Home

High Pressure Flow Meter Installation and Operations Manual

image

Contents

1. 17 Photo 3 Refill Kit 1 i f 19 Photo 4 A lab version of the HPFM 24 Photo 5 Micro Water Filter 26 Photo 6 The 8 Way Valve Manifold 26 Photo 7 Water Supply Valve f 29 Photo 8 Cutting a Stem f f 53 Photo 9 Removing bark from the stem 54 Photo 10 Installing the Compression ring x s 54 Photo 11 Greasing the Coupling 2 f 55 Photo 12 Tightening the Coupling 55 Photo 13 Removing Air from the i 56 Photo 14 Connecting the tubing 57 TABLES Table 1 HPFM Software Menu options f f 31 Table 2 Format of data saved by the Transient option 40 Table 3 Quasi Steady State Measurement Numerical Output f 44 Revision 3 11 2008 4 yn MMA Dynamax Inc lt r 1 Introduction 1 1 High Pressure Flow Meter HPFM Form amp Function Thank you for purchasing a Dynamax High Pressure Flow Meter HPFM The HPFM is shown schematically in Figure 1 It is an apparatus designed to perfuse water into an object while rapidly changing the delivery pressure and simultaneously measuring flow The slope of flow plotted versus pressure equals the hydraulic conductance of the object The object can be an excised shoot or excised root system or capillary tube for test purposes The HPFM is used to measure quasi steady state conductance i e under conditions where flow and applied pressure are approximatel
2. C T theory depends on pressure bomb data 55 Tsuda Makoto and Tyree M T 1997 Whole plant hydraulic resistance and vulnerability segmentation in Acer saccharinum Tree Physiology Vol 17 pp 351 357 Hydraulic properties were studied in Acer sacharinum L a riparian species that also grows well on a dry soil when transplanted Hydraulic resistances were measured by two independent techniques a new high pressure flowmeter HPFM method and a conventional evaporative flux EF method Vulnerability to cavitation was also investigated on petioles stems and roots using hydraulic conductivity technique 70 Tyree M T Velez Virginia Dalling J W 1998 Growth dynamics of roots and shoot hydraulic conductance in seedlings of five neotropical tree species scaling to show possible adaptation to differing light regimes Oecolgia Vol 114 pp 293 298 The dynamics of growth shoot and root dry weights surface areas hydraulic conductances and root length were measured in seedlings of five neotropical tree species aged 4 16 months The species studied included two light demanding pioneers and three shade tolerant young or old forest species Growth analysis revealed that shoot and root dry weights hydraulic conductances and leaf area all increased exponentially with time The advantages of scaling hydraulic parameters to leaf surface area are discussed in terms of the Ohm s law analogue of water flow in plants Revision 3 11
3. PT2 0 i 100 l z00 i 300 200 500 kPa Figure 14 Transient collected on the Orange range Figure 15 is a repeat of the transient done above with a small air bubble in the 8WO manifold The transient was re measured on the Red range The slope of this curve should still give a valid conductance although the bubble can be eliminated completely 120 Percent Full Scale F 3 31 0E 06 PT2 429 1 PT2 0 i Too i Zoo 300 l a00 500 kPa Figure 15 Transient re measured on the Red range Revision 3 11 2008 50 BynAmAx Dynamax Inc r 6 6 Safety When working with tools one should always consider safety Razor blades can cut more than the xylem So can saw blades Being careful cannot protect you all the time Wear gloves when using sharp objects Make sure that you are cutting away from your body and fingers as well as away from other people Wear safety glasses when using a saw blade If you are in the field and you are excising trees or small parts of large trees make sure that you wear the proper equipment i e hard hats steel toed boots when cutting Other body protection may include sunscreen long sleeved shirts full length pants and hearing protection Also consider the safety of those around you Be aware of what you are doing and how it will affect the area around you and the people in that area Are they wearing the proper safety attire If you are in a lab are they wearing proper protection a
4. Revision 3 11 2008 19 BynAmAx Dynamax Inc lt r 1 2 Make sure that all valves are closed Turn on the digital pressure gage If there is pressure begin to release the pressure with the Compressed Air Supply Valve To release pressure slowly turn the valve to the bleed air position right Once the pressure is removed close the Compressed Air Supply Valve Connect the Refill Kit to the HPFM using the following steps a Make sure that there is degassed water in the Refill Kit If not go to Subsection 4 4 1 Making Degassed Water Make sure that you have enough water to finish the sampling project in the Refill Kit with water to spare Some of the water will be used for remove extraneous bubbles from the tubing root compression fittings etc Pump the Refill Kit with several hand strokes This is the pressure that will force the degassed water into the HPFM Raise the refill tubing straight upward Depress the Refill Kit male disconnect against a hard object such as a flat blade screwdriver allowing the water to flow and remove bubbles from the Refill Kit tubing Cover the disconnect and screwdriver with a towel to keep the hot water from spraying WARNING Take Precautions Use Gloves when handling the Hot Degassed Water h Connect the Refill Kit to the HPFM check the tubing for air bubbles and leaks Open the Water Supply Valve to the left to allow the water to flow into the C
5. button Open up the valves on the manifold for the next highest range For example if you are on the Yellow range and need to go to the next highest range which would be the Gray range So you would open the valves corresponding to the Gray colored HPLC caps Returning to the software click on the Gray color range and click the Start button You should see a decrease in the differential pressure and the software will stop warning you of an excessively high differential pressure The working range for the differential pressure is 20 to 120 kPa 3 to 17 PSI If you attempt to measure dP values above 120 kPa 17 PSI you will be beyond the calibration range If you are below 20 kPa 3 PSI your readings will be more accurate on the next lower flow range Note When you are working with root systems the differential pressure will normally decrease the longer you have the HPFM coupled to the root The range should be set accordingly Revision 3 11 2008 34 Ha D Inc Eyn A ynamax Inc CAUTION The desired working range for the differential pressure dP is 20 to 120 kPa 3 to 17 PSI 4 Ifthe differential pressure is greater than 120 kPa 17 PSI then the HPFM software will warn the user You can then follow Step 5 to increase the range which will decrease your differential pressure If the pressure difference falls below 20 kPa 3 PSI then a On the computer running the HPFM software select the Pause bu
6. Dynamax Inc lt r NOTE It is best to do a calibration in a room with stable temperature 0 5 C because the calibration factors change 2 3 per degree C If the room temperature changes more than 1 C then keep a record of room temperature for each calibration range and enter the mean value in the Calib Temp text box This value is also saved in the calibration table CAUTION KNOWN BUG The calibration procedure SOMETIMES overwrites a vital value that specifies the conversion between PT2 in mV to MPa The conversion factor should be 6 8966E 03 This does not happen every time so the cause of the bug has not yet been located A much smaller value which makes the HPFM report very small or no pressure increase during pressurization has overwritten the value The solution to the bug is to manually enter the correct calibration factor as explained below 11 8 Setting the Calibration Factors The View Set Calib allows you to view the numerical values of the calibration factors and to manually edit and save them using the window that comes up as illustrated in figure 22 below Flow Rate Calibration Factors Calibrated 21 3 C INSTRUCTIONS kgs kPaj2 Calibration factors are 2 1661E 05 6913E 08 shown in the two tables atthe left 2 3730E 08 0 0000E 00 To edit values click on the 7 4297E 08 0 0000E 00 box you wish to edit and click into begin editing Wh O 0000E 00 3 1473E 07 0 00
7. The rate of water flow into roots F will exceed the rate of passage through the roots Fp if the root is initially dehydrated since some of the water will remain behind to re hydrate cells But F will exceed Fn even in fully hydrated roots because pressurization will cause elastic swelling of the roots or the HPFM F will also exceed Fn because of compression of any air bubbles that might be present in the wood the stem interface or the HPFM So F will be given by F Fh Fe Fp 5 Revision 3 11 2008 11 BynAmAx Dynamax Inc lt Where F is the flow associated with elastic swelling and F is the flow to compress air bubbles when present If the flow through the object measured is a linear function of applied pressure difference between the outlet of the HPFM and atmospheric pressure we can express Fp as F K P 6 Where Pz is the outlet pressure relative to atmospheric pressure The volume of the tubing connectors and object measured will increase with P3 If the volume increase is elastic and linear with pressure then the volume of the system V will be given by V V Pze 7 Where V is the initial volume of the system at P2 0 and e is the bulk modulus of elasticity The time derivative of Equation 7 gives the flow to cause the elastic volume change F dV dt 1 e dP dt 8 If air bubbles are present anywhere in the system they will be compressed according to the ideal gas law as t
8. select to have values updated after a fixed dT by clicking on the On Fixed dT option The default time interval is 32 s but you can select other values by clicking on the drop down text box You should allow data to accumulate until you get two values of flow that agree within 1 stable value When you have a stable value you can enter the value in the table by clicking on the Select Last F dP button The value will be added to the first blank space on the table w Calibration of HPFM For Help click on H then on another button click H again to end help session lol x e COM Setup A D Setup Done FLOW kg s 2 1954E 05 2 1993E 05 2 1833E 05 2 2091E 05 INSTRUCTIONS Data Collection Controls dP kPa dTime s dweight g Stop Select Last F dP Calib Temp 2i 2 fe 9 1 Click on COMs amp test balance 2 Click on A D amp test HPFM 3 In Data Collection Controls adjust settings then click start OnFixeddT C On Fixed dw fs x oz e elect Read Cycle Red dP Yellow F 20 6 102 12 2 1833E 05 Pa 6 90 05 2 0000E 05 90 40 6 79 61 1 7964E 05 80 63 16 06 71 48 1 5806E 05 70 73 io 14 A 6 158 33 1 3235E 05 59 26 242 s 7 48 41 1 1428E 05 51 26 ic 10 7 42 38 8 8177E 06 39 26 8 7 30 11 6 5929E 06 29 44 E Y IFA A CAOC NC on nc Pia gt Current Regression Values AD 1 29013E 07 Al J 2 20334E 07 azd 0 0 A
9. ssssssssssnsssnnnnnnnnunnnunnnunnnnnnnnnnnnnnnnnnnnnnnn 66 11 1 Calibration WINDOW sic ciiassasectnccpeekedonaboseccstcetetetcenidestenatdtonenpiadoienrnenceceteegneanice 68 11 2 Calibration of Pressure Transducers PT1 and PT2 ccceeeeeeeeeeeeeeteees 69 11 3 Calibration of PU 2 eis ciccsitscinrsccormenod orandinandutctenainen tajesdaccensiadinitnasensuduarnancnegencgdaiues 69 11 4 Balancing PT1 and PG 2 tise cvieiccsiantetetdtetienie vane bedside bexie odelvndalendsbodeeveladeedeeadede 70 1145 Calibration OF OP segcaces dcnsetesemsneradantensurnubeenenavmeedevestsde aubeeureey Ees Eue TEER 70 11 6 Setup of communications with your Dalance ccceececeeeeeeeeeeeeeeeeeeeeeenenees 71 11 7 Calibration of a Flow Range ccceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 71 11 8 Setting the Calibration Factors ccccccecceeeeesseeeeeceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 73 11 9 New Calibration File ee eeeeccceeeee cere eeeeeeneceaeeeeeeeeeeeeeeeseeaeeeeeeeeeeeeeees 74 11 10 SUGOSSIEE Spare PF ANS voeecs ee csceesvecsteus cnt eecerertenseenvnnudeey iene arekiko iiet aKa na 74 12 APPENDIX I Parts List ssccccscccccccecsccteccssstccccteeencenstedgediesnniweneseces 75 13 APPENDIX eer meer nee enon eannan aaiae aaaea LAESA reece meas 76 14 APPENDIX Ill Reference List csssseeeeseeeeeeeeeeeeeeeeeeeeeees 77 15 APPENDIX IV Glossary ssssssssnsssnnnnnnnnunnnunnnunnnunnnnnnnnnnnnnnnn
10. 2008 78 BynAmAx Dynamax Inc lt 15 APPENDIX IV Glossary A D The output of the pressure transducers is logged using a custom designed dual channel A D circuit with 12 bits plus sign accuracy The location of A D circuit in the supply box The HPFM is supplied with Windows software for controlling the A D circuits logging data and for preliminary data analysis Air Valve AV Capillary Tubes CT The capillary tubes are 1 5 mm OD HPLC tubing 0 16 to 1 5 m in length Captive Air Tank CAT The Captive Air Tank CAT is a two compartment tank The upper compartment contains water and the lower section can be pressurized with air A flexible rubber diaphragm separates the two compartments The large stainless steel CAT allows you to pressurize the water without the air and water mixing together The CAT will hold 7 0 liters of water and it is best to refill while there is still at least 0 5 liters of water in the tank The Captive Air Tank CAT should be filled only with degassed water i e water with air dissolved at less than saturating concentrations of O2 and N at atmospheric pressure It is important to prevent air bubbles from entering the Captive Air Tank CAT because these bubbles will re saturate the degassed water Cubic Feet Cu Ft The compressed air tank for the HPFM has a volume of 24 cubic feet Differential pressure dP Water flow across the selected CT causes a differential pressure dP drop d
11. 4174E 05 1 3746E 05 1 3280E 05 1 285 1E 05 1 2477E 05 1 2138E 05 1 1855E 05 6 7025E 06 6 5974E 06 6 4652E 06 6 3541E 06 6 2250E 06 6 0237E 06 5 8465E 06 5 6933E 06 5 5491E 06 5 4140E 06 5 3059E 06 P MPa 0 43754 0 43953 0 44020 0 44236 0 44269 0 44519 0 44668 0 44901 0 45034 0 45150 0 45200 Table 3 Quasi Steady State Measurement Numerical Output Flowmeter measurements after quasi stable values were reached and the subsequent removal of leaf blades is shown in Figure 10 The experiment was done on a maple branch with 10 mm basal diameter and 0 6825 m of leaf area When the leaf blades are removed over a period of 400s the flow rate increased and the resistance dropped When the flow rate exceeded the calibration range the points turn red Yellow points indicate values in the calibration range whereas red points are out of range To bring values back into calibration range the applied pressure was lowered after the last leaf was removed The leaves were responsible for gt 80 of the whole shoot resistance When petioles were removed the calibration range was again exceeded and the applied pressure was lowered again to bring values back into the calibration range The petiole resistance was about 5 of the total shoot resistance Revision 3 11 2008 43 Dynamax Inc ME HPFM95 Version 1 07 Please report bugs to Dr Mel Tyree see Help Meine Enter memo here SELECT RANGE BEFORE YOU
12. 97 0 14 cucumber 2 89 0 34 0 81 0 07 squash 2 35 0 05 1 50 0 18 Data collected by Prof Zhang in 1998 concerning the temperature dependence of whole shoot and root conductances of seedlings of various plants for plants from 0 to 40 C Plots of conductance versus temperature where used to compute mean slope expressed as percent change and standard error of the mean of N 7 or 8 roots and shoots Means marked with were significantly different from 2 418 P lt 0 01 which is the mean value for a narrow capillary tube where the temperate dependence reflects the dependence of viscosity of water only Users who want to make temperature corrections should measure the temperature dependence of their study species for the sake of maximum accuracy Fortunately in many cases the two temperature corrections cancel out if the following conditions hold 1 The temperature dependence of the capillary tubes on the HPFM and of the sample are equal 2 The HPFM and the sample are at the equal temperature even though the temperatures might differ between measurements Let us take an example Lets assume the HPFM was calibrated at 25 C and that we want all sample conductances expressed in terms of what it would be at 25 C Let us say that a set of measurements were done at 30 C The first correction for how temperature effects the calibration factor would require us to raise the sample conductance value by 2 4 x 5 12 which w
13. HPFM during transient measurements of hydraulic conductance Tyree et al 1995 Air bubbles can be detected by doing a transient conductance measurement with a solid metal plug mounted in the compression fitting See the instructions under Section 5 6 Transient Measurement of Conductance to see how to perform a transient conductance measurement Photo 6 Air bubbles cause errors mostly when measuring low 8 Way Valve Manifold conductance by the transient method when using the lowest three flow ranges i e the Green Orange and Red ranges The best way to remove air bubbles from the 8 Way valves is to perfuse water through the system overnight 12 hours after bleeding the manifold Steps for perfusing the water can be found in Subsection 4 4 2 Priming a totally Empty Captive Air Tank CAT The steps for bleeding the manifold are a Open or make sure to open the Water Supply Valve to the flow position right b Make sure that you still have pressure by checking the digital pressure gage c Open the flow inlet valve Keep all other valves closed d Loosen connector for PT1 and PT2 allowing a small amount of water to flow out e Close the Water Supply valve removing the pressure from the connection Revision 3 11 2008 25 d NAMAX Dynamax Inc Each HPFM is shipped with a 5 1 5 m length of Red PT Adapter tubing about 0 005 ID Connect the 1 5 m Red tube 3cc Syringe to the outlet tube usi
