Home
Health Economic Assessment tool for Cycling
Contents
1. 11 4 HEAT for Cycling Instructions for 13 Als HOW TO access ING tool 13 4 2 How to enter data 13 4 3 Interpreting 15 AA ANSSUINIIIONS ciate ae eat 16 4 5 Advanced data 16 Aaa has 18 HEAT for cycling User guide HEAT for cycling User guide 1 Introduction to the Health Economic Assessment Tool for cycling This guide is an introduction to the Health Economic Assessment Tool for Cycling HEAT for cycling It is intended to be read alongside the tool which is available to download as an Excel spreadsheet WHO 2007b The tool has been produced to illustrate the principles outlined in the WHO document Methodological guidance on the economic appraisal of health effects related to walking and cycling WHO 2007a It is meant to assist anyone who wishes to conduct an economic appraisal of the health effects related to cycling and complements existing tools for economic valuations of transport interventions which focus on other aspects such as emissions or congestion The tool estimates the mean annual benefit per cyclist per trip and total annual benefit associated to reduced mortality as a result of cycling
2. It can be applied in a number of situations e when planning a piece of new cycle infrastructure it allows the user to model the impact of different levels of cycling and attach a value to the estimated level of cycling when the new infrastructure is in place This can be compared to the costs to produce a benefit cost ratio and help make the case for investment or as an input into a more comprehensive cost benefit analysis e to value the mortality benefits from current levels of cycling such as to a specific workplace across a city or in a country e to provide input into more comprehensive cost benefit analyses or prospective health impact assessments For instance to estimate the mortality benefits from achieving national targets to increase cycling or to illustrate potential cost consequences to be expected in case of a decline of the current levels of cycling It will help to answer the following question If x people cycle y distance on most days what is the economic value of the health benefits that occur as a result of the reduction in mortality due to their increased physical activity The tool has been developed through an expert consensus process and building on a systematic review of the literature However there are many ways that it could be developed further and feedback on the first illustrative version of this tool and accompanying documentation is welcome See http www euro who int transport pol
3. an overview 3 1 Basic workings of the tool The tool is based on the relative risk data from the Copenhagen Center for Prospective Population studies Andersen et al 2000 which found a relative risk of all cause mortality of 0 72 among regular commuter cyclists aged 20 60 years relative to the general population The tool then applies the data entered by the user to calculate the total value of the economic savings due to reductions in all cause mortality among these cyclists Assuming a linear dose response relationship the risk for the actual days spent cycling is calculated based on estimates of total number of days cycled distance cycled and average speed The tool produces a global estimate of economic savings from reduced all cause mortality as well as savings per kilometre cycled or per trip The basic workings of the tool are shown in Fig 1 below HEAT for cycling User guide Figure 1 Basic workings of the HEAT for Cycling Number of trips day x Data entered by user Distance trip for study area Days cycled per year Local parameters Average speed Hours cycled per year in study area Relative risk of death among cyclists in study area calculated based on risk in Copenhagen study of 0 72 for 3 hours per week for an estimated 36 weeks year assuming a linear dose response relationship Estimate of economic savings based on reduced mortality among cyclists in the study area HEAT for c
4. As mentioned above the tool does not produce comprehensive assessments of all benefits of cycling so it should not be used in place of a full cost benefit analysis For methodological reasons it only considers the impact on mortality and not morbidity A number of other limitations to the tool are described in more detail in the accompanying Methodological guidance on the economic appraisal of health effects related to walking and cycling WHO 2007a 3 5 What input data are needed The user only has to enter data on two basic elements of the observed or modelled cycling patterns e number of cycle trips per day e mean trip length The tool then calculates the overall value of this level of cycling based on a number of default values These have been derived from the literature and agreed as part of the expert consensus process and should be used unless more relevant or accurate data are available In addition users can enter data on the following aspects which will help to make the estimates more appropriate for the respective local situation 10 HEAT for cycling User guide e proportion of these trips that are one part of a return journey or round trip This proportion will be high if the route in question is regularly used as a commuter route or route for regular transport related cycling This is likely to be the case in most situations e value of a statistical life in economic terms A default value commonly us
