Home

User Manual - Workspace - Imperial College London

image

Contents

1. 12 0 18088000E 02 0 0 759E 05 3 0 0 18092000 02 0 0 453E 03 2 13 0 18096000E 02 0 0 240E 05 3 0 0 18100000E 02 0 0 107E 04 3 SUBDIVISION OF ELEMENTI 302 JURE DR UK ORG NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT 408 0 000000E 00 0 400000 03 NUMBER OF ELEMENTS CREATED K 2 ELM NAME TYPE OF ELEMENT NOD NAMES el3 2 211 n8 14 qdp2 n8 221 NUMBER OF IMPERFECT ELEMENTS 14 NUMBI 0 18104000E 02 0 0 322E 04 3 SUBDIVISION OF ELEMENT e14 ERRER ERE ES CREATED
2. 0 0 64173000E 03 2 0 392 07 4 ARERR KAKA KKK RAR RR SUBDIVISION OF ELEMENTI 49 YE IER RRR RRR LIEK ER NUMBER OF NODES CREATED 5 T NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n30 0 000000 400 0 400000E 03 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 51 cbp2 n28 n30 52 qdp2 n30 n29 P NUMBER OF IMPERFECT ELEMENTS 0 NUMBER OF NODES NOD NAME n31 CREAT ED 1 COORD S X Y 0 0000001 SUBDIVISION OF EN R ELA END 1 T 305 OF SUB 0 360000 ee ke REA DIVIDE jy
3. SUBDIVISION ELEMENT 1612 KAKA ee Kk e e EK NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE END 1 OF SUBDIVIDED ELEMENT 11 0 000000E 00 0 400000E 03 NUMBER OF ELEMENTS CREATED j 2 ELM NAME TYPE OF ELEMENT NOD NAMES 19 cbp2 n7 n11 20 2 n11 n2 B NUMBER OF IMPERFECT ELEMENTS 0 15 0 18112000E 02 0 0 480 04 3 0 0 18116000 02 0 0 267 04 3 16 0 18120000E 02 0 0 205 04 3 0 0 18124000 02 0 0 583 04 2 241 1 62 Gy Qn 0 2 hH CO CO CO CO OO CO oo CO OOOO OUO gt OO OOO OO QOO OOOO gt gt OO O S gt OO OOOO OO OOS cO O O 6 GO 181 128000 132000
4. MARR OK OS aeo SUBDIVISION OF ELEMENTI 4 NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n4 0 000000E 00 0 333333 01 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 8 2 n4 4 7 qdp2 n2 n4 NUMBER OF IMPERFECT ELEMENTS 0 CC x k K Ck k k k k k k k k x k k k k k k K K lt k lt k k K KKK k x K KKK k lt k x lt lt x x lt 0 0 17500000E 01 0 0 727E 04 1 88 0 17600000E 01 0 0 624E 04 1 0 0 17700000E 01 0 0 327E 04 1 SUBDIVISION OF ELEMENTI 5 RAK NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE END 1 SUBDIVIDED ELEMENT 5 0 000000E 00 0 666667E 00 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD N
5. 0 9 6 3 Output file ELEMENT ASSEMBLY ORDER gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt 201 101 202 1101 104 203 1102 107 1103 105 302 303 1202 108 1203 109 306 1206 206 1106 106 305 1205 102 301 1201 205 1105 103 304 1204 204 1104 MAXIMUM FRONT NODAL 6 ADDITIONAL FREEDOMS 0 INITIAL LOADING ee a i aap INITIAL LOADING CURRENT OUTPUT FACTOR TIME LEVEL CONV NORM ITERATIONS 1 0 10000000 01 0 18000000E 02 0 0 498 07 VARIABLE LOADING rero a OUTPUT IME LEVEL CONV NORM ITERATIONS 0 0 18004000E 02 0 0 595E 05 0 2 0 18008000 02 0 0 619 05 0 0 0 18012000 02 0 0 663E 05 0 3 0 18016000E 02 0 0 728 05 0 0 0 18020000 02 0 0 795 05 0 4 0 18024000 02 0 0 841 05 0 0 0 18028000 02 0 0 856 05 0 5 0 18032000 02 0 0 843E 05 0 REE KKK KEK kk KOK KOK KO SUBDIVISION OF ELEMENT 202 Re ee ke
6. a 0 18048000E 02 0 0 168 04 1 0 0 18052000 02 0 0 367 04 1 8 0 18056000 02 0 0 155 03 1 0 0 18060000 02 0 0 157 03 1 9 0 18064000E 02 0 0 408E 03 il 0 0 18068000E 02 0 0 233E 05 2 10 0 18072000E 02 0 0 100 04 2 SUBDIVISION OF ELEMENTI e3 NUMBER OF NODES CREATED 3 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT 13 0 000000E 00 0 120000E 04 n4 0 000000E 00 0 160000E 04 n5 0 000000E 00 0 200000E 04 NUMBER OF ELEMENTS CREATED 4 ELM NAME TYPE OF ELEMENT NOD NAMES 6 cbp2 n3 n4 xi 7 2 n4 n5 e5 qdp2 01 n3 qdp2 n5 n2 f NUMBER OF IMPERFECT ELEMENTS 0 0 18076000E 02 0 0 638E 04 2 11 0 18080000E 02
7. C gt 6 K O C BS QE E ES 85 EE FF P BBB A C C OO C Ch 65 X C 6601000 6602000E 6603000E 6604000E 6605000E 6606000E 6607000E 6608000E 6609000E 6610000E 6620000E 6630000E 6640000E 6650000E 03 03 03 03 03 03 03 03 03 03 03 03 03 03 WWW WWW CO CO WwW Ww O O A A PJ A DJ DoD A A D r3 248 1311 71 33 1221 2521 347 303 3051 1601 4431 4581 1581 1091 4101 Ld Pq A DH D D A DH DH Dd ooo gt C0 60 O1 41 O1 G C 6 OQ O So p 0 0 46660000E 03 2 0 379 03 0 0 0 46670000E 03 2 0 180 04 0 0 0 46680000E 03 2 0 307 04 0 0 0 46690000E 03 2 0 365 04 0 0 0 46700000E 03 2 0 321E 03 0 0 0 46800000E 03 1 0 774 04 4 0 0 46900000E 03 1 0 433E 03 2 71 0 47000000E 03 1 0 504 04 3 0 0 48000000E
8. 4 014 iS 4S OY po po p o pp io p p p io pp po EB pp B pp B pp EB pp pp 207 0 41400000E 01 0 0 601 04 1 0 0 41500000 01 0 0 369 05 1 208 0 41600000 01 0 0 312 04 1 0 0 41700000 01 0 0 359 04 1 209 0 41800000 01 0 0 138 04 1 0 0 41900000 01 0 0 165 04 1 210 0 42000000 01 0 0 255 04 1 0 0 42100000 01 0 0 616 05 1 211 0 42200000E 01 0 0 495 05 1 0 0 42300000E 01 0 0 145 04 1 212 0 42400000 01 0 0 721 05 1 0 0 42500000 01 0 0 510 05 1 213 0 42600000 01 0 0 287 04 1 0 0 42700000 401 0 0 544 05 1 214 0 42800000E 01 0 0 776 05 1 0 0 42900000 01 0 0 107 04 1 215 0 43000000E 01 0 0 259 04 1 0 0 43100000 01 0 0 139 04 1 216 0 43200000 01 0 0 405 0
9. 0 0 64175000E 03 2 0 172E 06 4 K UR KUK A RRR RAK KAR SUBDIVISION OF ELEMENTI 1652 ERR RR AR RR NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE END 1 SUBDIVIDED ELEMENT n33 0 000000 00 0 240000 04 al NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 58 2 133 029 2i 57 qdp2 n30 n33 NUMBER OF IMPERFECT ELEMENTS 0 0 64176000E 03 2 0 243 06 4 0 64177000E 03 2 0 436 03 1 0 64178000E 03 2 0 723E 05 2 OIE kek SUBDIVISION OF ELEMENT 55 ok kk Rk KKK ER OF NODES CREATED m NUMBI 25 l 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n34 0 000000 00 0 280000 04 NUMBER OF ELEMENTS CREATED
10. CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO Q CO CO CO CO CO CO C0 CO Q PO C0 CO CO CO CO CO PO C0 Q Q wm DY 9 4 Fixed ended beam column The fixed ended beam column shown in the figure 9 4 is subjected to two vertical symmetric forces P and to an horizontal force The buckling forces for this frame where obtained using 3 elements P p Section 114x2 3mm2 k 0 1910mm 1910mm 1910mm figure 9 4 Geometry of fixed ended beam column 202 9 4 1 analysis 2d statics Data file materials 5 model properties mati 5612 amp 42 properties for multisurface steel model follow 0 210000e 06 0 100000e 02 0 200000 02 0 600000 02 0 210000 01 0 306000 01 amp 0 187850 03 0 101150 06 0 260100 03 amp 0 433500 05 0 289000 03 0 867000 04 amp 0 306340e 03 0 115600e 04 0 323680 03 amp 0 120417e 04 0 335240e 03 0 104278e 04 amp 0 187850e 03 0 101150e 06 0 260100e 03 amp 0 433500 05 0 289000 03 0 867000 04 0 306340 03 0 115600 04 0 323680 03 amp 0 12041 7 04 0 335240 03 0 104278 04 0 000000e 00 0 000000e 00 0 000000 00 8 0 000000e 00 0 000000e 00 0 000000 00 0 000000
11. kk KO NUMBER OF NOD NAME SUBDIVISION OF NODES CREATED 2 COORD S X Y R ELEMEN ELATIVE TO 222 END 1 T 6 FH ke KEK OF SUBDIVIDE EM ENT 011 0 500000E 00 0 000000 00 n12 0 550000 01 0 000000 00 NUMBER ELEMENTS CREATED K 3 ELM NAME TYPE OF ELEMENT NOD NAMES e20 cbp2 5 011 22 cbp2 n12 6 2 1 qdp2 n11 n12 NUMBER IMPERFECT ELEMENTS 0 k Ck Kk Ck k k k K k k Ck k k lt k k k lt k k k k k k k k k k k k k k k k k k k k k k k k k k k k k ko ko 112 0 22400000E 01 0 0 608E 05 1 SUBDIVISION OF ELEMENT 61 6 KAKA RRA KE KARA NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE END 1 OF SUBDIVIDED ELEMENT n13 0 000000E 00 0 33333
12. NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT 112 509333 03 0 000000E 00 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES e16 2 010 2 T el7 cbp2 n12 3 i NUMBER OF IMPERFECT ELEMENTS lt J On Cn 8 107 PP PPP S 90 9 9 9 9 Q Q Q CO CO PO PO DN PO lt J Cn b 600 9 O CO lt J Gy Qn 4 Q ES 0 12500000 15000000 17500000 20000000 22500000 25000000 27500000 30000000 32500000 35000000 37500000 40000000 42500000 45000000 47500000 50000000 52500000 55000000 57500000 60000000 62500000 65000000 67500000 70000000 72500000 75000000 77500000 80000000 82500000 85000000 87500000 90000000 92500000 95000000 97500000 10000000 10250000 10500000 10750000 110
13. gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt 1 3 5 10 6 12 4 13 2 11 MAXIMUM FRONT NODAL 4 ADDITIONAL FREEDOMS 0 VARIABLE LOADING OUTPUT IME LEVEL CONV NORM ITERATIONS 0 0 10000000 01 0 0 147 06 0 1 0 20000000 01 0 0 736 06 0 0 0 30000000 01 0 0 190 05 0 2 0 40000000 01 0 0 362 05 0 0 0 50000000 01 0 0 516 05 0 3 0 60000000 01 0 0 511 05 0 0 0 70000000 01 0 0 128 05 0 4 0 80000000 01 0 0 932 05 0 0 0 90000000 01 0 0 261 04 0 0 10000000E 00 0 0 449 04 0 0 0 11000000E 00 0 0 622E 04 0 6 0 12000000E 00 0 0 750E 04 0 0 0 13000000E 00 0 0 795 04 0 7 0 14000000E 00 0 0 716 04 0 0 0 15000000E 00 0 0 485 04 0 8 0 16000000E 00 0 0 884E 05 0 0 0 17000000E 00 0 0 509 04 0 9 0 18000000E 00 0 0 860 09 1 0 0 19000000E 00 0 0 266 08 1 10 0 20000000E 00 0 0 556 08 1 0 0 21000000E 00 0 0 895E 08 1 11 0 22000000E 00 0 0 116E 07 1 0 0 23000000E 00 0 0 132E 07 1 12 0 24000000E 00 0 0 149 07 1 0 0 25000000E 00 0 0 168E 07 1 13 0 26000000 00 0 0 178E 07 1 0 0 27000000E 00 0 0 177 07 1 14 0 28000000E 00 0 0 173 07 1 0 0 29000000E 00 0 0 171 07 1 15 0 30000000E 00 0 0 166E 07 1 0 0 31000000E 00 0 0 160 07 1 16 0 32000000 00 0 0 159 07 1
14. 38 CHAPTER 5 CROSS SECTION TYPES 67 CHAPTER 6 ELEMENT TYPES S00 87 CHAPTER DATA SYNTAX eve 134 JL INIRODUCTION 134 fo GENERAT TACIT A 135 7 2 1 136 7 2 2 0 E E O EE 137 7 2 3 Incrementation 138 1 139 7 3 1 Ana SUS ese eo tU te cafe 140 7 3 2 Default parameters 141 7 3 3 IO 742 7 3 4 143 7 3 3 TOES Certe 144 7 3 6 GM PEE 145 7 3 7 Structural nodal coordinates 0 00 146 7 3 8 Non structural nodal coordinates eese entente 147 7 3 9 Element connectivity niei eiecti aaa langei 148 73 10 Imperfections ssatina EORR seus ed dae hus iade iate ptite tese quie 149 EP EE inui a 150 7 3 12 6000 151 3 152 73 14 Inte Sration SCHEME sn ioo p OR 154 73 15 0 155 7346 Equilibrium Le u ua 157 LIA PASES ie E NE E E EE O 158 73 18 7 160 73 19 6000607007 0 0 12 43 20 ce a 164 73 21
15. 0 0 22300000E 01 0 0 809E 05 1 e SR Kee SUBDIVISION OE ELEMENT 3 NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n9 0 000000E 00 0 366667E 01 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 17 cbp2 n9 5 e16 qdp2 3 n9 NUMBER OF IMPERFECT ELEMENTS 0 NCK kk kk kk OK SUBDIVISION OF ELEMENTI 4 NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT 10 0 000000E 00 0 366667E 01 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES e19 cbp2 n10 6 18 qdp2 4 n10 NUMBER OF IMPERFECT ELEMENTS 0
16. 187 9 2 2 Structural behaviouks a 189 9 2 3 Output le dd 191 9 3 LEE S FRAME ccavdansesanscs 194 9 3 1 HO 195 9 3 2 Structural dd 197 9 3 3 flle G Bayas matuqa Th 199 9 4 FIXED ENDED BEAM COLUMN NS Ei 202 9 4 1 Data 203 9 4 2 Structural behaviour ia 205 9 4 3 mau p BQ 0 206 9 5 1 0 0 212 9 5 1 es de a 213 9 5 2 Structural 215 9 5 3 216 9 6 STEEL FRAME SUBJECT TO EXPLOSION AND FIRE LOADING RN 232 9 6 1 Data file ceste 233 9 6 2 0 206 9 6 3 LO e a aa e e a e 258 9 7 NPEXES M E 253 Chapter 1 INTRODUCTION ADAPTIC is an adaptive static and dynamic structural analysis program which has been developed to provide an efficient tool for the nonlinear analysis of steel and composite frames slabs shells and integrat
17. Dd Dj Dd EJ Dd Dd Dd Dd PJ Dd Dd Dd Dd EJ 1 CO PO PO PO PO PO CO PO CO WN PO N N N 9 5 Two storey frame This example illustrates the influence of an earthquake on the resistance of steel frames i Em 6m figure 9 5 Steel frames subject to earthquake 212 9 5 1 Data file analysis 2d dynamics materials b mat name model properties mati stll 0 210e12 0 300e9 0 100e 1 sections type rss sec name mat name dimensions sectl mati 0 10 0 10 patterns pat name ratios patl 12 339 Z1 groups type cbp2 grp name sec name monitoring points grpl sectl 30 type qdp2 grp name cbp2 grp name pat name grp2 grpl patl type cnm2 grp name mass grp3 20000 structural e nod n x y f1 0 0 0 0 r 1 6 0 0 04 2 0 0 4 0 2 restraints direction ytrz nod name 1 2 element connectivity grp name grp2 elm name nod name f 1 1 3 r 1 1 1 4 2 2 21 5 3 4 6 5 6 grp name grp3 elm name nod name f 10 3 r 1 1 3 integration r scheme newmark beta 0 25 gamma 0 5 213 linear curves start time 0 0 crv name crvl file earthquakel first line 1 last line 1200 format 23x 2
18. PO PO PO PO PO N PO PO PO 4 w F WWWWWWWWWWNNNNNNNNNDND amp 10 lt gt Ps BW BBW wap 41 Gy Qn gt 00 oo O1 N OY O1 O1 O1 O1 P gt w N Oy Oy Os 4 BB WwW 26500000 26750000 27000000 27250000 27500000 27750000 28000000 28250000 28500000 28750000 29000000 29250000 29500000 29750000 30000000 30250000 30500000 30750000 31000000 31250000 31500000 31750000 32000000 32250000 32500000 32750000 33000000 33250000 33500000 33750000 34000000 34250000 34500000 34750000 35000000 35250000 35500000 35750000 36000000 36250000 36500000 36750000 37000000 37250000 37500000 37750000 38000000 38250000 38500000 38750000 39000000 39250000 39500000 39750000 0000000 025
19. OOO 65 6 gt X09 OS PRPFFNWWWNHNNNWNNNNNWWNHNWNHNNNNNNWWWNNNNN PO CO 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 977 98 99 100 101 102 103 104 105 106 11250000 11500000 11750000 12000000 12250000 12500000 12750000 13000000E 13250000E 13500000E 13750000E 14000000E 14250000E 14500000E 14750000E 15000000E 15250000E 15500000E 15750000E 16000000E 16250000E 16500000E 16750000E 17000000E 17250000E 17500000E 17750000E 18000000E 18250000E 18500000E 18750000E 19000000E 19250000 19500000 19750000 20000000 20250000 20500000 20750000 21000000 21250000 21500000 21750000 22000000 22250000 22500000 22750000 23000000 23250000 23500000 23750000 24000000 24250000 24500000 24750000 25000000 25250000 25500000 25750000 26000000 26250000 PJ Lj p Pq Eg PJ pj prj 71 Pj ee ee PJ prj DJ
20. 0 SUBDIVISION OF ELEMENT 2 K NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT 2 0 000000E 00 0 333333 00 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES e3 cbp2 2 n2 2 4 qdp2 n2 4 0 0 17300000E 01 0 0 317E 04 1 87 0 17400000E 01 0 0 374E 04 1 Wokck e ok ke coe SUBDIVISION OE ELEMENT 2 Eck eee e e NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT 3 0 000000E 00 0 333333 01 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 6 cbp2 n3 3 5 qdp2 1 n3 219 NUMBER OF IMPERFECT ELEMENTS j 0
21. gt lt Initial 9 u imperfection M Vost Vo7sL Element configuration Element forces before and after deflection Configuration and forces in local system of element type qph2 92 x qdp2 Description Subdivision pattern Nodes Imperfections Characteristics Application Restrictions Group header Quartic elastic 2D beam column element utilising automatic q mesh refinement Relative lengths in ratio form of zones where inelasticity is checked for automatic mesh refinement 2 Vost Voss Can be specified Geometric and material nonlinearities Large displacement and beam column effect of perfect imperfect members One element type qdp2 is usually sufficient to represent a whole member Element qdp2 subdivides into elements cbp2 specified under cbp2 grp name if inelasticity is detected in the zones defined by the subdivision pattern pat name Accuracy increases with the number of sub elements type cbp2 specified in the subdivision pattern After subdivision elements cbp2 are inserted in the inelastic zones while the elastic zones are as element type 44 2 Adaptive modelling of inelastic members in plane frames Applies only to cross sections with materials 01 stl2 amp stl3 cbp2 grp name Specifies the group identifier of elements type cbp2 used in automatic mesh refinement pat name An identife
22. Used for the load factor condition option with the entry representing the condition identifier limits Specifies the minimum and maximum limits disp cnd name Used for the displacement condition option with the entry representing the condition identifier nod name The node name for which the displacement condition applies direction The direction for which the displacement condition applies x displacement along global X axis y displacement along global Y axis displacement along global Z axis rx rotation about global X axis ry rotation about global Y axis rz rotation about global Z axis Notes Multiple direction specification is not allowed in this module This module is only applicable when using proportional loads in the applied loading module 151 7 3 13 Linear curves This module specifies piecewise linear load curves for dynamic or time history loading linear curves start time lt real gt crv name lt name gt time load factor file lt file name gt delay lt real gt 6 gt integer gt 1ast line lt integer gt format lt format specification gt Notes start time crv name time load factor Specifies the start time at which all load curves have a zero value This entry must be less than the first TIME entry of all load curves A curve identifier Time or pseudo time column of entries Load
23. 0 KER SUBDIVISION OF LEMENT 43 ke Ke NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n27 0 000000 00 0 400000E 03 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 5 2 027 025 44 qdp2 n26 n27 0 0 46410000E 03 2 0 417E 05 2 0 0 46420000E 03 2 0 278 03 0 0 0 46430000E 03 2 0 177 03 0 0 0 46440000E 03 2 0 210 03 0 0 0 46450000E 03 2 0 151 03 0 0 0 46460000E 03 2 0 123 03 0 0 0 46470000E 03 2 0 111 03 0 0 0 46480000E 03 2 0 123 03 0 0 0 46490000E 03 2 0 119 03 0 0 0 46500000E 03 2 0 126 03 0 0 0 46600000E 03 1 0 846E 04 2 kk kk SUBDIVISION OF LEMENT 44 x NUMBER OF NODES CREATED 0 NUMBER ELEMENTS CREATED 1 ELM NAME TYPE OF ELEMENT NOD NAMES 46 cbp2 n26 n27 NUMBER OF IMPERFECT ELEMENTS 0
24. 4 pek Ores node 4 6 6 6 gt b node 4 73 5 FO gt Oe 6 C C OO O S CO c 133 623 775 190 798 790 784 401 924 878 473 269 664 121 141 19 124 540 229 546 234 672 234 852 542 304 571 329 348 362 412 924 181 181 180 391 384 E 06 E 06 E 06 E 06 E 06 E 06 E 06 E 06 E 06 E 06 E 06 E 06 E 06 E 07 E 07 E 06 E 07 E 07 E 06 E 06 E 06 E 06 E 06 E 06 E 06 E 06 E 06 E 06 E 07 E 07 E 07 E 06 E 08 E 07 E 07 E 07 E 09 E 09 CO 1 00 OY OY lt gt P gt P 9 3 Lee s frame The Lee s frame shown in the figure 9 3 is subjected to an end force P The buckling forces for this frame where also obtained with ADAPTIC where the following values were reported using 3 elements 0 2L 0 8 L T 7 L 120cm P E 720 ton cm i x Mass per unit length 0 24x10 ton sec cem L 3 cm pee Cross section figure 9 3 Geometry and loading of Lee s frame 194 9 3 1 Data file analysis 2d statics control start materials mat name model properties mati stll 0 720e3
25. l 1 o CO PO PO PO PO CO PO PO CO PO W CO CO CO CO CO CO CO CO CO CO CO PO PO PO PO PD 184 UTPUT ERATIONS 42 BB C OS 41 d gt DISPLACEMENT INCREMENT 300000 01 NUMBER OF STEPS 20 VARIABLE DISPLACEMENT LOAD INCREMENT FACTOR 15000000 00 0 10110066 03 15000000E 00 0 10278682E 03 15000000 00 0 10449112E 03 15000000E 00 0 10621060E 03 15000000 00 0 10794230E 03 15000000 00 0 10968333E 03 15000000E 00 0 11143082E 03 15000000E 00 0 11318196E 03 15000000E 00 0 11493396E 03 15000000E 00 0 11668410E 03 15000000 00 0 11842972E 03 15000000E 00 0 12016827E 03 15000000 00 0 12189727E 03 15000000 00 0 12361439E 03 15000000E 00 0 12531749E 03 15000000E 00 0 12700463E 03 15000000 00 0 12867421E 03 15000000 00 0 13032502E 03 15000000E 00 0 13195645E 03 15000000E 00 0 13356868E 03 185 5 CE I CONV NORM 224 2301 2331 2381 247 258 273 293 3181 3521 395 4521 s527 6301 7721 9721 1271 1711 2401 3551 08 08 08 08 08 08 08 08
26. 02 02 02 02 02 02 02 02 02 02 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 CO OO OO OO OO O OO OO OO O O O O O O O O O O O O O O A A E p rj E p Pl Pj Pj Pj p PJ Ej PJ A Ej PJ A A PJ A A PJ prj Dr pr 248E 497 621 216 227 184 191 197 189 187 187 180 183 183 181 178 175 173 TJ 170 169 166 164 162 161 160 158 156 154 152 151 149 148 146 144 O O O O O O O O O D EJ Ej Dd d Dd Dd EJ EJ EJ Dd Dd p Dj Dd Dd Bj Du Dd TA 0 Q Q CO CO Q CO Q CO CO CO Q Q CO Q 00 CO CO CO CO CO CO CO CO CO CO Q Q CO CO CO SUBDIVISION ELEMENT 104 SO Or OO 6 QC O S OC C 6 OO Oe CO eH NOK RK KKK NUMBER OF NODES CREATED NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n12 0 600000E 03 0 000000E 00 013 0 120000E 04 0 000 E 00 n14 0 180000 04 0 000 E 00 15 0 240000E 04 0 000 E 00 nl6 0 300000E 04 0 000 E 00 n
27. E 04 x 0 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES E 54 cbp2 n31 321 M 53 qdp2 311 n31 NUMBER OF IMPERFECT ELEMENTS 0 0 64174000 03 2 0 101E 06 4 ARR EIR ICE RRR KAR SUBDIVISION OF ELEMENTI 53 RR AR RR KR NUMBER OF NODES CREATED 2 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT 0 000000 00 0 320000E 04 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 56 cbp2 n32 n31 e55 qdp2 311 n32 NUMBER OF IMPERFECT ELEMENTS 0
28. NUMBER OF IMPERFECT ELEMENTS 0 100000001 0 SUBDIVISION OF ELEMENT e4 00 0 0 888 07 3 kk NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n11 0 509333E 03 0 000000E 00 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 14 2 n3 nll el5 cbp2 011 2 NUMBER OF IMPERFECT ELEMENTS 0 207 SUBDIVISION OF ELEM ENT 13
29. User Manual Revision 1 4e B A Izzuddin January 2012 Department of Civil and Environmental Engineering Imperial College London SW7 2BU Table of Contents Page CHAPTER INTRODUCTION 00m cess 1 11 TY OPA NAT YSIS ge E 2 1 1 1 Static analysis proportional loading 2 1 1 2 0 2 1 1 3 Dynamic analysis cat d Sas o chains vey ade coto ate mauka sad aG daa 2 1 1 4 Eigenvalue analysts a i b d Sen ode ad cst d aq Verbo u e Sco od pa pi Rec 2 13 STR CTURADMODEEUING n aus 3 1 2 1 Elastie3Modellnes iie 3 1 2 2 Plastic Hinge Modelno riiseni eide eest 5 3 1 2 3 Blasto Plasnc MoOdell nb 3 1 2 4 Adaptive Elasto Plastic Modelling ee 3 1 2 5 Joints and Boundary Conditions 2 3 1 2 6 Dynamic Characteristics Modelling 4 CHAPTER 2 USING ADAPTIC 00 do ei 5 2d ADAPTI DATA FILE 5 22 STAR TING ADA PT C wo ne E DOCE PO OD EUR RE ERR ERR ERRORS 5 23 AMAR WIC OUTPUT PIERS 20 RHET ERE EDU ES ERR 5 CHAPTER 3 MATERIAL MODELS esee 6 CHAPTER 4 JOINT ELEMENT CURVES
30. analysis 3d static materials mat name model properties mati beth 20690 0 172 sections type rss sec name mat name dimensions sectl matl 0 6 1 22 groups type gel3 grp name sec name gpl sectl structural nod n 2 1 0 0 0 121 6 286 10 886 1 551 12 12 572 0 002 1 552 13 6 288 10 888 1 553 14 6 287 10 887 1 552 15 12 573 0 003 1 553 16 6 286 10 886 1 551 21 12 190 21 115 6 10 22 24 380 0 6 10 23 12 190 21 115 6 10 24 12 190 21 115 6 10 25 24 380 0 6 10 26 2190 12115 6 10 non structural nod name x 7 1011 6 286 10 886 10 1012 12 572 0 002 10 1013 6 288 10 888 10 1014 6 287 10 887 10 1015 12573 0 003 10 1016 6 286 10 886 10 restraints direction 2 2 nod name f 21 1 5 element connectivity grp name gpl elm name nod name 21 TI 1011 r 1 1 1 1 0 0 2 1 12 0 1 179 o G 26 16 11 applied loading proportional type force nod name 1 phases load control increment path 70 displacement control nod name dire 1 rz 1 z iterative strategy number 10 initial reformations step reduction 10 divergence iteration 1016 direction z steps 14 increment 0 24 3 maximum convergence convergenc criteria tolerance 0 1e 5 force ref 1 moment ref 1 output frequency 1 local
31. 2 ELM NAME TYPE OF ELEMENT NOD NAMES 0 cbp2 n34 n32 59 qdp2 311 n34 NUMBER OF IMPERFECT ELEMENTS 0 0 0 64179000E 03 2 0 127E 03 4 0 0 64180000E 03 2 0 319 04 2 0 0 64181000E 03 2 0 396 03 4 SUBDIVISION OF ELEMENT 57 NUMBER OF NODES CREATED pi 2 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n35 0 000000E 00 0 400000 03 n36 0 000000E 00 0 200000 04 NUMBER OF ELEMENTS CREATED 3 ELM NAME TYPE OF ELEMENT NOD NAMES 61 cbp2 n30 n35 3 cbp2 n36 n33 62 qdp2 n35 n36 NUMBER OF IMPERFECT ELEMENTS 0 0 64
32. E 07 2 E 03 0 0 0 0 40300000E 03 0 268 05 0 0 0 40400000E 03 0 269 05 0 0 0 40500000E 03 0 276 05 0 0 0 40600000E 03 0 286 05 0 0 0 40700000E 03 0 286 05 0 0 0 40800000E 03 0 276 05 0 0 0 40900000E 03 0 269 05 0 68 0 41000000E 03 1 0 268 05 0 0 0 42000000E 03 0 0 731E 08 1 SUBDIVISION OF ELEMENT 15 NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE END 1 OF SUBDIVIDED ELEMENT n21 0 000000E 00 0 280000E 04 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 4 cbp2 n21 9 5 3 qdp2 n8 21 NUMBER OF IMPERFECT ELEMENTS 0 0 0 42100000E 03 0 378E 07 3 0 0 42200000E 03 0 342 04 1 0 0 42300000E 03 0 659 07 1 0 0
33. 0 SUBDIVISION OF ELEMENTI 21 NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT 4018 0 100000 01 0 000000 00 NUMBER OF ELEMENTS CREATED m 2 ELM NAME TYPE OF ELEMENT NOD NAMES 3 cbp2 011 018 34 qdp2 n18 012 NUMBER OF IMPERFECT ELEMENTS 0 119 0 23800000E 01 0 0 148E 04 1 AK BRR AOR KK ROK SUBDIVISION OF ELEMENTI e34 RR RRA RK NUMBER OF NODES CREATED 5 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT 119 0 300000 01 0 000000 00 NUMBER OF ELEMENTS CREATED m 2 ELM NAME TYPE OF ELEMENT NOD NAMES 36 cbp2 n19 n12 35 qdp2 n18 n19
34. 0 y1 1 If y1 0 no strength degradation will occur in the positive range tension and 21 Ump 01 will be ignored 0 lt 2 lt 1 If y2 0 no strength degradation will occur in the negative range compression and 62 Ump 62 will be ignored 51 gt 0 82 gt 0 Ump gt 0 If Ump 0 and y1 gt 0 the Uup value will be used instead of Ump Umn lt 0 If Umn 0 and y2 gt 0 the Uun value will be used instead of Umn 6120 6220 References 1 Park Y J Reinhorn A M and Kunnath S K 1987 IDARC Inelastic damage analysis of reinforced concrete frame shear wall structures Tech Rep NCEER 87 0008 State University of New York at Buffalo Buffalo N Y 2 K Dowell F S Seible and E L Wilson 1998 Pivot Hysteretic Model for Reinforced Concrete Members ACI Structural Journal Vol 95 pp 607 617 Formulation Multi Parametric Strength Degradation 5 E AF Fy y 1 1 I 1 Zo E A m where Fy Yielding force 1 strength degradation parameter 0 lt lt 1 Ep Dissipated energy Eum Dissipated Energy in a Monotonic Loading Umax Maximim displacement Aum Ultimate Displacement in a Monotonic Loading g 2 Strength degradation parameter 5 3 Strength degradation parameter 52 Ep MICE Force displacement curve pivot 53 masonry Description Parameters Characteristics Formulatio
