Home
DIAdem DAC Getting Started and User Manual
Contents
1. E File Edit View Insert Measure Tools Settings Window QE amp bem m GR PAK BORE BP HR NAVIGATOR T0 Random1 i JE MJ Sliderl fx Sj Jd 5 e fb lt lt Figure 1 4 Extended Block Diagram with Slider Control and Window Condition Note DIAdem displays control buses in red You connect control buses at top or at the bottom of a block CI 13 Click Start measurement The DIAdem VISUAL panel appears with the Slider control and the Numeric display 14 Drag the Slider control If you move the Slider control above the value 5 or below the value 5 DIAdem starts to save the measurement values 15 Click Stop measurement DIAdem stores the values of the measured signals to new channels in the Data Portal National Instruments Ireland Resources Limited 1 5 DlAdem Data Acquisition Chapter 1 Measuring and Visualizing with DIAdem Visualizing Measurements with DIAdem VISUAL DIAdem VISUAL is the visualization screen for DIAdem DAC You can influence the actions of a measurement with control instruments In DIAdem VISUAL you can arrange and configure operation and display instruments during a measurement digg VISUAL To load a block diagram created in DIAdem DAC and start the measurement complete the following steps 1 P E Select DIAdem VISUAL panel Click Load Block Di
2. otl eod don aeta ra e tosta 4 5 Data Exchange in the Internet Intranet through TCP IP 4 5 Usne Control Pile DHYSEsi eite pes tones adi va dE ots 4 6 sine Script DAG DEVE a d Due Hed Aca Oud dated 4 7 Testing Communication with the Interface Monitor ssssusssse 4 9 Appendix Technical Support and Professional Services Index DlAdem Data Acquisition vi ni com About This Manual Conventions lt gt gt Gh bold italic The D Adem Data Acquisition manual describes measurement control and visualization with DIAdem The D Adem Data Acquisition manual 15 based on the D Adem Data Analysis and Report Generation manual Complete DIAdem documentation is available as PDF files Portable Document Format on DIAdem CD The DIAdem Data Acquisition manual consists of two parts e Part I Getting Started with DIAdem Data Acquisition explains how to generate your first block diagram for data acquisition and visualization e Part Acquiring and Visualizing Data explains the functions of DIAdem DAC and DIAdem VISUAL in more detail The following conventions appear in this manual Angle brackets indicate a key you press to perform a function for example Ctrl The symbol leads you through nested menu items and dialog box options to a final action The sequence File Page Setup Opt
3. DO D ES mo i 2 mq en m m 3 5 e e a o Cc Temperature 7 CO Temperature Figure 2 34 The Alarm Table Shows the Current Alarms and the Online Text Output for the Entire Measurement setting Up the User Management To prevent all users from being able to confirm and perhaps oversee alarms the administrator sets up user accounts with various rights in the user management These user accounts are saved in the ADM file and coded The access rights are stored with the block diagram When the measurement starts checks whether the user that 15 logged in has the rights required to execute the block diagram Only the DIAdem administrator has the rights for opening the user management by selecting Settings User management Table 2 13 lists the standard settings for logging DIAdem makes no distinction between upper and lower case letters Table 2 13 Administrator Login Questions Entries DlAdem Data Acquisition 2 32 ni com Chapter 2 Acquiring Data and Controlling Processes Figure 2 35 shows the user management dialog user management Administration file CAPROGRAMMESNATIONAL INSTRUMENTSADIADEM 9 Search User account Administrator iv Full name User rights for this user account Access rights that have been granted Not granted access DlAdem administration right Alarm Quit Level Operator 1 DlAdem guest righ
4. In the Editor you can change the colors and labels for the appearance of the block diagram Acquiring and Displaying Data In the following example you will generate a block diagram without measurement hardware so the example can be used on any PC The simulation inputs function bar in Figure 2 3 contains function blocks like Random Noise and Function generator which you can later exchange for hardware signal sources You also can use input instruments data files single data channels and calculation results without measurement hardware iv OSH oS BY Figure 2 3 Simulation Inputs Function Bar The function bar for the display blocks in Figure 2 4 provides various instruments for visualizing data signals Nae 317 G9 c E d Figure 2 4 Display Function Bar National Instruments Ireland Resources Limited 2 5 DlAdem Data Acquisition Chapter 2 Acquiring Data and Controlling Processes E Load a new block diagram and insert a Random simulation input Select a Digits display block Connect the two function blocks with a green data New block diagram cable Start the measured value display with the blue triangle as shown in Figure 2 5 ES DIA dem BAX a ES VISUAL NONAME DAC File Edit View Insert Measure Tools Settings Window File Edit View Insert Measure Settings Window Help SR bem R GR FF K EME Gum bom amp WE BPs 0 iyo Ivo Ivo R Random 1 Numeric1 Figure
5. With the entry G SoDDE you set up DIAdem DAC as an Online DDE Server e Topic Data area the client accesses With G SoDDE the user can enter any topic e tem Data element defined in the server Using OLE for Process Control OLE for Process Control OPC enables you to transfer data between hardware and software components in a PC or a network With DIAdem as an OPC client you can link your PC to field bus systems and other hardware if OPC servers are available as external drivers DIAdem DAC can provide multiple access to an OPC server and access several OPC servers simultaneously Register the OPC server in the OPC function block You can link DIAdem DAC to another PC or select a local OPC server Selects an OPC server Please select an OPC server from Computer name NI OPC OPC server iv Use following search methods Search with OPCENUM EXE C Browse in Windows registry Figure 4 6 Registering OPC Servers When the OPC server is registered you can select your measurement points or items in the OPC Browser Drag and drop them into the signal list You can configure the communication on the index cards Parameter and OLE Data Exchange in the Internet Intranet through TCP IP TCP IP Transmission Control Protocol Internet Protocol is the protocol that the Internet and Intranets are based on The server may be a DIAdem data acquisition that provides its data to another
6. and DMA Measurement limit some features in favor of faster measurements System clock X ys Mame 20Hz Clock S DAC kernel Software clock O Hardware clock Measurement driver Clocks m ja a Figure 2 23 System Clock Dialog Measuring in DAC Kernel Mode DAC kernel measurement is available with software and hardware clocks If the DAC kernel performs the clock control for a measurement it is generally controlled by a software clock All the functions in DIAdem DAC are supported to the full extent You can only solve complex open and closed loop control tasks in this mode With a hardware clock the DAC kernel and the measurement hardware control the clock rate together The clocking is done on the hardware Not all drivers support this measurement mode Hardware clock measurements are faster than software clock measurements because the measured values are transferred in blocks Measuring in Driver Controlled Modes In High Speed DMA and Disk measurements the DAC driver or hardware control the clock rate Depending on which driver and hardware are used the signals can be output with a time delay The function groups system hardware inputs and outputs linear scaling and window and slope conditions are supported 2 20 ni com Chapter 2 Acquiring Data and Controlling Processes Table 2 8 Characteristics of the Driver Controlled Measurement Modes Measurement Mode Characteristic The max
7. DIAdem client application for visualization and archiving Applications have been used in decentralized data acquisition machine monitoring process visualization and the acquisition of environmental data National Instruments Ireland Resources Limited 4 5 DlAdem Data Acquisition Chapter 4 Using Hardware Using Control File Control file driver Data Acquisition In DIAdem DAC the server and client blocks for transferring data packets using the TCP IP protocol are located in the function bars of the alarm and protocol system and in packet processing Data only can be exchanged between DIAdem applications Client block configuration Server Block Port number 0 Offset 1025 Hostname or address 105 124 167 76 C Lock file Figure 4 7 IP Address and IP Port Control the Data Exchange In the client block enter the computer or IP address for the TCP IP server with which data is to be exchanged Use the port number to set up several connections between the same PCs Driver The control file driver enables you to use DIAdem to access external measurement devices using the RS 232 interface or GPIB General Purpose Interface Bus The core of this communication is a simply structured text file in which a communication protocol for device linking is defined Use the Example ATR control file as an example A control file consists of three sections the measurement preparat
8. DLL registry 4 1 Manufacturer driver 4 1 Packet processing 4 3 Single point processing 4 2 help technical support A 1 High Speed measurement 2 20 Illustration 2 7 instrument drivers NI resources A 1 Instruments Background graphics 3 6 Color matrix 3 5 Container 3 5 Cylinder tachometer 3 6 ni com General layout and display 3 4 Settings 3 2 Status 3 5 Interfaces Control file driver 4 6 DDE 4 4 GPIB 4 6 Interface monitor 4 9 OPC 4 5 Script DAC Driver 4 7 TCP IP 4 5 K KnowledgeBase A 1 L Legend 2 9 Limits monitoring 2 11 Loudspeaker 2 17 Measurement mode DAC kernel 2 20 Driver controlled 2 20 Measurement task 2 3 Message display 2 13 National Instruments support and services 1 0 Online DDE 4 4 Online mathematics 2 28 OPC interface 4 5 Oscilloscope 2 27 National Instruments Ireland Resources Limited l 3 Index P Packet processing 2 26 Default clock 2 27 Display 2 27 Hardware 4 3 Partial systems 2 18 2 23 Processing 2 15 Processing formulas 2 15 programming examples NI resources A 1 R Reading data files 2 5 Real time system 2 21 DIAdem real time kernel 2 22 Jitter 2 21 related documentation viii RS 232 4 6 S Sampling rate 2 18 Packet processing 2 27 Saving data 2 9 2 10 Scaling Multi point 2 15 Pt100 linearization 2 15 Thermolinearization 2 15 Screen mode 3 6 Script DAC Driver 2 15 4 7 Settings Blo
9. Data Acquisition Chapter 1 10 11 Note Measuring and Visualizing with DiAdem Click Control in the group bar Click Window condition in the function bar DIAdem DAC displays the Window1 block in the workspace Position the Window block next to the Slider control Drag a green bus from the output on the Slider control to the input on the Window condition Double click the Window1 block Enter 5 as the lower limit 5 as the upper limit and Window exit as the window type The Window dialog box should look like Figure 1 3 Window Name Window1 Cancel Terminal name Lower limit Upper limit Wit N Signal name List length Copy names amp Extend Limits Type of window bottom top Terminal name Data 1 5 5 Window exit v Help Figure 1 3 Defining the Condition in the Window1 Block Click OK Click the data bus between the Slider1 block and the Window1 block and drag a new bus to the green bus between the Generator1 block and the Numericl block The 2 at the input of the Numeric block indicates that two signals are on this block 12 Drag a bus from the output on the Window condition to the second Data Acquisition input at the top of the Save block This creates a red control bus that DIAdem uses to trigger data storage ni com Chapter 1 Measuring and Visualizing with DIAdem The block diagram should look like Figure 1 4
