Home

pDRIVE< MX eco Operating instructions CANopen

image

Contents

1. DG 102 D6 103 Ref value1 min value Ref value1 max value O FFFF hex In case of setting D6 03 Bus error behaviour to 3 Emerg ref val amp alarm the set emergency reference value is used during a bus fault The unit of the emergency reference value corresponds to that of the min max scaling It is not possible to assign reference paths twice If you try to assign a second reference source to a use which is already allocated in the reference value distributor the parameterization will prevent this and the alarm message Multiple usage of inputs not possible will be shown in the display D6 105 D6 106 D6 108 D6 109 D6 111 D6 112 91 D6 121 Ref value6 selection D6 122 Ref values min value d D6 123 Ref value6 max value 50 D6 125 Ref value7 selection O O Not used pgr mtwaermewae H 9 DEAN ner aurem ec o e e PEERY e aasa TE fim PERSON ner values mn vaus H po DER ner values max vaus e wo DER ner values emergency o e een OO TETS iss DEAR ner values min vale po b s mtwue max vaue H jo D s vas emergency o be The settings of the bus reference values 2 9 are logical identical with those of bus reference value 1 see parameters D6 101 D6 104 Configuration of the fieldbus actual values Corresponding to the configured telegram length one to nine a
2. e E raer nee To fo Q J OQ C Q Q Q 0 0 0 O EHE Ae vamos seccion J ias DE act vales min vas O DEAN values max aus fo ee ct vaes ferme ole b 99 D6 170 Act value9 selection lt D6 171 Act value9 min value D6 6 172 Act value9 max value 9 2C O Not used DDR ac vales ferme H 6 fs The settings of the bus reference values 2 9 are logical identical with those of bus reference value 1 see parameters D6 138 D6 141 Configuration of control word bits 11 15 GEIER e sms 0 11 14 15 16 dese 18 1955 22 23 24 Ls 26 29 30 Not used f ref reverse Motor pot 4 Motor pot Pre set A Pre set B Pre set C Pre set D f reference 2 Hz Control source 2 2nd ramp Heference value B Panel operation External fault 1 External fault 2 32 35 36 37 40 41 42 50 51 92 5 53 56 of 58 99 sa Emergency operation PID active PID lock PID wind up Feed in pressure OK Level OK Level lt C motor 1 ready C motor 2 ready C motor 3 ready C motor 4 ready Mains cut off ON lock Locking Feedb motor cont 60 61 64 65 66 67 Tiz ICH 106 107 108 109 C Motor heating Operation with IR Pulse counter input Pulse counter reset n monitoring Parameter lo
3. tf FFF B E EE EE 200D 2A b G 100 300 300 hex Hz mum IC 1 s CI Hz 200D 2C G h jo FFF cobro hex Hz Hz 20030 amp h jo FFF 200031 S hex SEE Hz 200D 33 aaa E j FFFF opas 100 300 300 Hz hex Hz Hz 200D 88 JO FFF 203 hex Hz Hz 2oop sc G ji Jo FFF 200020 j 200D3E BH J hex Hz Hz 2000 41 G ho In Iso js 2000 42 BH Hz Hz 2000 45 G ho To Iso je 200D 46 BH Hz Hz 2000 49 G so In am js 19 Parameter name D6 150 Act value4 selection D6 151 Act value4 min value D6 152 Act value4 max value D6 153 Act value4 filter time D6 154 Act value5 selection D6 155 Act value5 min value D6 156 Act value5 max value D6 157 Act value5 filter time D6 158 Act value6 selection D6 159 Act value6 min value D6 160 Act value6 max value D6 161 Act value6 filter time D6 162 Act value selection D6 163 Act value min value D6 164 Act value max value D6 165 Act value filter time D6 166 Act values selection D6 167 Act value8 min value D6 168 Act value8 max value D6 169 Act value filter time D6 170 Act value9 selection D6 171 Act value9 min value D6 172 Act value9 max value D6 173 Act val
4. 1 Initialization 2 11 14 Pre operational CS 128 13 CS 130 10 9 Stopped 12 CS 21 0522 Operational Change of state Command Description 4 No PDO services possible 5 No SDO services possible 8 Neither PDO nor SDO services possible 0 9 10 11 Neither PDO nor SDO services possible 12 13 14 Heset Communication 82 hex Neither PDO nor SDO services possible A fault message on the inverter can be reset using bit 7 in the control word reset only if the NMT state Pe machine is in Operational state PDO telegrams can be transferred only in this state If this is not the case the CANopen master PLC must send an NMT telegram with a request code of 01 hex Start Remote Node to the corresponding subscriber CU The active NMT state is transferred in the response telegram in case of active node guarding Alternatively it can be read directly on the inverter under parameter D6 22 CANopen status Bootup service pDRIVE MX gt PLC By means of this telegram the CANopen subscriber indicates that it has switched to the Pre operational state when initialization has been completed The data byte sent in the process is always 00 hex 700 hex Synchronization object SYNC PLC gt gt pDRIVE lt MX The SYNC object is sent cyclically to all subscribers from the CANopen master PLC It consists only of the identifier and is used by CANopen subscribers for cyclic
5. G jo In om tis M 2008 5C osso us 4 amc ono o 2002 4C G lo og is cos 8 2 3 TT aee TS aee E 4 E mA 2008 68 lo mos J mA 200902 4 lo aces E 4 mA 2009 05 BH aco 4 j 200907 o fo s oe I1 48 T _ kHz Parameter name Behaviour at undervoltage E3 29 V lt response E3 30 Allowed V lt time E3 31 Max V lt time External fault E3 34 Ext fault 1 monitor E3 35 Ext fault 1 response E3 36 Start delay time E3 37 Time At E3 38 Ext fault 1 name Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter E3 41 Ext fault 2 monitor E3 42 Ext fault 2 response E3 43 Start delay time E3 44 Time At E3 45 Ext fault 2 name Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter ON lock E3 48 ON lock activation E3 49 ON lock response E3 50 Time At Alarm categories E3 51 Alarm category 1 E3 52 Alarm category 1 2 E3 54 Alarm category 2 E3 55 Alarm category 2 2 E3 57 Alarm category 3 E3 58 Alarm category 3 2 Loss of reference value E3 60 LFP f monitoring E3 61 LFP monitoring resp E3 62 LFP emergency val Process faul
6. J gov c 200 c J 00903 BH _ 20 C 2004705 D 2040 D 200255 X TI 20407 j j powo TI J 200409 j 200N0A BH J 20008 BH zoo J 200A 0D QD J _ 20 BH J 200 BH fJ _ 2000 10 TI j comi TI TI 20 12 2002 57 X TI 200418 Y J coma J o 200415 D TI HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Parameter name E6 97 E6 98 E6 99 E6 100 E6 101 E6 102 E6 103 SR1 function SH1 output SR module 2 SR2 signal S selection SR2 signal R selection SR2 function SR2 output Time device E6 109 E6 110 E6 111 E6 112 E6 113 E6 114 E6 115 E6 116 E6 117 E6 118 E6 119 E6 120 E6 121 E6 122 E6 123 E6 124 E6 125 E6 126 E6 127 E6 128 E6 129 E6 130 E6 131 E6 132 E6 133 E6 134 E6 135 E6 136 E6 137 E6 138 E6 139 E6 140 E6 141 E6 142 E6 143 E6 144 Time module 1 T1 signal A selection T1 function T1 Time At T1 output T1 selection Time module 2 T2 signal A selection T2 function T2 Time At T2 output T2 selection Time module 3 T3 signal A selection T3 function T3 Time At T3 output T3 selection Time module 4 T4 signal A selection T4 function T4 Time At T4 outp
7. Jj poko z CS _ 2002 2008 08 0110 IS III 20 5 C J core BH fJ o 2017 BH J 200818 BH Jj 200819 D 200214 ER h J J 20005 on amp o mw Ta X 20000 omo amp o 200216 O ER ho 20020 o T mw X Ire avs i r le aw lt lt r le aon i le axes iR le awe lt lt r le aves Z le awe i le hex hex hex HTSL 8 P01 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Index Adjust Subindex ability min 2002 27 x 4 Parameter name max D6 236 PRx 09 Diagnosis VSD gt BUS D6 244 PTx 03 200 55 x h hex D6 245 PTx 04 2003806 x t TI hex Modbus Master D6 260 Master activation 20700 J D6 261 Master TaskIndex 201700 D h To js D6 262 Master TaskState 2017 03 ON a 1 0 0 hex D6 263 Master TaskSlaveAdr 2017 04 m we BM D6 264 Master ZTW Bit 11 2077 14 J D6 265 Master ZTW Bit 12 20715 gt D6 266 Master ZTW Bit 13 come D6 267 Master ZTW Bit 14 2071 gt D6 268 Master ZTW Bit 15 200718 J D6 269 Master act 1 selection 2007085 gt gt j D6 270 Master act 1 min D6 271 Master act
8. o os 2066 _ 2006 61 BD oo To so 200662 G to Jo le s 200068 amp amp oo jo on s 2006 64 G mm Jo om 200861 BB J j 2007 03 BH fJ 2007 04 amp G o jo 16000 s 200705 G lo Io om E 200700 G pto lo fso 2007 07 G ho In ls hz 200708 jo Jo soo e corno BH goo QD _ 200711 tt 8 J 19 Parameter name Index Type Adlust Factor pelfingrange Unit Subindex yp ability min max C6 Special functions Economy mode C6 01 Economy mode moz ER C6 02 Max fluxing reduction C6 03 V flevel 200716 ALON o jiw j Motor heating C6 05 Motor heating 200717 B C6 06 Heating current 2007 08 jt o 5 1 Line contactor control C6 07 Line contactor control 200719 GO J Motor contactor control 0608 Motor contactor contro oz E amp _ Standby Mode C6 11 Standby mode poynB z S _ _ C6 12 Offdelay time 2071c G jo XA34 Lamm Te C6 13 On delay time 200710 jho t o Te C6 14 Max level 20071E O jo jo jo C6 15 Min level 20071F to Jo jso Pulse counter C6 18 Pulse counter 2007 20 B J 66 20 Counter average moy m o II C6 21 Scaling 2007 21 G joo jo js C6 22 Time base pulse counter 2007 22 t jo Lo
9. Factor Zul EE CS CSS DC Pour Jo EO o je 2001 48 Je IS ho Ce eet Ce bu ass JO IS h fo 1000 me zo L 8 no Jo 55535 mn mous 6 E me Tem zem O meme ome JA F zoo JO JS jo J Te ze JO jo EE moa Je JB zs o m Im mes O gt jo R mess JO JS fo qm 20036820 200647 e J aw BE T T J asap JA O h hb fm x mos JO 6 fo Jo fo fs mos JO IO h o io E 200500 JA 6 fo Jo fo 2005 59 j Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Parameter name Index Type allein Factor SEI Unit Subindex YP ability ms a Motor potentiometer C1 18 Motor pot selection 206060 8 C1 19 Motor pot control 200607 C120 Motor pot min value Hz C1 21 Motor pot max value 2006 09 D Im am 300 im _ C1 22 Motor pot accel time XA O em e E C1 23 Motor pot decel time 2006 0B D 10 0 6500 Eu 7 C1 24 Motor pot ref storage CC ME OA UNE eme RN NAM ie 01 25 Motor pot tracking mos lilo Panel reference sources C1 29 MX wheel selection poo GO C1 30 MX wheel f min value 20060F Jio fo 300 C1 31 MX wheel f max value 200610 G jio jo 300 Hz C134 MX wheel single step 2000513 joo jo jo C13
10. Receive PDO1 assignment 4th Object Ref value3 selection see parameter D6 109 Index Subindex RAW Type Factory default Comment 00 hex 01 hex Receive PDO2 assignment unsigned32 30 00 05 10 hex 1st Object Ref value4 selection see parameter D6 113 Receive PDO2 assignment unsigned32 30 00 06 10 hex 2nd Object Ref value5 selection see parameter D6 117 Receive PDO2 assignment unsigned32 30 00 07 10 hex 3rd Object Hef value6 selection see parameter D6 121 Receive PDO2 assignment unsigned32 30 00 08 10 hex 4th Object Ref value selection see parameter D6 125 Transmit PDO1 unsigned Number of entries i 00 00 01 80 hex Transmit PDO1 01 hex R W unsigned32 COB ID entry Transmit PDO1 Transfer method 02 hex R W unsigned FF hex Asynchronous FE or FF Cyclically synchronous 1 F0 Acyclically synchronous 0 Transmit PDO1 1800 hex Inhibit Time 03 hex RAW unsigned16 12C 300 dec Minimum time between two transfers Factor 10 ms Min value 100 100 x 100 us 10 ms Transmit PDO1 05 hex R W unsigned16 1601 hex Oo hey 03 hex 04 hex 00 hex Event Timer 3E8 hex minimum transfer frequency 1000dez Factor 1 ms Min value 10 10 ms than the inhibit time subindex 1800 03 14 Receive PDO2 assignment Number of used process data d8 04h iiano d 4 objects are used standard like D6 100 No of Bus ref values In asynchronous m
11. 6100 32 Motor control EEProm defect 7400 33 Internal electronic fault 7500 34 Communication fault on the internal serial link FFOS 35 Asic for time measurement defect undervoltage time determination 8400 3 The motor has exceeded the maximum allowed Overspeed level E2 50 FFOA 3 There is a fault in the area of the internal monitoring for function Safe Standstill PWR 7510 38 Communication fault at option card gt pDRIVE lt 1072 39 Communication fault at an option card FFOS 40 Defect or unknown option card used A bus fault occurred due to exceeded run time or loss of 8100 41 control 6320 42 Parameter settings invalid 6310 43 At the analog input Al2 the reference value fell below 2 mA 6310 44 At the analog input AB the reference value fell below 2 mA 6310 45 At the analog input Al4 the reference value fell below 2 mA At the frequency input FP the reference value fell short by 50 96 of the setting fmin At least one of the thermistors PTC or thermal switches 47 assigned to motor M1 See motor assignment E2 01 E2 06 E2 11 has detected an overtemperature 6310 IN C2 6 FFOS At least one of the thermistors PTC or thermal switches 48 assigned to motor M2 see motor assignment E2 01 E2 06 E2 11 has detected an overtemperature FFO6 At least one of the thermistors PTC or thermal switches 49 which are planned for the general use See assignment E2 01 E2 06 E2 11 has detected an overtemperature The t
12. A5 05 Interval motor 2 A5 06 Interval counter M2 A5 07 Power on hours A5 08 Interval power on A5 09 Interval count PowerOn A5 10 Operating hours fan A5 11 Interval fan A5 12 Interval counter fan Index Type Adiust cactor nare range Subindex yp Unit a Ce Ca mous O IS o Is mes us DT TITO Eee ui oo fon DR J T mus e E po jocis Je lo TI pour JA SG TI j 200445 IO Do D Jo Tom 20 OR 20139 O j ous JA ID h Jo 60000 mou IS IL 2 WR WII ou L e h Jo so n moto ho Y pow JA 1 h pj 200048 D J jo _ 6 0 a e IS j 1 D 2 2 2 25 25 25 25 25 25 25 2 69 Parameter name Index Type Adjust actor Setting range Subindex yp EE min m Energy meter O EUN EUN A5 14 MWh meter mot 2001 40 x A5 15 kWh meter mot sw E OS A pe A516 MWh meter gen 20142 Je EE h w Unit MWh A6 Display configuration Configuration of the display A6 01 Selection upper field 20449 J f A6 02 Selection middle field poa E IO IN NN NN A6 03 Selection lower field 2004 4B A6 04 Ven all parameters muc Je o A6 05 Limitations 200 68 TI B1 Language selection Language selection B1 01 Language selection poaae TI B2 Macro configuration Parameter management B2 01 Macro selected 2004 IS J f B2 02 Macro selection 20044 J f B
13. E6 56 LM signal C selection E6 57 LMe function E6 58 LM output reverse E6 59 LM output E6 60 Logic 3 E6 61 L M3 signal A selection E6 62 LMS signal B selection E6 63 LMS signal C selection E6 64 LMS function E6 65 LM3 output reverse E6 66 LMS output E6 67 Logic 4 E6 68 LM4 signal A selection E6 69 LM4 signal B selection E6 70 LM4 signal C selection E6 71 LM4 function E6 72 LM4 output reverse E6 73 LM4 output E6 74 Logic 5 E6 75 LM5 signal A selection E6 6 LME signal B selection E6 77 LME signal C selection E6 78 LMS function E6 79 LM5 output reverse E6 80 LM5 output E6 81 Logic 6 E6 82 LM6 signal A selection E6 83 LM6 signal B selection E6 84 LM6 signal C selection E6 85 LM6 function E6 86 LNG output reverse E6 87 LM6 output Flip Flop E6 94 SR module 1 E6 95 SR1 signal S selection E6 96 SR1 signal R selection 86 Index Tvpe Adjust Setting range Subindex YP ability vM a Cds too o soo Je E Cj 2009 4F too s 650 Unit E 2009 51 2002 51 O 2009 88 200954 2009 55 2009 56 20957 2009 58 2025 2009 59 z BH 2095 z B 2095 BH a 2009 5C a 205 QD 205 J 2002 53 x or BH fJ 2009 60 BB J 2009 61 BB 2009 62 BH o 2009 63 _ 2009 64 BH 2002 54 X
14. Force active Emergency op active External fault 1 or free editable text E3 38 External fault 2 or free editable text E3 45 Undervoltage Reference fault Al2 Reference fault AI3 Reference fault Al4 Bus fault Reference fault FP Feed in ON lock from DI Speed check fault a M1 gt 92 Alarm index dec O on IN Co Em q O E Co a N N Description The force mode is active see F2 01 Force operation The inverter is switched over to the status Emergency operation via a digital input command See parameter E3 10 An external fault is signalized via a digital input command see E3 34 to E3 38 It is processed as an alarm message corresponding to the setting of E3 35 Ext fault 1 response An external fault is signalized via a digital input command see E3 41 to E3 45 It is processed as an alarm message corresponding to the setting of E3 42 Ext fault 2 response There is an undervoltage situation This leads to an alarm message corresponding to the setting of E3 29 V lt response At the analog input AI2 the reference value fell below 2 mA This leads to an alarm message corresponding to the setting of E3 13 AI2 4mA monitor and E3 14 AI2 4mA response If the reference value exceeds 2 5 mA again the alarm message will be reset At the analog input AI3 the reference value fell below 2 mA This leads to an alarm message corresponding to the setting of E3 16 AI3 4m
15. RN RN SS ESI Presentation of the control word SIWI received at the pDRIVE MX eco Diagnostics ZTW Inverter Bus D6 223 E Bus ZTW hex hex hex pemwon lu ER Doo NOOB ND O ZIWT ZIWT ZIWT ZIWT ZIWT ZIWT ZIWT ZIWT Bit O Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 LU E CI EJ E EJ U U E E TELLS K EL IS ESI I ISI RI S ZIW1 ZIW1 ZIW1 ZIW1 ZIW1 ZIW1 ZIW1 ZIW1 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 13 Bit 14 Bit 15 Ka I D D D D D D D I I RN NN SRN S Presentation of the status word ZTW1 sent at the gt pDRIVE lt MX eco Diagnostics of the operating state premios Jo X he D6 227 Internal condition O O1 O N Ready to switch on Ready to run Operation released Fault No Off 2 No Off 3 M U M O M O M U M O M 0110 Lock switching on Alarm Te Tre Control f gt level NA EN M O M U M U M M Presentation of the internal control word in hex D6 226 and as bit field D6 227 HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Diagnostics of the Bus raw data D6 228 PRx 01 D6 229 PRx 02 X PRx 03 PRx 04 PRx 05 D6 emos Presentation of the incoming data words 1 10 at the bus X X D Presentation of the outgoing data words 1 10 at the bus 61 ISIH L0
