6108 8080 1139 6221 ANOO C0 Wr BRO AN O wo OOO 39 2933 5889 7462 0572 4405 9092 2083 6490 8388 1051 7128 3955 0654 4137 47115 3569 8001 0166 5235 2976 5 3919 4057 2249 2221 48132 6294 8457 1464 3528 8505 4651 0705 8306 0691 0833 0037 3716 3820 7476 0293 1443 0420 5814 0340 51123 9937 O FO nd 11 12 6189 1269 4967 4370 3742 2332 9788 0420 6642 7468 2871 3003 7129 3492 6800 9001 2656 3739 7586 5019 7405 0751 3431 0806 0845 4436 4209 5932 2395 10 1225 5269 1606 0291 1748 11 12 2793 5082 v3 6 8958 7891 12 6348 5428 2358 124 0164 6679 5664 2841 0486 oo who gt Q N O oo O Ww O QO O 1 WO on BR SPOS 23732 6435 7648 1256 5635 0036 2563 2644 7760 6111 0802 8692 99435 1138 1227 7858 6099 7348 0224 6576 1152 1516 8680 4946 4863 4105 6718 3341 8555 6671 4749 1670 2225 9211 2774 0228 6660 2653 1038 0486 3906 9406 0178
74. 00 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1670 0000 0990 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0990 0000 1670 0000 4560 0000 3000 0000 4560 0000 1670 0000 0990 0000 0000 0000 0000 0000 0000 20 0000 0 0000 6 99 8 30 0000 0 0000 0 0000 0 0000 4 0000 0 0000 8 8 0000 8 0000 8 0000 4 0000 8 0000 0 20 0000 0 0000 7 00 8 30 0000 0 0000 0 0000 0 0000 4 0000 0 0000 8 8 0000 8 0000 8 0000 4 0000 8 0000 0 20 0000 0 0000 7 01 8 30 0000 0 0000 0 0000 0 0000 4 0000 0 0000 8 8 0000 8 0000 8 0000 4 7940 8 0000 1 20 0000 1 0990 7 25 8 30 0000 0 0000 0 0000 0 0000 4 0000 0 0000 8 8 0000 8 0000 8 0000 6 0830 8 0000 4 20 0000 4 1670 7 50 8 30 0000 0 0000 0 0000 0 0000 4 0000 0 0000 8 8 0000 8 0000 8 0000 6 7250 8 0000 5 20 0000 5 4560 8 00 8 30 0000 0 0000 0 0000 0 0000 4 0000 0 0000 8 8 0000 8 0000 8 0000 7 1500 8 0000 6 20 0000 6 3000 8 50 8 30 0000 0 0000 0 0000 0 0000 4 0000 0 0000 8 8 0000 8 0000 8 0000 6 7250 8 0000 5 20 0000 5 4560 8 75 8 30 0000 0 0000 0 0000 0 0000 4 0000 0 0000 8 8 0000 8 0000 8 0000 6 0830 8 0000 4 20 0000 4 1670 8 99 8 30 0000 0 0000 0 0000 0 0000 4 0000 0 0000 8 8 0000 8 0000 8 0000 4 7940 8 0000 1 20 0000 1 0990 9 00 8 30 0000 0 0000 0 0000 0 0000 4 0000 0 0000 8 8 0000 8 0000 8 0000 4 0000 8 0000
75. 00 8 7500 8 7500 8 8 7500 8 7500 8 7500 8 7500 8 7500 8 7500 8 7500 8 8 7500 8 7500 8 7500 8 7500 8 7500 8 7500 4 3750 4 2 0 38 16 0 0000 0 0000 0 0000 0 0006 0 0006 0 0012 0 0012 0 0018 0 0 0024 0 0024 0 0030 0 0030 0 0036 0 0036 0 0042 0 0 0048 0 0048 0 0053 0 0053 0 0059 0 0059 0 0065 0 0 0071 0 0071 0 0077 0 0077 0 0083 0 0083 0 0089 0 0 0095 0 0095 0 19 16 0 0000 0 0000 0 0000 0 0060 0 0460 0 0236 0 0937 0 0517 0 0 0886 0 1997 0 1320 0 2597 0 1796 0 3245 0 2286 0 0 2765 0 4651 0 3213 0 5374 0 3610 0 6081 0 3947 0 0 4219 0 7333 0 4429 0 7824 0 4585 0 8193 0 4703 0 0 4800 0 8500 0 00 16 0 0000 0 0000 0 0000 0 0098 0 0907 0 0385 0 1840 0 0844 0 38 the main program 7500 7500 3750 0018 0042 0065 0089 1445 3935 6743 8422 2823 1447 4514 6875 7800 0 50 0000 6858 0844 3000 1 00 0000 0327 6654 0124 5000 2 00 0000 4952 24999 7283 5000 3 00 0000 13553 4344 3906 5000 4 00 0000 1401 8720 8711 5000 5 00 0000 8666 1574 2109 5000 6 00 0000 9923 4405 5485 500 OUNOO O O QO O O won BRO BHG OG Oe ea 000 721 884 500 000 40 55 088 299 500 000 044 A NES 010 500 10 00 0 0000 0 0618 0 7313 LO AOOO w NH OO
76. 01 1 828E 01 1 056 01 6 378 02 1 2648 02 12 00 2 042E 01 1 359 01 8 997E 00 5 967 00 3 986 400 2 695 00 1 852 400 1 296E 00 9 267E 01 6 773E 01 1 947 01 13 00 3 249E 01 2 448 01 1 8518 01 1 410 01 1 085 401 8 465 400 6 695 400 5 371 00 4 370 00 3 604 400 1 626 400 14 00 3 927 01 3 163E 01 2 556 401 2 080 01 1 708 401 1 416 01 1 185 01 1 003 01 8 561 00 7 375 400 3 887 400 15 00 3 681 01 3 0658 01 2 557 401 2 145 01 1 812 401 1 542 01 1 322 01 1 143 01 9 945 00 8 713 00 4 868 00 16 00 2 770E 01 2 346E 01 1 991 01 1 698 01 1 457 401 1 259 401 1 097 01 9 627 00 8 506 00 7 563E 00 4 520 400 17 00 1 561 01 1 327 01 1 131 01 9 700 00 8 387 400 7 315 00 6 434 400 5 705 00 5 096 00 4 579 00 2 860 400 18 00 4 804E 00 3 958 00 3 299 400 2 794 00 2 408 400 2 111E 00 1 879 400 1 694 00 1 542 00 1 415E 00 9 628 01 19 00 5 159E 01 3 791 01 2 954 01 2 478E 01 2 239 01 2 154 01 2 166 01 2 237E 01 2 338 01 2 446E 01 2 765 01 19 50 6 586E 03 1 979E 02 2 771 02 2 734 02 2 081 02 1 206E 02 4 589 03 5 062E 04 4 354 04 3 932 03 4 027 02 20 00 1 277 00 1 286 00 1 215 00 1 089E 00 9 335 01 7 715 01 6 190E 01 4 855 01 3 746 01 2 861 01 7 532E 02 SHIP 5 080 03 4 166 03 3 450 403 2 885 03 2 432 403 2 063 03 1 761 03 1 512 03 1 306 403 1 136 03 6 489 402 This page shows an example for heave of 2 and integrated potenti
77. 021 12 8 JOURNEE 022 Protection Vessel 24 85 JOURNEE 023 JOURNEE 024 JOURNEE 025 27 6 co c ec 9 2 76 2 47 2 85 a EK 0 845 4 72 7 BIETE 0 077 0 965 9 365 b 6 I 1 8 gt lt gt 0 496 0 626 0 811 0 885 0 520 0 530 00 083 0492 0 731 0 218 0 311 0 58 0 6 3 2 3 0 m lt gt Ter 285 0 JOURNEE 027 Shallow Draft Vessel a o co co gt w m m ee a mle a cof gt c 1 Ro ole to e gt 29 o alr co a a co a w JOURNEE 028 122 6 JOURNEE 029 32 0 6 35 2 78 1 57 11 50 0 800 0 JOURNEE 030 Container Ship 193 10 30 8 0 585 0 718 3 42 JOURNEE 031 0 538 TOURNEE 032 2 L 8 18 4 3 M co EEA JOURNEE 3 70 058 055 o8 Tu 39 3 035 ma p na t6 048 85 546 6 5 53 1 4 55 JOURNEE 033 33 35 52 10 91 JOURNEE 036 27 36 9 20 5 53 2 97 14 99 1 a a a a JOURNEE 037 to lt gt 6 1 5 88 6 35 47 81 0 664 0 I osse 048 3 14 99 0 955 0 961 0 97 Ta
78. 04 60 8 1 000 1 685 1 909 1 103E 03 211 6 9 545 02 53 2 2 602Et03 15 9 2 692 03 89 5 3 543 04 222 9 3 048E 04 84 6 1 033 1 741 2 003 9 747 02 230 8 9 821 02 69 0 2 6858403 24 7 2 766 03 119 3 3 135 04 229 4 2 921 04 106 1 1 067 1 798 2 100 8 784E402 253 7 9 084 02 81 5 2 607E 03 34 1 2 707 03 146 1 2 397E 04 235 3 2 464E 04 129 1 1 100 1 854 2 199 8 794E402 277 0 7 416 402 93 5 2 432Et03 42 3 2 483 03 173 5 1 408E 04 226 0 1 852 04 159 2 1 133 1 910 2 300 8 729 02 297 2 5 287 02 108 1 2 217E403 43 8 2 162 03 202 6 2 010E 04 156 2 1 442 04 202 4 1 167 1 966 2 403 8 474E402 315 5 3 410 02 132 4 2 185E 03 49 2 1 826 03 234 9 2 640E 04 178 3 1 452 04 247 0 1 200 2 022 2 508 7 993E 02 329 6 2 662 02 171 0 2 0378403 45 9 1 567 03 269 8 3 365 04 183 0 1 547E404 278 8 1 233 2 079 2 615 6 994 02 344 8 3 037 02 199 8 1 680E 03 44 6 1 398 03 305 1 3 839E 04 184 4 1 417 04 302 7 1 267 2 135 2 724 5 9518402 4 9 3 518 02 210 2 1 499 403 28 6 1 245 03 340 0 4 826E 04 184 5 1 012E404 328 9 1 300 2 191 2 835 5 489E 02 30 4 3 687 402 212 7 1 775 03 5 0 1 084 03 14 5 6 053E 04 184 8 5 729 03 15 9 1 333 2 247 2 949 5 786E 02 54 5 3 4628402 214 5 2 581E 03 350 7 9 062 02 48 6 7 377E 04 185 3 5 681 03 87 2 1 367 2 303 3 064 6 280E 02 72 5 2 8278 02 222 3 4 045E 03 346 1 6 981 02 82 3 9 272E 04 184 3 7 1548403 124 6 1 400 2 359 3 181 6 377E402 88 1 2 0588402 247 2 3 572 03 349 4 4 760E 02 120 8 1
79. 1 2 9 1 7 1 6 2 5 3 9 T T 5 T SEAWAY 4 18 Date 09 10 1999 23 17 degrees relative to the wave elevation in the centre of gravity G 90 Page 21 Statistics of CoG Motions and Added Resistance NSEA gt 0 ITTC ship S 175 Test of program SEAWAY release 4 18 SEAWAY 4 18 Date 09 10 1999 23 17 Page 29 STATISTICS OF CoG MOTIONS FORWARD SPEED 20 00 kn WAVE DIRECTION 150 deg off stern bah SEA eee SIGNIFICANT VALUES OF ANGULAR 5 MEAN ADDED INPUT CALCULATED SURGE 98 HEAVE ROLL PITCH YAN RESISTANCE HEIGHT PER HEIGHT PER AMPL PER AMPL PER AMPL PER AMPL PER AMPL PER AMPL PER GER BEU BOESE m s m s m s s m 8 deg s deg s deg s kN KN 1 10 5 35 1 04 6 37 02 6 01 02 5 46 0 10 5 22 0 11 5 48 0 16 6 20 0 06 5 70 A 2 6 1 20 5 45 1 13 6 45 02 6 16 02 5 67 0 12 5 50 0 13 5 62 0 19 6 29 0 07 5 79 5 8 3 7 1 40 5 55 1 33 6 53 03 6 29 03 5 87 0 15 5 75 0 16 5 75 0 25 6 38 0 08 5 88 8 8 6 1 1 70 5 60 1 62 6 58 03 6 36 04 5 98 0 20 5 87 0 20 5 81 0 32 6 41 0 11 5 92 13 7 9 1 2 15 6 00 2 07 6 91 06 6 80 07 6 73 0 36 6 54 0 34 6 24 0 57 6 600 0 17 6 23 31 9 26 8 2 90 6 65 2 83 7 47 13 7 40 16 7 61 0 73 7 10 0 66 6 81 1 11 6 97 0 32 6 66 88 2 85 1 3 75 7 20 3 68 7 96 23 7 88 29 8 18 1 18 7 39 1 06 7 24 1 72 7 19 0 50 7 00 179 6 182 9 4 90 7 75 4
80. 1 1 862 01 2 242 401 2 613 401 2 961 01 3 281 01 3 570 01 3 829 01 4 745 401 11 00 1 316E 01 1 444E401 1 708 01 2 034 01 2 380 401 2 723 401 3 048 01 3 348 01 3 621 01 3 867 01 4 746 401 12 00 2 021 01 2 050E 01 2 2258 01 2 474 01 2 756 01 3 044 401 3 325 01 3 589 401 3 832 01 4 055 401 4 872E 01 13 00 2 921E 01 2 853E 01 2 934 401 3 098 01 3 303 401 3 525 01 3 748 01 3 964 01 4 168 01 4 357 01 5 081E 01 14 00 3 570E 01 3 438E 01 3 457E 01 3 561 01 3 711 01 3 884 01 4 065 01 4 244 01 4 416 01 4 578 401 5 220 401 15 00 3 917 01 3 749 01 3 737E 01 3 813 01 3 939 401 4 0918401 4 253 01 4 415 01 4 573 01 4 723 01 5 328401 16 00 3 921 01 3 733 01 3 709E 01 3 779 01 3 901 401 4 049 401 4 208 401 4 369 401 4 525 01 4 673 01 5 270E 01 17 00 3 510E 01 3 335 01 3 337E 01 3 434 01 3 582 401 3 754 01 3 934 01 4 114 01 4 286 01 4 449 01 5 092401 18 00 2 452 01 2 388 01 2 492 401 2 679 01 2 905 401 3 143 401 3 380 01 3 607E 01 3 820 01 4 017 01 4 764E 01 19 00 1 678 01 1 725 01 1 9228401 2 185 01 2 472 401 2 762 01 3 040 01 3 300 01 3 539 01 3 756 01 4 549401 19 50 9 864E 00 1 128E 01 1 401 401 1 726 01 2 064 401 2 395 01 2 707 01 2 994 01 3 254 01 3 488 01 4 321 401 20 00 8 921 00 9 412 00 1 163 01 1 460 401 1 783 401 2 108 401 2 419 01 2 708 01 2 971 401 3 207 01 4 041 01
81. 188E 00 2 247 00 2 299 00 2 331 00 2 332E 00 2 293E 00 1 00 1 283 02 1 292E 02 1 331 02 1 400 02 1 484E 02 1 5288 02 1 4548 02 1 260 02 1 044 402 8 768 01 7 679E 01 2 00 1 311E 02 1 3268402 1 378 02 1 467 402 1 556 02 1 556 02 1 395 402 1 145 02 9 226 01 7 683E 01 6 712E 01 3 00 1 304E 02 1 3288402 1 391 02 1 4948402 1 576 02 1 524 02 1 306 402 1 044 402 8 389 01 7 040E 01 6 215 401 4 00 1 355 02 1 3908402 1 470 02 1 594 402 1 673 02 1 561 02 1 275 02 9 823E 01 7 722 01 6 414E 01 5 646401 5 00 1 450E 02 1 499402 1 602E 02 1 760 02 1 842 02 1 658 02 1 275 02 9 226E 01 6 866 01 5 4648 01 4 677E 01 6 00 1 578 02 1 641 02 1 771 02 1 970 02 2 054 02 1 781802 1 283 02 8 627 01 5 981 01 4 486E 01 3 696E 01 7 00 1 728 02 1 803E 02 1 9648 02 2 2108402 2 303 02 1 921 02 1 283 402 7 849E 01 4 917 01 3 371 01 2 629 01 8 00 1 891 02 1 976 02 2 169 02 2 468 02 2 570 02 2 061E 02 1 267 02 6 933 401 3 804 401 2 283 01 1 644 01 9 00 1 982 02 2 072 02 2 282 02 2 612 402 2 721 02 2 1318 02 1 246 402 6 353 01 3 173 401 1 707 01 1 148E 01 10 00 1 998 02 2 089 02 2 302 402 2 637 02 2 747 402 2 143 402 1 241 02 6 251 01 3 067 01 1 613E 01 1 068 01 11 00 1 919E 02 2 006E 02 2 2048 02 2 514 02 2 620 402 2 085 402 1 259 402 6 711 01 3 559 01 2 056E 01 1 446 401 12 00 1 809E 02 1 887 02 2 060E 02 2 329 02 2 433 402 2 005 02 1 296 40
82. 2 7 579 01 4 520 01 2 964E 01 2 2568401 13 00 1 710E 02 1 774 02 1 921 402 2 151 02 2 260 402 1 940 402 1 344 402 8 549 01 5 609 01 4 031 01 3 249401 14 00 1 620E 02 1 669 02 1 792 402 1 991E 02 2 111 402 1 889 02 1 384 02 9 285 01 6 400 01 4 794 01 3 959401 15 00 1 567 02 1 603E 02 1 708 02 1 885 02 2 023 402 1 886 02 1 445 402 9 955 01 6 953 01 5 251 01 4 352401 16 00 1 526 02 1 550E 02 1 6418 02 1 801 02 1 958 402 1 907 402 1 526 02 1 060 02 7 288 01 5 392E 01 4 400E 01 17 00 1 529E 02 1 544E402 1 629 402 1 783 02 1 965 402 1 993 402 1 653 02 1 128E 02 7 323 01 5 109E 01 4 007E 01 18 00 1 578E 02 1 587E402 1 673 02 1 836 02 2 058 402 2 1718402 1 836 02 1 165 02 6 551 01 3 970 01 2 856401 19 00 1 611E 02 1 616E 02 1 702 402 1 869 02 2 114 402 2 298 402 1 998 402 1 203 02 5 878 01 3 033E 01 1 968E 01 19 50 1 605E 02 1 609E 02 1 695 402 1 864 02 2 122 402 2 345 402 2 065 402 1 183 02 5 041 01 2 127E 01 1 163401 20 00 1 460 02 1 464 02 1 536 402 1 675 02 1 892 402 2 111 02 2 001 02 1 300E 02 6 015 401 2 536 01 1 240 01 SHIP 2 723E 04 2 802 04 3 010 404 3 346 404 3 555 404 3 211 04 2 391 04 1 567 04 1 021 404 7 298 03 5 902 403 FREQUENCY 1 375 1 500 1 625 1 75 1 875 2 00 2 125 2 250 2 375 2 500 3 125 STATION 0 38 0 000E 01 0 000 01 0 000 01 0 000 01 0 000 01 0 000 01 0 000 01 0 000E 01 0 000E 01 0 000 01 0 000 01
83. 23 ms Sea water p 1025 9 kg m from which follows v 1 178 m s MOT is the code for selecting the motions which the ship is permitted to carry out i e the degrees of freedom 45 This integer value consists of a number with a maximum of six digit decimals derived from the following codes IMOTI 1 surge x IMOTI 2 sway y IMOTI 3 heave z IMOTI z 4 rol o 5 pitch IMOTI 6 yaw For normal strip theory calculations of free sailing ships in a seaway generally one of the following three options has to be used 135 246 123456 Surge heave and pitch motions are coupled This applies also for sway roll and yaw motions No coupling is present between these two sets of motions of free floating not moored vessels When analysing model experiments other options can be required such as for instance 4 model free for roll motions only IMOTI 35 model free for heave and pitch motions only IMOTI 2345 model free for sway heave roll and pitch motions only If geometrical calculations have to be carried out only the input is MOT 0 This option can be convenient for a quick check of the geometrical properties of a newly made hull form data file If MOT lt 0 then its absolute value is taken to determine the degrees of freedom so MOT IMOTI However then the accelerations in the horizontal plane are calculated
84. 250 m WATERLINE LENGTH Lvl 178 250 m BEAM 25 400 m Ti AP Mr Dr 3159 m AREA COEFFICIENT Lpp 0 7107 AREA COEFFICIENT Lwl 0 6977 CENTROID TO 80 471 m 17 029 4 02 5 Lpp 2 CENTROID REAR SECTION 83 721m 5 404 mor 3 03 191 2 DISPLACEMENT VOLUME 24095 n3 MASS ERE LOCA 24698 ton BLOCKCOEFFICIENT Lpp 0 5706 BLOCKCOEFFICIENT 11 0 5602 CENTROID TO A P P 84 941 m 2 559 mor 1 46 5 Lpp 2 CENTROID TO REAR SECTION 88 191 m 0 934 mor 0 52 141 2 CENTROID TO WATERLINE 4 300 n CENTROID TO KEELLINE 5 200 m MIDSHIP SECTION COEFFICIENT 0 9676 LONG PRISMATIC COEFFICIENT 0 5897 VERT PRISMATIC COEFFICIENT 0 8029 RATIO 1 6 890 RATIO 1 7 018 RATIO B D une 2 674 WETTED SURFACE HULL 5334 m2 STABILITY PARAMETERS NNNNNNNNNNNNNNNNNNINN KB 5 200 n KG iss gray eae 9 550 n 0 050 m KM TRANSVERSE 10 528 m BM TRANSVERSE 5 328 m GM TRANSVERSE 0 978 m KM LONGITUDINAL 212 255 m BM LONGITUDINAL 207 055 m GM LONGITUDINAL 202 705 m This page shows the output of some geometrical data of the underwater hull form as obtained from the hull form data file and the amidships draft and trim defined in the input data file The waterline length Lw is
85. 262 404 195 5 6 263E 03 149 6 1 433 2 416 3 300 5 910E 02 105 7 2 063 02 293 8 3 317 03 349 0 3 292 02 177 7 5 638 04 199 5 3 428 03 190 8 1 467 2 472 3 421 5 277E 02 130 5 2 984402 324 5 2 8398403 352 4 3 234 02 239 8 3 884E404 205 9 3 669 03 286 3 1 500 2 528 3 544 5 132E 02 161 3 3 687402 339 7 2 173 403 360 0 3 2218402 287 3 2 211E404 218 1 6 511 03 323 9 This page shows the output of the frequency characteristics of the internal loads of the ship in a cross section defined in the input data file as a function of WAVE FREQ o SORT SL WL NL A and ENC FREQ AMPL is the response amplitude operator or transfer function of the loads with a dimension depending on KPR 4 PHASE is the phase lag of the loads in degrees relative to the wave elevation in the centre of gravity G 89 Frequency Characteristics of Local Motions KPR 4 1 and NPTS gt 0 ITTC ship 8 175 Test of program SEAWAY release 4 18 FREQUENCY CHARACTERISTICS OF MOTIONS POINTS NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN POINT NR 01 X APP 148 750 m Y CL 12 000 1 BL 24 000 n WAVE SQRT FREQ SL WL FREQ AMPL PHASE r s z s m m deg 200 0 337 0 236 0 642 91 2 233 0 393 0 283 0 603 90 3 267 0 449 0 331 0 528 90 2 300 0 506 0 382 0 449 91 1 333 0 562 0 434 0 376 93 9 367 0 618 0 489 0 289 101 4 400 0 674 0 545 0 225 115 8 433 0 730 0 604 0 190 142 3 467 0
86. 3 2 or 2 Reflection of coefficients non dimensionalised by the parameters p V g and B 2 see section 5 2 KPR 3 3 or 3 Reflection of coefficients non dimensionalised by the parameters V g and Lpp see section 5 2 KPR 3 4 or 4 Reflection of coefficients non dimensionalised by the parameters V and Lpp see section 5 2 The sign of KPR 3 arranges in which term of the equations of motion the solid mass is included in the output KPR 3 lt 0 Solid mass is included in the spring coefficient 3 gt 0 Solid mass is included in the mass coefficient Generally it is advised to use KPR 3 0 4 is the code for printing output of the transfer functions KPR 4 0 No reflection of the transfer functions 4 1 1 Reflection of dimensional transfer functions for a harmonic wave with an amplitude of 1 0 meter see section 5 2 KPR 4 20r42 Reflection of non dimensional transfer functions see section 5 2 For KPR 4 0 possible negative added resistance values are set to zero Generally it is advised to use KPR 4 2 5 is the code for printing output of spectral energy distributions KPR 5 0 No reflection of energy distributions 5 1 1 Reflection of energy distributions of the basic motions surge sway heave roll pitch and yaw and the added resistance due to waves 5 2 2 Reflection of energy distributions of the displac
87. 3 35 11 15 x 1 52 1 80 meter JOURNEE 034 Reefer Ship 150 00 21 00 x 7 00 7 50 meter Hull Form JOURNEE 033 Hull Form JOURNEE 034 JOURNEE 035 Drilling Vessel 137 06 x 27 00 7 22 11 00 meter JOURNEE 036 Drilling Vessel 151 26 x 27 36 9 20 13 00 meter Hull Form JOURNEE 035 Hull Form JOURNEE 036 137 M N es ee 2 22 JOURNEE 037 Trawler 36 30 8 36 2 73 2 85 meter JOURNEE 038 Barge 234 20 x 43 20 x 14 99 23 20 neter Hull Form JOURNEE 037 Hull Form JOURNEE 038 JOURNEE 039 High Speed Vessel 28 00 4 88 x 1 18 1 18 meter Hull Form JOURNEE 039 Hull Form JOURNEE 040 T T JOURNEE 041 Container Ship 275 00 x 36 00 x 12 90 12 90 meter JOURNEE 042 Container Vessel 270 00 32 20 x 10 85 10 85 meter Hull Form JOURNEE 041 Hull Form JOURNEE 042 138 JOURNEE 043 Heavy Lift Vessel 270 00 32 22 7 60 10 00 meter Hull Form JOURNEE 043 Sw JOURNEE 045 FPSO Vessel 200 31 38 00 x 8 00 8 00 meter Hull Form JOURNEE 045 JOURNEE 047 Tanker 207 42 42 00 8 87 12 56 meter