10. National Instruments Ireland Resources Limited V DlAdem Data Acquisition Contents Using the Alarm and Protocol System 2 29 aa a 2 29 Setting Up the UserManaeement tet e eet 2 32 Chapter 3 Visualizing and Operating Opening a Block Diagram Starting a Measurement eese 3 2 D srenine the Visualization an 3 2 Positionme Tnsteurents ri 3 2 Sects INGE Des 3 4 Groupine InSEFUTHOTIES daa 3 5 VISHADZOCOD ad 3 5 Chapter 4 Using Hardware Registering and Configuring Drivers eiit udi cn reri Sala kaske vana 4 1 Installing Hardware IL saps tocan RUE E Ese eod ode daga ads 4 Assigning DIAdem DIVES as Rees aial 4 Assigning and Configuring Inputs Outputs 4 2 Configuring Single Point Processing 4 2 Configuring Packet Drivers IR REESE 4 3 Using Interchanging and Setting Parameters for Hardware Blocks 4 3 Communicating through Interfaces esses eene en eene 4 4 Usme Online DIDE dssdo diste tata dE 4 4 Using OLE for Process
11. No Signal name Active List length Temperature_3 Yes Name Temperature Temperature 4 Yes Temperature 5 Yes Temperature 6 Yes Temperature 7 Temperature 8 Figure 2 6 Signals Can Be Deactivated in Input Blocks In the Active column in Figure 2 6 you can deactivate single signals without having to disconnect them These signals are retained in the signal list without transporting data Signals can be connected and disconnected at the block inputs the same as for cable terminal panels In the example Noise is only to be displayed as a graph and the temperature only as a number You have to disconnect the Noise signal from the numeric display and connect it as the only signal to the Graph display National Instruments Ireland Resources Limited 2 DlAdem Data Acquisition Chapter 2 Acquiring Data and Controlling Processes Open the signal list by double clicking on the triangle at the data input on the Graph block as shown in Figure 2 7 The block diagram in Figure 2 8 shows the result Connect signal Curves1 Data input Display data Show terminal names N Signal name Termina on C BR Co so No Connect signal 9 Noisel 1 Connect signals Figure 2 7 You Can Connect and Disconnect Signals Note You can reconnect single signals in dialog in Figure 2 7 Use the pop up list to assign single signals and the Connect signal
12. Position the yellow message window in DIAdem VISUAL and start a Measurement If the slider signal leaves the range between 5 and 5 the message window appears as shown in Figure 2 14 Bowen 38 File Edit View Insert Measure Settings Window Help oon v amp amp uS E Side E Ue T m Temperature 1 Temperature 2 m Temperature_3 mm Temperature 4 m Temperature 5 HE d Temperature_6 Temperature 7 Co Temperature 8 RT O b ON BDO g m Slider1 Figure 2 14 A Message Window Indicates That the Limit Values Have Been Exceeded DlAdem Data Acquisition 2 14 ni com Chapter 2 Acquiring Data and Controlling Processes Processing and Simulating Signals Scaling blocks convert electric signals into the original physical values for example a voltage into a temperature in degrees Fahrenheit The function bar for the scaling blocks in Figure 2 15 provides various scalings and thermolinearizations With Multi point scaling you can define data points for any non linear scaling in two data channels The thermolinearizations J K T etc and the Pt100 linearization calculate the temperature from the measured voltage and an external preamplification can be taken into account fi Figure 2 15 Scaling Function Bar The function bar for the processing blocks in Figure 2 16 provides formula blocks for defining
13. a second subblock diagram The original block diagram consisting of 13 blocks has now been reduced to two subblock diagrams Grouping subblock diagrams DlAdem Data Acquisition 2 24 ni com Chapter 2 Acquiring Data and Controlling Processes Open the two subblock diagrams one by one and enter the settings from the Table 2 9 in the block diagram information Subblock diagram information Table 2 9 Editing the Information of Two Subblock Diagrams Subblock Diagram Settings Comment Temperature partial system clock with 20 Hz Comment Sound partial system clocked with 200 Hz Define a second data output in the subblock diagram Sub_20Hz Open this subblock diagram and then double click on the Data export dialog Set up an additional signal output with New Entry as shown in Figure 2 26 Data export DAC6 Sub_20Hz Subblock diagram Sub 20Hz List of export connections Export terminal No of si Data Export2 Delete entry Figure 2 26 You Can Add Connections in Subblock Diagrams Connect the cable with nine signals at this output Lead a yellow system cable to the exterior of the partial system 20 Hz National Instruments Ireland Resources Limited 2 25 DlAdem Data Acquisition Chapter 2 Acquiring Data and Controlling Processes Packet Processing for Fast Measurements and Online Processing DlAdem Data Acquisition There are two data processing concepts in DIAdem DAC single p
14. alarms after selecting the alarm in the table DlAdem Data Acquisition 2 34 ni com Visualizing and Operating In DIAdem VISUAL you load and a block diagram that you have created in DIAdem DAC In DIAdem DAC you have defined the VISUAL measurement the control the monitoring and the controls and indicators The visualization takes place in DIAdem VISUAL ES DIA dem VISUAL Example DAC aox Fie Edit View Insert Measure Settings Window SEI m fl d S E ine TE sa CER CFT Lo Cu zz pe BAR Neh PON li ZE BPRS MMH Tes 8 mm outdoor temp C 1 2 3 0 EE 22 38 reception 2 5 1 8 9 office gro floor C 1 8 3 6 E m are 24 31 E3 workshop C 1 5 3 I JI mm office 1st floor C3 hall 1st floor mm office 2nd floor C UJ MO MO Un U3 KO N O hall 2nd floor C eo NO Figure 3 1 In DIAdem VISUAL the Visualization for a Block Diagram Takes Place pt sm 14 The controls and indicators you have chosen in DIAdem DAC are placed m into the DIAdem VISUAL workspace and adjusted in size The grid and Alignment other alignment features in the toolbar help you to align the instruments National Instruments Ireland Resources Limited 3 1 DlAdem Data Acquisition Chapter 3 Visualizing and Operating Opening a Block Diagram Start
15. bar and set the parameters Do this with Settings Single point processing Configure driver New Entry x Function bar configuration for Inputs Outputs Processing driver T Device Manufacturer Signal Close New entry Output Delete entry Options Info Help Figure 4 2 Configuration Dialog for the Input and Output Bar of the Single Point Processing Double click on the registered device to open the list of supported inputs and outputs You can alter the settings for each driver and all inputs and outputs Specific device parameters such as base address or input voltage range have to be defined for some drivers 4 2 ni com Chapter 4 Using Hardware A Caution You must ensure that the settings in the device definition correspond to those for the measurement hardware especially if jumpers have to be set on the measurement hardware The specified addresses interrupts and DMA channels must be free The function bars for the inputs and outputs can each be assigned 15 function blocks There are six icons for additional processing functions If you have registered more function blocks with your DIAdem drivers the function blocks at the bottom of the configuration list are not visible on the function bar To avoid this you can delete entries from the configuration list before you add new function blocks Configuring Packet Drivers A separate function bar exists for packet proces
16. define the signal output to the PC loudspeaker To turn signal output on and off manually select a simulated input key Enter the settings from Table 2 5 in the block dialog m Button Table 2 5 Configuring the Button Block Dialog Settings Function Switch Label Off Off Sound Off E On Filling effects Two tone Light gray to red Up vertically Color Off Filling effects Two tone Blue to dark gray Up vertically Font Arial General layout Font m Select the Formula processing block and connect it with the key Connect this data cable with the slider controller signal Open the dialog for the formula block and enter the settings from Table 2 6 Formula Table 2 6 Configuring the Formula Block Block Dialog Settings Block name Sounds Terminal name On Off Formula Switch 1000 Signal 10 DlAdem Data Acquisition 2 16 ni com Chapter 2 Acquiring Data and Controlling Processes The switch returns 1 or 0 and forwards the signal Select the PC Loudspeaker simulation output block change the block name to Speaker and connect the input to the Sound formula block as shown in E Figure 2 18 Loudspeakers ESI DIAdem DAC DAC4 DAC MAR File Edit View Insert Measure Tools Settings Window Help EL 60 bem R JA PPX fiim BA m VIEW Al ANALYSIS Mm REPORT Figure 2 18 You Control the Loudspeaker Output by a Switch In DIA
17. desired instrument is visible Also you can use the Sketch mode from the toolbar shown in Figure 3 3 to display objects that are hidden behind the selected instrument The Grid helps you by placing instruments more precisely on the workspace Use the various alignment functions to align the instruments and to adjust their size HE 164 ff HM MID o E Figure 3 3 Toolbar with Alignment Functions National Instruments Ireland Resources Limited 3 3 DlAdem Data Acquisition Chapter 3 Visualizing and Operating Setting Instruments Fine tuning refers to the layout and design of the instruments Change the properties of an instrument on your workspace in General layout and Display of the instruments shortcut menu Enter the following settings from Table 3 1 Table 3 1 Configuring Different Instruments General Layout Display Numericl Display legend bottom Frame filling Fill effects gray horizontal from inside Display background dark gray Show block name Dial color yellow Frame filling Fill effects gray horizontal from top 1 Frame filling effects gray horizontal from inside Graphics1 Frame filling Fill effects dark Y scaling n systems phys gray horizontal from top Limit values Display warning range and Display alarm range Chart Frame filling Fill effects gray Recorder1 horizontal from inside Display background dark gray You can interact with a visualizat
18. from the output in the 20 Hz clock block to the Temperature Sliderl and Storagel blocks as shown in Figure 2 22 Connect the second clock block 200 Hz to the On Off Sounds and Speaker blocks If you now start a measurement the two partial systems will have different clock rates The acquisition and display will be performed at a tenth of the speed of the loudspeaker output The 20 Hz clock system ends when the maximum number of values has been reached The loudspeaker output remains active because it runs independently of the acquisition and storage for the 20 Hz partial system ES DiAdem DAC DAC5 DAC BAX Fie Edit Insert Measure Tools Settings Window oon S pon m ji SFX Tus DONT BA NAVIGATOR VIEW 27 ANALYSIS A REPORT 9 VISUAL pl LabVIEW fO Zi Td Sounds ej Figure 2 22 Defining Partial Systems with System Cables National Instruments Ireland Resources Limited 2 19 DlAdem Data Acquisition Chapter 2 Acquiring Data and Controlling Processes Selecting the Measurement Mode System clock DlAdem Data Acquisition There are several measurement modes available in DIAdem You can set them in the system clock block dialog boxes as shown in the Figure 2 23 The measurement controlled by the DAC kernel supports all the DIAdem DAC functions The driver supported measurement modes High Speed Disk