16. iss mer tse vse iss In the PDO transmit telegram the device status word ZTW and a maximum of 7 selectable actual values of the inverter is transferred to the CANopen master PLC from the CANopen slave Because of using the method static PDO mapping the telegram structure of both PDOs is permanently predefined The actual values being transferred are selected by means of the inverter parameterization in matrix group D6 Word 1 in the telegram PDO1 Transmit always contains the device status word The PDO transmit telegrams generated by gt pDRIVE lt MX eco can be transferred using parameter groups 1800 1801 hex PDO1 2 cyclically or synchronized in event oriented form 24 HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Parameter Index Subindex Format Setting Transfer mode FE hex FF hax Event oriented transfer Cyclically triggered by the 01 FO hex 02 hex Unsigned8 elegram Transfer method 1801 hex 00 hex Event oriented triggered by SYNC Triggered by RTR Ra not supported The selection of the transfer method is accepted only in the NMT state Pre operational Event oriented transfer In case of this transfer mode a PDO transmit telegram is sent by the gt pDRIVE lt MX eco only if a value is changed If a PDO of a subscriber contains values that are constantly changing such as current torque or controller values this subscriber constantly tries to send PDOs In order not to impair
17. 06 Mode tracking 201888 D D6 10 Modbus address obo 8 h Jo fa D6 11 Modbus baud rate 200007 j D6 12 Modbus format opo j D6 15 Modbus time out 2000 09 G o jo oo js D6 20 CANopen address 2000714 8 h To 7 D6 21 CANopen baud rate opis D6 32 Slave state 200 70 XxX D6 33 On after off 1 2007 Bl D6 34 Master settings D6 35 DP master address D6 36 Config buffer 1 D6 37 Config buffer 2 E L A a D6 39 DP diagnostic buffer 1 a 78 ts EEE GM Lo j HEN NEN o 20 ne o 250 o 2500 E HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Parameter name D6 40 D6 41 D6 42 DP diagnostic buffer 2 Group number Global command Fieldbus references No of Bus ref values D6 100 D6 101 D6 102 D6 103 D6 104 D6 105 D6 106 D6 107 D6 108 D6 109 D6 110 D6 111 D6 112 D6 113 D6 114 D6 115 D6 116 D6 117 D6 118 D6 119 D6 120 D6 121 D6 122 D6 123 D6 124 D6 125 D6 126 D6 127 D6 128 D6 129 D6 130 D6 131 D6 132 D6 133 D6 134 D6 135 D6 136 Hef Hef Hef Hef Hef Hef Hef Hef Hef Hef Hef Hef Hef Hef Hef Hef Hef Hef Hef Hef Hef Hef Hef Hef Hef Hef Hef Ref Ref Ref Ref Ref Ref Ref Ref Ref value1 selection value1 min value Value max value value1 emergency value2 selection value2 min value value
18. 1 127 Hequest code Predefined connection set Request code Request code Object bit 10 bit 7 COB ID Note 0000 NMT Network Management services for NMT 0000 bin Hex 0000 hex PLC MX the operation of the CANopen status machine SYNC service SYNC 0001 bin 080 hex 080 hex PLC gt MX also see object 1005 hex EMCY 0001 bin 080 hex 080 hex Node ID PLC gt Mx Emergency service also see object 1014 hex S suus 0011 bin 180 hex 180 hex Node ID MX gt PLC Also see objects 1800 hex 1600 hex a 0100 bin 200 hex 200 hex Node ID PLC gt MX Also see objects 1400 hex 1A00 hex PDO2 Transmit 0101 bin 280 hex 280 hex Node ID MX gt PLC Also see objects 1801 hex 1A01 hex PDO2 RECAI 0110 bin 300 hex 300 hex Node ID PLC MX Also see objects 1401 hex 1601 hex in 4 1011 bin 580 hex 580 hex Node ID MX PLC Also see object 1200 hex Transmit B 1100 bin 600 hex 600 hex Node ID PLC gt MX Also see object 1200 hex NMT Node Guard Heartbeat 1110 bin 700 hex 700 hex Node ID PLC gt MX Also see objects 1016 hex 1017 hex Heartbeat The gt pDRIVE lt MX eco supports the automatic formation of the COB ID request code node ID en The transfer direction and the definition of output input should be seen from the viewpoint of the CANopen slave gt pDRIVE lt MX eco Communication objects In the CANopen network the following com
19. 2008 28 o jo ao js zeg z G zx lo 22 6 poc G h jo 30 js 2008 20 8 22 E aces mos 6 2008 31 A G h lo 300 js 2008 32 J 2008 33 J _ 200884 QD J 20005 D _ 2008 88 h jo soo js 200 37 z _ 203 BH 2008 39 J 2008 54 a G o j 200 38 G t jo ag ac G ho jo 1300 Hz 200835D t In js mn 2009 h 10 J lc 2008 3F jo lo 200840 G h In am 1 20029 X E mon E zwa G 200843 G Jo soo HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Parameter name E2 33 M2 Imax at f nom E2 34 M2 therm f limitation E2 35 M2 motor time E2 36 M2 cooling temp E2 37 M2 alarm level E2 38 M2 trigger level E2 39 Thermal load M2 Stall protection E2 42 Stall protection E2 43 Stalling time E2 44 Stalling frequency E2 45 Stalling current Overspeed protection E2 48 Overspeed monitoring E2 49 Overspeed response E2 50 Overspeed level E2 51 Time At Loss of motor phase E2 54 Motor phase monitor Underload protection E2 61 Underload monitor E2 62 Underload response E2 63 Underload level n E2 64 Underload level fn E2 65 Underload level fn E2 66 Underload start
20. 3 Emergency stop Bit 4 No OFF2 OFF 2 Impulse inhibit Fault No fault 0 Not ready to switch on X 1 X X 0 X X 0 0 0 0 1 Ready to switch on X 1 X X 0 X X 0 0 0 1 3 Ready to run X 1 X X 0 X X 0 0 1 1 7 Run X 1 X X 0 1 1 0 1 1 1 19 Lock switching on X 1 X X 1 X X 0 0 0 0 20 Fault X 1 X X 0 X X 1 0 0 0 Operation released Ready to run Ready to switch on Operation locked Not ready to run Not ready to switch on O Bit state zero 1 Bit state one X Bit state is undefined 33 Description of status word bits Bit Value Meaning Note 0 1 Ready to switch on The drive state is 1 Ready to switch on The inverter is locked At active line contactor control the main contactor is switched off Not ready to switch on The drive state is O Not ready to switch on or 19 Lock switching on 1 Ready to run The drive state is 3 Ready to run That means that there is voltage on the power part and there are no faults But the inverter is still locked At active line contactor control the Run message already occurs during charging drive state 2 Charge DC link 0 Not ready to run 1 2 Operation released The drive state is 4 Operation released 5 Ramp output released 6 Ramp released 7 Run 13 OFF 1 active or 14 OFF 3 active The inverter is operating with impulse enable and there is voltage on the output terminals 0 Operation l
21. B4 18 Nominal current M2 2005 2B OQ seetabe o 4000 JA B4 19 Nominal voltage M2 2005 2C OQ Jo J100 V B4 20 Nominal frequency M2 2005 2D So Inn o am H 71 Parameter name B4 21 Nominal speed M2 B4 22 Nominal slip M2 B4 23 No of pole pairs M2 B4 24 Stator resistor M2 B4 25 Rotortime constant M2 B4 26 Fluxing current M2 B4 27 Stray reactance M2 Motor data MO B4 29 Nominal power MO B4 30 Nominal current MO B4 31 Nominal voltage MO B4 32 Nominal frequency MO B4 33 Nominal speed MO B4 34 Nominal slip MO B4 35 No of pole pairs MO B4 36 Stator resistor MO B4 37 Rotortime constant MO B4 38 Fluxing current MO B4 39 Stray reactance MO B4 40 Load default motor B5 Brake function Brake mode B5 01 Brake mode DC Holdingbrake B5 20 DC holdingbrake B5 21 X DC holdingbrake I start B5 22 DC holdingbrake t start B5 23 DC holdingbrake l cont B5 24 DC holdingbrake t cont C1 Int reference Preset reference values C1 01 Pre set ref selection C1 02 Pre set reference 1 C1 03 Pre set reference 2 C1 04 Pre set reference 3 C1 05 Pre set reference 4 C1 06 Pre set reference 5 C1 07 Pre set reference 6 C1 08 Pre set reference 7 C1 09 Pre set reference 8 C1 10 Pre set reference 9 C1 11 Pre set reference 10 C1 12 Pre set reference 11 C1 13 Pre set reference 12 C1 14 Pre set reference 13 C1 15 Pre set reference 14 C1 16 Pre set reference 15 C1 17 Pre set reference 16 12 Index Adjust oig range Subindex YP apii
22. CAN overrun 4 Return to the NMT state initialisation required o NMT state fault Heturn to the NMT state initialisation required RR annere Be E L Counts all faulty received telegrams SDO PDO etc Counts all incorrectly sent telegrams SDO PDO Hardware problems bus overload Configuration of the fieldbus reference values Corresponding to the configured telegram length one to seven reference values are available in addition to the digital control word EN aaae s 1 1 STW 1 SW 6 1 STW 6 SW 2 1 STW 2 SW 7 1 STW 7 SW 3 1 SIW 3 SW 8 1 STW 8 SW 4 1 STW 4 SW 9 1 STW 9 SW 5 1 STW 5 SW According to the set number of reference values D6 100 only relevant parameters are displayed in matrix field D6 in order to guarantee clear parameterization Depending on the setting of parameter D6 100 No of Bus ref values PDO1 or PDO2 receive is activated When using both PDO s at most 7 bus reference values can be transmitted Number of bus reference values 1STW 3 SW PDO type 1 STW 7 SW The references for the different functions of the gt pDRIVE lt MX eco can be provided in different ways see chapters reference sources reference value distributor in the Description of functions One way is the usage of fieldbus reference values Thereby the reference values are provided by means of automation devices PLC which transmit the required reference valu
23. E1 40 Filter time E1 41 Detected speed E1 42 Ratio factor E1 43 Calculated slip E1 44 Tolerance E1 45 n monitoring response E1 46 Time At Feed in monitoring E1 49 Feed in monitoring E1 50 Feed in mon reaction E1 51 Time At E2 Motor protection Thermistor control E2 01 TH1 motor allocation E2 02 THI activation E2 03 TH1 response E2 04 THI Time At E2 05 TH1 verification E2 06 TH2 motor allocation E2 07 TH2 activation E2 08 TH2 response E2 09 TH2 Time At E2 10 TH2 verification E2 11 TH3 motor allocation E2 12 TH3 activation E2 13 TH3 response E2 14 TH3 Time At E2 15 THS3 verification Thermal mathematical motor model E2 18 M1 overl monitoring E2 19 Mi response E2 20 M1 Imax at OHz E2 21 M1 Imax at f nom E2 22 M1 therm f limitation E2 23 Mi motor time E2 24 Ml cooling temp E2 25 M1 alarm level E2 26 Ml trigger level E2 27 Thermal load Mi E2 30 M2 overl monitoring E2 31 M2 response E2 32 M2 Imax at OHz 82 Index Type Adjust Factor Setting range Subindex YP ability E s 300 20000885 G Im lo lo 300 200004 G to jo flo Zeie 300 2008 1C Ip 100 0 10 OE EC 300 20081E G Dm lo io 20087 2008 20 O t jo o Unit Hz Poe amp jo jo jm E 200022 amp G ho To jo 2008 24 BH J 2008 25 jo To soo je 200820 BH J J 200827
24. LO N3 LEO LOd 8 62 HTSL 8 PO1 031 EN 01 01 Application examples 63 General In addition to the typical Bus operation all inverters are controlled via fieldbus also a Mixed operation i e simultaneous use of bus control and conventional control via terminals is available due to the simple configuration of the reference and actual values and the free areas of the control and status word Following all three basic control types are described in form of block diagrams A mixed operation of these variants is certainly possible Controlling the MX by means of the fieldbus interface Pure bus operation The whole control and diagnostics of the inverter is carried out by means of the bus coupling The possibility to implement conventional control elements is not used disconnecting switch the gt oDRIVE lt MX eco has to be supplied with an external 24 V buffer In order to address an inverter via fieldbus also during mains cut off line contactor control E voltage Control electronics Control electronics gt pDRIVE lt P gt pDRIVE lt ADAP CAN ADAP CAN 24V Buffer voltage 64 HTSL 8 P01 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Controlling the MX alternatively by means of the fieldbus interface or the terminals Control source switch over The inverter is controlled depending on a digital signal at the terminals or the bus via the bus control word or digital commands at the inverter
25. Lines 10 Linel EDS file for gt pDRIVE lt MXeco pro CANopen Slave FileInfo FileName D pDRIVE MX1D1 eds FileVersion 1 FileRevision 0 EDSVersion 4 0 Description EDS for gt pDRIVE lt MXeco pro CreationTime 11 35AM CreationDate 09 11 2005 CreatedBy TS Jagodic DeviceInfo Vendorname VA TECH ELIN EBG Elektronik VendorNumber 0x000001D1 ProductName pDRIVE MXeco pro ProductNumber 0x00001E6C RevisionNumber 0x00000000 OrderCode 0 BaudRate 10 0 BaudRate 20 1 BaudRate 50 1 The EDS file contains the whole information according to the CANopen standard which are required for coupling of the gt oDRIVE lt MX eco to a CANopen network The file is designed in such a manner that it can be read by means of a text editor Due to the reading of the EDS file using the bus configuration tool all slave specific bus data is available to the bus master according to the predefined connection set The address ranges are defined by means of configuration and the configuration setting is transmitted during boot up of the network from the PLC to the individual slaves using SDO telegrams 16 HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 In addition to the EDS file also three graphic files are available which can be optionally used in the configuration tool Ts zh MXO9F9 s dib MXO9F9 r dib MXO9F9 d dib Modifying the EDS file leads to faulty action and is therefore not allowed Structure
26. Operational 7F hex Pre operational Bit 7 is reserved and always zero Subindex Format Unit 1 016 hex 01 hex Unsigned32 ms 1 017 hex Unsigned16 ms Parameter Consumer Heartbeat Time Producer Heartbeat Time The node guarding and heartbeat functions cannot be used at the same time Object library Index 10 00 hex 1 001 hex 1 003 hex 1005 hex 1008 hex 100B hex 100C hex 100D hex 100E hex 100F hex 1014 hex 1016 hex 1017 hex 12 Subindex R W Type Factory default Comment Type of Device 00 hex unsigned32 00 00 00 00 hex Bits 24 31 Not used 0 Bits 16 23 Type of device 0 Bits 0 15 Device profile number 000 00 hex unsigned8 00 hex Fault Bit O 1 potes No fault Bit O 0 00 hex R unsigned 01 re Number of Errors Standard Error Field Bits 16 31 Always O 01 hex unsigned32 00 00 00 00 hex Bits 0 15 For fault code parameters also see Emergency Object Fault Messages wah unsigned32 00 00 00 80 hex COB ID Entry for SYNC message Device name Head via segmented SDO services Node ID 00 hex unsigned32 00 00 00 00 hex This object shows the CANopen address anu configured on the gt pDRIVE lt MX eco Guard Time The node guarding function is deactivated value 0 ms standard like EES REES EE The simultaneous use of the node guarding and heartbeat functions is not possible see 1017 00 Life Time Fac
27. Service M1 Service M2 Service Power On Service fan Simulation active Download active E6 incomplete XY Graph set faulty Change control mode Alarm index dec Description The thermal mathematical motor model has reached the set alarm level for motor M2 oee parameter E2 31 M2 response O The overspeed protection E2 48 has triggered and signalizes an alarm corresponding to the setting of the parameter E2 49 Overspeed response N At least one of the thermistors PTC or thermal switches assigned to motor M1 see motor assignment E2 01 E2 06 E2 11 has detected an overtemperature An alarm message is as a result activated corresponding to the reaction setting for the respective thermistor O0 At least one of the thermistors PTC or thermal switches assigned to motor M2 see motor assignment E2 01 E2 06 E2 11 has detected an overtemperature An alarm message is as a result activated corresponding to the reaction setting for the respective thermistor i cO At least one of the thermistors PTC or thermal switches which are planned for the general use see assignment E2 01 E2 06 E2 11 has detected an overtemperature An alarm message is as a result activated corresponding to the reaction setting for the respective thermistor N O The underload function E2 61 recognises a motor underload and activates an alarm message corresponding to the setting of E2 62 Underlo
28. a G jo jo Lem js C2 12 S ramp mode 200643 C2 13 S ramp C2 14 Limitation 200848 C3 Cascade control Cascade control activation C3 01 Cascade mode 200645 j Cascade state 03 03 Oper hours Get COPEN N e er 03 04 Oper hours C Mot2 pose Em h h h sech C3 05 Oper hours C Mot3 cos ER ho J S C3 06 Oper hours C Mot4 200160 x h o Basic settings 03 09 No of cascade pumps mos D D J C3 10 Manual auto switoh moy 9 C3 11 Oper mode C Mot moy E T T 03 12 _ Oper mode C Mot2 moy E T T 3 13 Oper mode C Mots moa E T T 03 14 Oper mode C Motd moy E T T C35 Switching mode Deng E T 4 HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Parameter name Switching points pressure evaluation C3 18 Max PID deviation C3 19 Overdrive limit Switching points efficiency optimized C3 22 Frequency C Mot1 on C3 23 Frequency C Mot1 off C3 24 Frequency C Mot2 on C3 25 Frequency C Mot2 off C3 26 Frequency C Mot3 on C3 27 Frequency C Mot3 off C3 28 Frequency C Mot4 on C3 29 Frequency C Mot4 off Switching dynamic C3 32 Switch on delay C3 33 Turn off delay C3 34 Overdrive time C3 35 Min switch over time Change of motor C3 38 Motor change C3 39 Change master drive C3 40 Time frame C3 41 Time master drive C3 42 C mot at