88. 4 8 411E 09 2 M1EH6 0 000 01 0 000 01 6 2 004 8 2668406 3 226 004 1 083 09 1 7428 16 0 000E 01 1 886 01 633 2 021 5 302E 06 3 222 004 6 999 10 1 027E 16 0 000E 01 2 896 05 667 1 936 3 811 06 3 3168 04 8 3428 10 3 576E415 1 729 00 2 3318 04 vl 1 792 2 823E 06 3 2948 04 2 756E 10 2 663E 15 1 291 00 8 458E 04 733 1 619 1 896406 3 208E 04 1 357E 10 2 481E 15 2 832E 01 2 088E 03 4167 1 439 1 095406 3 154E 04 9 567 09 2 352E 15 5 351 03 4 1048 03 8 1 266 5 884405 3 2528404 7 797E409 2 166E 15 5 490 01 6 943 03 833 1 105 4 055E 05 3 586E 04 6 404E 02 0 000E 01 4 230E 01 1 057E 02 867 960 5 094 05 3 826404 1 647E 01 0 000E 01 1 832E 02 1 490 02 9 833 7 963 05 3 706E 04 3 145E 01 0 000E 01 0 000 01 0 000 01 933 721 1 094E 06 3 397 04 5 105E 01 1 983E 06 0 000 01 0 000 01 967 625 1 279 06 1 028 01 7 473E 01 1 786 06 0 000 01 1 062 01 1 0 542 1 302 06 4 851 01 1 0188400 1 0648406 0 000 01 4 295E 02 1 033 471 1 179E 06 1 0018 02 1 3158 00 6 1408405 0 000 01 8 787 03 1 067 409 9 469405 1 618 902 1 630E 00 2 416E 05 0 000 01 1 880E 04 1 1 357 7 035E 05 2 126 402 0 000E 01 5 857E 04 0 000 01 4 663 05 1 133 312 5 006E 05 1 952E 02 0 000E 01 5 1318 04 0 000 01 3 516E 06 1 167 2713 4 186E 05 2 122 402 3 237E 08 4 407 04 5 259 00 1 132 06 1 2
89. 4 6 21 4 90 7 75 68 7 02 0 81 8 16 4 18 7 57 61 6 77 0 63 7 44 3 47 7 24 0 94 6 75 0 58 7 03 3 01 6 55 6 10 8 30 88 7 17 1 22 8 69 5 65 7 77 77 6 88 0 88 7 91 4 56 7 42 1 20 6 87 0 81 7 57 3 86 6 78 7 45 8 85 1 09 7 34 1 75 9 22 7 22 7 97 93 6 99 1 19 8 36 5 69 7 57 1 44 6 98 1 10 8 09 4 72 6 96 8 70 9 30 1 27 7 51 2 29 9 66 8 61 8 13 1 06 7 08 1 49 8 72 6 65 7 69 1 65 7 05 1 37 8 52 5 43 7 08 10 25 9 65 1 50 7 67 2 93 10 0 10 2 8 26 1 23 7 15 1 84 9 00 7 77 7 77 1 89 7 10 1 70 8 86 6 28 7 16 IP E VERTICAL RELATIVE MOTIONS SLAMMING DEFINED BY SIGNIFICANT VALUES OF EXCEEDING BOW EMERGENCE AND SEA DISPLACEMENT VELOCITY vespa Bl oss VELOCITY PRESSURE HEIGHT PER AMPL PER AMPL PER PROB NR H PROB NR H PROB NR H m s m s ms s s 1 1 s 1 1 8 1 h 1 10 5 35 0 64 3 65 0 62 3 16 0 0 0 0 0 1 20 5 45 0 72 3 77 0 69 3 25 0 0 0 0 1 40 5 55 0 86 3 90 0 82 3 35 0 0 0 0 1 70 5 60 1 07 3 96 1 01 3 40 0 0 0 0 2 15 6 00 1 54 4 49 1 38 3 84 0 0 0 0 2 90 6 65 2 46 5 23 2 10 4 55 0 0 0 0 3 75 7 20 3 49 5 70 2 89 5 04 0 0 0 0 0 4 90 7 75 4 78 6 05 3 88 5 42 0 0 1 0 0 1 6 10 8 30 6 03 6 31 4 83 5 71 3 1 8 4 19 7 45 8 85 7 29 6 51 5 78 5 93 2 1 8 10 2 3 10 3 8 70 9 30 8 34 6 65 6 55 6 08 2 1 3 4 4 24 3 5 4 24 1 10 25 9 65 9 60 6 74 7 51 6 17 1 0 5 6 9 4 50 10 9 48 3 This page shows the output of the significant amplitudes and average periods of the mot
90. 40 5 55 6 880 02 3 73 9 038E 02 4 55 1 374E 03 3 00 3 142 03 4 61 2 092E 04 2 59 2 497E 04 4 53 1 70 5 60 8 388 402 3 76 1 112 03 4 58 1 670E 03 3 03 3 868E 03 4 64 2 523E 04 2 60 3 075 04 4 57 2 15 6 00 1 085E 03 3 98 1 531E 03 4 81 2 1538 03 3 31 5 3328 03 4 86 3 0308 04 2 73 4 267E 04 4 82 2 90 6 65 1 4778 03 4 30 2 2178 03 5 11 3 055E 03 3 87 7 675E 03 5 12 3 781E 04 2 94 6 260 04 5 16 3 75 7 20 1 881E 03 4 55 2 908E 03 5 31 4 098E 03 4 33 9 964 403 5 28 4 597E 04 3 13 8 2898404 5 39 4 90 7 75 2 3838803 4 76 3 1458403 5 48 5 4508403 4 75 1 2688 04 5 41 5 660E 04 3 32 1 076805 5 58 6 10 8 30 2 841 03 4 94 4 507E 03 5 63 6 768 03 5 09 1 512 04 5 52 6 642E 04 3 50 1 303 05 5 74 7 45 8 85 3 294E 03 5 10 5 250E 03 5 75 8 1038403 5 37 1 7548 04 5 64 7 642E 04 3 68 1 525805 5 87 8 70 9 30 3 669E 03 5 22 5 860 03 5 84 9 216E 03 5 56 1 967 04 5 76 8 4918404 3 81 1 708 05 5 96 10 25 9 65 4 1578403 5 29 6 647E 03 5 90 1 058 04 5 69 2 257E 04 5 89 9 618E 04 3 90 1 942E 05 6 03 This page shows the output of the significant amplitudes and average periods of the internal loads in a cross section of the ship as a function of the sea state parameters HEIGHT H and PER 77 or 72 depending on the sign of KSEA AMPL is the significant amplitude 2 of the loads in Nm or kNm depending on RHO p PER is the average period of the loads in seconds Depending on the sign of KSEA this
91. 401 7 0 8 9 52 5 1 8408402 9 3 9 3 61 25 1 8708402 9 8 9 6 64 031 1 927E402 9 959 9 632 70 0 2 050E 02 10 3 9 7 78 75 2 0808402 10 3 9 7 87 125 2 0998402 10 3 9 1 87 5 2 100E 02 10 3 9 7 96 25 2 050E 02 10 3 9 6 105 0 2 140E 02 10 3 9 4 110 219 1 943 02 10 002 9 102 113 75 1 810E 02 9 8 8 9 122 5 1 620E 02 10 4 8 0 131 25 1 280E 02 10 5 7 0 133 312 1 202E 02 10 406 6 835 140 0 9 500E 01 10 1 6 3 148 75 9 0008401 10 0 5 5 156 406 7 337 01 9 475 4 888 157 5 7 100E 01 9 4 4 8 166 25 5 200 01 11 0 4 2 170 625 4 200 01 11 4 3 0 175 0 3 3008401 12 5 2 3 179 5 2 200 01 12 5 0 4 MASS ton 23959 KG m 9 537 APP CoG m 85 25 k xx m 8 331 k yy m 42 015 k zz m 42 015 VERTICAL STILL WATER LOADS SHEAR BENDING X APP FORCE MOMENT m kN kNm 131 250 7 977 03 2 569E 05 This page shows the original and the adapted load distribution data and the calculated vertical still water loads in a selected cross section The vertical distances are given with respect to the base line The data given for the original distribution are those obtained from the input data file The sectional mass data are modified to satisfy the volume of displacement and the longitudinal position of the centre of buoyancy Because KTUN 1 KTUN 2 and KTUN 3 are set to 1 also the sectional masses the KG data and the k data are modified to satisfy also the overall MODIFIED DISTRIBUTION MASS
92. 4300 9 5000 0 8500 10 2500 1 9700 11 0000 2 8300 0 00 6 0 0000 8 7200 0 0000 8 8600 0 2600 9 0000 0 6500 9 2500 1 0800 9 5000 1 5500 10 2500 2 5500 11 0000 3 3900 0 50 6 0 0000 8 2000 0 0000 8 5000 1 0500 9 0000 2 1900 9 2500 2 6300 9 5000 3 0700 10 2500 4 1400 11 0000 4 9500 1 00 12 0 0000 23 0 0000 0 0000 0 5000 0 3200 1 0000 3 0000 0 6500 4 0000 0 7300 5 0000 7 0000 1 3100 8 0000 2 2000 9 0000 1 0000 6 2700 2 00 14 0 0000 0 0000 0 0000 0 0000 0 1500 0 0100 1 0000 1 3600 2 0000 1 8500 3 0000 5 0000 2 8800 6 0000 3 4500 7 0000 9 0000 6 4800 10 0000 7 5600 11 0000 3 00 14 0 0000 0 0000 0 0000 0 0100 0 2700 0 0200 1 0000 2 4300 2 0000 3 2700 3 0000 5 0000 5 0800 6 0000 5 8600 7 0000 9 0000 8 6700 10 0000 9 5200 11 0000 4 00 14 0 0000 0 0000 0 0000 0 0100 0 5100 0 0300 1 0000 3 7300 2 0000 4 9100 3 0000 5 0000 7 3700 6 0000 8 1700 7 0000 9 0000 10 3500 10 0000 10 9500 11 0000 5 00 14 0 0000 0 0000 0 0000 0 0300 0 9600 0 0500 1 0000 5 3000 2 0000 6 7500 0000 5 0000 9 4000 6 0000 10 1400 7 0000 9 0000 11 5100 10 0000 11 8500 11 0000 6 00 14 0 0000 0 0000 0 0000 0 0500 1 6700 0 0900 1 0000 7 1500 2 0000 8 6400 3 0000 5 0000 10 9600 6 0000 11 4200 7 0000 9 0000 12 2800 10 0000 12 4300 11 0000 7 00 14 0 0000 0 0000 0 0000 0 0800 2 9100 0 1600 1 0000 9 0700 2 0000 10 1400 3 0000 5 0000 11 9800 6 0000 12 2400 7 0000 9 0000 12 6300 10 0000 12 6500 11 0000 8 00 14 0 0000 0 0000 0 0000
93. 4560 0000 0000 1670 0000 0000 0990 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0830 0000 7940 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 7940 0000 0830 0000 7250 0000 1500 0000 7250 0000 0830 0000 7940 0000 0000 0000 0000 0000 0000 27 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1670 0000 0990 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0990 0000 1670 0000 4560 0000 3000 0000 4560 0000 1670 0000 0990 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00
94. 5000 0 5000 0 5000 Figure 8 shows a semi submersible as used by Pinkster 1980 in his Doctor s Thesis SEMI SUBMERSIBLE N LENGTH 100 0 m BREADTH 76 0m DRAFT 200m DISPLACEMENT 35925 m Figure 8 Semi Submersible as used by J A Pinkster 1980 The hull form file of this semi submersible reads as follows 4 19 Semi Sub JAP 100 00 x 16 00 x 20 00 20 00 meter 20 0000 0 0000 100 0000 0 0000 38 3 1500 3 1500 0 0000 0 0000 1 5750 1 5750 3 1500 3 1500 1 5750 1 5750 0 0000 0 0000 12 4000 12 4000 0 0000 0 0000 1 5750 1 5750 3 1500 3 1500 1 5750 1 57 50 0 0000 0 0000 12 4000 12 4000 0 0000 0 0000 1 5750 1 550 3 1500 3 1500 1 25 150 1 5750 0 0000 0 0000 3 1500 3 1500 2 0 00 8 30 0000 0 0000 0 0000 0 0000 4 0000 0 0000 8 0000 4 0000 8 0000 8 0000 8 0000 8 0000 4 0000 8 0000 0 0000 14 0000 0 0000 20 0000 0 0000 0 50 8 30 0000 0 0000 0 0000 0 0000 4 0000 0 0000 8 0000 4 0000 8 0000 8 0000 8 0000 8 0000 4 0000 8 0000 0 0000 14 0000 0 0000 20 0000 0 0000 0 99 8 30 0000 0 0000 0 0000 0 0000 4 0000 0 0000 8 0000 4 0000 8 0000 8 0000 8 0000 8 0000 4 0000 8 0000 0 0000 14 0000 0 0000 20 0000 0 0000 1 00 8 30 0000 0 0000 0 0000 0 0000 4 0000 0 0000 8 0000 4 0000 8 0000 8 0000 8 0000 8 0000 4 0000 8 0000 0 0000 14 0000 0 0000 20 0000 0 0000 1 01 8 30 0000 0 0000 0 0000 0 0000 4 0000 0 0000 8 0000 4 0000 8 0000 8 0000 8 0000 8 0000 4 7940 8 0000 1 0990 14 0000 1 0990 20 0000 1 0990 1 25 8 30
95. 576 A 3 7445 1449 1249 0961 0000 2095 1432 0739 0203 0236 0642 0 1028 1225 1262 1 98 oc od 017 0014 0068 0097 0024 0091 0189 0242 0311 0311 0296 0167 0000 0000 0000 L 1 a lt a t ce 1 coco A 11 ce ce cR 1 te r a CO C5 S lt c SEAWAY 4 18 Date 09 10 1999 23 17 A 13 1 1 A 15 L o 1 i A 17 L cod 1 a CO S A 19 L o oce cR Page 7 RMS m This output data page shows the output of the close fit conformal mapping data M S M is th
96. 59 060 Legend 5 University of Rijeka Croatia 5 Polytechnics of Dubrovnik Croatia 5 Yildiz Technical University Istanbul Turkey S Licensee of the parent program SEAWAY Sd Licensee of a derivative version of program SEAWAY for instance a hydromechanic pre processing program for time domain calculations Apart of these licensees the SEAWAY programs are and have been used temporarily by and for a large number of other mostly small companies 10 2 Installation and Use To install the programs of the SEAWAY package in the computer system it is advised to create a new directory for instance C SEAWAY for this Then copy the SEAWAY ZIP file to this new directory and open it there This file contains e README DOC a Word 97 file with brief information about the SEAWAY package installing it and its modifications with respect to earlier releases MANUAL DOC and APPENDIX OF MANUAL DOC this user manual SEAWAY L EXE the Lewis hull form creator SEAWAY H EXE the hull form controller SEAWAY E EXE the input editor of SEAWAY SEAWAY EXE the ship motions program SEAWAY LEWIS INP an input data file for SEAWAY L LEWIS HUL an output data file of SEAWAY L which is also a hull form input data file for SEAWAY SHIP HUL a hull form input data file for SEAWAY SHIP INP an input data file for SEAWAY SHIP OUT an output data file of SEAWAY SEAWAY an unformatted file which contains the potential co
97. 6 9 500 215 2668 0 9118 11 9114 1 10 1228 0 0796 106 13 00 113 75 11 696 9 500 191 7049 0 8626 11 1416 1 0 0986 0 0488 245 14 00 122 5 10 536 9 500 162 7306 0 8129 10 1961 1 0 0508 0 0175 322 15 00 131 25 8 930 9 500 130 5698 0 7696 9 1230 1 0 0312 40 0101 372 16 140 7 020 9 5 97 7820 0 7331 7 9995 1 0 1550 0 0326 358 17 148 75 5 016 9 5 68 5479 0 7192 6 9913 41 0 3207 40 0382 363 18 157 5 3 052 9 5 44 6091 0 7692 6 2288 1 0 5176 40 0076 326 19 00 166 25 1 541 9 5 27 3320 0 9334 5 7829 1 0 6881 0 0454 222 BULBOUS 19 50 170 625 0 869 9 5 20 8925 1 2657 5 7282 1 0 7534 0 0949 131 BULBOUS 20 175 0 0 085 9 370 14 0285 8 8069 5 8443 1 0 7936 0 1903 291 F BULBOUS This page shows the output of the Lewis conformal mapping data The area coefficients have been obtained with the local area the local breadth on the waterline and the local draft M S Ms is the sectional scale factor of the Lewis coefficients A 1 and A 3 Half the contour of each actual cross section has been divided in 32 intervals of equal length and RMS is the Root Mean Squares of the deviations of these 33 points from the Lewis form Note that instead of these points the sectional breadth draft and area have been used to obtain the Lewis coefficients Note too that for station number 1 00 the area coefficient for obtaining the Lewis coefficients has been increased by SEAWAY from 0 2718 to the minimum required
98. 67 0 955 0 858 9 2368 02 27 4 1 5548403 250 2 3 219 03 193 9 4 795 03 233 5 1 372804 33 9 4 7748404 228 1 600 1 011 0 927 1 0298403 32 6 1 7898403 251 0 2 936E 03 183 4 6 078E 03 237 5 1 743E 04 63 8 5 421E 04 231 4 633 1 067 0 998 1 1098403 39 0 1 9848403 251 2 2 376 403 185 2 1 127 03 240 2 2 493E 04 64 9 5 887E 04 233 7 667 1 124 1 070 1 1548 03 46 7 2 0998403 253 7 2 086 03 194 6 1 631 03 245 2 2 710E 04 60 4 6 067 404 239 3 700 1 180 1 145 1 1638403 56 3 2 143E403 256 6 1 892E 03 204 4 7 760E 03 250 8 2 474E 04 60 2 6 001804 245 1 733 1 236 1 222 1 1368403 68 9 2 1018403 261 3 1 653 03 215 0 1 458 03 259 0 1 947E 04 66 9 5 699 04 253 6 767 1 292 1 301 1 0928 03 85 1 1 9748403 267 5 1 349 03 229 0 6 841 03 269 5 1 269E 04 86 5 5 183E 04 264 2 800 1 348 1 381 1 066 03 104 8 1 763 03 275 8 1 068 03 251 1 6 001 03 282 8 8 853E 03 130 5 4 483 04 277 7 833 1 404 1 464 1 0818 03 126 2 1 491 03 287 2 9 607E 02 285 7 5 084 03 299 8 1 284E404 176 0 3 703 04 295 9 867 1 461 1 549 1 1408403 146 3 1 192 03 303 5 1 169 03 320 3 4 189 403 320 9 2 0598404 195 0 2 974 404 321 0 900 1 517 1 636 1 2068 03 163 9 9 381 02 327 8 1 588 03 342 5 3 393 03 347 3 2 8208404 204 1 2 543E 04 354 7 933 1 573 1 725 1 2388403 179 3 8 241E 02 0 2 2 022 03 356 3 2 859 03 19 7 3 367 04 210 8 2 577 04 30 9 967 1 629 1 816 1 201 03 195 0 8 664E 02 30 9 2 3768403 6 7 2 652 403 55 5 3 618 04 216 8 2 863E
99. 8 79E 01 9 86E 01 533 0 899 0 792 232 85 9 289 261 2 1 257 344 7 995 34 3 1 630 221 3 449 3 2 1 825402 2 085402 567 0 955 0 858 187 86 2 209 258 0 1 332 321 9 900 33 9 1 746 203 9 426 4 9 3 085402 3 57 02 600 1 011 0 927 145 85 9 137 253 9 1 005 287 3 774 33 8 1 606 179 2 386 6 4 3 27 02 3 865402 633 1 067 0 998 105 85 5 76 247 3 450 259 9 648 33 5 1 130 155 7 339 7 5 2 05 02 2 395402 667 1 124 1 070 068 85 0 29 228 2 109 264 0 504 34 8 667 140 6 277 8 8 1 14 02 1 17E 02 700 1 180 1 145 037 85 7 17 128 1 086 4 4 367 36 6 349 132 8 212 10 5 6 865401 5 26E 01 733 1 236 1 222 012 89 3 35 95 7 139 15 7 234 41 3 145 132 5 145 13 6 4 78 01 2 01 01 767 1 292 1 301 006 251 9 045 89 3 151 15 9 118 52 5 031 175 9 083 20 1 3 868401 5 21 800 1 348 1 381 017 257 5 46 87 3 16 14 9 039 106 4 065 266 3 032 43 0 3 488401 8 99E 02 833 1 404 1 464 021 256 0 39 87 1 129 14 3 071 190 0 100 273 2 023 139 2 3 278401 0 00 01 867 1 461 1 549 020 251 7 029 88 4 11 14 0 115 208 0 111 274 2 044 169 6 3 028201 1 10 900 1 517 1 636 015 243 7 017 89 9 093 13 9 138 218 0 105 274 2 054 178 4 2 68 01 3 09 933 1 573 1 725 010 227 5 6 91 0 078 13 8 141 226 6 089 274 2 051 183 8 2 278401 4 48 967 1 629 1 816 006 193 1 3 279 4 068 13 3 129 235 2 068 275 3 039 188 2 1 838401 4 94 1 000 1 685 1 909 005 142 7 8 279 7 63 11 7 105 244 1 047 278 8 022 192 3 1 448 01 4 50E 1 033 1 741 2 003
100. 85 2 000 02 8 800 01 Without internal load calculations this input file reads as follows 4 1 ITTC ship S 175 9 1 9 500 123456 1 00 19 00 19 50 20 00 1 20 0000 1 150 0 2 500 9 550 0 3 5 000 0 450 0 0 2 148 750 175 000 12 2 1 10 1 20 1 40 1 70 2 15 2 90 3 175 4 90 6 10 7 45 8 70 10 25 157 50 Test of program SI 1 0 000 10000 000 1 7 2 10 11 11 11 11 dE 0 200 620 42 000 250 250 105 000 000 24 000 000 13 000 1 120 1 O1 O1 3 End of file 435 45 55 60 00 65 20 75 30 85 30 65 85 2 000 02 8 EAWAY release 4 19 1 0 025E 00 10 4 1 500 0 033333 42 000 800 01 67 4 3 Input Editor SEAWAY E SEAWAY E is an input edit editor which almost replaces the description of the input data in this manual 68 5 Output Data of SEAWAY This chapter describes the ASCII output data file Optionally also an ASCII data file named SEAWAY DAT can be filled by the author with output data in a format defined by the user The user has to inform the author about the required data in this file Exclusive for each individual user these formats can be fixed into program SEAWAY Other programs spreadsheets or plot routines can read this personal SEAWAY DAT file directly Standard the SEAWAY DAT file will be filled with LOTUS or QUATRO PRO data 51 Description of Outp
101. 86 Example of Equation of Motion Coefficients KPR 3 1 ITTC ship 5 175 Test of program SEAWAY release 4 18 SEAWAY 4 18 Date 09 10 1999 23 17 Page 22 MOTION COEFFICIENTS AND WAVE LOADS FORWARD SPEED 20 00 kn NNN NANNY WAVE DIRECTION 150 deg off stern ROLL EQUATION SQRT ENC COUPLING TO 5 ROLLS A Asie COUPLING TO YAW WAVE MOMENT SL WL FREQ MASS DAMPING RESTORING MASS DAMPING RESTORING MASS DAMPING RESTORING AMPL PHASE r s kN s2 n kN s m kN m kN s2 m m kN s m m kN m m kN s2 m m kN s m m en kN m m deg 337 0 236 1 45 7E 04 6 4068401 E 01 1 731 06 6 806 404 2 369E 05 6 186E 05 1 445E405 01 5 449 02 226 9 393 0 283 1 481E 04 1 5958402 E 01 1 734 06 7 749 04 2 369 405 6 664E 05 1 354 405 01 9 241 02 207 1 49 0 331 1 516 04 2 8958402 01 1 738 06 8 374 04 2 369 405 7 278 05 1 228E 05 01 1 527 403 199 6 506 0 382 1 563 04 4 198 02 01 1 742 06 9 183 04 2 369 405 7 976E 05 1 047E405 E 01 2 308 403 194 1 562 0 434 1 694E 04 5 2198402 01 1 746 06 9 867 04 2 369E 05 8 844E 05 5 228E404 E 01 3 772E 03 183 4 618 0 489 1 829E 04 6 2798402 E 01 1 750 06 1 030 05 2 369 05 9 747 05 2 137 03 01 5 391 03 182 4 674 0 545 2 008E 04 2 159E 02 E 01 1
102. 8649 6548 0355 7265 3758 5649 5436 8302 3754 1924 8856 2270 7685 9614 1278 1 1 1 AAR End of tale The results of this file are presented below The following figure shows the distribution of the breadth draft and area of the cross sections over the ship length B m d m 25 25 250 Cross Sectional 20 20 N 8 15 0 t u aaa T lt 5 t amp 10 10 o SL Bek SEO Section Numbers Figure 11 Required Sectional Information for Lewis Forms The original and the Lewis hull forms are given below M N y 7 1 S p e QQ IN J yy ek EIER Original E Form Lewis Hull Form Figure 12 Creation of Lewis Hull Forms 41 3 5 Offsets Controller SEAWAY H The hull form data file contains all information about the geometry of the underwater hull form at a maximum load of the ship This file can be made manually with a normal editor Also use can be made of a digitizer The hydrostatic PIAS program of SARC also delivers the hull form file Especially when creating the hull form data file manually errors in the offsets are possible An effective visual control of the input data can be obtained by plotting these offsets on the display of the computer This control can be carried with the hull form controller SEAWAY H