35. 133 Chapter 7 DATA SYNTAX 7 1 Introduction A header oriented syntax is utilized in ADAPTIC data files Data modules are identified by means of unique headers and only the first four characters in the header key words are necessary However if more than four characters of a key word are employed the ADAPTIC data input module checks for the consistency of all characters Names or numbers employed for example as identifiers for elements or nodes can be up to 8 character long However if this number is exceeded only the first 8 characters are considered The following symbols are used for describing the ADAPTIC data syntax Note that these symbols are used in the rest of this manual only for delivering information and they must not be used within an ADAPTIC data file Symbol Description eo Parantheses used to include a list of items Exclusive OR For example 2d 3d is equivalent to a single entry which can be either 2d or 3d Sass Brackets used to include optional item s For example 2 means that entry z is optional lt entry gt Specifies the entry type For example lt integer gt indicates an integer data entry Indicates that the entries for the previous key word in the header can be defined by assignment outside the header line For example A I mat name model properties indicates that the following two data modules mat name model properties ml stll 210e9 300e6 0 01 and mod
36. 223 0 0 22900000 01 0 0 200 04 1 115 0 23000000E 01 0 0 248 04 1 0 0 23100000 01 0 0 325 04 1 116 0 23200000 01 0 0 216 04 1 kk ck kk KK Ke SUBDIVISION OF ELEMENT 24 FORCE KC ke NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT 015 0 000000E 00 0 666667E 00 NUMBER ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 27 cbp2 n13 n15 28 qdp2 115 n9 NUMBER OF IMPERFECT ELEMENTS 0 SUBDIVISION OF ELEMENT 26 ERRERA NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT 116 0 000000E 00 0 666667E 00 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NO
37. G ast as l r a T 3 43 asya r3 4 Strain hardening coefficient temperatures and reduction factors Tas Mass Tas ss Ts s Tas 745 Requires the specification of the compressive strength the peak compressive strain the limit compressive strain at zero stress the thermal strain and their variations with temperature Note that r gt and rs can be greater than 1 Can be used to define material properties for joint element jbc2 26 beth Description No of properties Properties Application Elastic isotropic material model with thermal strains 3 Young s modulus E Possion s ratio v Coefficient of thermal expansion Can be used for 1D 2D and 3D elements 27 bnsi Description No of properties Properties Application Biaxial triaxial elasto plastic material model with isotropic strain hardening and material rate sensitivity 9 Young s modulus E Possion s ratio v Yield strength Strain hardening parameter u Plastic strain at onset of hardening n Features flag m Plastic strain at ultimate strnegth En Rate sensitivity parameter 1 S q Rate sensitivity parameter 2 amp D Can be used for 1D 2D and 3D elements Features flag takes the following values m 0 linear hardening without rate sensitivity Default m 1 quaratic hardening with an ultimate strength limit m 2 same as m 1 with Malvern rate
38. Material model stll stl2 Description No of properties Properties Application Restrictions Multi surface model for cyclic plasticity 42 Young s modulus E Plastic strains used for curves description y 5 52 5 55 Virgin stress plastic strain properties Kaos Kags Kajs 8 Cyclic stress plastic strain properties Kens cuts Kps Kps Weighting function properties W W W W Ws W Cyclic behaviour of steel modelling hardening softening and mean stress relaxation No descending branch beyond ultimate point ie K 7 0 K 70 Virgin curve Weighting function W e K Kis 4 Kis K 4 Kis 4 Kis K Kao j j K denotes slope of virgin curve T gt 5 5 Epa 5 Plastic strain k W W denotes slope of weighting function W I T E 5 s Plastic strain Material model stl2 stl3 Description No of properties Properties Application Overstress Rate sensitive bilinear elasto plastic model with kinematic strain hardening 5 Young s modulus E Yield strength cy Strain hardening factor Rate sensitive parameter S Rate sensitive parameter 8 Uniaxial modelling of mild steel lt 8 Overstress Slog Material model stl3 10 stl4 Description N
39. prj Pj DJ pj pj PJ br PJ A A prj prj PJ prj Pi PJ rj PJ A PJ Pj C C gt O C C CO OO OO O OO OO OO OO OO O OO OO OO OO OO OO OO OO OO OO OO OO OO O O O O O O O O O 218 OS OO OO COO OOO OO OOO OOS OO OOO OS OO SOO CS OOS 65 OOO OOOO SO OOS OOS OOS 1 1 OO XO 1 e 354E 311 330 276 209 149 104 809 627 381 260 240 266 544 898 973 799 989 116 132 149 172 200 234 269 303 334 366 13998 430 462 495 530 564 594 620 647 685 132 788 ow EJ pd PJ Dd Dd Dd Dd EJ Dd Dd EJ PJ Dd Dj D EJ Ed Dd Ed PJ EJ Dj EJ EJ E3 Dd Dd EJ PJ EJ Ed Ed EJ EJ Dd Dd Dd Dd Dd Dj Dd Dd Dd u 709 671 636 606 581 562 548 540 548 571 e Oy OY Oy Oy OY OV 01 01 lt 1 lt J 1
40. 1 152581 02 0 152581 02 700432 00 2 246847E 02 0 246847 02 183324 01 ERE ok k k kok kok SUBDIVISION OE ELEMENTI 2 coe kk e k k AA NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE END 1 OF SUBDIVIDED ELEMENT n2 0 867206E 03 284399 04 NUMBER OF ELEMENTS CREATED 2 ELM NAME NOD NAMES 3 qph2 4 n2 2 4 qph2 n2 2 NUMBER IMPERFECT ELEMENTS 2 ELM NAME TI e3 0 247064E 02 247064 02 0 183647E 01 B e4 0 152364E 02 152364 02 0 698438E 00 22 lastic lastic lastic lastic 23 lastic 24 lastic 25 lastic 26 27 28
41. 136000 140000 144000 148000 152000 156000 160000 164000 168000 172000 176000 180000 184000 188000 192000 96000 18200000 18240000 18280000 18320000 18360000 18400000E 18440000E 18480000E 18520000E 18560000E 18600000E 18640000E 18680000E 18720000E 18760000E 18800000E 18840000E 18880000E 18920000E 18960000E 19000000E 19040000E 19080000E 19120000E 19160000E 19200000E 19240000E 19280000E 19320000E 19360000E 19400000E 19440000E 19480000E 19520000E 19560000E 19600000E 19640000E 19680000E 19720000E 19760000E 19800000E 19840000E 198800001 A PJ A PJ PJ pj 1 mj Tj Pj prj Tj prj Lj pj DJ En Pl prj EJ PJ br DJ rj A prj prj PJ prj prj PJ rj 1 A PJ A A p 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 CO OO OO O OO OO OO OO OO OO O OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO O OO O O OO O O O O O O O O O O O 242 O O O 00000 000000000000 O O O O
42. NUMBER OF NODES CREATED 1 x NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT 01 0 000000E 00 0 400000E 03 NUMBER OF ELEMENTS CREATED 2 ELM NAME NOD NAMES 1 cbp2 111 1 m 2 qdp2 01 121 NUMBER OF IMPERFECT ELEMENTS 0 18036000 0 18040000 0 18044000 O O O PJ Fl FI 2 0 0 140 2 0 0 652 2 0 0 110 e KER SUBDIVISION OF ELEMENT 2 FORK KC ke NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE END 1 OF SUBDIVIDED ELEMENT n2 0 000000E 00 0 320000 04 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 4 2 2 121 e3 qdp2 1 12 NUMBER OF IMPERFECT ELEMENTS d 0
43. gt Rotation Inelastic curve Bound Line Force displacement curve pzshm 47 tstub Description Parameters Characteristics Application Restrictions References Polygonal Hysteretic model for the equivalent T stub developed by Clemente et al 1 Specified in this order Ke Stiffness of the elastic branch Fy Yielding force K1 Stiffness of the Ist post elastic branch F1 Force at the end of the 1st post elastic branch K2 Stiffness of the 2nd post elastic branch Ud Ultimate displacement Kc Compression stiffness y 1 strength degradation parameter 5 2 strength degradation parameter Aum Monotonic ultimate displacement used only for the strength degradation g 3 strength degradation parameter Takeda s stiffness degradation parameter Polygonal Hysteretic model with strength and stiffness degradation Equivalent T stub modeling All first seven parameters must be positive gt 0 0 lt K2 lt K1 lt Ke 1 gt gt 0 Ud gt 0 Kc gt 0 All strength degradation parameters must be non negative gt 0 1 gt gt 0 gt 0 Aum 0 20 Takeda s stiffness degradation parameter must be 1 gt 020 1 Clemente I S and Rassati G A 2005 Experimental and numerical analyses of the cyclic behavior of T stub components Proceedings of the 20th C T A Ischia 193 200 48 Formulation Stiffness degradation according to Take
44. gt gt gt gt NNN WwW 0 80000000 03 0 75455610 0 80000000 03 0 75470539 0 80000000 03 0 75482060 15 80000000 03 0 75491151E 16 80000000E 02 0 75524591E 17 80000000 02 0 75521580 18 80000000E 02 0 75503625E 19 80000000E 02 0 75474865E 20 80000000 02 0 75436480 21 80000000 02 0 75388739 22 80000000 02 0 75331551E 23 80000000E 02 0 75264686E 24 80000000E 02 0 75187920E 25 80000000 02 0 75101171 26 80000000 02 0 75004682 27 80000000 02 0 74899266 28 80000000 02 0 74786682 29 80000000 02 0 74670196 30 80000000 02 0 74555445E 31 80000000E 02 0 74451780E 32 80000000 02 0 74374309 33 80000000 02 0 74346913E 34 80000000E 02 0 74406363E 35 80000000 02 0 74607289 36 80000000 02 0 75027175E 37 80000000 02 0 75770907E 38 80000000E 02 0 76977822E 39 80000000E 02 0 78843610E 40 80000000 02 0 81695491 41 80000000 02 0 86304315 0 80000000 03 0 86954218 0 80000000 03 0 87640899 0 80000000 03 0 88387322 0 80000000 03 0 89206621 0 80000000 03 0 90117991 0 80000000 03 0 91151485E 0 80000000 03 0 92359318 0 80000000 03 0 93849297 0 80000000 03 0 95940853E 0 80000000 04 0 96260563E 0 80000000 04 0 96572169 0 80000000 04 0 96917884 0 80000000 04 0 97312732 0 80000000 04 0 97785290 0 80000000 04 0 9841152
45. prj rj Pl prj PJ br PJ A A prj prj Pi rj T EJ p C C C gt C C gt CO OO OO O OO OO OO OO OO O OO OO OO OO OO OO OO OO OO OO OO OO OO O O O O O O O O O O O O O 000 000 00 O O O O O 811E 795 712 743 706 692 AT 250 394 102 829 215 139 226 398 120 179 105 634 234 314 202 932 182 343 450 322 359 204 411 124 160 516 5215 174 357 145 232 532 615 134 358 134 179 312 591 411 491 sO 616 508 721 134 487 224 788 223 320 467 382 EJ Ej Dd PJ PJ Dd D 0 EJ EJ E3 Dd Dd PJ Dd PJ Dj Dd Ej E3 Dd Dd Dd Du Dd PJ Dd EJ E3 E3 Dd PJ PJ Dj EJ Ed EJ EJ Dd Dd d Dd PJ PJ Dd Dd EJ Dd Dd D d 1 1 1 1 00 1 00 00 00 00 041 00 00 1 GA 00 100 00 1 1 1 1 00 00 01 01 01 01 1 1 00 00 01 1 1 1 00 00 1 0 00 01 lt J lt J
46. 08 08 08 08 08 08 08 08 E 07 E 07 E 07 E 07 9 2 K frame subject to vertical load The k frame shown in the figure is subjected to an end force P where load application in the middle of the upper frame The buckling forces for this frame where also obtained with ADAPTIC where the following values were reported using 4 elements Transverse beam 219 x 4 37mm2 E 210x10 N mm o 414 mm 2790 mm Diagonal members 101 7 x3 30mm 210x10 N mm Oy 335 mm 4600 mm figure 9 2 a Geometric configuration of K frame 186 9 2 1 Data file analysis 2d statics materials mat name model properties matl 5611 0 210 6 0 335e3 0 00 mat2 1 0 210e6 0 414e3 0 sections type chs sec name mat name dimensions secti mati 101 7 3 30 sect2 mat2 219 0 4 37 groups type qph2 grp name sec name subdivision grpl sectl t grp2 sect2 f structural nodal nod n x y fr 0000 0 0000 0 Ec 2790 0 0000 0 1 f 3 0000 0 4600 0 r1 1395430 0000 0 2 restraints nod name direction f 1 1 1 xtytrz 2 _ 1 element connectivity elm name grp name f 1 grpl 1 4 roi 3 2 1 3 grp2 3 4 r _ 1 imperfection elm name values 1 3 6 4 8 3 6 2 3 6 4 8 3 6 applied loading proportional nod name direction type value 4 y forc 0 100e 7 condition
47. 45 cbp2 n24 n3 44 qdp2 n5 n24 NUMBER OF IMPERFECT ELEMENTS 4 0 KEK k k k k KKK KKK KKK k k KKK KKK KKK KKK KK KKK KKK KKK KKK X X X 246 0 49200000E 01 0 0 305 04 1 0 0 49300000E 01 0 0 293 04 1 247 0 49400000E 01 0 0 583 04 1 0 0 49500000E 01 0 0 302 04 1 248 0 49600000E 01 0 0 570 04 1 0 0 49700000E 01 0 0 424 04 1 249 0 49800000E 01 0 0 915 04 1 0 0 49900000E 01 0 0 156 04 1 250 0 50000000E 01 0 0 434 04 1 231 9 6 Steel frame subject to explosion and fire loading This example illustrates the considerable influence of explosion on the fire resistance of steel frames even when the extent of structural damage due to explosion is relative small w kN m rov Y f Y sow Y Y w kN m Y Y f Y Y a n w kN m Y f Y Y M wu Z t Figure 9 6 Steel frames subject to explosion and fire loading There are going to be used elasto plastic cubic elements to resolve this example The material model of steel used in this example covers the effects of the elevated temperature creep and high strain rate 232 9 6 1 Data file Here temperatures are incremental over ambient t analysis 2d dynamics
48. Forces for element type jel2 98 cnm2 Description Nodes Characteristics Application Restrictions Group header Concentrated lumped 2D mass element 1 Models lumped mass for dynamic analysis Allows full 2 2 translational mass matrix to be defined Lumped element mass specified according to one of M default M M amp M 0 M M default M 0 My M Allows specification of mass proportional damping at group level Dynamic analysis of plane frames mass Element mass damping parameter optional parameter for mass proportional Rayleigh damping defaults to the value of mass damping parameter specified in default parameters module Y Forces for element type cnm2 99 cnd2 Description Damping parameters Nodes Characteristics Application Restrictions Group header Concentrated dashpot 2D viscous damping element Two translational and one rotational damping coefficients specified in this order C Cy Cy 1 Models nodal viscous damping for dynamic analysis Dynamic analysis of plane frames damping parameters Defines dashpot damping parameters E p x Forces for element type cnd2 100 2 Description Nodes Characteristics Application Restrictions Group header Linear 2D mass element 2 Simplified modelling of uniformly distributed mass for dynamic
49. materials mat name model properties mati st18 31 19 4 65e 3 20 2 1e5 0 84e5 80 399 29 9 280 0 0 0 032 280 0 01022 0 01652 730 sections type isec mat name matl sec name dimensions secl 254 5 21 0 254 5 21 0 645 6 13 2 sec2 152 4 6 8 152 4 6 8 138 8 6 1 sec3 203 2 11 0 203 2 11 0 181 2 7 3 patterns pat name ratios patl 1111111111 groups type cbp2 grp name sec name monitoring points grplc secl 40 grp2c sec2 40 grp3c sec3 40 type qdp2 grp name cbp2 grp name pat name grplc patl grp2 grp2c patl grp3 grp3c pat type cnm2 grp name mass gpm1 23 4 gpm2 46 8 structural nodal nod name x y 101 0 0 0 0 r 10 0 0 4000 0 3 100 6000 0 0 0 3 restraints nod name direction 101 xty trz r 100 element connectivity elm name grp name nod name 101 grpl 144 211 1 100 100 2 3 10 10 2 233 mperatur 680 680 380 731 1080 980 880 1180 20C rac s elm name grp name nod name f 201 grp2 101 111 r 1 _ 10 10 3 300 300 elm name grp name nod name 301 grp3 201 211 r 1 _ 10 10 r 3 100 100 grp name gpml elm name nod name 1101 LTI 1 10 2 r 3 300 1 grp name gpm2 elm name nod name f 1201 211 1 10 2 93 100 1 linear curves start time crv name cl time 18 12 18 15 1220 crv name c2 time 20 1220 18 applied loading initial load elm name 101 ile
50. 1 1 lt l 14 IA p po po i pp io p pp o pp p EB po B B pp pp pp pp S NUMBER OF IMPERFECT ELEMENTS 0 84 0 16800000E 01 0 0 621E 06 1 0 0 16900000E 01 0 0 793 06 1 85 0 17000000E 01 0 0 105E 05 1 0 0 17100000E 01 0 0 130E 05 1 86 0 17200000 01 0 0 147 05 1 ek KK KORR SUBDIVISION OF ELEMENT 1 FU Ce kx NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT 1 0 000000E 00 0 333333 00 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES el cbp2 1 01 ii 2 qdp2 01 3 i NUMBER OF IMPERFECT ELEMENTS
51. 273 270 627 102 124 136 121 147 241 410 712 104 121 117 124 146 185 218 222 219 228 225 225 240 253 251 239 225 215 205 183 155 140 135 126 116 106 104 03 960 9286 997 878 692 679 Ej Ej Dd Dd PJ Dd Dd Dd Bd Dd Dd D Ed Pee Dd PJ D Ed EJ Dj Dd Dd Dd Dd Dd Pd EJ Dd Ed OY OY OY OY i 1 p po po io pp io p pp o pp p EB po B B pp pp pp pp S 200 201 202 203 204 205 206 4 4 4 4 4 4 4 4 4 4 4 4 4 4 35300000E 35400000E 35500000E 35600000E 35700000E 35800000E 35900000E 36000000E 36100000E 36200000E 36300000E 36400000E 36500000E 36600000E 36700000E 36800000
52. OY OV OV OV OV OV OV OD OV OV OV OV OV Gy OV Gy OV OD OV OV OV OV Gy OY OVD OV OV OY OV OD OV O1 OV OV OY OV OY OA OVO O Gy IA p po po i pp io p pp o pp p EB po B B pp pp pp pp S 4 4 4 14 4 4 4 4 10700000 10800000 10900000 11000000 11100000 11200000 11300000E 11400000E 11500000E 11600000E 11700000E 11800000E 11900000E 12000000E 12100000E 12200000E 12300000E 12400000E 12500000E 12600000E 12700000E 12800000E 12900000E 13000000E 13100000E 13200000E 13300000E 13400000E 13500000E 13600000E 13700000E 13800000E 13900000E 14000000E 14100000E 14200000E 14300000E 400000 14500000 14600000 14700000 14800000 14900000 15000000 15100000 15200000 15300000 15400000 15500000 15600000 15700000 15800000 15900000 16000000E 16100000E 16200000E 16300000E 16400000E 16500000E 16600000E 16700000E A PJ 9 PJ Pq Eg pg pj 71 RATA ee Er P
53. criteria will be neglected and V Note to compute the shear strength the model uses the values of the section forces N V and M at the start of the integration step so to obtain an accurate response the integration step has to be small enough Application Modelling of non linear behaviour of 2D masonry walls in the equivalent frame approach Restrictions All parameters must be non negative All stiffness parameters must be positive gt 0 56 References 0 lt Kh lt Kp lt Ke Force ratios and displacement must be positive gt 0 Fp Vr gt Fy Vr gt 0 Ud gt 0 Pivot rule parameters must be o gt 0 lt p lt 1 Multi parametric strength degradation parameters must be 0 lt y lt 1 If y 0 no strength degradation will occur and Um will be ignored Um gt 0 If Um 0 and y gt 0 the Ud value will be used instead of Um 620 20 Turnsek s shape parameter 1 5 gt 6 gt 1 0 Exclusion code has to be an integer 63 lt 000 lt 0 Pivot rule initially proposed in 1 Park Y J Reinhorn A M and Kunnath S K 1987 IDARC Inelastic damage analysis of reinforced concrete frame shear wall structures Tech Rep NCEER 87 0008 State University of New York at Buffalo Buffalo N Y Further development of the Pivot hysteretic model can be found in 2 R K Dowell F S Seible and E L Wilson 1998 Pivot Hysteretic Model for Reinforced Concrete Members ACI Structural Journal Vol 95 pp 607 617
54. gt gt gt gt gt gt gt gt gt gt 1 11 21 26 2 12 22 1 3 14 15 16 6 25 3 23 4 24 5 MAXIMUM FRONT NODAL 5 ADDITIONAL FREEDOMS 0 VARIABLE LOADING PHASE NUMBER 1 LOAD CONTROL INCREMENT FACTOR 0 700000E 02 NUMBER OF STEPS 14 VARIABLE LOAD OUTPUT FACTOR LEVEL CONV NORM ITERATIONS 1 0 50000000E 01 0 0 546E 10 2 2 0 10000000E 02 0 0 883E 10 2 3 0 15000000 02 0 0 162 09 2 4 0 20000000 02 0 0 293E 09 2 5 0 25000000 02 0 0 568 09 2 6 0 30000000 02 0 0 118 08 2 7 0 35000000 02 0 0 266 08 2 8 0 40000000 02 0 0 659E 08 2 9 0 45000000E 02 0 0 185 07 2 10 0 50000000 02 0 0 613 07 2 11 0 55000000 02 0 0 255 06 2 12 0 60000000 02 0 0 860E 11 3 13 0 65000000 02 0 0 918 11 3 14 0 70000000E 02 0 0 325 08 3 PHASE NUMBER 2 NODAL DISPLACEMENT CONTROL GLOBAL DIRECTION RZ CONTROLLED NODE 1 DISPLACEMENT INCREMENT 240000 400 NUMBER OF STEPS 30 VARIABLE DISPLACEMENT LOAD OUTPUT INCREMENT FACTOR LEVEL CONV NORM ITERATIONS 0 80000000 03 0 74819797 02 1 0 188 07 0 80000000E 03 0 75170596 02 1 0 871E 11 0 80000000 03 0 75299433E 02 1 0 604E 06 0 80000000E 03 0 75366635 02 1 0 150 07 0 80000000 03 0 75407861 02 1 0 891E 09 0 80000000E 03 0 75435665 02 1 0 921 10 183
55. thpl Description No of materials No of dimensions Dimensions Application Thin plate section 1 1 Plate thickness t Plate bending and membrane analysis 86 Chapter 6 ELEMENT TYPES This section describes the element types available in ADAPTIC Each type is referred to by a unique name displayed at the top of the following pages and requires the specification of a number of entries for its groups connectivity and other modules 87 cbe2 Description Nodes Characteristics Application Restrictions Group header Cubic 2D elastic element with uncoupled bending and axial actions 2 Accounts for large nodal displacements but requires a number of elements to represent a member with significant beam column action Elastic analysis of plane frames Unable to model concrete cracking sec name An identifier referring to one of the cross sections declared in the sections module M 2 F y F uu 4 M E y x _ 2 m 1 p X X Element configuration Element forces before and after deflection Configuration and forces in local system of element type cbe2 88 cbp2 Description Monitoring points Nodes Characteristics Application Restrictions Group header Gauss Point y 1 o 1 Cubic elasto plastic 2D beam column element 25 points usually adequate depends on section type 2 Geometric and material
56. usos acsi eg 165 CHAPTER 8 POST PROCESSING 167 8 1 START UP ua 167 8 2 ADAPTIC GRAPHS e a Sama 168 8 2 1 168 8 2 2 169 8 2 3 7 170 8 2 4 CUSTOMIZE bee ode Oe S Soleus 171 8 3 ADAPTIC SHAPES er haah u e n rt e e e uh 172 8 3 1 172 8 3 2 174 8 3 3 DI M 175 6 3 4 Som 176 8 3 5 07277 0 hiya 177 CHAPTER 9 555556 oo c an Sean odes sobesduacsescdedencesedesonssasssosnsesssovesbeaseseaceseedsssssscessses 178 9 1 SPACE DOME SUBJECT TO VERTICAL APEX LOAD nn 178 9 1 1 Data SILO 179 9 1 2 Str ctural behaviour tecti oes 181 9 1 3 OE 183 9 2 K FRAME SUBJECT TO VERTICAL i ni nd 186 9 2 1
57. 0 0 130 03 2 0 0 18084000 02 0 0 293 03 2 kk OI e kok SUBDIVISION OF ELEMENT e5 ee NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT 6 0 000000 00 0 800000 03 239 0 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES gt 10 cbp2 n6 n3 9 qdp2 01 n6 2 NUMBER OF IMPERFECT ELEMENTS i 0 Wes ke k AER SUBDIVISION OE ELEMENT e8 eek ek NUMBER OF NODES CREATED 2 1 NOD NAME COORD S X Y RELATIVE END 1 OF SUBDIVIDED ELEMENT 7 0 000000E 00 0 400000E 03 0 NUMBER OF ELEMENTS CREATED i 2 ELM NAME TYPE OF ELEMENT NOD NAMES 2 11 cbp2 n5 n7 12 qdp2 n7 n2 NUMBER OF IMPERFECT ELEMENTS
58. 0 100 1 0 00 sections type rss sec name mat name dimensions 1 mati 3 0 2 0 groups type of element 2 grp name sec name grpl sectl structural nod n x y 1 0 00 0 00 2 0 00 120 00 3 24 00 120 00 4 120 00 120 00 restraints nod name direction 1 x y 4 x y element connectivity elm name grp name nod 1 grpl 1 2 d _ 1 1 2 applied loading proportional loads nod name direction type 3 y force condition lf cnd name limits 1 2 0 2 0 disp cnd name nod name direction 2 3 x 3 3 y phases load control increment path steps 0 2 1 k 20 automatic control type path cnd name nodal translation 1 2 3 iterative strategy number 5 195 value 0 10 1 limits 0 12 0 12e4 0 12 4 amp 6 6 E E 0 12 4 initial reformations 5 step reduction 5 divergence iteration 4 maximum convergence 0 1 3 convergence criteria 1 tolerance 0 1 5 force 0 2 1 mome 0 1 3 output m frequency 0 end Note The elements and the nodes that are used are shown in the figure 9 3 1 982 N N4 QE1 figure 9 3 1 Nodes and elements of Lee s frame 196 9 3 2 Structural behaviour The nonlinear analysis is undertaken using one element per member The following figures show the static response of Lee s frame The node 1 only experiments rotation as c
59. 04 0 212E 04 0 115E 04 0 541E 05 0 254E 05 0 322E 05 0 266E 05 0 317E 05 0 370 05 0 405 05 0 402 05 0 373E 05 0 268E 04 0 151E 04 0 357E 05 0 398E 05 0 424E 05 0 435E 05 0 437E 05 0 442E 05 0 464E 05 0 496E 05 0 521E 05 0 532E 05 0 525E 05 0 505E 05 0 478E 05 0 447E 05 0 423E 05 0 410E 05 0 399E 05 0 377 05 0 343E 05 0 308E 05 ELEMENT 5 TO END 1 0 500000E 00 0 550000E 01 OF SUB po p po o pp io pp io o p pp B EB pp io pp o pp pp p pp pp iS Re ke DIVIDI ED EI 0 000000E 00 0 000000E 00 x NUMBER OF ELEMENTS CREATED 3 ELM NAME TYPE OF ELEMENT NOD NAMES el3 cbp2 3 n7 15 cbp2 n8 4 14 qdp2 n7 n8 NUMBER OF IMPERFECT ELEMENTS 0
60. 181 0 0 190 0 0 463E 0 0 983E 0 0 137E 0 0 326E 0 0 339E 0 0 130E 0 9 aS RR E E E OR E lA p pp p pp p p pp p pp p EB 0 0 45300000E 01 0 0 143E 04 1 227 0 45400000E 01 0 0 412 05 1 0 0 45500000E 01 0 0 177E 05 1 228 0 45600000E 01 0 0 160E 05 1 0 0 45700000E 01 0 0 261 05 1 229 0 45800000E 01 0 0 353E 05 1 0 0 45900000E 01 0 0 127E 04 1 230 0 46000000E 01 0 0 126E 04 1 0 0 46100000E 01 0 0 406E 06 231 0 46200000E 01 0 0 135E 05 1 0 0 46300000E 01 0 0 560E 04 1 232 0 46400000E 01 0 0 954E 05 1 0 0 46500000E 01 0 0 691 06 1 233 0 46600000E 01 0 0 327E 04 1 0 0 46700000E 01 0 0 215E 04 1 234 0 46800000E 01 0 0 927E 05 1 0 0 46900000E 01 0 0 492E 05 1 235 0 47000000E 01 0 0 192E 04 1 0 0 47100000E 01 0 0 181E 04 1 236 0 47200000E 01 0 0 403E 04 1 0 0 47300000E 01 0 0 225E 04 1 237 0 47400000E 01 0 0 831E 05 1 0 0 47500000E 01 0 0 135E 04 1 238 0 47600000E 01 0 0 316E 05 1 0 0 47700000E 01 0 0 132 04 1 239 0 47800000E 01 0 0 456 04 1 0 0 47900000E 01 0 0 689E 05 1 240 0 48000000E 01 0 0 684E 05 1 0 0 48100000E 01 0 0 460 04 1 221 0 48200000E 01 0 0 436E 04 1 0 0 48300000E
61. 42400000E 03 0 533E 08 1 0 0 42500000E 03 0 528 08 1 0 0 42600000E 03 0 884 09 1 0 0 42700000 03 0 395 08 1 0 0 42800000E 03 0 672 08 1 0 0 42900000 03 0 113 08 1 69 0 43000000E 03 0 609 07 1 AR RAK RK RRR UK OR ERR SUBDIVISION OF ELEMENTI 33 JE ERROR EK NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n22 0 000000E 00 0 400000E 03 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 35 cbp2 n8 n22 6 qdp2 n22 n21 NUMBER OF IMPERFECT ELEMENTS 0 431000001 0 432000001 03 1 03 1 Fl PJ 0 1301 0 3831 245 03 3 E 08 1 0 0 0 43300000E 03 0 133 08 1 0 0 43400000E 03 0 281E 08 1 0 0 43500000E 03 0 191 08 1 0 0 43600000E 03 0 203E 08 1 0 0 43700000E 03 0 185 08 1 0 0 43800000E 03 0 283E 08 1 0 0 43900000E 03 0 467 03 0 0 0 44000000E