29. communication modes Emergency object EMCY gt pDRIVE lt MX gt PLC Using the emergency telegram the pDRIVE MX eco indicates an active fault state as the CANopen slave Both communication faults and general inverter faults are indicated in the process COB ID Byte O Byte1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 80 hex Fault code Fault register MEN EMEN BitO O No fault NodelD LSB MSB gio 3 Fault A detailed overview of the fault messages can be found in chapter Inverter messages page 92 Node Guarding The node guarding function represents a monitoring of the bus subscribers initiated by the CANopen master In the process the master sends an RIR Remote Transmit Request telegram to the subscribers being monitored at cyclic intervals This telegram triggers the lifetime counter in the CANopen slave If the set time of the lifetime counter expires without a new RTS telegram being received the drive reacts with the fault message Life Guarding Fault and sends an emergency telegram EMCY The time of the lifetime counter is determined using the Guard Time 100C 00 hex and Lifetime Factor 100D 00 hex objects These objects can be set using the SDO service during bus configuration The time results from the multiplication of time ms and factor Example 3 seconds monitoring time 500 ms x 6 Subindex Unit 100C hex unsigned16 100D hex unsigned8 Parameter Guard Time
30. gt pDRIVE lt Operating instructions CANopen gt pDRIVE lt MX eco 4V gt pDRIVE lt MX multi eco CANopen General remarks The following symbols should assist you in handling the instructions Advice tip General information note exactly The requirements for successful commissioning are correct selection of the device proper planning and installation If you have any further questions please contact the supplier of the device Capacitor discharge Before performing any work on or in the device disconnect it from the mains and wait at least 15 minutes until the capacitors have been fully discharged to ensure that there is no voltage on the device Automatic restart With certain parameter settings it may happen that the frequency inverter restarts automatically when the mains supply returns after a power failure Make sure that in this case neither persons nor equipment is in danger Commissioning and service Work on or in the device must be done only by duly qualified staff and in full compliance with the appropriate instructions and pertinent regulations In case of a fault contacts which are normally potential free and or PCBs may carry dangerous voltages To avoid any risk to humans obey the regulations concerning Work on Live Equipment explicitly Terms of delivery The latest edition General Terms of Delivery of the Austrian Electrical and Electronics Industry Association form the basis of our d
31. jo Jo General settings B3 24 Stop mode 2005 0E D Tj a B3 25 decel persistant freq 2005 10 io In Jo Hz B3 26 decel persistant time 2005 11 Do Ja lo 3600 S B3 27 Motor fluxing 2005 0F ex To i E B3 30 Switch frequency 2005 12 16 kHz B3 31 Noise reduction 2005 13 SS ll l B3 32 Min length of pulses 2005 14 B3 35 Catch on the fly 2005 15 F A B3 36 Allowed catch direction 2005 16 u WE B3 37 Remanence level 2005 17 D 12 B3 40 Output filter 2005 18 O J B3 41 Fan control 2005 19 B3 42 Auto tune at power on 2005 1A B3 43 Automatic SC test 2005 1B D B3 44 Operation with IR 2005 1C B4 Motor data Motor selection O O ES DLL DLE B4 01 Motor type 2005 1D Oeo Jw B4 02 Motor selection 2005 1E O9 B4 03 Start auto tune 2012 05 Oo Motor data M1 B4 05 Nominal power M1 2005 20 OQ seetable 3500 kW B4 06 Nominal current M1 2005 21 oO see table 4000 A B4 07 Nominal voltage Mi 2005 22 Qo o 100 V B4 08 Nominal frequency M1 2005 23 O9 o 1300 Hz B4 09 Nominal speed M1 2005 24 oO 1 O 65000 rpm B4 10 Nominal slip M1 2001 45 100 HE B4 11 No of pole pairs M1 2001 46 Pe del LE B4 12 Stator resistor M1 2005 25 OQ seetable o 65000 mOhm B4 13 Rotortime constant M1 2005 26 Ja Jo lioo ms B4 14 Fluxing current M1 2005 27 10 lo 400 JA B4 15 Stray reactance M1 2005 28 So o 10 o 65535 mH Motor data M2 B4 17 Nominal power M2 2005 2A amp seetable 02 3500 kW
32. method must regulate conflict situations since several bus subscribers communicate via the same physical medium and the basic principle applies that only one transmitter but several receivers may be active In the CANopen protocol a stochastic random access method is used In case of two or more simultaneous transmission accesses to the bus the conflict is solved by bit by bit arbitration Access thus automatically falls on the message with the highest priority The priority allocation corresponds with the identifier of the sent message a low identifier corresponds with higher priority For error recognition during the data exchange a combination of five different mechanisms is used bit level monitor CRC acknowledgement check bit stuffing and message frame monitoring The fieldbus interface implemented in the gt oDRIVE lt MX eco is realized up to communication profile DS301 ISO OSI Layer 7 Based on this the Profidrive profile on the basis of VDI VDE 3689 is used as the manufacturer specific profile variant otructure of the CANopen profile DSP 401 DSP 402 DSP 404 DSP 406 Manufact spec I O modules Electric drives Transducer Encoders Profidrive ISO OS1 Layer 7 CAN Application Layer Subset Usage is defined by communication profile DS 301 ISO OS1 Layer 1 Physical layer ISO OS1 Layer 2 Data link layer HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 The object library is the main connecting link between
33. of the network SPS with CANopen interface PC with CANopen interface card 08 oo mg US a 08 o Bio o O i O O ole IE oi El o 9 B o 6 OI Ml o 9 oO S l3 g x 83 S 98 S es OJOS 8 ES 388 3 88 SOI S S 3 83 S SO S E ce ES oo Ko Es Terminating s 0 88 8 d 8 Terminating resistor resistor CANopen CANopen CANopen subscriber subscriber 1 2 CANopen subscriber n Due to the principle of bit by bit arbitration for the avoidance of bus access conflicts the signal run time must be taken into consideration depending on the baud rate Decreasing line lengths result at increasing bus speeds Drop lines have a particularly negative influence on signal transmission Generally the drop lines should be kept as short as possible max 0 3 m drop line length at 1000 kBit s Permissible line length depending on the baud rate Baud rate kBit s 20 50 125 250 500 1000 Length m 2500 1000 500 250 100 25 17 Technical key data of the CANopen network Interface according to CiA DS 102 Maximum number of l 32 126 according to the CAN controller used subscribers Bus cable Use a screened twisted two wire line as bus cable e g LAPPKABEL UNITRONIC BUS CAN Characteristic impedance 120 Q 108 132 Q Distributed capacitance lt 60 nF km Loop resistance lt 186 Q km Wire cross section gt 0 50 mm Specific line lag 5 ns m Terminating resistor The b
34. terminals Further information about the selection of the control source are given in matrix field E4 and the presetting of macro 4 in matrix field B2 Control electronics Control electronics m gt pDRIVE lt gt pDRIVE lt E ADAP CAN IT ADAP CAN T 24V Buffer voltage Lo Ho JL LLL ses Control commands for switch over bus terminals as well as for start stop commands disconnecting switch the gt oDRIVE lt MX eco has to be supplied with an external 24 V buffer In order to address an inverter via fieldbus also during mains cut off line contactor control E voltage 65 Controlling the MX by means of the fieldbus interface and the terminals of the device Mixed operation The whole control and diagnostics of the inverter is carried out by means of the bus coupling However also additionally external information for inverter operation additional reference values control signals or system information which do not directly affect the drive are implemented in the automation concept using the standard terminals or the terminal extension 1011 or 1012 An external supply of the inverter electronics with 24 V buffer voltage is necessary if the system information have to be exchanged furthermore via the DP master even if the inverter is cut from the mains Control electronics Control electronics gt pDRIVE lt gt pDRIVE lt ADAP CAN ADAP CAN 24V Buffer voltage EH CANopen Analog and digital in an
35. the inverter and the CANopen master PLC All communication and user objects are included in this object library In the process an object represents a parameter with an address and a subindex in the communication memory of the inverter In the process the CANopen DS301 communication profile describes permanently defined objects used for the setting of communication properties for example but also manufacturer specific ranges for example for the application specific settings parameters of the inverter Structure of the CANopen object library Object index Use 0001 009F Data types static complex OOAO OFFF Reserved 1000 1FFF CANopen communication profile 2000 5FFF Manufacturer specific range hDRIVE lt MX eco parameters 6000 9FFF Range for standardized device profiles AO00 AFFF Process images of IEC61131 devices BOOO FFFF Reserved CANopen communication services The communication services of the CANopen interface on the gt bDRIVE lt MX eco are designed according to the CAN 2 A DS301 V4 02 specification In the process every request is connected with the CANopen device address node ID and a telegram identifier for a COB ID Communication Object Identifier In this way individual telegrams can be handled with priority during the transfer The CANopen device address is transferred in bits 0 6 of the COB ID and the request code in bits 7 11 COB ID 11109 87 654 3210 CAN device address
36. the inverter is disconnected from the bus communication because of switching to panel mode key on the keypad bit 9 is reset to zero message is set Ifthe drive is switched to remote mode bus operation again the automation system has to answer with Control OK within 2 seconds Otherwise the drive is switched back to panel mode automatically 10 1 f gt f level Output of the comparator time module T1 high Parameterization see parameter group E6 0 f lt f level Output of the comparator time module T1 low Parameterization see parameter group E6 Ifthe master does not send Control OK STW bit10 0 an alarm 35 Main actual value Auxiliary actual values In the PDO1 three actual values each 16 bit are available in PDO2 four actual values The meaning of the individual actual values is defined by parameterization of the gt oDRIVE lt MX eco using the Matrix surface The actual values can be divided into two groups inverter internal actual values like e g actual value of speed torque a s o according to the analog outputs of the frequency inverter assumption of the analog inputs for external use by means of the DP master without influencing the inverter control Bit 10 STW must be 1 The actual values are linear scaled values with 16 bit display That is 0 96 0 0 hex 100 96 214 4000 hex Therefrom a presentable data range of 200 200 96 with a resolution of 27 0 0061
37. torque is higher than an effective limitation value Torque limiting protective mechanism are the internal torque limitation E1 05 and the power limitation E1 13 A process fault is signalized via a digital input command see E3 65 E3 69 It is processed as an alarm message corresponding to the setting of E3 66 Process fault 1 response A process fault is signalized via a digital input command see E3 72 E3 76 It is processed as an alarm message corresponding to the setting of E3 73 Process fault 2 response A process fault is signalized via a digital input command see E3 79 E3 83 It is processed as an alarm message corresponding to the setting of E3 80 Process fault 3 response There is a fault at the motor data entered in parameter group B4 oliding switch SW2 PTC LI is in the wrong position in limitation to E2 01 These alarm info messages can be read out under index 2000 subindex 2C 94 HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Trip messages Matrix operating panel No fault Undervoltage V at deceleration Line overvoltage MC not ready DC missing Precharging fault Line fault 1p Line fault 2 3p Overcurrent Motor earth fault Insulation fault Overcurrent IGBT 3 gt gt Motor phase fault 3p Motor phase U lost Motor phase V lost Motor phase W lost Inverter overtemp Unknown MC PTC short circuit PTC open circuit ASIC Init fault Fault code
38. 00A 42 Pow EDS 20 4 BH 200446 BH 00446 BH J 2047 BH Zug BH _ 200449 BH Zuang oma tm 200A 4C Som T T conse BH o J Se d ee 200 50 amp G too Ton Jo 141 200A 51 200452 G to lo o OA SL 200A 5C 200A 5D 200A 5E E eazi ST oit BH Unit V mA 201C 6F to jo je lh moms ZZ B S 200A 61 2002 64 SS IL NN mes n E tt awe In 8 cO Parameter name F3 06 Min sec F3 07 Reference value Hz F3 08 Actual value Hz F3 09 Output current F3 10 DC voltage F3 11 Thermal load VSD F3 12 Control mode F3 13 Operating status F3 14 Alarm message F3 15 Drive state F3 16 Bus STW F3 17 Bus Z TW F4 Diagnosis Data Logger F4 01 Data logger channel 1 F4 02 Data logger channel 2 F4 03 Data logger channel 3 F4 04 Time base F4 05 Rating channel 1 F4 06 Rating channel 2 F4 07 Rating channel 3 State digital inputs F4 10 DI state basic device F4 11 DI state 1011 F4 12 DI state 1012 State digital outputs F4 13 DO state basic device F4 14 DO state I011 F4 15 DO state 1012 Analog checkpoints F4 16 f reference 1 Hz F4 17 f reference 2 Hz F4 18 f reference after sel F4 19 f ref after FW REV F4 20 f correction F4 21 f r
39. 1 69 Digital input DI9 13 Motor 1 active 42 Output T2 70 Digital input DI10 14 Motor 2 active 43 Output T3 71 Digital input DI11 15 Param set 1 active 44 Output T4 72 Digital input DI12 16 Param set 2 active 45 Output T5 73 Digital input DI13 19 Safe standstill active 46 Output T6 74 Digital input DI14 20 Limitation active 54 Bus STW bit 11 76 Pulse generator 24 Motor heating active 55 Bus STW bit 12 25 Motorfluxing active 56 Bus STW bit 13 Parameter D6 197 assigns the respective digital state information to bit 11 of the status word A description of the individual digital output functions can be found in the gt pDRIVE lt MX eco Description of functions matrix field D4 memso JE iso D sem seein es Qo O Setting possibilities see D6 179 O of ISIH L0 LO N3 LEO LOd 8 58 HTSL 8 PO1 031 EN 01 01 Bus Diagnostics 59 Diagnostics of the control status word Diagnostics STW Bus Inverter D6 218 Bus STW hex p Bus STW bin 0110 NOOO WBN O SIWI SIWI SIWI SIWI SIWI SIWI SIWI SIWI Bit O Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 L EL EJ U E L1 L1 LE Ss S RI ESI ELS RI ES S SIWI SIWI SIWI SIWI SIWI SIWI SIWI SIWI Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 13 Bit 14 Bit 15 DU D D D D D D U I IS ISI
40. 1 max D6 272 Master act 1 filtertime 2017 08 KA G Jio fo Ian js D6 273 Master act 2 selection 2077009 gt j D6 274 Master act 2 min 2017 0A 4 100 300 300 D6 275 Master act 2 max D6 276 Master act 2 filtertime 201700 G jio jo jo s D6 277 Master act 3 selection 2070 gt j D6 278 Master act 3 min D6 279 Master act 3 max D6 280 Master act 3 filtertime 20710 G To lo To Te D6 281 Master STW mask 201719 o FFF lhe D6 282 Master ref 1 selection om Og D6 283 Master ref 2 selection 20712 gt D6 284 Master ref 3 selection o7 1 j Jlj E1 Process protection Limitations E1 01 Imaxi 200 07 D Im e E1 03 Inverter temp model 200c 23 BH j E1 05 T limit motor 20009 D Im jo E113 P max motor Behaviour at limitations E117 Reaction at limitation cot we p E1 18 Time At 200812 amp amp joo o jo Te E1 19 Ref after acc extension 2008003 G E1 21 Reaction at deceleration 2007 14 z m I EL Time At 20815 amp o o o h E1 23 Ref after dec extension 2008059 2 Parameter name Skip frequencies E1 25 Skip frequency 1 E1 26 Hysteresis 1 E1 27 Skip frequency 2 E1 28 Hysteresis 2 E1 29 Skip frequency 3 E1 30 Hysteresis 3 E1 31 Skip frequency 4 E1 32 Hysteresis 4 Speed monitoring E1 38 n monitoring E1 39 Pulse rotation
41. 2 03 Parameter mode 2004 50 j B2 04 Create backup 201202 E TI B2 05 Restore backup 200009 IS e _ B2 06 Copy parameter set poo IS e J B2 07 Name parameter set 1 2004 52 a Ensuing parameter 2004 53 D Ensuing parameter 2004 54 D Ensuing parameter 2004 55 D Ensuing parameter 2004 56 a Ensuing parameter 2004 57 TD Ensuing parameter 2004 58 D B2 08 Name parameter set 2 2004 59 a Ensuing parameter 2004 5A D Ensuing parameter 2004 5B ZK Ensuing parameter 2004 5C a Ensuing parameter 2004 5D O Ensuing parameter 2004 5E 4 T Ensuing parameter 2004 5F B2 13 P15 activation me 18 T 1 T B3 Inverter data Mains voltage B3 01 Mains voltage 200460 IS J Motor control B3 02 Control mode 2006800 J o 70 HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Index Adjust Setting range Parameter name CUEIndEx ability Factor W s Unit B3 06 V f V2 2005 01 LD c Jo X 100 V B3 07 V f f2 2005 02 D Jo Jo 300 Hz B3 08 V f V3 2005 03 So 1 Jo 4100 V B3 09 V f f3 2005 04 B po Jo am H B3 10 V f V4 2005 05 So 1 lo 4100 V B3 11 V f f4 2005 06 Solto In 300 Hz B3 12 V f V5 2005 07 Do Jr In 000 V B3 13 V f f5 2005 08 10 Jo am H B3 17 R1 Compensation 2005 09 B3 18 Slip compensation 2005 0A h lo lso B3 19 Vmax field weakening 2005 0B a 100 200 B3 20 Dynamic 1 2005 0C l100 In 25 B3 21 Dynamic 2 2005 0D D 100