103. 974 and this non potential part is kept constant in the whole frequency range 56 AO 3 2 0 0024 L B 4r r 2 3 L L 0 00085 e Ze Fe Ls n B GM C C C with roll amplitude in radians V Fn La r distance of O in water plane to bilge V volume of displacement Lpp B d Cp C Miller extra additional coefficient Then 2 Naa BT 0 Ny Qa N co N4 03 0 Kyrie N 44 In the original definition of Miller 1974 is 71 0 According to one experienced user of SEAWAY Miller s method has to be used in SEAWAY for more or less slender conventional hull forms with C miner 4 85 3 00 4 gun si KRD 4 see Figure 17 d Input of a discrete relation for each forward ship speed see Figure 17 4 A maximum number of NPTK 6 points per input ship speed is permitted A linear interpolation is used between these points and outside these points k is taken as constant value so If lt 9 1 then xlo x 1 If 6 1 lt NPTK then by linear interpolation If gt NPTK then Then the total roll damping is determined by 2pgV GM 0 BET o 0 57 Natural Rol KRD i or 2 Natural Rol KRD 9 4 Coeff 1 N 2 gt o io
104. D potential coefficients by However NFR deviations at so called free choice cross sections are allowed Particularly this can be of interest for submerged cross sections at the bulbous bow at the aft body and for semi submersibles 48 When this option is not used the parameter has to be zero If NFR gt 0 New line For I 1 NFR SNRFR I KNRFR I 5 1 is the station number of free choice cross section which has to correspond with one of the station numbers SNR J in the hull form data file KNRFR is the deviating KCOF code for cross section SNRFR I New line NV For K 1 NV VK K NV is the number of forward ship speeds 1 lt NV lt 5 VK K is the forward ship speed in knots If a negative ship speed is input so VK K 0 the program uses the absolute input value as the Froude number Fn The forward ship speed in knots will be calculated from this Froude number by VK K Fn N 9 1 0 5144 NWD For L 1 NWD WAVDIR L NWD is the number of wave directions 1 NWD lt 19 WAVDIR L is the wave direction 7 so the propagation of the waves measured counter clockwise relative to the ship s forward speed vector in degrees see Figure 15 The wave directions are defined by any value between 0 and 360 Following waves is 07 or 360 and head waves is 180 In following waves near zero frequency of encounter problems can be solved by forcin
105. DIST J Read error SNR J NWL J Read error Y J I Z J I I20 NWL J Read error 2 J I Y J I I 0 NWL J Read error XS YS ZS Input error return messages and runtime read error messages with respect to the input data file are given by e Input error KPR 1 out of range e Input error KPR 2 out of range e Input error KPR 3 out of range e Input error KPR 4 out of range e Input error KPR 5 out of range e Input error DEPTH less than 1 05 DRAFT e Input error KTH out of range e Input error MSER out of range e Input error KCOF out of range e Input error NFR out of range e Input error SNRFR I does not exist e Input error KNRFR I out of range e Input error NV out of range e Input error NWD out of range e Input error FREQMAX less than zero e Input error KOMEG out of range e Input error OMMIN less than lt 0 010 e Input error OMMAX less than OMMIN e Input error OMINC equal to zero 103 Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Read Read Read Read Read Read Read Read Read Read Read Read Read Read Read Read Read Read Read Read Read Read error error error error error error error error error error error error error error Error error error error error
106. Folder Options Tab View Hidden Files Show all Files Messages with error 3012 are caused by too low a nn value in the statement Files nn in the CONFIG SYS file Note for Windows2000 and WindowsNT The ANSI SYS file in directory C WINNT SYSTEM32 has to be called in the CONFIG NT file in this directory Additionally a new Sentinel System Driver 5 39 should be downloaded from http www rainbow com tech download html The huge downloaded file RainbowSSD539 exe 3 7 Mb installs this driver easily An LPT port must be available After these modifications Restart your computer A typical error after calling SEAWAY is reflected on the screen by 123 7m 02 04H PROGRAM SEAWAY Om 1m 02 67HRelease 4 19 Om 03 67 12 02 2001 1m 20 53HUse licensed only to Om 21 53HDelft University of Techn 22 53HShiphydromech Laboratory 23 53H 1m 24 53H Journ e Om 011 01 01H 04 04HDefault drive and directory will be used for data files Im 05 04HPre ss ENTER to continue Om A missing ANSI SYS statement in the CONFIG SYS file causes this error After calling for SEAWAY the display asks for three file names to be entered by the keyboard e the name of the hull form data file this file contains all information about the geometry of the underwater part of the hull of the fully laden ship 12 e the name of the input data file this file contains information about the actual loading of the ship the forward ship
107. G DAMPING ROLAMP 5 000 deg WAVE AMPLITUDE FOR LINEARISATION WAVAMP 1 250 m HEIGHT OF BILGE KEEL HBK 0 450 m DISTANCE OF A P P TO AFT END 61 25 m DISTANCE OF A P P TO FORWARD END B K XBKF 105 00 m CODE OF ANTI ROLL DEVICES KARD NUMBER OF LINEAR SPRINGS NCAB NUMBER OF DISCRETE POINTS NPTS 2 COORDINATES OF POINTS m PTSXYZ 148 75 12 00 24 00 175 00 5 00 13 00 NUMBER OF SEA STATES 12 CODE OF IRREGULAR SEA DESCRIPTION KSE 2 WAVE HEIGHTS m HW K PERIODS s TH K 1 10 5 35 1 20 5 45 1 40 5 55 1 70 5 60 2 15 6 00 2 90 6 65 3 75 7 20 4 90 7 15 6 10 8 30 7 45 8 85 8 70 9 30 10 25 9 65 INPUT CODE OF CRITERA FOR SHIPMOTIONS KRIT 1 DISTANCE OF SLAMPOINT BEFORE A P P SLAML 157 50 m CRITICAL VERTICAL RELATIVE VELOCITY SLAMV 3 85 m sec SLAMMING PRESSURE COEFFICIENT SLAMC 2 000E 02 CRITICAL SLAMMING PRESSURE SLAMP 8 800E 01 kN m2 79 Geometrical Hull Form Data and Stability Parameters KPR 2 1 ITTC ship 5 175 Test of program SEAWAY release 4 18 SEAWAY 4 18 Date 09 10 1999 23 17 Page 4 GEOMETRICAL HULLFORM DATA NNNNNNNNNNNNNNNNNNNNNNNNN ACTUAL MIDSHIP DRAFT T 9 500 n ACTUAL TRIM BY STERN 0 000 n LENGTH BETWEEN PERPENDICULARS Lpp 175 000 n REAR SECTION TO 3
108. Hull Form JOURNEE 047 FF AN E Sai as JOURNEE 044 Container Ship 175 00 x 25 40 x 9 50 11 00 neter Hull Form JOURNEE 044 JOURNEE 046 Train Unit Loader 134 00 28 69 x 7 60 7 60 meter Hull Form JOURNEE 046 JOURNEE 048 011 Polution Fighter 51 00 9 05 x 3 25 3 25 neter Hull Form JOURNEE 048 139 JOURNEE 049 Submarine Rescue Vessel 77 75 x 16 00 5 00 5 00 m JOURNEE 050 Fast Freighter 152 50 22 82 x 9 14 9 14 meter Hull Form JOURNEE 049 Hull Form JOURNEE 050 JOURNEE 051 Research Vessel 27 60 8 35 2 90 4 40 meter JOURNEE 052 Sail Yacht 10 00 3 20 0 29 0 80 meter Hull Form JOURNEE 051 Hull Form JOURNEE 052 JOURNEE 053 Sail Yacht 10 00 x 2 24 x 0 91 0 91 meter JOURNEE 054 Sail Yacht 10 00 x 3 65 x 0 35 0 35 meter Hull Form JOURNEE 053 Hull Form JOURNEE 054 140 PT JOURNEE 055 Cutter Suction Dredger 90 26 x 19 00 4 60 7 60 meter JOURNEE 056 Crane Vessel 298 33 80 00 14 00 15 69 meter Hull Form JOURNEE 055 Hull Form JOURNEE 056 JOURNEE 057 Ro Ro Vesse
109. IS 027 Hull Form VERSLUIS 028 Z Epp VERSLUIS 029 Heavy Lift Vessel 134 00 x 28 00 x 7 00 8 50 meter VERSLUIS 030 Bulkcarrier 167 00 x 22 86 10 87 13 00 meter Hull Form VERSLUIS 029 Hull Form VERSLUIS 030 125 UERSLUIS 031 Container Ship 247 00 32 26 x 12 00 14 50 meter VERSLUIS 032 Ferry 122 50 x 18 70 6 70 8 00 meter Hull Form VERSLUIS 031 Hull Form VERSLUIS 032 VERSLUIS 033 Tug Boat 17 00 4 99 1 40 1 70 meter UERSLUIS 034 Sail Yacht 10 00 3 20 0 79 0 95 meter Hull Form VERSLUIS 033 Hull Form VERSLUIS 034 wD VERSLUIS 036 Shallow Draft Tanker 211 00 39 00 x 12 50 15 00 Hull Form VERSLUIS 035 Hull Form VERSLUIS 036 126 032 Ro Ro Vessel 198 80 32 24 9 09 ERSLUIS 032 11 00 meter Hull Form VERSLUIS 037 way Coaster LUIS 039 Inland Wate 60 00 x 11 30 3 80 4 50 Hull Form VERSLUIS 039 ht 941 Ro Ro Vessel 116 50 20 42 6 00 7 VERSLUIS 042 Trawler 8 00 x 2 90 3 50 meter Hull Form VERSLUIS 041 Hull Form VERSLUIS 042
110. K e Error in subroutine SOLVE in CHARMOT These singularity error messages have not been arisen so far but if one of these serious error messages appear mail the error message together with the hull form and input data files to the author e mail J M J Journee wbmt tudelft nl 107 108 Operability Limiting Criteria For the theory behind the motion phenomena which are related to operability limiting criteria for ships reference is given here to Journee 2001b the Theoretical Manual of SEAWAY Often operability limiting criteria are expressed as RMS Root Mean Square values which are commonly used in offshore practice It may be stipulated here that the RMS value of a signal s t is equal to the variance o of this signal or equal to half the significant amplitude 841 3 thus Sl RMS PRAE If the short term probability P of exceeding a threshold value a by a motion s is known ED Pts gt a P ex Os this threshold value for instance a required minimum freeboard can simply be found from the output of SEAWAY by en 051 Ini 2 3 2 71 Definitions Firstly some phenomena related to operability limiting criteria have to be defined For the definitions and an inclusion or exclusion of a static and or a dynamic swell up of the water surface reference is given to the Theoretical Manual 7 1 1 Shipping Water Shipping water is defined as exceeding the l
111. KG k xx ton m m m 4 020E 01 12 428 0 366 4 440E 01 11 425 0 549 4 756801 11 425 0 731 5 158401 10 323 1 097 6 017E 01 8 318 2 103 8 405E 01 7 216 3 109 1 3188402 5 512 4 937 1 3088402 5 540 4 991 1 0648402 6 214 6 309 6 6508401 7 316 7 406 8 9118401 7 112 7 902 9 9608401 7 016 8 137 1 9108402 9 321 8 503 1 938E 02 9 822 8 771 1 9958402 9 981 8 806 2 1208 02 10 323 8 869 2 147 02 10 323 8 869 2 164 02 10 323 8 869 2 1658 02 10 323 8 869 2 110802 10 323 8 717 2 199402 10 323 8 595 1 994E402 10 024 8 322 1 855402 9 822 8 131 1 6568402 10 423 7 314 1 302802 10 523 6 400 1 221E 02 10 429 6 249 9 640801 10 122 5 760 9 1598401 10 022 5 029 TAT6E 01 9 496 4 469 7 2358401 9 421 4 389 5 310801 11 024 3 840 4 2968801 11 425 2 743 3 385 01 12 528 2 103 2 268 01 12 528 0 366 MASS ton 24698 KG m 9 550 APP CoG m 84 941 k xx m 7 620 k yy m 42 000 k zz m 42 000 input values KG and k of the ship 81 SEAWAY 4 18 Date 09 10 1999 23 17 I xx 1 434E 06 ton m2 I yy 4 357 07 ton m2 I zz 4 357E 07 ton m2 I xz 1 028 406 ton m2 I zx 1 028 406 ton m2 Page 5 Lewis Conformal Mapping Coefficients KPR 2 1 ITTC ship 5 175 Test of program SEAWAY release 4 18 SEAWAY 4 18 Date 09 10 1999 23 17 Page 6 TWO PARAMETER LEWIS CONFORMAL MAPPING COEFFICIENTS NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN STATION X APP HALF HALF DRAFT AREA AREA M S A 1 Al A 3 RMS H
112. MPL PHASE AMPL PHASE z s 1 8 kN m deg kN m deg kN m deg kNm m deg kNm m deg kNm m deg 200 0 337 0 236 3 918 01 117 6 2 363 01 41 4 1 262 02 31 6 5 1998402 209 0 3 296 03 209 1 9 181E 02 69 8 233 0 393 0 283 5 2908401 113 7 6 508 01 36 2 1 1668 02 11 8 1 434803 200 5 3 193 03 199 2 2 744E 03 62 8 267 0 449 0 331 5 808E 01 87 5 2 030 02 14 6 1 038E 02 333 3 4 444 03 188 7 2 758E 03 183 6 7 231 403 40 7 300 0 506 0 382 7 7068 01 56 1 4 741 02 290 3 1 537 02 279 4 9 3178 03 110 6 2 131 03 148 0 1 484 04 310 1 333 0 562 0 434 1 1068 02 37 6 3 280 02 248 2 2 9688402 252 7 5 226 03 73 3 2 796E 03 94 0 9 347 03 255 9 367 0 618 0 489 1 8198402 24 8 3 363 02 246 4 5 263E402 238 5 3 556 03 71 0 5 004E 03 62 5 1 008 04 242 4 400 0 674 0 545 2 688E 02 18 8 3 907 02 243 0 8 287E 02 230 7 2 507 03 74 1 8 087E 03 48 4 1 168 04 225 4 433 0 730 0 604 3 838E 02 17 4 5 449 02 247 0 1 2188403 224 7 1 479 03 86 2 1 155E 04 38 5 1 696 404 225 7 467 0 786 0 665 5 1528402 18 0 7 2918402 247 9 1 694 03 219 6 7 234 02 147 3 1 480 04 31 5 2 262E 04 222 1 500 0 843 0 727 6 5528 02 20 2 9 9438 02 249 4 2 257 03 213 8 1 697 03 214 8 1 699E 04 25 6 3 091E 04 223 9 533 0 899 0 792 7 9648402 23 5 1 2688403 250 3 2 850 03 205 6 3 193 03 227 9 1 673 04 22 6 3 920E 04 226 3 5
113. RADIUS OF INERTIA k zz GYR 3 42 000 m NUMBER OF LOAD CALCULATION SECTIONS NBTM 1 LOCATIONS FORWARD A P P AND ABOVE BASE m 131 25 9 55 NUMBER OF LOAD INFORMATION SECTIONS NSM 21 SECTIONAL SECTIONAL SECTIONAL MASS KG k xx n ton n n n 5 25 3 9008401 12 4 0 4 3 25 4 300401 11 4 0 6 1 625 4 600401 11 4 0 8 0 0 5 0008401 10 3 1 2 4 315 5 800E 01 8 3 2 3 8 75 8 100E401 152 3 4 17 5 1 270402 5 5 5 4 26 25 1 020402 6 2 6 9 35 6 300E 01 1 3 8 1 43 75 9 5008401 7 0 8 9 52 5 1 408402 9 3 9 3 61 25 1 870402 9 8 9 6 70 2 0508402 10 3 9 1 18 15 2 0808402 10 3 9 7 87 5 2 1008 02 10 3 9 7 96 25 2 0508 02 10 3 9 6 105 2 140802 10 3 9 4 113 75 1 810E402 9 8 8 9 122 5 1 620E402 10 4 8 0 131 25 1 280E 02 10 5 7 0 140 9 5008401 10 1 6 3 148 75 9 0008401 10 0 5 5 157 5 7 100E 01 9 4 4 8 166 25 5 2008401 11 0 4 2 170 625 4 200E401 11 4 3 0 175 0 3 3008401 12 5 2 3 179 5 2 2008401 12 5 0 4 TUNE CODE SECTIONAL MASSES KTUN 1 1 TUNE CODE SECTIONAL VERTICAL C G KTUN 2 1 TUNE CODE SECTIONAL k xx KTUN 3 1 78 Reflection of Input Data KPR 1 1 Continued ITTC ship 5 175 Test of program SEAWAY release 4 18 SEAWAY 4 18 Date 09 10 1999 23 17 Page 3 INPUT DATA continued NNNNNNNNNNNNNNNNNNNNNN CODE OF ROLL DAMPING INPUT KRD 3 ROLL AMPLITUDE FOR PRINTIN
114. RM ARIEPS K L is the 1 phase lag in degrees between the anti roll moment and the angular roll displacement of curve K Outside the roll amplitude range and frequency range defined here the anti roll moment if NARM gt 0 per degree roll amplitude will be kept constant Within this range a linear interpolation between the input data will be used For instance static free surface effects can be included here NARM 1 ARIPHI 1 5 0 arbitrary NARI 1 2 ARIOME 1 1 0 0 arbitrary but low 1 1 pgV GG 5 180 ARIEPS 1 1 0 0 ARIOME 1 2 10 0 arbitrary but high 1 2 pgV GG 5 180 ARIEPS 1 2 0 0 in which the positive GG value is the reduction of the metacentric height caused by free surface effects and c is the ship s centre of gravity with a frozen liquid KARD 1 and NART gt 0 New line For L 1 NART ARTX L ARTZ L ARTL L ARTB L ARTH L RHOT L ARTX L is the distance of the aft bulkhead of the tank forward of APP ARTZ L is the distance of the bottom of the tank above the base line 61 ARTL L is the length of the tank measured in the ship s longitudinal direction ARTB L is the full breadth of the tank measured in the ship s transverse direction ARTH L is the height of the fluid in the tank RHOT L is the density of the fluid in the tank with dimensions ruled by the
115. SEA 1 For K 1 NSEA HW K TW K If KSEA 2 For K 1 NSEA HW K TW K If KSEA 3 For K 1 NSEA HW K TW K GAMMA K If KSEA 4 For K 1 NSEA For L 0 NF SPS K L is the significant wave height TW K is the average wave period T or 75 is the peakedness factor usually equal to y 3 3 The next table shows an indication of the average relations between wave spectra parameters for Bretschneider and JONSWAP wave spectra see also Journ e 2001b WIND BRETSCHNEIDER JONSWAP DEFINITION OPEN OCEAN AREAS NORTH SEA AREAS hl T r rcm m L j T j 24 1 10 5 80 3 3 1 75 3 305 375 780 720 36 60 625 37 0 4 90 8 40 1 85 22 90 35 10 10 10 00 Table1 Indication of Wave Spectra Parameters 64 The editor SEAWAY E creates these data automatically when using NSEA 1 SPS K L is the measured wave spectral value in m s The spectral values have to be given at wave frequencies following from the frequencies OMMIN OMMAX and OMINC as described before The number of wave frequency increments is equal to NF as defined earlier 1 lt NF lt 50 New line KRIT If KRIT 0 New line Write End of File Save and Quit File KRIT is a parameter to include sea keeping criteria KRIT 0 No sea keeping criteria
116. TEXT TEXT is a text line with a maximum of 80 characters with general information about the calculations being carried out This text line will be printed at the head of each page of the output together with the release number of the SEAWAY program date and time of program execution and the page number of the output New line KPR 1 KPR 2 KPR 3 4 KPR 5 1 is the code for printing the input data 1 0 No reflection of input data KPR 1 1 Reflection of input data Generally it is advised to use KPR 1 1 KPR 2 is the code for printing the geometrical and conformal mapping data KPR 2 1 Reflection of a hull form data file at a new draught only KPR 2 0 No reflection of geometrical and mapping data KPR 2 1 Reflection of geometrical and mapping data To check of a newly made hull form data file or to print geometrical and mapping data this option can be used When carrying out a large number of ship motion calculations this parameter can be set to zero In case of generating a hull form data file at a new draught a few lines at the beginning of the file have to be removed with a normal text processor as for instance Wordpad Generally it is advised to use KPR 2 1 3 is the code for printing output of hydromechanical coefficients 3 0 No reflection of the coefficients KPR 3 1 or 1 Reflection of dimensional coefficients 43 KPR