5. legal status of any country territory city or area or of its authorities or concerning the delimitation of its frontiers or boundaries Where the designation country or area appears in the headings of tables it covers countries territories cities or areas Dotted lines on maps represent approximate border lines for which there may not yet be full agreement The mention of specific companies or of certain manufacturers products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned Errors and omissions excepted the names of proprietary products are distinguished by initial capital letters The World Health Organization does not warrant that the information contained in this publication is complete and correct and shall not be liable for any damages incurred as a result of its use The views expressed by authors or editors do not necessarily represent the decisions or the stated policy of the World Health Organization HEAT for cycling User guide Health Economic Assessment Tool for Cycling HEAT for cycling User guide By Harry Rutter South East Public Health Observatory Nick Cavill Cavill Associates Hywell Dinsdale South East Public Health Observatory Sonja Kahlmeier European Centre for Environment and Health WHO Regional Office for Europe Francesca Racioppi European Centre for Environment and Health WHO Re
6. relationship between benefit and time is linear exponential or logarithmic in shape and the strength of the exponential logarithmic factor respectively e Graphs and error adjustment The final button Click here to view full calculation graphs and adjust error shows the full calculations behind the spreadsheet as well as all the main outputs in graphical form The bottom half of the spreadsheet contains a number of slider controls for error adjustment These can be used to include error margins or confidence intervals around any of the entered data Move the slider until the values correspond with the wished error values The upper and lower limits will then be shown in the graphs Note that some confidence intervals are already entered including those around the relative risk estimates from the underlying Copenhagen study and the mean proportion of population who die each year The button reset all default values restores all the values to their defaults including values for mean number of days cycled per year proportion of trips as part of a return journey and all other key parameters 17 HEAT for cycling User guide References Andersen LB et al 2000 All Cause Mortality Associated With Physical Activity During Leisure Time Work Sports and Cycling to Work Archives of Internal Medicine 160 11 1621 1628 Bull FC et al 2004 Physical activity In Ezzati M ed Comparative quantification of health risks global and r
7. to 5 e Timeframe for calculation of mean annual benefit This is the time over which the discounted mean annual benefit will be calculated This is usually standardized within each country often at 10 years All of these default values can be changed by clicking on the button Click here to change the timeframe used in calculation However this should only be done if reliable local data are available 4 3 Interpreting results Results are presented in six different ways depending on the assumptions above e Maximum annual benefit This is the total value per year of lives saved mortality only assuming a steady state of health benefits has been achieved This builds on the value achieved at the end of the build up of benefits time period and therefore assumes that all cyclists will have realised the benefits of reduced mortality due to their cycling This should always be quoted as a maximum rather than an average value e Savings per kilometre cycled per individual cyclist per year This is a simple average value for every kilometre that each cyclist rides per year This figure is 0 27 as long as the default values are used 15 HEAT for cycling User guide e Savings per individual cyclist per year This value is most sensitive to the distance that cyclists travel on average with longer average trip length leading to greater benefits e Savings per trip This value is also most sensitive to the distance that cy
8. ECONOMIC ASSESSMENT OF TRANSPORT INFRASTRUCTURE AND POLICIES EUROPE METHODOLOGICAL GUIDANCE ON THE ECONOMIC APPRAISAL OF HEALTH EFFECTS RELATED TO WALKING AND CYCLING Health Economic Assessment Tool for Cycling HEAT for cycling User guide lebensministerium at T H E P E P Transport Health and Environment Pan European Programme United Nations Economic Commission for Europe UNECE World Health Organization Regional Office for Europe WHO Europe HEAT for cycling User guide Keywords BICYCLING WALKING TRANSPORTATION METHODS ECONOMICS HEALTH ECONOMICS COST BENEFIT ANALYSIS METHODS DATA COLLECTION METHODS GUIDELINES EUROPE Address requests about publications of the WHO Regional Office for Europe to Publications WHO Regional Office for Europe Scherfigsvej 8 DK 2100 Copenhagen Denmark Alternatively complete an online request form for documentation health information or for permission to quote or translate on the WHO Europe web site at http www euro who int pubrequest World Health Organization 2007 All rights reserved The Regional Office for Europe of the World Health Organization welcomes requests for permission to reproduce or translate its publications in part or in full The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the