14. However if the display becomes dull and numbers are incomplete and difficult to read you will need to replace the battery Follow the steps below 1 Turn the gage off 2 Unscrew the back panel of the gage and unclip the 9 V battery 3 Insert the new 9V battery being sure to clip the contacts on securely 9 5 Zeroing the Digital Pressure Gage The digital pressure gage used on the HPFM is of high quality with an accuracy of less than 5 Reading drift is uncommon but can occur overtime If you consider that the gage is not reading the applied pressure accurately begin by checking it against the Pressure recorded by PT2 see Section 10 3 Manual Test of the Pressure Transducers 1 Open all the range valves on both the Inlet and Outlet manifolds except the Purple outlet valve This must remain closed to allow the pressure being applied to the system to be read on PT2 2 Apply a pressure of 100kPa 14 5 PSI and read the corresponding millivolt mV value on the AtoD system panel Remember that the Transducers are calibrated so that 1mV 1PSI 3 The reading in millivolts should be between 14 2 and 14 8 or 2 of the equivalent 14 5 PSI 100kPa displayed on the Gage 4 Exhaust the air and read the pressure on PT2 once again Both PT2 and the gage should read zero 5 If the gage has failed these checks take a small flat screwdriver and insert it into the zero set slot on the back of the gage Very gently turn the potentiometer un
15. Inc 5 3 HPFM Software Functions After checking the connection of the communications cable between the HPFM and your PC turn on the HPFM power switch on front panel Double click the HPFM icon This will bring up the main menu shown below or something similar BE HPFM95 Version 1 11 Please report bugs to Dr Mel Tyree see Help File Options Help File C My Documents Hpfm95 HPFMO003 1 1 3 01 CAL Jem HPFM Control Program for Windows 95 By nda Se C USDA Forest Service 2000 Version 1 11 Figure 4 Main HPFM Software Screen The options in the drop down menus are shown in Table 1 below Table 1 HPFM Software Menu options FILE OPTIONS HELP FileView Flowmeter BugReport XitFileView Transient Program Overview SaveFileView Regression COM Ports View Set Calib SetZero New CalFile Calibrate HPFM Exit The use of the various main M men items is lis ted above he WARNING HPFM not found Check that it is connected to a printer port and that the order in which you might power is on use them in the course of a day s work with the HPFM Note the best way to learn the software is to perform the steps below as you Figure 5 read them HPFM Communications Failure Error Message When the HPFM program starts the program automatically tests for basic communication with the HPFM by testing to see if the HPFM is connected to the computer through one of three possible printer port conne
16. Parts List amount PartNo Deseiption Plastic Compression Caps 5 5FT 1535 005 I D x 1 16 O D Red Bleed Tubing 6 SFT 1540 042 1mm I D HPLC Natural Connection Tubing B 1EA HPCC1 4 1001 1 4mm Two way connector 9 1EA HPCC4 10 1008 4mm 10mm universal connector _ Cone washer 3 8 for 8 10 mm range a7 6 61 2 Coupling Seals drilled Cd d8 9 0 Coupling Seals drilled Z o Z y O d9 9 3 Coupling Seals drilled Z Z o y O 21 1 2V 4AH Battery Charged and tested __ 22 1 Battery Charger 12V DC out Center POS 100 240 VAC IN 23 6FT Serial Parallel 6 Ft Cable Male Female 24 1 Spare QV Alkaline Battery O Z o y O 25 1 2000 PSlregulator OnlyforHPFM C i Nitrogen Tank Only for HPFM C 2 Wheels amp 1 75 Bolts Not on HPFM L 1 Pack Frame Not on HPFM L i O 1 Pack Straps Back Pad Not on HPFM L B3 1 Bec amp BOC syringes w 2 blunt needles amp 1 Razor blade B4 2oz ____________ Alga e cide sd B5 dP Mam 36 1Set Calibration Curve CD and Hardcopy B7 1 XP compatible HPFM software Z O Z Z O 88 1 Packaging Carton w Padding Cd Revision 3 11 2008 75 i N MAX Dynamax Inc r 13 APPENDIX Il Bill of Materials AV Compressed Air Valve WV Water Valve NV Needle Valve F Water Fi
17. START P MPa Res MPas kg Cond kg s MPa Flow kg s 0 1149 1 4949E 04 6 6895E 05 8 0541E 06 0 1149 1 4193E 04 7 0456E 05 8 1172E 06 0 1145 1 4152E 04 7 0660E 05 8 0932E 06 0 1147 1 4155E 04 7 0647E 05 8 1052E 06 F Hnfman Figure 11 Quasi Stable Flowmeter Measurements Revision 3 11 2008 44 BynAmAx Dynamax Inc lt 6 Tips and Cautions for using the HPFM 6 1 Wound Response plugging of stems Frequently the resistance of whole shoots will rise constantly while doing quasi steady state measurements This is generally due to natural wound responses If the basal 3 to 5 cm is removed most of the resistance increase is also removed Many species do not plug at all See Appendix Il for a list of species that plug The best way to avoid plugging problems on species with rapid wound response is to do conductance measurements by transient It is best to re hydrate the shoot by perfusing at 400 to 500 kPa 58 to 73 PSI for a few minutes excise the lower 3 to 5 cm and then do a transient HOWEVER large branches present other problems see section 6 3 6 2 Temperature Corrections The calibration factors used to convert dP to flow are temperature dependent because Kcr is inversely proportional to the viscosity of water and the viscosity of water changes about 2 3 per C Tyree et al 1995 The HPFM will be supplied with calibration curves and the temperature at which the calibration was done The user of
18. after feeling the resistance of the rings NOTE Excessive squeezing of the tubing by the compression fitting and O rings may restrict flow on the larger volume ranges of the HPFM Revision 3 11 2008 56 d NAMAX Dynamax Inc r CAUTION Do not over tighten Never use tools to tighten You can compress the connection tubing stopping the flow of water and give you erroneous results i Water should have accumulated in the cracks and crevasses of HPLC compression fitting Turn off the water flow by closing the Flow Out valve on the 8WO manifold Turn the fitting cap until it is tight Remember the warning above in step 9f j Give the tubing a slight pull to see if the tubing will stay in place If it does great go on to step 10 If not go to step 9b 10 Open the flow out valve making sure that there are no leaks If there are leaks repeat steps 7 through 9 If there are none close the flow out valve and you are ready NOTE A common problem with connecting large stems to compression fittings is that the fitting slips off during pressurization One way to prevent this is to obtain a few small wood screws and screw 2 to 6 of them between the end of the stem and the upper surface of the rubber stopper Leave the heads of the screws a few mm above the wood This will prevent the stopper from slipping past the screws The effect of the screws on the root or shoot conductance is very small On smaller stems too smal
19. and open the outlet valve PT1 and PT2 should both be at zero PSI and zero mV Adjust the dP zero until dP reads zero mV 6 Close the outlet valve and open the inlet valve Check to see if dP still reads zero If not then adjust PT1 gain until it does equal zero Repeat steps 4 and 5 until dP equals zero when PT2 0 mV and PT2 80 mV 11 5 Calibration of dP Lower the pressure in the captive air tank until PT2 reads about 15 mV 15 PSI Make sure the Red range is selected and repeat the following steps 7 Close the outlet valve and open the inlet valve Make sure dP still reads zero If not readjust the dP zero pot Write down the value of PT2 8 Open the outlet valve while the inlet valve is still open There will now be a pressure drop across the Red tube equal to the value of PT2 you wrote down in step 7 If dP does not equal PT2 in step 7 then adjust the dP gain pot until it does 9 Close the outlet valve while the inlet valve is still open See if dP still reads zero If not then adjust the dP zero pot until it does Then repeat step 7 and 8 The objective is to get dP to read zero when there is no flow across the Red tube and to make dP PT2 from step 7 when there is flow across the Red tube You are now finished with the electronic calibration of the A D board You may also want to calibrate PT2 output in mV versus a test pressure gage because the calibration table needs the conversion between mV and MPa If
20. colored tubing fitting at the top of the compression coupling there should be at least 2 small viton O rings inside the connection Volume of the system V Vo The initial volume of the system at P2 0 Vb The volume of a bubble at absolute gas pressure Pp Water Valve WV Allows water flow into the filter and subsequently into the valve manifold BWI and 8WO system at P2 0 8WI An Omnifit 8 Way HPLC valve of octagonal geometry with 8 tubes emerging from a common point in the center and each tube terminated by a valve 8WwO An 8 way manifold on outlet side Revision 3 11 2008 82
21. is included on the software disk under the file name HPFM CAL If you wish to perform a custom calibration of the HPFM you will require an Electronic Balance with a resolution to 4 decimal places and RS232 communication facility both on the balance and the computer However it is recommended that Dynamax perform all calibrations 1 3 Pressured Bottle Requirements Dynamax ships the HPFM C models with a compressed air tank regulator and hose for connection to the HPFM This tank can be pressured to 2015 pounds per square inch PSI or 13 890 Kilo Pascal s kPa It has a volume of 24 cubic feet Cu Ft or 682 liters The regulator allows control of pressures up to 1 500 PSI or 10 343 kPa This air tank or bottle cannot be shipped filled so you will need to fill the bottle air tank with a dry compressed gas Economically two gases are best Nitrogen or dried compressed air The compressed air tank can be filled by University physical plants they can assist you or distributors such as Air Liquide Linde or BOC Gases Revision 3 11 2008 7 Ha D Inc Eyn A ynamax Inc WARNING The compressed air tank must have at least 700 PSI 4 800 kPa to run a transient pressure test The setup for running a transitory test requires enough pressure 600 PSI or 4 100kPa to deliver a constant flow of gas to the HPFM The pressure regulator requires about 700 PSI in the tank to deliver 600 PSI to the HPFM It must deliver the gas with
22. it is not check the charger power source If it is good replace the charger Leave the charger connected for 12 hours Disconnect the charger from the HPFM Check the voltage with a Multi meter If it is less than 10 VDC then replace the battery according to Subsection 9 3 Changing the HPFM Battery If you are still having problems with the battery please contact your local distributor or Dynamax for repair Revision 3 11 2008 60 BynAmAx Dynamax Inc lt r 9 3 Changing the HPFM Battery The HPFM has a compartment located at top of the unit toward the back This compartment contains the electronics for the HPFM and the battery This battery is a 12VDC 4 5Amp Hour Gel Cell type and may require replacement every three to four years depending the use of the HPFM 1 10 11 12 To replace the battery Loosen and remove the 4 slotted screws that hold the top panel in place Put the screws in a safe place You should be able to see the battery mounted on its side Make a note of the placement of the foam cushion Remove the foam from around the battery Push the battery back and remove the metal extender that holds the battery securely against the back of the compartment The extender is threaded into the compartment side Disconnect the battery from the circuit There are two connections the positive terminal red and the negative terminal black Remove the positive terminal first Remove t
23. pressure transducers according to Section 5 4 Setting the Zero Flow Volts Setting the zero flow volts must be done at the start of each daily usage of the HPFM Make sure that you are correctly connected to the sample in Section 7 Connecting the HPFM to Roots and Shoots To check the flow range setup for a quasi state flow 1 3 Check the digital pressure gage for the desired flow pressure Makes sure that the Compressed Air Valve is in the off position straight up and the Water Valve is positioned to allow water flow into the filter and subsequently into the valve manifold 8WI and 8WO system The valve should point toward the right parallel to the hose If you have sampled a root system of the type and species that you will be testing set the HPFM to the desired flow range by closing off 8WI and 8WO valves on all ranges a Start the HPFM software and follow the direction of Subsection 5 7 Quasi State Flow Measurement using the Flowmeter function from the Options menu Open up all the valves corresponding to the desired range and open the flow out valve Check for leaks in the lines If the software recognizes that the differential pressure between PT1 and PT2 is over 120 kPa then it will give you a message telling you that the HPFM is out of range You will need to go the next highest range The following steps accomplish this On the computer running the HPFM software select the Pause
24. the HPFM should always note the temperature at which measurements were done The conductance values should be adjusted by the following formula Keorrected K 0 554 0 0225 T 0 554 0 0225 T Where K the uncorrected conductance T the temperature at which K was measured and T is the temperature at which the HPFM was calibrated The resistances should be corrected by the following formula Roorrected R 0 554 0 0225 T 0 554 0 0225 T The formulas above correct K and R values to the temperature at which the sample was measured But in addition some people may want to make an additional correction in cases were many different plants were measured at many different temperatures The temperature correction is approximately 2 4 C so if measurements are made over a range of 15 to 35 C stem conductances can change by 48 Zhang and Tyree have recently measured the temperature dependence of roots and shoots of a number of species summarized below See Chapter 6 5 in Xylem Structure and Ascent of Sap Second Edition by MT Tyree and MH Zimmermann Springer Verlag 2002 Revision 3 11 2008 45 BynAmAx Dynamax Inc lt r Species Root C SEM Shoot C SEM Acer saccharum 2 74 0 07 3 27 0 08 Quercusalba 270 003 2 58 0 06 Picearubens 279 40 25 2 85 0 20 Pinus strobus 2 30 0 18 2 44 0 14 Pinus taeda 2 68 0 30 2 50 0 39 Tsuga canadensis 2
25. the influence of air bubbles Revision 3 11 2008 48 Dynamax Inc 200 500 kPa Figure 13 Transient done on the Orange range Transient into 1 5 m length of red tube made after a very large air bubble was introduced into the 8WO valve This kind of air bubble can be dissolved slowly by using the methods described in the section Dissolving air trapped in the 8 way manifold NO RELIABLE CONDUCTANCES CAN BE MEASURED WHEN CURVES LOOK LIKE THIS NOTE A linear transient line Flow versus pressure does not mean there is no air in the stems When air is evenly distributed in the woody shoot the transient can look quite linear and yet the value of conductance the slope is too big If the quasi steady state and transient values of conductance show transient conductance more than 10 than the quasi steady state value then you probably have a stem with air more or less evenly distributed throughout the wood In Figure 14 this transient has been done on a 1 5 m length of Red tube 0 12 mm ID There is still a small air bubble present but the data are good enough to get a reliable conductance The transient was collected on the Orange range Figure 13 illustrates what the data look like when collected on the next higher Red range Revision 3 11 2008 49 BynA MAX Dynamax Inc Percent Full Scale F 3 601E 06 Pia 470 3 120 30 60 30 3 g wa Deooao SEE a oo Coe Coo oe ae ee es a
26. to learn why it is important that the water be degassed This section assumes that the HPFM has been used and or filled before If the HPFM has not been used or air has been allowed into the HPFM Captive Air Tank CAT Filter or 8 Way Manifold systems then begin with Subsection 4 4 2 Priming a Totally Empty Captive Air Tank CAT Follow these steps 1 Make sure that all valves are closed 2 Turn on the digital pressure gage If there is pressure begin to release the pressure with the Compressed Air Supply Valve To release pressure slowly turn the valve to the right bleeding the air 3 Once the pressure is removed close the Compressed Air Supply Valve 4 Connect the Refill Kit to the HPFM using the following steps a Make sure that there is degassed water in the Refill Kit If not go to Subsection 4 4 1 Making Degassed Water Preventing Algae Buildup Inside the HPFM Make sure that you have enough water to finish the sampling project in the Refill Kit with water to spare Some of the water will be used for remove extraneous bubbles from the tubing root compression fittings etc b Pump the Refill Kit with ten to fifteen hand strokes This is the pressure that will force the degassed water into the HPFM c Raise the disconnect of the Refill Kit straight up and cover the disconnect with a towel or pads designed for hot Liquids This will prevent hot water from spraying d Depress the Refill Kit m
27. tubing and the connected HPFM system One suggestion is to use a rubber band to hold the tubing to the frame d Remove the Compression Coupling from the sample by loosening the Compression Nut from the Coupling Slip the acrylic housing off the Compression Seal e Slide the Compression Seal off the sample by twisting lightly as you pull the Seal off f Place the seal back into the Compression Coupling for storage Revision 3 11 2008 58 AL N MAX Dynamax Inc r 9 Maintaining the HPFM 9 1 Changing the Water Filter The HPFM water filter under normal conditions should be replaced annually Under heavy loads the filter should be replaced at least twice a year To change the water filter follow these steps 1 Release the compressed gas pressure making sure that the Captive Air Tank pressure is 0 PSI 0 kPa This is accomplished by turning the Compressed Air Valve to the right releasing the pressure slowly 1 1 5 PSI per second 6 9 10 kPa per second 2 Loosen the steel strap that holds the water filter to the frame It is not necessary to remove the steel strap You should loosen the strap until you feel that the filter can slide up or down 3 Loosen the steel straps that hold the tubing to both ends of the water filter Loosen the top strap first Please be prepared for water to leak Cover the Digital Pressure gage with a small plastic bag in order to keep water from splashing onto the electronics of the gage Us