117. The non dimensional frequencies of oscillation with the total integrated hydrodynamic potential coefficients in the output are obtained by dividing it through the values given below The sign of KPR 3 has no effect on the output data In case of twin hull ships the parameters and the coefficients above are those of the mono hull ship with the origin at the centre line of the water plane Wu B 2 82 Nal P pig ovis va 11 pV B2 N g B2 pvLwN g pvia Na 1 PV 8 2 N g B 2 pV L N g L pv L a pV B 2 Nfg B 2 Table3 Non Dimensional Total Potential Coefficients 71 The non dimensional frequencies of oscillation and the coefficients of the surge heave and pitch equations in the output are obtained by dividing it through the values given below us T 9537 0011 pvNfg B 2 O 11 pV eB pv gt 57 17 14482 Cs 7 2 aa pv 11 pVWg B2 pV ig pV out ERAI Hg 433 T Ba wa 33 pV g B2 PVD _ eva Ve pve tp bs 1 pV B 2 N g B 2 pV L N g Lj pV L e ed a m pV g L 451 1 B 2 pv aa es a 11 8 8 8 2 pVLeo bs 1 2 N g B 2 pV L g L pV L c 53 1 pV
118. ULLFORM REMARKS ON NUMBER CL CL WIDTH COEFF LEWIS CONF MAPPING m mM m m 22 n m 0 38 3 25 0 001 0 001 0 0000 0 7500 0 0012 1 0 0000 0 0225 001 0 19 1 625 0 0 850 0 48 0 4112 0 5039 0 5689 41 0 3252 0 1688 014 0 0 0 1 550 0 78 1 2444 0 5146 1 0074 1 0 3822 0 1564 033 0 5 4 315 3 070 1 3 4 6423 0 5816 1 9693 1 50 4494 0 1095 031 1 8 75 4 504 9 5 23 2592 0 2718 5 8773 41 0 4250 40 1914 1 008 F REENTRANT Cm 0 450 2 17 5 7 028 9 5 61 4475 0 4602 6 8374 41 0 1808 40 2086 438 3 26 25 9 108 9 5 97 4868 0 5634 8 1359 1 0 0241 0 1435 374 4 35 10 663 9 500 132 8554 0 6558 9 3111 1 0 0624 0 0827 336 5 43 15 11 685 9 500 165 3268 0 7447 10 3274 1 0 1058 0 0257 264 6 52 5 12 362 9 500 192 5941 0 8199 11 1729 1 50 1281 0 0216 214 7 61 25 12 639 9 500 212 9348 0 8867 11 8200 1 10 1328 0 0635 3129 8 70 12 700 9 500 226 7749 0 9398 12 2977 1 50 1301 0 0974 074 TUNNELED 9 18 15 12 700 9 500 232 6740 0 9643 12 5190 1 0 1278 0 1133 154 TUNNELED 10 87 5 12 700 9 500 233 4861 0 9676 12 5504 1 0 1275 0 1156 179 TUNNELED 11 96 25 12 681 9 500 228 7239 0 9493 12 3720 1 0 1286 0 1036 093 TUNNELED 12 00 105 12 42
119. User Manual of SEAWAY Release 4 19 12 02 2001 J M J Journ e Report 1212a February 2001 Last revision 09 10 2001 TU D ELFT Faculty of Mechanical Engineering and Marine Technology Ship Hydromechanics Laboratory Delft University of Technology Contents T TIPO DMI GT aah ros Rete efe 5 2 Installation and Use oS bol eed e M debe ede glade Mae 11 3 Hull Form Data 15 3 1 Description of Hull Form Data File ars aan 16 3 2 Examples of Hull Form Data Files a sen en a en aa 23 3 2 C ontarhershi 23 322 PREC PANE AI an s eu titu de 25 32 3 er Dle 25 3 2 Hull Form Series 2 29 3 4 Lewis Form Creator 5 35 3 4 1 Description of Input Data for SEAWAY L 36 3 4 2 Examples of SEAWAY L Data FMes ara ei 38 8 5 Offsets Controller a H S ASAS eti Au 42 d o Ip DU a asus aaa coe ctis ated ode 43 4 1 Description of Input Data File aan 43 4 2 Examples of Input Data Files 66 4 3 Input Editor SEAWAY E
120. al damping coefficients defined in a co ordinate system with the origin O in the waterline The frequency range follows from FREQMAX and the dimensions follow from KPR 3 85 Natural Frequencies and Roll Damping KPR 4 1 ITTC ship 5 175 Test of program SEAWAY release 4 18 SEAWAY 4 18 Date 09 10 1999 23 17 Page 18 NATURAL FREQUENCIES AT ZERO FORWARD SPEED NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NATURAL NATURAL FREQUENCY PERIOD rad s s SURGE 0 000 SHAY 0 000 HEAVE 0 849 7 40 ROLL 0 369 17 03 PITCH 0 885 1 1 YAW 0 000 ROLL MASS AND DAMPING DATA AT NATURAL FREQUENCY NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN FORWARD SHIP SPEED kn 20 00 MEAN ROLL AMPLITUDE deg 5 000 NATURAL ROLL PERIOD s 17 033 NATURAL FREQUENCY rad s 0 369 MASS k phi phi 8 395 COMPONENTS k phi phi SOLID MASS PART 7 620 2 D POTENTIAL PART m 3 524 DAMPING kappa 0 0690 COMPONENTS kappa 2 D POTENTIAL PART 0 0021 SPEED EFFECT PART 0 0118 SKIN FRICTION PART 0 0006 EDDY MAKING PART 0 0001 LIFT MOMENT PART 0 0432 BILGE KEEL PART 0 0111 This page shows the output of the natural frequencies of heave roll and pitch motions and the components of the mass and damping coefficients for roll at the natural frequency according to the method of Ikeda et al 1978 defined in a co ordinate system with the origin at the centre of gravity G
121. amen Shipyards Gorinchem The Netherlands HAM Capelle aan den IJssel The Netherlands Boskalis Westminster Papendrecht The Netherlands Ballast Nedam Zeist The Netherlands SAM Consult Delft The Netherlands University of Ghent Ghent Belgium University of Izmir Izmir Turkey University of Trondheim Trondheim Norway Geomatic Dordrecht The Netherlands University of California Berkeley USA Vestfold College Horten Norway MTI Holland Kinderdijk The Netherlands Technical University of Berlin Berlin Germany Flanders Hydraulics Antwerp Belgium Bluewater Engineering Hoofddorp The Netherlands Pattimura University Ambon Indonesia JBR Pijnacker The Netherlands Shipyard de Hoop Lobith Lobith The Netherlands Bureau Veritas Rotterdam The Netherlands Marine Structure Consultants Schiedam The Netherlands Dockwise Meer Belgium Marine Treasure Rotterdam The Netherlands Boskalis Papendrecht The Netherlands Seaway Heavy Lifting Zoetermeer The Netherlands Alkyon Marknesse The Netherlands Oceanco Shipyards Alblasserdam The Netherlands Cochin University of Science and Technology Cochin India University of Belgrade Belgrade Yugoslavia University of Buenos Aires Buenos Aires Argentina Isfahan University of Technology Isfahan Iran Baar Maritime Cons Int Burgh Haamstede The Netherlands Sea of Solutions Vlaardingen The Netherlands University of Newcastle United Kingdom 058 0
122. atically The new release number will be added too e Adjustment of SEAWAY H for plotting twin hull cross sections Old hull form data files will be observed as single hull ships e So far the distances in the hull form data file are not active in the program SEAWAY yet There twin hulls are defined by DIST in the input data file e Mind you for twin hull ships the shear forces and the bending and torsion moments have not been checked yet e A modification of the near zero frequency of encounter problem in following waves The diffraction part of the wave loads will be forced to go to zero only e A modified creation of not valid Lewis forms in SEAWAY L Modified security control checks in the DEMO programs 4 05 24 10 1992 e SDIST J has been made active Maximum value of NPTS changed from 10 into ABS NPTS lt 5 e An inclusion of the calculation of the dynamical swell up determined from the radiated waves in the vertical relative motions This will be done in case of NPTS lt 0 113 4 06 07 11 1992 KPR 2 1 Output of hull form data in SHIP HUL format e DELFRAC DAT can be included in HULLGEOM FOR e Upper boundaries of arrays in parameter specification statement e Linear and quadratic interpolation in hull form plot of SEAWAY H A start of a modification of SEAWAY H into a hull form editor 4 07 14 11 1992 e Modifications in the integration routines for wave loads added resistance and structural loa
123. celerations Accelerations Motions Table 8 Operability Limiting Criteria for Type of Work and Roll 111 Criteria on Voluntary Speed Reduction Criteria for reducing speed or changing course can be found in various publications They are commonly expressed as probability limits P for the accelerations forward and probability limits for the occurrence of shipping water at the bow or for bow slamming In some cases probability limits for propeller racing are included too The combined criteria of Ochi and Motter 1974 which distinguish between two typical loading conditions of the ship are given here e Fully laden condition Pls gt f and or Z gt 0 402 lt 0 07 This probability can be rewritten as Pts gt f and or 7 0 46g 0 07 or gt f P 046g Pls gt f Plz gt 0 468 lt 0 07 e Light laden condition P slamming and or Z gt 0 40g lt 0 03 1 3 This probability can be rewritten P slamming and or 7 gt 0 53g lt 0 03 or P slamming P z gt 0 53g P slamming gt 0 53g 0 03 Bow deck wetness 5 gt f the amplitude Z of the vertical accelerations of the bow and the significant amplitude z of the vertical accelerations of the bow have to be determined at al 3 the forward perpendicular F P P Slamming has to be determined at 0 90Lpp In principle these two criteria of Ochi and Motter are rather moderate Speed limiting criteria should
124. ck selection of a ship with an acceptable C and Cw value out of these 123 ships The numbers in the figures refer to the hull form file for instance number 56 of the Versluis Series refers to the hull form data file VERSLUIS 056 and number 27 of the Journee series refers to the hull form data file JOURNEE 027 The main dimensions of the original ships are given here in two tables 30 wl wl Series of Versluis 0 95 0 90 0 85 0 80 0 75 0 70 0 65 14 040 045 050 055 060 065 070 075 080 085 090 Series of Journee 0 95 0 90 0 85 0 80 0 75 0 70 0 65 i1 8m j ij i ij ij i1 i 4 0 40 0 45 0 50 0 55 060 065 0 70 0 75 080 0 85 0 90 C b Figure 10 Hull Form Series of Versluis and Journ e 3l File Name VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS VERSLUIS s Ship Type 10 Ro Ro vessel m 12 13 T 15 16 17 18 19
125. coefficients Also the 2 D diffraction pulsating source theory of Frank 1967 can be used Shallow water coefficients can be determined with the Lewis conformal mapping method and the shallow potential theory given by Keil 1974 Special attention has been paid to submerged cross sections and to surge coefficients Wave loads can be calculated by either the classic relative motion approach by a simplified diffraction method Always the wave potentials are defined for the actual water depth The input data of the longitudinal mass distribution required for calculating the vertical and horizontal shear forces and bending moments and the torsion moments are independent of the hull form input Jumps in these distributions are permitted Linear and non linear viscous roll damping coefficients can be determined by the empirical method of Miller 1974 or by the semi empirical method of Ikeda et al 1978 Damping coefficients as derived from model tests can be input too If required the program will carry out the linearisation Free surface anti rolling tanks based on theory or on experimental data are included External roll moments to be defined by the user can be input Linear springs mooring can be used too At choice the unidirectional wave spectra can be defined by the ideal Neumann spectra modified Pierson Moskowitz ITTC ISSC or Bretschneider spectra or JONSWAP spectra and by an input of measured wave spectra Eit
126. d here by G wave elevation amplitude A wavelength k 2r wave number k 2r L length parameter e circular wave frequency e circular frequency of oscillation or encounter amp undamped natural circular roll frequency p density of water g acceleration of gravity 9 806 m s L length between perpendiculars B breadth v volume of displacement Am amidships cross sectional area Aw water plane area Loi moment of inertia of water plane around x axis GM transverse metacentric height ka radius of inertia of the solid mass for roll kyy radius of inertia of the solid mass for pitch radius of inertia of the solid mass for yaw The non dimensional frequencies of oscillation with the cross sectional 2 D hydrodynamic potential coefficients in the output are obtained by dividing it through the values given below The sign of KPR 3 has no effect on the output data In case of twin hull cross sections the parameters and the coefficients above are those of the mono hull cross section with the origin at the crossing of its centre plane and the water plane 70 x zm 8 2 pV dn _ p VA Maul 11 Phn 22 ao r ena EAE Bv pdm 8682 pevna Nn Phn pW N g L _ p V L e 1 1 4 B2 Nfg B 2 pVe N33 7E 1 N g L VIL oy Table 2 Non Dimensional 2 D Potential Coefficients
127. dding an input curve of Adding the Miller method Adding new input modes of external roll moments 4 19 12 02 2001 Remove of an error when calculating the natural roll period of roll for twin hull ships New interpolation routine for roll linearisation Adding anti roll tank moments according to the theory of Verhagen and Van Wijngaarden Remove of a print error in case of internal load spectra Modification of heave wave loads in deep and shallow water for KTH gt 0 115 4 20 22 22 2222 e 116 9 Closure Remarks The Fortran 77 source code of the program SEAWAY counts about 13 000 lines The memory size of the executable file is about 630 kB Because of using an overlay structure during the compilation of the program only 440 kB will be used during the execution This means that the program can be used within the MS DOS environment without using extended or expanded memory However the program runs under Windows 95 and Windows 98 too Computer program SEAWAY has been validated extensively in the past with results of other 2 D or 3 D computer programs and model experiments on a large number of various ship types The results of a recently carried out extensive validation study which is still in progress have been published by Journ e 2001a Based on validation studies and on user s experiences obtained during an extensive use of the program for many years by the author students institutes and industrial users
128. ds in high frequency waves Any barge can be defined by three cross sections now 4 08 21 11 1992 e Inclusion of an optional output for the DELFRAC program 4 09 05 12 1992 e Modification of the wave loads for roll 4 10 02 01 1993 e Complete new organisation of the program 4 11 22 05 1993 e Improved calculation of surge coefficients e KTH 2 and KTH 1 have been removed No adjustment of wave loads for KTH 1 in following waves Modifications in editor SEAWAY E Maximum values NWD 19 and NCAB 8 4 12 31 07 1993 e To increase the available memory an overlay structure has been included e Modification of the wave loads for roll return to the definitions in release 4 08 and earlier releases e An inclusion of the shallow water effect on the hydrodynamic potential coefficients based on theory published by Keil in program SEAWAY e Modified security control checks in the programs e Remove of a small error in Raw present since release 4 07 Maximum value of ABS NPTS changed from 5 into 10 and adjustment of SEAWAY E for this 4 13 07 10 1995 e Adjustment of JONSWAP definition to obtain correct period e Original definition of wave loads for heave with a protection for a zero breadth on the waterline e Inclusion of external springs into subroutine CHARMOM to obtain shear forces and bending and torsion moments 4 14 01 11 1996 Remove of an error in bending moments of a trimmed ship
129. e 3 1 8 6 3 2 3 4 2 679 284 6 744 294 7 903 322 4 785 253 997 884 784 680 576 m 377 298 319 7 236 331 9 187 345 4 148 114 087 068 293 4 274 8 277 6 281 3 285 5 290 3 295 4 301 8 309 7 0 4 17 1 37 5 62 7 90 0 112 9 128 9 139 1 143 7 136 6 11 1 30 4 23 6 22 5 20 9 5 3 241 1 229 4 226 1 222 6 206 7 103 1 71 3 62 4 50 0 FORWARD SPEED 20 00 kn WAVE DIRECTION 150 deg off stern AMPL PHASE m m deg 0 908 3 6 0 837 6 2 0 573 13 9 1 341 63 1 1 562 40 6 639 38 9 195 38 9 017 38 7 293 36 3 619 30 8 927 19 7 984 1 4 395 338 0 A16 323 1 831 321 3 473 330 5 283 350 I MO PRO PO REL MOT T diu AMPL PHASE n n deg 0 160 62 0 222 54 0 435 29 813 291 593 235 639 219 813 210 085 204 465 198 980 191 614 180 164 163 086 142 407 132 819 134 468 14 216 158 185 173 156 189 150 204 146 219 133 234 106 250 070 266 031 284 995 304 968 324 951 346 94 8 5 932 32 934 58 959 82 993 107 034 131 073 155 105 178 017 203 045 229 1 016 257 1 000 286 LS lt gt lt gt lt gt lt gt lt gt lt gt lt gt opa FS ES M CO IS gt gt 1 0 Co Lr o won 1 1 5 1 5 4 0 1
130. e sectional scale factor of the conformal mapping coefficients A 1 a until A 19 a 9 Half the contour of each actual cross section has been divided in 32 intervals of equal length and RMS is the Root Mean Squares of the deviations of these 33 points from the re mapped hull form Always check these RMS values If they are too large the use of the Frank close fit method is advised The 4 marks F behind the RMS column indicates that for these particular cross sections the Frank close fit method will be used when obtaining the potential coefficients because NFR 4 is given in the input data file and the KCOF values of these sections are 11 83 Example of 2 D Potential Mass KPR 3 1 ITTC ship 5 175 Test of program SEAWAY release 4 18 SEAWAY 4 18 Date 09 10 1999 23 17 Page 10 2 D VALUES OF POTENTIAL M 22 NNNNNNNNNNNNNNNNNNNNNNNNNNNN FREQUENCY 0 000 125 0 25 0 375 0 50 0 625 0 750 0 875 1 000 1 125 1 250 STATION 0 38 0 000E 01 0 000 01 0 000 01 0 000 01 0 000 01 0 000 01 0 000 01 0 000E 01 0 000E 01 0 000 01 0 000 01 0 19 2 605E 01 2 606 01 2 612E 01 2 622E 01 2 636 01 2 655E 01 2 680E 01 2 708E 01 2 741E 01 2 778E 01 2 8168 01 0 00 6 737E 01 6 743E 01 6 770E 01 6 817 01 6 885E 01 6 9768 01 7 086 01 7 211 01 7 342E 01 7 466E 01 7 569E 01 0 50 2 036 00 2 040E 00 2 057 400 2 088 400 2 133E 00 2
131. e tuning code KTUN 1 for the longitudinal distribution of the mass per unit length SM J is defined by KTUN 1 1 KTUN 1 0 KTUN 1 1 KTUN 1 2 The input values of SM J can have any value because they will be overwritten by the mass per unit length of the buoyancy for author s test cases only No tuning these SM J values are used during the calculations and new values for ky and kz will be derived from them Tune SM J with the input value of k Tune SM J with the input value of The tuning code KTUN 2 for the longitudinal distribution of the vertical position of the cross sectional centre of gravity SGK J is defined by KTUN 2 1 KTUN 2 0 KTUN 2 1 The input values of SGK J can have any value because they will be overwritten by KG parallel to the waterline No tuning these SGK J values are used during the calculations and a new value of KG will be derived from it Tune SGK J with KG The tuning code KTUN 3 for the longitudinal distribution of the cross sectional radius of inertia for roll SGYRX J is defined by KTUN 3 1 KTUN 3 0 KTUN 3 1 The input values of SGYRX J can have any value because they will be overwritten by No tuning these SGYRX J values are used during the calculations and a new value of kx will be derived from it Tune SGYRX J with the input value of In case of an input of the natural roll period instead of the