62. 485E 323 25 95 148 385 551 290 206 119 837 Al 458 268 398 2170 204 165 200 560 569 263 375 756 Ed Ej EJ Dd Dj EJ Dd Dd Dd Dd E3 DS Dd Dj EJ Dd Ed Ej Dd Dd Dd Dd Dd Dj Dd EJ Dd Dd EJ Dd Dj Ed Dd EJ Dd Dd ud pd Dj EJ Dd Dd Dd E3 d 600 ISA 4 600 S I gt 9 CO iS C0 9 CO gt 00 1 CO 1 600 i gt OQ Q 4S 4000 OA OA C0 4S 4S C0 4S QO CO OOP uS CO 6 C CO CO O Or lt gt COO QOO OF Ope p F gt k k pa jJ Gor FS Fe ooo j F gt gt J gt 19920000 19960000 20000000 30000000 40000000 50000000 60000000 70000000 80000000 90000000 10000000 11000000 12000000 13000000 14000000E 15000000E 16000000 17000000E 18000000E 19000000E 20000000 21000000 22000000 23000000 24000000 25000000 26000000 27000000 28000000 29000000 30000000 31000000 32000000 33000000 34000000
63. 57 Force displacement curve masonry 58 Disp ssh Description Parameters Characteristics Formulation Masonry decoupled S shaped model for the equivalent frame modeling of 2D masonry walls Specified in this order Ke Stiffness of the elastic branch Fy Vr Ratio between the yielding force or moment and the shear or bending resistance Vr or Mr Kp Stiffness of the Ist post elastic branch Fp Vr Ratio between the force or moment at the end of the first post elastic branch and the shear or bending resistance Vr or Mr CC Parameter governing parallelism of branch 5 or 50 see img to branch 2 or 20 CF Parameter governing unloading from skeleton curve a Parameter governing stiffness degradation lt 1 CD Parameter governing stiffness change after branch 5 or 50 du Ultimate displacement or rotation Pmin Axial compression in masonry strips type Pier 1 or strip 0 Fvk0 Pure shear strength B Base width of the panel T Thickness of the panel Fm Compressive strength of masonry material H Height of the panel Ftu Tensile strength of masonry material Free parameter used for compatibility with masonry tom model UltForce No residual force after collapse 0 Residual force after collapse 1 Upar parameter dividing the stiffness of first unloading branch UltDisp Calculate automatically ultimate displacement 0 Fixed ultimate displacement from
64. 7 0 28000000E 00 0 0 407 06 1 8 0 32000000E 00 0 0 854E 06 1 9 0 36000000E 00 0 0 135E 11 2 10 0 40000000E 00 0 0 913E 11 2 11 0 44000000E 00 0 0 725E 10 2 12 0 48000000E 00 0 0 595 09 2 13 0 52000000E 00 0 0 414 08 2 14 0 56000000E 00 0 0 408 07 2 15 0 56800000E 00 1 0 460 06 1 16 0 56960000E 00 2 0 672 09 1 17 0 56992000 00 3 0 965 06 0 18 0 57024000 00 3 0 974E 06 0 Phase 1 terminated PHASE NUMBER 2 NODAL DISPLACEMENT CONTROL GLOBAL DIRECTION Y CONTROLLED NODE 4 VARIABLE DISPLACEMENT LOAD OUTPUT INCREMENT FACTOR LEVE CONV NORM ITERATIONS 19 58886522 02 0 57032137 00 0 0 993 06 Plastic hinge formed for element 2 at node 4 20 35331913 01 0 56783100 00 0 0 303 07 Plastic hinge formed for element 1 at node 4 21 14132765E 00 0 56085432E 00 0 0 228 06 191 gt gt gt gt KER SUBDIVISION OF ELEMENT 1 FORCE NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE END 1 OF SUBDIVIDED ELEMENT 1 0 537226 03 0 175588 04 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 1 qph2 1 01 2 qph2 01 4 NUMBER IMPERFECT ELEMENTS 2 ELM NAME TH2I
65. C Amadio University of Trieste 2009 in Italian Force displacement curve tom Chapter 5 CROSS SECTION TYPES The ADAPTIC library also includes a number of pre defined cross section types described briefly below Type Description rss Rectangular solid section chs Circular hollow section isec General purpose I or T section pnci Partially encased composite I section fnci Fully encased composite I section recs Reinforced concrete column section rcts Reinforced concrete T section flxw Reinforced concrete flexural wall section The degree of accuracy in modelling the above sections depends on the formulation utilising the cross section Cubic formulations cbp2 cbp3 provide detailed modelling of a cross section through its discretisation into a number of areas where the uniaxial material response is monitored according to the previous material models Plastic hinge formulations qph2 qph3 derive a plastic interaction surface between the cross sectional bending moments and axial force which is combined with the associated flow rule to provide approximate modelling of steel members The plastic hinge capability is not extended to reinforced concrete sections Elastic formulations utilise constant elastic rigidities for bending axial and torsional actions derived for given cross sectional configurations As such they are only accurate for steel members since they do not account for concrete cracking This
66. ER OF NODI 240 1 NOD NAME COORD S X Y RELATIVE END 1 OF SUBDIVIDED ELEMENT n9 0 000000E 00 0 320000E 04 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 16 cbp2 9 221 15 qdp2 n8 n9 NUMBER OF IMPERFECT ELEMENTS 0 0 0 18108000 02 0 0 335 04 SUBDIVISION OF ELEMENT e9 lt gt NUMBER OF NODES CREATED x 1 NOD NAME COORD S X Y RELATIVE END 1 OF SUBDIVIDED ELEMENT n10 0 000000E 00 0 400000E 03 NUMBER ELEMENTS CREATED 2 ELM NAME NOD NAMES 18 cbp2 n10 n6 el7 qdp2 n1 n10 NUMBER OF IMPERFECT ELEMENTS 0
67. NUMBER OF IMPERFECT ELEMENTS 0 0 0 23900000E 01 0 0 838E 05 1 kk kk SUBDIVISION OE ELEMENT 28 NUMBER NODES CREATED 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n20 0 000000E 00 0 200000 01 NUMBER OF ELEMENTS CREATED 225 X HF ELM NAME TYPE OF ELEMENT NOD NAMES 8 cbp2 n20 9 37 qdp2 n15 n20 NUMBER OF IMPERFECT ELEMENTS 120 0 121 0 122 0 123 0 124 0 125 0 126 0 127 0 128 0 129 0 130 0 131 0 132 0 133 0 134 0 135 0 136 0 137 0 O b OWO NM OF
68. Web thickness t Unconfinement ratio E Partial confinement ratio Partially encased composite I sections with three different concrete materials to represent confinement effects Ty 2 ty b t amp r 2 t b ty where t and 5 are the thickness of the unconfined and confined parts of section respectively 72 4 Fully confined t eet Unconfined 2 Y Partially confined b Section pnci 78 Description No of materials No of dimensions Dimensions Application Fully encased composite I section 4 specified in this order I section Unconfined region Partially confined region Fully confined region 9 Flange width b Flange thickness t Web depth 82 Web thickness Partial confinement ratio y Stirrup width Section width ba Stirrup depth ha Section depth h Fully encased composite I sections with three different concrete materials to represent confinement effects r 2 t b ty where t is the depth of the partially confined part beyond the section flange 74 i Fully confined i Unconfined cl d 7 Y Partially confined Y Y l b c2 Section fnci 75 flxw Description No of materials No of dimensions Dimensions A
69. absolute nodal displacements Delete Curves This allows previous line graphs to be deleted This may be desirable if a curve is no longer required especially if it was originally intended for providing X and Y coordinates to be manipulated by the ARITHMETIC EXPRESSIONS utility described above Clear All This facility clears the contents of the current plot This allows the construction of a new plot 170 8 2 4 Customize This option facilitates the customisation of the graph characteristics Fonts This allows the modification of the font name size and style for the axes titles axes labels and legend text Axes This facility can be used to modify the axes attributes including thickness colour etc It also allows individual axes to be modified in terms of minimum and maximum values step size scaling factor etc Lines Each line graph can be customised using this facility with regard to thickness style colour the use of points activation de activation the output range of interest the corresponding legend text etc Legend The legend can be customised with regard to visibility as well as the number of legend columns 171 8 3 ADAPTIC shapes 831 General Facilities The main components of the ADAPTIC shapes application are shown in Figure 8 3 1 The functionality of each component is described hereafter Graphics Display Area This is the main graphics area where the structure is
70. angles e diameter Area of bolt shank e Total depth of angle Angle thickness Gauge length of beam leg Bolt clearance Minimum bolt pitch Gauge length of column leg Distance from bolt line to free edge of column leg Distance from bolt line to free edge of beam leg Angle radius Diameter of M16 bolts 4 Top and seat angels For top angle 12 parameters Bolt diameter e Area of bolt shank e Total depth of angle Angle thickness Gauge length of beam leg Bolt clearance Minimum bolt pitch Gauge length of column leg Distance from bolt line to free edge of column leg Distance from bolt line to free edge of beam leg Angle radius Diameter of M16 bolts Similar dimensions are needed for seat angle 11 parameters except for the diameter of M16 bolts 5 Combination of top seat and web angles Connection parameters for this type are the combination of web angle and top and seat angles 105 Nodes Application Restrictions Group header 6 Finplate Bolt diameter e hole diameter e Total depth of plate Plate thickness Gaugelength e Width of plate Minimum bolt pitch Diameter of M16 bolts After the connection parameters are entered another 14 parameters are needed 11 parameters for the connected members followed by Poisson ratio number of layers and a flag to indicate preload or non preload condi
71. displacement it depends on factor CK K C 4 4 d where Ku Ultimate stiffness 63 Ke Elastic stiffness du Ultimate displacement Displacement at elastic limit The unloading stiffness at a given displacement is calculated with K 6 J where dmax maximum displacement reached Kd Unloading stiffness Strength Degradation it Is taken into account by considering an additional displacement related to the arrival in the skeleton curve inelastic branches dE P I or for negative increments dE od P H os where dE dissipated energy in a cycle Hmax maximum force reached by the skeleton curve strength degradation parameter 64 displacement increment Strength criteria The model can use any combination of the following simplified strength criteria to determine the shear or bending resistance Vr or Mr Failure due to rocking pb NC h 2 0 855 1 f Failure due to sliding y 1 5b t fio 0 4N 1 4 ot fuo N Failure due to diagonal cracking according to Turnsek Cacovic criteria 5 fig Dot 64 Application Restrictions Failure due to pure shear V fao B T Failure due to rocking in strips V B 1 Prin b 0 85b t f where h0 M V is the distance of the null point in the bending moment diagram from the section that we are looking at h is the height of
72. displayed Each of the three mouse buttons has a click and drag functionality which is modified by the Shift and which depend on whether normal or perspective view is selected For normal view Lef button rotate about planar axes origin centred in structure Lef button Shift rotate about out of plane axis Right button zoom in Right button Shift zoom out Middle button move Middle button Shift pan For prespective view Lef button rotate camera about planar axes origin centred at focal point Lef button Shift rotate camera about out of plane axis Right button move camera forwards backwards Right button Shift zoom camera in out Middle button pan camera in plane Middle button Shift move scene in plane The three mouse buttons can also be combined with the Control key to select partitions in partitioned modelling Lef button Control select parent partition Right button Control select nearest first level child partition Middle button Control select root partition Orientation Tool This tool displays the orientation of the global structural reference axes in the current view The four arrow buttons can be used to change this orientation by i selecting a global axis for incremental rotation ii specifying the increment of rotation iii applying positive rotation increments and or iv applying negative rotation increments A single click with the mouse buttons on the orientat
73. e15 8 2x equilibrium stages end of stage steps 5 500 applied loading dynamic nod name direction r d iterative strategy number 10 initial reformations 7 step reduction 10 divergence iteration maximum convergence 1 0 convergence criteria tolerance 0 1 3 displacement ref rotation ref output frequency 2 end oo Note q s i type crv name value acceleration 1 9 81 0 1 The following picture shows and elements in the data file 8 names that have been given 5 CN6 N6 CN3 CN4 N3 CNS N4 CNI CN2 1 2 figure 9 5 1 Nodes and elements of the two storey 214 to the nodes 9 5 2 Structural behaviour The nonlinear analysis is undertaken using one element per member The following figures show the dynamic response of the structure The displacements of the node 121 at the Y axes are almost inexistent compare into the ones at the X axes which vary with the time X displacement Time sec Y displacement Displacements m figure 9 5 2b Displacements of two storey The deformed shape given by ADAPTIC is the one shown in the figure where could be seen that the main effect of the earthquake is a translation of the structure figure 9 5 2b Deflected Shape of two storey 215 9 5 3 Output file ELEMENT ASSEMBLY ORDER
74. factor column entries corresponding to the time enteries file The name of the file in which the load curve is stored This option can be used if the load curve is stored in a file delay The time delay from the start time before the load curve first line last line format is applied Default 0 The line number in file corresponding to the first entry of the load curve Default 1 The line number in ile corresponding to the last entry of the load curve Default end of file gt A FORTRAN format specification by which the load curve entries are read from file Default free format Load factors of all load curves are taken as zero at the start time 152 The time entries of a load curve recalled from a file are shifted by the value of delay which must always be positive The load factor for such curves is zero between start time and start time delay This module is only applicable when using time history loads or dynamic loads defined in the applied loading module 153 7 3 14 Integration scheme This module specifies the time integration scheme for dynamic analysis and its parameters integration scheme scheme newmark beta real gt gamma gt real gt scheme hilber hughes taylor alpha real gt beta lt real gt gamma gt real gt scheme The time integration scheme alpha HHT parameter gt 1 3 Defaul
75. i e process rank as reflected in the nnn extension to the base file name 175 8 3 4 Contours This menu option offers the following facilities discussed with reference to the initiating buttons Select Entities This allows the selection of entities associated with specific element types for contour plotting Note that this facility may not be available for some element types Furthermore the plotting of contours in the Graphics Display Area is controlled by the specification under General Settings Customize This enables the specification of the number of contours the associated colours and the corresponding numerical range whether manual or automatic An automatic contour range is established from the maximum and minimum values of the entities to be plotted 176 8 3 5 View This menu option offers the following facilities discussed with reference to the initiating buttons Scale This specifies the displacement mode scale to be used Two independent scale values can be specified for plotting the deflected shape i e mode 0 and the eigenvalue modes i e mode gt 0 For large displacement analysis the scale for the deflected shape mode 0 is normally specified as 1 For eigenvalue analysis a large scale gt gt 1 may need to be specified to distinguish the mode shape from the initial undeflected shape Different scales can be specified for the global X Y and Z displacement c
76. imperfection levels within elements of specific types imperfections elm name values 7 elm name The element which has the specified imperfection values values The imperfection values for the element Notes 149 7 3 11 Restraints This module defines nodal restraints restraints nod name direction elm name freedom nod name The node to be restrained direction Specifies the direction in which the defined node is restrained x displacement along global X axis y displacement along global Y axis displacement along global Z axis rx rotation about global X axis ry rotation about global Y axis rz rotation about global Z axis elm name The element to be restrained freedom The element additional freedom to be restrained fa e g fa5 and fal2 for freedoms 5 and 12 Notes In two dimensional analysis only x y and rz directions can be specified Multiple freedoms can be specified by one entry e g x y ry indicates restraints in the three directions x y and ry Incrementation can be used with this module 150 7 3 12 Conditions This module specifies the conditions which govern the termination of the automatic control phase under a proportional static loading regime These conditions are expressed in terms of limits on the load factor or displacements at specific freedoms conditions lf cnd name limits disp cnd name nod name direction limits
77. loads can be used in static or dynamic analysis but the module is optional The load type can either be force or displacement for both static and dynamic analysis In dynamic analysis only velocity and acceleration can be used to indicate initial conditions but these are only applicable to dynamic freedoms i e those associated with mass damping elements or support excitation proportional loads time history loads must be used in static analysis for which the load type can either be force or displacement dynamic loads must be used in dynamic analysis for which the load type can either be force or acceleration Element loads cannot be applied as proportional 10ads 156 7 3 16 Equilibrium stages This module defines stages of time intervals at which structural equilibrium is established equilibrium stages end of stage steps end of stage Defines the end time of a stage steps The number of steps within a stage Notes The time step size for a stage is equal to the difference between the end time of the current stage and that of the previous stage divided by the number of steps of the current stage For the first stage the time step size is equal to the difference between the end of first stage and the start t ime defined in linear curves This module is only applicable when using time history loads or dynamic loads defined in the applied loading module 157 7 3 17 Phases This mo
78. nonlinearities Numerical integration performed over two Gauss points A number of monitoring areas used at each Gauss section to monitor material direct stress and strains Predicts global member behaviour based on a material stress strain relationship A number of elements per member usually over 5 must be used for reasonable accuracy in inelastic modelling Modelling of inelastic members in plane frames sec name An identifier referring to one of the cross sections declared in the sections module monitoring points Defines the number of points for monitoring stresses and strains within a cross section Element configuration M F gt 2 _ 25 2 gem x x Element forces before and after deflection Configuration and forces in local system of element type cbp2 89 gel2 Description Nodes Imperfections Characteristics Application Restrictions Group header Quartic elastic 2D beam column element 2 Can be specified Geometric nonlinearities Large displacements and beam column effect of perfect imperfect members One element type qel2 is usually sufficient to represent the beam column effect and large displacement response of a whole elastic member Geometric nonlinearities in elastic plane frames Unable to model concrete cracking sec name An identifier referring to one of the cross sections decla
79. of group properties depend on the type of elements for which the group is being established groups type of element lt elementtype gt grp name group header gt 145 41 Structural nodal coordinates This module defines coordinates of structural nodes structural nodal coordinates nod name x y z nod name A node identifier which can be any alphanumeric string X 7 Global nodal coordinates Notes 7 is only required for 3D analysis Incrementation can be used with this module 146 7 3 8 Non structural nodal coordinates This module defines coordinates of structural nodes non structural nodal coordinates nod name x y z nod name A node identifier which can be any alphanumeric string Z Global nodal coordinates Notes z is only required for 3D analysis Incrementation can be used with this module 147 7 3 9 Element connectivity This module defines the connectivity of elements in a mesh configuration element connectivity elm name grp name nod name s elm name An element identifier which can be any alphanumeric string grp name An identifier referring to one of the groups declared in the groups module nod name s The element end nodes defined in the structural nodal coordinates or non structural nodal coordinates modules Notes Incrementation can be used with this module 148 7 3 10 Imperfections This module specifies
80. section describes the cross section types available in ADAPTIC Each type is referred to by a unique name displayed at the top of the following pages and requires the specification of a number of materials and dimensions in the order indicated 67 rss Description Rectangular solid section No of materials 1 No of dimensions 2 Dimensions Width b Depth d Application Rectangular solid sections of uniform material y A Section VSS 68 chs Description No of materials No of dimensions Dimensions Application Thin circular hollow section 1 2 Outer diameter D Tube thickness t Circular hollow sections of uniform material Section chs 69 N isec Description No of materials No of dimensions Dimensions Application General purpose I or T section 1 6 Bottom flange width Bottom flange thickness Top flange width Top flange thickness Web depth Web thickness ba ta t5 d ty I or T sections of uniform material 70 Section isec 71 Description No of materials No of dimensions Dimensions Application Partially encased composite I section 4 specified in this order I section Unconfined region Partially confined region Fully confined region 6 Flange width b Flange thickness t Web depth d
81. strain problems Starting configuration must be close to equilibrium configuration sec name An identifier referring to one of the cross sections declared in the sections module Only the elastic axial rigidity EA is used XY There are also Fy forces in the F global Z direction 4 A2 2 1 2 X 1 2 x Element configuration Element forces before and after deflection Configuaration and global forces for element type cbl2 128 cbl3 Description Quadratic cable element with variable length Nodes 3 Characteristics Accounts for large displacements in the small strain range Allows transfer of material across adjacent connected elements and mid node The element has no bending capacity Numerical integration is performed over 3 Gauss points Application Cable and tension fabric structures Requires specification of unstrained element dimension s coupled additional freedoms Restrictions Only allows use of linear elastic materials Limited to small strain problems Group header sec name An identifier referring to one of the cross sections declared in the sections module Only the elastic axial rigidity EA is used sliding internal Declaration of whether internal sliding is allowed or prevented damping parameter Specification of damping parameter used in dynamic relaxation solution procedure There are also forces in the global Z direction There are also displace
82. supported this button allows the capture of Auto Display as a miv movie General Settings This button enables disables the display of i the initial shape alongside the deflected shape ii node and element labels contours and iv customisation of auto display slider control The initial shape and labels are enabled by default for the undeflected configuration Control can be given to Auto Display and the Output Number Selector Slider to vary either the output number for a specific mode or the mode number for a specific output number Also a increment of output mode numbers can be specified for Auto Display Exit This allows the ADAPTIC shapes application to be terminated Before exiting make sure you have saved your plot file if necessary 174 8 3 3 Shapes This menu option offers the following facilities discussed with reference to the initiating buttons Output Number This specifies the output and mode numbers to be displayed Output number 0 refers to the initial undeflected configuration with other numbers referring to various equilibrium states obtained during nonlinear analysis For a specific output number mode number 0 refers to the actual deflected shape of the equilibrium state while other mode numbers refer to eigenvalue modes if any have been obtained for this equilibrium state Auto Display This enabes an animation of the structural response or the eigenvalue modes through sequen