19. 1 eee 1 1 Saving Measurement Dato eio aasal aka 1 2 Montitorme Meas rement SI SHAIS Uus Dedi mus kudas 1 3 Visualizing Measurements with DIAdem VISUAL eee 1 6 Modityine UOTE ote logi positos Deos Aio Bei oes idus 1 6 SUIT RS 1 8 Part l Acquiring and Visualizing Data Chapter 2 Acquiring Data and Controlling Processes Deseribine the Measurement 2 3 ACQuiting and Displaying P alamaa 2 5 Adding Signal Sources and Connecting Signals 2 7 Savino Mossur d Ala ss alien talon iach aa 2 9 Monitorme 25 05 20 0 0 935 060 S E E pads 2 11 Displaying Messages ODD s sia i al Pn ud 2 13 Processing and Simulating Signals sse nennen 2 15 Setting System Clock and Measurement Modes 2 18 Selecting the Measurement Mode 2 20 Measuring in DAC Kernel 2 20 Measuring in Driver Controlled Modes sss 2 20 eic a 2 21 Using the Real Time Kernel in DIAdem 2 22 Grouping Partial Tasks in Subblock Diagram 2 23 Packet Processing for Fast Measurements and Online 2 26
20. 2 5 A Simple Measurement Task Acguisition and Display When you start the measurement DIAdem automatically switches to the DIAdem VISUAL device and starts the visualization For every display block in DIAdem DAC there is a related instrument in DIAdem VISUAL In DIAdem VISUAL you arrange and define the parameters for all the display instruments Refer to Chapter 3 Visualizing and Operating for specific information Note The two panels in Figure 2 5 set next to each other when you click Window Tile This illustrates that for every display block defined in DIAdem DAC there is a corresponding instrument in DIAdem VISUAL It is usually sensible to use the entire workspace for one DIAdem panel DIAdem Data Acquisition 2 6 ni com Chapter 2 Acquiring Data and Controlling Processes Adding Signal Sources and Connecting Signals Noise ala Graphic Add a Noise simulation input to the block diagram in the example Connect its data output to the existing green data cable Select Graph display as the second display instrument Connect the data cable to the Graph block data input Add the diagram of the measurement object as an illustration Select the Graphic display block and enter DAC wmf in the block dialog as Graphic File name This graphic shows gears in a machine Enter the settings from Table 2 2 in the Random block dialog Table 2 2 Configuring the Function Block Random1 Simulation Random
21. Data and Controlling Processes ESI DiAdem DAC DAC7 DAC DAC7 Sub_20Hz BAX File Edit View Insert Measure Tools Settings Window Help 29 BA 4 pee R GB 5 AAG BSA NAVIGATOR 5 ystem impart Es VIEW ANALYSIS Ea Data Import 1 1 0 0 ivi iro ivo amp m R Temperature Message Data Export IA 1 maa REPORT Packet Import Packet Export Alarm Export E o a E s x ANP Seg Zio Systarn Export Figure 2 25 Opened Subblock Diagram The subblock diagram is enclosed in terminal connectors which import and export the various signal cables You can move and extend the terminal connectors Moving them enlarges the working area and extending them makes room for more connections You can save a subblock diagram as SUB file under File Save subblock diagram Partial solutions such as visualizations or control can thus be saved as subblock diagrams You can import subblock diagrams with File Load subblock diagram Subblock diagrams may contain subblock diagrams providing several definition levels in one block diagram tl In the example the two subsystems each with a different sampling rate are to be grouped into subblock diagrams Mark the top partial system which has a sampling rate of 20 Hz and group it into a subblock diagram Then group the lower partial system with a sampling rate of 200 Hz into
22. DiAdem Data Acquisition Getting Started and User Manual December 2005 373078D 01 b A NATIONAL p INSTRUMENTS Worldwide Technical Support and Product Information ni com National Instruments Corporate Headquarters 11500 North Mopac Expressway Austin Texas 78759 3504 USA Tel 512 683 0100 Worldwide Offices Australia 1800 300 800 Austria 43 0 662 45 79 90 0 Belgium 32 0 2 757 00 20 Brazil 55 11 3262 3599 Canada 800 433 3488 China 86 21 6555 7838 Czech Republic 420 224 235 774 Denmark 45 45 76 26 00 Finland 385 0 9 725 725 11 France 33 0 1 48 14 24 24 Germany 49 0 89 741 31 30 India 91 80 51190000 Israel 972 0 3 6393737 Italy 39 02 413091 Japan 81 3 5472 2970 Korea 82 02 3451 3400 Lebanon 961 0 1 33 28 28 Malaysia 1800 887710 Mexico 01 800 010 0793 Netherlands 31 0 348 433 466 New Zealand 0800 553 322 Norway 47 0 66 90 76 60 Poland 48 22 3390150 Portugal 351 210 311 210 Russia 7 095 783 68 51 Singapore 1800 226 5886 Slovenia 386 3 425 4200 South Africa 27 0 11 805 8197 Spain 34 91 640 0085 Sweden 46 0 8 587 895 00 Switzerland 41 56 200 51 51 Taiwan 886 02 2377 2222 Thailand 662 278 6777 United Kingdom 44 0 1635 523545 For further support information refer to the Technical Support and Professional Services appendix To comment on National Instruments documentation refer to the National Instruments Web site at ni com info and enter the info code feedback 2003 2005 National Instruments Ireland R
23. IAdem DAC Instruments legend 2 9 Interface monitor 4 9 Toolbar 2 2 User management 2 32 DIAden real time kernel 2 22 DIAdem VISUAL Full screen mode 3 6 Toolbar 3 3 diagnostic tools NI resources 1 Disk measurement 2 20 DlAdem Data Acquisition Index Display 2 5 Alarm protocols 2 31 Color matrix 3 5 Containers 3 5 Cylinder tachometer 3 6 DIAdem VISUAL 3 1 Function blocks 3 2 Instruments 3 2 Message 2 13 Packet processing 2 27 Screen mode 3 6 Status instruments 3 5 DMA measurement 2 20 documentation conventions used in manual vii NI resources 1 related documentation viii Driver controlled measurement 2 20 drivers NI resources 1 E examples NI resources A 1 F Formula 2 15 2 18 Full screen mode 3 6 Function blocks 2 1 Alarm and protocol system 2 30 Cable connection 2 3 Combining single point and packet blocks 2 27 Connect disconnect signals 2 7 Control 2 11 DDE 4 4 Deactivating signals 2 7 Display 2 5 3 2 Graphic 2 7 Input Output connections 2 3 Interchange 4 3 DlAdem Data Acquisition 1 2 Interfaces 4 4 Loudspeaker 2 17 Message 2 13 OPC 4 5 Packet processing 2 26 Processing 2 15 Saving data 2 9 Scaling 2 15 Setting a block diagram 2 2 Simulation input 2 5 Simulation output 2 15 Slider 2 11 Subblock diagram 2 23 System 2 18 TCP IP 4 5 G GPIB 4 6 H Hardware Defining 4 1 DIAdem driver 4 1 GPI
24. S SUCH AS THESE ARE HEREAFTER COLLECTIVELY TERMED SYSTEM FAILURES ANY APPLICATION WHERE A SYSTEM FAILURE WOULD CREATE A RISK OF HARM TO PROPERTY OR PERSONS INCLUDING THE RISK OF BODILY INJURY AND DEATH SHOULD NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE TO AVOID DAMAGE INJURY OR DEATH THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES INCLUDING BUT NOT LIMITED TO BACK UP OR SHUT DOWN MECHANISMS BECAUSE EACH END USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS TESTING PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL INSTRUMENTS THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A SYSTEM OR APPLICATION INCLUDING WITHOUT LIMITATION THE APPROPRIATE DESIGN PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION Contents About This Manual CODVellblOlS cease Vil Related DOCUMENTATION cccccececcccscccscsccecsceececsecececsecscscssescsceecscsccecscecasescecesescess Vill Part Getting Started with DiAdem Data Acquisition Chapter 1 Measuring and Visualizing with DlAdem Acquiring Measurements with DIAdem DAC
25. VISUAL panel and starts the visualization 1 8 ni com Part II Acquiring and Visualizing Data Part II describes the functions for defining your block diagrams e Chapter 2 Acquiring Data and Controlling Processes decribes the basic elements of a block diagram You connect simulation inputs to visualization instruments and control data storage with conditions e Chapter 3 Visualizing and Operating describes the visualization and control elements and explains how to set them e Chapter 4 Using Hardware describes how to register and configure driver software for measurement hardware in DIAdem National Instruments Ireland Resources Limited 11 1 Data Acquisition Acquiring Data and Controlling Processes um gt e Group bar You can use DIAdem DAC to describe your measurement and control tasks DAC stands for Data Acquisition and Control This involves selecting function blocks connecting them and setting their parameters The connections function as bus cables that can transport one or more signals ES DiAdem DAC Dac8 DAC Joe File Edit view Insert Measure Tools Settings Window Help oog DA R GB PPX BOGE s NAVIGATOR VIEW ANALYSIS REPORT vo iro lv R Text display1 v DARRE an Figure 2 1 The Block Diagram Describes the Measurement T
26. agram Select the file example dac and click Open Click Start Display Allow the measurement to run for a short period Click Stop Measurement Modifying a Visualization To modify a visualization you can insert new instruments and configure existing instruments Note The logical wiring of instruments takes place in DIAdem DAC EN 1 bi Data Acquisition To add a company logo to a visualization complete the following steps 1 Click Graphics in the group bar Click Graphicl in the function bar A logo is inserted in the upper left corner of the workspace Place the logo under the building display Size the logo by dragging the small square blocks at the edges of the graphic Click the building graphic and size the graphic by dragging the square blocks at the edges of the graphic Click Start Display 1 6 ni com Chapter 1 Measuring and Visualizing with DIAdem DiAdem VISUAL Example DAC E File Edit View Insert Measure Settings Window Help Se bom amp vi 8 Mm outdoor temp UJ N UJ mm lobby C UJ e N N reception GS N office gro floor C 1 9 8 8 hall C 13 204 i C3 workshop C 2 6 6 0 office 1st floor C 23 79 hall 1st floor C 2 4 4 5 mm office 2nd floor C 20 12 AT NATIONAL INSTRUMENTS hall 2nd floor C 2 3 Figure 1 5 Adding a Gra
27. al You also can visit the Worldwide Offices section of ni com niglobal to access the branch office Web sites which provide up to date contact information support phone numbers email addresses and current events National Instruments Ireland Resources Limited A 1 DlAdem Data Acquisition Index A Alarm and Protocol System Defining alarms 2 29 User management 2 32 Alignment functions 3 3 Block diagram 2 1 Adding measurement hardware 4 3 Block parameterization 2 5 Editor 2 5 Measurement hardware 4 1 Saving as DAC file 2 3 Setting 2 2 Subblock diagram 3 5 Visualization 2 6 3 2 C Cable connection Alarm cable 2 29 Branch 2 4 Bus system 2 4 Control cable 2 14 Deleting 2 4 Input point 2 4 Interrupt 2 5 Mouse cursor 2 4 Signal list 2 4 Subblock diagram 2 24 System cable 2 18 Text cable 2 29 Types 2 3 Classification 2 28 Conditions 2 11 2 18 National Instruments Ireland Resources Limited l 1 Control 2 18 Button 2 16 Signals 2 11 Control file driver 4 6 conventions used in the manual vii D DAC file 2 3 DAC kernel measurement 2 20 Data acquisition Alarm and Protocol system 2 29 Control 2 1 Measurement mode 2 20 Packet processing 2 26 Real time system 2 21 Sampling rate 2 18 Saving data 2 9 Single point processing 2 26 Visualization 3 1 Without display 2 5 DDE interface 4 4 Default clock Packet processing 2 27 Single point processing 2 18 D
28. al errors exist National Instruments reserves the right to make changes to subsequent editions of this document without prior notice to holders of this edition The reader should consult National Instruments if errors are suspected In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it EXCEPT AS SPECIFIED HEREIN NATIONAL INSTRUMENTS MAKES NO WARRANTIES EXPRESS OR IMPLIED AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE CUSTOMER S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA PROFITS USE OF PRODUCTS OR INCIDENTAL OR CONSEQUENTIAL DAMAGES EVEN IF ADVISED OF THE POSSIBILITY THEREOF This limitation of the liability of National Instruments will apply regardless of the form of action whether in contract or tort including negligence Any action against National Instruments must be brought within one year after the cause of action accrues National Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control The warranty provided herein does not cover damages defects malfunctions or service failures caused by owner s failure to follow the National Instruments installation operation or