132. ea Water plane area coefficient Vertical prismatic coefficient Longitudinal position of the centre of buoyancy or the centre of gravity with respect to L 2 Depth at even keel of the measured offsets D gt d The next figure shows a hull form below the water line at depth D which lies above the waterline which corresponds to the fully laden draught of the ship 4 Under this waterline at depth D any amidships draught and trim can be chosen in SEAWAY for calculating the ship motions Figure 9 Hull Form Definitions During the last decade a large number of various hull forms of ships for SEAWAY have been collected two Series are available now Versluis Series a collection of Versluis 1995 with 63 hull forms The design of a ship s hull form consumes a lot of time However in many cases it is possible an existing ship can be used by transforming its dimensions to those of the desired ship A few decades ago Versluis started with the generation of a collection of parent hull forms of various types of ships for this purpose e Journee series a collection of the author with 60 hull forms 29 During one decade now the ship motions computer program SEAWAY has been used frequently by the authors and by students and a very large number of hull form data files were the result A selection has been made from all of these data files Only hull forms which were considered to belong to the public domain as far as the auth
133. ecture University of Osaka Prefecture Japan 1978 ITTC Proceedings of 15th International Towing Tank Conference 1978 The Hague The Netherlands Journ e 2001a Journ e J M J Verification and Validation of Ship Motions Program SEAWAY Technical Report 1213a February 2001 Delft University of Technology Shiphydromechanics Laboratory Delft The Netherlands web site http dutw189 tudelft nl johan or http www shipmotions nl Journ e 2001b Journ e J M J Theoretical Manual of SEAWAY Release 4 19 Technical Report 1216a February 2001 Delft University of Technology Shiphydromechanics Laboratory Delft The Netherlands web site http dutw189 tudelft nl johan or http www shipmotions nl Keil 1974 Keil H Die Hydrodynamische Kr fte bei der periodischen Bewegung zweidimensionaler K rper an der Oberfl cher flacher Gewasser Technical Report 305 1974 University of Hamburg Germany 119 Koelman 1997 Koelman H J Hull Form Design and Fairing Tradition Restored Proceedings of 6 International Marine Design Conference 1997 Volume 1 University of Newcastle U K Miller 1974 Miller E R et al NAVSPEC Report 6136 74 280 1974 NORDFORSK 1987 The Nordic Cooperative Project Seakeeping Performance of Ships Assessment of a Ship Performance in a Seaway 1987 MARINTEK Trondheim Norway Ochi 1964 Ochi M K Prediction of Occurrence and Severity of Ship Sla
134. efficients being used or created during the execution of SEAWAY e SEAWAY DAT a personal ASCII file with calculated data of SEAWAY in an order defined by the user suitable for post processing plot routines etc e HULLFORMSERIES ZIP which contains a large number of hull form data files It is advised not to run any of these programs in the directory C SEAWAY itself It is very convenient to run the SEAWAY programs in the working directory by using batch files created with a normal editor for instance SWL BAT with CALL C NSEAWAYNSEAWAY TL SWH BAT with CALL SEAWAY SEAWAY H SWE BAT with CALL SEAWAY SEAWAY E SW BAT with CALL SEAWAY SEAWAY The main program SEAWAY is protected against an unauthorised use by a Sentinel C security key The program itself searches for the LPT port connected to this key The Sentinel C key is manufactured by Rainbow Technologies 18011 A Mitchell South Irvine CA 92714 USA and distributed in the Netherlands by IntroCom Welbergerweg 30 7556 PE Hengelo the Netherlands tel 31 74 243 0105 fax 31 74 242 9895 e mail Info introcom nl The instructions below for using the Sentinel C key are given by IntroCom e The products do not contain serviceable parts Disassembling the key expires the guarantee e Static electricity can damage electronic parts Before touching Sentinel products one has to discharge oneself by touching a metal desk or doorframe When static dischar
135. ements of selected points and the vertical and horizontal shear forces and bending moments and the torsion moments KPR 5 3 or 3 Options 1 and 2 both or options 1 2 both The sign of KPR 5 arranges on which frequency the spectra are based KPR 5 lt 0 Spectra based on the wave frequency 5 gt 0 Spectra based on the frequency of encounter This option can be used to check the frequency range in the spectral calculations described further on Also it can be used in case of a comparative study of calculated and measured wave and response spectra Mind you that a considerable amount of output can be the result Generally it is advised to use KPR 5 0 DRAUGHT TRIM DEPTH RHO DRAUGHT is the actual amidships draught of the ship at which the calculations have to be carried out defined with regard to the base line chosen in the hull form data file at half the length between the perpendiculars APP and FPP TRIM is the actual trim by stern of the ship at which the calculations have to be carried out defined with regard to the base line as the draught at APP minus the draught at FPP 44 DEPTH is the water depth DEPTH 2 1 05 5 DRAUGHT The wave potentials are defined as a function of the water depth 7 but also when not using the method of Keil 1974 the hydrodynamic coefficients are determined for deep water only However in the ship motions frequency range generally reliable computat
136. error check the hull form data file All possible errors of the other Fortran 77 programs SEAWAY L SEAWAY E and SEAWAY are described in this chapter A successful normal end of a program execution will be accompanied by the message END OF PROGRAM EXECUTION Special error return messages are build into the program to protect the program execution against exceeding the limits of the input data file Also messages are given on the screen in case of FORTRAN 77 runtime read errors of the input data file These messages will be showed further on Numbered or not numbered runtime error messages from the compiler can appear Runtime error numbers are written as 4 digit decimal integers They are split into groups according to the type of the runtime routine that detects the error e 1000 to 1999 Intrinsic Function e 2000 to 2499 I O other than Format Control e 2500 to 2999 Format Control I O e 3000 to 3999 Operating System Interface e 4000 to 4999 Miscellaneous e 5000 to 5999 Debug I O Not numbered DOS System Return Codes for Runtime An example of one of these error types is for instance error number 3033 a write error on a formatted sequential record Generally this error means that no sufficient disk space for writing the output 18 available Detailed explanations of all these errors are given in FORTRAN reference manuals like e Reference of IBM Personal Computer Professional FORTRAN by Ryan McFarland Corporation Fir
137. g the wave exciting forces and moments to go to zero artificially In the program this happens gradually in the frequency range 0 75 4 d lt 1 25 u in which is the wave frequency at 0 However this artificial approach can be avoided by subtracting 360 from the wave direction so by giving a negative input value 49 2 y Z RK E SELL je x Z Figure 15 Co ordinate System FREQMAX is a parameter to obtain a series of circular frequencies of encounter e at which the two dimensional hydromechanical potential coefficients will be calculated The hydrodynamic coefficients have to be known at each frequency of encounter This frequency depends on three variables the circular wave frequency the forward ship speed V and the wave direction u relative to the ship s speed vector o o 0 k Vcosu with k __ deep water k g tanh kh g J This can cause a large number of frequencies of encounter during the calculations The calculation of the hydromechanical coefficients at all these frequencies of encounter consumes a lot of calculation time In the computer code SEAWAY these coefficients are calculated for a limited fixed number of frequencies of encounter This series of circular frequencies are derived from an input value for the expected maximum frequency of encounter FREQMAX The program creates a series
138. ge has been observed an anti static spray or carpets can remedy this 11 e Be sure about the use of the parallel port of the computer Take care that the proper side of the Sentinel C key labelled with COMPUTER will be connected in the right direction to the parallel port of the computer e Never connect the key to the serial port by turning it around In that case it is highly probable that the Sentinel C key will be damaged e The computer and the printer have to be properly connected to the electric power supply An incorrect connection or a disconnection to the mass can cause potential differences between the connected apparatus which can damage the computer hardware as well as the Sentinel product e When connecting the Sentinel C key the power supply of the computer and the printer must have been switched off e Avoid physical contact with the connector pins of the Sentinel C key The author does not accept any financial responsibility for damage of and caused by this Sentinel C security key To run the MS DOS Personal Computer versions of SEAWAY L SEAWAY E and SEAWAY the computer system must use a CONFIG SYS file that contains the following statements e BUFFERS nn e FILES nn DEVICE C WINDOWS COMMAND ANSI SYS in which nn is generally 40 or more and C WINDOWS COMMAND is the name of the directory in which the ANSI SYS file is placed This CONFIG SYS file must be visible in the Explorer If not so set View
139. he distance of load input cross section number J from APP positive forwards SM J is the mass per unit length of cross section number J with mass units depending on the input value of RHO SGK J is the distance of the local centre of gravity of SM J above the base line SGYRX J is the local radius of inertia for roll of SM J around a horizontal line through the ship s centre of gravity KTUN 1 is the code for tuning of SM J KTUN 2 is the code for tuning of SGK J KTUN 3 is the code for tuning of SGYRX J The data of the load input cross sections J have to be imported from the hindmost point until the foremost point of the ship The program connects all points XSM J SM XSM J SGK J and XSM J SGYRX J with straight lines Then the program inserts intermediate points The integration of acceleration forces and moments will be carried out with the general rule of Simpson It is not required to have zero SM J SGK J and SGYRX J input values for the first and the last point Jumps in the distributions can be introduced easily by using two subsequent equal XSM J input values as has been shown in Figure 16 53 50 100 150 200 250 300 m distribution along ship length Figure 16 Example of Solid Mass Distributions Automatically the masses SM J are corrected first by the program for the mass of the ship s buoyancy and the longitudinal position of the centre of buoyancy Th
140. her the spectral centre period or the zero crossing period can define these wave spectra The printed output data of the statistics of the responses will follow this definition The major magnitudes of ships barges semi submersibles or catamarans which can be calculated by the program SEAWAY are e Some geometrical data such as areas and centroids of cross sections and waterlines volume of displacement centre of buoyancy metacenter heights wetted surface of underwater hull vertical shear forces and bending moments in still water etc Two dimensional and three dimensional frequency dependent hydrodynamic coefficients calculated with either one of the conformal mapping methods or the pulsating source method e Natural heave roll and pitch periods e Frequency characteristics of e First order wave forces and moments Centre of gravity motions surge sway heave roll pitch and yaw e At specified points absolute motions velocities and accelerations in the three directions and vertical relative motions including or excluding a dynamical swell up e Mean added resistance caused by waves and ship motions calculated with both the radiated energy method and the integrated pressure method e At specified cross sections vertical and lateral shear forces and bending moments and torsion moments e Energy spectra of unidirectional irregular waves defined by Neumann Bretschneider JONSWAP or measured wave spectra e With these
141. his program has been protected against an unauthorised use by a Sentinel C software protection key A demo this SEAWAY program which can be used freely for one particular ship only can be downloaded from the Internet http dutw189 wbmt tudelft nl johan or a link to this homepage at http www shipmotions nl Additional information on the SEAWAY package and its theoretical background can be obtained from Ir Journ e Associate Professor Delft University of Technology Ship Hydromechanics Laboratory Mekelweg 2 2628 CD Delft the Netherlands Tel 31 15 278 3881 Fax 31 15 278 1836 E mail J M J Journee wbmt tudelft nl Private Dunantlaan 12 2641 ZK Pijnacker Tel 31 15 369 5014 31 65 390 2290 GSM during vacation urgent cases only A full licence of the SEAWAY package including all future updates costs about 5 000 US Universities and other non profit educational organisations can obtain this SEAWAY package and all future updates free of charge In that case however a restriction is that the program will be used for educational purposes only any commercial use is prohibited The present licensees of the ship motions program SEAWAY are listed below e 000 S Sd Author and Students of DUT HTO and HNO e 001 5 IHC Gusto Engineering Schiedam The Netherlands e 002 5 Royal Dutch Navy Ship Design Office Den Haag The Netherlands e 003 S Sd Royal Institute for the Dutch Navy Den Helder The Netherlands e 004 5 A
142. in the earth bound axes system instead of in the ship bound axes system so MOT gt 0 Horizontal plane accelerations in ship bound axes system MOT lt 0 Horizontal plane accelerations in earth bound axes system In the ship bound axes system the roll and pitch motions cause a contribution of the acceleration of gravity g in the horizontal plane accelerations Generally it is advised to use MOT 123456 KTH is the code to define the version of the strip theory method 1 Ordinary strip theory method with traditional wave loads KTH 2 Modified strip theory method with traditional wave loads KTH 1 Ordinary strip theory method with diffraction wave loads KTH 2 Modified strip theory method with diffraction wave loads These strip theory methods contain longitudinal integration of the derivatives of the coefficients from 0 4 until L d in literature called an inclusion of end terms The meaning of this is fully explained in the theoretical manual see Journ e 2001b If KTH lt 0 the wave loads are calculated by using a simple but very effective diffraction method as explained in the theoretical manual see Journ e 2001b For zero forward speed the ordinary and the modified strip theory codes will provide similar results 46 Based on a limited number of verifications it is advised now to use KTH 2 instead of using KTH 1 as advised in earlier releases But in case of very l
143. ine KARD KARD is the code for the presence of anti roll devices KARD 0 No anti roll devices present 1 Anti roll devices present If KARD 1 New line NARM NART is the number of anti roll moment curves 0 lt INARMI lt 3 NARM 0 Input of anti roll moments independent of roll amplitude NARM 0 No anti roll moments used here NARM 0 Input of anti roll moments per degree roll amplitude If NARM 0 then no further information about that input device has to be read Note that NARM 0 can cause iteration problems is the number of anti roll free surface tanks 0 INARTI lt 3 NART 0 Use of theory of Verhagen and Van Wijngaarden 0 No anti roll free surface tanks used here gt 0 Use of experimental data of Van den Bosch and Vugts If NART 0 then no further information about that input device has to be read 60 If KARD 1 and NARM gt 0 New line For K 1 NARM ARIPHI K NARI K For L 1 NARI K K L ARIMOM K L ARIEPS K L ARIPHI K is the roll angle amplitude in degrees of curve K NARI K is the number of anti roll moments of curve K 1 NARI K lt 21 ARIOME K L is the L circular frequency in rad sec of curve ARIMOM K L is the L anti roll moment amplitude information of curve K with the dimensions depending on the input value of RHO and the sign of NA
144. input value of RHO ARTH L TZ L base line water level Figure 18 Definition of an Anti Roll Free Surface Tank New line NCAB NCAB is the number of linear springs 0 lt NCAB lt 8 If NCAB 0 then no further information about these springs has to be read If NCAB gt 0 New line For J 1 NCAB CABXYZ J 1 CABXYZ J 2 CABXYZ J 3 CABCOF J 1 CABCOF J 2 5 3 CABXYZ J 1 is the distance of spring J forward of APP CABXYZ J 2 is the distance of spring J from centre plane positive to port side CABXYZ J 3 is the distance of spring J above the base line CABCOF J 1 is the linear spring constant in the longitudinal direction CABCOF J 2 is the linear spring constant in the lateral direction 62 CABCOF J 3 is the linear spring constant in the vertical direction New line NPTS NPTS is the number of arbitrarily selected points at which the frequency characteristics and the statistics of the displacements velocities and accelerations in the three directions and the vertical relative displacements have to be calculated 11 lt 11 If NPTS lt 0 then a dynamical swell up calculated from the radiated damping waves will be included in the vertical relative motions This option is still in a test phase If NPTS gt 0 New line For J 1 NPTS PTSXYZ J 1 PTSXYZ J 2 PTSXYZ J 3 PTSXYZ J 1