83. the positive y z quadrant Symmetric reinforced concrete columns Section is assumed symmetric about the y z origin hence only one side of the reinforcement need to be specified 78 Confined Ay Unconfine ha Y Y Section recs 79 rets Description No of materials No of dimensions Dimensions Application Restrictions Reinforced concrete T section 3 specified in this order Reinforcement Unconfined region Confined region 2D analysis 8 2 Reinforcement layers 3D analysis 8 3 Reinforcement bars on one side of y axis Slab thickness D Beam depth D Confined depth in slab d Confined depth in beam d Slab effective width B Beam width B Confined width in slab b Confined width in beam 2D analysis Ai di for each reinforcement layer 3D analysis A d z for each reinforcement bar on one side of the y axis Modelling of R C beams with an effective slab width Symmetric section about the y axis dj is the distance of reinforcement layer bar i from the bottom fibre of the section 80 B Unconfined Confined gt b Section rets 8l rcgs Description No of materials No of dimensions Dimensions Application Restrictions General purpose rei
84. the wall b is the width of the wall t is the thickness of the wall N is the axial force V is the shear force M is the bending moment fvkO is the pure shear strength ftu is the ultimate tensile stress of the masonry fm is the ultimate compression stress of the masonry x is Turnsek s shape parameter 1 5 if H D 71 5 or 1 if H D 1 or H D otherwise The shear strength will be computed as follows Vg min V For strips the strength is the pure shear strength for the shear force and the rocking strength calculated on Pmin for bending moment Note to compute the shear strength the model uses the values of the section forces N V and M at the start of the integration step so to obtain an accurate response the integration step has to be small enough Modelling of non linear behaviour of 2D masonry walls in the equivalent frame approach All parameters must be non negative All stiffness parameters must be positive gt 0 0 lt Kh lt Kp lt Ke Force ratios and displacement must be positive gt 0 Fp Vr gt Fy Vr gt 0 du gt 0 Degradations parameters must be axl 1 65 References and Upar gt 1 Tomazevic M Lutman M 1996 Seismic Behaviour of Masonry Walls Modeling of Hysteretic Rules Journal of Structural Engineering September 1996 pp 1048 1054 Rinaldin G Seismic analysis of masonry structures through non linear analysis Graduation Thesis supervisor Prof Ing
85. type qdp3 is usually sufficient to represent a whole member Element qdp3 subdivides into elements cbp3 specified under cbp3 grp name if inelasticity is detected in the zones defined by the subdivision pattern pat name Accuracy increases with the number of sub elements type cbp3 specified in the subdivision pattern After subdivision elements cbp3 are inserted in the inelastic zones while the elastic zones are kept as element type qdp3 Nodes 1 and 2 define the element connectivity and its local x axis The y axis lies in a plane defined by the x axis and node 3 which can be a non structural node Adaptive modelling of inelastic members in space frames Applies only to cross sections with materials stl1 stl2 amp stl3 Warping strains are not cbp3 grp name Specifies the group identifier of elements type cbp3 used in automatic mesh refinement pat name An identifer referring to a subdivision pattern in the patterns module 112 M EE V ozs 0 75L Vio 25L V y0 5L v x Y YV ttt L L F ty VyosL M t Visa M s e aa Fe lt lt lt N 4 M Ms Ms yl a x y plane b x z plane Imperfection and forces in local system of element type qdp3 113 Ink3 Description 3D link element with discrete axial rotational springs Nodes 3 Character
86. ultimate traction stress of the bricks fu ultimate compression stress of the masonry k parameter that defines the ratio between the pressure in an equivalent stress distribution and the maximum pressure in the compression zone usually k 0 9 see figure ftu ultimate tensile stress of the masonry b Turnsek s shape parameter b 1 5 if H D 71 5 or b 1 if H D 1 or b H D if 1 lt H D lt 1 5 The shear strength will be computed as follows max V mins MINV V Vas min r r 7 By means of the strength criteria code cod it is possible to specify which strength criteria account for and which strength criteria has to be neglected cod is defined as the sum of the exclusion code associated with the strength criteria to neglect Exc Strength criteria Code 1 Vrdl Failure due to diagonal cracking of the mortar layers 2 Vrd2 Failure due to diagonal cracking of the bricks 4 Vrd3 Failure due to base shear distortion 8 Vrd4 Failure due to bending 16 Vrd5 Failure due to diagonal cracking accordingly to Turnsek and Cacovic criteria 32 Vrd6 Failure due to pure shear For instance to exclude the Failure criteria due to pure shear and the Failure criteria due to diagonal cracking of the bricks cod has to be defined as cod 32 2 34 and Vrd will be obtained as follows Vig MAX V min V Vu If the exclusion code is set to 63 cod 63 then all strength
87. 0 25852773 01 62760442 00 25852773 01 62513542 00 25852773 01 61580883 00 25852773 01 60034713E 00 25852773 01 57920181E 00 25852773 01 55256728 00 25852773 01 52037179 00 25852773 01 48223868 00 25852773 01 43740453 00 25852773 01 38456730 00 25852773 01 32161248 00 25852773 01 24511144 00 25852773 01 14937073 00 25852773 01 24547529E 01 25852773 01 0 14728750 00 25852773 01 0 40093190E 00 25852773 01 0 80974686 00 25852773 01 0 15494444 01 25852773 01 0 31338199E 01 201 5 DDOD 6 lt gt O S O S OO OO 62 6 O S COO gt CONV NORM 884E 08 848E 06 948E 10 341 972 2291 602 508 685 100 390 5523 367 2935 134 383 124 451 223 639 672 356 447 ESI 862 252 178 253 873 269 146 457 428 246 637 132 206 499 116 242 581 339F 4178 310E 06 Ld ed l J de P lb d veh 217 4 X t ll she d d t8 j Jp WT Pp lal Oh Ed Ed EJ FJ FJ EJ E FJ EJ Ej Ej Fj Fj Ej Ej Dd Fj Fj Ej Ej Fj Fj Fj Ej Db Eb E Dd Dd Ed Fj Fj DOOFRRFREFRFNNNNFFFPODODODNNNNNFFODOADNNNFFODN O
88. 0 0 33000000 00 0 0 170 07 1 17 0 34000000 00 0 0 199 07 1 0 0 35000000E 00 0 0 248 07 1 18 0 36000000E 00 0 0 312E 07 1 0 0 37000000E 00 0 0 383E 07 1 19 0 38000000E 00 0 0 450 07 1 0 0 39000000E 00 0 0 508 07 1 20 0 40000000E 00 0 0 565 07 1 0 0 41000000E 00 0 0 631 07 1 21 0 42000000E 00 0 0 722E 07 1 0 0 43000000E 00 0 0 840 07 1 22 0 44000000E 00 0 0 971E 07 1 0 0 45000000E 00 0 0 112E 06 1 wO BO Or OO O X OW CO 1 65 OOO P 6 U OF 6 o 46000000 47000000 48000000 49000000 50000000 51000000 52000000 53000000 54000000 55000000 56000000 57000000 58000000 59000000 60000000 61000000 62000000 63000000 64000000 65000000 66000000 67000000 68000000 69000000 70000000 71000000 72000000 73000000 74000000 75000000 76000000 77000000 78000000 79000000 80000000 81000000 82000000 83000000 84000000 85000000 86000000 87000000 88000000 89000000 90000000 91000000 92000000 93000000 94000000 95000000 96000000 97000000 98000000 99000000 10000000 10100000E 10200000E 10300000E 1040000
89. 0 131E 04 0 0 0 46060000E 03 2 0 603E 04 0 0 0 46070000E 03 2 0 226 04 0 0 0 46080000E 03 2 0 163 04 0 0 0 46090000E 03 2 0 240 04 0 0 0 46100000E 03 2 0 591E 04 0 RRR SUBDIVISION OF ELEMENTI 40 E RK NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT 26 0 000000E 00 0 400000E 03 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 42 cbp2 n24 n26 43 qdp2 n26 025 NUMBER OF IMPERFECT ELEMENTS 0 0 0 46110000E 03 2 0 357E 05 2 0 0 46120000 03 2 0 197 03 0 0 0 46130000 03 2 0 300 03 0 0 0 46140000E 03 2 0 796 04 1 0 0 1 3 2 0 04 0 0 0 461 3 2 0 607 04 0 0 0 46170000E 03 2 0 630 04 0 0 0 46180000 03 2 0 707 04 0 0 0 46190000E 03 2 0 524 04 0 0 0 46200000 03 2 0 911 04 0 0 0 46300000E 03 1 0 232 04 2 0 0 46400000E 03 1 0 203E 05 1 247 NUMBER OF IMPERFECT ELEMENTS
90. 0 CO CO ID PO PO C0 CO CO PO PO PO PO CO PO PO PO PO PO PO PO CO CO CO PO PO i E ja PO E F PO i E EO F K S S DN LD 168 169 170 172 173 174 175 176 177 178 1 79 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 OO gt O S C SO O S m QOO O S C CO 41750000 42000000 42250000 42500000 42750000E 43000000E 43250000 43500000 43750000E 44000000E 44250000 44500000 44750000E 45000000E 45250000 45500000 45750000 46000000 46250000E 46500000E 46750000E 47000000E 47250000 47500000 47750000 48000000 48250000 48500000 48750000 49000000 49250000 49500000 49750000 50000000 A A A A 71 Pl PJ DJ PJ Dl op PJ Pj p Ej PJ A A PJ Pl pri prj PJ pr A OOO O COO 62 62 COO CO OOOO OO 6 CO OO OO O OO OO O OO O O OO O O O O O O O O O O O O O O 211 O O O O O O 343 348 410 139 102 602 174 148 331 256 971 592 194 930 924 946 320 104 099 332 582 398 430 175 142 729 107 164 208 130 676 486 543 137
91. 0000 O500000E 0750000 1000000 1250000E 1500000E PJ Lj PJ Pq Dg pj 71 Pj ee ee P prj Pj prj Et Pl PJ br PJ A PJ prj prj A Pi rd T A Pj C gt gt O C O CO OO OO O OO OO O OO OO OO OO OO OO OO OO OO OO OO OO O O O O O O 210 O O O O O 000 000 000000000 00000 000 483E 08 480E 08 457E 08 349E 08 184E 08 934 06 542 06 380 06 542 06 900 06 261 08 299 08 249 08 872 06 512 06 629 09 215 06 303E 06 437 06 642 06 967 06 126 11 114 11 173E 08 813E 08 129E 06 670E 07 438E 07 108E 06 344E 06 216E 06 289E 06 232E 06 135E 08 126E 07 888E 07 649E 07 300E 06 357E 06 264E 08 194E 08 214E 09 420E 06 760E 07 408E 07 200E 06 268E 08 162E 09 202E 09 139E 09 126E 10 110E 10 614E 09 307E 09 225E 06 973E 08 653E 06 920E 06 256E 09 154E 09 113E 08 N BO fo PO PO PO C0 C0 C
92. 00000 A A PJ PJ prj rj 7 rj PJ pri prj Pj D A prj bx A A prj EJ rj prj prj Dj rj OO gt gt QC OUO gt G OC OC gt CO OC CO OC gt gt CO gt gt 65 C 65 6 6 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 01 01 01 01 CO OO OO O OO OO OO OO OO OO OO OO OO O OO O OO O O O O O O O O O O O O O 665 219 195 O O O O O O O O O O O O 208 437F 0 177E 161E 116 3495 208 206 2 508 411 731E 5745 254 410 841 355 478 103 138 5 7E 481E 342 191 186 183 575 173E 128 133E 2428 425 186 263E 312 829 828 822 in I E in I I in E I E 07 0 E E 1 XO 1 1 lt J G 1 1 1 lt J lt J 0 O 01 0 101 lt J lt J lt J 1 CO 1 00 00 Gy 1 do J jJ h cu d bod 4 d dod J o 4 dX oj Y j d bog OO CO
93. 00000 30600000 30700000 30800000 30900000 000000 1100000 1200000 1300000 1400000E 1500000E 1600000E 1700000E 1800000E 900000E 32000000 32100000 32200000 32300000 32400000 32500000 32600000 32700000 32800000 32900000 33000000 33100000 33200000 33300000 33400000 33500000 33600000 33700000 33800000 33900000 000000 100000 200000 300000E 400000 500000 600000 700000 800000E 900000E 35000000 35100000 35200000 PJ p Pq Eg PJ pj Pj ee ee prj DJ Ej pj Et Pl prj PJ PJ br PJ A A prj prj A A A T A C C C gt O C CO OO OO O OO OO O OO OO OO OO OO OO OO OO OO OO OO OO O O O O O O O O O 270E 253 240 250 410 113 191 153 152 146 590 722 531 745 417 315
94. 000000E 03 0 0 281 03 0 0 0 40000000E 03 0 0 311E 06 1 kk SUBDIVISION OF ELEMENT 17 NUMBER OF NODES CREATED 0 NUMBER OF ELEMENTS CREATED 1 ELM NAME TYPE OF ELEMENT NOD NAMES 1 cbp2 n1 n10 5 NUMBER OF IMPERFECT ELEMENTS 0 ok ek KK e 6 NUMBER OF NODES CREATED 0 SUBDIVISION OF ENT 20 NUMBER OF ELM NAM 1 32 NTS CREATED 1 ELI cbp2 NOD NAM 011 n2 NUMBER OF IMPERFECT 0 0 EL EMENTS 0 401000001 402000001 Fl PJ 03 03 0 149 0 3171 244
95. 00E 00 0 160000 04 NUMBER OF ELEMENTS CREATED 3 ELM NAME TYPE OF ELEMENT NOD NAMES 9 2 n22 n24 41 cbp2 25 n23 e40 qdp2 n24 n25 NUMBER OF IMPERFECT ELEMENTS 0 45010000E 03 2 0 215 03 246 0 0 45020000E 03 2 0 187E 04 0 0 0 45030000E 03 2 0 925E 07 0 0 0 45040000E 03 2 0 434E 05 0 0 0 45050000E 03 2 0 919E 07 0 0 0 45060000E 03 2 0 911 07 0 0 0 45070000E 03 2 0 420E 04 0 0 0 45080000E 03 2 0 926E 07 0 0 0 45090000E 03 2 0 136E 04 0 0 0 45100000E 03 2 0 929E 07 0 0 0 45200000E 03 0 846E 08 1 0 0 45300000E 03 0 118 04 1 0 0 45400000E 03 0 431E 03 1 0 0 45500000 03 0 371E 04 1 0 0 45600000E 03 0 477E 04 1 0 0 45700000E 03 0 692E 04 1 0 0 45800000E 03 0 181 04 2 0 0 45900000E 03 0 133E 03 2 0 0 46000000E 03 1 0 440E 03 1 0 0 46010000E 03 2 0 359E 04 3 0 0 46020000E 03 2 0 134 04 0 0 0 46030000E 03 2 0 779E 05 0 0 0 46040000E 03 2 0 321E 04 0 0 0 46050000E 03 2
96. 01 0 0 520E 05 1 242 0 48400000E 01 0 0 196E 04 1 0 0 48500000E 01 0 0 443E 04 1 243 0 48600000E 01 0 0 218E 04 1 0 0 48700000E 01 0 0 104E 04 1 244 0 48800000E 01 0 0 256E 04 1 0 0 48900000E 01 0 0 252E 04 1 245 0 49000000E 01 0 0 317E 04 1 RAK NOR NUR ERR SUBDIVISION OF ELEMENT 1612 RR ARR RRR k ARK ER NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT 23 0 000000 00 0 200000E 01 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 43 cbp2 n23 n4 42 qdp2 n6 n23 NUMBER OF IMPERFECT ELEMENTS 0 0 0 49100000E 01 0 0 196 04 1 AERE KR SUBDIVISION OF ELEMENTI 10 NUMBER OF NODES CREATED T NOD NAME COORD S X Y RELATIVE END 1 OF SUBDIVIDED ELEMENT 24 0 000000E 00 0 200000 01 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES
97. 03 0 0 473 04 5 72 0 49000000E 03 0 0 105 03 2 0 0 50000000E 03 0 0 767 05 2 73 0 51000000E 03 0 0 289 05 2 0 0 52000000E 03 0 0 720 06 2 74 0 53000000E 03 0 0 210 06 2 0 0 54000000E 03 0 0 773 07 2 75 0 55000000E 03 0 0 380E 03 1 0 0 56000000E 03 0 0 103E 06 2 76 0 57000000E 03 0 0 742 04 2 0 0 58000000E 03 0 0 180 03 1 TI 0 59000000E 03 0 0 262 03 1 0 0 60000000E 03 0 0 963E 07 2 78 0 61000000E 03 0 0 798E 06 2 0 0 62000000 03 0 0 483E 07 2 79 0 63000000E 03 0 0 241 07 2 0 0 64000000E 03 0 0 165 04 3 0 0 64010000E 03 0 574 04 1 0 0 64020000E 03 0 274 04 0 0 0 64030000E 03 0 367 04 0 0 0 64040000E 03 0 140 05 1 0 0 64050000 03 0 246 03 0 0 0 64060000E 03 0 399E 03 1 0 0 64070000E 03 0 242 04 1 0 0 64080000E 03 0 150 05 1 0 0 64090000E 03 0 275E 05 1 00 0 64100000E 03 0 502 04 1 0 0 64110000E 03 0 293E 03 1 0 0 64120000E 03 0 406 04 1 0 0 64130000E 03 0 410E 03 1 0 0 64140000E 03 0 265E 03 2 0 0 64150000E 03 0 437 05 3 0 0 64160000E 03 1 0 217E 05 4 0 0 64161000E 03 2 0 495 03 3 0 0 64162000 03 2 0 500 04 2 0 0 64163000E 03 2 0 807 04 2 0 0 64164000 03 2 0 416 04 2 0 0 64165000E 03 2 0 555 04 2 0 0 64166000E 03 2 0 386E 03 1 0 0 64167000 03 2 0 288E 04 2 0 0 64168000E 03 2 0 111 07 3 0 0 64169000E 03 2 0 387E 04 1 0 0 64170000E 03 2 0 147 03 1 0 0 64171000E 03 2 0 355 04 3 SUBDIVISION OF ELEMENT
98. 03 0 152 05 1 UK KK ee SUBDIVISION OF ELEMENTI 6 3 6 NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDE ELEMENT 23 0 000000E 00 0 200000 04 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES e38 cbp2 n23 n21 e37 qdp2 n22 n23 NUMBER OF IMPERFECT ELEMENTS 5 0 0 0 44100000E 03 0 397E 04 2 0 0 44200000E 03 0 335E 03 0 0 0 44300000E 03 0 354E 03 0 0 0 44400000E 03 0 334E 03 0 0 0 44500000E 03 0 215 05 2 0 0 44600000E 03 0 458E 08 1 0 0 44700000E 03 0 387E 03 0 0 0 44800000E 03 0 520E 08 1 0 0 44900000E 03 0 233E 05 1 70 0 45000000E 03 0 458E 03 0 AR KKK RRR NUR ERR SUBDIVISION OF ELEMENTI 37 RRR A ARK EK NUMBER OF NODES CREATED 2 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDE ELEMENT 24 0 000000E 00 0 400000 03 5 0 0000
99. 0E 10500000E 10600000E A PJ PJ Pq pj ij 1 mj Tj Tj ee prj Pj DJ Et Pl AN A PJ A PJ rj A prj prj 71 A A rj T A A E Pj 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 O gt CO OO OO O OO OO OO OO OO O OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO O O O OO O O O O O O O O O O O x N O O O O 00000 0000000 0000 00000000000 O O O 132 158 190 222 245 252 245 227 208 191 177 164 146 123 110 109 110 115 122 129 1532 134 137 142 1977 171 171 182 193 204 213 224 226 232 239 247 253 266 275 261 262 262 262 260 276 278 261 257 254 248 239 230 217 205 199 200 212 224 243 258 306 Dd Dd PJ PJ PJ EJ Dd EJ E3 Du EJ Dd Dj PJ Dd EJ Ej Du Dd Dd Dd Dj Pd EJ Ed E3 d Dd PJ Dd PJ EJ Dd Dd EJ E3 Dd Dd d Dd PJ Dd Dd Dd Dd Dd EJ
100. 109 0 110 0 111 NOD NAME n7 n8 2 20000000 20100000 20200000 20300000 20400000 20500000 20600000 20700000 20800000 20900000 21000000 22000000 22100000 22200000 OG OG O 0 17800000 17900000 18000000 18100000 18200000 18300000 18400000 18500000 18600000E 18700000E 18800000E 18900000E 19000000E 19100000E 19200000E 19300000E 19400000E 19500000E 19600000E 19700000E 19800000E 19900000E 1100000E 1200000E 1300000E 1400000E 1500000E 1600000E 1700000E 1800000E 1900000E PO A A DJ 9 71 A A Er PJ DJ prj En prj Ej PJ Pj A A A prj prj PJ A Pi DJ rj OF NODES CREATED COORD S SUBDIVISION OE ooo CO gt OO 62 gt 62 62 OC COO QOO OO 62 CO OO OO OO O OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO O OO O O O O O O O O O O OO O O X Y RELATIVE 0 204 04 0 230 04 0 299 04 0 122E 05 0 201E 05 0 287E 05 0 659E 05 0 993E 06 0 423E 05 0 117E 04 0 658E 06 0 102E
101. 15 con2 Description No of properties Properties Application Restrictions Uniaxial constant confinement concrete model 4 Concrete compressive strength f Concrete tensile strength f Crushing strain e Confinement factor k Uniaxial modelling of concrete assuming constant confinement Parameter units must be in Newtons and Millimetres The confinement factor must be greater or equal to 1 an an 5 a Lf S on 8 e Q ER _ 6 f Compressive strain Material model con2 16 cons Description No of properties Properties Application Restrictions Compressive stress Uniaxial variable confinement concrete model 10 Concrete compressive strength Concrete tensile strength f Crushing strain Poisson s ratio of concrete v Yield stress of stirrups Young s modulus of stirrups E Strain hardening of stirrups Diameter of stirrups Stirrups spacing s Diameter of concrete core Uniaxial modelling of concrete accounting for variable confinement effects which are influenced by the core area within the stirrups stirrups size and material and stirrups spacing Parameter units must be in Newtons and Millimetres co Compressive strain Material model con3 17 Description No of properties Properties Application Restr
102. 17 0 360000 04 0 000 E 00 d 018 0 420000 04 0 000 E 00 n19 0 480000E 04 0 000 E 00 n20 0 540000E 04 0 000 E 00 NUMB 5 CREATED 10 ELM NAME TYPE OF ELEMENT NOD NAME 21 2 121 12 22 cbp2 n12 n13 22 3 cbp2 n13 014 24 cbp2 014 015 25 cbp2 15 016 26 cbp2 016 017 243 27 28 29 0 cbp2 cbp2 cbp2 cbp2 017 018 019 020 018 019 020 221 NUMBER OF IMPERFECT EL EMENTS 0 0 0 34100000E 03 0 265 06 1 0 0 34200000 03 0 310E 05 0 0 0 34300000E 03 0 311E 05 0 0 0 34400000E 03 0 308E 05 0 0 0 34500000E 03 0 295E 05 0 0 0 34600000E 03 0 290E 05 0 0 0 34700000E 03 0 294 05 0 0 0 34800000E 03 0 302 05 0 0 0 34900000E 03 0 303E 05 0 65 0 35000000E 03 1 0 299E 05 0 0 0 36000000E 03 0 0 153E 06 1 66 0 37000000E 03 0 0 289E 03 0 0 0 38000000E 03 0 0 284 03 0 67 0 39
103. 1820001 0 641820001 03 03 Fl EJ 252 0 122E 08 0 191 00 9 7 Apexes a b d f g h i G k 0 m n 0 p q r Indicates the kind of analysis required Introduces the characteristics of the materials the name the material model and the properties which are different for each material model Chapter 3 Introduces the type of section the name material and dimensions Defines the groups There you define the element type the group name and the name give to the section Defines the coordinates of the structural nodes Defines the global coordinates of the structural nodes non structural nodes Defined the nodal restraints The f command indicates the name of the first nodes which has restraints and the r command is refereed to the increment of this and how many times it has to increment the nod name Defines the connectivity of elements in a mesh configuration First is indicated the group name At the f command is the name of the element and the extreme nodes of it and at the r command is defined the increment of the nod name the extreme nodes and when it has to stop Indicates the kind of load and the direction of each one This module phases is used to trace the load deflection curve for the proportional loading This module specifies the iterative strategy applied during a load or time step Define
104. 29 30 hi hi hi hi hi hi hi 56531062 for for for nge nge nge nge nge nge nge Formed Formed Formed Formed 56531062 Formed f 1130621 Formed 2261242 Formed 22612425 22612425 45224849 45224849 45224849 1 2 5 O 00 el el el el L 0 Lemen Lemen Lemen Lemen 0 Lemen 0 lemen 0 lemen 0 534529381 e3 2 2 4 523146321 3 491808051 3 451163311 t 4 42323379 403652721 377336611 36011033 34784546 ct ct ct ct S 0 0 MMA 1 t 6 Ch Ch cb ch cr Lr Ei 0 node 4 node n1 node 4 node n2 0 node 4 0 node 3 0 node 5 OGOOGO 0 SO C 354 06 100 06 988 06 447 06 498 06 896 06 803 06 356 06 601 06 rg 31 45224849 32 45224849 33 90449698 34 90449698 35 90449698 36 90449698 37 90449698 38 90449698 39 90449698 40 90449698 Plastic hinge closed f 41 90449698 42 90449698 43 90449698 44 18089940 45 18089940 46 18089940 astic hinge closed f 47 18089940 48 18089940 49 90449698 50 90449698 51 9044
105. 3 00 4 NUMBER OF ELEMENTS CREATED j 2 ELM NAME TYPE OF ELEMENT NOD NAMES 23 cbp2 3 n13 e24 qdp2 n13 9 NUMBER OF IMPERFECT ELEMENTS 0 SUBDIVISION ELEMENT 18 amp ee Kk e e e NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE END 1 OF SUBDIVIDED ELEMENT n14 0 000000E 00 0 333333 00 NUMBER OF ELEMENTS CREATED j 2 ELM NAME TYPE OF ELEMENT NOD NAMES 25 cbp2 4 n14 6 qdp2 n14 n10 NUMBER OF IMPERFECT ELEMENTS 0 0 0 22500000 01 0 0 183E 04 1 113 0 22600000 01 0 0 814 05 1 0 0 22700000E 01 0 0 951E 05 1 114 0 22800000 01 0 0 257E 04 1
106. 3 CEB Bull N 213 214 CEB FIP Model Code 90 Comit Euro Internetional du B ton Lausanne Switzerland 1993 2 Amadio C Fragiacomo M and Macorini L A New Effective F E Formulation for Studying the Long Term Behaviour of Continuous Steel Concrete Composite Beams Proceedings of the Fifth World Congress on Computational Mechanics WCCM V July 7 12 2002 Vienna Austria Editors Mang H A et al Publisher Vienna University of Technology Austria 3 Fragiacomo M A finite element model for long term analysis of timber concrete composite beams submitted to Computer amp Structures Given by the ratio 2A u where A is the cross section and u is the perimeter of the member in contact with the atmosphere 22 conll Description No of properties Properties Application Restrictions Fixed crack elevated temperature model for concrete 37 Young s modulus and temperatures E t Tj T5 T Possion s ratio and temperatures B 1 1 Tensile strength and temperatures hot Tensile softening slope and temperatures ao r T T Thermal strain and temperatures Sao 5 1 L Compressive strength and temperatures Los r D T T Normalised initial compressive strength Sc Normalised residual compressive strength rc Normalised strain increment beyond Factor for biaxial compressive interaction bo Elastic shear retent
107. 304 NUMBER NODES CREATED 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n28 0 000000 00 0 400000 03 249 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 47 cbp2 301 n28 48 qdp2 n28 311 NUMBER OF IMPERFECT ELEMENTS 0 0 0 64172000E 03 2 0 317E 03 3 koko SUBDIVISION OF ELEMENT 48 ek e lt 6 NUMBER OF NODES CREATED 2 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT 0 000000E 00 0 320000E 04 029 NUMBER OF ELEMENTS CREATED i 2 ELM NAME TYPE OF ELEMENT NOD NAMES 7 50 cbp2 n29 311 e49 qdp2 n28 n29 NUMBER OF IMPERFECT ELEMENTS 0
108. 353 256 319 387 370 344 317 292 276 271 EJ Ej EJ Dd EJ PJ Dd EJ Dd Dd E3 E3 PJ Pd Ed EJ EJ Ej E3 EJ Dd Dj EJ EJ bd Dd Ej E3 EJ Dd pj PJ Dd Dd E3 d Dd E3 Dd Dd T l C OY OY 010 0101 01 01 010101010101 01 01 0 0 IA po po po io pp o p p p pp io o pp io iB p EB po po pp po i p gt 02600 0 F gt C lt J O Gy On C 660 C C 0 G 2 00 ao CO CO CO CO CO CO CO 31 34 34 34 34 34 34 34 34 34 34 29200000 29300000 29400000 29500000 29600000 29700000 29800000 29900000 30000000 30100000 30200000 30300000 30400000 305
109. 4 1 0 0 43300000E 01 0 0 139 04 1 217 0 43400000 01 0 0 116 04 1 I RRA RAI KR SUBDIVISION OF ELEMENTI 14 NUMBER OF NODES CREATED 2 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n21 0 100000 01 0 000000E 00 022 0 400000E 01 0 000000E 00 NUMBER OF ELEMENTS CREATED 3 ELM NAME TYPE OF ELEMENT NOD NAMES 39 cbp2 n7 n21 41 cbp2 n22 n8 40 qdp2 n21 n22 NUMBER OF IMPERFECT ELEMENTS 218 219 220 221 222 223 224 225 226 0 3500000E 3600000E 3700000E 3800000E 3900000E 4000000E 100000 200000E 300000E 400000 500000 600000 700000 800000E 4900000E 5000000E 5100000E 5200000E 4 4 4 4 4 4 4 4 O O O O A PJ P3 PJ prj prj prj pj prj prj DJ rj A rj OO OOO Oia ae 0 253E 0 0 844E 0 0 258E 0 0 280E 0 0 492E 0 0 956E 0 0 657 0 0 168 0 0 231 0 0 218 0 0
110. 6 0 80000000 05 0 98520476 0 80000000 05 0 98609176 0 80000000 05 0 98703536 0 80000000 05 0 98806745E 0 80000000E 05 0 98921952E 0 80000000E 05 0 99054545E 0 80000000E 05 0 99215707E 0 80000000E 05 0 99438530E Phase 2 terminated PHASE NUMBER 3 NODAL DISPLACEMENT CONTROL GLOBAL DIRECTION Z DE 1 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 G3 9 60 9 CO GO G9 UO BO BO BO p O CO OO Occ C k Fa FF 6 QC lt gt COO OS QOO 6 OO QC 6 GC 6 6 GO OG O KG O S 6 OGOOGO 0 O0 C Qc 130 161 203 260 338 446 2229 820 694 629 106 885 843 462 996 492 875 149 354 192 182 723E 138 2698 5668 911 155 2738 496 670 3918 1298 103E 345E 1868 1828 91 1468 3658 4178 109 363E 1718 1458 636E 155 650 838 8001 594 938 108 Ed EJ FJ FJ E 10 E 11 E 11 E 11 E 07 E 07 E 06 E 06 E 06 E 06 E 06 E 06 E 06 E 06 63 o
111. 7 E 06 E 06 E 06 E 11 E 07 E 07 E 06 E 06 E 11 E 09 E 09 E 06 E 08 NORM CO Q N CO CO SN NORM N CO CO PO PO N A A C0 CO CO CO CO CO gt PO 2 PO NS W CO CO UTPUT ERATIONS 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 PHASE NUMBER 2 NODAL DISPLACEMENT CONTROL GLOBAL DIRECTION Y CONTROLLED NODE 2 VARIABLE DISPLACEMENT LOAD INCREMENT FACTOR 80789915E 01 0 57646662 01 16157983E 00 0 36441746 01 32315966 00 97531927E 03 32315966 00 33812188E 01 32315966 00 63438327 01 32315966 00 90632858E 01 32315966 00 11588821 00 64631932 00 16182271 00 64631932 00 20296138 00 64631932 00 24029833 00 64631932 00 27447033 00 64631932 00 30591620 00 64631932 00 33495588 00 64631932 00 36183352 00 12926386 01 40984154 00 12926386 01 45112304 00 12926386 01 48654527 00 12926386 01 51679131 00 12926386 01 54242477 00 12926386 01 56392427 00 12926386 01 58170326 00 12926386 01 59612224 00 12926386 01 60749699E 00 12926386 01 61610455 00 12920386 01 62218784 0