29. ask The function blocks are arranged in groups with common themes In the panel bar the input and output blocks provide features from the registered measurement hardware The simulation inputs contain input instruments and generated signals You can use the scaling blocks to convert incoming signals into physical values The processing blocks contain blocks for online mathematics and closed loop control The system blocks are used for defining clock rates and saving data The control blocks are used to define conditions and display blocks are used to display all data in DIAdem VISUAL National Instruments Ireland Resources Limited 2 1 DlAdem Data Acquisition Chapter 2 Acquiring Data and Controlling Processes Fo Packet bar Alarm and protocol system t E m je vi A em sm o SH 6 EST H8 DlAdem Data Acquisition In DIAdem the measured values are acquired processed and visualized value by value This is called single point processing With packet processing the data is grouped into packets for performing online classification or online FFT for example Single point and packet processing blocks can be combined in one block diagram The alarm and protocol system monitors signals for limit values Alarm messages with different priorities can be generated displayed recorded and sent over the Internet The user administration enables authorized users to confirm alarms Y
30. by the administrator in the DIAdem user Management In the alarm definition there is a distinction between static attributes which the user specifies offline when the alarm system is configured and dynamic attributes which are defined during runtime Global attributes are managed above the block level as shown in Figure 2 33 _ Global Parameters Emu Comment 8 Quitlevel Feedback value Alarm group m 7 4 gt 2 I ld we 423 by the user the alarm generator ill Dynamic Attributes Figure 2 33 Alarm Definitions Contain Static and Dynamic Attributes National Instruments Ireland Resources Limited 2 29 DlAdem Data Acquisition Chapter 2 Acquiring Data and Controlling Processes The function bar for the alarm and protocol system includes the following function blocks Alarm generator defines alarms for each input signal Alarm table displays current alarms and alarm confirmation Format for the protocolled alarms Key entry for comments Display all alarms during monitoring with review Save protocol in file TXT HTM Transfer protocol through DDE or email MS Outlook as OLE application Protocol transfer in a network Multiplexer for alarms and texts Log in for activated user management Extend the example to include alarm functions Se
31. ck diagram editor 2 5 Measurement kernel 2 5 Signals Connect disconnect 2 7 Control 2 11 Enable Disable 2 7 Hardware 2 5 List 2 4 2 7 Measurement hardware input 4 1 DlAdem Data Acquisition Index Simulated 2 5 U ee User management 2 32 Simulation output 2 15 Single point processing 2 26 Default clock 2 18 V Hardware 4 2 Visualization 2 5 3 1 Slider 2 11 Block diagram 2 6 software NI resources 1 Voltmeter 2 27 Subblock diagram 2 23 3 5 support technical A 1 W System blocks 2 18 Web resources A 1 System clock Partial systems 2 18 Selecting measurement mode 2 20 T TCP IP interface 4 5 technical support 1 Timing Soft Timing 2 23 Windows Timing 2 23 Timing DIAdem real time kernel 2 22 Toolbar DIAdem DAC 2 2 DIAdem VISUAL 3 3 training and certification NI resources 1 troubleshooting NI resources A 1 DlAdem Data Acquisition l 4 ni com
32. cquisition Sampling rate Hz o JA eem CEN Figure 2 31 Packet Processing Default Clock The packet call clock in Figure 2 31 specifies the rate for calling the packet blocks For each call the program checks whether there is a data packet at the input The block size specifies how many values are to be collected for 25 each signal before the data packet is forwarded to other packet blocks Extend the example to include packet functions Place a Pack block in the block diagram and connect it to the data output on the Sub 20Hz subblock Packing signals diagram The Pack block groups the single point signals into a data packet National Instruments Ireland Resources Limited 2 27 Data Acquisition Chapter 2 Acquiring Data and Controlling Processes Online classification Oscilloscope DlAdem Data Acquisition For online classification select a Classification mathematics block and connect it to the Pack block To display the classification results select an Oscilloscope display block and connect it to the classification block Enter the settings from Table 2 10 in the oscilloscope window menus Table 2 10 Configuring the Oscilloscope Window Dialog Menu Settings Settings X axis scale Range ae oto 200 20 Title Text Online classification Options Display Options Options Activate title Connect the clock output in the subblock diagram Sub 20Hz to the clock input of t
33. dem VISUAL position the switch below the yellow message window as shown in Figure 2 19 Start a measurement As soon as you activate a switch you can modify the sound from the loudspeakers by moving the slider control DIAdem VISUAL DAC4 DAC File Edit View Insert Measure Settings Window Help x m Woo iue TED so onal KEN CE LI Cu zm 8 SA amp bom 9 UG EDGGi ck e E m ONE gt x i Og iad IR AG 4 m IN i i 1458 i gt ast ws 27 ji ee LEAN DEED imi BB Em Temperature 1 mg Temperature 2 rz Temperature 3 mg Temperature 4 pz Temperature 5 L3 Temperature 6 C Temperature 7 mm Temperature 8 00 b CQ C CO NON O CO D Siider Figure 2 19 The Slider Control Specifies the Frequency for the Sound Output National Instruments Ireland Resources Limited 2 17 DlAdem Data Acquisition Chapter 2 Acquiring Data and Controlling Processes B Note Itis not always necessary to use formula blocks to realize a condition and using formula blocks slows performance Requests can often be defined more simply with fixed condition blocks They also can be processed much faster during a measurement than with formula blocks Setting System Clock and Measurement Modes You are now familiar with the green data cables and the red control cables The yellow system cables define the system clock and the measurement mode The default clock defines the sampling rate for
34. e with the mouse 5 Click Display in the group bar ENS LI Lo ru m Click Digits in the function bar m National Instruments Ireland Resources Limited 1 7 DlAdem Data Acquisition Chapter 1 Measuring and Visualizing with DIAdem 10 Click the Output on the right side of the Function Generator Depress the left mouse button and drag the green wire to the Input on the left side of the function block Numericl As soon as OK appears on the mouse pointer you can release the left mouse button The data source and the display instrument are now linked with a green data wire Click Start Display The DIAdem VISUAL panel appears and displays the simulated sine values in the numeric instrument Click Stop Measurement Select Window Tile to see the block diagram and the visualization panel parallel to each other Sex NE RS VISUAL NONAME DAC File Edit View Insert Measure Tools Settings Window Help File Edit View Insert Measure Settings Window Help Ba Pea R GB SA amp Pen 5 WS ms 0 Random1 Figure 1 1 Defining Block Diagram with Function Generator and Numerical Display saving Measurement Data The simulated signal values are only displayed and not saved To document and verify the data you must save the measurement values To save data from your measurement complete the following steps 85 pU DlAdem Data Acquisit
35. em Data Acquisition Chapter 2 Acquiring Data and Controlling Processes File Edit View Insert Measure Tools Settings Window Help EGIODA m GR 22X bmi MONT 82 EAE NAVIGATOR ro 70 gt Graphicl ANALYSIS REPORT d dig VISUAL LabVIEW SCRIPT Figure 2 10 You Can Write Data in the Data Portal or in a File el Start a measurement with the green start button this time so the measured values are also saved The measurement ends when the number of values to be saved which is specified in the Save block has been attained The measured values are stored in the Data Portal where you can use them for other calculations Tip You also can write measured values straight into a data file The file is created in the DEMON NDAT directory and you can specify the file name in the Save block DlAdem Data Acquisition 2 10 ni com Chapter 2 Acquiring Data and Controlling Processes Monitoring Conditions For the generation of control signals the function bar for the control blocks in Figure 2 11 includes window slope and time conditions buttons free formulas and various links The control signals are transported by red control cables which are connected at the top and bottom of the function blocks Figure 2 11 Control Function Bar In the example the data will be saved when a limit value is exceeded then it will be displayed on the screen A slider control
36. esources Limited All rights reserved Important Information Warranty The DIAdem is warranted against defects in materials and workmanship for a period of 90 days from the date of shipment as evidenced by receipts or other documentation National Instruments will at its option repair or replace equipment that proves to be defective during the warranty period This warranty includes parts and labor The media on which you receive National Instruments software are warranted not to fail to execute programming instructions due to defects in materials and workmanship for a period of 90 days from date of shipment as evidenced by receipts or other documentation National Instruments will at its option repair or replace software media that do not execute programming instructions if National Instruments receives notice of such defects during the warranty period National Instruments does not warrant that the operation of the software shall be uninterrupted or error free A Return Material Authorization RMA number must be obtained from the factory and clearly marked on the outside of the package before any equipment will be accepted for warranty work National Instruments will pay the shipping costs of returning to the owner parts which are covered by warranty National Instruments believes that the information in this document is accurate The document has been carefully reviewed for technical accuracy In the event that technical or typographic
37. formation that you may find helpful as you read this manual e Getting Started with DIAdem e DlAdem Data Analysis and Report Generation e DIAdem Help available by selecting Help Contents viii ni com Part I Getting Started with DiAdem Data Acquisition Part I explains how to generate your first block diagram in DIAdem for data acquisition and visualization National Instruments Ireland Resources Limited l 1 Data Acquisition Measuring and Visualizing with DIAdem With the DIAdem DAC and DIAdem VISUAL panels you can acquire data control processes and visualize online data Acquiring Measurements with DlAdem DAC With DIAdem DAC you develop measurement and control solutions in a block diagram You select necessary functions from an extensive function library and place function blocks into the workspace You connect blocks logically by dragging wires with the mouse Measurement data come from data sources and go to processing blocks display instruments and output blocks To create a block diagram with a simulated signal complete the following steps Note You can substitute simulation signals later with real data sources 1 Select the DIAdem DAC panel E 2 Click Delete Block Diagram 3 Click Simulation Input Blocks in the group bar Click Generator in the function bar The block appears in the DIAdem DAC workspace You can move a function block anywhere in the workspac