145. ional results will be obtained for water depths with keel clearances down to about 50 100 percent of the amidships draught DEPTH gt 1 5 2 0 DRAUGHT This minimum percentage depends the breadth to draught ratio of the ship RHO is the density 7 of the surrounding water This parameter arranges the force units N or KN in the output too for instance Fresh water RHO 1000 kg m3 so forces in N and moments in Nm RHO 1 000 ton m3 so forces in and moments in kNm Sea water RHO 1025 kg m3 so forces in N and moments in Nm RHO 1 025 ton m3 so forces in and moments in kNm Generally it is advised to use for seagoing vessels RHO 1 025 so forces in and moments in kNm The kinematic viscosity of the water v used in viscous damping calculations will be derived by the program itself from a fixed relation between v and 7 see Figure 13 Fresh Water Salt Water 25 ok S S eset et Oz gt gt e oa EE 8 b 35 gt 8 5 gE BE 8 lt o Viscosity Actual Viscosity Polynomial Fast Tem perature B o Viscosity Actual 1 Viscosity Polynomial 0 1023 1024 1025 1026 1027 1028 Density Fresh Water kg m Density Salt Water Figure 13 Relation Between Kinematic Viscosity Density and Temperature For instance for a water temperature of 15 C will be found Fresh water p 999 0 kg m which follows v 1 1
146. ions in a selected point on the ship as a function of the sea state parameters HEIGHT H 5 and PER T or T2 depending on the sign of KSEA AMPL is the significant amplitude 2 of the motions in meters PER is the average period of the motions in seconds Depending on the sign of KSEA this period is defined by T or T gt 95 Example of Spectra of Local Motions KPR 5 3 NPTS gt 0 and NSEA gt 0 ITTC ship 5 175 Test of program SEAWAY release 4 18 SEAWAY 4 18 Date 09 10 1999 23 17 Page 63 SPECTRA OF MOTIONS IN POINTS FORWARD SPEED 20 00 kn NN NNN NNN NAAN NNN AANA WAVE DIRECTION 150 deg off stern SPECTRUM 07 WAVE HEIGHT 3 75 m WAVE PERIOD 7 20 s ENCE se POINT OLY AE POINT 02552554 FREQ WAVE T NETS M ee ghee Gs Mors re Dir pb Ts r s 128 425 128 128 128 128 425 128 128 236 000 000 000 0 000 000 000 000 000 0 000 283 000 0 000 0 000 000 000 000 000 0 000 331 000 0 000 0 000 000 000 000 000 0 000 382 000 0 000 0 000 000 000 000 000 0 000 434 000 000 000 0 000 000 000 000 000 0 000 489 002 000 002 0 006 001 000 002 006 0 001 545 026 1 021 0 085 017 004 020 104 0 035 604 124 4 076 0 504 146 012
147. ip 5 175 Test of program SEAWAY release 4 18 SEAWAY 4 18 Date 09 10 1999 23 17 Page 55 STATISTICS OF MOTIONS IN POINTS FORWARD SPEED 20 00 kn WAVE DIRECTION 150 deg off stern POINT NR 01 X APP 148 750 m Y CL 12 000 m 2 BL 24 000 m E SIGNIFICANT VALUES OF na epa Re an n FERNEN DISPLACEMENTS VELOCITIES u varese ee o gs SEA Peres oues dove Na ets epes Yapas dus donus des ans unes 1 HEIGHT PER AMPL PER AMPL PER AMPL PER AMPL PER AMPL PER AMPL PER AMPL PER AMPL PER AMPL PER m s m s m s m s m s s m s s m s s m s2 s m s2 s n s2 s 2 1 10 5 35 05 6 03 0 04 5 49 0 23 6 13 06 5 52 0 05 4 97 0 24 5 08 0 09 4 97 0 06 4 22 0 30 3 40 1 20 5 45 06 6 11 0 05 5 61 0 29 6 27 07 5 65 0 06 5 09 0 29 5 32 0 10 5 16 0 07 4 32 0 34 3 60 1 40 5 55 08 6 19 0 07 5 74 0 38 6 39 08 5 77 0 07 5 21 0 37 5 54 0 13 5 33 0 08 4 43 0 42 3 81 1 70 5 60 10 6 23 0 08 5 80 0 48 6 44 11 5 82 0 09 5 26 0 47 5 64 0 16 5 40 0 10 4 49 0 52 3 91 2 15 6 00 18 6 45 0 14 6 29 0 88 6 77 17 6 14 0 14 5 72 0 81 6 23 0 27 5 89 0 15 4 97 0 82 4 72 2 90 6 65 32 6 71 0 29 7 03 1 76 7 12 30 6 46 0 26 6 41 1 55 6 77 0 47 6 34 0 25 5 79 1 44 5 70 3 75 7 20 48 6 88 0 50 7 61 2 80 7 36 44 6 63 0 41 6 95 2 39 7 04 0 68 6 58 0 39 6 44 2 1
148. ip have to be stored in a hull form data file A linear transformation of the hull form can be carried out easily by an input of three scale factors This means that the offsets can be measured with any scale or in arbitrary units The actual dimensions m can be obtained with the three scale factors This is convenient when this data file has to be created manually by measuring from a body plan Also this hull form data file can be a direct output of the PIAS program of SARC see http www sarc nl for more information In a preliminary design stage of a ship information on the sectional breadth draught and area is available only If a detailed lines plan is not available the Lewis form creator SEAWAY L can be used to create a hull form based on these parameters A validation study showed that the offsets of the hull form created by this program could be used safely for getting an impression of the sea keeping behaviour of a wide range of conventional hull forms However the use of Lewis hull forms holds that cross sections with different shapes but with a similar breadth draught and area will obtain similar offsets Besides this submerged and bulbous cross sections will be created in a somewhat artificial manner So these Lewis forms should not be used for detailed hull form parameter studies A hull form controller named SEAWAY H displays the body plan of the ship as stored in the hull form data file on the screen for a visual control
149. l 157 65 x 23 40 x 5 80 8 00 meter JOURNEE 058 Cruise Vessel 198 12 x 28 65 x 8 86 10 00 meter Hull Form JOURNEE 057 Hull Form JOURNEE 058 4 LA 1 1 NY m my JOURNEE 059 Sail Yacht 39 90 x 11 80 x 4 45 5 40 meter JOURNEE 060 Container Ship 156 00 x 22 00 x 8 00 8 00 meter Hull Form JOURNEE 059 Hull Form JOURNEE 060 141 142
150. l area If AREA J 0 0 AREA J sectional area If AREA J 0 0 AREA J sectional area coefficient New line Write End of File Save and Quit File 37 3 4 2 Examples of SEAWAY L Data Files An example of a SEAWAY L input data file reads as follows 4 19 Lewis hull form of S 175 Containership created by SEAWAY L 0 2 9 500 0 000 175 000 3 250 24 1 625 1 625 4 375 4 375 8 750 8 750 8 750 8 750 8 750 8 750 8 750 8 750 8 750 8 750 8 750 8 750 8 750 8 750 8 750 8 750 8 750 8 750 4 375 4 375 0 38 0 000 0 000 0 000 0 19 0 850 0 480 0 411 0 00 1 550 101780 1 244 0 50 3 070 1 300 4 642 1 00 4 504 9 500 23 259 2 00 7 028 9 500 61 448 3 00 9 108 29 500 97 487 4 00 10 663 29 500 132 855 5 00 11 685 29 500 165 327 6 00 12 362 29 500 192 594 7 00 12 639 9 500 212 935 8 00 12 700 29 500 226 775 9 00 12 700 9 500 232 674 10 00 12 700 29 500 233 486 11 00 12 681 29 500 228 724 12 00 12 426 29 500 215 267 I3 00 11 696 9 500 191 705 14 00 10 536 9 500 162 731 15 00 8 930 9 500 130 570 16 00 7 020 9 500 97 782 17 00 5 016 9 500 68 548 18 00 3 052 9 500 44 610 19 00 1 541 9 500 2743293 19 50 0 869 9 500 20 892 20 00 0 085 9 370 14 028 X Erg Of file AA The output data file of program SEAWAY L is a hull form data file for SEAWAY 4 19 Lewis hull form of S 175 Containership created by SEAWAY L 9 5000 0 0000 175 0000 3 2500 24 1 6250 1 6250 4 3750 4 3750 8 75
151. llseas Engineering Delft The Netherlands e 005 5 Kupras Computer Systems Zoetermeer The Netherlands e 006 5 Hoger Technisch Onderwijs Rotterdam Rotterdam The Netherlands e 007 5 Technische Hogeschool Haarlem Haarlem The Netherlands 008 S Sd Delft University of Technology Dredging Lab Delft The Netherlands e 009 5 Wijsmuller Engineering IJmuiden The Netherlands e 010 5 Hollandse Signaalapparaten Hengelo The Netherlands 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 5 54 5 5 5 54 5 5 5 54 54 nn n n Delft Shiphydromechanics Laboratory Delft The Netherlands Kahn Shipping Rotterdam The Netherlands University of Twente Enschede The Netherlands Norwegian Contractors Stabekk Norway Delft Hydraulics Delft The Netherlands Directorate General of Transport Den Haag The Netherlands Nevesbu Den Haag The Netherlands Delft University of Technology Ship Design Delft The Netherlands TNO CMC Delft The Netherlands Meteo Consult Wageningen The Netherlands Shipyard Y VC Capelle aan den IJssel The Netherlands Directorate General of Transport Den Haag The Netherlands Bureau voor Scheepsbouw de Groot Bloemendaal The Netherlands Hoger Nautisch Onderwijs Rotterdam The Netherlands D
152. mass radius of inertia for roll so GYR 1 0 0 this tuning code has to be zero This is caused by the structure of the program 54 This disadvantage can be avoided by running the program first with an input of the natural roll period Then the corresponding mass radius of inertia for roll becomes available and now this tuning code can be used in a new calculation New line KRD KRD is the code for determining the roll damping 3 lt KRD lt 4 The non dimensional non linear total roll damping coefficient K found from free rolling tests as given in Figure 17 d is expressed by K Q obtained for 0 in which is the roll amplitude in radians is the frequency of oscillation encounter frequency and is the natural roll frequency in radians per second The coefficients K and will provide an equivalent total coefficient 0 From this coefficient and the calculated potential damping coefficient N 4 X an equivalent additional roll damping coefficient N 0 can be found Ny 9 oy 9 N44 6 Another approach is to determine the equivalent additional roll damping coefficient N4 with the empirical method of Miller 1974 or Ikeda et al 1978 The manner in which the program estimates the additional roll damping coefficient N will be ruled by the input parameter KRD 0 see Figure 17 a b c Only the potential roll damping N
153. ming influences the local pressures on the hull plating and a local damage can be the result The impulse nature of the impact also causes internal vibrations which can contribute to structural fatigue in the ship Slamming does not necessarily influence the overall vertical displacements of the ship significantly Slamming forces can be very large but they act on the ship during a very short time A complete prediction of slamming phenomena is a very complex task which is beyond the scope of any existing theory Slamming impact pressures are affected by the local hull section shape the relative velocity between ship and wave at impact the relative angle between the keel and the water surface the local flexibility of the ship s bottom plating and the overall flexibility of the ship s structure Ochi 1964 has translated the slamming phenomena into requirements for the vertical relative motions of the ship He defined bow slamming by an emergence of the bow of the ship at 0 90L and at the instant of impact exceeding a certain critical vertical relative velocity between the wave surface and the bow of the ship The spectral moments of the vertical relative displacements and velocities are defined by mos and mo 5 Emergence of the bow of the ship happens when the vertical relative displacement amplitude Sa at 0 90L is larger than the ship s draft d at this location The second requirement states that the vertical relative velocity exceeds a
154. mming at Sea Proceedings of 5 O N R Symposium 1964 Bergen Norway Ochi and Motter 1974 Ochi M K and Motter E Prediction of Extreme Ship Responses in Rough Seas in the North Atlantic in Proceedings of the International Symposium on the Dynamics of Marine Vehicles and Structures in Waves Paper 20 Number 20 1974 London U K Pinkster 1980 Pinkster J A Low Frequency Second Order Wave Exciting Forces on Floating Structures PhD Thesis 1980 Delft University of Technology The Netherlands Tasai 1959 Tasai F On the Damping Force and Added Mass of Ships Heaving and Pitching Research Institute for Applied Mechanics Vol III No 26 1959 Kyushu University Japan Tasai 1960 Tasai F Formula for Calculating Hydrodynamic Force of a Cylinder Heaving on a Free Surface N Parameter Family Research Institute for Applied Mechanics Vol VIII No 31 1960 Kyushu University Japan Tasai 1961 Tasai F Hydrodynamic Force and Moment Produced by Swaying and Rolling Oscillation of Cylinders on the Free Surface Research Institute for Applied Mechanics Vol IX No 35 1961 Kyushu University Japan Ursell 1949 Ursell F On the Heaving Motion of a Circular Cylinder on the Surface of a Fluid Quarterly Journal of Mechanics and Applied Mathematics Vol II 1949 U K Versluis 1995 Versluis Parent Hull Forms Technical Report 438 A 1995 Delft University of Technology Shiphydromechanics Laborat
155. ng coefficient is defined by 2pgV GM 1 o Q gt a E s KRD 2 see Figure 17 b The non dimensional total roll damping coefficients K and at forward ship speed have been determined at the natural frequency K K kK by model tests The non linear part of this damping is assumed to be proportional to the frequency of oscillation At the natural frequency the additional damping coefficient N44a will be determined and the non linear part will be added for the other frequencies of oscillation So at each frequency of encounter amp the roll damping coefficients are defined by 69 NA 6 k k 9 F3 4 Ny c 09 6 ce KRD 3 see Figure 17 c The additional roll damping coefficient N44 amp Ikeda is estimated by the empirical method of Ikeda and the potential damping N44 0 will be added N 6 N N 44 9 je This method can not be used for unusual ship forms for very full ship forms and for ships with a large breadth to draught ratio Even a few cross sections with a large breadth to draught ratio can result in an extremely large eddy making component of the roll damping So always judge the components of this damping KRD 3 see Figure 17 c The additional roll damping coefficient wis is determined at the natural frequency by the empirical method of Miller 1
156. ocal effective freeboard f by the vertical relative motion amplitude Sa Using the Rayleigh probability density distribution the short term probability P on shipping water in a given storm condition is given by 2 Pishipping water Pis gt f mo where is the area of the relative motion spectrum Ss 7 1 2 Propeller Racing Propeller racing can occur when the propeller comes partially out of the water This is largely prevented nowadays by rpm governors on the engine However large thrust and torque fluctuations occur in waves even at a constant number of revolutions per minute This is reason why propeller racing is sometimes defined as an emergence of the propeller which causes a decrease of torque in excess of 25 However often a more simple definition is used which defines propeller racing as an emergence of the propeller by more than one third of the propeller diameter thus the short term probability P on shipping water in a given storm condition is given by 2 P propeller racing P s gt z D 6 usd Mos 109 where Zaxis is the positive distance of the propeller axis below the still water level and D is the diameter of the propeller 7 1 3 Bow Slamming Bow slamming is a two node vibration of the ship caused by suddenly pushing the ship by the waves This occurs when the bow of the ship comes completely out of the water and then crashes down with an impact against the next wave Slam
157. of Bureau Veritas for the radius of inertia for roll 18 2 k hos 28 Often no reliable data on k is available When information about the natural roll period at zero forward speed is available this period can be input too GYR 1 0 0 1 Natural roll period T in seconds and k will be calculated from this T GYR Q is the radius of inertia for pitch of the ship s solid mass Practical ranges for ships are k 0 22 L 0 27 Lpp 3 is the radius of inertia for yaw of the ship s solid mass kz Practical ranges for ships are k 0 23 L 0 28 L The radii of inertia of the ship s solid mass have to be given in meters NBTM NBTM is the number of cross sections for which the vertical and horizontal shear forces and bending moments and the torsion moments have to be calculated 0 55 If NBTM 0 then no further information about that subject has to be read 52 e If NBTM gt 0 New line For I 1 XBTM I AXTM I NSM For J 1 NSM XSM J SM J SGK J SGYRX J KTUNE 1 KTUNE 2 KTUNE 3 XBTM D is the distance of load calculation cross section number I from APP positive forwards is the vertical distance of the local torsion axis at cross section number I from the base line positive upwards NSM is the number of load input cross sections 2 lt NSM lt 44 XSM J is t
158. of the same type of which the offsets are available 21 A standard hull form of a barge with a length breadth and draught of 1 00 meter and three scale factors can define any rectangular barge Then 3 equal cross sections at 2 mutual distances of 0 50 meter have to be defined with offsets at 4 intervals as given below for KCON 2 SNR J NWL J 4 SDIST J 0 00 219 294 000 20 0 00 0 0 00 0 0 50 0 1 00 0 00 22 5 5590 50 50 Then any rectangular barge with zero trim is simply defined by the scale factors XS length of the barge YS breadth of the barge ZS draught of the barge New line Write End of File Save and Quit File 22 3 2 Examples of Hull Form Data Files Three examples of hull form data files are given here 3 2 1 Containership An example is given here of the hull form data file of the S 175 containership design as used by the ITTC in 1978 for a comparative study Figure 7 S 175 Container Ship Design The hull form file of this containership reads as follows 4 19 S 175 containership 175 00 x 25 40 x 9 50 11 00 meter 11 0000 0 0000 175 0000 3 2500 24 1 6250 1 6250 4 3750 4 3750 8 7500 8 7500 8 7500 8 7500 8 7500 8 7500 8 7500 8 7500 8 7500 8 7500 8 7500 8 7500 8 7500 8 7500 8 7500 8 7500 8 7500 8 7500 4 3750 4 3750 2 0 38 2 0 0000 9 5000 0 0000 10 2500 1 1200 11 0000 2 0400 0 19 4 0 0000 9 0200 0 0000 9 2600 0