28. you do not have a test pressure gage more accurate than 1 then use the nominal factory conversion factor of 6 8966E 3 MPa mV which applies to all PX26 transducers with 1 accuracy Revision 3 11 2008 70 BynAmAx Dynamax Inc lt e 11 6 Setup of communications with your balance iol xi In order to set up communication with your balance you should connect the balance to the computer via a known COM port Turn on the balance and Communication with Balance via COMx m Port BaudRate p StopBits Parity click on the COMx Setup button comi 300 fe 1 no C 600 C2 C odd The window in figure 20 should be C COM2 e 1200 f even displayed This window is set up to C COM3 2 aoe m ofBits A mark communicate with a Mettler balance C COM4 e 9600 2 eo connected to COM2 set for 2 400 baud 1 stop bit 8 bits no parity The Command out Weight on balance command string to read a weight is SI Another common command Iv ees string is P either with or without ESC Done If ESC is needed be sure the Send ea E Esc box is ticked You can test the communication by clicking on the Figure 21 Test button If it works the Edit1 Communication with the balance text box should display current weight shown on the balance If the default settings do not work for you then you must consult your balance manual for the communication parameters and yo
29. your computer and the parallel printer cable between the HPFM and the computer BALANCE Figure 18 A container on the balance with a water filled tube connecting the HPFM to the balance Before you start calibration you will have to measure the displacement factor of the container with tube The tube should not be touching the sides of the container nor should it be resting on the bottom As water flows into the container the balance will register a slightly larger weight gain than the actual mass of water added to the container because of the volume of water displaced by the tube Here is how you measure the displacement factor Find another container B and fill it with about 100 mls of water Revision 3 11 2008 66 d NAMAX Dynamax Inc 1 Weigh container B with water on another balance and note the weight 2 Note the current weight of container A on the balance 3 Pour in all the water from container B into container A and note the new weight 4 Weigh the container B again An example of the weights you might measure and the calculation of displacement factor is Wt Container B before 154 3562 g Wt Container B after 58 3440 g Wt of water added to A 96 0122 g Wt Container A after 175 0022 g Wt Container B before 74 9900 g Wt change of balance 100 0122 g The displacement factor is 96 0122 100 0122 0 96000 The computer to calculate the actual mass of water entering the balance during c
30. 0 kPa 0 15 PSI HPLC capillary tubes up to 0 25 mm ID have linear calibration curves HPLC capillary tubes 0 3 mm ID or larger are nonlinear because of the transition from laminar to turbulent flow The pressure measurements are made with model PX26 100GV solid state strain gauge transducers The output of the pressure transducers is logged using a custom designed dual channel A D circuit with 12 bits plus sign accuracy The HPFM is supplied with Windows software for controlling the A D circuits logging data and for preliminary data analysis The Flow Outlet side of the 8 Way manifold is connected by a 6 foot 1 8 m length of water filled 1 5 mm ID Teflon FEP Clear tubing to a compression fitting CF This FEP tubing permits connection to the larger size plant or root base with 19 50 mm fittings HPCC19 35 and HPCC34 50 Additional 1 mm ID HPLC Natural light tan tubing is supplied for use on smaller sized roots and shoots with 1 20 mm fittings HPCC 1 4 HPCC 4 10 and HPCC 10 20 We also supply 0 127 mm ID RED tubing which is used to assist air bubble removal in the system AND to use for test measurement This red tube has the conductance of a small seedling with about 100 to 200 cm of leaf area A range of compression fittings is supplied to permit connection to stems ranging from 1 to 50 mm OD Revision 3 11 2008 6 Dyn max Dynamax Inc lt e 1 2 Personal Computer Requirements The program that contr
31. 00E 00 i A aE isu 3 5775E 07 6 3446E 07 4 4838E 10 wish to save them simply 13680E 06 42470E 06 9 3409E 09 ele Gnade Values m MPa Calibration Filename 6 2939E 02 9 4975E 02 C Program Files Dynamax HPFM95 1 07 hptm Open New Done Save Values AS21903 6 S9E5E03 Figure 23 View Set Calib window Revision 3 11 2008 73 i N MAX Dynamax Inc lt r 11 9 New Calibration File From the File menu select the NewCalFile option This brings up a load file dialog box and permits you to select a new calibration file if alternate files exist on disk All calibration files carry the extension CAL You should reset calibration factors ONLY if you have new and reliable calibration data The data are stored in a file named HPFM CAL It is a good idea to make a copy of the old file with a new name if you plan to change the values or keep a backup copy in case you make a mistake 11 10 Suggested Spare Parts 1 O Rings Catalog No 1401 set of 10 2 O Rings Catalog No 1402 set of 10 3 Rubber Compression seals No 6 5 Set of 6 4 Rubber Compression seals No 10 Set of 9 5 Rubber Compression seals No 13 Set of 9 6 Tubing Catalog No 1535 005 I D HPLC Red 5 7 Tubing Catalog No 6406 62 Rigid Teflon C 9 5 8 Assorted compression fittings Catalog No 1310 Revision 3 11 2008 74 BynAmAx Dynamax Inc 12 APPENDIX I
32. 2008 77 BynAmAx Dynamax Inc lt e 71 Tyree M T Sobrado M A Stratton L J 1998 Diversity of Hydraulic conductance in leaves of temperate and tropical species Possible causes and consequences Journal of Tropical Forest Science Liquid flow pathway hydraulic conductances KI were measured in leaves of 24 species of temperate and tropical plants Whole shoot conductances were measured by transient KI and quasi steady state Kq methods Implications of low leaf conductances on the measurement of xylem pressure potential with a Scholander Hammel pressure bomb are also discussed 79 Cochard H Martin R Gross P Bogeat Triboulot M B 2000 Temperature effects on hydraulic conductance and water relations of Quercus robur L Journal of Experimental Botany Vol 51 No 348 pp 1255 1259 The effects of temperature on root and shoot hydraulic conductances were investigated for Quercus robur L saplings In the first experiment conductances were measured with the HPFM on excised shoots and detopped root systems In the second experiment the impact of temperature induced changes in groot ON sapling transpiration E and leaf water potential was assessed Intact plants were placed in a growth cabinet with constant air and variable soil temperatures The results illustrate the significance of Jplant for the stomatal control of transpiration and the significance of temperature for tree water transport Revision 3 11
33. AT Pump up the Refill Kit every 1 L 0 25 gallons with another 10 15 strokes keeping pressure and water flow into the CAT Note the digital pressure gage will show an increasing pressure on the compressed air supply side of the HPFM When and the digital pressure gage reaches 15 kPa 2 3 PSI turn the Compressed Air Supply valve to bleed the pressure from the HPFM System Make sure that you do not allow air from the Refill Kit tank to enter into the HPFM Stop when you have about 1 liter 1 quart of water left in the refill kit Once the HPFM is filled close the Water Supply Valve 5 Disconnect the water connection from the Refill Kit Revision 3 11 2008 20 BynAmAx Dynamax Inc lt 6 Pull the pressure release on the side of the Refill Tank Lock the Refill Tank Handle by pushing down on the handle with tabs on the handle sliding into the keyed position on the top cap of the tank Once the handle is completely down twist the handle The tank handle should now be locked in position 7 You will now need to remove any air from the HPFM system This can be accomplished by referring to Section 4 5 Eliminating Air from the HPFM 4 4 3 Adding Water to a Partly Empty Captive Air Tank CAT It is important to prevent air bubbles from entering the Captive Air Tank CAT because these bubbles will re saturate the degassed water See Section 1 High Pressure Flow Meter HPFM Form amp Function in this manual
34. HE CURSOR OVER THE GRAPH ALTHOUGH THIS WORKS TO A POINT IT CAN CAUSE MALFUNCTION OF THE AUTO SCALING ALGORITHMS 7 Data displayed graphically above are also saved in text files for future reference as shown below Time s is the cumulate time dP mV is the raw voltage value of the difference in pressure between PT1 and PT2 1 mV 1 PSI 6 897 kPa P mV is the applied pressure PT2 in mV and it is shown again in the last column as MPa the other columns give resistance conductance and flow respectively The raw data dP and PT2 in mV are saved in case the wrong range tube was selected New values for the first 3 columns can be calculated from the raw values of dP and PT2 using the calibration factors in the View Set Calibration Menu Revision 3 11 2008 42 Brian Dynamax Inc Quasi Steady State measurement of 1 5 m Red tube Enter memo here SELECT RANGE BEFORE YOU START Red Range 7 429700E 08 Time s dP mV P mV R MPas kg K kg s MPa Flow kg s 8 02 16 04 24 00 32 02 40 04 56 02 72 00 88 04 104 03 120 01 135 99 13 064 12 859 12 601 12 384 12 132 11 739 11 393 11 095 10 813 10 549 10 338 63 719 64 009 64 105 64 419 64 467 64 829 65 046 65 384 65 577 65 746 65 818 6 6049E 04 6 6096E 04 6 7536E 04 6 905 1E 04 7 0554E 04 7 2748E 04 7 5301E 04 7 78 14E 04 8 0149E 04 8 2389E 04 8 4352E 04 Date Time 05 Jul 01 14 22 28 1 5140E 05 1 5130E 05 1 4807E 05 1 4482E 05 1
35. HPFM can be filled directly from the carboy to the CAT The carboy is placed on top of the HPFM and length of tygon tubing is placed in the carboy and primed with water and then connected to the OQ removed from the Refill Kit Connect the OQ while the CAT is under 40 kPa 6PSI of pressure to expel any air bubbles into the carboy then release the pressure The CAT will refill under gravity THE LESS YOU MANIUPLATE THE WATER AFTER DEGASSING THE LESS UNWANTED GAS YOU WILL HAVE IN THE HPFM Revision 3 11 2008 22 yn A MAX Dynamax Inc lt r 4 5 Eliminating Air from the HPFM Before eliminating air from the HPFM for the first time study Photo 4 which gives the location of components on the HPFM The labels are AV Air Valve NV Needle Valve CAT Captive Air Tank PS A D Circuit Power Switch GQ Green quick fit connector for adding air to CAT OQ Orange quick fit connector for adding water to CAT PT1 Pressure Transducer 1 on inlet side PT2 Pressure Transducer 2 on outlet side 8WI 8 Way Inlet Manifold 8WO 8 Way Outlet Manifold DP Digital Pressure Gauge PR Pressure Regulator Not Shown PV Purge Valve Not Shown Photo 4 A lab version with larger stainless steel CAT fills most of the available space in the aluminum frame so the compressed aas tank is external The areas of the HPFM that require purging are all internally wetted parts The goal is to have no air bubbles in the sys
36. High Pressure Flow Meter Installation and Operations Manual Dyni 10808 Fallstone Rd Suite 350 Houston TX 77099 USA Phone 281 564 5100 FAX 281 564 5200 U S and Canadian Email admin dynamax com International Email export dynamax com Web Site www dynamax com BynAmAx Dynamax Inc lt e TABLE OF CONTENTS Mes VERO UNCUT OI occas ts teens seth eenttee ict aaeeedenstecenceccenevanentevenenns 5 1 1 High Pressure Flow Meter HPFM Form amp Function eeeeeeeeeeeeeeeeees 5 1 2 Personal Computer Requirements cceeeeeeeeeeeeeeeeeeeeeeeeneeeeeeeeeeeeeeeeeeaaees 7 1 3 Pressured Bottle Requirement ccccceeecsseseccceeeeeeeeeeeeeaeeeeeeeeeeeeeeeneaeees 7 kA Unpack ore pment ener ene re ee eee 8 15 SWI ROC cites actee acs cca E E aces AA E 8 2 Quick Start Guide eee ee eee eee errr 9 3 Application and Theory of Operation eeeeeeeee 11 3 1 Wy use the HP FIM scccovascvancsandvaccnanctarevanacdtdnaravandvanduandventeandvanananevandnantvandeanes 11 3 2 Transient Measurements Conductance of ROOts eeeeeeeeeeeeeeeeeeeeeees 11 3 3 Quasi steady State Measurements of Hydraulic Resistance Ras 066 13 A Setup for the FIPIIM sccscasccsesccscccccccecesstecenecascccntenanttecteecddunsnemcnneentads 15 4 1 Operational Imperative 2 0 0 0 cece cceeeee cece eeeeeeeeeeeeeeeeeeeeeeeseceaeeeeeeeeeeeeeeeees 15 4 2 Valve Setting for Preparing the HPFM for Servi
37. P P P2 measured with PT1 and PT2 respectively If the software recognizes that the differential pressure between PT1 and PT2 is over 18 milli volts or 18 PSI 124 kPa then it will give you a message telling you that the HPFM is out of range The working range for the differential pressure is 0 to 18 milli volts The desired range is 8 to 15 milli volts When you are working with root systems the differential pressure will normally increase the longer you have the HPFM coupled to the root DT DW Water Filter F Flow to compress air bubbles F Revision 3 11 2008 79 BynAmAx Dynamax Inc lt Elastic flow Flow associated with elastic swelling Fe In order to reduce elastic flow Fe always use small diameter rigid outlet tubing when using the two lowest flow rate ranges Green and Orange Rate of passage through the roots Fh If the flow through the object measured is a linear function of applied pressure difference between the outlet of the HPFM and atmospheric pressure GQ Green quick fit connector for adding air to CAT Hydraulic Conductance It is an apparatus designed to perfuse water into an object while rapidly changing the delivery pressure and simultaneously measuring flow The slope of flow plotted versus pressure equals the hydraulic conductance of the object While measurement of the Transient is simply graphing a line of increasing pressure and flow Regression is the best fit of that graphical l
38. PFM95V1 07 maplet3 trm Time 0 15 30 45 60 75 30 120 80 60 Flow full scale Pressure MPa a t 20 o 01 02 03 04 os 06 MStarl rA A ea ES SP untitled Paint ed Hitman INIT Oy fi CORRS 15 10 Figure 7 Graphical output of T option Revision 3 11 2008 37 i NAMAX Dynamax Inc lt r The data is saved as an ASCII text under the filename selected An example of the data file is shown in Table 2 This file can be read into Excel SigmaPlot or other data analysis software for graphical analysis But an immediate regression can be done as soon as the transient is finished by using the Regression option discussed below If you select a filename in step 3 which has already been used you are given the option of selecting another name or of overwriting the file which eliminates the data currently in that file Alternatively you can append the new data to the end of the old file saving the new and the old data in one large file If you choose to append then you cannot read the file in again for regression analysis because of the limited capability of the regression option But you can still do regression on the new data appended to an old file if it is done directly after the T option is used Appended data files still can be loaded into Excel SigmaPlot or other analysis software First line is the user entered title the second line records the range tube used and the third line rec
39. ack into the valve tee assembly Close the three way valve and pressurize slightly then use the purge valve to try and remove the remaining air If visible bubbles still remain one tip is to tilt and or move the HPFM so that you can see the bubbles This will also assist in moving the air bubbles from the CAT and valves to the tubing One way to remove these bubbles is to turn the HPFM unit the way the bubbles move into the water filter You can then loosen the red cap of the top bleed port to remove the air bubbles Be careful and only loosen the cap Re tighten the cap afterward If you cannot move the unit then loosen the hose clamp for tubing at the top of the CAT Hold the tubing in place while loosening the clamp Do not let go of the hose Allow the removal of the air bubbles and while holding the tubing in hand tighten the hose clamp Wipe up any excessive water off of the HPFM Purging Air from the Water Filter Water passes from the CAT to the 0 1 um water filter F by way of a 12 mm ID nylon reinforced Tygon tube If the filter is replaced air will have to be purged from the new filter Sometimes during shipping or because of improper filling of the CAT some air may also enter the micro water filter that needs to be purged Air bubbles in the filter need to be purged A small bubble trapped in the filter will eventually dissolve but larger bubbles must be removed by disconnecting the tubing between the outlet and the 8WI and flushin
40. ale disconnect against a hard object allowing the air to flow out and remove bubbles from the Refill Kit tubing e Connect the Refill Kit to the HPFM and check the tubing for air bubbles and leaks Open the Water Supply Valve to the left to allow the water to flow into the CAT Revision 3 11 2008 21 i N MAX Dynamax Inc f Pump up the Refill Kit every 1 L 0 25 gallon with another 10 15 strokes keeping pressure and water flow into the CAT Note the digital pressure gage will show an increasing pressure on the compressed air supply side of the HPFM g When the digital pressure gage reaches 15 kPa 2 3 PSI turn the Compressed Air Supply valve to bleed the pressure from the HPFM System h Make sure that you do not allow air from the Refill Kit tank to enter into the HPFM i Once the HPFM is filled close the Water Supply Valve 5 Disconnect the water connection from the Refill Kit 6 Look closely for any air bubbles in the tubing lines within the HPFM unit If you find any refer to Section 4 5 Eliminating Air from the HPFM 7 The HPFM unit should now be primed and ready to use NOTE The best way to avoid risks of burns when filling the HPFM with degassed water is to degas water with a vacuum pump at room temperature A vacuum pump adequate for the job should cost about 500 An alternative filling method recommended by Mel Tyree is to make vacuum degassed water in a 10 liter thick walled glass carboy The
41. alibration uses this displacement factor The computer reads the balance at user defined time intervals Lets say that in 64 s the weight of the balance changes by 1 0000 g HPFM95 exe multiplies this number by 0 9600 to get the actual mass of water that flowed into the balance 0 9600 g or 9 6 X 10 kg and divides this by 64 s to get the volume flow rate 1 5 X 10 kg s This displacement factor needs to be edited into the top line of an ASCII file supplied with the software HPFM95 exe reads this value when it starts doing a calibration The filename containing the value is HPFM dat This file can be edited using FILE FileView Edit the text then save it using the SaveFileView option Alternatively use NotePad or WordPad to perform the same operation Word processing packages e g Microsoft Word or Word Perfect will save the data as a NON ASCII unless you know what you are doing and then HPFM exe will not be able to read it CAUTION If at this stage you are unsure about what you are doing then be sure to save a backup file of HPFM CAL before you measure and enter new calibration factors Revision 3 11 2008 67 Pyn A MAX Dynamax Inc lt r 11 1 Calibration Window To reach the calibration window start HPFM95 by clicking the HPFM95 Icon then click on File menu and select Calibrate HPFM Figure 19 Calibration window w Calibration o