9. an be adjusted e Savings per km cycled per individual cyclist per year e Savings per individual cyclist per year e Savings per trip e Mean annual benefit as the key output of the model It adjusts the maximum annual benefit total value of lives saved due to the level of cycling entered by the user by three main factors e an estimate of the timeframe over which benefits occur There is evidence to suggest that mortality reductions are likely within five years of a change in level of cycling WHO 2007a Andersen 2000 Matthews 2007 so this is the default value e Build up period for uptake in cycling This allows the user to vary the projections in uptake for example for a new cycle path which may see increasing use over time It varies for full usage occurring between 1 25 years 11 HEAT for cycling User guide e Total time period This allows the user to look at discounted benefits averaged over a period of between 1 25 years e Present value of mean annual benefit This adjusts the above outputs to take inflation into account The model suggests a discount rate of 5 but this can be varied by users 12 HEAT for cycling User guide 4 The HEAT for Cycling Instructions for users 4 1 Howto access the tool The tool is available to download as an Excel spreadsheet WHO 2007 When first opening the spreadsheet you may find a warning about macro security The user needs to allow the spreadsheet to use macro
10. clists travel on average with longer average trip length leading to greater benefits e Mean annual benefit This is the main output of the model This takes the period set for the build up of benefit into account see previous section and averages the benefit over the timeframe for calculation of mean annual benefit This output is highly dependent on the number of years entered e Present value of mean annual benefit This is the second main output of the model using the discount rate from section two to calculate the present value taking inflation into account 4 4 Assumptions The model uses a number of assumptions which were agreed at the expert consensus meeting e the relative risk data from the Copenhagen Center for Prospective Population studies Andersen et al 2000 can be applied to cyclists in other settings as suggested by Matthews et al 2007 e there is a linear dose response relationship between risk of death and distance cycled assuming a constant average speed e no thresholds have to be reached to achieve health benefits e men and women have the same level of relative risk 4 5 Advanced data entry There are a number of features of the tool that can be used to fine tune the assessment In general these should only be amended by users with a good understanding of economic assessment methods If in any doubt please direct enquiries about the working of the tool to nepa ecr euro who int e Underlying
11. ed across Europe is provided in the model but users may adapt this value for example by adopting agreed values for their country Other measures such as years of life or quality adjusted life years QALYs could also be included by users to provide a more sophisticated analysis However for pragmatic reasons at this stage the basic functions of the tool are based on the value of statistical life approach as it is more easily available easier to understand by non specialists and results in more conservative estimates 3 6 Data sources Input data for the model might come from a number of sources including e cycle route user surveys e population level travel surveys e cycle route trailside monitoring e traffic counts e informed estimates In all cases it is important to use the most reliable data possible and to validate these with secondary sources where available Default values are provided for the main parameters of the model based on best evidence and expert opinion 3 7 What data will the tool produce The tool will produce an estimate of the following outputs e Maximum annual benefit This is the total value of reduced mortality due to the level of cycling entered by the user This is a maximum value as it assumes that the maximum possible benefits to health will have occurred as a result of the entered level of cycling In reality the health benefits are likely to accrue over time and this build up period c
12. egional burden of disease attributable to selected major risk factors Geneva World Health Organization 729 881 http www who int bookorders anglais detart1 jso sesslan 1 amp codlan 1 amp codcol 15 amp codcch 554 accessed 20 October 2007 Matthews CE et al 2007 Influence of exercise walking cycling and overall non exercise physical activity on mortality in Chinese women American Journal of Epidemiology 165 12 1343 50 Epub 2007 May 2 Schantz P Stigell E 2006 Physically active commuting between home and work study place in Greater Stockholm 1 Proceedings from Transport Research Arena Europe Greener safer and smarter road transport for Europe Conference of European Directors of Roads European Commission amp European Road Transport Research Advisory Council G teborg Sweden June 12th 15th 2006 Session 6 10 3 p 109 Download from www gih se pacs Schantz P Stigell E In press a Distance time and velocity as input data in cost benefit analyses of physically active transportation Proceedings from The 2nd International Congress on Physical Activity and Public Health Amsterdam April 13 16 2008 Download from www gih se pacs Schantz P Stigell E In press b Frequency of bicycle tours per week and bicycling days per year as input data in cost benefit analyses In Proceedings from The 13th Annual Congress of the European College of Sport Sciences Estoril July 9 12 2008 download from www gih se pac