112. 74 50705949 50705949 50705949 50705949 10141190 20282379 20282379 20282379 20282379 40564759 40564759 40564759 40564759 E NUMBER DISPLACE I u F F C gt 5 5 01 00 00 00 00 PJ PJ rj A PJ A prj PJ O O O O O O FACTOR 5 18951791E 18902504F 18612923F 1807784 7 17303899E 16283372E 13300448E 124784705 115291155 10386773E 886352525 84608354 79871870 7380315 B ho F3 s pb O CO 63150114 type terminated ROLLED NO IRECTION DE DISPLACEME INCREMEN 673384195 6713384 1 67338419 67338419 13467684 13467684 13467684 13467684 13467684 67338419 13467684 13467684 13467684 13467684 13467684 13467684 13467684 13467684 2693536 26935367 26935367 26935367 26935367 26935367 53870735 53870735 A DJ A p A PJ PJ op m F m iNT 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 E 01 E 01 01 E 01 E 01 02
113. 9698 52 90449698 53 90449698 54 18089940 55 18089940 56 18089940 57 18089940 Plastic hinge formed f 58 18089940 59 36179879 60 36179879 61 36179879 62 72359759 63 72359759 64 720359759 65 12359759 66 72359759 67 36179879 68 36179879 Ej O El Fj Ej Ej Dd Ej Pj Ej Ej 0 Fj Ej O Ene cEOIE che 0 ike v 01 0 33867433 O1 0 33159941E 01 0 32159929E 01 0 31528570 O1 0 31143394E O1 0 30938842E F01 0 30875711E 01 0 30929004E 01 0 31082759 01 0 31326084 r element e2 01 0 31650563E 01 0 32032074E 01 0 32469935 01 0 32565287 01 0 32663005 01 0 32763135 r element e3 01 0 32865710 O1 032970771E O1 0 33532282E 01 0 34162424 01 0 34866739 F01 0 35653812E 01 0 36537081E 02 0 38688104E 02 0 41356265E 02 0 44388832E 02 0 47725230E r element 4 02 0 50809231 01 0 51444736E 01 0 52086955E 01 0 52735930E 00 0 52866515E 00 0 52995151 00 0 53110568 00 0 53225959 00 0 53341324 01 0 53917749E 01 0 54493498E 193 00 00 00 00 00 00 OO 00 00 00 at 00 OO 00 00 00 00 at OO 00 00 OO 00 OO 00 00 00 00 00 at 00 00 OO 00 HOO 00 00 00 00 OO 00
114. AD FACTORS Allows the selection of time or load factor depending on the type of analysis as well as CPU time and output number for plotting The output numbers are explicitly indicated for the various steps of the nonlinear analysis in the output file filename out FORCES AT PRESCRIBED FREEDOMS Allows the selection of forces at restrained or prescribed freedoms The latter are defined as any freedom subject to a displacement or time history acceleration load NODAL ENTITIES This covers nodal displacements velocities and accelerations The last two should only be requested for dynamic analysis ELEMENT ENTITIES This covers 1 local element entities e g element forces and local displacements which depend on the element type and ii stresses and strains the availability of which depend on the element type ENERGY GROUPS This allows the selection of energy components determined for pre defined energy groups ARITHMETIC EXPRESSIONS This is a general utility which allows the combination of entities corresponding to previous line graphs in arithmetic expressions The following definitions are valid combinations referring to the Y coordinate of line graph 1 the X coordinate of line graph 3 and the Y coordinate of line graph 2 Y1 2 X3 6 Y2 2 Y1 X3 Y2 Y1 Such expressions should be typed in the dialogue box One application of this utility is for generating entities representing relative displacements rather than
115. AMES 9 cbp2 1 n5 10 qdp2 n5 n3 NUMBER OF IMPERFECT ELEMENTS 5 0 et SUBDIVISION OF ELEMENT 7 J ARR RRR ARK NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT 06 0 000000 00 0 666667 00 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 11 cbp2 2 n6 2 qdp2 6 4 NUMBER OF IMPERFECT ELEMENTS NUMBI 89 0 90 0 91 0 92 0 93 0 94 0 95 0 96 0 97 0 98 0 99 0 100 0 101 0 102 0 103 0 104 0 105 0 106 0 107 0 108 0
116. Characteristics Application Restrictions Group header Rayleigh damping 2D element Mass per unit length Two proportionality constants al amp a2 of mass and stiffness respectively specified in that order 2 Models Rayleigh damping effects All rld2 elements must have the same constant a amp a2 to model conventional Rayleigh damping Dynamic analysis of plane frames al should be set to zero for dynamic analysis involving ground excitation otherwise damping would be proportional to absolute rather than relative frame velocity sec name An identifier referring to one of the cross sections declared in the sections module mass length Mass per unit length parameters Defines parameters of Rayleigh damping elements E 2 F 2 2 1 E E B X Forces for element type rld2 103 jbc2 Description Types Material name Parameters 2D 3D joint element with coupling between axial force and moment but uncouple with shear Three entries are required 1 steel for bare steel or composite for composite connection 2 connection type flush endplate extended endplate web angles top and seat combined web top seat finplate 3 behaviour of panel zone either rigid if panel zone behaviour is omitted or flexible if the flexibility of the panel zone is included Three material properties are required by using mater
117. D NAMES 5 9 cbp2 n14 n16 0 qdp2 n16 n10 x NUMBER OF IMPERFECT ELEMENTS 5 0 0 0 23300000E 01 0 0 115 04 1 117 0 23400000E 01 0 0 251 04 1 0 0 23500000E 01 0 0 191 04 1 118 0 23600000 01 0 0 307 04 1 0 0 23700000 01 0 0 562E 05 1 ON SUBDIVISION OF ELEMENTI 30 ARR RAK ARK ER NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT 17 0 000000 00 0 200000 01 x NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 224 e32 fe31 2 qdp2 017 016 010 017 NUMBER OF IMPERFECT EL 5
118. E 36900000E 37000000E 37100000E 37200000E 37300000E 37400000E 37500000E 37600000E 37700000E 37800000E 37900000E 38000000E 38100000E 38200000E 38300000E 38400000E 38500000E 38600000E 38700000E 38800000E 38900000E 39000000E 39100000E 39200000E 39300000E 39400000E 39500000E 39600000E 39700000E 39800000E 39900000E 0000000 0100000 0200000 0300000 0400000 0500000 0600000 0700000 0800000 0900000 1000000 1100000 1200000 1300000 PJ 9 PJ Pq Eg pg pj 71 Pj ee Er P prj DJ pj pj PJ Pl prj PJ P3 PJ br PJ A A prj prj A rj PJ prj PJ Pj C C C gt O C CO OO OO O OO OO OO OO OO O OO OO OO OO OO OO OO OO OO OO OO O O O O O O 228 O O 00 000 O O
119. E 02 5 OO O O O O O O O O O O O O O O O O O O O O O O ENT CONTROL VARIABLE rj 1 1 Pu LOAD FACTOR 59122201 54930670 50485740 45652421 44621774E 43564685 42478342 41359499 40204378 33693690 32186952 30581535 28855344 26977110 24899930 22547457 19778790 16268829 15410827 14468 054 13410380 12184021 10672673 8648752701 782734641 5 A A 8 PJ PE A PY E PO PO PO PO PO I F gt 72 CO I j E CO CO 5 69112846 Current control type terminated 200 CONV 6351 1211 1141 4051 1301 2691 6121 6141 443 6301 48971 1381 7021 924 3421 D O 8421 3411 297 7611 7521 1451 2951 6281 141 9051 877 3821 6051 12321 1411 2361 4481 4541 5041 1231 3811 5941 8511 2451 2251 1461 E 09 E 06 E 10 E 11 E 11 E 06 E 07 E 07 E 06 E 11 E 07 E 06 E 12 E 09 E 11 E 12 E 10 E 08 E 11 E 08 E 07 E 07 E 07 E 06 E 10 E 12 E 08 E 0
120. E 07 3 4 0 40000000E 00 0 0 392 07 3 5 0 50000000E 00 0 0 357 07 3 6 0 60000000E 00 0 0 314E 07 3 7 0 70000000E 00 0 0 305 07 3 8 0 80000000E 00 0 0 343E 07 3 9 0 90000000E 00 0 0 459 07 3 10 0 10000000E 01 0 0 711E 07 3 11 0 11000000E 01 0 0 118E 06 3 12 0 12000000E 01 0 0 187 06 3 13 0 13000000E 01 0 0 242 06 3 14 0 14000000E 01 0 0 244E 06 3 15 0 15000000E 01 0 0 245 06 3 16 0 16000000E 01 0 0 434 06 3 17 0 17000000E 01 0 0 152E 11 4 18 0 18000000E 01 0 0 100E 08 4 19 0 18200000E 01 1 0 380E 12 3 20 0 18400000E 01 1 0 529E 11 3 21 0 18600000E 01 1 0 197E 09 3 22 0 18800000E 01 1 0 803E 07 3 23 0 18840000E 01 2 0 736 07 2 24 0 18880000 01 2 0 499E 06 2 25 0 18920000E 01 2 0 340E 09 3 26 0 18928000 01 3 0 144E 08 2 27 0 18936000 01 0 929E 08 2 28 0 18944000E 01 3 0 145 06 2 29 0 18952000 01 3 0 462 07 3 Phase 1 terminated PHASE NUMBER 2 NODAL DISPLACEMENT CONTROL GLOBAL DIRECTION X CONTROLLED NODE 2 VARIABLE DISPLACEMENT LOAD 199 UTPUT ERATIONS 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 UTPUT ERATIONS 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 65 Ore OO OO 6 Current control 5 NODAL GLOBAL D CONT INCREMEN 12676487 253529
121. EY EN EX ER A 0 24000000E 24100000E 24200000E 24300000E 24400000E 24500000E 24600000E 24700000E 24800000E 24900000E 25000000E 25100000E 25200000E 25300000E 25400000E 25500000E 25600000E 25700000E 25800000E 25900000E 26000000E 26100000E 26200000E 26300000E 26400000E 26500000E 26600000E 26700000E 26800000E 26900000E 27000000E 27100000E 27200000E 27300000E 27400000E 27500000E 27600000E 27700000E 27800000E 27900000E 28000000E 28100000E 28200000E 28300000E 28400000E 28500000E 28600000E 28700000E 28800000E 28900000E 29000000E 29100000E A A PJ pq pr T rj xj m rj PJ A prj DJ Dx PJ PJ prj rj A prj pj pr prj PJ rj prj DJ rj A Pi PJ O C C C O O CO OO OO O OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO O O O O O O 0 19 422 _ 6 3 6 4 515 5 4 2 323 19 67 12 503 393
122. IS exceeded The original increment can be reduced for up to three levels The normal flow option for arc length control can improve convergence characteristics but does not guarantee that the displacement increments correspond exactly to the specified arc length 161 7 3 19 Convergence criteria This module defines convergence criteria for the iterative procedures The convergence criteria is based either on the out of balance norm or the maximum iterative displacement increment convergence criteria tolerance force ref moment ref displacement ref rotation ref work ref maximum tolerance tolerance force ref moment ref displacement ref rotation ref work ref maximum tolerance lt real gt lt real gt gt real gt gt real gt lt real gt gt real gt lt real gt The required convergence tolerance for each load or time step The force reference value used in calculating the convergence Applicable to convergence criteria based on the out of balance norm The moment reference value used in calculating the convergence Applicable to convergence criteria based on the out of balance norm The displacement reference value used in calculating the convergence Applicable to convergence criteria based on the maximum iterative displacement increment The rotation reference value used in calculating the convergence Applicable to conv
123. LOADING CURRENT OUTPUT FACTOR TIME LEVEL CONV NORM ITERATIONS 1 0 10000000E 01 0 00000000E 00 0 0 303E 07 VARIABLE LOADING CURREN OUTPUT TIME LEVEL CONV NORM ITERATIONS 2 0 25000000 01 0 0 326E 06 1 3 0 50000000 01 0 0 584 06 1 4 0 75000000 01 0 0 155 12 2 REAR KARR REAR COR ARERR SUBDIVISION OF ELEMENTI 1 OK UK ON NUMBER OF NODES CREATED 3 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT 1 0 127333E 03 0 000000 00 2 0 382000 03 0 000000 00 n3 0 764000E 03 0 000000 00 NUMBER OF ELEMENTS CREATED 5 4 ELM NAME TYPE OF ELEMENT NOD NAMES 1 cbp2 1 01 12 cbp2 1 12 e3 cbp2 2 n3 4 qdp2 n3 2 NUMBER OF IMPERFECT ELEMENTS 2 0 ER OF NOD NAM n4 n5 n6 NODES CRE 4 ATED COORD S 206 X S
124. UBDIVISION OF ELEMENT 2 J X Y RELATIVE 1 OF SUBDIVIDED ELEMENT 0 518182E 03 0 000000E 00 0 863636E 03 0 000000E 00 0 103636 04 0 000000E 00 7 0 138182E 04 0 000000E 00 NUMBER OF ELEMENTS CREATED 5 ELM NAME TYPE OF ELEMENT NOD NAMES 4 5 cbp2 2 n4 6 cbp2 n4 n5 7 2 n5 n6 8 cbp2 n6 n7 9 cbp2 n7 3 NUMBER OF IMPERFECT ELEMENTS 0 SUBDIVISION OF ELEMENT 3 NUMBER OF NODES CREATED 3 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n8 127333 03 0 000000 00 19 382000 03 0 000000 00 10 764000 03 0 000000 00 NUMBER OF ELEMENTS CREATED 4 ELM NAME TYPE OF ELEMENT NOD NAMES 10 cbp2 4 n8 ell cbp2 n8 n9 12 cbp2 n9 n10 e13 qdp2 n10 3
125. acking and elevated temperature 20 Translation of yield surface f cracking in principal direction 1 E t er f E gt lt f 01 Tensile yield surface in principal plane Post craking softening response E v f E T T rf 1 T T En A DEn Eni 1 T Material model con9 21 10 Description No of properties Properties Application References Uniaxial Concrete model for long term analysis 6 Type of analysis 1 linear viscoelastic 2 brittle viscoelastic Time of casting days Compressive strength N mm Tensile strength N mm Relative humidity of environment Notional size of member mm The long term concrete model can be employed for long term analysis Two different options are allowed Linear viscoelastic concrete Brittle viscoelastic concrete In the linear viscoelastic analysis both creep and shrinkage phenomena are evaluated according to the CEB FIP Model Code 90 The Volterra s integral equation is solved by developing the relaxation function in series of exponential functions and applying the trapezoidal rule In the brittle viscoelastic analysis the concrete is considered linear viscoelastic in compression and in tension before cracking In cracked phase a brittle law is assumed and both creep and shrinkage are not taken into account 1 CEB 199
126. al response graphically Two graphics post processing applications are available 1 ADAPTIC_graphs for plotting X Y graphs This is activated as follows prompt adaptic g filename dat svg 2 ADAPTIC_shapes for plotting deflected shapes This is activated as follows prompt adaptic s filename dat svs The above applications are discussed separately in the following sections 167 8 2 ADAPTIC_ graphs 8 2 1 General Facilities The main items of the graphics region in the ADAPTIC graphs application are shown in Figure 8 2 1 The mouse buttons can be used to manipulate the appearance size and position of each of the components as discussed below Moving Each of the items may be moved using the left mouse button with a single click to activate moving followed by a click and drag to move to the desired position Resizing This facility only applies to the Graph Area item It can be performed using the right mouse button with a single click to active resizing followed by a click and drag of the bottom right corner to the desired position Application Area Graph Area Legend Y gt X title Figure 8 2 1 Graphics region of ADAPTIC_graphs application 168 8 2 2 File This menu option offers the following facilities discussed with reference to the initiating buttons Data File This invokes a form which allows the selection of the d
127. analysis Assumes the mass to lie on a rigid straight line between the two end nodes Allows specification of mass proportional damping at group level Dynamic analysis of plane frames mass length Mass per unit length damping parameter optional parameter for mass proportional Rayleigh damping defaults to the value of mass damping parameter specified in default parameters module Y 4 Forces for element type Inm2 101 cbm2 Description Nodes Characteristics Application Restrictions Group header v Cubic 2D distributed mass element 2 Models uniformly distributed mass in dynamic analysis Uses an Updated Lagrangian formulation with a cubic shape function for the transverse displacement and a linear distribution for the axial displacement Allows different axial m and transverse mi distributed mass Mass per unit length specified according to one of m default m m m m Allows specification of mass proportional damping at group level Dynamic analysis of plane frames mass length Mass per unit length damping parameter optional parameter for mass proportional Rayleigh damping defaults to the value of mass damping parameter specified in the default parameters module F 2 A F 2 2 1 F 1 E 1 E X Forces for element type cbm2 102 rld2 Description Mass length Parameters Nodes
128. ata file corresponding to the analysis that has been performed Select the file i1ename aat from the list of files in the directory where the analysis has been performed where filename stands for the file identifier e g storey Save This button provides the means for storing plot information in a plot file for later retrieval This is quite important for storing a permanent description of the plot so that future modification can be performed with relative ease Save files for the ADAPTIC graphs application are automatically given a extension Retrieve This button retrieves svo plot files that have been previously saved Print Export This button allows 1 the output of the plot description to an Encapsulated PostScript EPS file which can be imported into word processing applications or ii the export of numerical data as X Y columns within a text file which can be used for further processing and plotting in spreadsheet applications Exit This allows the ADAPTIC graphs application to be terminated Before exiting make sure you have saved your plot file if necessary 169 8 2 3 Graphs Three facilities can be accessed using this menu option as discussed below New Curve This allows the selection of X and Y entities for a new line graph After selecting the entities described hereafter the Done button must be pressed followed by the Plot button for displaying the new line graph TIME LO
129. ch the gap is defined by a circle Restrictions Element type jel3 To be used simultaneously for local v and w freedoms Contact gap for curve radcont 45 pzshm Description Parameters Characteristics Application Restrictions References Smooth Hysteretic model for the panel zone response developed by Kim and Engelhardt 1 Specified in this order Ke Stiffness of the elastic branch My Yielding moment Stiffness of the 1 post elastic branch M1 Moment at the end of the 1 post elastic branch K2 Stiffness of the 2 post elastic branch M2 Moment at the end of the 2 post elastic branch Stiffness of the 3 post elastic branch Mcf Reference Moment for the column flange Ur Ultimate rotation CSI Csi Parameter for the steady loops 1 1 1 2 Smooth Hysteretic model with cyclic hardening softening and relaxation See reference 1 for a complete description of the model and it s formulation Beam to column welded joint modelling as a rotational spring Panel zone Modelling as an axial spring All parameters must be positive with K3 lt K2 lt K1 lt Ke 2 gt gt 1 Kee Dong Kim Michael D Engelhardt Monotonic and cyclic loading models for panel zones in steel moment frames Journal of Constructional Steel Research 58 2002 605 635 46 A Moment Bound Line ee Inelastic curve Ultimate rotation
130. da s model A F Ko N Kaeo Ko EMEN gt 1 Q Up Ue u p P oie Ku a Up 0 where KO Initial Elastic Stiffness Ke Fmax Maximum Force Experienced Umax Maximum Displacement Up Plastic deformation Degradation parameter 0 lt 0 lt 1 Multi Parametric Strength Degradation 5 E AF Fy y 1 1 11 EmtE An where Fy Yielding force y 1 strength degradation parameter 0 lt lt 1 Ep Dissipated energy Eum Dissipated Energy in a Monotonic Loading Umax Maximim displacement Aum Ultimate Displacement in a Monotonic Loading 5 2 Strength degradation parameter g 3 Strength degradation parameter 49 A Force Displacement Force displacement curve tstub 50 Displacement pivot Description Parameters Characteristics Application Restrictions Polygonal hysteretic model based on the pivot rule proposed by Park et al 1 modified to prevent stiffness increase in decreasing load cycles 2 Specified in this order Kep positive elastic branch stiffness Fyp positive yielding force Kpp second positive branch stiffness Fpp force at the end of the second positive branch Khp stiffness of the third positive branch Ken negative elastic branch stiffness Fyn negative yielding force Kpn second negative branch stiffness Fpn force at the end of the seco
131. der Ke Stiffness of the elastic branch Fy Vr Ratio between the yielding force or moment and the shear or bending resistance Vr or Mr Kp Stiffness of the Ist post elastic branch Fp Vr Ratio between the force or moment at the end of the first post elastic branch and the shear or bending resistance Vr or Mr Kh Stiffness of the 2nd post elastic branch CF Parameter governing unloading from skeleton curve a Parameter governing stiffness degradation lt 1 B Parameter governing strength degradation lt 1 du Ultimate displacement or rotation Pmin Axial compression in masonry strips type Pier 1 or strip 0 Fvk0 Pure shear strength B Base width of the panel T Thickness of the panel Fm Compressive strength of masonry material H Height of the panel Ftu Tensile strength of masonry material UF percentage of the maximum force after which panel collapse used to calculate ultimate displacement automatically UltForce No residual force after collapse 0 Residual force after collapse 1 Upar parameter dividing the stiffness of first unloading branch UltDisp Calculate automatically ultimate displacement 0 Fixed ultimate displacement from input 1 Rs Residual strength Polygonal hysteretic model based on the Tomazevic s proposal 1996 This model also uses a combination of simplified strength criteria to determine the shear or bending resistance Vr Stiffness Degradation linear with the
132. disp cnd name nod name direction limits 1 4 y 300 0 0 0 phases load control increment path steps 187 Q 8 8 le F 6 6 1 0 k 25 automatic control type path cnd name nodal translation 1 fuse default iterative strategy iterative strategy number 10 initial reformations 10 step reduction 10 divergence iteration 6 maximum convergence 0 1 5 convergence criteria 1 tolerance 0 1 5 force 0 5e 6 moment 0 1 8 output m frequency 0 end Note The following picture shows the names that have been given to the nodes and elements in the data file figure 9 2 1 Nodes and elements of the K frame 188 9 2 2 Structural behaviour The nonlinear analysis is undertaken using one element per member the response shown in the figure 9 2 2a shows the static response of K frame Z 4 _ X displacement Y displacement 50 0 50 100 150 200 250 300 350 400 Displacements mm figure 9 2 2a Static response of K frame Here is shown the ability of this method to predict the lowest buckling mode and to trace the associated post buckling path when an imperfect K frame is considered The figure illustrates that the higher displacements of the structure are in the X direction of the frame When is arrived to a certain value of load the displacement increase with fewer loads and with m
133. dule defines the control phases used to trace the load deflection curve for proportional loading Three types of control are available load displacement and automatic control phases load control increment path steps displacement control nod name elm name direction increment path steps automatic control type path cnd name load control Represents the load control option displacement control Represents the displacement control option automatic control Represents the automatic displacement control option increment Specifies the increment in the load factor for load control the increment of displacement for displacement control the increment of arc length path Specifies the sign of the increment continue follow the previous loading path reverse unload relative to the previous loading path keep keep the sign of the increment as specified This cannot be used for arc length control steps The number of steps used to apply the increment nod name elm name The name of the node or element used for displacement control Omission of this implies arc length control Note that arc length control cannot be used for the first phase direction The global direction in which the displacement control will be applied type The automatic control type 158 Notes cnd name nod control elm control arc length control tran
134. e 00 0 000000e 00 0 000000 00 8 0 000000e 00 0 000000e 00 0 000000e 00 sections type chs circular hollow section sec name mat name dimensions sectl matl 114 0 2 3 patterns p subdivision patterns for elelments qdp2 pat name ratios patl 12345 5 subelements smallest near 1st node pat2 32123 5 subelements smallest the middle groups type cbp2 grp name sec name monitoring points grpl sectl 40 type qdp2 grp name cbp2 grp name pat name grp2 grpl patl grp3 grpl pat2 structural nodal nod name x y 1 0 0 0 0 2 1910 0 0 0 3 3810 0 0 0 4 5720 0 0 0 restraints nod name direction J xtytrz 4 ytrz element connectivity h elm name grp name nod name 1 grp2 1 2 2 grp3 2 3 3 grp2 4 3 linear curves curves for time history loads start time 0 0 crv name cl time load factor 1 1 0 3 1 0 5 1 0 applied loading initial nod name direction type value 2 y force 0 1005 4 gt 1 0 0 1 time history nod name direction type crv name value 4 x disp cl 40 0 equilibrium stages end of stage steps 5 0 200 use default iterative strategy convergence criteria toleranc 0 1 5 force ref 0 1 6 moment ref 0 1 8 output m frequency 0 stress all equilibrium steps including step reduction levels end Note The following picture shows the names that have been given to the nodes and elements in the data
135. e joint elements may also be used to model special boundary conditions such as inclined supports soil structure interaction and structural gaps through choosing appropriate terms for the force displacement relationships 1 2 6 Dynamic Characteristics Modelling The dynamic characteristics of the structure namely mass and damping are modelled by means of non structural elements which must be included for dynamic analysis to be performed The dynamic element types are Type Description 2 cnm3 Lumped mass elements Inm2 Inm3 Linear distributed mass elements cbm2 cbm3 Cubic distributed mass elements cnd2 cnd3 Dashpot damping elements rld2 rld3 Rayleigh damping elements Chapter 2 USING ADAPTIC 2 1 ADAPTIC Data File In order to perform nonlinear structural analysis using ADAPTIC the problem data is stored in a data file which the program reads and processes Such data specifies the structural configuration and the loading applied to structure and must follow the syntax described in the Data Syntax chapter All ADAPTIC data files must have a dat extension e g one_storey dat SW_2 1 dat A new data file may be created through modifying an existing data file or through typing the data from scratch The former approach is usually more convenient especially for parametric studies when only some data entries require modification 2 2 Starting ADAPTIC ADAPTIC currently runs on Linux workstations w