38. h as ActiveX components can also be accessed National Instruments Ireland Resources Limited 4 7 DlAdem Data Acquisition Chapter 4 Using Hardware DIAdem GPI General Programming Interface Script DAC Driver Driver Visual Basic ActiveX GPIB Its Figure 4 9 External Devices Communicate with DIAdem Using VBScript In the Script DAC Driver block you define inputs and outputs gt 5 Script DAC Driver ay LS Signal parameter Script DAC Driver N Signal name Terminal Active Parameter ScriptIn1 1 Yes Script Inl 2 Yes Script Inl 3 Yes Script Inl 4 Yes ScriptInl 5 Yes ScriptInl 6 Yes Script ln1 7 5 1_8 Vesi v Script In1 9 CO 00 7 CD PB to fo 74 Cn gt CO n2 C es 9 S Script selection Script template Filename CAProgramme National InstrumentsNDlAdem 10 0 Libr D ac Gr Device parameters Script file Help Parameter 1 Parameter 2 Operating mode Synchronous to the measurement clock Figure 4 10 Script DAC Driver Block Dialog Click Script template for an example of your script file which provides you with a core definition with all the functions defined for the Script DAC Driver You can extend the functions you need for your task and delete the unnecessary parts Data Acquisition 4 8 ni com Chapter 4 Using Hardware Te
39. he Pack block When you start the measurement the oscilloscope window will appear in addition to the usual DIAdem VISUAL display as shown in Figure 2 32 You can move the window during the measurement B DiAdem VISUAL DAC7 DAC File Edit View Insert Measure Settings Window saag 5 530 3 889 E 8 030 2 419 6 991 Temperature Percent Online Classification Figure 2 32 The Oscilloscope Shows the Classification as Histogram 2 28 ni com Chapter 2 Acquiring Data and Controlling Processes Using the Alarm and Protocol System Alarm cables Defining Alarms With the alarm and log system you can monitor signals for exceeding limit values Limit values can be defined in two levels to trigger alarms with differing levels The alarms are displayed continuously on the screen and can also be recorded and commented online The alarm log can function as an operation report that is sent to responsible parties informing them about alarms that occur The alarm and protocol system uses special cables to transport alarms and protocols alarms are transported on the blue black alarm cables and protocols on the gray black text cables Signals on the green black packet cables are monitored The alarm and protocol system also allows you to confirm the exceeding of limit values Alarms can only be confirmed by authorized users that have been granted the appropriate rights
40. icular status has been reached a sound file Status instruments also can be played as an acoustic warning signal A color matrix can be used to display the temperature distribution on a workpiece if the sensors measurement points are arranged in a regular rectangular grid network The color palette defined for the range of values differentiates the size of the measured data in corresponding colors Containers display the filling level in the form of a bar You can change the look of a container by choosing a different container graphic in the display menu The clipart directory on the DIAdem CD contains various default container graphics The containers can be used with the tubes and valves also available on the CD along with the status display and any alarm displays for process visualization Container National Instruments Ireland Resources Limited 3 5 DlAdem Data Acquisition Chapter 3 Visualizing and Operating By default the area that represents the filling level in containers is purple RGB values 255 0 255 DIAdem VISUAL displays this area as transparent You can change the settings so that a different color represents transparency In the Cylinder tachometer the scale moves instead of the pointer The 3D effect can be highlighted by using shading for the background of the display in General layout Cylinder tachometer You can load background graphics in General layout as well as in Display In General la
41. ile Edit View Insert Measure Settings Window Help GU amp em WHF A 4 172 6 755 9 961 9 807 6 602 2 327 Em Temperature 1 mg Temperature 2 pz Temperature 3 mm Temperature 4 mm Temperature 5 AMD a 3 cammino 0 Bra ody Temperature 6 Temperature 7 Temperature 8 0 8 6 4 2 0 2 4 6 8 0 g m Slider1 Figure 2 13 The Slider Controls Visualization and Data Storage Displaying Messages Online You can use the Message display block to display warnings or information during the measurement In the block dialog box enter the message file to be read out by the block Instead of texts you also can display diagrams or play wave WAV files If you want to use combinations for example graphics and sound together you should use two message blocks with different message files Click on the Message display block and enter the settings from Table 2 4 in the dialog Message National Instruments Ireland Resources Limited 2 13 DlAdem Data Acquisition Chapter 2 Acquiring Data and Controlling Processes Table 2 4 Configuring the Message Block Dialog Menu Settings General layout Time display Display Time display Time format Date time rec Message file Warning ASC Font Arial Connect the start input on the Message block to the existing red control cable Connect the data input to the slider signal
42. imum sampling rate that can be attained depends on the computer hardware The maximum number of values is limited only by the amount of memory available on the hard disk Note The measurement modes described above along with their settings also apply for single point processing Packet processing is another alternative for fast measurements Acquiring Real Time Data The essence of real time systems 1s fast and guarantees reactions to events which means the guarantee that the sampling and output rates that have been set will be adhered to This guaranteed time behavior is more important than an optimal processor load which is usually the most essential criterion for system performance with Windows PCs To react to external events such as keyboard entries the PC has interrupt mechanisms so the event does not have to be requested continually Keyboard entries generate interrupt requests to the processor which then interrupts the current calculation to process the function requested by the event However as the processor first has to save the current status of the program when an interrupt request comes in a certain period of time elapses between the arrival of an interrupt and its actually being processed This delay is called the response time For periodical tasks such as measurement or open and closed loop control there is a different response time for each sampling step because it is defined by the current status of
43. ing a Measurement bom Start and stop In DIAdem DAC you choose and wire visualization blocks like all other function blocks In DIAdem VISUAL you design the instruments that are displayed during a measurement All instruments in the workspace are stored in the block diagram This exercise assumes that the actual measurement task has been prepared and tested in DIAdem DAC Opening DIAdem VISUAL loads the block diagram example by default You can modify the default settings in Settings Options VISUAL There are three icons for performing a measurement in the toolbar The blue triangle starts a display only the green dot starts a measurement with data storage and the red square stops a display or a measurement N Caution You can connect and disconnect signals only in DIAdem DAC Do not modify the number of terminals in List length in DIAdem VISUAL If you reduce the number of terminals the terminals are disconnected You can increase the number of terminals but to rewire the terminals you have to change to the block diagram in DIAdem DAC Designing the Visualization The design of the visualization is closely related to the set up of the block diagram You have to decide which signals to show with which instrument and which time frame and events are to be used If the instruments are to be visible at the same time position them next to each other If they are to replace each other so the occurrence of an event can be ill
44. ion E Click System in the group bar Click Save Data in the function bar Place the system block under the numerical display Click on the green data wire and press the mouse button while dragging a new wire onto the data input of the saving block 1 2 ni com Chapter 1 Measuring and Visualizing with DIAdem EE DiAdem DAC NONAME DAC Jeg File Edit View Insert Measure Tools Settings Window Help SEI loon pea R GR POX Tus BONN BF FERE NAVIGATOR 0 eg E9125 f Figure 1 2 Connecting a System Block to Save Data Double click the Save Data block 6 Enter 1000 in the No of Values field Click Start measurement After a short time the measurement automatically discontinues because 1 000 values have been saved 8 Select the DIAdem NAVIGATOR panel The Data Portal appears EG and shows the new data channels Time1 and Generator1 1 Hv GATOR Monitoring Measurement Signals In control blocks you define conditions for controlling measurement tasks Complete the following steps for DIAdem to save measurement values according to a condition 1 Select the DIAdem DAC panel 2 Click Simulation inputs in the group bar Click Slider control in the function bar DIAdem DAC displays the Slider1 block in the workspace 4 Position the Slider1 block below the Generator Em KS National Instruments Ireland Resources Limited 1 3 DlAdem
45. ion par and has the same name as the desktop file Installing Hardware Drivers Hardware manufacturers provide driver libraries with their hardware These additional files are to be installed and configured before DIAdem is started Refer to the manufacturer s instructions Assigning DiAdem Drivers The DIAdem driver links the hardware driver to DIAdem DAC DIAdem drivers include standard drivers which are supplied with standard DIAdem and additional drivers from the hardware manufacturer National Instruments Ireland Resources Limited 4 1 DlAdem Data Acquisition Chapter 4 Using Hardware Select the DIAdem driver with Settings Single point processing Configure driver New Entry Select new hardware Hardware Mo Manufacturer Driver Mo Device Data Translation DDE Driver Eagle Electric GFSNIDAQ GFSOPC Goldammer Hottinger Baldwin MeBtechnik Intelligent Instrumentation Keithley 3 4 5 6 8 9 1 1 Figure 4 1 Adding a DIAdem driver Assigning and Configuring Inputs Outputs Data Acquisition DIAdem DAC has separate function bars for the DIAdem drivers used for single point processing and for those used for packet processing Use the Settings menu to select the DIAdem drivers for the function bars and to configure the available functions Configuring Single Point Processing Drivers When the driver is registered you can assign its functions to the function
46. ion by using the rotary switch as shown in Figure 3 1 Color changes in the curve display exceeding or falling short of limit values DlAdem Data Acquisition 3 4 ni com Chapter 3 Visualizing and Operating Grouping Instruments Selecting overlapping instruments is rather difficult To avoid this instruments can be grouped into VISUAL pages Load the block diagram dac7 dac This block diagram contains View Insert Measure Se overlapping instruments and two subblock diagrams Click the View menu Redraw FS You will find 10 VISUAL pages of which the first three are assigned 15 page Standard contains all instruments of a block diagram For the a ae two subblock diagrams DIAdem automatically creates the VISUAL pages v 3rd page Sub_200H2 Sub_20Hz and Sub_200Hz Uncheck 3rd page Sub_200Hz None of the instruments from this subblock diagram are displayed anymore The push button for sound is no longer visible Page management You can create more VISUAL pages in View Page management To allocate an instrument to a page choose the page from the Page menu in General layout Striking Visualization This section briefly describes some of the tools for visualization an Within the group Binary instruments the Status instruments provide an important means of indicating certain conditions In the simplest case a binary instrument could be a lamp that changes its color depending on given condition When a part