42. 2 max value Hz D3 12 AQ filter time corso amp G o lo 80 Te Analog output AO3 D3 15 AOS selection 200750 l 1 Index Adjust Setting range Parameter name Tvpe Factor Unit iube 2 Subindex yp ability E min max D3 16 AOS level 20075E D3 17 AO3 min value 2007 5F Hz D3 18 AOS max value 2007 60 96 Hz D3 19 AOS filter time 2007 61 Om G Im jo jo s Pulse generator D3 22 PG selection 201088 D3 28 PG error correction 201062 BH D3 24 PG const value MUL D3 25 PG const value DIV D3 26 PG output min 201007 A t X Jo lo D3 27 PG output max Zeen 100 D3 28 PG input min 201C 59 D 100 300 300 D3 29 PG input max mm EO O gt D4 Digital outputs Digital outputs D4 01 Ri selection 00762 QD J D4 02 PO selection 200 68 BH Di R3 selection 007684 QU D4 04 DO selection 200801 BH J D4 05 DOG selection 2008 02 BH J D4 06 R4 selection 2008 03 BH J D4 07 DOS selection 2008 04 BH D4 08__ DOA selection 2005 BH D411 DO invertation 2008 08 0110 J D6 Fieldbus Fieldbus configuration D6 01 Bus selection 2000 02 j j D6 02 Control requested 200 8 j D6 03 Bus error behaviour 2000704 BH J D6 04 Bus error delay time 200D 05 G ho lo i320 js D6
43. 2 max value value2 emergency value3 selection value3 min value value3 max value value3 emergency value4 selection value4 min value value4 max value value4 emergency value5 selection value5 min value value5 max value value5 emergency value6 selection value6 min value value6 max value value6 emergency value selection value min value value max value value emergency value8 selection value8 min value value8 max value value8 emergency value9 selection value9 min value value9 max value value9 emergency Fieldbus actual values Number actual values D6 137 D6 138 D6 139 D6 140 D6 141 D6 142 D6 143 D6 144 D6 145 D6 146 D6 147 D6 148 D6 149 Act Act Act Act Act Act Act Act Act Act Act Act value1 selection value1 min value Value max value valuel filter time value2 selection value2 min value value2 max value value filter time value3 selection value3 min value value3 max value values filter time index Subindex men E B In 200212 E h 200213 e h 200078 8 200019 CS Type Adjust ability Factor ids range Unit Hz Hz 200D 1C A h FFF opi hex Hz Hz appo O Jo ler mo hex Hz Hz app tB Jo ler mos TS I I 200D 26 a 100 300 300 hex Hz Emer Lo e Hz 0028
44. 311 Loss of motor phase U 3312 Loss of motor phase V 3313 Loss of motor phase W 4210 Inverter overtemperature overload cooling problem 6100 Unknown power part Short circuit at a thermistor PTC sensor TH1 TH2 THS 7300 21 TH heat sink 7300 22 A thermistor PTC sensor is open TH1 TH2 TH3 TH heat sink 5000 Asic on the motor control cannot be initialised 95 Matrix operating panel IGBT fault IGBT short circuit Motor short circuit Current measure fault MC E zones invalid CPU fault ISL fault MTHA fault Overspeed Safe Standstill 1012 comm fault Opt comm fault Wrong option board Bus fault Param config fault Reference fault Al2 Reference fault Al3 Reference fault Al4 Reference fault FP TH3 M1 gt gt TH3 M2 gt gt TH 3 Ext gt gt 3 M1 gt gt s M2 gt gt Stall protection 96 Fault code Index Et Description hex dec The desaturation protection of an IGBT has triggered 25 The registration of this fault occurs only with devices larger than gt pDRIVE lt MX eco 4V75 Electronically determined short circuit at one of the IGBTs The automatically running test routine B3 43 Automatic SC test has detected a short circuit at the output 5000 2320 21 2320 N Fault of the current transformer its voltage supply or the evaluation electronics 5210 The registration of this fault occurs only with devices larger than gt pDRIVE lt MX eco 4V75
45. 440 jne4 N 440 PAIE 440 ne ON 330 osy 051 UO uoneJedo 4907 UO BUIUOJIMS 4007 440 State machine Profidrive ISIH L0 LO N3 LEO LOd 8 MS 4907 MS aseajaN peseo a1 due due aseajay pasesja ndino dwey ndino dwes eseajay p se j uoneJedo uoneJedo aseajay uni o peay Apeay sJempieH peay JON 9JeMpJeH yul Ja Seu UO UOIIMS 0 Apeay 9 8 S 91S2q YO 040002 UO UOJIMS 0 pe9J JON 31 Main reference value Auxiliary reference values In the PDO1 three reference values each 16 bit are available in PDO2 four reference values The meaning of the individual reference value words is defined by parameterization of the pDRIVE MX eco using the Matrix surface The reference values can be divided into two groups inverter internal reference values like e g f reference PID actual reference value and suchlike according to the reference use forwarding to the analog outputs for external use without influencing the inverter control bit 10 STW must be 1 The reference values are linear scaled values with 16 bit display That is 0 96 0 0 hex 100 96 214 4000 hex Therefrom a presentable data range of 200 200 96 with a resolution of 27 0 0061 results Binary Hexadecimal Decimal 200 0000 10000000 00000000 8000 32 68 The reference values are scaled by means of parameterization in matrix field D6
46. 5 Store MX wheel ref 2006 14 j Calculator C1 38 Calculator selection 200615 8 01 89 Calculator input A moy C140 Calculator input B 200617 C141 Calculator function 200618 C142 Reference value C143 Multiplier C1 44 Divisor 06 8 O t JJ jo C1 45 Calculator min value is Hz C1 46 Calculator max value 2006 1D a 100 300 300 Hz Actual value selection C149 Actual value usage poit 8 01 50 Actual value selection moy o C151 Actual value filter time 200620 To Jo jo ls C1 52 Value at 0 Hz Hz C1 53 Value at 100 Hz 96 Hz Reference value switch C1 54 Ref val switch usage 200623 8 01 56 Ref val switch selec 20624 1l C1 56 Ref val switch input A 200625 D 1 57 Ref val switch input B 2005206 D Curve generator C1 61 Curve generator selec 200628 8 C1 63 Ref value O Hz C1 64 Time Att 200058 G Im Jo on js C1 65 Ref value 1 Hz 01 66 Time At2 2006 20 fio Jo Jeso fs C1 67 Ref value 2 Hz C1 68 Time At3 2006 2F G 10 Jo oa js C1 69 Ref value 3 Hz 01 70 Time At4 2055 fio o s js C1 71 Ref value 4 Hz C1 72 Time At 200033 amp amp mm jo leo Is C1 73 Ref value 5 Hz C1 74 Time At6 2006 35 amp mm jo leo S C1 75 Ref value 6 Hz 01 76 Ti
47. A monitor and E3 17 Al3 4mA response If the reference value exceeds 2 5 mA again the alarm message will be reset At the analog input Al4 the reference value fell below 2 mA This leads to an alarm message corresponding to the setting of E3 19 Al4 4mA monitor and E3 20 Al4 4mA response If the reference value exceeds 2 5 mA again the alarm message will be reset According to the setting of D6 03 Bus error behaviour a bus fault caused by exceeded runtime or a loss of control leads to an alarm message At the frequency input FP the reference value fell short by 50 96 of the setting fmin This leads to an alarm message corresponding to the setting of E3 22 FP f monitoring and E3 23 FP monitoring resp According to the setting of E1 49 Feed in monitoring and E1 50 Feed in mon reaction the trigger of the feed in monitoring leads to an alarm message The digital input function ON lock E3 48 signalizes a problem which leads to an alarm message corresponding to the setting of E3 49 ON lock response The function n monitoring E1 38 leads to an alarm message corresponding to the setting of E1 45 n monitoring response The thermal mathematical motor model has reached the set alarm level for motor M1 oee parameter E2 19 M1 response HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Matrix operating panel 5 M2 gt Overspeed TH s5 M1 gt TH 3 M2 gt TH s Ext gt Underload Ramp adaption
48. All reference values are scaled in Hz or 96 Using bits 11 15 of the control word According to the Profibus profile bits 11 15 are not defined and therefore they can be freely used by the user When the frequency inverter is parameterized appropriate this digital information can be used for inverter internal control signals corresponding to the use of the digital inputs or totally separated from the inverter functions in order to transmit information using the digital outputs of the frequency inverter bit 10 STW must be 1 This additional information bit 11 15 are added to the control word in the corresponding numerical format Use Free control bits Possible reference values Inverter internal f reference 2 f reference 1 2nd ramp f reference 2 External fault f correction PID active PID ref value Mains ON OFF PID actual value for the complete list see matrix filed D6 Inverter external Relay and digital outputs of the basic card Analog output of the basic card or or the option card 1011 or 1012 the option card pDRIVE 1012 32 HTSL 8 PO1 031 EN 01 01 Status word HTSL 8 PO1 031 EN 01 01 Assignment 5 freely configurable status bits for internal or external frequency inverter messages f n 2 f level f n x f level Control requested No control rights requested f n f n ref f n z f n ref Alarm No alarm Bit 6 Lock switching on No Lock switching on No OFF 3 OFF
49. Index Description pied 2000 49 4 dec 3120 01 There is an undervoltage situation See parameter E3 29 V lt response The DC link voltage has exceeded the hardware 3310 02 protection level of 825 V due to a deceleration Extend deceleration ramps or activate motor brake B5 01 Brake mode The DC link voltage has exceeded the protection level of 3110 03 56 V As the fault evaluation only occurs with impulse inhibit a line overvoltage situation takes place 3230 The motor control is not ready after the charging process The frequency inverter is operated at the intelligent 3200 05 rectifier gt oDRIVE lt LX The DC link voltage made available by this rectifier has shut down Fault of the soft charge device half controlled thyristor FF01 bridge Only for devices larger than pDRIVE MX eco 4V18 3130 08 Loss of one mains phase 3130 09 Loss of two or three mains phases 2320 Overcurrent at the output Earth fault at the output 2320 11 Registration by means of the software only with devices up to and including gt pDRIVE lt MX eco 4V75 The differential current determined from the three motor 2330 12 phases is larger than 25 96 of the nominal current of the inverter Overcurrent at the output 2310 13 Registration by means of the software only with devices up to and including gt pDRIVE lt MX eco 4V75 IGBT overtemperature determined by the thermal 4210 14 HOA mathematical inverter model 3310 Loss of the three motor phases 3
50. Jo leo s 20101E__ G ho Jo oo js o7 tx Unit 2095 j opc j 200927 9 2009 30 j 209 531 S J j 2009 32 201206 X oor j 8 obs B jJ 204 j 201D 41 o jo 3200 Is mes Im I T Top awe E I Pot mws lt 6 xo fo jm s aaa E SI 1 aw 1B wo o qu axes ow 1 O cosa tB m jp jm awe E lo poses pose E SI TL T 20000 m jp jm s pose E SI Pons oo jo sw s om 2009 42 G mm In een goza ER j o o 2009 43 BB J 2009 44 f 2009 45 G too Jo jso e 200946 _ 2009 48 G too Jo soo js 2009 49 fJ 200944 G mm To een 200250 X TI 200948 TI 85 Parameter name E6 29 Cd signal A selection E6 30 C4 signal A filter time E6 31 Cd signal B selection E6 32 Cd ref value E6 33 Cd signal B filter time E6 34 Cd function E6 35 Cd hysteresis band E6 36 Cd output Logic module L1 L6 E6 46 Logic 1 EG 47 LM1 signal A selection E6 48 LM1 signal B selection E6 49 LM1 signal C selection E6 50 LM function E6 51 L M1 output reverse E6 52 UM output E6 53 Logic 2 E6 54 LM signal A selection E6 55 LM signal B selection
51. Life Time Factor Node guarding RTR telegram PLC gt pDRIVE lt MX 700 hex Node ID Node guarding telegram gt pDRIVE lt MX PLC COB D Node ID Togglebit NMT State 10 HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 NMT State OOhex Initialization 04 hex Stopped 05 hex Operational 7F hex Pre Operational Toggle bit The state of this bit changes with every response The node guarding and heartbeat functions cannot be used at the same time The active NMT state can be read directly on the inverter under parameter D6 22 CU The node guarding parameters 100C and 100D can be set only in the Pre operational state IW Heartbeat The Heartbeat function represents an effective monitoring of the communication of any CANopen subscribers The devices to be monitored are divided into heartbeat transmitters and receivers The transmitter cyclically Producer Heartbeat Time transmits a heartbeat telegram with its actual NMT state This telegram triggers a timer in the heartbeat receiver If the set time of the timer Consumer Heartbeat Time expires without a new heartbeat telegram being received the subscriber defined as the heartbeat receiver reacts with the fault message Heartbeat Fault and sends an emergency telegram EMCY Heartbeat telegram transmitter receiver cos 700 hex Node ID zero NMT state transmitter NMT State OOhex Initialization 04 hex Stopped 05 hex
52. Motor e g 90 kW max presentable range 200 96 Process value GE nn 100 8000h C000h transmitted 0000h 4000h 7FFFh bus value hex Lee 100 as 200 D6 139 D6 140 54 HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 eme EN 9 hs _ 0 30 s During the measurement of dynamically changing values such as current or torque it may be a good idea to filter the actual value which should be transmitted already in the inverter The measurement value can be stabilized before transmission by setting an appropriate filter time at the output filter At setting 0 0 seconds the filter is deactivated DE ssa fim D6 143 Act value2 min value EM TD 0 DA act value max vaus A OG Je ems act vata terme Ta jas DERE vas seco o Fm DST act values min vas O po oem ct value max aus 1 Je e avast aje be END evasisse Es i act values min vas po 2 Act va max aus Je esc vales terme aje Ju sms iss 5 act vales min vale po pSacvaesmecae o Epesrwrwesweue o O po B geren E mm R are me po 0 Ae vato max vaue H m DEN rares nee To bhe BER Act arat aer mm e act vanermnvae DS ac vane7 max ie
53. O1 031 EN 01 01 Inverter settings 45 Settings of the serial communication properties General fieldbus settings Parameter group D6 Fieldbus is used for configuration of all fieldbus connections which are possible with the gt pDRIVE lt MX eco The two fieldbus connections CANopen and Modus are available as standard Further fieldbuses like e g Profibus DP can be realized by means of optional PCBs which can be built in According to the used bus which is selected with parameter D6 01 only parameters for this bus are displayed in matrix field D6 Bessa EI 9 Len O No bus 1 Modbus 2 CanOpen 3 Profibus The desired fieldbus system is activated by means of parameter D6 01 Bus selection The activation influences the principle data exchange between the bus subscribers in respect of the transmitted process data reference actual values and the parameterization service In order to use the bus control word of the respective bus profile for the control of the gt bDRIVE lt MX eco Control source 1 or 2 E4 01 E4 02 must be set to Bus See also parameter group Ed of the pDRIVE MX eco Description of functions comu 8 Fe OU Not active 1 Active In order to recognize a communication problem at the serial fieldbus interface two different monitoring routines are available Watch dog timing The watch dog timing checks the fieldbus interface for a cyclical signal of the active bus maste
54. PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Parameter name State option cards F4 56 Option 1 type F4 57 Option 2 type F4 60 Status APP F4 61 Status MC F4 62 Status LCD keypad 2003 39 T Reference value linkage F4 65 Source f reference 1 F4 66 Source f reference 2 F4 67 Source f correction F4 68 Source PID reference F4 69 Source PID actual F4 70 Source T reference F4 71 Source T limit Analog checkpoints F4 72 f ref before MC Reference value linkage F4 78 Source STW1 F6 Code Security settings F6 01 Code F6 02 Code value F6 03 Parametrising station F6 04 Impulse inhibit F6 05 Service code System parameters Store parameter values Index Adjust Setting range Subindex YP9 j apii Factor Les Unt zws E EL T Do 20334 E j mox E X mox E TR T NA 7 eer E HHHH amo aou I avs m LO aou I zw ae lo oo o m aom X 1 1 T 2008 2D t jo lo 200B 2E G h jo s corr BH 2008 00 BH 200831 t X JO 59999 200029 BH Factors depending on the device gt pDRIVE lt devices MX eco 4V0 75 4V7 5 MXeco 4V11 4V75 MX eco 4V90 4V630 Unit A kW kVA Hp Nm mQ 1 1 1 1 1 1000 91 Inverter messages Alarm Info messages Matrix operating panel
55. W 3 D6 146 PDO2 transmit 280 hex SW 4 D6 113 SW 5 D6 117 SW6 D6 121 SW 7 D6 125 PDO receive 300hex IW 4 D6 150 IW 5 D6 154 IW 6 D6 158 IW 7 06 162 SDO Service Data Object SDO telegrams represent a service for direct access to the object library The identifiers for the SDO transmit and SDO receive telegrams lie at 580 600 hex and thus lead to a lower priority transfer within the CANopen network SDO SDO transmit SDO receive 580 hex SDO telegrams are used for adjustment of the CANopen specific communication settings during network configuration objects 00 00 hex 1F FF hex but can also be used to parameterize the inverter objects 20 00 hex 5F FF hex 2 Parameter F6 03 Parametrising station must be set to 3 CANopen in order to adjust parameters on the gt pDRIVE lt MX eco via the CANopen interface Network management CANopen state machine NMT telegram PLC gt pDRIVE lt MX eco By means of the NMT network management telegrams the CANopen state machine is operated The telegram consists of a request code and the node ID of the desired subscriber If the node ID transferred in Byte 1 equals zero the request transferred in the telegram applies for all subscribers operated in the network COB ID 00 hex Command CS Node ID Command CS Command 01 hex otart Remote Node 02 hex Stop Remote Node 80 hex Enter Pre Operational State 81 hex Reset Node 82 hex Hese