13. ge local parameters Mean number of days cycled per year This is the estimated number of days per year that people cycle This figure has a default value of 124 days per year which was the reported level of cycling in a study carried out in Stockholm Sweden Schantz and Stigell in press b Only change this figure if you have reliable local data as this will influence the final calculation Proportion of these trips that are one part of a return journey or round trip This allows the user to adjust the assessment to take account of cyclists who are observed on a route at one specific time point and who then return on the same route later in the day This is particularly important for assessments done on routes used for commuting This adjustment enables the assessment to take account of the number of unique cyclists on each route The default value is set at 0 9 as it is assumed that 90 of cyclists observed cycling in one direction will be making a return trip later in the same day Setting this figure at 1 assumes that all cyclists will be making return journeys Only change this figure if reliable local data are available Note if conducting an audit of existing levels of cycling for example assessing the value of all cycling across a city it is important to set this figure at zero This means that all trips entered in step one will be assumed to be undertaken by individual cyclists Proportion undertaken by people who would no
14. gional Office for Europe Pekka Oja Karolinska Institute HEAT for cycling Contributors Lars Bo Andersen School of Sports Science Norway Finn Berggren Gerlev Physical Education and Sports Academy Denmark Hana Bruhova Foltynova Charles University Environment Centre Czech Republic Fiona Bull Loughborough University United Kingdom Andy Cope Sustrans United Kingdom Maria Hagstr6mer Michael Sj str m Karolinska Institute Sweden Eva Gleissenberger Robert Thaler Lebensministerium Austria Brian Martin Federal Office of Sports Switzerland Irina Mincheva Kovacheva Ministry of Health Bulgaria Hanns Moshammer International Society of Doctors for the Environment Acknowledgements User guide Bhash Naidoo National Institute for Clinical Excellence NICE United Kingdom Kjartan Saelensminde Norwegian Directorate for Health and Social Affairs Peter Schantz Research Unit for Movement Health and Environment Astrand Laboratory Swedish School of Sport and Health Sciences GIH Sweden Thomas Schmid Centres for Disease Control and Prevention United States of America Heini Sommer Ecoplan Switzerland Jan S rensen Centre for Applied Health Services Research and Technology Assessment CAST University of Southern Denmark Denmark Sylvia Titze University of Graz Austria Ardine de Wit Wanda Wendel Vos National Institute for Health and Environment RIVM the Netherlands Muluge
15. icy 20070503_1 HEAT for cycling User guide 2 Brief introduction to the project This project aimed to assist practitioners who are engaged in conducting economic appraisals of transport projects In recent years a few countries have pioneered approaches to the assessment of the overall costs and benefits of transport infrastructures taking health effects into account However important questions remain to be addressed regarding the type and extent of health benefits which can be attained through investments in policies and initiatives which promote more cycling and walking Addressing these questions is important to a support Member States in their assessments of the health and environmental impacts of alternative transport policy options b promote the use of scientifically robust methodologies to carry out these assessments and c provide a sound basis for advocating investments in sustainable transport options This project therefore aimed to facilitate the harmonization of methodological approaches by providing guidance for practitioners based on a review of existing approaches to the economic valuation of health effects of transport related physical activity More detail of the background to the project is given in the document Methodological guidance on the economic appraisal of health effects related to walking and cycling WHO 2007a HEAT for cycling User guide 3 The Health Economic Assessment Tool HEAT for cycling