47. ions the actual measurement and the concluding tasks The nit procedure prepares the communication and the Delnit procedure reverts it to the original status The Start procedure initiates the measurement and the Stop procedure ends it During the measurement the Input procedure for data input and the Output procedure for data output are called cyclically in the specified measurement clock 4 6 ni com Chapter 4 Using Hardware Measurement preparation Initialisation Activating the system blocks by activating or re trigger De activating the system blocks Measurement post editing De Initialisation Figure 4 8 Control File Structure Tip Several control file driver blocks can be used in one block diagram and several devices can be read out and accessed in one control file Using Script DAC Driver To communicate with external measurement devices the Script DAC Driver uses Visual Basic Script VBS for the acquisition conditioning processing and output of data With VBS you can meet demanding requirements for example check sum calculations which cannot be performed with the control file driver You can design the scripts so flexibly that they can be used for various tasks without being modified Data is exchanged with the PC interfaces RS 232 GPIB and TCP IP through the interface independent driver GFSUDI which allows you to change interfaces later without reprogramming Using VBS other program modules suc
48. ions directs you to pull down the File menu select the Page Setup item and select Options from the last dialog box This icon denotes a tip which alerts you to advisory information This icon denotes a note which alerts you to important information This icon denotes a caution which advises you of precautions to take to avoid injury data loss or a system crash Bold text denotes items that you must select or click in the software such as menu items and dialog box options Italic text denotes emphasis a cross reference or an introduction to a key concept National Instruments Ireland Resources Limited vii DlAdem Data Acquisition About This Manual monospace monospace bold right click Text in this font denotes text or characters that you should enter from the keyboard formulas sections of code programming examples and syntax examples This font is also used for the proper names of disk drives paths directories programs subprograms subroutines device names functions operations commands variables filenames and extensions and code excerpts Bold text in this font denotes the messages and responses that the computer automatically prints to the screen This font also emphasizes lines of code that are different from the other examples Mac OS Press lt Command gt click to perform the same action as a right click Related Documentation DlAdem Data Acquisition The following documents contain in
49. is monitored for limit values that have been defined in a window condition by Click on the Window condition control block and open the block dialog then enter the settings from Table 2 3 Table 2 3 Configuring the Window Condition Block Window condition the blocks with OK then run a cable between the slider control and the window condition Connect the bottom control output on the Window Slider control condition to the Start control inputs on the Save and Numeric blocks as shown in Figure 2 12 Select a Slider control simulation input and position the slider control exactly above the Noise 1 block Answer the question about exchanging ae National Instruments Ireland Resources Limited 2 11 DlAdem Data Acquisition Chapter 2 Acquiring Data and Controlling Processes DiAdem DAC DAC3 DAC BAX Fie Edit view Insert Measure Tools Settings Window Help poan R GR SFX Tum BONE wo fcc NAVIGATOR VISUAL LabVIEW E e a E Figure 2 12 The Window Condition Starts Numeric Display and Data Storage el In DIAdem VISUAL position the slider control to the left of the Graph display and start a measurement As soon as you move the slider above or below the specified limit values of 5 the numeric display appears as shown in Figure 2 13 and storage begins DIAdem Data Acquisition 2 12 ni com Chapter 2 Acquiring Data and Controlling Processes F
50. ks or trade names of their respective companies Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have no agency partnership or joint venture relationship with National Instruments Patents For patents covering National Instruments products refer to the appropriate location Help Patents in your software the patents txt file on your CD or ni com patents WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS 1 NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT INJURY TO A HUMAN 2 INANY APPLICATION INCLUDING THE ABOVE RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE IMPAIRED BY ADVERSE FACTORS INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY COMPUTER HARDWARE MALFUNCTIONS COMPUTER OPERATING SYSTEM SOFTWARE FITNESS FITNESS OF COMPILERS AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION INSTALLATION ERRORS SOFTWARE AND HARDWARE COMPATIBILITY PROBLEMS MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES TRANSIENT FAILURES OF ELECTRONIC SYSTEMS HARDWARE AND OR SOFTWARE UNANTICIPATED USES OR MISUSES OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER ADVERSE FACTOR
51. lculated values have to be output to the process We recommend the use of intelligent process connection hardware here DIAdem can remove time critical sections of control tasks to the PC plug in board or to external systems with their own processors so they can be processed independently of Windows Using the Real Time Kernel in DiIAdem The DIAdem real time kernel enables you to perform complex automation tasks using simple process connection hardware without its own processor and operating system Sampling rate generation by DIAdem also has the advantage that several boards can be used simultaneously and synchronously In the hardware clocked solutions this can only be achieved with a synchronization cable between the various hardware components The DIAdem real time kernel can operate in different modes You open the dialog of Figure 2 24 with Settings Single point processing Measurement parameters Timer 2 22 ni com Chapter 2 Acquiring Data and Controlling Processes Timer Timing selection a Set best timing automatically Set soft timing O Set Windows timing Figure 2 24 Timer Dialog Depending on your hardware the Soft Timing setting achieves channel sampling rates of over 1 kHz The DIAdem DAC real time kernel runs as the Windows system driver with the highest possible priority and controls the timing with interrupts Data acquisition online processing and signal output are all executed at
52. lect the Alarm generator and connect the green black packet cable to the E input on the alarm generator Enter the settings from Table 2 11 in the alarm generator dialog The attributes for the marked row are edited beneath the alarm table Alarm generator Table 2 11 Configuring Conditions for Alarms Dialog Menu Settings New entry Channel number MN HIHI alarm LOLO alarm DlAdem Data Acquisition 2 30 ni com Chapter 2 Acquiring Data and Controlling Processes Adjust the block size of the data packets to be monitored to the acquisition rate For the alarm generator to monitor one data packet per second reduce the packet size in the Pack block to 20 Note If the packet size is much larger than the acquisition rate in Hertz alarm generator will have a considerable wait for the data packet to be monitored If on the other hand the packet size is much smaller than the acquisition rate the alarm generator will have to monitor many small data packets Select an alarm table and connect Input E to Output A on the alarm generator Enter the settings from Table 2 12 in the alarm table dialog Alarm table Table 2 12 Configuring Column 2 of the Alarm Table Dialog Menu Settings Line related background color Priority Select an Alarms gt Texts converter block and connect it to the alarm table The alarms are to be recorded in two ways displayed on the screen and stored in files block The gray color
53. maintenance instructions owner s modification of the product owner s abuse misuse or negligent acts and power failure or surges fire flood accident actions of third parties or other events outside reasonable control Copyright Under the copyright laws this publication may not be reproduced or transmitted in any form electronic or mechanical including photocopying recording storing in an information retrieval system or translating in whole or in part without the prior written consent of National Instruments Corporation In regards to components used in USI Xerces C ICU and HDF5 the following copyrights apply For a listing of the conditions and disclaimers refer to the USICopyrights chm This product includes software developed by the Apache Software Foundation http www apache org Copyright 1999 The Apache Software Foundation All rights reserved Copyright 1995 2003 International Business Machines Corporation and others All rights reserved NCSA HDFS5 Hierarchical Data Format 5 Software Library and Utilities Copyright 1998 1999 2000 2001 2003 by the Board of Trustees of the University of Illinois All rights reserved Trademarks National Instruments NI ni com and LabVIEW are trademarks of National Instruments Corporation Refer to the Terms of Use section on ni com legal for more information about National Instruments trademarks Other product and company names mentioned herein are trademar
54. ng function bar in Figure 2 28 contains mathematical functions for online evaluations like FFT statistics or classification m im da BE V M Figure 2 28 Maths Packet Processing Function Bar 2 26 ni com Chapter 2 Acquiring Data and Controlling Processes The Display and I O Packet processing function bar in Figure 2 29 provides input and display instruments such as the oscilloscope and the voltmeter As opposed to the instruments in single point processing they appear as separate windows 23 GJ GJ aa HD 6 75 3 E Figure 2 29 Display and 1 0 Packet processing Function Bar The Driver Packet processing function bar in Figure 2 30 provides packet hardware features that you configured when you registered the hardware Apart from intelligent hardware functions you also can assign frequently required processing functions to the function bar in this way Refer to Chapter 4 Using Hardware for specific information po A 09 m0 d Figure 2 30 Driver Packet processing Function Bar The black and green data cables transport measured value packets Packet processing is clocked independently of single point processing Set the packet default clock with Settings Packet processing Default clock P MM M M M Default clock Packet behavior Packet call clock Hz Packet data a
55. of the connecting cables indicates that the text level of the protocols is in use Open the log file and enter manual txt as the file name Add a text display and a log file and connect them both to the Converter Alarm protocols In DIAdem VISUAL position the alarm table the text display and the MEG oscilloscope one below the other on the right of the display as shown in VISUAL Figure 2 34 During the measurement you can click on the heading of the alarm table to select the attribute for sorting the alarms If this attribute is the same for several alarms they will be sorted in accordance with the time stamp National Instruments Ireland Resources Limited 2 31 DlAdem Data Acquisition Chapter 2 Acquiring Data and Controlling Processes ES DiAdem VISUAL Dac8 DAC Jog File Edit view Insert Measure Settings Window SEI 288 EST CPC 1 Chann Description Status oj o m j j NI 5 000000 OFF 18 10 2005 11 43 03 4 High Limit critical 1 800000 gt 5 000000 OFF 18 10 2005 11 43 09 2 Low Level 4 100000 lt 5 000000 OFF 18 10 2005 11 43 09 2 Low Limit critical 4 100000 lt 5 000000 OFF I I 2 EX Occ Percent Online Classification 100 7 80 50 a4 g i 3 8 a oz a uo EE mq DES 3 8