136. e shear force M is the bending moment is the pure shear strength ftu is the ultimate tensile stress of the masonry fm is the ultimate compression stress of the masonry x is Turnsek s shape parameter 1 5 if H D 71 5 or 1 if H D 1 or H D otherwise The shear strength will be computed as follows Vig V For strips the strength is the pure shear strength for the shear force and the rocking strength calculated on Pmin for bending moment Note to compute the shear strength the model uses the values of the section forces N V and M at the start of the integration step so to obtain an accurate response the integration step has to be small enough Modelling of non linear behaviour of 2D masonry walls in the equivalent frame approach All parameters must be non negative All stiffness parameters must be positive 70 0 lt Kp lt Ke Force ratios and displacement must be positive gt 0 gt gt 0 du gt 0 Degradations parameters must be 1 1 and Upar gt 1 Rinaldin G Seismic analysis of masonry structures through non linear analysis Graduation Thesis supervisor Prof Ing C Amadio University of Trieste 2009 in Italian 61 Force displacement curve ssh 62 tom Description Parameters Characteristics Formulation Masonry decoupled Tomazevic s model for the equivalent frame modeling of 2D masonry walls Specified in this or
137. ead weight Also they can model initial support settlement through using a displacement load at a support nodal freedom 1 1 1 Static analysis proportional loading These are loads which vary proportionally according to one load factor The behaviour of a structure under proportional loading can be studied in the post ultimate range using the displacement control strategy These loads cannot be applied with time history loads within the same analysis 1 1 2 Static analysis time history loading These are loads which can vary independently in the time or pseudo time domain As such if the structure has reached a stage where the loads cannot be incremented as specified by the user the analysis is terminated since the program cannot establish how the user would want to continue the analysis Time history loads are useful for modelling cyclic loading under various force or displacement regimes 1 1 3 Dynamic analysis Dynamic loads can be specified in a similar way to time history loads and can be applied forces or prescribed accelerations Note that the latter allow the modelling of ground excitation which is different from the case of static analysis where support motion is indicated by means of prescribed displacements The ability to model loads varying independently in the time domain allows asynchronous excitation to be represented with relative ease 1 1 4 Eigenvalue analysis Eigenvalue analysis is performed using the effici
138. ed structures The program features are described briefly hereafter The initial development of ADAPTIC was driven by the needs of the offshore industry for an accurate yet efficient nonlinear analysis of offshore jackets subject to extreme static and dynamic loading This motivated the development of pioneering adaptive nonlinear dynamic analysis techniques for framed structures accounting for geometric and material nonlinearity which formed the basis of Prof Izzuddin s PhD thesis and which were extensively applied in nonlinear structural analysis under earthquake loading Since then the program has been extensively developed to deal with other extreme loading such as fire and blast as well as numerous additional structural forms such as R C and steel decked composite slabs cable and membrane structures and curved shells Most of these novel developments have been published in leading international scientific and professional journals as well as in international conferences see http www imperial ac uk people b izzuddin publications This version of the manual V1 1 covers mainly the frame analysis capabilities of ADAPTIC The more recent developments dealing with slabs and shells will be described in forthcoming versions of the manual Therefore the following discussions focus on the nonlinear analysis of plane and space frames Inelastic analysis of steel frames may be performed by either of two methodologies The first is an appr
139. el 1 mat name properties ml 210e9 300e6 0 01 are equivalent 134 7 2 General Facilities This sections describes general facilities which are available with all data modules unless indicated otherwise 135 7 2 1 Continuation The ampersand amp symbol can be used to continue data entry on the next line 136 Ta Comments Comments can be added anywhere in the data file using the hash symbol All entries following a on the current line are ignored 137 222 Incrementation The automatic incrementation facility can be used with some data modules This is indicated where applicable The general syntax is given below f lt entry 1 gt lt entry n gt r Sang 1112 asas gt inc n 1 gt lt rep 1 gt lt range 2 gt lt 1 2 gt gt inc n 2 gt lt rep 2 gt lt range m gt lt lm gt gt inc n m lt gt rep m gt lt entry i gt lt range j gt inc 1 lt rep jj Notes ith entry on the first data line used for generation Range of previously generated lines to be used for further incrementation Syntax of range j gt is first lt lt last j gt for example 4 8 The increment to be used in the generation of the ith entries If entry 1 gt is a character string then lt inc i j gt must be a dash The number
140. el The material model used The model should be one of those specified in Chapter 3 properties The material model properties The number of properties must be as indicated in Chapter 3 for the corresponding model Notes 142 7 3 4 Sections This module specifies cross section identifiers referring to a section type constituent materials and section dimensions sections sec name mat dimensions sec name The name of the section which has the given properties The name can be any alphanumeric string type The section type This must be one of the available types given in Chapter 5 mat name Specifies the material s used The specified entry s should be one of the material identifiers declared in the materials module dimensions Dimensions of the section The number of dimension must be as defined in Chapter 5 for the corresponding section type Notes 143 7 3 5 Patterns This modules defines subdivision patterns utilised in automatic mesh refinement The specified ratios indicate the number of potential subelements and their relative lengths patterns pat name ratios pat name A pattern identifier ratios Integer values denoting relative lengths of zones where inelasticity is checked The number of integers implicitly defines the number of zones Notes 144 7 3 6 Groups This module defines properties for element groups The number and nature
141. end value path k k 180 steps 30 20 H 5 9 1 2 Structural behaviour The nonlinear analysis is undertaken using one element per member the response shown in the figure illustrate the ability of this method to predict the lowest buckling mode and to trace the associated post buckling path when an imperfect dome is considered Here is been obtained how the vertical apex deflection varies while the load increases 2 5 wn 2 T T T 2 4 6 Vertical Apex Deflection m figure 9 1 2 a Response of space dome structure As is shown in the figure there is a first path where the displacements of the structure are almost proportional to the load but when is arrived to a certain value of load the displacement are nonlinear and they increase more than the load It is evident that the introduction of small imperfections activates the lowest buckling mode which involves a planar rotational mode like is shown in the figure In the absence of these imperfections the dome deflects fully symmetric about the dome apex papers 181 Bk figure 9 1 2 b Final deflected shape of space imperfect dome 182 9 1 3 Output file ADAPTIC also give an output file where can be found the way that the program calculates the structure ELEMENT ASSEMBLY ORDER gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt
142. ent Lanczos algorithm which requires as input the number of modes within the range of frequencies of interest as well as the number of iterative steps This algorithm can also be used with dynamic analysis where the frequencies and modes are obtained during analysis using the tangent stiffness 1 2 Structural Modelling The following sections describe how various analysis assumptions can be modelled using the ADAPTIC elements which are discussed in detail in Chapter 6 Note that different assumptions can be utilised in the same analysis for different members of the structure Note also that similar element types usually exist for 2D and 3D analysis distinguished by the last number in the element type identifier e g qph2 amp qph3 1 2 1 Elastic Modelling Quartic elastic elements gel2 qel3 can be used to model the beam column effect and large displacements for selected structural members One quartic element is capable of representing the beam column action and large displacements for a whole member 1 2 2 Plastic Hinge Modelling Quartic plastic hinge element qph2 qph3 have the same elastic representation power of elements qel2 qel3 but can represent material inelasticity through the utilisation of zero length plastic hinges at the element end nodes The introduction of these plastic hinges depends on the interaction between the bending moments at the element ends and the axial force established from the specificat
143. ergence criteria based on the maximum iterative displacement increment The work reference value used in calculating the convergence Applicable to convergence criteria based on the energy norm The maximum tolerance to which a solution may be relaxed to if the specified tolerance could not be satisfied with the iterative strategy This is used in conjunction with tol relax level Default 0 162 Notes A tolerance and maximum tolerance equal to zero is equivalent to an iterative procedure in which a fixed number of iterations is performed for each load or time step without consideration of convergence 163 7 3 20 Output This module specifies the frequency of numerical output output frequency lt integer gt stress local displacements no local displacements eigenvalue interval lt integer gt frequency stress no 1ocal displacements eigenvalue interval Provides the frequency of the numerical output 0 all equilibrium steps including step reduction levels 1 all equilibrium steps without step reduction levels noutput every n equilibrium steps Specified if element stresses are required Applicable only to specific element types Indicates whether the local displacements of elements are output which is true by default Indicates the output interval for eigenvalue analysis during dynamic analysis 164 7 3 21 Lanczos eigenvalue This
144. ferred to by a unique name displayed at the top of the following pages and requires the specification of a number of parameters 38 lin Description Parameters Characteristics Application Restrictions Linear elastic curve type ky Linear elastic curve Elastic joint action characteristics Force A gt Displacement Force displacement curve lin 39 smtr Description Trilinear symmetric elasto plastic curve type Parameters dy k 4 amp k specified in this order Characteristics Trilinear symmetric elasto plastic curve Unloading is performed kinematically to the extension of the second branch of the curve Application Elasto plastic joint action Restrictions k and k must be positive k amp k must not be more than Force A gt d d Displacement Force displacement curve smtr 40 astr Description Trilinear asymmetric elasto plastic curve type Parameters amp ky d k d k specified in this order Characteristics Trilinear asymmetric elasto plastic curve Unloading is performed kinematically to the extension of the second branch of the reloading curve Application Elasto plastic joint action Structural gaps The following parameters represent a curve with zero resistance until a specific negative displacement D is achieved 0 0 0 2 0 0 D Restrictions
145. file NI N2 N3 N4 O QE2 QE3 figure 9 4 1 Nodes and elements of fixed ended beam column 204 9 4 2 Structural behaviour The nonlinear analysis is undertaken using one element per member The following figures show the static response of fixed ended beam column The nodes 1 and 4 only experiments rotation The nodes 2 experiments a small displacement in X axes and a bigger one in the Y axes and does not exist any rotation Y displacement Load KN T T T T T T T T 1 100 150 200 250 300 350 400 450 500 Displacements mm figure 9 4 2b Displacements of fixed ended beam column The deformed shape that experiments the beam subject at those loads is the following one 4 figure 9 4 26 Deflected Shape of fixed ended beam column 205 9 4 3 Output file ELEMENT ASSEMBLY ORDER gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt 1 2 3 MAXIMUM FRONT NODAL 3 ADDITIONAL FREEDOMS 0 INITIAL LOADING INITIAL
146. for element type rld3 125 csl4 Description Nodes Characteristics Application Restrictions Group header 2 D flat shell element for composite floor slabs 4 Geometrically orthotropic slab 4 noded composite and R C slab element with additional rib and cover freedoms It deals with the nonlinear analysis of composite floor slabs enabling the modelling of material nonlinearities and geometric orthotropy through a modification of the Reissner Mindlin hypothesis The element can be used in a basic form employing bilinear shape functions or in a higher order form employing quadratic shape functions for the normal rotations This is achieved through the use of hierarchic additional freedoms which are defined in this order f 0 3 For the bilinear form only first 8 additional freedoms are used with the remaining 26 additional freedoms employed in addition for the quadratic form Individual additional freedoms may be restrtained as described in the restraints module Elevated temperature may be specified using element load type tmp7 specified in this order DAL DATE AY P AT AT b y where T and AT indicate respectively temperatures and temperature increments between the bottom of the cover and the top of the slab Realistic modeling of composite floor slabs under extreme loading including fire conditions sec name An identifier referring t
147. here it is started using the following command prompt adaptic filename Note that the filename does not include the dat extension e g adaptic one storey ADAPTIC can also be run in the background using the following command prompt adaptic filename gt filename log amp where iiename 1og 15 a file which stores the job progress The execution of ADAPTIC invokes two successive stages The first is a data reading stage where the problem details are read from the data file and several temporary files are created which incorporate problem and plotting information The second is the analysis stage where the information is retrieved from the temporary files and the nonlinear analysis is undertaken as specified If the program seems to hang up before entering the reading stage make sure that the two files param inc and stat x are removed from the working directory 2 3 ADAPTIC Output Files Upon successful completion of an ADAPTIC run three additional files corresponding to filename should exist filename out filename num amp filename pit The first file echoes the data file and contains the solution progress log The second file contains the numerical results at all requested load time steps The third file is a plot file used by the post processing programs Numerical results may be obtained through direct extraction from i1ename num Graphical visualisation of the results is also available through a number of post proce
148. ial model genl The first material provides the properties of the connecting elements e g plates angle The second material is the properties of bolts The thirds material is the properties of the connected member i e column and beam Number of parameters vary according to connection type e Flush endplate 13 parameters Extended endplate 26 parameters Double web angles 12 parameters Top and seat angles 23 parameters Combination of top seat and web angles 34 parameters Finplate 8 parameters 1 Flush end plate Bolt diameter Area of bolt shank Thickness of bolt head Thickness of nut Thickness of washer Distance from endplate edge to bolt head nut washer edge Distance of bolt head nut washer whichever is appropriate Distance from edge of bolt head nut washer to fillet of endplate to beam web Total depth of endplate Thickness of endplate e Endplate width 104 Minimum bolt pitch Coefficient for the computation of the effective width for the bolt row below the beam tension flange 2 Extended end plate The geometrical properties of the extended endplate are double the properties of the flush endplate accounting for different orientation of the T stub components but the details and order are the same The only exception is for the last parameter where the length of the extended part of the endplate is required 3 Double web
149. ictions Trilinear compressive concrete model for elevated temperature with zero tensile response 28 7 fam Compressive strength and its reduction factors 1 0 f 2 2 2 2 D 2 2 b 2 Peak compressive strain and temperature factors 10 Taz 2 T 2 T22 2 Tas 2 r Limit compressive strain and temperature factors r 8 c2 0 5 55 53 Thermal strain and temperatures O unused T T o T 0 Requires the specification of the compressive strength the peak compressive strain the limit compressive strain at zero stress the thermal strain and their variations with temperature Note that r gt and rs can be greater than 1 18 Stress 6 cl Strain Material model con6 con9 Description No of properties Properties Application Restrictions Rotating crack elevated temperature model for concrete with linear compressive response 25 Young s modulus and temperatures E r L Possion s ratio and temperatures D T Tensile strength and temperatures fo 5 T D T Softening slope and temperatures D L T Thermal strain and temperatures Sao 5 1 Plasticity based model of concrete taking account of tensile cr
150. inor load you can obtain higher displacements The following figure illustrates the response of modelling K frame with the plastic hinge approach 189 Figure 9 2 2b Deformed shape modelling with the plastic hinge approach It is evident that the introduction of small imperfections activates the lowest buckling mode which involves a deflection shape like is shown in the figure In the absence of these imperfections the K frame deflects fully symmetric about symmetry axes 190 9 2 3 Output file This is the output file given by ADAPTIC ELEMENT ASSEMBLY ORDER gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt 1 2 3 4 MAXIMUM FRONT NODAL 3 ADDITIONAL FREEDOMS 0 VARIABLE LOADING PHASE NUMBER 1 TYPE LOAD CONTROL INCREMENT FACTOR 0 100000E 01 NUMBER OF STEPS 25 VARIABLE LOAD OUTPUT FACTOR LEVEL CONV NORM ERATIONS 1 0 40000000 01 0 0 155 07 1 2 0 80000000 01 0 0 242 07 1 3 0 12000000E 00 0 0 390 07 1 4 0 16000000E 00 0 0 651 07 1 5 0 20000000E 00 0 0 114E 06 1 6 0 24000000E 00 0 0 209E 06 1
151. input 1 Rs Residual strength Polygonal hysteretic model based on the S shaped law deduced from literature This model also uses a combination of simplified strength criteria to determine the shear or bending resistance Vr Stiffness Degradation linear with the displacement it depends on factor CK K gt i K C 4 where Ku Ultimate stiffness Ke Elastic stiffness du Ultimate displacement Displacement at elastic limit The unloading stiffness at a given displacement is calculated with K where dmax maximum displacement reached Kd Unloading stiffness Strength criteria The model can use any combination of the following simplified strength criteria to determine the shear or bending resistance Vr or Mr Failure due to rocking y 5 N hy 2 08554 m Failure due to sliding y 1 55 fio 0 4N Failure due to diagonal cracking according to Turnsek Cacovic criteria LS fyb 5 N Failure due to pure shear V fao B T Failure due to rocking in strips V 2 Prin 1 b 0 855 1 f where h0 M V is the distance of the null point in the bending moment diagram from the section that we are looking at 60 Application Restrictions References h is the height of the wall b is the width of the wall t is the thickness of the wall N is the axial force V is th
152. ion display area has the following functionality Lef button controlled customisation of current view Right button turn on off axes orientation in the Graphics Display Area View Indicator This displays the current view number 1 2 or 3 The presence of indicates that the current view is a subsequent modification of a stored view whereas indicates that the 172 Graphics Display Area Orientation Tool i File Shapes Contours View View Indicator _ Output Number Indicator Output Number Selector Auto Display Speed Selector Contour Display Area Figure 8 3 1 Components of ADAPTIC shapes application current view is a precursor to a stored view Furthermore N indicates a normal view whereas P indicates a perspective view Output Number Indicator This displays the current output number as well as the corresponding eigenvalue mode if any in view For example Output 3 refers to the actual deflected shape in output number 3 Output 5 M2 refers to mode 2 of output number 5 with auto display slider contol given to varying the output number while Output 5 M2 refers to the same mode and output number with auto display slider contol given to varying the mode number A single click with the left mouse button enables specification of output number and eigenvalue mode Output Number Selector This allows output number selection u
153. ion factor Bs Factor scaling direct tensile stresses for shear interaction Normalised shear softening relative to direct tensile softening Ys Representation of tensile cracking and compressive nonlinearity including softening effects Modelling of crack opening and closure the latter being an important requirement under dynamic loading and fire conditions Consideration of the effects of elevated temperature both in terms of the resulting thermal strains and the change of material properties 23 5 Exe ALT 7 7 7 5 8 Vos Yt T xyc Material model 11 Cont 4 24 E v f a f Y T 4 A DEn Eni Material model con11 25 genl Description No of properties Properties Application Restrictions Material properties for connection components connected member at elevated temperature 45 Ultimate strength temperatures and reduction factors for quadlinear description Tarrio Tas pais Young s modulus temperatures and reduction factors E T 1 1 22 225 73 22 2 2 92 Reduced strain hardening coefficient temperatures and reduction factors 17432743 Yield strength temperatures and reduction factors r
154. ion of the element cross section 1 2 3 Elasto Plastic Modelling Detailed elasto plastic modelling based on the inelastic uniaxial material response can be performed using cubic elasto plastic elements cbp2 cbp3 which accurately model the spread of plasticity across the cross section through the utilisation of material monitoring point To represent the spread of inelasticity along the member length a number of cubic elements usually over 5 are required per member 1 2 4 Adaptive Elasto Plastic Modelling Adaptive analysis can be applied in the elasto plastic analysis of steel frames to reduce the modelling task which previously required a fine mesh of cubic elements all over the structure and to enable the analysis to be performed quite efficiently The concept of adaptive analysis entails the utilisation of elastic quartic element qdp2 qdp3 which would sub divide into inelastic cubic elements cbp2 cbp3 when inelasticity is detected during analysis The analysis is started using only one quartic element per member with element refinement performed automatically when necessary in zones along the element which are pre defined by the user 1 2 5 Joints and Boundary Conditions Joint behaviour can be modelled by means of joint elements jel2 jel3 with de coupled axial shear and moment actions These joint elements can have any orientation and may utilise a number of force displacement relationships described in Chapter 4 Th
155. istics Geometric nonlinearity Nodes 1 and 2 define the element connectivity and its local x axis The y axis lies in a plane defined by the x axis and node 3 which can be a non structural node Application Rigid link Elastic bar with pinned ends Restrictions Group header stiffness parameters numerical or rigid values for each of the spring stiffnesses and in this order M 2 41 2 1 x x L L 2 2 gt gt gt N 4 koji Ker Ker M y2 M 22 lt lt lt 6 gt 44 4 6 6 ind F M M M T T T T a x y plane b x z plane Stiffness parameters and forces in local system of element type Ink3 114 Inks Description 3D link element linking 6 DOF to 5 DOF nodes Nodes 3 Characteristics Geometric nonlinearity Nodes 1 and 2 define the element connectivity and its local x axis The y axis lies in a plane defined by the x axis and node 3 which can be a non structural node Application Beam to slab connection The second node is a 5 DOF node belonging to plate shell elements with only two rotational DOF s including csl4 elements Restrictions Group header stiffness parameters numerical or rigia values for each of the spring stiffnesses 2 and k in this order T 2 0 2 1 gt x x L ko g