16. rage from the European Mortality Database WHO 2007c e Value of statistical life in local currency Enter here the standard value of a statistical life used in the country of study in Euros This will form the basis of the cost savings in the model If not known use 1 500 000 which is the standard value used across Europe University of Leeds 2007 e Discount rate Enter here the discount rate to be used for calculating the value of future benefits Savings which occur in future years will be discounted by this percentage per year and will be shown in the present value section of step 3 Step 3 Read the economic savings resulting from reduced mortality The results of the assessment depend on a number of assumptions e Build up of benefits This is the estimated time it will take for cyclists in the model to realise the mortality benefits of the cycling entered at step one The default value is set at 5 years based on the results of the systematic review and expert consensus WHO 2007a This should only be changed if a solid data foundation is available e Build up for uptake This figure allows adjustment for the estimated time it will take for the level of cycling entered at step one to be achieved This can be particularly useful for assessments of new cycle interventions For example if a new cycle path is built and it is estimated it will take 5 years for usage to reach its steady state this figure should be changed
17. s University of Leeds 2007 UNI fication of accounts and marginal costs for Transport Efficiency UNITE University of Leeds http www its leeds ac uk projects unite accessed 10 October 2007 WHO Regional Office for Europe 2007a Economic assessment of transport infrastructure and policies Methodological guidance on the economic appraisal of health effects related to walking and cycling By Cavill N Kahlmeier S Rutter H Racioppi F Oja P WHO Regional Office for Europe and United Nations Economic Council for Europe UNECE Copenhagen WHO Regional Office for Europe WHO Regional Office for Europe http Awww euro who int transport policy 20070503_1 accessed November 2007 WHO Regional Office for Europe 2007b Health economic assessment tool for cycling HEAT for cycling By Rutter H Cavill N Kahlmeier S Dinsdale H Racioppi F Oja P WHO Regional Office for Europe and United Nations Economic Council for Europe UNECE Copenhagen Regional Office for Europe http www euro who int transport policy 20070503_1 accessed November 2007 WHO Regional Office for Europe 2007c European mortality database MDB online database Updated November 2007 Copenhagen WHO Regional Office for Europe http data euro who int nfamdb accessed 30 October 2007 18
18. s to enable the spreadsheet to work correctly Macros are simple instructions that are contained within the spreadsheet that allow it to conduct basic calculations To enable macros Click Enable Macros when you see a security warning You may need to change the security setting on your computer to allow macros To do this e close the spreadsheet but keep Excel open by clicking the black X at the top right of the spreadsheet e go to Tools then Options e within Options click the tab security e select the button Medium This allows you to choose whether or not to run potentially unsafe macros e re open the WHO spreadsheet You should now see a security warning Click Enable Macros e the spreadsheet should now open correctly If you encounter problems with macros you can download the alternative version which has auto screen formatting macros removed 4 2 Howto enter data Step one enter your data All assessments require the two fields in step 1 to be completed e number of trips per day enter the number of cycle trips observed or estimated per day This might be on a specific cycle route across a city or on a cycle network in any direction Examples of data sources are given in section 3 5 If the specific data are not available or the tool is being used to assess projected increases or decreases in cycling this figure should be estimated as accurately as possible e mean trip length this is the average leng
19. study parameters The parameters used in this tool come from the Copenhagen Center for Prospective Population studies a prospective study on different types of physical activity including cycling to work and for leisure time on mortality risk The study included about 30 000 men and women who were followed up for an average of 14 5 years These are critical to the functioning of the tool and should not be changed unless the assessment is to be based on a similarly robust study e The exceptions to this are the parameters average speed and mean number of days cycled per year These are assumptions based on best available evidence but could be varied by the user if better data from the local context were available The speed value is based on hours of commuting per week from the Copenhagen study Andersen et al 2000 combined with data from the Stockholm commuting studies on frequency of tours per week over the year distance and duration Schantz amp Stigell in press b Based on an estimated distance of 4 km per trip the observed distance speed relationship produces an estimated average speed of 14 km h Schantz amp Stigell in press a 16 HEAT for cycling User guide e Timeframe used in calculations The main elements of this section were described above However as well as varying the basic elements time build up for benefits time build up for uptake time for mean annual benefit calculation you can also determine whether the