56. W 5 5 Torque 27 Total counter 52 Bus SW 6 8 Power 33 DC voltage 53 Bus SW 7 9 Power 36 Thermal load M1 54 Bus SW 8 10 Motor voltage 37 Thermal load M2 55 Bus SW 9 11 Speed 39 Thermal load VSD 58 Act Error Code 12 Speed 41 Al 1 59 Act alarm Code 15 Int f ref before ramp 42 AI 2 66 Ref value C motor 1 16 Int f ref after ramp 43 AI 3 67 Ref value C motor 2 17 PID reference val 96 44 AI 4 68 Ref value C motor 3 18 PID actual value 96 45 Frequency input 69 Ref value C motor 4 19 PID deviation 96 46 LFP input Selection of the size which should be transmitted at bus actual value 1 300 300 96 or Hz D6 140 Act value1 max value o 50 96 or Hz 300 300 96 or Hz The two parameters D6 139 Act value1 min value and D6 140 Act value1 max value are used for linear scaling of the transmitted bus actual value D6 139 assigns the minimum value to the actual value point O 96 0 dec 0000 hex D6 140 assigns the maximum value of a process size to the actual value point 100 96 16384 dec 4000 hex The scaling of the process size and their unit can be seen from the table above Settings example for bus actual value 1 Process size Scaling D6 139 Act value1 D6 140 Act value1 Scaling of the output signal min value max value 8 Power 100 96 Nom 0 96 100 96 4000 hex 16384 dec at motor power 100 96 Pu
57. ad response N The set acceleration or deceleration ramp cannot be maintained and is automatically extended N C2 The operating hours counter A5 01 for motor M1 has exceeded the set time interval A5 02 The operating hours counter A5 04 for motor M2 has exceeded the set time interval A5 05 N al N N I The operating hours counter A5 07 for the power part of the device device is supplied with mains voltage has exceeded the set time interval A5 08 NO O The operating hours counter A5 10 for the power part fan has exceeded the set time interval A5 11 The Simulation mode F2 45 is activated The PC program Matrix 3 executes a parameter download After transmission it is necessary to confirm the parameterization on the LED keypad with shortcut Digit or shortcut Digit J to deny parameterization in order to return to the regular operating state Alternatively confirmation is possibly by means of the service code F6 05 33 When using the matrix operating panel BE11 the function keys F1 F3 are provided for confirmation N N 00 N cO Parameterization alarm One or several function modules in parameter group E6 are parameterized incompletely or faulty Parameterization alarm The reference source XY graph is parameterized incompletely or faulty Parameterization alarm The selected function cannot be combined with the actual control mode 93 Matrix o
58. alue Hz D1 34 _ FP filter time 200743 jio lo Iso is Frequency input LFP D1 37 LFP selection 201D 17 O D1 38 LFP min 201D 18 amp Im jio je Im D1 39 LFP max 2010 19 Im to je Im D1 40 LFP min value Hz D1 41 LEP max value Hz D1 42 _ LFP filter time oipic Im jo jo s D2 Digital inputs Digital Inputs D2 01 Di selection 204 D2 02 DI2 selection 2007 45 Dm DIS selection 2046 D2 04 DIA selection 204 gt Dm DIS selection 2007 48 j D2 06 DI6 selection 204 III D2 07 D selection 20074A D2 08 DI8 selection 2o D2 09 DIS selection poc D2 10 DI10 selection 204 III D2 11 DII selection 2 4 D2 12 DI12 selection pov D2 13 DI13 selection 205 8 D2 14 DI14 selection 200751 D2 15 DI at bus mode active 20752 0110 GO TI D2 18 Dl invertation 2018 04 0110 D D3 Analog outputs Analog output AO1 D3 01 AO selection 200753 D3 02 AO level 2007 54 B II D3 03 AO min value Hz D3 04 AO1 max value Hz D3 05 AO filter time 2007 57 G jo Jo jo s Analog output AO2 D3 08 AO2 selection 200758 QD _ D3 09 AO2 level 2007 59 BH J D3 10__ AO2 min value Hz D8 11 AO
59. an C6 23 Pulse type mw I SI I 7 C6 24 Symbol pulse counter 2007 24 C6 25 Pulse counter unit mu E I 8 L Lt Correction reference value C6 26 f correction 200729 DC supply C6 65 DC charging 2018360 C6 66 DC charging time 201837 mm jo Im is D1 Analog inputs Analog input Al D1 01 Al selection 2007 2 OQ D1 02 Al level cores BH D1 03 A min value Hz D1 04 AI max value Hz D1 05 A filter time 200728 G jio jo lo ls Analog input Al2 D1 08 AG selection 2072 S Jj D109 AG level 2007 30 BH j D1 10__ AG min value Hz D1 11__ NS max value Hz D112 AG filter time 2007 33 D jio jo Iso 5 Analog input AI3 D1 15 A selection 200734 gt j D116 Ap level 2007 35 B D117 AIS min value Hz D1 18 Als max value Hz D1 19 AG filter time 200738 o Io js js Analog input Al4 D1 22 Au selection 200733 gt TI TI 16 HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Parameter name a le Type EL Factor nia Deg Unit D1 23 Au level 2007 8 D1 24 _ Al4 min value Hz D1 25 Au max value Hz D1 26 A4 filter time 2007 3D LE tom jo so s Frequency input FP D1 29 FP selection 2073 S l D1 30 FP min 2007 8F amp joo Jo 80 kHz D1 31 FP max 200740 Im jo ag kHz D1 32 FP min value Hz D1 33 FP max v
60. before ramp Int f ref after ramp PID reference val 96 PID actual value 96 PID deviation 96 PID output Int ref switch over Calculator Curve generator Counter average Total counter DC voltage Thermal load M1 Thermal load M2 Thermal load VSD Al 1 Al 2 Al 3 Al 4 Frequency input LFP input Bus SW 1 Bus SW 2 Bus SW 3 Bus SW 4 Bus SW 5 Bus SW 6 Bus SW 7 Bus SW 8 Bus SW 9 Act Error Code Act alarm Code Ref value C motor 1 Ref value C motor 2 Ref value C motor 3 Ref value C motor 4 Value Unit Scaling 100 0 Nominal current gt oDRIVE lt MX eco Nominal motor torque Nominal motor torque Nominal inverter power Nominal inverter power Nominal voltage motor Nominal speed at fmax C2 02 Nominal speed at fyax C2 02 100 0 100 0 96 100 0 100 0 96 100 0 1000 V DC 100 0 10 V 4000 hex 10 V or 20 mA 4000 hex 20 mA 4000 hex 10V or 20 mA 4000 hex D1 33 4000 hex D1 41 4000 hex 100 0 Integer oee table alarm index given in the appendix Integer oee table alarm index given in the appendix 100 0 100 0 Hz 100 0 o3 D6 138 Act value1 selection o 1 Actual frequency 0 Not used 20 PID output 47 Bus SW 1 1 Actual frequency 23 Int ref switch over 48 Bus SW2 2 Actual frequency 24 Calculator 49 Bus SW 3 3 Motor current 25 Curve generator 50 Bus SW 4 4 Torque 26 Counter average 51 Bus S
61. ceive PDO1 telegram PLC gt pDRIVE lt MX eco 200 hex Control word Reference value 1 Reference value 2 Reference value 3 STW D6 101 D6 105 D6 109 Sianna Receive PDO2 telegram PLC gt pDRIVE lt MX eco COB ID Byte O Byte1 Byte2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 300 hex Reference value 4 Reference value 5 Reference value 6 Reference value 7 D6 113 D6 117 D6 121 D6 125 In the PDO receive telegram the bus control word STW and a maximum of 7 selectable bus reference values is transferred to the CANopen slave from the CAN open master PLC In the process a PDO1 telegram received from the inverter is processed immediately 1 5 ms while a PDO2 telegram is processed in a lower priority background task Because of using the method static PDO mapping the telegram structure of both PDOs is permanently predefined The transferred bus reference values are allocated by means of the inverter parameterization in matrix group D6 The first word in the telegram PDOf1 receive always contains the bus control word Transmit PDO1 telegram gt pDRIVE lt MX eco PLC Actual value 1 Actual value 2 Actual value 3 1S0 MEX Potes wore Zu ass D6 142 D6 146 e Liss mss iss mss tse uss is Transmit PDO2 telegram gt pDRIVE lt MX eco PLC 280 hex Actual value 4 Actual value 5 Actual value 6 Actual value 7 D6 150 D6 154 D6 158 D6 162 Node ID tse ms
62. cked P15 set B P15 set C LFP input Process fault 1 Process fault 2 Process fault 3 Parameter D6 174 assigns a digital input function to bit 11 of the control word A description of this function can be found in the gt bDRIVE lt MX eco Description of functions matrix field D2 DER sasiwi soon us 10570 erasmmseio Dres 05772 asm selection Kies ere asm eer e ies Setting possibilities see D6 174 Sammer uw 56 ON STW1 Bit 11 STW1 Bit 12 SIWI Bit 13 STW1 Bit 14 SIWI Bit 15 U M O M U M O M U M When the control source selection see Matrix field E4 is used to switch between terminal and fieldbus operation it might be necessary to have individual bits 11 15 of the bus control word active despite the fact that the control source has been switched to the terminals This exception from switch over can be configured by the appropriate selection with parameter D6 179 STW1 at term mode act HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Example External fault In case of a process fault the inverter is shut down systematically using bit 11 of the control word This behaviour should be also guaranteed in case of controlling the drive via local operation by means of terminal commands Digital input DI4 can be used to switch between terminal strip operation and bus operation D6 174 Bit 11 STW1 s
63. cted inside of the plug connector The terminal resistors are located in the bus plug and can be switched on and off using DIP switches 58 2 D SUB9 S Socket ien EME dk Pin assignment of the option gt pDRIVE lt CANOPEN PLUG ON o O O O O O O O O O G ON O lOO O O O N 9 pin Sub D female Pole Signal Meaning CAN L CANopen signal CAN GND CANopen Ground CAN H CANopen signal 21 LED Indicator lamps Typically the diagnostics of the CANopen connection is executed by means of the matrix operating panel BE1 1 in plain text If no operating panel is available the actual bus state can be read out also using the built in LED keypad CANopen state Local Panel mode Active control source matrix field E4 Terminal operation Bus Panel mode Fieldbus LED CANopen state Bus state Dark O The CANopen controller is in the OFF state or the NMT state is Stopped Flashing The NMT state is Pre operational Lights The NMT state is Operational 22 HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Process Data Object PDO 23 Process Data Object PDO PDO telegrams are used for the fast transfer of process data used for the control and monitoring of the drive In the 5pDRIVE MX eco two PDO telegrams with 4 words each 8 bytes are available For each of the two PDOs one transmit and one receive telegram is defined Re
64. ctual values are available in addition to the digital status word ES Nena A msmo 1 1 ZIW 1 IW 6 1 ZTW 6 IW 2 1 ZTW 2 IW 7 1 ZTW 7 IW 3 1 ZTW 3 IW 8 1 ZTW 8 IW 4 1 ZTW 4 IW 9 1 ZTW 9 IW 5 1 ZTW 5 IW According to the set number of actual values D6 137 only relevant parameters are displayed in matrix field D6 in order to guarantee clear parameterization Depending on the setting of parameter D6 137 Fieldbus actual values PDO1 or PDO2 transmit is activated When using both PDO s at most 7 bus actual values can be transmitted Number of bus actual values 1 ZTW 3 IW 1 ZTW 7 IW PDO type The gt pDRIVE lt MX eco provides analog outputs and serial fieldbus actual values to forward analog information of the actual values The size to be issued as well as their scaling can be freely configured Fat aus TET Leu e er vauer min vas aje po HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Following process sizes can be transmitted as actual values Process size IR IN Actual frequency Actual frequency Motor current Torque Torquel Power Power Motor voltage Il 12 19 16 le 18 19 20 2 9 24 e 26 2f dO 36 Svar 39 41 42 43 44 45 46 4T 48 49 50 SUR 52 o9 54 59 5 58 59 66 67 68 69 Speed Speed Int f ref
65. d outputs of the frequency inverter and of the terminal extension card 1011 or 1012 Example 1 Use of the MX internal PID process controller Reference value provided serial from the fieldbus Actual value A sensor provides a O 10 V analog signal directly for the control terminals of the inverter Example 2 A screw conveyor is connected and disconnected by means of a filling level indicator The filling level indicator provides two floating ground signals which can be directly integrated in the telegram to the DP master by means of the digital inputs DI1 and DI2 of the inverter and thus they are available for the control program of the system 66 HTSL 8 PO1 031 EN 01 01 Appendix ISIH L0 LO N3 LEO LOd 8 67 Parameter list of the gt pDRIVE lt MX eco iust Setting range Index Adjust Factor g rang Unit ability min max Parameter name Subindex Type A2 Motor values Motor values A2 01 Speed 2001 02 e E A2 02 Direction of rotation 2001 03 E A2 03 Torque 2001 04 X Ge A Bo Im CCI Nm Q ed od od od A2 04 Operating quadrant m m a A2 06 Motor current in 96 2001 07 X 0 A2 08 Shaft power in HP seetable Hp A2 11 Thermal load M1 E A2 12 Thermal load M2 x A2 13 Process speed 200108 A IX x Ho ae rom A2 14 Multiplier n 2004 34 O Z t 1000 1000 A215 Divisor n 2004 35 IO O t Dh om A2 16 Offset n 2004 36 o 4 100 100 100 rom A2 17 S
66. dard like D6 137 Number actual values Transmit PDO1 assignment 1st Object Status word ZTW Transmit PDO1 assignment 2nd Object Act value1 selection see parameter D6 138 Transmit PDO1 assignment ard Object Act value2 selection see parameter D6 142 Transmit PDO1 assignment 4th Object Act value3 selection see parameter D6 146 Transmit PDO2 assignment Number of used process data 4 objects are used standard like D6 137 Number actual values Transmit PDO2 assignment 1st Object Act value4 selection see parameter D6 150 Transmit PDO2 assignment 2 Object Act values selection see parameter D6 154 Transmit PDO2 assignment ard Object Act value6 selection see parameter D6 158 Transmit PDO2 assignment 4th Object Act value selection see parameter D6 162 Network configuration Use the slave specific EDS file Electronic Data Sheet for the network configuration of the CANopen master connection For the frequency inverter gt gt DRIVE lt MX eco the configuration file MX1D1 eds 8 783 554 has to be used It is provided on the CD ROM which is attached to each inverter as well as in the Internet under WWW pdrive com VA TECH ELIN EBG Elektronik GmbH amp Co AC 2005 CANopen Electronic Data Sheet EDS fuer die Frequenzumrichterreihen gt pDRIVE lt gt pDRIVE lt MX eco pro 8 782 811 01 09 11 2005 TS DJ erstellt 22 12 2005 VP Kp formatiert Comments
67. e address is also called the node ID according to CIA DS301 The setting of address 0 is not permissible BEE oran Essa 34 20 kBaud 38 50 kBaud 52 125 kBaud 60 250 kBaud 68 500 kBaud 76 1 Mbaud The transmission rate must have the same setting in the whole CANopen network Also see the chapter Hardware for cable lengths The setting of 20 kBaud is not supported by all CANopen devices and may lead to communication problems The parameters CANopen address and CANopen baud rate do not become effective until after a boot procedure For this purpose the device should be completely disconnected including the 24 V buffer voltage or a software reset F2 46 should be performed HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Diagnostics of the configuration settings PRB Oweesms 8 ER 1 Do o O Boot up 4 Stopped 5 Operational 127 Pre operational Display of the active NMT state This is also transferred in the response telegram to the CANopen master during active node guarding ss D6 23 CANopen error register 0110 ER O No Error D M 4 Heartbeat D H 1 Bus Off O M 5 WrongState O M 2 Node Guarding D H 3 Overrun D W In the fault register the corresponding fault is displayed during a CANopen communication problem No Fault Required reaction o E 1 Bus OFF Communication must be started 2 Return to the NMT state initialisation required 3
68. eady to switch on if the basic state bit 1 0 bit 2 1 bit 3 1 and bit 10 1 is present If a renewed OFF 1 On command occurs during deceleration the inverter tries to reach the given reference value along the acceleration ramp Thereby the drive state changes to 7 Run At active line contactor control the line contactor is switched off if the drive state changes to 7 Ready to switch on OFF 2 command canceled When the command has been accepted the inverter will be locked and the drive state changes to 79 Lock switching on At active line contactor control the main contactor is switched off If the basic state bit 1 O bit 2 1 bit 3 1 and bit 10 1 is given the drive state changes to 7 Ready to switch on The OFF 2 command can also be triggered by means of the terminal function Impulse enable OFF 3 command canceled When the command has been accepted the drive state changes to 14 OFF 3 active and the drive is shut down as quickly as possible with maximum current and maximum DC link voltage When the output frequency reaches zero Hz the drive state changes o 19 Lock switching on Thereby at active line contactor control the main contactor is switched off If the OFF 3 command bit 2 1 is canceled during deceleration fast stop is executed all the same When the command has been accepted the inverter is released Impulse enable in drive state 3 Ready to ru
69. ef before ramp F4 22 f ref after ramp F4 23 f ref after PID act F4 24 f ref after loc rem F4 25 _ f ref after f corr F4 26 PID reference value F4 27 PID actual value F4 28 PID deviation F4 29 PID output F4 38 limit Power part F4 44 DC voltage EA Ab IGBT overload time F4 46 Thermal load VSD F4 47 Thermal load Mi F4 48 Thermal load M2 F4 50 Fan status 90 Index Type Adiust cactor Setting range Subindex YP ability max zwa Em o lu aw o Je one Jm sempe a mox Z D dv zm Em n _ axe E axxo E lo aw aw E m zoo one Z T aow ou E Unit poe E IG I T J zo om os G jo fimo mr 2008102 SL T eos lo 200870 T mos oo X 1 00 one amp ao oio amp o moz o XE TT Io mox o X T SA 2003 14 0110 x mes TS E T men amp amp A a mww o ee aw fo ee mes amp v a mw m w ee axe amp w ee anc amp Tw aw m her fr weit a Sf Fe Ce ee See rees o amp he EE OS hm Ce me m nn wes amp we TA mox X W movs O fo lesi aoa X D moa D _ mox E n T ase 3 lo HTSL 8