56. oint processing and packet processing In single point processing the data is acquired value by value At every point in the block diagram each value can be accessed processed and visualized This allows you to combine all kinds of sampling rates easily and provides a great degree of flexibility for control tasks Packet processing groups values into data packets which are forwarded to the next function block when they have attained the specified size This 1s the concept of packet oriented processing functions only work with data packets It decreases the amount of administration required and increases the throughput You can combine packet processing and single point processing in one block diagram Decide which type of processing you use depending on your measurement task Single point processing provides real time features and a great degree of flexibility and packet processing provides features for online calculation fast data acquisition and intelligent hardware There are four function bars for packet processing The Handling Packet processing function bar in Figure 2 27 provides features for data handling such as packing and unpacking a multiplexer and various types of scaling You can use complete selection to include packet functions that are not included in any of the function bars in your block diagram be PC Se oo se Figure 2 27 Handling Packet processing Function Bar g5 The Maths Packet processi
57. onfiguration list these blocks are not affected in any block diagrams e Ifyou want to use other hardware proceed as follows reassign the function bars for inputs outputs and packet drivers Then choose the necessary hardware blocks and place them on top of the blocks that are already wired This enables you to replace simulation blocks with hardware blocks The list length in the function block may not exceed the number of terminals available on the hardware The first terminal is generally number 1 PIN 1 Communicating through Interfaces There are special function blocks for connecting devices on the function bars to inputs and outputs communication through the DDE and OPC interface the control file driver and the Script DAC Driver DDE OPL WES gt a 4 ps Figure 4 4 Interfaces Using Online DDE You can use the DDE interface to exchange data online with other programs running parallel with Windows In the DDE block you set the parameters for the DDE channel address Features of the DDE link DDE link Application Application Topic Topic Item Item Timeout 2000 Link DDE Request C Only new values Figure 4 5 Adressing the DDE Channel in the DDE Input Block Dialog DlAdem Data Acquisition 4 4 ni com Chapter 4 Using Hardware An address consists of three components e Application Name of the DDE server or of the program that can be executed
58. ou get function blocks from the function bars place them in the workspace and define parameters for them You can copy exchange and delete blocks and connect them using the signal inputs and outputs You can connect blocks to blocks blocks to cables and cables to cables The toolbar contains the following functions for processing your block diagram Measured value display without data storage Start a measurement Ctrl F5 Stop the measurement lt Esc gt Check the block diagram for syntax errors Zoom functions Alignment functions Grid Convert sections of a block diagram into a subblock diagram Unpack a subblock diagram Close a subblock diagram that has been loaded Block diagram info Interface monitor Editor for control files 2 2 ni com Chapter 2 Acquiring Data and Controlling Processes Describing the Measurement Task You describe the measurement task as a graphic block diagram as shown in Figure 2 1 which is saved as a DAC file Block diagrams have a clear structure you select the function blocks you need from the function bar place them in the workspace and connect them DIAdem distinguishes between different cable connection types that transport different types of signals You can delete each of the cable types in the toolbar e Yellow system cables transport the clock rate e Red control cables transport control signals for starting and stopping actions for example Green data cables tran
59. phic to a Visualization HH 7 Allow the measurement to run for a short period 8 Click Stop Measurement National Instruments Ireland Resources Limited 1 7 DlAdem Data Acquisition Chapter 1 Measuring and Visualizing with DIAdem summary DiAdem DAC Data Acquisition DlAdem VISUAL DIAdem Data Acquisition The following topics are a summary of the main concepts that you learned in this chapter Using DIAdem DAC you describe the measurement and operation assignments with a block diagram From the large function library select necessary functions that you place as function blocks in the workspace The logical connection of the blocks occurs using connections that you draw as lines Blocks represent data sources such as A D converter boards front end devices and other external measurement devices You register the corresponding drivers in DIAdem DAC and configure the available signal inputs and outputs Additional data sources can be input instruments data files and calculation results Select instruments such as pointer number bar display writer or wiper displays for measurement values from the DIAdem VISUAL library With control instruments such as switches knobs or slider controls you can trigger and control during a measurement function When designing a visualization you can align and configure instruments as you like When you start a measurement DIAdem automatically switches to the DIAdem
60. rt include the following Self Help Resources For answers and solutions visit the award winning National Instruments Web site for software drivers and updates a searchable KnowledgeBase product manuals step by step troubleshooting wizards thousands of example programs tutorials application notes instrument drivers and so on Free Technical Support All registered users receive free Basic Service which includes access to hundreds of Application Engineers worldwide in the NI Developer Exchange at ni com exchange National Instruments Application Engineers make sure every question receives an answer For information about other technical support options in your area visit ni com services or contact your local office at ni com contact e Training and Certification Visit ni com training for self paced training eLearning virtual classrooms interactive CDs and Certification program information You also can register for instructor led hands on courses at locations around the world e System Integration If you have time constraints limited in house technical resources or other project challenges National Instruments Alliance Partner members can help To learn more call your local NI office or visit ni com alliance If you searched ni com and could not find the answers you need contact your local office or NI corporate headquarters Phone numbers for our worldwide offices are listed at the front of this manu
61. sing in DIAdem DAC and you can assign drivers to it Apart from measurement hardware you also can register calculation functions that are frequently used in packet processing Settings Packet processing Configure driver New entry amp Function bar configuration for Packet data processing driver T Driver Block type TUE GFSSOUND si ae Delete entry Figure 4 3 Configuration Dialog for the Input and Output Bar of the Packet Processing Apart from input and output functions hardware manufacturers often provide special processing functions for packet processing Intelligent hardware with its own processor and memory can work independently from the PC and take over special tasks without affecting the PC CPU Using Interchanging and Setting Parameters for Hardware Blocks If you have configured the function bars for inputs outputs processing and packet drivers you can insert the blocks directly into a block diagram Please notice the following e You can configure the blocks in the function bars with the presettings The settings only apply to blocks subsequently included in the block diagram National Instruments Ireland Resources Limited 4 3 DlAdem Data Acquisition Chapter 4 Using Hardware e As soon as a hardware block is used in a block diagram all the related settings are saved with the block diagram and can only be altered there e f you delete a block from the c
62. sport measured values e Green black data cables transport packet processing values e Blue black alarm cables transport alarms e Gray black text cables transport message texts Data alarm and text cables come into the function blocks on the left and go out from the right The control and system cables are connected to the horizontal edges of the blocks The inputs are at the top and the outputs are at the bottom Figure 2 2 is an example of possible connections which are listed in Table 2 1 Figure 2 2 Positions of All Cable Connections National Instruments Ireland Resources Limited 2 3 DlAdem Data Acquisition Chapter 2 Cable Type Yellow system cables Red control cables Green data cables OK Branch Input point r JQt Number of signals Signal list Data Acquisition Acquiring Data and Controlling Processes Table 2 1 List of Cable Connection Types ee To connect function blocks click on an output and drag the crosshair to the target input You can only connect the same kinds of terminals and cables An OK at the mouse cursor indicates that a connection can be made and a cross indicates the opposite If a cable is already connected at a block terminal no other cables can be connected Click on the cable and create a branch instead A branch is displayed as a circle All the connected cables contain the same signals An input poin
63. sting Communication with the Interface Monitor a3 With the interface monitor in the toolbar you can hold an interactive dialog with external devices using the serial interfaces COMI to COMO and using Interface monitor GPIB DIN IEC 625 and IEEE 488 You can send character strings to a device and read the responses on the screen Write COMI Receive Read COM1 lt Interface monitor Interface Transfer parameters Display COMI bd ASCII IEEE 488 bus parameters With EOL O Hex Primary address 701 EOL char Secondary address Timeout ms 1000 Received data Set COM1 010 To 1000 Help Figure 4 11 Interface Monitor The interface monitor is useful for testing and commissioning programmable measurement devices and for programming control files You will find all the control characters the device sends in the hexadecimal display mode For example select Settings Single point processing Interfaces CAN bus to configure the CAN interface This requires the CAN driver to be registered under Settings Single point processing Configure driver New Entry National Instruments Ireland Resources Limited 4 9 DlAdem Data Acquisition Technical Support and Professional Services Visit the following sections of the National Instruments Web site at ni com for technical support and professional services e Support Online technical support resources at ni com suppo
64. subdialog to connect multiple signals DiAdem DAC DAC2 DAC File Edit View Insert Measure Tools Settings Window Help Eb ORE m Gi SOX Tus BOT 82 NAVIGATOR Des VISUAL Figure 2 8 Only One Signal Is Connected to the Curves1 Display Block Data Acquisition 2 8 ni com Chapter 2 Acquiring Data and Controlling Processes After you have reassigned the display instruments in DIAdem VISUAL start the Measured value display The eight temperatures are displayed as numbers and the noise as a graph as shown in Figure 2 9 The signal names are also activated as a legend ES DiAdem VISUAL DAC2 DAC BAX aum File Edit View Insert Measure Settings Window Help mm Temperature 1 mm Temperature 2 mm Temperature 3 mm Temperature 4 mm Temperature 5 m Temperature 6 Co Temperature 7 Co Temperature 8 0 Si ET 2 7 Pil ell eu D 5 mm Noise1_1 Figure 2 9 The Extended Visualization Includes a Graphic and the Signal Names Saving Measured Data Saving data So far measured signals have been simulated and displayed To document and check processes the measured values have to be stored The Save block for storing measured data is in the System function bar Click on the Save data with trigger system block and connect it to the data cable as shown in Figure 2 10 National Instruments Ireland Resources Limited 2 9 DlAd