42. alues of resistance were obtained Most branches reach a quasi stable value of resistance in 15 to 45 minutes Revision 3 11 2008 41 Dyn AMAR Dynamax Inc e CAUTION DO NOT try to change the range in the middle of a Flowmeter B HPFM95 Version 1 07 Please report bugs to Dr Mel Tyree see Help ojx Eile tions Help JEnter memo here SELECT RANGE BEFORE YOU START it Pause Restart P MPa Res MPas kg Cond kg s MPa Flow kg s Time s 0 4580 1 4884E 05 6 7187E 06 S1E 06 1650 01 0 4577 1 4911E 05 6 7063E 06 3 0691E 06 1690 00 C Program Files Dynamax H 9 4573 1 4924E 05 6 7008E 06 3 0601 1709 99 F 3 0361E 06 kg s 4568 1 49654E 05 6 6826E 06 3 0511E 06 1740 04 dP 40 86 kPa 3i P 0 4568 MPa 1930 3 8 Resitance MPa sikg 1E03 2 3 o 200 400 600 800 4000 1200 1400 4600 1600 2000 2200 2400 2600 2800 3 000 MAStanl A A a BE ES SA untitled Paint fed Hata INTRO SR CORRS 145 Figure 10 Graphical output of Flowmeter option 6 You will notice that the y axis automatically rescales as numbers become too large or to small Sometimes bad numbers are collected that cause an inconveniently large scale change This usually happens if ranges are changed without pausing or if the compression fittings are tightened without pausing These bad points can be eliminated by clicking on them and the graph will rescale automatically DO NOT ATTEMPT TO MANUALLY RESCALE BY DRAGGING T
43. ange you will need to re Zero the board But sometimes this can be fixed by just adding some new water inside the tank Then you will have to bleed the tank for at least 6 hours before operating Check each pressure transducer to see if they are working properly which mean if they output proper readings to your voltmeter If you have gone through all these steps and still find no luck on running SetZero procedure please contact Dynamax Technical Support on HPFM for further instruction Please DO NOT disassembles any part of the system FAQ We cannot save the regression values after performing the SetZero option A file access denied box appears when we try to save the regression values Answer This is caused assume by saving your regression value on your calibration CD If that is the case please refer to HPFM manual Section 5 1 where ask you to copy your HPFM CAL and HPFM_CAL_DATA TXT files from the CD to your Harddrive where you install the HPFM program If this is not the case you will need to check if you have specified correct path of your HPFM CAL file If not use option File NewCalfile to specify the location of your HPFM CAL file Then perform Setzero and regression If you keep experiencing the same problem please contact Dynamax for further assistance Revision 3 11 2008 33 BynAmAx Dynamax Inc lt r 5 5 Procedure for finding the Correct Flow Range Before you start make sure that you have zeroed the
44. ater to CAT OV Flow Outlet Valve on outlet 8 way valve P Initial gas pressure PSI Measurement of pressure in pounds per square inch P2 The outlet pressure relative to atmospheric pressure applied pressure Purge Cap PC Air is purged using the red purging caps located on the top and the bottom of the filter near the outer edge of the round body of the filter PR Pressure Regulator that prevents accidental over pressurization Pressure transducers PT1 Pressure Transducer 1 on inlet side Pressure transducers PT2 Pressure Transducer 2 on outlet side Power switch PS to the A D circuit Revision 3 11 2008 81 BynAmAx Dynamax Inc lt r Purge Valve PV Pressure Regulator R Delivers compressed air from the compressed air tank AT Quasi steady State Measurements of Hydraulic Resistance Ras During steady state measurements of Ras water flow and applied pressure are both constant and by definition the water flow into the object measured equals the flow out of the object Unknown hydraulic resistance Ru The unknown hydraulic resistance of a quasi steady state measurement Supply Box SB For storage of small parts and location of 12 VDC 4 5 Amp Hour Battery Safety Release Valve SRV Prevents the CAT from being pressurized more than 90 PSI T The Kelvin temperature at which K was measured um Initial volume V viton O rings When removing the HPLC compression fitting cap the
45. blem Let s check your Calibration data Please open your HPFM software by double clicking on the icon then go to File View Set Calib to show a screen of your calibration data Refer to Picture 1 in the attached document Most of your calibration data is different from this sample so please don t intend to change yours unless instructed Now let s take a look at your PT2 values AO 1 5219E 03 and A1 6 8965E 03 If you value is different manually change to the above value by double clicking on them in your View Set Calib screen and type in the correct values Once it is changed click on Save Values then Done If they are the same just click on Done to exit to the main screen You need to check your PC readings on DP In order to do so you need to make sure the tank is at least half full open all the valves on manifolds except outlet valve and open water valve as well this usually being ignored and could costs you hours try to figure out why it didn t work Then switch on your HPFM system and run HPFM software Go to File Calibrate HPFM A D Setup and click Start Stop Increase tank pressure to about 400 kPa and you will be able to see a reading in the window The DP reading should be somewhere around 0 and PT2 reading should be around 30 mV Then close the inlet valve and open outlet valve The reading should be DP 0 mV and PT2 0 2 mV If in both scenarios the DP reading is or 24 out of r
46. ccccsssessssseeeeees 52 7 1 PROG and NOG ieee cede te dec vreesees mec pede armeteeesedpece pie edeentiec exon 52 8 Disconnecting the HPFM ccceeeeeee sees sees eset eeeeeeeeeeeeeeeeeeeeeeeeeees 58 8 1 Valves Settings for moving the HPFM ccceceeeeeesseseeeeeeeeeeeeeeeeeeaeees 58 8 2 Disconnecting and moving the HPFM cccccceeeeeeeeeeceeeeeeeeeeeeeeseaeees 58 9 Maintaining the HPFM ccccceeeeee eee eeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 59 9 1 Changing the Water Pitter sccicieieniiwscadtnisanihericadchnigubidenhindlentceutievinmubiutecanate 59 9 2 Checking the Battery jac tes ceiese asd acises chic dese aslntiec ct eniecedanlensiicaceiedenanenedsockdanesy 60 9 3 Changing the HPFM Battery o secccvsccucccnsvevoscvndssddcencnncdunitedecuasmnasdneiiedtendebacies 60 9 4 Changing the Digital Pressure Gage Battery ccceeeeecceeeeeeeeeeeeeeeeeeeeees 62 9 5 Zeroing the Digital Pressure Gage ceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneeeeeeeeeeeeeaaees 62 10 Trouble SOO UNG sn des cece se necnntsecnneechbccdeteevvaccuntececnanteennnanctoneds 63 10 1 PC HPFM Communication ccnccdccccctitnestnentnawencienentueeddereecterendseudecconeatnenerenduence 63 10 2 Computer Reading Problems cccceeeeeeeeeeeeeeeeeeeeeeeeeeeseeaeeeeeeeeeeeeeeees 64 10 3 Manual Test of the Pressure Transducels cccceeeeeeeeseeeeceeeeeeeeeeeeeees 64 11 Calibration OF the HPFM
47. ccept Values 0 10 20 30 40 50 60 70 80 90 di CA My Documents John hpim Protatype HC dP kPa Rsq 0 99985 FileName C My Documents Johnhpfm Prototype_HC UpDate Second Order Figure 22 Calibration of a Flow Range NOTE if you need to collect a totally new table of values for a specific range you have to manually delete all the unwanted values Clicking on each data value to be deleted until it is highlighted in blue and then press the Del key on your keyboard does this You need to delete only the flow values the dP values will be overwritten It is best to measure at least 10 values of flow versus dP for dP values from 0 to 120 kPa 0 to 17 PSI To view the regression click on the Update button in the lower left corner of the graph For the higher flow ranges Gray and Brown you will also need to click on the Second Order tick box to get a second order polynomial regression Each time you click the UpDate button the current values of the regression coefficients will also be updated in the lower right side of the window When you have finished the regression for the Red range or whatever range you are on you can save the regression values by clicking on the Accept Values option You will be asked for a filename for the new regression eg HPFM_ABC cal Repeat this process for the remaining five ranges and use the same file name for all six ranges Revision 3 11 2008 72 BynAmAx
48. ce ceceeeeeeeeeeeeeeees 15 4 3 Pressurizing the APE occssacccnetcecstsanenssencccnnrcinendnnedududuendededeandechducedntadechdnenhaiues 15 4 3 1 Tips for Setting the Pressure Regulatof ccccceeececeeeeneeeeeteeneeeeeeenaaeeeeesaaes 16 4 3 2 Preparing the Compressed Air Supply System for use with the HPFM 16 4 4 Adding De gassed Water to the HPFM cccceeeeeeeeeeeeneeeeeeeeeeeeeeseetaees 17 4 4 1 Making Degassed Water Preventing Algae Buildup Inside the HPFM 18 4 4 2 Priming a Totally Empty Captive Air Tank CAT c ccccccceseceeeeessteeeeeestteeeeeeee 19 4 4 3 Adding Water to a Partly Empty Captive Air Tank CAT cccccccssseeeseeteeeteeeee 21 4 5 Eliminating Air from the HPFM ccccceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeteeeeeaaees 23 4 5 1 Purging Air from the Water Filter x cccicetesuesosesaacsiacieederss we ietet dea eee oatienty 24 4 5 2 Removing Air Trapped in the 8 way ManifOld cssscccceeeeeeeeeteeeeeeeeeeteeeeeeees 25 4 5 3 Removing Microscopic Air Bubbles from Pressure Transducers 00 26 4 5 4 Removing Microscopic Air Bubbles from the HPFM Bleeding 100000 26 4 6 Stoning the HPFM esse e ea iaaea eiaa aaea a AEAEE e aaeain aare EAA 27 5 Software and HPFM Operation sssneennnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnmnnn 29 5 1 Software Installation sasisccsssntsscisenntscansesaccadiedensioentalsimed
49. ch is entered into the text block for Calib Temp Revision 3 11 2008 68 BynAmAx Dynamax Inc lt 11 2 Calibration of Pressure Transducers PT1 and PT2 NOTE This procedure is recommended only for the factory or certified technician It is required ONLY if PT1 and PT2 are changed The pressure transducers can be calibrated without a digital balance but you will need to use a voltmeter to read the output voltages from the HPFM transducers PX136 The voltmeter has to have in input impedance of at least 10 MOhms and should be capable of reading to the nearest 0 01 mV The PX136 transducers have a nominal output of 1 mV 1 PSI accurate to 1 6 89 kPa and a zero offset at zero PSI that is usually less than 0 2 mV Click on the A D Setup button A calibration panel shown to the left will appear When you click on the Start Stop button the values of dP and PT2 will be read and updated twice a second and will appear in the text boxes Edit10 and Edit11 respectively Text boxes Edit12 and Edit13 give the binary values from the A D chip for dP and PT2 respectively Calibration involves three phases 1 Calibration of PT2 2 Balancing of PT1 and PT2 3 Calibration of dP 11 3 Calibration of PT2 5 Close the inlet valve on the HPFM and pressurize the captive air AtoD System tank to approximately 560 kPa or 80 PSI Select the Red range Pny aE Open the outlet valve and
50. click on the save button and follow the on screen instructions BE HPFM95 Version 1 07 Please report bugs to Dr Mel Tyree see Help i Zero Adjustment Measurement Slope 1 4351E 01 Intercept 9 3427E 02 Rsq 0 98315 dP mV f 01 0 2 03 0 4 05 06 PT2 MPa Mstanrll A A a BE ES RAHPEMM dan Mininsnft laa Hntmans MN SAd eO 1577 Figure 6 Graphical output of SetZero option X Axis is PT2 in MPa and Y axis is dP in mV Regression slope and R value Rsq are displayed at top of graph Revision 3 11 2008 32 BynAmAx Dynamax Inc r FAQ When use software to proceed in SetZero procedure got all points piled up together at beginning What do do Answer Check if have all valves on manifolds closed except 2 valves for Brown range 2 valves for pressure transducers and inlet valve Check if you open the water switch by turning in switch to Water In position Third check if your system s initial pressure is under 1 Psi 6 895 kPa Check if you have enough water inside your CAT in order to create a pressure to both transducers If there is still no response on SetZero restart your PC and HPFM If everything is checked and you still receive the same SetZero result contact Dynamax immediately for assistance FAQ try to do a SetZero procedure but the system won t response while am increasing the pressure Is there something wrong Answer This is a Common pro
51. coned head in place above the compression seal while tightening the nut into it Do not move the head as the unit is being tightened only the nut Compress the nut until it is firm and there should be no fluid losses Note that the root stem should stick out slightly approx 1cm above the rubber compression seal If it does not remove the cone and compression fitting and remove more bark as per step 2 If the rubber compression seal closes around the MA A end of the stem then an inaccurate reading Photo 12 may occur Tightening the Coupling 7 Remove the HPLC compression fitting cap the colored tubing fitting at the top of the compression coupling Be careful There should be at least 2 small viton O rings inside the connection 8 Take the Hypodermic syringe and fill the compression unit with de gassed water This water could come from the water carried in the Refill Kit apparatus Revision 3 11 2008 54 Pyn A MAX Dynamax Inc lt r WARNING The HPFM comes with a hypodermic syringe that has a 1 3 8 blunt point needle For safety only use this type of needle Stick the needle down into the HPLC tubing connection of the cone and depress the hypodermic syringe filling the open area inside displacing the air As the air is replaced use the needle to help remove air bubbles or pockets using the velocity of the water moving out of the hypodermic needle Once you have filled the open area of th
52. copic Air Bubbles from the HPFM Bleeding After removing the air bubbles that you can see we must remove the microscopic bubbles as well Increasing the pressure and forcing water through a small orifice or small inner diameter tubing accomplishes this The bubbles are then either removed or are reabsorbed by the water a Increase the pressure on the HPFM with the Compressed Air Supply system to 550 kPa 80 PSI If you have not done this or need to review this procedure please see Section 4 3 Pressurizing the HPFM b Connect the 1 5 m 5 ft Red HPLC tubing ID 0 0127 mm 0 0005 to the Flow Out Port of the HPFM Make sure that the Flow Out Manifold is closed You may also connect the Red HPLC tubing to the Teflon FEP hose that may already be attached to the Flow Out valve of the Manifold This can be accomplished with the HPLC Union included with the HPFM accessories Revision 3 11 2008 26 BynAmAx Dynamax Inc lt e C J Open the Water Supply Control Valve to the right allowing water from the CAT to flow through the filter and to the manifold Open all manifold valves except the Flow Outlet valve Since there will be a small flow of water from the Red HPLC tubing place the end of the Red tubing into a container Open the Flow Outlet Valve on the manifold Water should begin to flow in a very small quantity usually a few drops a minute As always check for leaks Let the HPFM flow like this for 12 hou
53. ctions LPT1 LPT2 or LPT3 If the HPFM is not found a warning message is displayed as shown in figure 5 If this message is displayed and you have confirmed the connection and power is correct please refer to Subsection 10 1 Troubleshooting Revision 3 11 2008 30 d NAMAX Dynamax Inc ie 5 4 Setting the Zero Flow Volts Normally the difference in pressure dP across any given capillary tube should 0 mV whenever flow is zero at any applied pressure Although the pressure transducers PT1 and PT2 are similar they are slightly mismatched and the degree of mismatch may change slowly with time The SetZero option allows you to measure and record the mismatch so that flow measurements can be corrected for the mismatch in order to improve the accuracy of measurements Thus it is good practice to perform this test at the beginning of each day you wish to use the HPFM The SetZero option will allow you to do a pressurization of the HPFM with the outlet valve closed and the highest flow range Brown selected While pressurization proceeds you will see a graph of dP in mV versus the applied pressure PT2 in kPa If dP exceeds 2 mV or is less than 2 mV at any time during the test contact Dynamax or your local distributor for a service adjustment 1 Adjust the needle valve so that the rate of pressurization is at the desired rate approximately between 5 to 10 kPa 0 5 to 2 PSI per second when the AV is in the pres
54. d Water is convenient and easy to obtain Itis even available in most food markets 2 Boilthe distilled water for 5 minutes 3 Let the distilled boiled water stand for 10 15 minutes before handling and adding the water to the refill kit 4 Add one drop of algaecide from the HPFM accessories kit to the distilled water Revision 3 11 2008 18 BynAmAx Dynamax Inc lt e 5 If the HPFM is new it will be shipped empty Repeat steps 1 through 4 so that you will have 7 6 L 2 gallons of water to fill the CAT 6 If the HPFM is new or been shipped proceed to Subsection 4 4 2 Priming a totally empty CAT The other method is to put water into a vacuum flask and draw a vacuum over the water for 5 to 10 minutes The steps for this procedure are 1 Place the distilled water in a vacuum flask Fill the flask to its logical level Do not over fill Distilled Water is convenient and easy to obtain It is even available in most food markets 2 Vacuum the distilled water for 5 minutes from the time that the water begins to effervesce with air bubbles or boil at room temperature If the vacuum is really good you should see the water boil at room temperature when the pressure drops below about 4 kPa 0 6 PSI absolute 3 Pour the newly degassed water into a secondary container Repeat steps 1 and 2 until one gallon of degassed water has been produced 4 Add one drop of algaecide from the HPFM accessories kit to