156. ity is defined by 6 Overstress log 2 Ex Cowper Symonds rate sensitivity is defined by 4 l q Overstress ay p D 30 Stress A 2 Strain Material model bnsk m 0 Stress A Material model bnsk m 1 2 3 31 tpth Description No of properties Properties Application Triaxial elasto plastic material model with kinematic strain hardening and elevated temperature effects 30 Young s modulus and temperatures E E T T T Yield strength and temperatures To D T Plastic strain at onset of hardening dis 1 To Strain hardening parameter Ho 1 5 Possion s ratio and temperatures Vo T T Thermal strain and temperatures Sao To 3D brick elements 32 Stress A Material model tpth Cont d 33 E o u A V 0 T T v Vo T En 3 Eni T T T Material model tpth ifs 1 Description Advanced material model for coated fabrics No of properties 19 Properties Half the wavelength of the warp yarn doi Half the wavelength of the weft yarn do Half the thickness of the warp yarn Toi Half the thickness of the weft yarn To2 Crimp height Zoi Half the width of the warp yarn boi Half the width of the weft yarn bo Linear term material property for
157. joint elements parameters Defines parameters for the joint elements 116 z lies in x y plane ap e y 3 2 12 7 Before deflection x After deflection Configuration and forces for element type jel3 117 cnm3 Description Nodes Characteristics Application Restrictions Group header Concentrated lumped 3D mass element 1 Models lumped mass for dynamic analysis Allows full 3x3 translational mass matrix to be defined Lumped element mass specified according to one of M default M M M amp M M M 0 M M M default M M 0 M M M M M xy XZ M Allows specification of mass proportional damping at group level Dynamic analysis of space frames shells and 3D continuum membrane structures mass Element mass damping parameter optional parameter for mass proportional Rayleigh damping defaults to the value of mass damping parameter specified in the default parameters module 118 Z Forces for element type cnm3 119 cnd3 Description Damping parameters Nodes Characteristics Application Restrictions Group header Concentrated dashpot 3D viscous damping element Three translational and three rotational damping coefficients specified in this order Cx Cy Cz Czz 1 Models nodal viscous damping for dynamic analysis D
158. k and k must be positive k amp k must not be more than k for the positive and negative displacement regions Force dj Displacement Force displacement curve astr 41 rigid Description Parameters Characteristics Application Restrictions Rigid curve type None Rigid curve Constrains a local freedom to zero Avoids numerical problems that can occur with the lin curve type using a large stiffness Force Displacement Force displacement curve rigid 42 contact Description Contact curve type Parameters dy amp do Characteristics Gap contact curve with gap between dg and dj Application Modelling of gaps with arbitrary lower upper limits Restrictions Force A 4 Displacement Force displacement curve contact 43 plastic Description Parameters Characteristics Application Restrictions Plastic curve type K Rigid plastic curve with plastic limits Fy amp Modelling of rigid response with arbitrary lower upper plastic limits Force Displacement Force displacement curve plastic 44 radcont Description Radial contact curve _ _ Parameters d amp d or d amp d Characteristics Coupled gap contact curve between local v and w freedoms Elliptical gap Application Contact between concentric circular tubular members for whi
159. ments in the global Z direction Element configuration Element forces before and after deflection Configuaration and global forces for element type cbl3 129 mem3 Description Linear membrane element Nodes 3 Characteristics Accounts for large displacements in the small strain range The element has no bending capacity Integration is exact Application Tension fabric structures Requires specification of unstrained element dimension s Restrictions Only allows use of linear elastic materials Limited to small strain problems Starting configuration must be close to equilibrium configuration Group header sec name An identifier referring to a cross section of type thpl declared in the sections module There are also There are also displacements in the forces in the global Z direction global Z direction Element configuration Element forces before and after deflection Configuaration and global forces for element type mem3 130 memo Description Nodes Characteristics Application Restrictions Group header There are also Quadratic membrane element 6 Accounts for large displacements in the small strain range The element has no bending capacity Numerical integration performed over four Gauss points Tension fabric structures Requires specification of unstrained element dimension s Allows use advanced fabric material model tfs1 Limited to small strain proble
160. metric strength degradation This model also uses a combination of simplified strength criteria to determine the shear or bending resistance Vr Multi Parametric Strength Degradation E 1 AF 1 1 1 EmtE A where Fy Yielding force 54 y 1 strength degradation parameter 0 lt y lt 1 Ep Dissipated energy Eum Dissipated Energy in a Monotonic Loading Umax Maximim displacement Aum Ultimate Displacement in a Monotonic Loading g 2 Strength degradation parameter 5 3 Strength degradation parameter Failure due to diagonal cracking of the mortar layers em VA Dt M jp V D Failure due to diagonal cracking of the bricks D s t gt 2304 uL V D Failure due to base shear distortion Va D t ko V 1 3 Failure due to bending E ND N N fu D t V D Failure due to diagonal cracking accordingly to Turnsek and Cacovic criteria Sa 1 3 b D t f tu Vas D t Failure due to pure shear where M V is the distance of the null point in the bending moment diagram from the section that we are looking at see figure D width of the wall is the thickness of the wall N axial force V shear force 55 M bending moment e parameters that define the strength of the mortar in the Coulomb s model fbt
161. module specifies the number of required eigenvalues and the range of natural frequencies of interest The Lanczos eigenvalue algorithm is utilized lanczos eigenvalue number of eigenvalues lt integer gt steps lt integer gt w min gt real gt w max gt real gt shift gt real gt starting vector nod name direction value number of eigenvalues steps w min w max shift starting vector nod name direction value The number of required eigenvalues The number of Lanczos steps to converge to the eigenvectors Minimum natural frequency of interest Maximum natural frequency of interest The frequency shift during the solution of the eigenvalue problem Initial vector used by the Lanczos algorithm to derive eigenvectors Node name considered in the starting vector The global direction which is given the specified values The value of the entry in the starting vector corresponding to the nod name in the global direction 165 Notes The number of steps must be less or equal to the total number of freedoms for the structure w min w max and shift in rd sec shift must be between w min and w max A random starting vector is generated if the starting vector module is not specified 166 Chapter 8 POST PROCESSING 8 1 Start Up After the analysis has been completed a post processing application may be started to study the structur
162. ms sec name An identifier referring to a cross section of type thpl declared in the sections module Strain field Specifies whether a conforming or assumed strain field is to be used There are also displacements in the forces in the global Z direction global Z direction X Element configuration Element forces before and after deflection Configuaration and global forces for element type mem6 131 bk20 Description Nodes Characteristics Application Restrictions Group header 20 noded 3D brick element 20 Models 3D continuum large displacement problems using Green s strain Applies to static dynamic and elevated temperature analysis Allows direct specification of material density and Rayleigh damping parameters for dynamic analysis Static dynamic analysis of 3D continuum problems Works with material models beth bnsi bnsk and tpth mat name An identifier referring to one of the materials declared in the materials module gauss points optional total number of gauss points defaults to 27 ie 3x33 density optional material density used for dynamic analysis defaults to zero damping parameter two optional parameters for mass and stiffness proportional Rayleigh damping respectively default to the values of mass damping parameter and stiffness damping parameter specified in the default parameters module 132 Nodal ordering for bk20
163. n Masonry decoupled pivot model for the equivalent frame modelling of 2D masonry walls Specified in this order Ke Stiffness of the elastic branch Fy Vr Ratio between the yielding force or moment and the shear or bending resistance Vr or Mr Kp Stiffness of the Ist post elastic branch Fp Vr Ratio between the force or moment at the end of the first post elastic branch and the shear or bending resistance Vr or Mr Kh Stiffness of the 2nd post elastic branch Ud Ultimate displacement or rotation a Pivot parameter a gt 1 B Pivot parameter 1 gt B gt 0 y Strength degradation parameter 0 lt y lt 1 6 Strength degradation parameter displacement Strength degradation parameter energy Um Ultimate monotonic displacement Ener Ultimate monotonic dissipated energy Vrmin Minimum shear or bending resistance c Coulomb s mortar coesion Coulomb s tangent of the friction angle of the mortar FBT Ultimate traction stress of the bricks D Wall width T Wall thickness Fu Ultimate compression stress of the masonry K Stress distribution factor Ftu Ultimate traction stress of the masonry b Turnsek s shape parameter b 1 5 if H D gt 1 5 b 1 if H D 1 or b H D if 1 lt H D lt 1 5 cod strength criteria code Polygonal Hysteretic model based on the Pivot Rule proposed by Park and modified to prevent stiffness increase in decreasing load cycles and using multi para
164. n by the product of its nominal value and the load factor obtained from its load curve at that pseudo time Time history loads may be forces or prescribed displacements applied at nodes in the global directions These are dynamic loads varying according to different load curves in the real time domain The magnitude of a load at any given time is given by the product of its nominal value and the load factor obtained from its load curve at that time Dynamic loads can be forces or 155 Notes accelerations applied at the nodes in the global directions nod name The node at which the load is applied direction The direction of the applied load x displacement along global X axis y displacement along global Y axis z displacement along global Z axis rx rotation about global X axis ry rotation about global Y axis rz rotation about global Z axis type Defines the type of the applied load force applied force displacement d applied displacement velocity v applied velocity acceleration a applied acceleration element specific keyword for element loads elm name The element subjected to loading value Nominal value of the applied load crv name The load curve defining the variation of dynamic or time history loads The load curve must be declared in the 1 near curves module proportional loads time history loads and dynamic loads cannot be used in the same analysis initial
165. nd negative branch Khn stiffness of the third negative branch Uup ultimate positive displacement Uun ultimate negative displacement 01 pivot parameter a gt 1 pivot parameter 0 lt B lt 1 yl positive strength degradation parameter 02 pivot parameter a gt 1 82 pivot parameter 0 gt 3 gt 1 y2 negative strength degradation parameter 21 positive strength degradation parameter energy 22 negative strength degradation parameter energy Ump positive monotonic ultimate displacement for strength degradation Umn negative monotonic ultimate displacement for strength degradation 61 positive strength degradation parameter displacement 62 negative strength degradation parameter displacement Polygonal Hysteretic model based on the Pivot Rule proposed by Park et al and modified to prevent stiffness increase in decreasing load cycles and using multi parametric strength degradation General symmetric or non symmetric model with pinching and stiffness degradation All stiffness parameters must be positive gt 0 0 lt Khp lt Kpp lt Kep 0 lt Khn lt Kpn lt Ken Positive forces and displacement must be positive gt 0 gt gt 0 Uup gt 0 Negative forces and displacement must be negative lt 0 51 lt lt 0 Uun lt 0 Pivot rule parameters must be 1 gt 1 0 lt 1 lt 1 2 gt 1 0 lt 2 lt 1 Multi parametric strength degradation parameters must
166. nforced concrete I or T section 1 2D analysis 6 2 Reinforcement layers Bottom flange width ba Bottom flange thickness Top flange width 65 Top flange thickness te Web depth d Web thickness ty 2D analysis A d for each reinforcement layer General reinforced concrete I or T sections Symmetric section about the y axis dj is the distance of reinforcement layer bar i from the bottom fibre of the section 82 Section regs 83 cslb Description No of materials No of dimensions Dimensions Application Composite floor slab section 4 specified in this order Deck parallel to the rib Deck perpendicular to the rib Reinforcement Concrete 12 Depth of cover t Depth of rib h Rib geometric ratio r Thickness of steel deck ta Reinforcement area per unit length in local x direction t Location of reinforcement in x direction above below reference mid plane dx Reinforcement area per unit length in local y direction ty Location of reinforcement in y direction above below reference mid plane dy The remaining 4 dimesions are for two additional reinforcement layers in x and y directions Composite floor slab cross section consisting of ribbed reinforced concrete acting compositely with trapezoidal steel decking 84 Ed Section cslb 85
167. nts For that purpose use jel2 stiffness parameters Defines stiffness parameters F Forces for element type spe2 96 jel2 Description Curve types Parameters Nodes Characteristics Application Restrictions Group header 2D joint element with uncoupled axial shear and moment actions Models used for the joint force displacement curves specified for F axial V shear and M moment respectively Each of these models may be any of those described in Chapter 4 Parameters for each of the three models specified for F V and M 3 Nodes 1 and 2 must be initially coincident Node 3 is only used to define the x axis of the joint and can be a non structural node The orientation of the joint x axis after deformation is determined by its initial orientation and the global rotation of node 1 Plane frame analysis Can be used to model pin joints inclined supports elasto plastic joint behaviour soil structure interaction and structural gaps through employing appropriate joint curves Element has a zero initial length since nodes 1 and 2 must be coincident Cannot be used to model coupled axial shear and moment actions curve types Defines curve types for joint elements parameters Defines parameters for the joint elements 97 To F x 2 1 after deflection 1 before deflection p 1 2 T X
168. o of properties Properties Application Restrictions Bilinear material model 20 Young s modulus and temperatures used for trilinear description E E5 T T5 T Yield strength and temperatures for trilinear description Top Toz Strain hardening factor and temperatures for trilinear description His 42 Thermal strain and temperatures 01 05 To Requires the specification of Young s modulus the yield strength the strain hardening factor the thermal strain and their variations with temperature 11 ol To We 3 MB 2 3Y T Li n Tw T Material model stl4 12 8115 Description No of properties Properties Application Restrictions Creep model 28 The first 20 properties are the same as those of the bilinear model Material constants for modelling creep A B C D F G AH R In addition to the 20 parameters for the bilinear material model 8 more parameters are required to specify the creep response of the material 13 5110 Description No of properties Properties Application Elliptical model 37 Young s modulus and corresponding temperatures E E Ej E45 T T2 T4 Ts Proportional limit and corresponding temperatures Pd up T p d p2 p3 p4 pl 2 p3 p4 5 Yield st
169. o a cross section of type cslb declared in the sections module type one of the following left rib cover central rib and right edge rib gauss points 3 entries representing number of gauss points in the local x y and z directions respectively options optional parameter indicating the element order bilinear quadratic defaults to bilinear 126 0 IV Element types for 6314 I left edge rib II cover III central rib IV right edge rib Em gt U3 Ws 0 3 e 4 u W4 0 0 0 u v w 0 9 T u Va W 0 0 mee 2 0 0 igo Yet S u vV w 0 0 u v w 9 0 Wima Ya 2 U Vi Wi T AT Temperature distribution for csl4 127 cbl2 Description Nodes Characteristics Application Restrictions Group header Y There are also displacements in the global Z direction p Linear cable element with variable length 2 Accounts for large displacements in the small strain range Allows transfer of material across adjacent connected elements The element has no bending capacity Exact integration Cable and tension fabric structures Requires specification of unstrained element dimension s coupled additional freedoms Only allows use of linear elastic materials Limited to small
170. o one of m default m m m m Allows specification of mass proportional damping at group level Dynamic analysis of space frames mass length Mass per unit length damping parameter optional parameter for mass proportional Rayleigh damping defaults to the value of mass damping parameter specified in the default parameters module 122 Forces for element type cbm3 123 rld3 Description Mass length Parameters Nodes Characteristics Application Restrictions Group header Rayleigh damping 3D element Mass per unit length Two proportionality constants aj amp a2 of mass and stiffness respectively specified in that order 3 Models Rayleigh damping effects All rld3 elements must have the same constant al amp a2 to model conventional Rayleigh damping Nodes 1 and 2 define the element connectivity and its local x axis The y axis lies in a plane defined by the x axis and node 3 which can be a non structural node Dynamic analysis of plane frames a1 should be set to zero for dynamic analysis involving ground excitation otherwise damping would be proportional to absolute rather than relative frame velocity sec name An identifier referring to one of the cross sections declared in the sections module mass length Mass per unit length parameters Defines parameters of Rayleigh damping elements 124 Forces
171. of times each line in the range range j gt is incremented The defaults for optional arguments are range j gt 1 total number of lines generated so far first j gt 1 lt last j gt total number of lines generated so far 138 7 3 Input Modules This sections describes the input modules available within ADAPTIC 139 7 3 1 Analysis This module specifies the analysis type analysis 2d 3d eigenvalue dynamic static 2d Two dimensional analysis 3d Three dimensional analysis eigenvalue Eigenvalue analysis dynamic Dynamic analysis static Static analysis Notes 140 7 3 2 Default parameters This module specifies some default parameters default parameters mass damping parameter lt real gt stiffness damping parameter lt real gt mass damping parameter Parameter used to specify mass proportional damping without the need for damping elements Applies to mass elements cnm2 stiffness damping parameter Parameter used to specify stiffness proportional damping without the need for damping elements Applies to elements bk20 Notes 141 7 3 3 Materials This module specifies material identifiers referring to a particular model and model properties materials mat name 1 properties mat name A material identifier referring to the specified model and properties The material name can be any alphanumeric string mod
172. omponents e g 1 for X and 0 for Y amp Z to consider only the X displacements though identical scales are commonly used for realistic deflected shapes Select This allows the selection of any of the three stored views in addition to the previous view By default the three views correspond to normal views of the i X Y X Z and Y Z planes Store This allows the storage of the current view into one of the three available views Customize This enables customisation of the current view including 1 axes orientation 11 zoom centre zoom scale and iv normal perspective specification 177 Chapter 9 EXAMPLES 9 1 Space dome subject to vertical apex load The dome space structure shown in the figure has been widely considered in the verification of nonlinear analysis methods for 3D frames The aim here is to be able to predict the lowest buckling mode of the dome Cross section All dimension m P 7 12 570 p X 1 5 s 4 55 x 12 190 24 380 6 285 Plan Elevation figure 9 1 Configuration of space dome subject to vertical apex load In order to illustrate the behaviour of the structure under a increasing load here is going to be use ADAPTIC which has the capability of predicting the large displacements static and dynamic behaviour of elastic and inelastic plane and space frames 178 9 1 1 Data file
173. onable accuracy in inelastic modelling Nodes 1 and 2 define the element connectivity and its local x axis The y axis lies in a plane defined by the x axis and node 3 which can be a non structural node Modelling of inelastic members in space frames The elastic torsional rigidity is used which is approximate for composite and R C sections Warping strains are not accounted for sec name An identifier referring to one of the cross sections declared in the sections module monitoring points Defines the number of points for monitoring stresses and strains within a cross section 107 L L C aa a M M F M a x y plane b x z plane Forces in local system of element type cbp3 108 gel3 Description Quartic elastic 3D beam column element Nodes 3 Imperfections 025 Vyost Vyosst Vzoast and can be specified Characteristics Geometric nonlinearities Large displacements and beam column effect of perfect imperfect members One element type qel3 is usually sufficient to represent the beam column effect and large displacement response of a whole elastic member Nodes 1 and 2 define the element connectivity and its local x axis The y axis lies in a plane defined by the x axis and node 3 which can be a non structural node Application Geometric nonlinearities in elastic space frames Restric
174. ould be seen in the figure It has the same behaviour as the node 4 The nodes 2 and 3 have similar behaviour X displacement Displacement cm figure 9 3 2 Static response of Lee s frame at node 3 This is the deformed shape of the Lee s frame As it could be seen nodes 1 and 4 only experiment rotation and the displacements of node 2 are bigger than the displacements of node 3 even the develop in the time follows the same tendency 197 figure 9 3 2b Deflected shape of Lee s frame The real deflected shape of Lee s frame when the load increase vary like is shown in the following figure figure 9 3 26 Deflected shape of Lee s frame during static loading 198 933 Output file ELEMENT ASSEMBLY ORDER gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt 1 2 3 MAXIMUM FRONT NODAL 2 ADDITIONAL FREEDOMS 0 VARIABLE LOADING sd ee i ed EO PHASE NUMBER 1 TYPE LOAD CONTROL INCREMENT FACTOR 0 200000E 01 NUMBER OF STEPS 20 VARIABLE LOAD OUTPUT FACTOR LEVEL CONV NORM ITERATIONS 1 0 10000000E 00 0 0 489E 09 3 2 0 20000000E 00 0 0 926E 08 3 3 0 30000000E 00 0 0 304
175. oximate solution using ideal plastic hinge elements while the second is a more accurate solution employing elements which account for the spread of plasticity across the section depth and along the member length For reinforced concrete and composite frames inelastic analysis is performed using the second approach only The loading can be either applied forces or prescribed displacements accelerations at nodal points The loads can vary proportionally under static conditions or can vary independently in the time or pseudo time domains The latter variation can be utilised for static or dynamic analysis 1 1 Types of Analysis Loads can be applied at the nodal positions for the translational and rotational freedoms in the three global directions X Y Z load can be an applied force or a prescribed displacement acceleration The only restriction on the application of loads is that a load corresponding to a structural freedom should only be specified once and that the loaded freedom should not be restrained This requires that ground excitation for example should be specified as an applied acceleration at the ground nodal freedoms and that these freedoms should not be restrained Static loads applied only once to the structure at the start of analysis Any further loads applied during proportional or time history loading are applied incrementally on top of these loads The initial loads are useful for modelling the structure d