70. election 29 External fault 1 If a switch over from bus operation to terminal strip operation takes place the commands of the control word become ineffective So the parameterized function External fault 1 is not effective any longer For this reason for control word bits that shall be effective both in the bus operation as well as the terminal operation bit 11 must be marked in parameter D6 179 STW1 at term mode act Ss Adjust parameter D2 15 DI at bus mode active on the other hand if a digital input should be effective in terminal operation as well as in bus operation 2 If a control signal is configured both on a free bit at the bus as well as on the terminals which are active during bus operation the bus command will be preferred Configuration of status word bits 11 15 nais fm O Not used 27 DC link charged 57 Bus STW bit 14 1 Ready 28 Line Contactor ON 58 Bus STW bit 15 2 Operation 29 Motor contactor ON 61 Digital input DI1 3 Ready run 30 C motor 1 ON 62 Digital input DI2 4 Trip 31 C motor 2 ON 63 Digital input DI3 5 Sum alarm 32 C motor 3 ON 64 Digital input DI4 6 Motor turns 33 C motor 4 ON 65 Digital input DIS 7 f f ref 36 Alarm category 1 66 Digital input DI6 8 Generator operation 37 Alarm category 2 67 Digital input DI7 11 Shut down 38 Alarm category 3 68 Digital input DI8 12 Panel mode active 41 Output T
71. eliveries and services Specifications in this document We are always anxious to improve our products and adapt them to the latest state of the art Therefore we reserve the right to modify the specifications given in this document at any time particular those referring to weights and dimensions All planning recommendations and connection examples are non binding suggestions for which we cannot assume liability particularly because the regulations to be complied depend on the type and place of installation and on the use of the devices All foreign language translations result from the German or English version Please consider those in case of unclarity Basis of contract The specifications in text and drawings of this document are no subject of contract in the legal sense without explicit confirmation Regulations The user is responsible to ensure that the device and its components are used in compliance with the applicable regulations It is not permitted to use these devices in residential environments without special measures to suppress radio frequency interferences Trademark rights Please note that we do not guarantee that the connections devices and processes described herein are free from patent or trademark rights of third parties Copyright Layout equipment logos texts diagrams and pictures of this document are copyrighted All rights are reserved HTSL 8 PO1 031 EN 01 01 JW US Option CANopen for the f
72. eo Is 201007 G ho jo oo js 200880 tx J cons HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Parameter name E3 80 Process fault 3 response E3 81 Start delay time E3 82 Time At E3 83 Process fault 3 name E4 Control configuration Control logic E4 01 Control source 1 E4 02 Control source 2 E4 03 3 wire control E5 Keypad Panel operation E5 01 Local mode E5 02 Local reset E5 03 Keypad stop button Parametertransfer with keypad E5 04 Copy MX gt Keypad E5 05 Copy Keypad gt MX BE11 monitoring E5 12 BET monitoring E5 13 BEI monitor response E5 14 Time At E6 Function blocks Comparator C1 C4 E6 01 Comparator C1 E6 02 C1 signal A selection E6 03 C1 signal A filter time E6 04 C1 signal B selection E6 05 C1 ref value E6 06 C1 signal B filter time E6 07 C1 function E6 08 C1 hysteresis band E6 09 Ci output E6 10 Comparator C2 E6 11 C2 signal A selection E6 12 C2 signal A filter time E6 13 C2 signal B selection E6 14 C2 ref value E6 15 C2 signal B filter time E6 16 C2 function E6 17 C2 hysteresis band E6 18 C2 output E6 19 Comparator C3 E6 20 C3 signal A selection E6 21 C3 signal A filter time E6 22 C3 signal B selection E6 23 C3 ref value E6 24 C3 signal B filter time E6 25 C3 function E6 26 C3 hysteresis band E6 27 C3 output E6 28 Comparator C4 Index moe CSN IE Subindex YP ability m cu aoncic C ach G ho
73. equest code 06 01 00 00 hex Parameter cannot be adjusted cannot be adjusted during operation double assignment or active parameter lock 06 01 00 02 hex Parameter cannot be adjusted actual value 06 02 00 00 hex Non existent parameter index 06 09 00 11 hex Non existent parameter subindex 06 09 00 30 hex Parameter value outside the permitted limits 06 09 00 31 hex Parameter value too large 08 00 00 00 hex General parameterization fault General remarks regarding the use of the SDO parameterizing service For write requests use a request that corresponds to the parameter type and enter the value to be transferred in the corresponding bytes LSB before MSB The master must recognize the response to a request made by evaluating the response code of the parameter index subindex and the parameter value If an SDO request cannot be executed the pDRIVE MX eco sends an SDO telegram with response code 80 hex request not executed The corresponding fault code is transferred in the data bytes 4 7 Parameter write requests are not permissible if they do not refer to objects that are assigned to a PDO To protect the data against voltage loss a storage command must be sent after changing a parameter This takes place by writing a value of 1 to the Save Parameter Values object Index 2000 29 Head requests for parameter types greater than 4 bytes multiple byte data are transferred using a segmented SDO routine The trans
74. es serial to the activated fieldbus interface 0 Not used 6 PID reference val 96 1 f reference 1 Hz 7 PID actual value 96 2 f reference 2 Hz 15 Request 96 3 f correction Hz The output of the reference source Bus SW1 can be set as source for different uses according to the reference value distributor Parameter D6 101 Ref value1 selection assigns the reference value to the desired use see also chapter reference sources reference value distributor in the Description of functions 300 300 96 or Hz D6 103 Ref value1 max value o o 50 96 or Hz 300 300 96 or Hz The two parameters D6 102 Ref value1 min value and D6 103 Ref value1 max value are used for linear scaling of the transmitted reference value D6 102 assigns an output value to the reference point at 0 96 0 dec 0000 hex D6 103 assigns it to the reference point at 100 96 16384 dec 4000 hex The unit of the reference value is scaled according to the reference use D6 101 Ref value1 selection for all frequency values in Hz while the remaining signals are scaled in 96 HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Bus SW 1 scaling Scaled bus signal HZ 50Hz lt o o lt pe n d D6 102 0 D6 103 50 p us D6 102 15 D6 103 50 md 15 Hz d ud ep COO0h s a 0000h 4000h 100 _ 0 100 i sp p ni
75. fer can be interrupted using request code 80 hex Detailed information on the individual inverter parameters such as the index subindex setting range and data type can be found in the parameter list in the appendix Parameter F6 03 Parametrising station Index 2000 29 must be set to 3 CANopen in order to adjust parameters on the pDRIVE MX eco via the CANopen interface 39 Examples In the following examples all COB IDs refer to slave address 1 All values stated in the telegram structure are represented in hexadecimal form Reading of the actual motor current parameter A2 05 gt A2 05 Index 2001 hex Subindex 06 hex SDO request COB ID Reg Index Sub Byte 4 Byte 5 Byte 6 Byte 7 601 40 01 20 06 00 00 00 00 SDO response COB ID Res Index Sub Byte 4 Byte 5 Byte 6 Byte 7 581 4B 01 20 06 02 DA 00 00 O2DA hex 730 dec Scaling Real value transferred value factor for factor see chapter Parameter list of the gt pDRIVE lt MX eco page 68 P 730 100 7 30 A Programming of the parameterizing station on CANopen F6 03 setting 3 CANopen gt F6 03 Index 200B hex Subindex 2F hex SDO request COB ID Req Index Sub Byte 4 Byte 5 Byte6 Byte 7 601 2B OB 20 2F 03 00 00 00 SDO response COB ID Res Index Sub Byte 4 Byte 5 Byte6 Byte 7 581 60 OB 20 2F 00 00 00 00 TP It is necessary to set parameter F6 03 Parametrising station to set
76. g 1 Trip 2 Last ref val 4 alarm 3 Emerg ref val amp alarm Behaviour in case of a bus fault Fault shut down with the message Bus fault The alarm message Bus fault is set The drive still remains in operation and uses the last valid reference value of this source instead of the missing bus reference value If the bus connection is available again the bus reference value is used and the alarm message is reset The alarm message Bus fault is set The drive still remains in operation and uses the value according setting SW1 9 emergency value see matrix field D6 instead of the missing bus reference value If the bus connection is available again the bus reference value is used and the alarm message is reset PREY vcr H pm O Not active 1 Active Mode tracking defines the behaviour of the inverter if the control source is switched Depending on the process demands one of the following reactions can be selected Setting Behaviour when changing from Remote Panel mode Bus The drive changes to bus state Lock switching on Changing the control 0 not active source has to be confirmed by the bus by sending the drive state OFF1 0 1 active The drive permits a direct change from remote panel mode to bus operation Thereby the active operating state is assumed shock free CANopen settings Bons 9 po 0 127 Setting of the CANopen slave address In this manual the slav
77. hermal mathematical motor model has reached the set trigger level for motor M1 FFO7 4300 5 O The thermal mathematical motor model has reached the ed set trigger level for motor M2 5 The stall protection has triggered due to a rotor blockade 52 or a highly overloaded starting See parameter E2 42 to E2 45 FF13 00 N O O HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Matrix operating panel Underload Speed check fault Feed in AT fault 1 Config fault External fault 1 External fault 2 Line contactor fault Motor contactor error ON lock Internal SW error Power rating fault Incompatible MC Flash fault APP Indus zone fault Eprom fault APP Limitation active Ramp adaption 24V fault BE11 loss VSD overload limit active T limitation active Fault code EMCY hex FF14 FF15 FF16 FFO9 FF10 9001 9002 1000 5000 F011 6100 1000 1000 5500 6100 7600 8612 FF12 9112 FF18 FF19 FF1A FF1B Index 2000 49 dec O1 3 al 99 56 NN O1 C1 61 O 64 65 67 71 J 13 O0 Se 00 N al O0 O Description The underload function E2 61 has recognized a motor underload The function n monitoring E1 38 has recognized an overspeed The function Feed in monitoring E1 49 has triggered Fault at the execution of the autotuning routine EEProm application s
78. lutions for target groups which will meet even the highest demands bie prie pah peie ee T em com 9 92 fem Ge cH A A 2 Information quick at hand under www pdrive com In addition to company specifications we have made available to you a detailed list of technical data for all our products as well as helpful software tools to set up the parameters of our inverters i 8 P01 031 EN 01 01 HTSL The right to make technical changes is reserved
79. me At 20557 o o eso s XY Graph C1 90 XY graph selection oa j C1 91 XY graph input selection p2oBsB BH 13 Index Adjust Setting range Parameter name Subi Type Factor Unit ubindex ability min max C192 No of value pairs 2ooBsc ja lo 01 93 XY Graph min 1 He C1 94 XY Graph max Hz C195 XY Graph IN 1 Hz C1 96 XY Graph OUT 1 Hz C1 97 XY Graph IN2 Hz C1 98 KY Graph OUT 2 Hz C199 XY Graph IN 3 200843 e amp mm am 300 Hz C1 100 XY Graph OUT 3 RS CS Hz C1 101 XY Graph IN 4 200B 45 4 100 300 300 Hz C1 102 XY Graph OUT 4 Eege UE CI s Hz 01 108 XY Graph ING 20084 Im Lan 30 rz C1 104 XY Graph OUT 5 Hz 01 105 XY Graph IN 6 Hz C1 106 XY Graph OUT 6 Hz C2 Ramp frequency Frequency range C2 01 Minimum frequency 2006 38 amp jio jo 8000 C2 02 Maximum frequency 300 Direction of rotation C2 03 Direction enable 00 08 C2 04 Phase rotation 200638 8 JJ _ Acceleration deceleration ramps C2 05 Acceleration ramp 1 2006 80 D jio o leo js C2 06 Deceleration ramp 1 200 80 jio jo Ie js C2 07 Acceleration ramp 2 200698 e jo jo Lem js C2 08 Deceleration ramp 2 200 37 D jio jo le js C2 09 Switch 1st 2nd accel 200640 G Jio jo 300 C2 10 Switch 2nd 1st decel 2064 G o lo ho Th C2 11 Start ramp 200642
80. meter list of the gt pDRIVE lt MX eco page 68 1 SDO request 601 40 00 20 OC 100 00 00 00 1 SDO response 581 4B 00 20 OC 58 AD 00 00 Transferred value 4D 58 ASCII M X 2 SDO request 601 40 00 20 OD 1 00 00 00 00 2 SDO response 581 AB 00 20 OD 63 65 00 00 Transferred value 65 63 ASCII e c 8 SDO request 601 40 00 20 14 00 00 00 00 8 SDO response 581 4B O0 20 14 00 00 00 00 Transferred value 0000 ASCII Summary AD 58 65 63 6F 34 56 31 2E 35 20 00 00 00 00 00 MX eco4V1 5_ 42 HTSL 8 PO1 031 EN 01 01 ASCII code table ISO IEC 10 367 Basic GO Set Latin Alphabet No 1 supplementary set C e uwduwlwcxje8 o oj joj wj j oo c joj oloj ovoj o oj25 5 32 5 Q2o hex Char hex Char hex Char hex Char Char hex Char Space ES EISE SIS AE n NE p EA Ea Iesu en ees SIS Sle dI EE Eo E ME ISIH L0 LO N3 LEO LOd 8 c Nieo x umidoi irjoloja imiojla juli c co sr o N lt O UU OO OL O O O O O O O O O O OO ajajaj a m D C Q Q ul e ess assa as Ialn N 00 mio LU LL CO lt lt lt lt lt lt lt e lt lt lt lt lt mimi mi mi m cn M m m m m m O A o cO c co cO co co OIOIRIRIRIRIRIRIRIRIRIRIRIRIRIRIRIR ISIN SSI O tO tO tO LO tO tO tO LOO LO tO LO tO tO tO oO 43 ISIH L0 LO N3 LEO LOd 8 44 HTSL 8 P
81. munication objects are differentiated e Process data objects PDO for the transport of control data e Service data objects SDO for the parameterization of object library entries e Network management objects for the control of the CANopen state machine and for subscriber monitoring e Further objects like synchronization objects time stamps and fault messages PDO Process Data Object PDO telegrams are used for the fast transfer of control and status data as well as reference and actual values These are sent as unconfirmed telegrams broadcast In the pDRIVE MX eco two PDO telegrams with four words 8 bytes each are available for transmitting and receiving Through the use of the method static PDO mapping the individual reference and actual values are allocated in the respective PDO telegram using the inverter parameterization The PDO telegrams can be prioritized over the SDO objects due to their low identifiers and are transferred in a cyclic event oriented or synchronized manner PDO 1 is processed inverter internally in the 1 5 ms task while PDO 2 is processed by the background task HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Further information is given in chapter Process Data Object PDO page 24 PDO type Object Word 1 Word 2 Word 3 Word 4 PDO1 transmit 180 hex Control word STW SW 1 D6 101 SW2 D6 105 SW 3 D6 109 PDO1 receive 200 hex Status word ZTW IW 1 D6 138 IW 2 D6 142 I
82. n and afterwards the drive state changes to 4 Operation released When the command has been accepted the inverter will be locked and the drive state changes to 3 Ready to run If the drive state is 13 OFF 1 active the inverter will be locked and the drive state changes to O Not ready to switch on Thereby at active line contactor control the main contactor is switched off If the basic state bit 1 O bit 2 1 bit 3 1 and bit 10 1 is given the drive state changes to 7 Ready to switch on If the drive state is 74 OFF 3 active the procedure is executed all the same 21 Bit 4 28 Value Meaning Note Release ramp output Drive state D Ramp output released Lock When the command has been accepted the output of the ramp ramp output function generator is set to zero The drive stops with maximum current and maximum DC link voltage The drive state changes to 4 Operation released ee ramp Drive state 6 Hamp output released ee Stop ramp integrator When the command has been accepted the output of the ramp function generator is set to zero The drive stops with maximum current and maximum DC link voltage The drive state changes to 4 Operation released Release reference When the command has been accepted the given reference value at value the input of the ramp function generator is released The drive state changes to 7 Run Lock reference val
83. ocked 3 1 Fault The drive is not in operation due to a fault The drive state is 20 Fault After successful trouble shooting and reset of the fault the drive state changes to 19 Lock switching on 0 ashes 4 no OFF 2 OFF 2 Impulse An OFF 2 impulse inhibit command is given inhibit 5 no OFF 3 OFF 3 emergency An OFF 3 emergency stop command is given stop 6 1 Lock switching on The inverter has drive state 19 Lock switching on This state occurs in consequence of the commands OFF 2 OFF 3 and Lock operation as well as after successful resetting of a fault This drive state is canceled by means of bit O STW 0 The drive state Lock switching on is canceled by means of bit 1 of the control word OFF1 ON 0 No lock switching on 7 There is an alarm message resetting is not required DO Nom 8 1 f n f n ref Comparison of reference and actual value for frequency or speed A tolerance of 0 5 Hz is accepted 0 f n z f n ref 34 HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Bit Value Meaning Note 9 1 Control requested If the frequency inverter is parameterized for bus operation by means external 24 V buffer voltage ZTW bit 7 is given of parameter D6 01 control via bus the inverter asks the DP master for assumption of control after mains connection or connecting an As long as the master does not assume control an alarm message No bus operation If