55. dt equal to a constant This permits easier interpretation of results because it makes the elastic contribution a constant offset to Fr The contribution of the three terms in Equation 12 is illustrated in Revision 3 11 2008 12 BynAmAx Dynamax Inc lt Figure 2 for the case where Pz increases linearly with time from time O Figure 2 A The component flows Fh Fe and F and total flows are shown in Figure 2 B It is not possible in practice to make Pz increase linearly with time from time 0 This is because an extra conductance equal to the conductance of the capillary tubes of the HPFM Kcr is interposed between the pressure transducers that measure P and P see Figure 1 When the full set of equations is derived not shown a short time lag is predicted before P2 increases linearly with time see Figure 2 C The resulting component and total flows are shown in Figure 2 D Air bubbles generally can be avoided within the flow meter tubing and apparatus but sometimes air is in the vessels and or intercellular air spaces in the base of roots Although the compression of air causes an increase in F at any given P during a transient measurement bubbles cause an underestimation of the root conductance K This is because Fp decreases with increasing P causing a negative contribution to the slope used to calculate K Fortunately the contribution of bubble compression to total flow diminishes with increasing pres
56. e Note This last possibility will require service by a qualified electronics technician Please contact Dynamax Inc or your Local distributor and be sure to describe your problem in detail citing all the steps you have performed previous to this point in attempting to trouble shoot your problem and any use of the system since it last worked For example We eft it at our remote experimental site and it rained for a week I dropped it from a 50ft tower in a forest canopy study Revision 3 11 2008 63 BynAmAx Dynamax Inc Se 10 2 Computer Reading Problems If you have trouble with the readings on the computer attempt the following procedure 1 Connect the small Red HPLC tubing to the Flow Outlet of the HPFM 2 Make sure that you have pressurized the Captive Air Tank CAT to at least 275 kPa 40 PSI 3 Set the computer software program to read a quasi state steady flow rate 4 Set the flow range for a differential pressure of less than 18 mV 1mV 1 PSI 5 Read the differential pressure and add this to the PT2 pressure This added pressure should be close within 2 PSI to the pressure at the digital pressure gage 6 If the sum of the differential pressure and the pressure at PT2 is not close to the digital pressure gage then the small pressure transducers PT1 and PT2 may need to be zeroed Zero the transducers per the instructions in Section 5 4 Setting the Zero Flow Volts 10 3 Manual Test
57. e compression fitting with water and have removed all the air pull the hypodermic needle out while still depressing water out to fill the displacement of the needle itself Make sure that you have water on top of the open area of the HPLC connection with no air pockets below 9 Note the tubing you are using If you are using the smaller 1mm ID Natural HPLC tubing recommended for use with small compression coupling 1 20mm then you will need two large viton O rings with one small viton O ring for connecting the tubing to the compression coupling If you are using the larger PREEN 1 5mm Teflon clear tubing you will only need the two Photo 13 larger O rings for connecting with larger couplings Removing Air from the coupling 19 50mm Compression Cap Large O Rings Small O Ring j Remove it when using j 1 5 mm ID Clear Teflon Tubing DS 1TA y 1 mm ID Natural Tubing 8 way valve outlet female connection O Ring Layout Diagram Revision 3 11 2008 55 NAMAX Dynamax Inc lt r CAUTION Make sure that you do not have air in the compression coupling unit the tubing leading to the compression unit or in the HPFM The steps for connecting the tubing are a Carefully remove the O rings from the HPLC compression fitting cap b To prevent FEP Teflon tubing from slipping take the included razor blade and carefully rough up the end of the tubing where
58. e regulator that is attached to the top of the bottle using a screw clamp Follow the directions enclosed for attaching the regulator to the bottle correctly Use soapy water or a commercial product such as Snoop to check for leaks not only in the regulator to bottle connection but the other hose connections as well 4 3 1 Tips for Setting the Pressure Regulator The valve at the top of the bottle should not be opened until the regulator pressure set screw is backed off completely Once this is done open the valve on the bottle completely Check the bottle pressure gage The pressure should be at least 4 15 Mpa 600 PSI This pressure is required when running a transient state flow The minimum pressure forces enough compressed gas to the captive air tank CAT to keep a steady linear pressure increase during the test Close the tank valve and release the hose pressure by pressing on the valve release needle WARNING Do not pressure the compressed air supply hose to above 689 kPa 100 PSI while the hose is disconnected Do not disconnect or connect the hose if the pressure is above 70 kPa 10 PSI The disconnects on the air pressure hose and HPFM system has a working pressure of 689 kPa 100 PSI Pressure on the disconnect seals above 689 kPa 100 PSI could cause a catastrophic failure of the disconnect system or personal injury You also can generate a loud annoying pop sound unless the pressure is releas
59. e rubber bands or tie wraps to hold the plastic bag in place WARNING Always cover the Digital Pressure Gage when working on the mechanics of the HPFM Water can leak or splash onto the electronics of the gage making the gage inoperable 4 Pull the tubing off the top connection of the water filter Use a slight twisting action while pulling backward Hold the water filter firmly After removing the connection hold the tubing up to minimize the spillage of the degassed water Also make sure that the steel strap is in place for the new water filter 5 Slide the filter down removing the water filter from the strap that is binding it to the frame 6 Hold the filter and with a slight twisting action remove the tubing from the bottom of the water filter Make sure that the steel strap is in place for the new water filter 7 Check the flow direction arrows on the new water filter Make sure that the water filter is installed in the right direction 8 Take the new water filter and with a slightly twisting action push the filter on to the bottom tubing 9 Slide the water filter into place Tighten the strap that holds the water filter in place Make sure that the filter ports Red plugs on the top and bottom of the water filter are Revision 3 11 2008 59 BynAmAx Dynamax Inc lt r 9 2 10 11 12 13 facing toward the back of the HPFM Also make sure that the water filter is in the same location as the
60. ear tubing with fittings 19 50 mm HPCC 19 35 and HPCC 34 50 Determine the correct flow range to use for your selected sample If you do not have the correct flow range set your measurements will be over scale and you may think the system is not functioning properly Section 5 5 For roots begin your experiment with a Transient Measurement function as this is the quickest method for gathering hydraulic conductance data and will minimize any plugging effects caused by the plants natural healing process For large stems you may need other methods Section 5 6 After collecting transient flow data you can immediately perform a Regression analysis of the data using the HPFM software to determine the Hydraulic Conductance of the sample plant Record the temperature of the test in a comment field Section 5 6 2 As your understanding of the system develops begin using the Quasi Steady State Flow Meter function By measuring total resistance of the sample you can determine the Revision 3 11 2008 9 BynAmAx Dynamax Inc a contribution that individual components make to the overall hydraulic conductance of the plant Section 5 7 14 Before beginning an intensive experiment be sure to understand all the necessary tips and cautions required to measure hydraulic conductance successfully Section 6 0 Revision 3 11 2008 10 BynAmAx Dynamax Inc lt 3 Application and Theory of Operation 3 1 Why use t
61. ed first Increase the air regulator pressure to 138 kPa 20 PSI and check for leaks again Decrease the pressure by backing off the regulator screw Depress the end of the disconnect into a hard flat surface such as a coin This will open the disconnect seal and release the small amount of gas in the hose Photo 1 Air Regulator Pressure 4 3 2 Preparing the Compressed Air Supply System for use with the HPFM Connect the hose quick disconnect Male into the HPFM compressed air supply quick disconnect Female Make sure that the needle valve is opened about 4 turns The airflow control valve AV should be closed or pointed directly up Remember that turning the valve to the right will bleed pressure from the HPFM Turning the valve to the left will increase pressure when the compressed air supply is connected If you are setting up to measure a quasi steady state flow turn the Needle Valve NV next to AV until the digital gage reads 550 kPa 80 PSI Do not go over 550 kPa 80 PSI The HPFM has a safety relief valve which is set for 650 kPa 95 PSI Photo2 Compressed air and HPFM near connection Revision 3 11 2008 16 BynAmAx Dynamax Inc e WARNING Do not attempt to adjust or plug the safety relief valve If you wish to test the unit or run a quasi steady state flow test open the Compressed Air Valve until there is a steady increase in the pressure in the CAT Fill the CAT at a rate of abo
62. ed with a solid plug in place of the object to be measured Small conductance should be corrected by subtracting the slope observed when doing a transient on a solid plug The size of this correction is less when small conductances are measured with small diameter rigid connecting tubes Figure 12 Revision 3 11 2008 47 Dynamax Inc Figure 12 Comparison of transients measured on most sensitive range Green range Flow was into a 1 5 m length of tubing connecting the 8WO to the smallest compression fitting connected to a solid plug 1 5 mm OD For the graph on the left a 1 5 mm OD plastic tube was used on the right a3 mm OD plastic tube The higher plateau on the right is due to the higher elasticity of the larger tube The slight slope on the plateaus may be due to minor leaks in the 8WO and the compression fittings or it might be due to non linear elastic effects Clearly the 1 5 mm tube is preferable for measurements of conductance of an unknown and the slight slope on the plateau should be subtracted from any conductance calculated on an unknown 6 5 Air Bubbles Air bubbles in the compression fitting or base of stem will influence the accuracy of conductance measurements but cannot always be eliminated Air bubbles are sometimes present in the stems or roots of plants and often cannot be eliminated Generally air bubbles can be eliminated from the HPFM Figure 13 amp 14 show some typical transients with
63. ended when measuring roots since continual flow of water changes the root properties An example of a typical graphical curve at the end of a transient is shown in Fig 7 Click the Xit button to exit to the main menu If you are measuring a root quickly release the pressure so as not to change the root by continued perfusion Often the first transient is poorly shaped because of air bubbles or Revision 3 11 2008 36 Ha D Inc Eyn A ynamax Inc leaks or because the rubber in the compression fitting is shifting position So you will probably want to do one or two more transients on the same object CAUTION If releasing the pressure quickly causes air to effervesce this indicates that air in the CAT tank is supersaturated with air Immediately refill the tank with degassed water to avoid this problem X axis is PT2 in kPa and applies to points plotted as Red o The Y axis is full scale For o this means full scale range for the range tube selected For 100 0 5 MPa F and P at the top of the graph are followed by numbers were equal the last value of o and plotted The X axis for the is time Each point is separated by the time interval for data collection 2 s in this case BE HPFM95 Version 1 07 Please report bugs to Dr Mel Tyree see Help _ o x Eile ns Help Enter memo here SELECT RANGE BEFORE YOU START P 0 39997 2 E xit C Program Files Dynamax H
64. es the use of the method under field conditions in Panama on Cecropia obtusifolia and Palicourea guianensis 51 Zotz G Tyree M T Carlton M R 1998 Hydraulic architecture and water use of selected from a lower montane forest in Panama Trees No 477 pp 1 8 Plant water relations of nine woody species were studied in a lower montane rain forest in Panama This data provides a partial test of the hypothesis that hydraulic architecture of lower montane species might limit transpiration and thus leaf size or nutrient transport as suggested by J Cavelier and E G Leigh respectively Another objective of this study was a comparison of two different methods to measure hydraulic conductance and leaf specific conductance of stem segments 52 Tyree M T 1997 The Cohesion Tension theory of sap ascent current controversies Journal of Experimental Botany Vol 48 No 315 pp 1753 1765 In recent years the Cohesion Tension theory of sap ascent in plants has come under question because of work published by Professor Ulrich Zimmermann and colleagues at the University of W rzburg Germany The purpose of this review is to state the essential and testable elements of the C T theory summarize the negative evidence for the C T theory and review critically the positive evidence for the C T theory and the evidence that the Scholander Hammel pressure bomb measures xylem pressure potential Px correctly because much of the evidence for the
65. es when the HPFM is not in use a Open the Water Supply Valve to the flow position Photo 7 b Make sure that you still have pressure by checking the digital pressure gage c Open the flow inlet valve Close the outlet valve d Open at least PAIR OF VALVES e g gray range values to equalize pressure between PT1 and PT2 Photo 7 Water Supply Valve e Keeping the system under pressure will prevent entry of unwanted air Revision 3 11 2008 28 BynAmAx Dynamax Inc lt 5 Software and HPFM Operation 5 1 Software Installation Install the software program HPFM95NTXP exe by inserting the CD in the CDROM drive for example E Follow the install shield prompts and complete the installation For ease of support it is recommended that you accept the default installation setting directory settings of C Program Files Dynamax HPFM95V1 11 or similar version number Refer to Section 1 2 for a detailed explanation of software installation After the software installation is complete use Windows Explorer to copy the Calibration file HPFM cal and the calibration data file HPFM_CAL_DATA txt from the CDROM to the program directory C Program Files Dynamax HPFM95 XPV1 12 The HPFM cal file contains the calibration data required by the unit to make measurements The data file contains all the raw calibration data that was used to make the HPFM cal file It is good to keep a backup of this on your hard drive even
66. f HPFM For Help click on H then on another button click H again to end help session p ol x Edit Edit4 Edit3 o4 INSTRUCTIONS FLEW kos oie a Collectj6n Controls 21954E 05 Select Read Cycle abae otesceos feaarea ere times AE OnFieddT On ied dw GOMs Setup 15 cick on AMD 2 2091E 05 aa1g25 8912 e13 0 1796 fe x fooe gt test HPFM i A D Setup 3 In Data Collection Stop Select Last F dP Calib Temp Controls adjust Done 1 9240E 06 1 7106E 06 102 12 cela 99 06 30 05 2 0000E 05 90 40 1 5006E 06 79 61 1 7964E 05 80 63 i 1 3427E 06 71 48 1 5806E 05 70 73 p 1 0947E 06 58 33 1 3235E 05 59 26 ae 9 0406E 07 48 41 1 1428E 05 51 26 10 7 8106E 07 42 38 8 8177E 06 39 26 30 11 E ite 5929 06 E i894 Ez heal A CAOC nc nne ma 0 10 20 30 40 50 60 70 80 90 p 5 i E My Documents John hptm Prototype_HC dP kPa Rsq 0 99985 FileName C My Documents Johnhpfm Prototype_HC UpDate Second Order The window contains 1 A Data Collection Controls block 2 A graphical block and 3 a data table In order to do a calibration your computer must be connected to the HPFM and to a digital balance Connection to the digital balance must be via a COM port and you must have the manual to your balance to read information on COM port communication protocols You also need a thermometer which is used to read the room temperature whi
67. g water through the system under low pressure 20 30 kPa 3 5 PSI Revision 3 11 2008 24 yn A MAX Dynamax Inc lt r 1 Be sure the CAT has been properly filled with water and is free of air bubbles If the CAT has been improperly filled or there may be suspicion of air bubbles in the CAT then follow the instructions in Subsection 4 4 Adding Degassed Water to the HPFM 2 Pressurize the CAT to 15 kPa 2 PSI and turn the water valve WV from off to flow i e turn the handle clockwise from the vertical position to the horizontal This should put the water in the filter under pressure 3 Open the Purge Valve PV and allow air and water to escape from upper half of the filter and PVC tubing You may need to tilt Photo 5 the HPFM so the purge valve opening is higher than the rest of Micro Water Filter the system After all air has escaped and only water flows out tighten the purge valve Then open the flow inlet to allow rest air inside filter to escape through 8 way valves 4 lf an air bubble appears between the output of the filter and reducing bushing for the Teflon tubing slightly loosen the 3 mm 1 8 compression nut and allow air to escape When only water flows retighten the nut This should not normally be necessary 4 5 2 Removing Air Trapped in the 8 way Manifold Small air bubbles trapped in the 8 way manifolds or in the outlet tubing can seriously degrade the performance of the
68. he HPFM The High Pressure Flow Meter has several uses in the analysis of root shoot studies Some examples of the uses of the HPFM are Root conductance in the lab or field Conductance of shoots and petioles with or without leaves Root Stress Analysis on trees or crops Modeling root to shoot communications Transpiration models Root water status studies Absolute varietal comparison statistics Mycorrhizae nutrient water enhancement studies Soil to root conductance statistics Crop conductance studies 3 2 Transient Measurements Conductance of Roots Experience has shown that during flow measurements on roots flow frequently declines even when the applied pressure P2 is constant Reasons for this include 1 During perfusion solutes accumulate in the stele by reverse osmosis causing a continual decrease in driving force on water movement 2 Natural wound responses induced when the shoot is excised cause plugging of the xylem within the first few centimeters of the wound causing a continual decline in K Readers are referred to Tyree et al 1993 and Tyree et al 1995 for details Consequently the HPFM has been designed to measure K quickly before the above effects become serious enough to influence K But doing rapid measurement raises other sources of error that need to be addressed NOTE It is essential that users of the HPFM are aware of potential sources of error and know of ways to minimize such errors