65. t is displayed as a square To input additional signals into a bus cable place the end of a cable on an existing cable The black triangles indicate which cables input signals Branches and input points can be shifted Keeping the left mouse button pressed pull a rubber band around the node You can delete the marked cables and nodes with Del The cables can contain more than one signal The number of transported signals is displayed by a black slash If you mark a cable a signal list symbol appears at the mouse pointer Double click on the cable to open the signal list with the connected block outputs and all the signals contained Click on the workspace to undo the marking 2 4 ni com Chapter 2 Acquiring Data and Controlling Processes In complex block diagrams cables may be continued in the background 19 The interrupt ends indicated by a black point and the DIAdem cable 25 designation for example D9 Interrupt The block diagram can be barred from modifications with Edit Block parameterization With Edit Find you can search for a function block in an extensive block diagram and reguest its properties and connections Click Measure Measurement without display for data acguisition without visualization Use Settings Options DAC to define basic properties of the measurement kernel and the block diagram editor Specify the maximum number of blocks and signals for one block diagram in the measurement kernel
66. the entire block diagram All the blocks with a clock connection on the top left have the specified clock unless a system cable is connected You can modify the sampling rate with Settings Single point processing Default clock Figure 2 20 shows the dialog Default clock Single clock OK Unit Hertz v Figure 2 20 Default Clock Single Point Processing The system block function bar in Figure 2 21 provides the system clock for the definition of various clock systems two memory blocks the trigger sequence and storage in DIAdem variables m ES Figure 2 21 System Function Bar Note Ifnocontrol cables are connected the system blocks work from the beginning of the measurement The memory block is supposed to function as a data sink and is therefore connected to the same system clock as the input blocks The default clock applies for the entire block diagram whereas you can realize partial systems with the system clock by connecting function blocks in a block diagram to various sampling rates System clock DlAdem Data Acquisition 2 18 ni com Chapter 2 Acquiring Data and Controlling Processes Divide the example block diagram into two partial systems with different sampling rates Create two system clock blocks and enter the settings from Table 2 7 in the block dialogs Table 2 7 Defining Two Clock Systems Clock system Settings Sampling rate 200 Draw a yellow system cable
67. the kernel level of the operating system The Windows Timing setting achieves channel sampling rates of up to 1 kHz DIAdem DAC uses a Multimedia timer from the computer for the timing The computer gives data acquisition online processing and signal output higher priority than normal Windows applications Unlike Soft Timing timing is executed at the application level with a lower priority than system drivers that are running at the same time at the kernel level of the operating system Grouping Partial Tasks in Subblock Diagram If a block diagram is very extensive and complex you can group partial tasks into subblock diagrams This makes the overall diagram more readable and also allows you to take sections of the block diagram and incorporate them into others The following features for processing subblock diagrams are included in the toolbar Group sections of a block diagram into a subblock diagram Unpack subblock diagram Close the subblock diagram lt Ctrl F4 gt Block diagram information 3 89 E E A subblock diagram appears in the block diagram as a function block that you can open with a double click The same features are available for subblock diagrams as for block diagrams You can add delete or set parameters for function blocks as well as draw extend and delete cables The zoom functions also can be used National Instruments Ireland Resources Limited 2 23 DlAdem Data Acquisition Chapter 2 Acquiring
68. the processor when the interrupt occurs For example there are 100 different response time values for a 1 second measurement with 100 Hz The difference between the minimum and maximum response times 1s called the jitter National Instruments Ireland Resources Limited 2 21 DlAdem Data Acquisition Chapter 2 DlAdem Data Acquisition Acquiring Data and Controlling Processes Therefore the jitter indicates the degree of precision of the periodicity of the clock times The acceptable jitter size and response time depends on the particular task at hand In visualization tasks tests have shown that for humans delays of up to 100 ms are still experienced as immediate On the other hand the periods between the output times have to be precise in digital closed loop control If the controller output is to be made with kHz and the periodicity error of the output time is less than 5 the maximum valid jitter is 100 ms Windows is not a real time operating system and does not enable the user to set specific reaction times for separate programs real time reactions For measurement tasks these requirements can be met by using PC plug in boards or external devices with their own timer components The task is controlled by the measurement hardware which ensures that the sampling rate is adhered to For open and closed loop control tasks the acquired values have to be processed immediately and after a specific response time the ca
69. ts Alarm Quit Level Operator 2 Alarm Quit Level Operator 3 A 7 E Delete right i Figure 2 35 The Administrator Sets Up User Accounts in the User Management and Grants User Rights Every time an ADM file is saved it is entered with its path in the Windows registry In a network several users can access the same administration file For the example set up the Manual reader user account with New user as shown in Table 2 14 Table 2 14 New User Account Dialog Parameters Settings Access rights Alarm quit level operator 2 National Instruments Ireland Resources Limited 2 33 DlAdem Data Acquisition Chapter 2 Acquiring Data and Controlling Processes Grant the Administrator configuration rights For the user management to be used make the settings from Table 2 15 in the blocks mentioned Table 2 15 Configuring Alarm Blocks Alarm Block Dialog Menu Settings Alarm Global User management protect generator parameters configuration and confirmation Alarm table Display Display button for confirming alarms Filter criteria Alarm Existing and not status confirmed Connect input T in the alarm generator to output A in the alarm table Before starting a measurement log in as Manual under Settings User log in log out During the measurement the alarms are displayed in the alarm table as they occur As the Manual reader user you can use the switch in the alarm table to confirm slider
70. ustrated place them on top of each other Positioning Instruments DIAdem Data Acquisition Open the block diagram visuali dac The necessary instruments have already been selected and wired to indicators The instruments are placed in the workspace randomly Delete the graphic that contains the text Position the individual instruments as displayed in Figure 3 2 and adjust their size as needed Do not bother with the design of the individual instruments yet 3 2 ni com Chapter 3 Visualizing and Operating VISUAL VISUAL2 DAC File Edit view Insert Measure Settings Window Help ERI OCA bem Ed MARTE BH Ies m Bg NAVIGATOR e ES Ja G TTT a MW o Ww m co E opik ooo om bh amp on 2 o o La oco ES o SCRIPT Figure 3 2 You Can Arrange and Size Instruments Freely E As with axis systems in DIAdem REPORT you can change the size and the position of instruments interactively By default you maintain the original ratio when resizing an instrument By pressing the Shift key you can OL resize an instrument without maintaining the ratio By pressing the lt Ctrl gt key you change the size of an instrument concentrically You can select multiple objects by pressing the Ctrl key If you cannot select an instrument due to overlapping you can select them individually using the Tab key until the
71. your own formulas various closed loop control algorithms the script block for defining sequential runs and help functions for copying or converting signals Register the Script DAC driver with Settings GPI DLL Registration Add GFSVBSDR DLL to obtain functions for determining the mean and bundling bits Refer to Chapter 4 Using Hardware for specific information fx NY WES PL 10901255 fx gt Ge io Figure 2 16 Processing Function Bar With the formula block you can perform calculations during a measurement The formula interpreter functions connect data and control signals providing a new output signal For example you can calculate the power during the measurement using the current and voltage signals Note There is another formula block with the control blocks This block has a control output instead of the data output For the control signal define a formula that has a result of or 1 If your measurement hardware has outputs you can output DIAdem DAC signals You can access the PC loudspeaker for testing purposes National Instruments Ireland Resources Limited 2 15 DlAdem Data Acquisition Chapter 2 Acquiring Data and Controlling Processes The function bar for simulation outputs in Figure 2 17 includes loudspeaker output display and deletion of activated Windows applications and performance of external applications Figure 2 17 Simulation Output Function Bar 45 For the example
72. yout a background graphic is used for filling In Display it is used for the object on top for example a status instrument or a container Tip Starting a measurement DIAdem VISUAL displays all control elements for example elements like toolbar and function bar Press lt Ctrl U gt to view only the workspace Press lt Ctrl F5 gt to start the measurement and press lt Esc gt to stop the measurement Press lt Ctrl U gt again to change the screen mode to normal view pressing You can write a script in DIAdem SCRIPT to automate the process DlAdem Data Acquisition 3 6 ni com Using Hardware The block diagrams that you have generated consist of simulated signals These block diagrams are hardware independent and can be prepared and tested on any PC You can use hardware in a variety of ways in DIAdem DAC The direct way is to register a DIAdem driver for the hardware The indirect way is to use a DIAdem interface such as the serial interface or to register an OPC server Registering and Configuring Drivers The function bars for inputs and outputs are not assigned Measurement hardware is registered in the same way for single point processing and packet processing tase 1 Installing hardware drivers nassigned Input 2 Registering DIAdem drivers 3 Configuring function bars for inputs and outputs The hardware registration is saved automatically with all the settings in a parameter file that has the extens
Download Pdf Manuals
Related Search
Related Contents
Anleitungs Istruzioni per l`uso Ligne Gare Maritime Express Garmin Software Version 0458.01 Cockpit Reference Guide Listing public - Interencheres カネカ 簡易DNA抽出キット(血液用)取扱説明書 Eglo RIPARI Harbor Freight Tools 500 lb. Capacity Hydraulic Table Cart Product manual 7-51-0230B - Alesis FireWire Podcasting Kit Quickstart Guide 折りたたみステッキ 取扱説明書 Copyright © All rights reserved.
Failed to retrieve file