84. ode this object defines the The run time of the event timer must be greater HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 O O O O O O O O E O A Q ch O O1 Q 2 2 c 2 2 2 2 D D D D D D D D x x x x x x x x Index 1801 hex 1A 00 hex 1A 01 hex Subindex R W Type 00 hex unsigned8 01 hex R W unsigned32 02 hex unsigned8 unsigned16 unsigned16 unsigned8 unsigned32 02 hex unsigned32 unsigned32 unsigned32 unsigned8 01 hex unsigned32 02 hex unsigned32 03 hex unsigned32 unsigned32 Factory default 00 00 02 80 hex 4 Node ID 12C 300 dec 3E8 hex 1000 dec 04 hex 30 10 01 10 hex 30 10 02 10 hex 30 10 03 10 hex 30 10 04 10 hex 04 hex 30 10 05 10 hex 30 10 06 10 hex 30 10 07 10 hex 30 10 08 10 hex Comment Transmit PDO2 Number of entries Transmit PDO2 COB ID entry Transmit PDO2 Transfer method Asynchronous 254 or 255 Cyclically synchronous 1 240 Acyclically synchronous 0 Transmit PDO2 Inhibit Time Minimum time between two transfers Factor 10 ms Min value 100 100 x 100 us 10 ms Transmit PDO2 Event Timer In asynchronous mode this object defines the minimum transfer frequency Factor 1 ms Min value 10 10 ms The run time of the event timer must be greater than the inhibit time subindex 1801 03 Transmit PDO1 assignment Number of used process data 4 objects are used stan
85. oftware incompatible or changed power part An external fault is signalized via a digital input function see E3 34 to E3 38 An external fault is signalized via a digital input function see E3 41 to E3 45 Line contactor control defect response monitoring Feedback for motor contactor control faulty The digital input function ON lock E3 48 caused a protective shut down Internal software bug Unclear power part assignment Motor control is not compatible to the application software Flash Eprom on the applicative defect Value for calibration on the applicative defect EEProm on the applicative defect A limitation function of the motor control current or torque was active and according to the setting of E1 17 Reaction at limitation a protective shut down takes place The set acceleration or deceleration ramp cannot be maintained and is automatically extended Problem with the external 24 V buffer voltage The connection between matrix operating panel BE11 and inverter is cut off during active panel operation and loss of BE11 control is detected see parameter E5 12 Protective shut down due to exceeding the maximum current time specification The actual motor current was higher than the actual a allowed maximum current E1 01 Lg thermal mathema tical motor model E2 18 E2 39 thermal mathematical inverter model E1 03 This leads to a protective shut down corresponding to the setting of E1 17 Reacti
86. ommand not provided HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Bit Value Meaning Note 10 1 Control O K When the command has been accepted the DP slave is controlled via the bus interface The process data become valid This bit must be set in order to accept control commands and or the free bits as well as analog signals 0 No control When the command has been accepted all data are processed depending in status bit 9 Control requested Control requested 1 Behaviour according to bus fault Ifthe DP slave requests control furthermore the frequency inverter switches over to fault state with the fault message BUS COMM2 depending on the setting of parameter D6 03 Bus error behaviour In this case an alarm message is always set Control requested 0 gt Data to 0 only I O or panel operation Summary of the most important control commands Function ON Start with controlled acceleration OFF 1 otop according to the set deceleration ramp OFF2 Impulse inhibit free wheeling OFF 3 Emergency stop deceleration at current or DC link voltage limit Reset Use of a free bit e g 13 during operation Canceling Basic state Lock switching on start command Control word Binary 0000010001111111 0000010001111110 corresponds with the basic state 0000010001111101 results in drive state Lock switching on 0000010001111011 results in dri
87. on and configuration of the CANopen network It is provided on the CD ROM which is attached to each inverter as well as under www pdrive com In order to address an inverter via fieldbus also during mains cut off line contactor control disconnecting switch the gt oDRIVE lt MX eco has to be supplied with an external 24 V buffer voltage ISIH L0 LO N3 LEO LOd 8 CANopen ISIH L0 LO N3 LEO LOd 8 Function CANopen All frequency inverters of the gt oDRIVE lt MX eco range support the fieldbus system CANopen as standard For the integration of the CANopen typical Sub D fieldbus connection an optional CANopen adapter must be installed at the RJ45 interface next to the terminals of the inverter see chapter Mechanical construction page 20 In the CANopen network the frequency inverter is operated as a slave The used profile is designed on the basis of the Profidrive profile VDI VDE 3689 Principle function CANopen is a higher transfer protocol according to CiA DS 301 based on the serial bus system Controller Area Network CAN It uses the multi master capability to exchange data between the individual subscribers quickly and efficiently This data exchange takes place in an object oriented manner in the form of broadcasting This means that a message is transferred to all bus subscribers and the subscriber itself decides whether the message is executed Typically the data is transferred only as required A bus access
88. on at limitation The actual motor torque was higher than an effective limitation value Torque limiting protective mechanisms are the internal torque limitation E1 05 and the power limitation E1 13 This leads to a protective shut down corresponding to the setting of E1 17 Reaction at limitation 97 A process fault is signalized via a digital input command Process fault 1 FF1F see E3 65 E3 69 FF20 A process fault is signalized via a digital input command FF21 A process fault is signalized via a digital input command pera ane LT TE see E3 79 Undervoltage 0081 Le 3 General communication fault CANopen 0061 Internal fault CANopen These trip messages can be read out under index 2000 subindex 49 96 HTSL 8 PO1 031 EN 01 01 ISIH L0 LO N3 LEO LOd 8 99 ISIH L0 LO N3 LEO LOd 8 100 gt pDRIVE lt Schneider Electric Power Drives Schneider Electric Power Drives GmbH Ruthnergasse 1 A 1210 Vienna Phone 43 0 1 29191 0 Fax 443 0 1 29191 15 www pdrive com a company of Schneider Electric gt pDRIVE lt stands for intelligent high performance As one of the leading providers of inverters and motors we know from experience that quality without compromising consolidated advice and more flexible service lead to longstanding research and expertise Therefore we dedicate an essential part of our activities to permanently optimising processes and developing so
89. ork configuration objects 00 00 hex 1F FF hex while on the other hand they have read and write access to all parameters in the gt oDRIVE lt MX eco objects 20 00 hex 5F FF hex An SDO telegram is always executed as a confirmed telegram If the gt bDRIVE lt MX eco receives an SDO request telegram from the CANopen master the request is processed inside the inverter and the response is returned to the master in form of an SDO response telegram Request SDO telegram PLC gt pDRIVE lt MX eco Object index Object Hequest Data Sub Bits Bits Bits Bits Index 7 0 15 8 23 16 31 24 600hex Request Node ID code LSB MSB Response SDO telegram pDRIVE MX eco PLC Object index i Response Data 580 hex Response Object p Sub Bits Bits Bits Bits Node ID code LSB MSB Index 7 0 45 8 23 16 31 24 Request code 80 hex Cancel request 00 hex 00 hex 00 hex 00 hex Response code 43 hex Bit7 0 Bit15 8 Bit 23 16 Bit 31 24 4B hex Bit 15 8 00 hex 00 hex AF hex 00 hex Jo ne O0 hex 80 hex Hequest not executed fault code 00 hex 00 hex 00 hex 00 hex 38 HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 If a request cannot be executed response Code 80 hex is transferred together with the respective fault code as the response Fault code Meaning 05 03 00 00 hex oegmented transfer the toggle bit was not changed 05 04 00 01 hex Unknown r
90. perating panel Param set 1 fault Param set 2 fault IGBT 3 gt V f 7 point set faulty BE11 loss Control requ missing Parameter set 1 Parameter set 2 Test mode active limit active T limitation active Process fault 1 Process fault 2 Process fault 3 Motorparam wrong SW2 position faulty Alarm index dec 36 O W N iN C1 IS 46 IS N iN 00 oO IS co al O1 N C1 E dl C1 dl N al 00 Description Faulty Eprom zone for parameter set 1 Faulty Eprom zone for parameter set 2 IGBT overtemperature determined by the thermal mathematical inverter model Parameterization alarm Incomplete or faulty parameterization of the V f characteristic The connection between matrix operating panel BE11 and inverter is cut off during active panel operation and a loss of BE11 control is detected see parameter E5 12 Control bit D10 of the bus control word is low Displays the active parameter set when switch over of parameter sets is selected see parameter B2 03 Displays the active parameter set when switch over of parameter sets is selected see parameter B2 03 The drive operates in test mode see parameter F2 49 The actual motor current is higher than the actual allowed operating current Current limiting protective mechanisms are Ima E1 01 the thermal motor model E2 18 E2 39 and the thermal mathematical inverter model E1 03 The actual motor
91. r or scanner and therefrom it is a check of the bus hardware cable break malfunction of the master component The monitoring time depends on the existing network configuration like the number of subscribers set baud rate a s o It is automatically transmitted from the master to the slave by means of the parameterization telegram or it has to be set at the inverter Loss of control In contrast to the watch dog timing the control monitoring checks the data content of the serial data traffic If a malfunction occurs at the fieldbus master or its respective PLC all outgoing data are set to zero Fail Save Mode Therefore the slave receives a telegram with data content zero periodically whereby the triggering of the watch dog timing is prevented In order to recognize this state and to take suitable measures a monitoring of control can be activated with parameter D6 02 typical for Profibus DP If parameter D6 02 Control requested is set to 1 Active the inverter monitors bit 10 of the control word If this bit equals state Low loss of control is detected HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 D603 jeuserorbenaviour LS O Im _ 1 Trip 2 Last ref val amp alarm 3 Emerg ref val amp alarm m o hs 0 3200 s Parameter D6 03 defines the behaviour of the inverter if a bus error occurs Depending on the process demands one of the following reactions can be selected Settin
92. requency inverters gt pDRIVE lt MX eco This instructions describe the functions software version APSeco_B05_07 and higher Theme Page GANDOBEN ui 3 FUNCION CANOPEN c nana 4 gue clc PHIL 19 Mechanical construction 20 Process Data Object PDO 23 Process Data Object PDO 24 CONVOI WOA DEE 26 Main reference value Auxiliary reference values 32 SAUS WON Ce sete ES 33 Main actual value Auxiliary actual values 36 Service Data Object SDO 37 Service Data Object SDO eee 38 Inverter Settings na a minette 45 BUS DIAGNOS lC nie 59 Diagnostics of the control status word 60 Diagnostics of the Bus raw data 61 Application examples 63 Generals MT T 64 A A mettent 67 Parameter list of the 5pDRIVE MX eco 68 Inverter messages 92 The instructions in hand cover the topics operation parameterization and diagnostics of the gt oDRIVE lt MX eco CANopen interface Moreover the principles of the CANopen architecture and their main components are explained in detail Use this instructions additionally to the device documentation Description of functions and Mounting instructions The slave specific configuration file MX1D1 eds 8 783 554 is required for parameterizati
93. results Binary Hexadecimal Decimal 200 0000 10000000 00000000 8000 32 68 The actual values are scaled by means of parameterization in matrix field D6 The scaling of the individual actual values is fixed for each output value See matrix field D6 Using bits 11 15 According to the Profibus profile bits 11 15 of the status word are not defined and therefore they can be freely used by the user When the frequency inverter is parameterized appropriate this digital information can be derived from inverter internal operating states corresponding to the digital outputs as well as totally separated from the inverter functions by means of the digital inputs of the frequency inverter This additional information bit 11 15 are added to the status word automatically Use Free status word bits Actual values Inverter internal Ready Output frequency Run Output frequency Ready run Output current Fault Torque for the complete list see matrix field D6 for the complete list see matrix field D6 Inverter external DI1 DI6 Analog inputs of the basic card or the DI7 DI10 or DI11 D114 option card gt pDRIVE lt 1012 36 HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Service Data Object SDO 37 Service Data Object SDO SDO telegrams provide a service for direct access to the object library On the one hand they are used for adjustment of the CANopen specific communication settings during netw
94. suing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter F1 02 Nominal power F1 08 Nominal current F1 04 Nominal voltage F1 05 Drive serial number F1 06 Facility description Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter F1 07 APP software Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter F1 08 Service notice Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter F2 Test routines Force operation F2 01 Force operation 88 Index Adjust Setting range Factor Subindex PS ability ma 1 ee mun E IGI mene E 6 Pot m E SI Pot angna E VS SAS pore E SI Pot 201B 1A pons iB oe TA QC Q O Q of SA 2000 0C 2000 0D 2000 0E 2000 0F 2000 10 2000 11 2000 12 2000 13 ae mI poor S T 2000 18 txt 2000 19 txt 2000 1A txt 2000 1B txt 2000 1C txt 2000 1D txt 2000 1E txt 2000 1F txt 2000 20 2000 21 2000 22 2000 23 2000 24 2000 25 2000 26 2000 27 2013 5E 2013 5F 2013 60 2013 61 2013 62 2013 63 2013 64 2014 01 2014 02 2014 03 2014 04 2014 05 0000000 QO00000000000 201208 Uni
95. t HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Parameter name F2 02 F2 03 F2 04 F2 05 F2 06 F2 07 F2 08 F2 09 F2 10 F2 11 F2 12 F2 13 F2 14 F2 15 F2 16 F2 17 F2 18 F2 19 F2 20 F2 21 F2 22 F2 23 F2 24 F2 25 F2 26 F2 27 F2 28 F2 29 F2 30 F2 31 F2 32 F2 33 F2 34 F2 35 F2 36 F2 37 F2 38 F2 39 Force DI1 Force DI2 Force DI3 Force DI4 Force DI5 Force DI6 Force DI7 Force DI8 Force DI9 Force DI10 Force DI11 Force DI12 Force DI13 Force DI14 Force H1 Force R2 Force R3 Force DO1 Force DO2 Force R4 Force DO3 Force DO4 Force Alf Force value Al Force Al2 Force value Al2 Force Al3 Force value Al3 Force Al4 Force value Al4 Force FP Force value FP Force AO1 Force value AO1 Force AO2 Force value AO2 Force AO3 Force value AO3 Test routines F2 40 F2 41 F2 45 F2 46 F2 49 Start IGBT test Test charging circuit Simulation mode Software reset Test mode Force operation F2 52 F2 53 F3 Force FP Force value LFP Fault memory Fault memory F3 01 F3 02 F3 03 F3 04 F3 05 Number of faults Heview Fault number Fault cause Operating hours Index Subindex Type Adjust Setting range Factor ability min max 200489 C 00434 BH J J 200488 BH 200480 BH _ 203 BH owsE oL J cons BH jJ 20040 amp mona 1 EMEN 2
96. t E3 65 Process fault 1 monitor E3 66 Process fault 1 response E3 67 Start delay time E3 68 Time At E3 69 Process fault 1 name E3 72 Process fault 2 monitor E3 73 Process fault 2 response E3 74 Start delay time E3 75 Time At E3 76 Process fault 2 name E3 79 Process fault 3 monitor 84 Index Type Adjust Factor Setting range Subindex YP ability a s 200909 O9 Unit 20090A jho jo oo js 200908 jio Jo 300 Is 200900 J gogo B pon Aa lho lo wm s 209 ho lo j 2009 10 txt 2009 11 txt 2009 12 txt 2009 13 txt 2009 14 txt 2009 15 txt 2009 16 txt 2009 17 txt 2009718 BH J 200919 BH QOOOOOOOOC 00944 G pto lo jeo s 2008 ho JO oo js 2009 1C txt 2009 1D txt 2009 1E txt 2009 1F txt 2009 20 txt 2009 21 txt 2009 22 txt 2009 23 txt 00000000 00 04 J J 2025 2009 26 jo jo oo Te power oo T 2092 oo e 2008 29 ono aee oo e 2008 28 oo 6 2008 20 omo T 201C 60 BH ce QD 200 G too To Lag 20100 J oco fJ oir amp G ho lo on Js 201010 G pto lo i30 js 200 33 tx G cia 2 BH 201016 G pto In l
97. t Communication Example Start of the CANopen subscriber with address 5 Start Remote Node OOhex Othex O5hex CANopen state machine Power up or hardware reset 1 2 CS 130 CS 129 Initialization CS 128 3 Stopped Operational id al Command Description When connecting to the mains the CANopen 1 subscriber automatically switches to state Initialization If the initialization has been completed successfully 2 the state automatically switches to Pre operational 3 6 Start Remoto Node 01 hex Change to state Operational processing of PDO E and SDO telegrams A 7 Enter Pre Operational State 80 hex Change to state Pre Operational State Only SDO se gt telegrams are processed 5 8 Stop_Remote_Node Change to state Stopped 9 10 11 Change to state Initialization 12 13 14 Reset Communication 82 hex Change to state nitialization Depending on the communication status of the CANopen connection the following services are possible Service Initialization Pre operational Operational Stopped Synchronization SYNC X X Emergency EMOY Do x px x X Network management NMT x x HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Many state changes within the NMT state machine lead to CANopen communication errors The following diagram and table list these states in detail Power up or hardware reset CS 129