176. pplication Restrictions Flexural wall section 4 specified in this order Reinforcement Unconfined region Partially confined region Fully confined region 2D analysis 5 2 Reinforcement layers on one side of z axis 3D analysis 5 3 Reinforcement bars in one y z quadrant Wall width B Confined width b Wall thickness T Confined thickness t Depth of fully confined region C 2D analysis for each reinforcement layer on one side of the z axis 3D analysis 2 for each reinforcement bar in the positive y z quadrant Symmetric flexural walls Section is assumed symmetric about the y z origin hence only one side of the reinforcement need to be specified 76 Partially confined Unconfined z Fully confined B Section 77 rccs Description No of materials No of dimensions Dimensions Application Restrictions Reinforced concrete column section 3 specified in this order Reinforcement Unconfined region Confined region 2D analysis 4 2 Reinforcement layers on one side of z axis 3D analysis 4 3 Reinforcement bars in one y z quadrant Section depth ha Stirrup depth ha Section width ba Stirrup width b 2D analysis for each reinforcement layer one side of the z axis 3D analysis A y Z for each reinforcement bar in
177. r referring to a subdivision pattern in the patterns module 95 t Vost Initial Element configuration before and after deflection 1 imperfection Vost V 025L 0 75L Element forces Configuration and forces in local system of element type qdp2 94 Ink2 2D link element with discrete axial rotational springs 3 independent spring stiffnesses each taking either a constant Description Nodes 2 Characteristics Geometric nonlinearity numerical value or a rigid value Application Rigid link Elastic bar with pinned ends Restrictions Group header stiffness parameters numerical or rigid values for each of the spring stiffnesses and in this order Element configuration before and after deflection M 2 gt A M 1 ____ lt x Element forces Configuration and forces in local system of element type Ink2 95 spe2 Description Stiffness parameters Nodes Characteristics Application Restrictions Group header Linear 2D nodal spring element Two global translational stiffnesses and one rotational stiffness can be specified in the following order RE 5 1 Models elastic boundaries for plane frame analysis Requires the definition of only one node with the other node assumed fixed against translation and rotation Plane frame boundaries Cannot be used to Join two eleme
178. ral damage due to explosion is relative small For both loading scenarios elevated temperatures initiate buckling in the internal column at T 475 C However the explosion fire scenario is associated with a much reduced overall fire resistance of T 642 in comparison with that of the fire only scenario T 894 C representing a reduction of 28 This reduction is mainly attributed to deterioration in vertical resistance of the side column due to explosion damage leading to redistribution of vertical loading to the internal column and an earlier overall failure of the system The deflected shapes for the two loading scenarios are shown in the following figure a fire loading b explosion loading figure 9 6 2a Final deflected shape after a fire loading b explosion The deformed shape if we consider explosion and fire loading given by ADAPTIC shows that the combination of both efforts 236 figure 9 6 2b Final deflected shape after explosion and fire loading In addition to the analysis of the structure it is going to be considered the CPU time demand over the displacements at the node 121 which is the one that experiments higher displacements m 2 z 2 X displacement Y displacement T T T T T 1 100 120 140 160 180 200 Displacements mm figure 9 6 2b Final deflected shape after explosion and fire loading 237
179. red in the sections module t Vos Y A M F Initial E Ls imperfection Vost M eee p X X Element configuration Element forces before and after eflection Configuration and forces in local system of element type qel2 90 qph2 Description Nodes Subdivision Imperfections Characteristics Application Restrictions Group header Quartic plastic hinge 2D beam column element with an option for automatic subdivision 2 Automatic subdivision into two elements if a plastic hinge is detected within the element may be requested Vost can be specified Geometric and material nonlinearities Suitable for members in which the spread of plasticity is not important and the section response is elastic plastic without strain hardening Rotational and axial plastic hinge displacements are allowed at the two ends of the element One element type qph2 is usually sufficient to model a whole member and the option of subdivision allows for the case of member buckling Large displacement plastic hinge analysis of plane frames Not applicable to reinforced concrete or composite members sec name An identifier referring to one of the cross sections declared in the sections module Subdivision Gives the option for automatic subdivision plastic hinge elements t true consider element subdivision 1 false ignore element subdivision 91
180. rength and corresponding temperatures fy1 fyz as Tasa yb y2 yd yl y2 Thermal strain and corresponding temperatures a1 Og Og O45 Tars Tos Tass Tas Ultimate strain requires 37 parameters in total to describe Young s modulus the proportional limit the yield strength the thermal strain and their variations with temperature The nine parameters used to define the proportional limit and its variation with temperature is illustrated in figure The other parameters are defined in the same sequence The ultimate strain should be g gt 0 15 and defaults to 0 20 Restrictions T Ta T pl p3 Ta Material model st10 14 conl Description No of properties Properties Application Notes Trilinear concrete model with optional tensile response and quadratic initial compressive response 8 Secant compressive stiffness Compressive strength fa Compressive softening stiffness E Residual compressive strength Initial tensile stiffness Tensile strength f Tensile softening stiffness Ej Value of a 01 1 Simplified uniaxial modelling of concrete material is the initial tangent modulus in compression gt 0 implies a quadratic initial compressive response Stress A i t Strain Material model 1
181. s the tolerance at the iterative calculating process and the reference value in calculating the convergence Specifies the frequency of numerical output This module specifies levels within elements of specific types This module specifies the conditions which govern the termination of the automatic control phrase under a proportional static loading regime This modules defines subdivision patterns utilised in automatic mesh refinement This module specifies piecewise linear load curves for dynamic or time history loading This module specifies the time scheme for dynamic analysis and its parameters 253 s This module defines of intervals at which structural equilibrium is established 254
182. sensitivity m 3 same as m 1 with Cowper Symonds rate sensitivity Ultimate strength is defined for models m 1 2 3 by HE x Eh l u 2 S oy Only default model m 0 is applicable to 1D Malvern rate sensitivity is defined by 6 Overstress log 2 Ex Cowper Symonds rate sensitivity is defined by 4 l q Overstress D 28 Stress A 2 Strain Material model bnsi m 0 Stress A Material model bnsi m 1 2 3 29 bnsk Description No of properties Properties Application Biaxial triaxial elasto plastic material model with kinematic strain hardening and material rate sensitivity 9 Young s modulus E Possion s ratio v Yield strength Strain hardening parameter u Plastic strain at onset of hardening n Features flag m Plastic strain at ultimate strnegth m Rate sensitivity parameter 1 S q Rate sensitivity parameter 2 amp D Can be used for 1D 2D and 3D elements Features flag takes the following values m 0 linear hardening without rate sensitivity Default m 1 quaratic hardening with an ultimate strength limit m 2 same as m 1 with Malvern rate sensitivity m 3 same as m 1 with Cowper Symonds rate sensitivity Ultimate strength is defined for models m 1 2 3 by HE x Eh l u 2 o Oy Only default model m 0 is applicable to 1D Malvern rate sensitiv
183. sing a slider which is more convenient for a quick browse through the deflected shapes Auto Display Speed Selector This enable the speed of automatic display for deflected shapes to be controlled using a slider Contour Display Area This area displays the contour colours and scale and is activated by the General Settings button A single click with the mouse buttons on the contour display area has the following functionality Lef button customisation of contours Right button turn on off contour information in the Graphics Display Area 173 8 3 2 File This menu option offers the following facilities discussed with reference to the initiating buttons Data File This allows the selection of the data filename provided the application is started on the command line without a filename specification 1 prompt adaptic s Save This button provides the means for storing plot information in a plot file for later retrieval This is quite important for storing a permanent description of the plot so that future modification can be performed with relative ease Save files for the ADAPTIC_shapes application are automatically given extension Retrieve This button retrieves svs plot files that have been previously saved Print This button allows the output of the plot description to an Encapsulated PostScript EPS file which can be imported into word processing applications Movie Where
184. slation rotation 2 The direction specification x y z is used only for arc length control and can represent any combination of the available translational freedoms x y and or z The name of the stopping condition used in the automatic control option The specified condition should be declared in the conditions module The path entry always be keep for the first phase automat ic control can not be the first phase 159 7 3 18 Iterative strategy This module specifies the iterative strategy applied during a load or a time step iterative strategy number of iterations initial reformations step reduction divergence iteration scaled iterations tol relax level maximum convergence arc flow iteration number of iterations initial reformations step reduction divergence iteration scaled iterations tol relax level maximum convergence lt integer gt lt integer gt lt integer gt lt integer gt lt integer gt lt integer gt real gt lt integer gt The maximum number of iterations performed for each increment Default 10 The number of initial reformations of the tangent stiffness matrix within an increment Default 10 The step reduction factor used when convergence is not achieved Default 5 The iteration after which divergence checks are performed Default 6 Number of iterations gt 2 after divergence o
185. ssing programs described in the Post Processing chapter Chapter 3 MATERIAL MODELS The ADAPTIC library includes a number of uniaxial material models which can be used to model steel concrete and other materials with similar behavioural characteristics The models and their applicability are briefly described below with full details given in next pages Model stl1 812 conl con2 con3 Applicability Bilinear steel model with kinematic strain hardening Multisurface steel model Simple trilinear concrete model Constant confinement concrete model Variable confinement concrete model Cubic elasto plastic formulations cbp2 cbp3 utilise the full inelastic characteristics of the above models Quartic plastic hinge formulations qph2 qph3 utilise only the yield characteristics of the models The elastic formulations utilise only the elastic characteristics of the models This section describes the material models available in ADAPTIC Each model is referred to by a unique name displayed at the top of the following pages and requires the specification of a number of properties in the order indicated stll Description No of properties Properties Application Bilinear elasto plastic model with kinematic strain hardening 3 Young s modulus E Yield strength Strain hardening factor Uniaxial modelling of mild steel Stress A EX o 4 E Strain
186. t 0 0 Newmark beta Newmark HHT parameter Default 0 25 1 a gamma Newmark HTT y parameter Default 0 5 a Notes This module is only applicable for dynamic analysis defined by the existence of dynamic loads in the applied loading module 154 7 3 15 Applied loading This module specifies the type and the value of the applied loads applied loading initial loads nod name direction value elm name value proportional loads nod name direction value time history loads nod name direction type crv name value elm name type crv name value dynamic loads nod name direction type crv name value elm name type crv name value initial loads proportional loads time history loads dynamic loads These are static loads that are applied prior to any variable load They can be forces or prescribed displacements applied at nodes in the global directions These are static loads having proportional variation The magnitude of a load at any step is given by the product of its nominal value and the current load factor Proportional loads may be forces or prescribed displacements applied at nodes in the global directions These are static loads varying according to different load curves in the pseudo time domain The magnitude of a load at any given pseudo time is give
187. t e gt NN 4 koyi KA ko M PA emam N 4 x y plane b x z plane Stiffness parameters and forces in local system of element type Inks 115 jel3 Description Curve types Parameters Nodes Characteristics Application Restrictions Group header 3D joint element with uncoupled axial shear and moment actions Models used for the joint force displacement curves specified for F axial F amp F shear and M M amp M moment respectively Each of these models may be any of those described in Chapter 4 Parameters for each of the six models specified for F M M M 4 Nodes 1 and 2 must be initially coincident Node 3 is only used to define the x axis of the joint and can be a non structural node The y axis lies in a plane defined by the x axis and node 4 which also can be a non structural node The orientation of the joint x axis after deformation is determined by its initial orientation and the global rotations of node 1 Space frame analysis Can be used to model pin joints inclined supports elasto plastic joint behaviour soil structure interaction and structural gaps through employing appropriate joint curves Element has a zero initial length since nodes 1 and 2 must be coincident Cannot be used to model coupled axial shear and moment actions curve types Defines curve types for
188. tial automatic display of deflected shapes modes Animation control can be given in the General Settings over varying the output numbers for a specific mode 0 for the deflected shape or the mode numbers for a specific output number 0 for the initial configuration The speed of animation is controlled by the Auto Display Speed Selector The animation can be interrupted with a single mouse click with any button anywhere within the application window Customize This allows the display of various element types to be customised mainly in terms of i basic or full plotting range of element to be excluded from view iii plotting divisions over element iv line colour v fill colour vi line thickness and vii appearance of nodal and element labels For partitioned modelling the customisation can be applied at the level of the selected partition with without child partitions or alterntaively for all partitions The customisation can also be applied selectively for individual element types or uniformly for all element types where the latter offers the option of propagating specific customisations to all types at various partition levels except for the element range which is only propagated over the currently selected partition Select Partition This is used in partitioned modelling to select a new current partition This can be specified 1 as the parent of the current partition 2 by local name in the current partition or 3 by rank
189. tion of the bolts Connected member parameters are Column depth Column flange width Thickness of column flange Thickness of column web Column radius e Bolt pitch in column Distance from bolt line to free edge of column flange Distance from bolt line to fillet of column flange Beam depth e Thickness of beam flange Thickness of beam web 3 2D used similar to jel2 4 3D used similar to jel3 Plane frame analysis Space frame analysis Can be used to model steel and composite joints Element has a zero initial length since nodes 1 and 2 must be coincident type Defines the type of connection and contribution of shear panel mat name 5 Defines the material for the connecting elements bolts and connected member parameters Defines parameters for the joint and depends on the connection types 106 cbp3 Description Monitoring points Nodes Characteristics Application Restrictions Group header Cubic elasto plastic 3D beam column element 100 points usually adequate depends on section type 3 Geometric and material nonlinearities Numerical integration performed over two Gauss points A number of monitoring areas used at each Gauss section to monitor material direct stress and strains Predicts global member behaviour based on a material stress strain relationship A number of elements per member usually over 5 must be used for reas
190. tions Unable to model concrete cracking Warping strains are not accounted for Group header An identifier referring to one of the cross sections declared in the sections module V Vost 0 5L V d V V LEHe x P gt L L M F t a 5 M Visi M T lt lt e aa 4 Fe Le gt N N M 1 E y a x y plane b x z plane Imperfection and forces in local system of element type qel3 109 qph3 Description Nodes Subdivision Imperfections Characteristics Application Restrictions Group header Quartic plastic hinge 3D beam column element with an option for automatic subdivision 3 Automatic subdivision into two elements if a plastic hinge is detected within the element may be requested 025 Vyost Vyosst Vzoast Vzosr and can be specified Geometric and material nonlinearities Suitable for members in which the spread of plasticity is not important and the section response is elastic plastic without strain hardening Rotational and axial plastic hinge displacements are allowed at the two ends of the element One element type qph3 is usually sufficient to model a whole member and the option of subdivision allows for the case of member buckling Nodes 1 and 2 define the element connectivit
191. ver which the iterative displacement corrections are gradually scaled from zero to their full value Default 1 scaling off Step reduction level 0 to 3 from and above which tolerance relaxation between tolerance and maximum tolerance is allowed Default 0 The maximum convergance value allowed for any iteration Default 1000 160 Notes arc flow iteration Iteration number after which the normal flow method is appled with arc length control Default number of iterations Using a number Of initial reformations equal to the number of iterations is equivalent to the Newton Raphson strategy Using a number of initial reformations equal to O is equivalent to the modified Newton Raphson strategy The solution is considered to be diverging if after the divergence iteration the convergence of the current iteration is greater than that of the previous iteration This check is not applied during the scaled iterations stage and for a number of subsequent iterations equal to divergence iteration ifa relaxed solution within maximum tolerance has been found Scaling of iterative displacement corrections is applied after divergence if the remaining number of iterations exceeds scaled iterations this technique can be used to overcome convergence oscillations The increment is reduced by the step reduction factor if convergence full or relaxed is not achieved divergence occurs or maximum convergence
192. x 3 dynamic load elm name 101 104 202 302 elm name 104 202 302 equilibrium sta end of stage 18 2 20 640 670 integration scheme hilber alpha 0 3 curves for time history loads load factor 1 0 0 0 0 0 load factor 0 0 1 2 type value 1911 0 5 0 0 0 0 type crv name 1411 cl 1911 cl 14911 cl 11 1 crv name tmp2 GA tmp2 CZ tmp2 CZ ges steps 50 45 62 30 2 2 value 0 125 0 125 125 0 125 0 value 875 0 3636 375 1 6404 1000 0 234 q i 875 0 3636 875 0 3636 375 1 6404 375 1 6404 1000 0 1000 0 beta gamma iterative number initial step 10 dive 10 maxi 0 1 8 toleranc 0 5e 3 force ref 300e3 moment ref 300e6 10 10 criteria output frequency 2 end Note and elements in the data file The following picture shows names that have been given to nodes 131 231 331 431 00107 00108 00109 00203 00303 00306 00204 121 221 21 N421 QD104 QD105 QD106 QD202 QD302 QD305 QD205 N111 N211 N311 N411 QD101 QD102 QD103 QD201 QD301 QD304 QD206 N201 N301 N401 NIOL Md LL LF figure 9 6 1 Nodes and elements 235 9 6 2 Structural behaviour This example illustrates the considerable influence of explosion on the fire resistance of steel frames even when the extent of structu
193. y and its local x axis The y axis lies in a plane defined by the x axis and node 3 which can be a non structural node Large displacement plastic hinge analysis of space frames Not applicable to reinforced concrete or composite members Warping strains are not accounted for sec name An identifier referring to one of the cross sections declared in the sections module subdivision Gives the option for automatic subdivision plastic hinge elements t true consider element subdivision 1 false ignore element subdivision 110 M EE V ozs 0 75L Vio 25L V y0 5L v x Y YV ttt L L F ty VyosL M t Visa M T lt a Fe a N N M Mi My y a x y plane b x z plane Imperfection and forces in local system of element type qph3 111 qdp3 Description Subdivision pattern Nodes Imperfections Characteristics Application Restrictions Group header Quartic elastic 3D beam column element utilising automatic mesh refinement Relative lengths in ratio form of zones where inelasticity is checked for automatic mesh refinement 3 02565 Vyost Vzo2st VzosLo and V o75L can be specified Geometric and material nonlinearities Large displacement and beam column effect of perfect imperfect members One element
194. yarn elements Cubic term material property for yarn elements hi Linear term material property for crushing elements EA Cubic term material property for crushing elements h Material property for unloading response of crushing elements EAc Stiffness term for coating material Kc Poisson s ratio for coating material Shear stiffness of coated fabric G and E gt material properties for simple material model Used for first iterations and E material properties for simple material model Used for first iterations 2 Number of step reductions used in material models internal nonlinear solution procedure Key allowing friction to be included or not k Application Tensioned fabric structures modelled with membrane elements The yarn elements axial force is given by j The yarn crushing elements force is given by EA EA h ee 35 Yarn axial strain 4 Axial response of yarn elements Yarn crushing force Yarn crushing strain c Crushing response of yarn elements Material model 181 Cont d 36 4 Unstrained cross section of warp yarn 4 Hd S Unstrained cross section of weft yarn Material model tfs1 Chapter 4 JOINT ELEMENT CURVES This section describes the force displacement curves available in ADAPTIC for use by joint elements Each curve is re
195. ynamic analysis of space frames and shells Dynamic analysis of 3D continuum membrane structures Czz should be specified as zero for shell nodes Czz should not be specified for 3D continuum membrane analysis damping parameters Defines dashpot damping parameters Forces for element type cnd3 120 Inm3 Description Nodes Characteristics Application Restrictions Group header Linear 3D mass element 2 Simplified modelling of uniformly distributed mass for dynamic analysis Assumes the mass to lie on a rigid straight line between the two end nodes Allows specification of mass proportional damping at group level Dynamic analysis of space frames mass length Mass per unit length damping parameter optional parameter for mass proportional Rayleigh damping defaults to the value of mass damping parameter specified in the default parameters module Forces for element type Inm3 121 cbm3 Description Nodes Characteristics Application Restrictions Group header Cubic 3D distributed mass element 2 Models uniformly distributed mass in dynamic analysis Uses an Updated Lagrangian formulation with a cubic shape function for the transverse displacement and a linear distribution for the axial displacement Allows different axial and transverse distributed mass Mass per unit length specified according t

Download Pdf Manuals

image

Related Search

Related Contents

ADPRO VideoCentral by Xtralis Installation and    Whirlpool MW8650XL User's Manual  ICX05T_FN-150_CL B2-M.indd  349320 349321 User manual  取付説明書ダウンロード  2 Uso dell`ND 780  INSTALLATION MANUAL GR.cdr  

Copyright © All rights reserved.
Failed to retrieve file