159. on of equipment cargo safety personnel safety and efficiency General operability limiting criteria for ships are given in the table below General Operability Limiting Criteria for Ships NORDFORSK 1987 Merchant Ships Naval Vessels Fast Small Craft RMS of vertical accelerations at F P P 0 275 g Lpp lt 100 m 0 275 g 0 650 g 0 050 g Z gt 330 m Probability on slamming 0 03 Lpp lt 100 m 0 03 0 03 0 01 Lp gt 300 m Probability on deck wetness Table 7 General Operability Limiting Criteria for Ships For intermediate lengths in the criteria for the RMS of the vertical accelerations forward and for the criteria for the probability on slamming a linear interpolation can be used The limiting criteria for fast small craft are only indicative of trends A fast craft is defined as a vessel under about 35 meters in length with a speed in excess of 30 knots A reason why the vertical acceleration level for fast small craft is set higher than for merchant ships and naval vessels is that personnel can tolerate higher vertical acceleration when the frequency of oscillation is high Operability limiting criteria for accelerations and roll motions for various types of work and for passenger comfort are given in the following table Operability Limiting Criteria for Accelerations and Roll Motions for Various Type of Work and for Passenger Comfort NORDFORSK 1987 Phenomena RMS of Vertical RMS of Lateral RMS of Roll Ac
160. or TEXT Read error IPRINT KCON DR TR RLPP RLA NS DX J J 1 NS SNR J YWL J D J AREA J The names of the data types are explained before These errors can appear in case of an input of a real value for an integer data type or when the array declaration conflicts with the number of input array elements 102 62 Error Return Messages of Editor SEAWAY E FORTRAN 77 runtime errors when opening the data files are given by e Input error Similar file names e Input error False keyboard input Open error Hull form data file e Open error Input data file Generally the user causes the open errors Check the status of the files to be opened Error return messages are build into the input editor to protect the program execution against exceeding the limits of the input data in the hull form and input data file Also messages are given in case that FORTRAN 77 runtime read errors appear in these data files Input error return messages and runtime read error messages with respect to the hull form data file are given by e Input error NS out of range e Input error NS odd number e Input error KCON out of range e Input error NWL J out of range e Input error NWL J is odd number Input error Y J I less than zero e Read error Input exhausted in hull form data file Read error 80 in UNIT 7 Read error DR TR RLPP RLA NS DX J J 1 NS KCON Read error SNR J NWL J S
161. or KCON 2 SNR J ES SNR J NWL J 10 NWL J 10 SDIST J 0 00 SDIST J 0 00 Y J 1 Z2 2 1 0 00 0 00 12 9 1 0 1 1 0 00 0 00 0 67 0 00 0 00 0 67 1533 9 00 0 00 1 33 2 79 0 50 0 50 2279 3 40 1 00 1 00 3 40 4 10 2 00 2 00 4 10 4 70 3 00 3 00 4 70 5 45 5 00 5 00 5 45 6 10 7 00 7 00 6 10 6 81 9 00 9 00 6 81 7 71 11400 13 300 LL In both cases the offsets are referenced to a horizontal line through the keel point of the cross section Also a cross section can be a zero area cross section Then the input data are as below SNR J NWL J 2 SDIST J 0 00 2 J I 0 1 1 0 00 0 00 0 00 0 00 0 00 0 00 So do not use for a zero area cross section SNR J NWL J 2 SDIST J 0 00 2 2 1 Y J I 0 00 0 00 5 50 0 00 11 00 0 00 This cross section represents a very thin plate New line XS YS ZS All data on the hull form in this file will be multiplied with scale factors XS Linear scale factor in the longitudinal direction YS Linear scale factor in the lateral direction ZS Linear scale factor in the vertical direction When the actual hull form has been defined here these three scale factors have to be set to 1 0 This option is convenient when calculating full scale ship motions with a model scale hull form data file Also it can be used for preliminary calculations of a ship with the hull form data of another ship
162. or could determine this are presented here Both hull form series have been described here and are gathered in the file HullFormSeries ZIP These hull forms were made non dimensional in such a way that they have a length a breadth and a draught of 1 00 meter Then to obtain its actual dimensions again these normalised hull forms are resized by using the numerical values of L B and d as scale factors at the end of the hull form data file Now this hull form can be resized easily to the principal dimensions of any other ship by replacing the scale factors by the principal dimensions of the actual ship The most important hull form parameters of a ship with respect to its seakeeping behaviour are its length L breadth B and draught 4 The hydromechanical coefficients and wave loads are also influenced by the block coefficient the water plane coefficient Cw and the longitudinal position of the centre of buoyancy Lcog or centre of gravity Lcoc Now the procedure for using these hull form series is as follows Select a ship with a C and Cw close to their required values If a ship of the same type has been selected too only a small error in the value of Lcog can be expected generally Then a linear scaling of this hull form to the required dimensions of the ship results in a hull form which in general can be used safely for preliminary ship motion calculations Two figures are presented here to make in a simple way a qui
163. orward DX J is an element of the array with the longitudinal cross section intervals The longitudinal intervals can be divided in NS 2 subsequent pairs of two cross section intervals With respect to the integration over the ship s length note that within each pair of two intervals these two individual intervals may not differ more than 1 4 or 4 1 If they differ more the program will switch locally from Simpson s general rule to the trapezoid rule to avoid an inaccurate integration The constant amidships part can be given by two intervals An even index number J 0 5 is advised for any cross section at a discontinuity in the longitudinal derivative of the load water line curve or the cross sectional area curve Jumps in these curves as for instance appear at the beginning and end of a column of a semi submersible are introduced by two zero intervals as presented in Figure 3 The cross section at the boundary between these two intervals can be either the nearest left or the nearest right cross section 0 0 0 0 pres HH 1 50 1 99 2 01 2 50 SNR J 1 50 1 9912 01 2 50 2 00 2 00 t even index J even index J Figure 3 Cross sections at a Longitudinal Jump is the code for the input sequence of the offsets The contour of each cross section J of the ship has to be given by a series of offsets defined by 0 0 70 0 or 70 0 17 0 as given in Figure 4 The input sequence of the co
164. ory Delft The Netherlands 120 11 Appendix Body Plans of Hull Forms Series VERSLUIS 002 Container Ship 205 00 29 20 9 10 11 00 meter Hull Form VERSLUIS 002 VERSLUIS 004 Container Ship 250 00 x 32 00 x 9 10 11 00 meter Hull Form VERSLUIS 003 Hull Form VERSLUIS 004 c IIS VERSLUIS 005 Container Ship 300 00 x 37 00 x 11 00 13 00 meter VERSLUIS 006 Tanker 302 00 x 52 10 x 20 00 24 00 meter Hull Form VERSLUIS 005 Hull Form VERSLUIS 006 121 VERSLUIS 007 Supply Vessel 54 63 x 12 88 x 4 75 5 75 meter VERSLUIS 008 Coaster 72 00 13 00 4 24 5 00 meter Hull Form VERSLUIS 007 Hull Form VERSLUIS 008 HIE EEEE VERSLUIS 009 Stern Trawler 46 45 9 20 x 3 70 4 50 meter UERSLUIS 010 Ro Ro Vessel 198 80 32 24 x 10 00 12 00 meter Hull Form VERSLUIS 009 Hull Form VERSLUIS 010 ce UERSLUIS 011 Ferry 138 00 x 24 70 x 5 70 7 00 meter VERSLUIS 012 Reefer Ship 133 00 x 19 60 x 6 18 7 50 meter Hull Form VERSLUIS 011 Hull Form VERSLUIS 012 122
165. ow frequencies using KTH lt 0 can result in too high motions this aspect needs further research So always judge your computed frequency characteristics Exceptions on this general rule are the vertical motions of barge shaped vessels Then it is advised to use KTH gt 0 MSER MSER is the number of terms in the potential series for the calculation of the hydrodynamic potential coefficients in the Ursell Tasai method after which the series expansion is truncated 3 MSER lt 10 In most cases 5 7 terms appears to be the minimum Generally it is advised to use the maximum value MSER 10 KCOF KCOF is the code for defining the standard method in the program for the calculation of the two dimensional potential coefficients of the cross sections KCOF 1 The hydrodynamic potential coefficients will be set to zero KCOF 0 Ursell Tasai s method with 2 parameter Lewis conformal mapping 2 Ursell Tasai s method with 2 parameter Close Fit conformal mapping KCOF 3 Ursell Tasai s method with 3 parameter Close Fit conformal mapping 4 Ursell Tasai s method with 4 parameter Close Fit conformal mapping 5 Ursell Tasai s method with 5 parameter Close Fit conformal mapping 6 Ursell Tasai s method with 6 parameter Close Fit conformal mapping KCOF 7 Ursell Tasai s method with 7 parameter Close Fit conformal mapping 8 Ursell Tasai s method with 8 parameter Close Fit confo
166. ows the output of the significant amplitudes and average periods of the vertical relative displacements and velocities of a keel point at the centre line of the ship as a function of the sea state parameters HEIGHT and PER T or T gt depending on the sign of KSEA The dynamic swell up of the waves obtained from the radiated waves is included in the relative motions AMPL the significant amplitude of the relative displacements and velocities in m and m s respectively PER is the average period of the motions in seconds Depending on the sign of KSEA this period is defined by or 75 Also the probability PROB on bow emergence and the number per hour NR H that this happens are given The slamming phenomena are defined by a relative VELOCITY criterion as defined by Ochi 1964 and a PRESSURE criterion as defined by Conolly 1974 with threshold values as given in the input data file The algorithms of these calculations are given in the theoretical manual see Journ e 2001b 97 54 Restrictions of Linear Strip Theory The ship is considered to be a rigid body floating in an ideal fluid homogeneous incompressible free of surface tension irrotational and without viscosity It is assumed that the problem of the motions of this floating body in waves is linear or can be linearized As a result of this only the external loads on the underwater part of the ship are considered and the effect of the above water part is f
167. problems are solved generally in the strip theory substantial disagreements can be found between the calculated results and the experimental data of the wave loads at low frequencies of encounter in following waves In practice these near zero frequency of encounter problems can be solved here by forcing the wave loads to go to zero artificially For high speed vessels and for large ship motions as appear in extreme sea states the strip theory can deliver less accurate results Then the so called end terms can be important too The strip theory accounts for the interaction with the forward speed in a very simple way The effect of the steady wave system around the ship is neglected and the free surface conditions are simplified so that the unsteady waves generated by the ship are propagating in directions perpendicular to the centre plane of the ship In reality the wave systems around the ship are far more complex For high speed vessels unsteady divergent wave systems become important This effect is neglected in the strip theory The strip theory is based on linearity This means that the ship motions are supposed to be small relative to the cross sectional dimensions of the ship Only hydrodynamic effects of the hull below the still water level are accounted for So when parts of the ship go out of or into the water or when green water is shipped inaccuracies can be expected Also the strip theory does not distinguish between alternative
168. readth B is the full breadth 74 The non dimensional roll damping coefficient 2 has been obtained from the dimensional roll damping coefficient b by bya 2 amp with amp 2pgV GM in which the damping coefficient b44 includes the viscous damping This amp value is expressed as K 64s amp Gy with in radians and in radians per second 75 76 5 3 Example of an Output Data File This section shows parts of the output data of a calculation of loads and responses in a seaway carried out for the S 175 Containership design Reflection of Input Data KPR 1 1 Pee H HEHEHE HEE EEE RRR EEE EEE EE EE Program SEAWAY Journ e STRIPTHEORY CALCULATIONS OF MOTIONS AND LOADS IN A SEAWAY Release 4 18 09 10 1999 eH H HH EEE EEE EE RRR ZZ ZZ ZZ EZ SHE User 011 Delft University of Techn Shiphydromech Laboratory INPUT DATA ITTC ship S 175 Test of program SEAWAY release 4 18 PRINT CODE INPUT DATA KPR 1 1 PRINT CODE GEOMETRIC DATA KPR 2 1 PRINT CODE HYDRODYNAMIC COEFFICIENTS KPR 3 1 PRINT CODE FREQUENCY CHARACTERISTICS KPR 4 1 PRINT CODE SPECTRAL DATA KPR 5 3 ACTUAL MIDSHIP DRAFT DRAFT 9 500 m ACTUAL TRIM BY STERN TRIM 0 000 m WATER DEPTH DEPTE 10000 0 m DENSITY OF WATER
169. rmal mapping 9 Ursell Tasai s method with 9 parameter Close Fit conformal mapping KCOF 10 Ursell Tasai s method with 10 parameter Close Fit conformal mapping KCOF 11 Frank s pulsating source method KCOF 12 Keil s shallow water method with 2 parameter Lewis conformal mapping The 2 parameter Lewis conformal mapping method KCOF 0 and KCOF 12 determines the transformation parameters in such a manner that the breadth bs draught ds and area of the cross section As are equivalent For cross sections with very small or very large area coefficients o this Lewis transformation delivers unacceptable results Re entrant forms or non symmetric forms will appear If so the program will increase or decrease the area coefficient until a valid Lewis form is obtained Figure 14 shows these typical areas in relation to the area coefficient and the aspect ratio Ho where _ and DEL bd 2 4 asymmetric forms bulbous and tunneled forms 1 0 2 x o t conventional forms o lt 0 5 re entrant forms Aspect Ratio H Figure 14 Ranges for Valid Lewis Forms Close Fit N parameter conformal mapping 2 lt KCOF lt 10 determines the N KCOF parameters in such a manner that the sum of the squares of the deviations of the 32 points on the re mapped cross section from the actual cross section is minimised Frank s pulsating source method KCOF
170. s in SEAWAY FIL e Read error File names in SEAWAY FIL Open error Hull form data file Open error Input data file e Open error Optional data file Generally the user causes the open errors Check the SEAWAY FIL file or the status of the files to be opened The program SEAWAY is protected against a not authorised use by a SENTINEL C software security system Security control statements build into the program can result in control errors reflected by one of the following messages e Control error LPT port for Sentinel key not found e Control error Check of Sentinel key fails If these errors appear adequate assignments for the user will be displayed on the screen such as e Stop because of No Sentinel key or an improper Sentinel key in LPT port Use a proper Sentinel key A proper Sentinel key connected with a not powered printer Set power switch of printer to ON or disconnect printer Temporary internal error in Sentinel key Try again If the release number of the input data file is not suitable for to the present program release number the program SEAWAY stops with the message e Convert input file with SEAWAY E to release 4 19 Doing this the editor SEAWAY E will read the old input data file and it will be updated automatically Saving this file results in a new updated input data file for SEAWAY The input error return messages and the runtime read error messages with respect to the hull form da
171. st Edition November 1984 e RM Fortran Version 2 4 DOS by Ryan McFarland Corporation However these error messages from the RMF compiler should be avoided by messages given further on build into the program If these runtime errors appear make a copy of the input data file and inform the author 101 61 Error Return Messages of SEAWAY L FORTRAN 77 runtime errors when opening the two data files are reflected by e Input error False keyboard input e Input error Similar file names e Open error Input data file e Open error Output data file Generally the user causes these errors Check the status of the files to be opened The following error return messages are build into the program to protect the program execution against an overstep of the limits of the input data file e Input error IPRINT out of range e Input error KCON out of range e Input error NS out of range e Input error NS odd number The names of the data types are explained before The user should fulfil the requirements for the limits given in the description of the input data file If not done so these error messages will appear However also these error messages can be a consequence ignoring the input instruction new line before a data type The following messages are reflected in case that FORTRAN 77 runtime read errors appear in the input data file e Read error Input exhausted in input data file Read error RELINP e Read err
172. ta file and to the input data file are similar to those of the input editor SEAWAY E as given in the previous section Additional error messages could be e Error Calculated GM value less than zero This error is caused by the input value of GK which is too low e Error Unable to determine natural frequency Unrealistic external roll moments or linear spring stiffness coefficients causes this error 9 Error Unable to determine roll amplitude by iteration Security stop in a computation loop for the linearisation of the non linear roll damping This error occurs very seldom It can appear when using KTH lt 0 for ships with a very low natural frequency for roll 7 is something like about 30 seconds or more In that case the problem can be solved by using KTH gt 0 This error can also be caused by the input of unrealistic external moments or anti roll devices Send your hull form file and input data file to the author 106 The subroutines SOLVE and SOLVEN in the program SEAWAY solve one or more sets of NxN linear equations These subroutines are used when calculating the two dimensional potential hydrodynamic coefficients with the Ursell Lewis Tasai methods or the Frank Close Fit method and when solving the set of maximum 12 coupled equations of the in and out of phase motions In case of a singularity the program returns with one of the following messages Error in subroutine SOLVEN in TASAI e Error in subroutine SOLVE in FRAN