69. he old battery from the compartment and replace it with the new battery Make a note of the position of the old battery for positioning of the new battery Replace the threaded extender that holds the battery in place Make sure that you push the battery firmly while threading the extender so that the extender will thread straight Replace the Black wire to the negative terminal Replace the Red wire to the positive terminal Make sure that the wires are in place securely Replace the foam cushion according to its former placement in the compartment If the battery is charged turn the power on to make sure that the unit is in place and working If the battery is not charged charge the battery overnight and check the power light before replacing the top panel If the unit does not work remove and check the connections to the terminals of the battery Check the voltage to the terminals of the battery with a multi meter The voltage of a fully charged battery should be 13 5 to 13 9 Volts Direct Current Once you are sure the battery is working properly replace the top panel with the screws removed previously Revision 3 11 2008 61 BynAmAx Dynamax Inc lt r 9 4 Changing the Digital Pressure Gage Battery A 9V battery powers the digital pressure gage If the operating procedures are followed correctly and the digital pressure gage is turned off when the system is not in use this battery is sufficient to last several years
70. he pressure of the fluid around the bubble increases If Vp is the volume of a bubble at absolute gas pressure P then the ideal gas law gives PbVb nRT PV 9 Where n is the number of moles of gas in the bubble R is the gas constant T is the Kelvin temperature and P is the initial gas pressure and V is the initial volume If we write Equation 9 as Vp ViP P and take the derivative with time we get the rate of volume change of the bubble dV dt V P P dP dt 10 The negative sign of the derivative indicates that V decreases with increasing Pp The flow of water to compress the gas volume is the negative of Equation 10 so we have F dV dt V P P dP dt 11 In the case where all of the air bubbles are near the outlet side of the flow meter we can equate P to P2 Pj Pj is the initial absolute pressure of the bubble when P2 0 P approximately equals 0 1 MPa The barometric pressure will determine the Pi There will also be a small contribution by the surface tension of the air water interface to bubble compression In the special case where the air bubbles are near the outlet of the flow meter the dynamic flow will be given by substituting Equations 6 8 and 11 into 5 F K P2 1 e dP2 dt ViP P2 0 1 dP dt 12 During normal operation of the HPFM the inlet pressure P increases linearly with time and after a short time delay this causes Pz to increase linearly with time to make dP
71. ill give us the sample conductance at 30 C Then if conditions 1 and 2 are both correct correcting the sample value back to 25 C would require us to lower the conductance by 12 again This has been demonstrated experimentally to be true Mel Tyree unpublished used the HPFM to measure the K of a length of tubing of 0 12 mm ID When the temperature of the tube ONLY was changed the value of Kreg change 2 4 C but when BOTH the HPFM and tube temperature changed the value of Kreg was independent of the temperature and equal to the value K ea would be at the calibration temperature During lab measurements the HPFM and sample are often at nearly the same temperature but in the field the HPFM and sample can be at different temperatures e g 5 to 10 C different if one is in the sun and the other is in the shade The best practice is to keep both the HPFM and sample shaded to ensure similar temperatures Is the sample is wet the evaporation can also lower the temperature below the air temperature Revision 3 11 2008 46 Dyn AMAN Dynamax Inc lt e 6 3 Air evenly distributed in the wood of large branches Old wood in large branches sometimes contains a large volume of air in embolised wood and wood fiber cells This causes the quasi steady state estimate of shoot conductance to differ from the value determined by transient When no air is present and the leaves are fully infiltrated with water the values of conductance sho
72. in the HPFM If the dissolved air effervesces or the air comes out of solution much in the same way a soda pop will effervesce when the can is opened then air bubbles will form These air bubbles will compress as the pressure increases However when the water is flowing from the HPFM and the pressure decreases the air can come out of the solution Air and water behave differently when compressed or pressurized Water for the most part does not compress with its volume changing little Air will compress with great changes in the volume that the air occupies That large change is why air must be removed from the HPFM system The water added must have the air removed There are two accepted ways for removing the absorbed air from water The easiest way is to boil the water or raise the temperature of the water to the vapor point of water 100 C 212 F However boiling removes less than half the air A more effective way is place the water in a vacuum Degassing the distilled water is Revision 3 11 2008 17 E N MAX Dynamax Inc r explained in Subsection 4 4 1 Making Degassed Water Preventing Algae Buildup Inside the HPFM Your HPFM system comes with a HPFM refill kit The refill kit is a 7 6 L 2 gallon tank that can be pressurized by pumping air with the handle on the top of the unit This pressurization will force the degassed water into the CAT of the HPFM when connected The Refill Kit tank conveniently al
73. inadianoinbdannoibadinnetacoanannns 29 5 2 System COnNneCtOnNS essei aa aa aa a Aaaa a aAA 29 5 3 HPFM Software Functions cccccccccccccccccccceccecceeeeeeceeeeceeeeceeeeeeeeeeeeseeeeess 30 5 4 Setting the Zero Flow VOIts cccceceeeeeeeeeeeeeeceeeeeeeeeeeeseeaeeaeeeeeeeeeeeeeeneeeees 31 5 5 Procedure for finding the Correct Flow Range ccccccceesseteeeeeeeeeeeeeaees 34 5 6 Transient Measurement of CONCUCtANCE cceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaaees 35 56 1 Measurement of the Transients cck cence eli ietetesst ed eels 36 5 6 2 Regression ofthe Transient sxiicccaccesaecciassdiacssiechestadeatccnssceenwtdigesasidiacedoeeneieatlacdes 38 5 7 QuasiSteady State Flow Measurement ccccccceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 40 Revision 3 11 2008 2 i N MAX Dynamax Inc r 6 Tips and Cautions for using the HPFM seeeeeee 45 6 1 Wound Response plugging of SteMS c eeceeeeeeeeeeeeeeeeteeeeeeeeteeeenaaees 45 6 2 Temperature Corrections cccccccccceeeeeeeeseeeeeeeeeeeeeeeeeseeceeeeeeeeeeeeeeeeenaeees 45 6 3 Air evenly distributed in the wood of large branches ccceeeeeeeeeeeeteees 47 6 4 Cautions when measuring small flows conductance or large resistances 47 G5 Air BUDDIES sisepinna e ea a a e a O a a aa 48 66 gt SaAfGly ene eee aa e a ce ere ee een e inan a 51 7 Connecting the HPFM to Roots and Shoots cc
74. ine and calculating the slope That slope is the hydraulic conductance of the measured plant Hypodermic syringe Air must be removed by disconnecting PT2 from the 8WO and injecting water using a hypodermic needle and syringe The HPFM comes with a hypodermic syringe that has a blunt point needle Inside Diameter ID The inside diameter that is 9 mm of a nylon reinforced Tygon tubing where pressurized water flows from the CAT to the 8 Way Inlet manifold 8WI Flow Inlet Valve IV on inlet 8 way valve K uncorrected conductance Kpa Measurement for pressure in Kilo Pascal s K root conductance K Ker Conductance of the capillary tubes LPT1 LPT2 or LPT3 A connection used to connect the HPFM to a PC When the HPFM program starts the program automatically tests for basic communication with the HPFM by testing to see if the HPFM is connected to the computer through one of three possible printer port connections Mpa Measurement for pressure Revision 3 11 2008 80 BynAmAx Dynamax Inc lt r Mohms MV Measurement in milli volts n the number of moles of gas in the bubble Needle Valve NV Used to regulate the rate of increasing pressure The rapid change in water pressure is achieved using the needle valve Through the needle valve the pressure regulator keeps the compressed air at a steady pressure of 4 to 5 MPa 580 725 PSI Outside Diameter OD OQ Orange quick fit connector for adding w
75. l be given later of instances where Po is unknown For the rest of this section we will assume Po 0 and can be omitted from the equations Revision 3 11 2008 13 E NAMAX Dynamax Inc lt Another useful way of viewing Quasi steady state measurements is through the Ohm s law analogue for flow through resistance in series For any given resistance R in series Ohm s law states that RF dP 3 So for the capillary tube in series with the unknown resistance we have Rer F dP 4A and Ru F P2 4B So dividing Equation 4B by 4A we have Ru Rer P2 dP 4C or Ry Rer P dP 4D or Ky Ker dP P2 4E Revision 3 11 2008 14 d NAMAX Dynamax Inc 4 Setup for the HPFM 4 1 Operational Imperative From the start it is imperative that users of the HPFM take the following steps 1 Always test for air bubbles in the HPFM prior to starting experiments See Subsection 4 5 Eliminating Air from the HPFM on use of software for methods of testing for air bubbles Please read Subsection 6 Tips and Cautions as well 2 Connections between the Purple outlet of the 8WO and the compression fitting on the object must be checked In order to reduce elastic flow Fe always use small diameter rigid outlet tubing when using the two lowest flow rate ranges Green and Orange For high flow ranges Red Yellow Gray and Brown you may use the clear 1 5 mm ID Teflon FEP Clear tubing su
76. l for screws try to make the cut at a nodal swelling and mount the stopper just below the swelling Revision 3 11 2008 57 BynAmAx Dynamax Inc lt 8 Disconnecting the HPFM 8 1 Valves Settings for moving the HPFM The valve setting for moving a HPFM is simply in normally to leave the CAT tank pressurized and closing the outlet valve on the 8WO The reason this deserves a section is that the valve position is important The minimum required work if these valves are not closed is that the 8WI and 8WO manifold system will need to be bleed again The maximum would be bleeding off all water and purging the air bubbles from the entire system 8 2 Disconnecting and moving the HPFM Specifically designed to be portable the HPFM has several options that enhance this characteristic One option is wheels and the other is a backpack frame to carry the HPFM into areas usually not accessible for research The HPFM before moving must be prepared Preparation will keep the HPFM ready for the next sampling keeping air pockets or bubbles from entering into the HPFM system The steps for preparing the HPFM are a Close off the purple outlet valve on the 8WO and leave the CAT tank pressurized b Disconnect the Compression Coupling from the connecting tubing by loosening the HPLC cap on the coupling c Disconnect the tubing carefully holding the tubing above the height of the HPFM This will minimize gravity loss of the water in the
77. lows refilling of the HPFM just about anywhere There are a few important things to remember about the HPFM The first is to always visually check the level of the degassed water in the HPFM Refill Kit The degassed water level should never go below the siphon point inside the Refill Kit tank If air were introduced into the HPFM system during filling then this would mean removing the air and follow the procedures in Section 4 5 Eliminating Air from the HPFM Caution If degassed water is kept in the refill container more than a few minutes under pressure it will become supersaturated with air again So fill immediately after degassing Photo 3 4 4 1 Making Degassed Water Preventing Algae Buildup Refill Kit Inside the HPFM The Captive Air Tank CAT should be filled only with degassed water i e water with air dissolved at less than saturating concentrations of O2 and N3 at atmospheric pressure There are two methods of making degassed water The first method is to boil water This removes some of the absorbed gas because air is less soluble in hot water than cold water If this method is used the CAT could be filled while the water is still hot WARNING Water Degassed by boiling will be hot Take precautions when handling the boiling hot water Use insulated gloves for handling hot material The steps for boiling the distilled water for the HPFM are 1 Start off with a 3 8 L 1 gallon of distilled water Distille
78. lter PC Purge Cap on Water Filter F CAT Captive Air Tank SB supply box for storage of small parts and location of 12 VDC 4 5 Amp Hour Battery A D location of A D circuit in the supply box PS power switch to the A D circuit OQ orange quick fit Swagelok connector for adding water to the CAT GQ red quick fit Swagelok connector for connection to Pressure Regulator PT1 Pressure Transducer 1 on inlet side PT2 Pressure Transducer 2 on outlet side 8WI 8 way manifold on inlet side 8WO_ 8 way manifold on outlet side IV Flow Inlet Valve on inlet 8 way valve OV Flow Outlet Valve on outlet 8 way valve DP Digital Pressure Gage SRV Safety Release Valve that prevents the CAT from being pressurized more than 90 PSI Revision 3 11 2008 76 BynAmAx Dynamax Inc lt 14 APPENDIX Ill Reference List 43 Tyree M T Patino S Benink J Alexander J 1994 Dynamic measurements of root hydraulic conductance using a high pressure flowmeter in the laboratory and field Journal of Experimental Botany Vol 46 No 282 pp 83 94 A new high pressure flowmeter HPFM is described that is capable of rapid water flow measurements This article describes the HPFM presents the theory of dynamic flow measurements discusses sources of error presents evidence that dynamic measurements of Kr in Ficus maclellandi and six other tropical species from Panama yield the correct result and demonstrat
79. m WARNING Always proceed with the transient measurement as quickly as safety and sound research practices will allow Revision 3 11 2008 35 BynAmAx Dynamax Inc lt 5 6 1 Measurement of the Transient The Transient option is used to measure root or shoot conductance dynamically by measuring flow every few seconds while allowing the applied pressure to change at a constant rate of 5 to 10 kPa s 0 5 to 2 PSI s When measuring low conductance on the lowest flow ranges Green and Orange it is especially important to do prior transient measurements while the HPFM is connected to a solid metal or plastic rod the same diameter as the object you will measure See Section 3 Applications and Theory of Operation to understand what the data will look like when air bubbles are present Follow the instructions under Sub Section 4 5 Eliminating air from the HPFM to solve the problem 1 Adjust the needle valve so that the rate of pressurization is at the desired rate approx between 5 to 10 kPa 0 5 to 2 PSI per second when the AV is in the pressurize position Then reduce the pressure to lt 7 kPa 1 PSI by moving AV to the release position Then open the outlet valve and allow water to flow out of the compression fitting with the Yellow range selected Insert the object to be measured while water is flowing to reduce the chance of trapping an air bubble Select the desired range and lower the pres
80. momentarily open the inlet valve until i Faiti2 you see water coming out the outlet tube then close the inlet fast Inenge valve Place the end of the outlet tube within 1 cm of the height of 410 0000 0011 0101 the PT2 transducer Do the following steps PT2 mV Egitl1 EET ae Edif13 1 PT2 should now read zero mV If it does not then adjust the PT2 Zero pot on the A D board until the 410 1010 0000 0011 value equals zero A D Adjustment 2 Next close the outlet valve and open the inlet valve Measure the output of PT2 using the voltmeter The best place to read the voltage is on the input pins of the amplifiers on the A D board Adjust the PT2 gain pot Figure 20 until the value in Edit11 equals the value read by the A Calibration Panel voltmeter 3 Close the inlet valve and open the outlet valve and check that PT2 still reads zero If it does not then readjust the PT2 zero pot and then repeat steps 2 and 3 Revision 3 11 2008 69 BynAmAx Dynamax Inc lt 11 4 Balancing PT1 and PT2 Make sure the captive air tank is still at about 550 kPa 80 PSI The objective in the following steps is to adjust the PT1 gain pot so that PT1 PT2 at all pressure values since dP PT1 PT2 we want dP 0 at all pressures Repeat the following steps 4 Close the outlet valve and open the inlet valve to apply 80 PSI or 80mV to both PT1 and PT2 Adjust the PT1 gain until dP reads zero mV 5 Close the inlet valve
81. n Range x00 0000 0000 0000 PT2 m o 00q In Range x00 0000 0000 0000 4 D Adjustments Start Stop Done Figure 17 1 Low Pressure Test BE AtoD System TETE AtoD System dP m 0 000 In Range x00 0000 0000 0000 PT2 m 71 657 In Range x10101 1001 1010 4 D Adjustments Start Stop Done di Figure 17 2 High Pressure Test Revision 3 11 2008 65 BynAmAx Dynamax Inc lt 11 Calibration of the HPFM Normally the HPFM will not require frequent calibration Dynamax recommends that calibrations only be performed by our fully trained technicians at the factory or by trained and fully qualified Dynamax distributors Inexperienced users or people without technical electronics training should not attempt calibrations For qualified technicians to calibrate the HPFM a high precision electronic balance with a 4 decimal place resolution is required The balance must be able to weigh at least 200 g to the nearest 0 0001 g and have a serial interface for communication with a PC The HPFM95 software supports RS232 communication with Mettler and Satorius balances set for 8 bits and 2400 baud The Mettler balance can be used with or without parity check Select a container A that can hold up to between 150 and 200 mis of water and place it on the balance with a water filled tube connecting the HPFM to the balance as diagrammed in figure 17 below Connect an RS232 serial cable between the balance and