98. ternal settings The reference use the assignment of actual values and the use of bits 11 15 STW and ZTW must be adjusted accordingly in matrix field D6 Fieldbus Assignment Bit 13 control bits for internal or external 5 freely configurable frequency inverter commands 26 Control O K Jog 1 start only MX pro Heset Release reference value Release ramp integrator Release ramp output Release operation Operating condition Operating condition No control Jog 1 stop only MX pro Lock reference value Lock ramp integrator Lock ramp output Lock operation OFF 3 Fast stop OFF 2 Impulse inhibit OFF 1 Low 0 HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Description of control word bits Bit Value M T 1 a Operating condition OFF 2 Impulse inhibit 2 Operating condition Operation released Lock operation Note Is accepted when the drive state is 7 Ready to switch on and changes to drive state 3 Ready to run if the DC link is already charged At active line contactor control Change to drive state 2 Charge DC link after successful charging the drive state changes to 3 Ready to run When the command has been accepted the drive state changes to 13 OFF 1 active and thus the drive is shut down along the deceleration ramp When the output frequency reaches zero Hz the drive state changes from O Not ready to switch on to 1 R
99. the data flow of other subscribers the event oriented transfer can be influenced as follows using two adjustable timers Parameter Index Subindex Format Factor Function Inhibit time 1800 hex Unsigned16 100 us ae the transfer of a PDO for a set Maximum time between 2 PDOs When this time is up a PDO is Event timer 1800 hex 05 hex Unsigned16 1 ms transferred even if the value is not changed The event timer must be set longer than the inhibit time Cyclic synchronized transfer In case of this transfer mode the sending of a PDO telegram is triggered by the SYNC telegram sent by the CANopen master In the process it is possible to select whether the PDO should be sent with every SYNC telegram or after a certain number of SYNC telegrams have been received The setting takes place using parameter 1800 1801 02 hex setting range 1 240 Event oriented synchronized transfer The PDO telegram is triggered depending on the received SYNC telegrams as in case of the cyclically synchronous transfer This occurs however only if the value has changed since the last transfer The setting takes place using parameter 1800 1801 02 hex setting range 1 240 25 Control word The gt pDRIVE lt MX eco is controlled using the bus control word which is designed on the basis of the Profidrive profile VDE 3689 The standardized information of the control and status word bit 0 10 is described subsequently and requires no inverter in
100. time E2 67 Time At E2 68 Filter time E3 Fault configuration Behaviour in case of faults E3 01 Reaction at a trip E3 03 Auto reset E3 04 Autoreset selection E3 05 Autoreset selection 2 E3 06 Auto reset trials E3 07 Period Emergency operation E3 09 Enable emergency op E3 10 Emergency op active Loss of reference value E3 13 A AI2 AmA monitor E3 14 AI2 AmA response E3 15 A AI2 emergency val E3 16 A AI3 4mA monitor E3 17 AB AmA response E3 18 AI3 emergency val E3 19 A 4 4mA monitor E3 20 AI4 AmA response E3 21 A 4 emergency val E3 22 FP f monitoring E3 23 FP monitoring resp E3 24 FP emergency val Loss of line phase E3 27 Mains phase monitoring Index Type Adiust cactor Setting range Subindex YP ability ek 2008 44 a G t jo 1150 2008 45 G o jo fu Unit Hz 20080406 00S min 2008 47 G h 1 0 js c 2000488 G t jo oo 200849 G h jo X 30 1 coa 3X rf m 20544 2008 48 CN G ho JO om js 2008 4C G ho jo o Hz j20084D VA Jo X 150 j come BH o mos 4 lo 2008 50 amp G jo 200 rem 2008 51 LA G to In am e 2008 52 2000898 BH 2008 54 BH 2008 55 t jo oo 2 2008 56 G t jo o eves A R Ed 2008 58 0 300 S ee tete CC s 20085A
101. ting 3 CANopen Index 2000 29 in order to be qualified for adjusting other parameters 40 HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Programming of the digital input DI1 to Motorpot D2 01 setting 14 Motor pot gt D2 01 Index 2007 hex Subindex 44 hex SDO request 601 2B 07 20 44 OE 00 00 00 Positive SDO response 581 60 07 20 44 00 00 00 00 Negative SDO response not assignable due to double assignment 581 80 07 20 44 00 00 00 08 Response code 80 refers to a request that cannot be performed The corresponding fault code is transferred in the value field 08 00 00 00 general parameterizing error due to double assignment Adjustment of an analog value D3 04 AO1 max value 150 gt D3 04 Index 2007 hex Subindex 56 hex SDO request 601 2B 07 20 56 98 3A 00 00 SDO response 581 60 07 20 56 00 00 00 00 Scaling Value to be transferred real value factor for factor see chapter Parameter list of the gt pDRIVE lt MX eco page 68 Setting 150 96 factor 100 Value to be transferred 150 100 15000 dec 3A98 hex 41 Reading of the drive reference F1 01 Inverter type gt F1 01 Index 2000 hex Subindex OC hex The drive reference is a parameter of the type Text It is to be read in ASCII coded form Corresponding to the expected length of text the start address and a certain number of ensuing parameters has to be read see chapter Para
102. tor 100C 00 guard time 100D 00 lifetime factor 00 hex R W unsigned8 00 hex lifetime A value of 0 deactivates the node guarding function on the respective gt pDRIVE lt MX eco Node Guarding Identifier 7 00h 00 hex unsigned32 IE ne COB ID entries are used for the node guarding Node ID l protocol configuration tool 00hex R unsigned32 00 00 00 01 hex Number of SDOs supported 00 00 00 80 hex oe IR unsigned32 Node lD COB ID entry for emergency message 00 hex Unsigned8 01 hex Consumer Heartbeat Time Number of entries Consumer Heartbeat Time Bits 24 31 Not used 0 01 hex RAW unsigned32 00 00 00 00 hex Bits 16 23 Node ID from heartbeat producer Bits 0 15 Max heartbeat time factor 1 ms Producer Heartbeat Time The heartbeat function is deactivated value O ms standard like galia ial URI Doo Nox The simultaneous use of the node guarding and heartbeat functions is not possible see 100C 00 00 loo hex R string string MX eco ue MX eco Varo V4xxx HTSL 8 PO1 031 EN 01 01 HTSL O O O O O O O O O O O O A NO O N N O Q N 2 2 2 2 2 2 zy 2 2 2 D D D D D D D D D D D D x x x x x x x x x x x x 8 PO1 031 EN 01 01 Index Subindex R W Type 00 hex 1018 hex 1400 hex O0 hex 1401 hex 1600 hex 03 hex JJ AN R W R W JJ AN unsigned8 unsigned32 unsigned32 unsigned32 unsigned8 unsigned32
103. trip C4 PID configuration Monitoring of PID values C4 01 PID reference value C4 02 PID actual value C4 03 PID deviation C4 04 PID output Basic setting C4 07 Control mode C4 08 Control sense C4 09 Proportional gain C4 10 Integration time C4 11 Derive time C4 12 Max D part C4 13 Output level min C4 14 Output level max C4 15 Limitation C4 17 Frequency tracking C4 18 Ref value acceleration C4 19 Ref value deceleration Compensation of pressure drop C4 22 Pressure drop C4 23 Start compensation C4 24 Compensation dynamic Advanced functions C4 32 PID lock C4 33 Wind up behaviour C4 34 PID multiplier C4 35 PID divisor C4 36 PID offset C4 37 Process unit Index Tye Adjust Factor Setting range Unit Subindex YP ability Ra a 2006 40 G ho jo o 2006 4E G jo To 100 2006 4F Sp 1 300 Hz 0 0 10 O 300 Hz 2006 51 ho Jo an To 2006 52 amp ho o jso To 2006 53 D jo jo jso To 2006 54 amp o jo jso To 2006 55 D o o soo To 200 56 amp to lo soon HS 2006 57 G pto In 1500 2006 58 G jo o jo S S 2006 59 G ho Jo js s S 20065A BD to Jo Toon 2006 56 ISO Ss coeso B J 200650 amp Dpto jo sooo Ih 2006 5E G t jo omg Ih 2018729 BH 2001651 x ho In aaas po T 200163 ER h In am jo
104. ue When the command has been accepted the input of the ramp function generator is set to zero As a result the drive decelerates along the set ramp The drive state changes to 6 Hamp released Reset The reset command is accepted at the positive edge when the drive state is 20 Fault If there is no fault anymore the drive state changes to 79 Lock switching on Ifa fault is still remaining the drive state is furthermore 20 Fault The reset command can also be triggered by means of the terminal function Ext reset as well as by means of the Stop Reset key on the keypad E ao Jog 1 start Command is only provided by MX pro The command Jog 1 start is only accepted during drive state 4 Operation released The drive accelerates with right handed rotary field and the set Jog ramp C1 59 to Jog frequency C1 58 The drive state changes to 11 Jog 1 active If jog mode is required also with left handed rotary field a free control word bit and the function Jog REV can be used for realization Jog 1 off Command is only provided by MX pro This command is only accepted when Jog 1 was set to 1 before The drive decelerates with the set Jog ramp to O Hz and changes to drive state 12 Jog 1 pause If a renewed Jog 1 start command occurs within 0 5 seconds it is executed immediately After this time the drive state changes back to 4 Operation released Command not provided Jog 2 off C
105. ue9 filter time Assignment free bits STW D6 174 Bit 11 STW1 selection D6 175 Bit 12 STW1 selection D6 176 Bit 13 STW1 selection D6 177 Bit 14 STW1 selection D6 178 Bit 15 SIWI selection D6 179 STW1 at term mode act Assignment free bits ZTW D6 197 Bit 11 ZTW1 selection D6 198 Bit 12 ZTW1 selection D6 199 Bit 13 ZTW1 selection D6 200 Bit 14 ZTW1 selection D6 201 Bit 15 ZTW1 selection Diagnosis STW BUS VSD D6 218 Bus STW hex D6 219 Bus STW bin Diagnosis ZTW VSD gt BUS D6 222 Bus ZTW hex D6 223 Bus ZTW bin Diagnosis of the operating state D6 226 Internal control word D6 227 Internal state Diagnosis BUS gt VSD D6 228 D6 229 D6 230 D6 231 D6 232 D6 233 D6 234 D6 235 80 PRx 01 PRx 02 PRx 03 PRx 04 PRx 05 PRx 06 PRx 07 PRx 08 Index Subindex 20004A C J Type Adjust ability Factor Setting range min max Unit Hz Hz 200D 4D G to To jo e 200D4E BH TI Hz Hz 200D 51 D Im lo Iso mos RR I I E 200D 53 100 300 300 Hz ee E E Hz 200D 56 G ho To om oops E Hz Hz 2000 5882 G ho To Iso e goi BH 2000 58 BD too Tam 300 Hz Pup LOS a eec emo Hz 200D 5D mE to 100 200D 6F amp jio Tam 300 Hz Hz 200061 too jo lol E 2062 j 206 j 206
106. unsigned8 unsigned8 unsigned32 unsigned8 unsigned8 unsigned32 unsigned32 unsigned32 unsigned32 Factory default 00 00 01 D1 hex 1E6C hex 00 00 00 00 hex 00 00 02 00 hex 4 Node ID FF hex 80 00 03 00 hex 4 Node ID Comment ID Object Number of entries ID Object Supplier ID VA TECH ELIN EBG Elektronik 01D1 ID Object Product Identification code gt pDRIVE lt MX eco 1E6C hex 7788 dec ID Object Product version Bits 16 31 Primary version ID Bits 0 15 Secondary version ID Receive PDO1 Number of entries Receive PDO COB ID entry Bits 0 10 can be changed in write mode to activate the slave to slave communication Receive PDO Transfer method Asynchronous FE or FF Cyclically synchronous 1 to FO Acyclically synchronous 0 Receive PDO2 Number of entries Receive PDO2 COB ID entry Bits 0 10 can be changed in write mode to activate the slave to slave communication Receive PDO2 Transfer method Asynchronous FE or FF Cyclically synchronous 1 to FO Acyclically synchronous 0 Receive PDO1 assignment Number of used process data 4 objects are used standard like D6 100 No of Bus ref values Receive PDO1 assignment 1st Object Control word STW Receive PDO1 assignment 2nd Object Hef value1 selection see parameter D6 101 Receive PDO1 assignment 3rd Object Hef value2 selection see parameter D6 105
107. us should be terminated on both ends using a 120 Q 108 132 Q resistor Terminating resistors are located in the bus plugs of the bus subscribers at both ends The CANopen network functions only when the bus termination is properly installed Galvanic isolation No 18 HTSL 8 PO1 031 EN 01 01 Hardware ISIH L0 LO N3 LEO LOd 8 19 Mechanical construction Installation of the option gt pDRIVE lt ADAP CAN Modbus CANopen PC y gt pDRIVE lt ADAP CAN 8 PO1 125 Plug assignment Plug assignment of the CANopen communication interface corresponding to ISO 11898 Pin assignment RJ45 plug Modbus CANopen PC Pin assignment SUB D plug CANopen on inverter on gt pDRIVE lt ADAP CAN Pin Signal 1 CAN H 2 CANL CAN L 2 CAN GND 3 3 CAN GND 5 D0 8 1 6 Not used CAN H 7 7 VP 8 Common Modbus signal Voltage supply for the RS232 RS485 interface converter PC software MatriX 3 20 HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Plug connector The bus is connected via a 9 pole Sub D plug connector Female multipoint connector on the bus cable male multipoint connector on the bus subscriber The bus plugs option gt pDRIVE lt CANOPEN PLUG order number 8 P01 307 are designed as T junctions whereby the bus line sections are conne
108. ut T4 selection Time module 5 T5 signal A selection T5 function T5 Time At T5 output T5 selection Time module 6 T6 signal A selection T6 function T6 Time At T6 output T6 selection Alarm logic module E6 151 E6 152 E6 153 E6 154 E6 155 E6 156 E6 157 E6 160 Alarm Logic module Alarm 1 AND Alarm 2 AND Alarm 3 AND Alarm 4 OR Alarm 5 OR Alarm 6 OR Output alarm module Index Subindex 200AAE 2002 5C c o er ability QQ dee O Factor Setting range min max aam 9 J mora 4 j s aos G lo oa 4 o 2004 2D amp G o jo 16500 js O 2002 5D OOO me ve I S mo gt mower 200A 30 200A 31 EA 1 200482 G o Jo leo Is Ett 2002 5E JADE Sd a RIG em 20433 Jj cons C J 200A 35 200A 36 200A 38 E OD H P 200a 37 G Jo JO om Is 2025F X e O Q OR o fn i Unit 8 J Parameter name Trip logic module E6 161 Trip logic module E6 162 Trip 1 AND E6 163 Trip 2 AND E6 164 Trip 3 OR E6 165 Trip 4 OR E6 166 Trip 5 OR E6 167 Trip 6 OR E6 170 Output trip logic module F1 Info Identification of the device F1 01 Inverter type Ensuing parameter Ensuing parameter En
109. ve state Lock switching on XXXXX IXXlXXXXXXX 0000010001111111 0010000000000000 0010010001111111 15 Lock switching on 0000010001111110 0000010001111111 Hexadecimal 47F 47E 47D 47B e g 480 47F 2000 247F e g ATE 47F 29 Simplified state machine For standard control with the commands Start Stop along the inverter internal acceleration deceleration ramps Impulse inhibit Emergency stop Reset of a fault Legend Bootup orivestate Step enabling O Not ready to switch on condition Basic state xxxxx10001111110 transmit Basic state xxxxx10001111110 transmit Ready to switch on Lock switching on Pulse inhibit xxxxx10001111101 OFF 2 Reset xxxxx10011111111 transmit Fast stop xxxxx1000 1111011 OFF 3 transmit The commands Impulse inhibit OFF 2 Fast stop OFF 3 as well as a fault which has been reset N always result in drive state Lock switching on In order to reach drive state Run it is necessary to send the basic state bit O O bit 1 2 1 before transmitting the start command bit O 1 After connecting the mains bootup of the drive the basic state bit O O bit 1 2 21 must be provided in order to reach drive state Ready to switch on 30 HTSL 8 PO1 031 EN 01 01 DIOU dwey ndino dwesy007 uoneJedo 4907 paseajal S9JElS V bac 1440 1948 NO jne4 440
110. ymbol for A2 13 mm A2 18 Unit for A2 13 mw E EE A221 _ Divisor T ase OO hf pen A222 Offset T au Na A223 Symbol for A2 19 E e t A224 Unit for A2 19 o A3 Inverter values Inverter values A4 Reference values Monitoring of analog inputs A4 02 All ref value scaled EE 96 Hz A4 04 Al2 ref value scaled ew le 8 le L PE Hz 68 HTSL 8 PO1 031 EN 01 01 HTSL 8 PO1 031 EN 01 01 Parameter name A4 06 AIS3 ref value scaled A4 07 Al4 ref value 96 A4 08 A 4 ref value scaled A4 09 FP ref value in kHz A4 10 FP ref value scaled Monitoring of digital reference sources A4 11 Motor pot ref value A4 12 MX wheel ref value A4 13 Pre set reference Monitoring of internal reference sources A4 14 Reference val switch A4 15 Calculator A4 16 Act value selection A4 17 Curve generator Monitoring of digital inputs A4 18 Dl state basic device A4 19 Dl state 1011 A4 20 DI state 1012 Monitoring of bus reference sources A4 21 Bus reference 1 scaled A4 22 Bus reference 2 scaled A4 23 Bus reference 3 scaled A4 24 Bus reference 4 scaled A4 25 Bus reference 5 scaled A4 26 Bus reference 6 scaled A4 27 Bus reference 7 scaled A4 28 Bus reference 8 scaled A4 29 Bus reference 9 scaled Monitoring of analog inputs A4 30 LFP ref value in Hz A4 31 LFP ref value scaled A5 Counter Operating hours A5 01 Operating hours motor A5 02 Interval motor 1 A5 03 Interval counter M1 A5 04 Operating hours motor2

Download Pdf Manuals

image

Related Search

Related Contents

(Injep - liste des acquisitions n° 24  TÍTULO - Comunidad de Madrid  Presione.  télécharger le journal n : 31  Asahi Pentax PC-335AF-M Instruction Manual  Sommaire  Manuel d`instructions Vanne proportionelle à deux composants ZKW II  カーポート商品保証について  Panasonic RP-DJ600 E-K Black  こちら(PDF) - サンコーテクノ  

Copyright © All rights reserved.
Failed to retrieve file