173. ter may differ per cross section However because of the use of Simpson s general rule it has to be even So the number of offsets to describe the cross section is NWL J 1 Depending on the shape of the cross section at least 8 or 10 intervals are required mostly SDIST J is half the distance between the local centre lines used for ships with local twin hull cross sections for instance catamarans For a mono hull cross sections SDIST J 0 0 Y J D is the horizontal distance of the offset from the mono hull centre plane Z J 1 is the vertical distance positive upwards of the offset above a for each cross section arbitrarily horizontal reference line as shown in Figure 5 The sequence of the input of the offsets 15 from keel upwards The first 0 offset has to be the keel point and the last NWL J offset has to be an offset at the waterline defined by the amidships draught DR and trim TR For each cross section the vertical position of the horizontal reference line is arbitrary Before starting the geometrical calculations the program subtracts from all Z J D values the Z J 0 value Then the first offset becomes 0 0 and all other offsets are related to this point Since of all cross sections the last NWL J offset is situated in the load waterline this load water line will become the reference plane during the calculations An even index number is required for any offset at a discontinuity in the derivative of the cross sec
174. the coefficients a to are pure hydrodynamic mass or inertia coefficients The terms to X are the wave loads The coefficients and the wave loads are related to the ship s centre of gravity In case of twin hull ships the parameters the coefficients and the wave loads above are those of the two hulls The dimensions of the motion amplitudes the mean added resistance and the amplitudes of the shear forces and the bending and torsion moments are e translation meter rotation degree e added resistance N or KN depending on p shear force N or KN depending on p bending moment Nm kNm depending on torsion moment Nm or kNm depending on p The non dimensional transfer functions in the output are obtained by dividing it through the values given below PEE ma etam t e e pap Added Resistance p oo o 1 Reatve Hee amp lhe e G Sal G e Bending Moment pet T TE pet DB 1 Note that for KPR 4 gt 0 possible negative added resistance values are set to zero Table 6 Non Dimensional Transfer Functions All phase lags are related to the vertical elevation of the waves at the origin G of the co ordinate system The phase lags are given in degrees where 0 lt lt 360 In case of twin hull ships the parameters and the coefficients above are those of the two hulls So the b
175. tion contour for instance at a knuckle This holds also for the offset at the beginning or the end of a straight line or at the maximum breadth of a bulbous cross section Straight lines have to be defined by two intervals Two subsequent zero interval values are permitted because numerical problems are avoided by the program itself by using a very small value Figure 5 shows some examples Within the NWL J 2 pairs of two vertical intervals these two individual intervals should not differ by more than 1 4 or 4 1 If they differ more the program replaces Simpson s general rule by the trapezoid rule locally to avoid inaccurate calculations 19 u Figure5 Requirements on Even Offset Numbers To suppress so called irregular frequencies in the calculation of the hydrodynamic potential coefficients by the pulsating source method of Frank 1967 the program itself closes not fully submerged cross sections by adding one two or three extra offsets at the load water line Nevertheless always check these sections for the occurrence of irregular frequencies Tunnelled cross sections are not permitted by the present Frank Close Fit method This problem is solved artificially in the program by freezing the water in the tunnelled part of any Frank section when calculating the potential coefficients Figure 6 Tunnelled Cross section 20 For KCON 1 and KCON 2 an input example of a cross section J is given here For KCON 1 F
176. ull form data file with approximated offsets of the ship based on these three parameters This option makes it possible to use the ship motions program SEAWAY in a preliminary design stage of a ship too The program SEAWAY L requires an ASCII input data file which contains simple information about the geometry of the underwater part of the ship In case of twin hull ships the data of the single hull have to be given Parameters in this input description starting with 7 J K L M and N are integer data types All other parameters are real data types which can be given with an integer format too 35 3 4 1 Description of Input Data for SEAWAY L On first line of data set RELINP RELINP is the program release number when creating the hull form data file Program releases created later will be able to use this file too TEXT New line TEXT is a text line with a maximum of 80 characters with general information about the ship such as the name of the ship and its principal dimensions for instance Containership S 175 175 00 x 25 40 x 9 50 11 00 meter New line IPRINT KCON IPRINT is the code for printing of input data IPRINT 20 Suppress printing input data IPRINT 1 Print input data which have to be removed from the output data file before using this file as an input data file for SEAWAY KCON is the code for the input sequence of the offsets The contour of each cross section J of the ship has to be given
177. ully neglected The incorporation of seakeeping theories in ship design has been discussed clearly by Faltinsen and Svensen 1990 They concluded that nevertheless some limitations strip theories are the most successful and practical tools for the calculation of the wave induced motions of the ship at least in an early design stage of a ship With respect to the limitations of the linear strip theory some remarks have been given The strip theory solves the three dimensional problem of the hydromechanical and exciting wave forces and moments on the ship by integrating the two dimensional potential solutions over the ship s length Interactions between the cross sections are ignored for the zero speed case So each cross section of the ship is considered to be part of an infinitely long cylinder The strip theory is a slender body theory so one should expect less accurate predictions for ships with low length to breadth ratios However experiments showed that the strip theory appears to be remarkably effective for predicting the motions of ships with length to breadth ratios down to about 3 0 or even sometimes lower The strip theory is based on the potential flow theory This holds that viscous effects are neglected which can deliver serious problems when predicting roll motions at resonance frequencies In practice for viscous roll damping effects can be accounted fairly by empirical formulas Because of the way that the forced motion
178. umber has to be even An advised value for a normal ship is 24 intervals 20 equal intervals between the perpendiculars 2 added cross sections aft and 2 added cross sections forward DX J is an element of the array with the longitudinal cross section intervals The longitudinal intervals can be divided in NS 2 subsequent pairs of two cross section intervals With respect to the integration over the ship s length note that within each pair of two intervals these two individual intervals should not differ by more than 1 4 or 4 1 If they differ more the program will switch locally from Simpson s general rule to the trapezoid rule to avoid inaccurate integrations An even index number J is advised for any cross section at a discontinuity in the longitudinal derivative of the load water line curve or the cross sectional area curve Jumps in these curves as for instance appear at the beginning and end of a column of a semi submersible are introduced by two zero intervals as presented in Figure 3 For J 0 NS New line SNR J J D J AREA J SNR J is the station number This real value is printed in the output with two decimals A negative station number for cross sections behind A P P often indicated in lines drawings or body plans by the characters A B etc is permitted too YWL J is the local half breadth at the load water line D J is the local draught AREA J is information on local cross sectiona
179. ut Data File The computer code SEAWAY uses a right handed co ordinate system with the origin at the centre of gravity G of the ship and the vertical axis upwards as has been shown in Figure 15 The signs of the absolute displacements are defined by e longitudinal displacement x positive forward transverse displacement y positive to port side e vertical displacement 2 positive upwards rotational displacement positive right turning about its axis The vertical relative displacement is positive for a decreasing freeboard The signs of the wave forces and moments on the ship are comparable to those of the absolute displacements or rotations The shear forces and the bending and torsion moments are defined by the forces and moments acting on the front side of the hind part of the two ship parts with signs comparable to those of the absolute displacements or rotations All phase lags are related to the absolute vertical elevation of the waves at the origin G of the co ordinate system 69 5 2 Non Dimensionalising The units are defined by length meter e mass kg or ton defined by the input value of p e force N or kN defined by the input value of p e moment Nm or kNm defined by the input value of e time seconds angle degrees e ship speed knots probability percent A part of the output data can be presented in a non dimensional format For this some symbols used in this section are define
180. values The options 2 and 3 are very convenient when plotting the calculated frequency characteristics at equidistant Lpp V Lpp values When calculating the relation between the wavelength and the wave frequency for the restricted water depth effect has been accounted GKGM GKGM is a parameter to obtain the vertical position of the ship s centre of gravity G the origin of the ship s co ordinate system in the equations of motion 51 GKGM gt 0 0 GKGM KG This is the distance of the centre of gravity G above the base line Then the transverse metacentric height GM will be calculated from KG and the ship s under water geometry lt 0 0 GKGM GM This is the transverse metacentric height Then the vertical position of the centre of gravity KG will be calculated from GM and the ship s under water geometry This GM value may not include a free surface correction of the metacentric height Dynamic behaviour of fluids in tanks has to be included in the radius of inertia for roll in the natural roll period or in the external roll moments defined further on A zero value of GKGM is not permitted Liquid cargo is considered to be frozen cargo when determining the location of the ship s centre of gravity G GYR 1 GYR 2 GYR 3 is the radius of inertia for roll of the ship s solid mass Kx Practical ranges for ships are k 0 30 B 0 40 B Another indication obtained from an article
181. ven in this manual e Also the hull form data file can be an output file of the PIAS program of SARC an hydrostatic program which is frequently used in the Netherlands e For preliminary calculations a set of hull form data files with 123 non dimensional parent hull forms has been made available for the users Selected hull forms from this set with acceptable water plane area coefficients and block coefficients can be scaled easily by the user to the principal dimensions of his actual ship e In a preliminary design stage of a ship a pre processing program SEAWAY L be used to create a Lewis hull form data file from the sectional breadths draughts and areas only A control program named SEAWAY H displays the body plan of the ship as stored in the hull form data file on the screen Modifications can be carried out with this control program too A user s friendly input editor named SEAWAY E creates the hydromechanical input data file Almost this editor takes the place of the User Manual At any actual loading of the ship given in the hydromechanical input data file new offsets will be calculated by the program and a linear transformation of the hull form can be carried out by an input of three independent scale factors Lewis or N parameter close fit conformal mapping methods and the potential theory of Ursell 1949 and Tasai 1959 1960 1961 in deep water can be used to calculate the two dimensional hydrodynamic
182. wave directions this file will be read and checked first When the two check sums are correct these two dimensional properties will be used instead of repeating the calculations of the potential coefficients This simple option saves the user a lot of computing time especially when using the time consuming pulsating source method of Frank Optionally an ASCII data file SEAWAY DAT can be filled with calculated data in a format defined by the user For this the user has to inform the author about the desired sequence of output data inside the forward ship speed loop and the wave direction loop Exclusive for each individual user these output formats can be fixed into the program These SEAWAY DAT data can be read by spread sheets or plot routines directly In a preliminary design stage only sectional breadths draughts and areas are known Then the Lewis form creator named SEAW AY L can be used to create a suitable hull form data file A hull form controller named 5 has been made available to plot the body plan derived from these offsets on the screen When using this controller errors introduced in the offsets can be found easily An input editor named SEAWAY E has been made available to create the input data file Almost this editor takes the place of this manual as far as the input data file of the ship motions program is concerned 14 3 Hull Form Data The offsets of the cross sections of the fully laden sh
183. wel Ux edis e ails du ca eem E Ode b cct Ae 119 1l Appendix Body Plans of Hull Forms Series sss 121 1 Introduction SEAWAY is a frequency domain ship motions PC program based on both the ordinary and the modified strip theory to calculate the wave induced loads and motions with six degrees of freedom of mono hull ships and barges in seaway When not accounting for interaction effects between the two individual hulls also these calculations can be carried out for twin hull ships such as semi submersibles or catamarans The program is suitable for deep and shallow water The underlying theory of the program has been given by Journ e 2001b This new User Manual of program SEAWAY replaces the previous old manuals Program SEAWAY has been validated with results of other 2 D and 3 D computer programs and experimental data Based on these validations and on experiences obtained during an intensive use of SEAWAY for many years by the author industrial users institutes and students it is expected that the program is free of significant errors SEAWAY requires two separate input data files e ahull form data file and e ahydromechanical input data file The offsets of the cross sections of the fully loaded ship have to be stored in a hull form data file which can be obtained in different ways e The hull form data file can be made manually with any ASCII word processor simply by following the descriptions gi
184. with 22 circular frequencies by multiplying FREQMAX with 0 01 0 05 0 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 50 0 55 0 60 0 65 0 70 0 75 0 80 0 85 0 90 0 95 1 00 and 1 25 The hydrodynamic coefficients at the frequency of encounter in the calculations are found from the calculated coefficients at this frequency series by linear interpolation For calculating the behaviour of a sailing ship in seaway mostly a value for FREQMAX 2 50 rad sec is a suitable choice It is also possible to calculate a minimum and a maximum frequency of encounter by the program itself from the input values of the circular wave frequencies the forward ship speeds and the wave directions relative to the ship s speed vector This will be done by the program in case of an input value FREQMAX 0 00 Now the program creates a series of 22 frequencies by dividing the calculated circular frequency of encounter range into 21 parts 50 OMMIN OMMAX OMINC is the code for determining the wave frequency range defined by KOMEG 1 Input of wave frequencies KOMEG 2 Input of wavelength to ship length ratios amp L KOMEG 3 Input of the square roots of the ship length to wavelength ratios For KOMEG 1 the range of circular wave frequencies at which the transfer functions are calculated is arranged by OMMI N the minimum circular wave frequency Opin the maximum

Download Pdf Manuals

image

Related Search

Related Contents

Owner`s Manual Ceramic Edge Pro™ Electric Knife  ダウンロード  Integral IN3T4GNYBGX memory module  使用上の注意はカタログー取扱説明書をお読みください。  NOTICE D`UTILISATION  リュック式クリーナー    

Copyright © All rights reserved.
Failed to retrieve file