82. ng the smallest Omnifit connector part Pressurize the CAT to about 350 V4 480 kPa 50 70 PSI and open all valves on both 8 4 L TEN way connectors Allow degassed water from the CAT I AVA B to flow through the system for 8 16 hours Less than N l 0 5 liters of water will pass through the HPFM 78 Needle overnight but that flow is usually sufficient to dissolve Pressure Transducer all air bubbles trapped in the 8 way valves and the outlet tube In some rare cases an air bubble may be Short Needle Injection Demonstration trapped in PT2 between the 8WO and PT2 Air must be removed by carefully disconnecting Blue caps from the 8WO and injecting water using a 7 8 hypodermic needle and syringe 4 5 3 Removing Microscopic Air Bubbles from Pressure Transducers Use the 3cc syringe and 7 8 needle we provided in the accessory kit Fill it with Algaecide contained water Eliminate all air bubble inside the syringe and fill the water into Transducers Keep tapping the adapter on the transducer to move the air bubble to the opening of the Transducer then add water to push air bubble out Make sure you DO NOT use the big 1 3 8 stainless steel needle on this procedure or it may damage your Pressure Transducers CAUTION Be very careful to use 7 8 needle and not to push it all the way to the bottom of the transducers Failure to do so could cause damage 4 5 4 Removing Micros
83. nnnnnn nn 79 Revision 3 11 2008 3 BynAmAx Dynamax Inc lt TABLE OF FIGURES Figure 1 Schematic of High Pressure Flow Meter HPFM 5 Figure 2 Transient Measurements Conductance of Roots 13 Figure 3 Manifold Openings 2 2 30 Figure 4 Main HPFM Software Screen 31 Figure 5 HPFM Communications Failure Error Message i 31 Figure 6 Graphical output of SetZero option f 33 Figure 7 Graphical output of T option f f 39 Figure 8 Regressions minimum and maximum window 41 Figure 9 Graphical output of R option i 41 Figure 10 Graphical output of Flowmeter option A 43 Figure 11 Quasi Stable Flowmeter Measurements 45 Figure 12 Comparison of transients measured on most sensitive range i 49 Figure 13 Transient done on the Orange range 50 Figure 14 Transient collected on the Orange range f 51 Figure 15 Transient re measured on the Red range 51 Figure 16 HPFM Error Message f f 64 Figure 17 A D Setup Screen 65 Figure 18 Connecting the HPFM to the balance 67 Figure 19 Calibration Window f 69 Figure 20 Calibration Panel 70 Figure 21 Communication with the balance 72 Figure 22 Calibration of a Flow Range f 73 Figure 23 View Set Calib window 74 TABLE OF PHOTOS Photo 1 Air Regulator Pressure f 17 Photo 2 Compressed air and HPFM near r connection
84. oad a file with appended data i e two or more transients in one file will result in termination of the program So it is a good idea NOT to save data in appended files if you wish to reanalyze them later Revision 3 11 2008 38 Dyn MMA Dynamax Inc 2 After data has been selected the program will rescale the data so that the maximum flow for P2 gt 150 kPa 22 PSI is given a value of 100 A typical re plot of the data together with a regression line is shown in Figure 8 Note that the scale factor the conductance and the R Rsq for the current regression are displayed You will have to manually include or exclude points in the regression Points outside the regression are plotted in red and those inside are plotted in yellow and connected by a regression line To select the beginning and end points just click on the points See Figure 8 3 To select the beginning and end point just click on the first and last point desired Figure 8 Rearessions minimum and maximum window 4 After selecting points press the Regress button to recalculate and display the new regression values If there are bad points between the range of yellow points just click on the bad values which turn black and then click on Regress 5 The regression values are displayed in the upper left of the display Revision 3 11 2008 39 Dynamax Inc 1 HPFM95 Version 1 09 Please report bugs to Dr Mel Tyree see Hel
85. of the Pressure Transducers 1 From the File menu choose Calibrate HPFM then Ioj xi click the A D Setup button AtoD System 2 Click on the Start Stop button and the values of dP dP mV pee and PT2 will be read and updated twice a second and i Edit12 will appear in the text boxes Edit10 and jo3n In Range Edit11 respectively Text boxes Edit12 and Edit13 give the binary values from the A D board LSC for dP and PT2 respectively PT2 mV a E 61 837 In Range i 3 If the pressure applied to a transducer exceeds the maximum range of the transducer will display 18 mV xx10 1010 0000 0011 and show Out of Range A D Adjustments Reose Figure 17 A D Setup Screen Revision 3 11 2008 64 Brn mae Dynamax Inc 4 In A D Setup if the value is out of range perform the following check a Make sure the system is bled clean of air bubbles b Increase pressure to 500 kPa 73 PSI open all the valves except Inlet so PT1 PT2 0 kPa Low Pressure The values appear in the text boxes should match PT2 0 mV and dP lt 0 1 mV See Figure 17 1 Low Pressure Test c Close Outlet and open Inlet valve so PT1 PT2 500 kPa 73 PSI High Pressure PT2 should change to about 72 mV which is 1 mV per 6 895 kPa 1 PSI and dP should remain at lt 0 1 mV See Figure 17 2 High Pressure Test BB AoD System ATTE AtoD System dP m 0 000 I
86. old filter This will make it easier to handle the tubing connections Using a slight twisting action push the tubing on to the top filter connection Tighten the two steel straps that hold the tubing in place on the water filter Follow the instructions in Section 4 5 Eliminating Air from the HPFM Discard the old water filter properly draining all the water from the old filter Checking the Battery Check the power light to see if it illuminates If not try charging the HPFM battery for a few hours If you have tried to charge the battery and the power light will not illuminate check to make sure that you have power to the charger In the U S and other places this would be 120VAC 60Hz In Japan the power to the charger would be 110 VAC 50Hz and in Europe the power would be 220 VAC 50Hz Check the power charger to see which one you have Make sure that you are connected to the correct power source with the correct charger Remove the top panel from the HPFM Note placement of the foam cushion and remove it Check the battery terminals to make sure that the connections are secure Using a multi meter check the voltages on the battery A fully charged battery should show at least 12 5 volts If it does not replace the battery according to Subsection 9 3 Changing the HPFM Battery If the battery is not charged fully then connect the charger and measure the voltage with the HPFM off The voltage should be 12 VDC or higher If
87. ols the High Pressure Flow Meter is HPFM95NTXP EXE To run this software you need an IBM compatible computer with an 800 x 600 pixel screen or better The computer must be running on Microsoft Windows 95 98 or ME with Version 1 09 and it must have a parallel printer port The Version 2 12 will also work with Windows NT 2000 or XP We suggest that you use a notebook or sub notebook computer with the HPFM especially if you plan to use the HPFM in the field The software is installed from a single CD ROM via an Install Shield Wizard in the same manner as most Windows software The install shield Wizard will install the program in C Program files Dynamax HPFM95 XPV1 12 or similar name as later versions are released by the USDA Forest Service c o Mel Tyree The Wizard will add a HPFM icon to your desktop The icon looks like an 8 way valve Five steps to install HPFM software 1 Install Port95nt exe from your CD ROM This step is only performed if you are running a Windows 2000 NT or XP on your PC Otherwise skip to step 3 2 Restart PC as prompt 3 Install HPFM by running setup exe from your CD ROM 4 Copy HPFM cal from your CD ROM under folder name calibration to C Program files Dynamax HPFM95 XPV 1 12 it will replace the old HPFM cal file 5 An 8 way valve icon is created automatically on desktop and can be used to access program directly Dynamax supply the HPFM with a professional factory calibration The calibration file
88. ords the values and units in the columns below Transient into plug with 3 mm OD tubing Green Slope 5 69840E 09 Time s PT1 mV PT2 mV Flow kg s PT2 MPa 0 000 0 00000 0 02413 1 6415E 08 0 0014 0 030 0 00000 0 07238 1 6405E 08 0 0010 3 000 1 47692 0 21714 4 1943E 08 0 0000 6 020 3 06520 0 91683 1 0480E 07 0 0049 9 040 4 21978 2 05079 1 5061E 07 0 0128 12 010 5 04029 3 45016 1 8328E 07 0 0226 15 030 5 63810 5 13905 2 0721E 07 0 0344 18 050 6 07179 6 99683 2 2469E 07 0 0474 21 010 6 37656 8 95111 2 3710E 07 0 0611 24 030 6 58755 11 02603 2 4583E 07 0 0756 27 000 6 71062 13 17333 2 5110E 07 0 0906 30 020 6 79853 15 39302 2 5500E 07 0 1061 33 040 6 85714 17 63683 2 5775E 07 0 1218 36 010 6 90403 19 85651 2 6002E 07 0 1373 39 030 6 93919 22 14857 2 6185E 07 0 1533 42 000 6 96264 24 39238 2 6321E 07 0 1690 45 020 6 97436 26 68444 2 6411E 07 0 1850 Table 2 Format of data saved bv the Transient option 5 6 2 Regression of the Transient While measurement of the Transient is simply graphing a line of increasing pressure and flow Regression provides the best fit of that graphical line and calculating the slope That slope is the hydraulic conductance of the measured plant 1 Select option Regression You will have the option to do a regression of the last transient collected in which case you just click on the Open button Otherwise click on the Open New and select a previous file Note An attempt to l
89. out choking and causing a reducing flow of gas over the time period of the test 1 4 Unpacking The HPFM is supplied as a complete unit No assembly is required However there are several accessories that are packaged with the system such as O rings Compression caps Connection and bleeding hoses Compression Couplings Battery Charger Communications Cable Manual amp Software It is recommended that you take a few minutes to check off and confirm all of these components were received A detailed Parts and Packing List is included in Appendix I 1 5 What to Keep NOTE When unpacking do not discard the box and packing material Dynamax ships the HPFM in a box with material on all six sides This makes the shipping box the perfect box for you to ship your HPFM internationally across the U S or back to Dynamax for an annual calibration Also keep the Lists of Parts the software and the tools that came with the HPFM The list will come in handy when reordering parts for the HPFM The software should be kept as a backup in case of PC failure such as hard drive corruption The tools which can be found in the lid of the HPFM should be kept there since they will be needed to use the HPFM on a daily basis Revision 3 11 2008 8 BynAmAx Dynamax Inc lt e 2 Quick Start Guide This section is designed to provide a recipe style reference guide to present the basic steps you should follow to assist the new u
90. p Zit Open New Ega Regress New Min Max Open ion Archives 017 Test Files Yellow Transient tm Figure 9 Granhieal autnut of R antian Graphical output of R option done on same data set collected in Figure 8 Y axis is flow as full scale The o values in Figure 8 have been rescaled so that the maximum value in is now 100 on this graph X axis is PT2 pressure in MPa Values of flow included in the regression are plotted as excluded values as o The conductance and R values of the current regression are displayed at the top of the graph Since these is evidence of air in the HPFM the bump at the lower left of the graph the user will probably want to redo the regression using values from PT2 0 15 to 3 2 MPa Revision 3 11 2008 40 BynAmAx Dynamax Inc lt r 5 7 QuasiSteady State Flow Measurement Quasi steady state flow meter measurements are usually done on whole shoots because flow can be approximately constant with constant applied pressure The resistances are reported rather than conductance because one of the common aims with quasi steady state measurements is to measure the resistance of the whole shoot and its components e g leaf blades petioles small stems large stems etc See Appendix I for references regarding Hydraulic Conductance measurements for information on how and why this is done Follow these steps 1 2 Select option Flowmeter Selec
91. pplied by Dynamax For low flow ranges Green and Orange ONLY use the 1 0 mm ID Natural light tan HPLC tubing supplied by Dynamax for connections between the purple outlet of the 8WO and the compression fitting on the object to be measured NOTE DO NOT USE 0 12 mm ID RED TUBING FOR CONNECTION BETWEEN THE HPFM AND A PLANT SAMPLE The red tube is used only for testing and bubble removal see sections 2 4 and 4 5 3 Carefully follow the instructions in Section 4 4 4 2 Valve Setting for Preparing the HPFM for Service The valve settings are important in removing air bubbles gas and keeping the air from infiltrating the system at different points in the handling use and storage of the HPFM During the storage of the HPFM unit make sure that the purple outlet value is closed 4 3 Pressurizing the HPFM The HPFM uses a pressure bottle filled with nitrogen or air your choice to force water into the root stem or shoot This pressure bottle can be filled to a pressure of 15 MPa 2 200 PSI The bottle is shipped empty for safety reasons To fill the bottle contact your local gas distributor or physical plant Depending on your preference or economics the bottle can be filled with either air or nitrogen Gauges Specification on the regulator Supplying Pressure Display 4000 PSI Max Delivery Pressure Display 1000 PSI Max Revision 3 11 2008 15 BynAmAx Dynamax Inc lt r The bottle also has a pressur
92. rom the CAT the water passes through a 0 1 um water filter then the diameter of the tubing is reduced to 3 mm Outside Diameter OD 1 5mm ID plastic tube the plastic tubing is connected to the input side of the 8WI The 8WI is shown schematically in Figure 1 The 8WI is an Omnifit 8 Way HPLC valve of octagonal geometry with 8 tubes emerging from a common point in the center and each tube terminated by a valve On the inlet side the 3 mm OD 1 5 mm ID tube from the CAT is connected to one of the 8 valves purple connector on the HPFM A pressure transducer PT1 is connected to another valve blue connector on the HPFM On the outlet side another pressure transducer PT2 is connected to 8WI blue connector as well as the 3 mm OD 1 5mm ID outlet tube purple connector This leaves 6 pairs of valves available between each 8WI and 8 Way Outlet BWO for connection of narrow bore capillary tubes CT The capillary tubes are 1 5 mm OD HPLC tubing 0 16 to 1 5 m in length The HPLC CTs have internal diameters from 0 12 to 0 5 mm During a measurement one CT is selected by opening the inlet and outlet valves of the corresponding manifold 8WI and 8WO The corresponding CT valves for the unused capillary tubes must be closed Water flow across the selected CT causes a differential pressure dP drop dP P P2 measured with PT1 and PT2 respectively Calibration curves were established relating flow F to dP values in the range of 0 to 10
93. rs Check the digital pressure gage on a regular basis and add pressure if needed After 12 hours close all manifold valves and the Water Supply valve Check for small leaks again Wipe off any excess water from the frame Finish filling the HPFM CAT by following Subsection 4 4 3 Adding Water to a Partly Empty Captive Air Tank CAT Remove the red tubing before making measurements Install the connecting hose 1 mm ID Natural or 1 5 mm ID Clear and bleed out bubbles before connecting to a plant coupling Proceed to Section 7 Now you are ready to use HPFM on a plant 4 6 Storing the HPFM Pressurize the CAT to 140 280 kPa 20 40 PSI shut the air valve AV to retain the pressure Turn the water valve right WV to the flow position and close the outlet valve on the 8 way outlet valve 8WO This will prevent entry of air into your system keep a minimum pressure on connecting hoses and your HPFM will remain in optimum form ready for measurements whenever you need it Be sure to turn off the power to the HPFM A D board and to the digital pressure gauge to save battery power Also be sure to shut off the gas supply to the pressure regulator This will prevent gas loss from your supply tank in case of a slow leak Revision 3 11 2008 27 i NAMAX Dynamax Inc lt CAUTION It is recommended that you keep the HPFM pressurized at 140 280 kPa 20 40 PSI with the outlet valve closed at all tim
94. runk Points to remember before and during the excise procedure are a Rough bark will need to be removed down to the xylem This can be considered when measuring the sample Even if the bark is smooth water flow could move between the xylem and the bark or between the bark and the compression coupling the bark should be removed WARNING Do Not Remove the Xylem from the sample b When cutting a root sample never cut the sample too low to the ground If you are cutting a shoot sample do not cut too close to a major stem Give yourself plenty of room Use the rubber compression seal from the compression coupling you plan to use to check the distance The point to excise or cut should be Revision 3 11 2008 52 Dyn AMA Dynamax Inc lt e i For sizes up to 20mm leave 2 5mm of root stem above the top of the rubber compression seal ii For sizes from 20mm to 50mm leave 5 10mm of root stem above the top of the rubber compression seal Note Check the distance below the rubber compression seal Can you see leaks Can you perform the installation of the coupling easily c Cut or excise with a smooth level cut The cut should always be perpendicular to the stem d Use a razor blade included with the HPFM to remove the bark and related material to the depth of the cambium 3 After having cut and prepared the stem Photo 9 slip the nut and aluminum compression Removing bark from the stem ring over the root