20. t otherwise cycle This is a key variable that makes a significant difference to the calculation It allows the model to take account of the proportion of cyclists that are new users directly as a result of the infrastructure or policy being assessed This allows for the notion that a certain proportion of cyclists observed on any route will have cycled anyway irrespective of any change to provision of cycling facilities or policy so their health is unlikely to have benefited directly It enables the model to calculate the net increase in physical activity as a result of the increased cycling Note For evaluations of existing levels of cycling this can be changed to 1 0 so that the model assumes all cyclists to be benefiting their health through their cycling The default value is set at 0 5 meaning that 50 of observed cyclists will be assumed to be benefiting their health through their cycling which is a conservative estimate Mean proportion of working age population who die each year This can be derived from published mortality data for people of working age for the study country Enter the number of deaths of people aged 25 64 per year divided by the number of people aged 25 64 This allows the tool to focus on the ages that are most likely to cycle and reflects the relative risk of all cause 14 HEAT for cycling User guide mortality in this age group The default value is set at 0 005847 which is the WHO European Region ave
21. ta Yilma Road Administration Sweden This project has been supported by the Austrian Federal Ministry of Agriculture Forestry Environment and Water Management Division V 5 Transport Mobility Human Settlement and Noise and the Swedish Expertise Fund and facilitated by the Karolinska Institute Sweden The project benefited greatly from systematic reviews being undertaken for the National Institute for Health and Clinical Excellence NICE in England The consensus workshop 15 16 May 2007 Graz Austria was facilitated by the University of Graz Contents 4 PCKMOWICOGEINIGIS ies tees es ae 4 1 Introduction to the Health Economic Assessment Tool for cycling 6 2 Brief introduction to the 7 3 The Health Economic Assessment Tool HEAT for cycling overview 8 3 1 Basic workings of the 8 3 24 Whois IMIS tool fOr 10 3 3 What the tool be used 10 3 4 What should the tool not be used 10 3 5 What input data are needed 10 3 6 Data SOUNCES crre ann 11 3 7 What data will the tool
22. th of each cycle trip in km This will usually come from surveys of cyclists either on the route or from a random sample across the population There are three main ways of estimating distance Schantz and Stigell 2006 1 The most reliable is to ask cyclists to draw their route on a map so that it can then be measured with a digital curvimetric device 2 The second best method is to ask cyclists their origin and destination points and multiply the distance between the two points by 1 25 3 Another method is based on subjective estimations of distance travelled from cyclists However there is evidence that this approach leads to overestimating the distances by about 8 and to be not always reliable 2 See http www euro who int transport policy 20070503_1 13 HEAT for cycling User guide Step two check the parameters Most users will not need to change any of the parameters in step two These have been set based on the best information currently available and agreed by the expert group during a consensus workshop They represent the most likely appropriate default values in real life situations They should only be changed if reliable local data are available as changes to these parameters can have a significant impact on the final values They should be checked to ensure that they are applicable to the local situation but changed only if necessary To change any of these parameters click on the button click here to chan
23. ycling User guide 3 2 Whois this tool for The tool is based on the best available evidence and transparent assumptions It is intended to be simple to use by professionals from a wide variety of groups operating both at the national and local level These include e transport planners e traffic engineers e health economists e cycling organizations e environmental groups 3 3 What can the tool be used for The main use of the tool is as an input to comprehensive cost benefit analyses of new transport infrastructure or as a tool for assessment of existing infrastructure The tool provides an estimate of the economic benefit due to reduced mortality as a result of cycling Ideally it would be supplemented with additional data on other potential health outcomes form cycling morbidity as well as other transport related outcomes such as improvements to congestion or reduced journey times These and other enhancements will be considered for inclusion in future versions of the tool The tool could also be used to illustrate potential cost consequences from a potential future decline of the current levels of cycling 3 4 What should the tool not be used for The current tool can not be directly applied to walking as it is based on a study which compared the relative risk of all cause mortality between regular cyclists and non cyclists Andersen et al 2000 The tool is only to be applied to adult populations not to children
Download Pdf Manuals
Related Search
Related Contents
MANUAL DE INSTRUCCIONES Philips ID555 User's Manual 取扱説明書(印刷用PDF) FR-TBG12 - Franklin Electronic Publishers, Inc. Ceintures jetables de RIP Nox - Nox Support user manual – magmatherm laboratory furnaces Manuel d`utilisation EUR-USA “EXPRESSION v1.1” USER MANUAL Vodafone 804NK 取扱説明書 後半 12712KB Copyright © All rights reserved.
Failed to retrieve file