95. s well Revision 3 11 2008 51 Dyn AMAN Dynamax Inc 7 Connecting the HPFM to Roots and Shoots Connecting the HPFM to the Root or Shoot of choice is important to obtaining a quality reading If the connection leaks or if there is air in the connecting apparatus then the HPFM will show a higher than normal flow or show an abnormal transient due to compression of the air 7 1 Root and Shoots The HPFM with practice can be connected to the root gather data removed from the root and readied for travel in about 10 minutes The HPFM can probably be connected to a shoot in less time than a root The steps for setting up a root or shoot are Photo 8 Cutting a Stem 1 Measure the diameter of the sample where you plan to excise or cut the sample plant or tree Make sure that there are no anomalies such as grafting scars limbs old limb scars or excessive damage that might cause problems with the compression coupling creating a sealed system Keep in mind that the largest object that the HPFM can be connected to is 50mm with the included compression couplings Measure the object that you wish to sample and make sure that you are in range before excising the shoot or trunk The larger sampled sizes 40 50mm will probably require the bark to be removed i Any rough surface that will affect the seal of the compression fitting will need to be removed or smoothed with sandpaper 2 Excise the shoot or cut down the t
96. ser to begin using the HPFM The manual then provides more detailed instruction on how to complete each step 1 2 10 11 12 13 Fill the Air Supply Tank with Compressed Air or Nitrogen Section 4 3 Prepare 7 6L 2 gallons of degassed de ionized water Section 4 4 1 Prime the Captive Air Tank of the HPFM with degassed de ionized water Section 4 4 Eliminate all air from the HPFM by purging air from the CAT and Tygon supply tubing through the purge valve and water filter purge caps Then bleed the system with the small Red capillary tube over night to remove any microscopic air bubbles that may have remained in the CAT or the 8 Way valve manifolds Section 4 5 Install the HPFM software on your PC and connect the HPFM to a PC via the computer s Printer Port LPT1 and the communication port on the HPFM with the communications cable Section 5 1 Turn HPFM on and launch the program by clicking on the HPFM95 icon Section 5 3 Set the Zero Flow Volts to zero the transducers before taking measurements This must be performed each day before beginning measurements to ensure accuracy Section 5 4 Select the plant that you will be working with and measure the stem size Section 7 0 Cut the sample plants stem and install the Pressure couplings Section 7 0 Use 1 mm ID HPLC Natural light tan tubing with fittings 1 20 mm HPCC 1 4 HPCC 4 10 and HPCC 10 20 and 1 5 mm ID Teflon HPLC Cl
97. stem Make sure that the washer is as close to the size of the stem as possible The aluminum compression ring should still be easy to slip on or off 4 Place the rubber seal over the prepared area of the root stem The seal should be snug but should not have to be forced If the compression seal is too small use the next largest seal If the rubber seal is too big use a smaller one The rubber seal should be applied with out a lubricant onto the sample and should have some light to moderate friction when twisted Approx 1cm of stem should be protruding from above rubber seal as shown in Photo 10 If not go back to step 2 and remove more bark Photo 10 Installing the Compression ring Revision 3 11 2008 53 I NAMAX Dynamax Inc lt r WARNING BE CAREFUL with Knives Razor Blades Saws and other TOOLS 5 Apply a light coating of the included G4 silicone grease to the threads of the head of the coupling as well as to the inside cone The area inside the cone that requires the lubricant is where the compression seal will compress into the head by the nut Again a light coating is all that is required Photo 11 t Greasing the Coupling CAUTION Make sure to apply a light coating of G4 Silicone grease to the outside surface of the rubber seal This will prevent binding and eventual destruction of the seal and coupling surface 6 Compress the rubber compression seal into place by holding the
98. sure The slope of the F versus Pz for P2 gt 0 25 MPa is a reasonable approximation of the hydraulic conductance of the root system being measured It is probably good practice to measure transient flows for P2 up to 0 5 MPa in order to reduce the underestimation of K caused by compression of air bubbles 3 3 Quasi steady State Measurements of Hydraulic Resistance Ros During steady state measurements of Ras water flow and applied pressure are both constant and by definition the water flow into the object measured equals the flow out of the object In practice it is never possible to keep flow and pressure perfectly constant so it is best to refer to such measurements as quasi steady state The capillary tubes CT on the HPFM have been calibrated i e their conductance Ker or resistance Retr 1 Ker has been measured During flow measurements the control program HPFM95 EXE monitors the difference in pressure dP across the CT The program uses dP to calculate the flow F from F Kor dP 1A or F dP Rer 1B Since the flow into the object closely equals the flow out the unknown hydraulic resistance Ru can be calculated from Ry P2 Po F 2A or Ky F Po Po 2B Where Pz is the pressure recorded by the pressure transducer at the outlet PT2 and Po is the pressure of the water where it emerges from the object In many cases Po is known to be zero When Po is unknown then Ry or Ky cannot be computed Examples wil
99. sure to lt 7 kPa 1 PSI The time interval can also be selected in a drop down box but the default value of 2s is good for most purposes Select the Transient option And answer the various questions e g providing the filename title a brief documentary note up to one line long the range selected and the time interval desired e g an integer gt 1s 2s is usually a good choice Click on the color range you intend to use in the measurement and enter any comment line you want recorded in the data file Then click the Start button This will bring up a save file dialog box Note that data collection for the purpose of regressions will stop after 100 points but the amount of data that can be collected and stored is limited only by the amount of free space on your hard disk 4 Once you have selected a file name data collection will automatically begin As soon as the first points appears on the graph start the pressurization Data are saved as a text file with a trn extension These files can be examined with the FileView option or on any text editor Alternatively the file can be read into Excel or SigmaPlot Continue pressurization until PT2 reaches about 500 kPa 72 PSI or sooner if you detect a problem e g wrong range selected or a leak observed Stop pressurization by turning the AV to the off position If you wish you may continue recording values after the pressurization stops but it is not recomm
100. surize position Then reduce the pressure to lt 5 kPa 0 5 PSI by moving AV to the release position 2 Select the Brown range i e the highest flow range and make sure the outlet valve is CLOSED 3 Select Options SetZero 4 When you are ready to start pressurization press the start key As soon as the graph appears on screen start the pressurization 5 Continue pressurization A screen will appear to prompt you to stop when PT2 reaches 550 kPa 80 PSI CAUTION The computer will tell you when to stop during normal functioning Do not stop too soon But if the system malfunctions do not allow the applied pressure to exceed 690 kPa 100 PSI as recorded on the digital pressure gage Revision 3 11 2008 31 Dyn AMAR Dynamax Inc p WARNING Do not allow the applied pressure to exceed 690 kPa 100 PSI as recorded on the digital pressure gauge The safety relief valve is set to open at approximately 620 kPa 90 PSI and close off at approximately 600 kPa 87 PSI Do not adjust the Safety Relief Valve Call Dynamax or your distributor if you find a problem or a perceived problem 6 Stop pressurization when the computer says to and then follow the instructions on the screen to make a regression You can click on the ReGress button to do a regression of the curve and you will be given a chance to click on bad points to eliminate from the regression 7 To save the regression values
101. t the desired flow range Be sure the valve settings on the HPFM 8 Way valves agree Very Important Software will give an I O error and repeat it if you do not set a flow range The only fix to exit from this error mode is to hit Enter very fast and click on Exit using mouse Otherwise use Ctrl Alt Delete to stop and restart Select a time interval The default value of 8 s is usually good Values are read every 2 s regardless of the selected time interval But data are plotted as the mean value for each time interval Hence if you pick a time interval of 8 s a point is plotted every 8 s which is the mean of four 2 s readings Click on the Start button and you will be asked to select a file name After the filename is entered the data collection starts When branches are cut in midday the leaves are usually dehydrated hence the initial flow rate is determined by the difference between the leaf water potential and the perfusion pressure recorded at PT2 As the leaves re hydrate the flow rate of the leaves decreases with time hence the resistance versus time increases When the leaves are fully hydrated a quasi stable resistance results as shown in Figure 9 Data collection immediately begins after entering the flow range The format of the data showing on the screen is shown in Table 3 Values were initially collected every 8s then the collection was changed to every 30s After about 30 minutes quasi stable v
102. tem The major areas to check and purge are the CAT the tubing the 8 way manifold and the HPFM Refill Kit The HPFM can have air trapped in the CAT the valve at the top of the CAT and the tubing from the CAT to the filter This can be removed quickly by Revision 3 11 2008 23 d N MAX Dynamax Inc ar 1 Protect the digital pressure gage and be prepared to wipe up and remove excessive water on or around the HPFM The digital pressure gage can be protected with a small plastic bag placed over the gage and held in place with a rubber band or tie wraps CAUTION Always protect the Digital Pressure Gage from getting wet Place a plastic bag over the unit whenever you are adding water or removing air from the system 8 4 5 1 To facilitate purging of the HPFM there is a purge valve at the top of the CAT Apply approx 15 kPa 2 PSI pressure to the unit and ensures the three way valve is closed If a pressure greater than 15 kPa 2 PSI is applied water will spray from the purge valve under pressure Using a rag to absorb water slowly open the valve and allow air to escape from the purge valve Once all the air has escaped and only water flows from the valve close it firmly Note Tilting the HPFM slightly forward so the purge valve is at the highest point can improve the performance of the valve If any air bubbles remain in the tubing exhaust all the air from the system and open the purge valve to allow air b
103. the distilled water 5 If the HPFM is new it will be shipped empty Repeat steps 1 through 4 so that you will have 7 6 L 2 gallons of water to fill the CAT 6 Fill the Refill Kit immediately and close the Refill Tank 7 If the HPFM is new or been shipped proceed to Subsection 4 4 2 Priming a Totally Empty CAT The tank should be filled immediately after degassing the water by vacuum Use the Refill Kit to insert the degassed water into the Captive Air Tank of the HPFM as quickly as possible 4 4 2 Priming a Totally Empty Captive Air Tank CAT When first priming the HPFM or if air bubbles have entered into the HPFM system you must prefill the CAT with at least 2 liters of degassed distilled water before you can start the priming process If the HPFM has had water already added please skip this subsection and move on to Subsection 4 4 3 Adding water to a Partially Empty Captive Air Tank CAT This pre fill will assist in the removal of all air bubbles Removing air bubbles as in Section 4 5 Eliminating Air from the HPF is a requirement for normal operation of the HPFM Another requirement is the removal of small microscopic bubbles that form inside the wetted areas of the HPFM and adhere to the surfaces Note that parts of the series of instructions are very much like Subsection 4 4 3 That is because you must fill the HPFM unit with water to remove the air bubbles first The steps for priming the empty HPFM CAT are
104. the viton O rings compress into the tubing Slanted small scrapes seem to work best to hold The more problematic slippage may require that you use a razor blade Remember to keep the razor from slicing into the tubing or a finger c Place the HPLC compression fitting cap on the tubing that you are using for your sampling Photo 14 d Make sure that the tubing is not constricted by previous Connecting the Clear compression in the fitting If it is use a razor blade to tubing w 2 larger O rings cut off a small part of the tubing e Place the necessary O rings on the tubing If you are using the smaller tubing and require 3 O rings place the smaller O ring on the tubing first followed by the two larger O rings f Make sure that the pressure is gt 5 PSI 35 kPa Open the valves on the HPFM allowing the tubing to bleed the water at a slow drip as shown in photo 14 above This will remove air from the tubing g Place the tubing into the compression fitting on the top of the compression coupling and move the HPLC compression fitting cap down Make sure that the tubing stays solidly inside the acrylic cone of the compression coupling h Make sure that you have water flowing and begin to screw the HPLC compression fitting cap into the compression fitting on top of the compression coupling Make sure that it is snug but do not over tighten Two or three turns is all that is usually required
105. though you will not use this file 5 2 System Connections Connect the pressure regulator to the compressed gas tank you are using usually compressed air or nitrogen Be sure the air valve AV is in the off position Set the supply pressure to approx 4 MPa Open 600 PSI Turn on the digital pressure gauge If closed the HPFM has been previously used it should have been left pressurized to 140 280 kPa 20 40 PSI Locate the two 8 way valves and note how the valves are opened and closed See figure 3 Make sure the valves to the two pressure transducers are ALWAYS left open and that the outlet valve is closed except when water flow is desired Connect the 25 pin cable between the printer port of the computer and 25 pin 3 communications port on the back panel of the 8 way manifold HPFM Turn on the HPFM power switch on front Figure 3 panel and click on the HPFM icon turn on the Manifold Openings computer To pressurize the system turn the AV to the fill position pointing left and adjust the needle valve NV so that the desired rate of pressurization is achieved normally 0 5 to 2 PSI per second To release pressure turn the AV to the release position pointing right To select a flow range which is color coded open the two valves opposite the two Omnifit connectors with the same color Make sure all other valves connected to the other capillary tubes are closed Revision 3 11 2008 29 Dyn MAX Dynamax
106. til the gage reads zero 6 Repeat step 3 4 and 5 to check that the gage is now set correctly Revision 3 11 2008 62 BynAmAx Dynamax Inc lt r 10 Trouble Shooting 10 1 PC HPFM Communication Please note that PC software automatically detects the HPFM If the HPFM is not automatically detected the following an error message is displayed If you receive this error message attempt the following WARNING HPFM not found Check that it is connected to a printer port and that power is on Figure 16 HPFM Error Message 1 Make sure that power to the HPFM is turned on 2 If the power is switched on but the power light is not illuminated check that the battery is connected and charged see Section 9 2 Checking the Battery 3 Make sure that the parallel communications cable is directly connected to the computer and the HPFM Do not run the cable through any third part devices such as Zip Drives and external CD Writers 4 Confirm that the HPFM communications cable is connected to a printer port LPT1 LPT2 or LPTS It should usually be LPT1 5 Change the parallel communications cable between the HPFM and the PC to rule out a bad cable 6 Confirm there is not a communications conflict with a printer driver Uninstall all printer drivers from the computer connected to the HPFM 7 If all of the above suggestions have not overcome the communications problem it may be that the A D board on the HPFM is defectiv
107. tton b Open up the valves on the manifold for the next lowest range For example if you are on the Gray range and need to go to the next lowest range which would be the Yellow range open the valves corresponding to the Yellow colored HPLC caps c Returning to the software click on the Yellow color range and click the Start button You should see an increase in the differential pressure and the software will stop warning you of a too low differential pressure 5 Keeping a record of what flow range works with a particular species of a particular size will make it easier to select the correct range on the first attempt NOTE If you fail to pause data collection when changing ranges you may input a graphical point that causes the graphical display to rescale Such rescaling is normal but if you want to remove the bad points just click on the bad points and they will disappear 5 6 Transient Measurement of Conductance The transient measurement of conductance of your root or shoot sample allows a quick and fast way to gather the data either in the field or the lab Quickly acquiring the data is good when dealing with the root systems especially The root systems as well as the shoots of many plant species have the ability to repair themselves and plug off the xylem Also there is an osmotic effect in root systems that will increase the osmotic pressure and therefore reduce the flow as more water is injected into the root syste
108. u must edit your own Command out text by clicking on the text box with SI and then changing it to the command expected by your balance You may also need to consult your computer manual to figure out what COM ports are available on your computer and which One you are currently using CMD P 0 8426 NOTE Some balances require custom cables and personal experience is that some balance manuals have INCORRECT information about cable requirements so GOOD LUCK 11 7 Calibration of a Flow Range When the calibration window appears the table is filled with the most recently collected set of calibration data If the table is blank then that is okay In Figure 21 below the Red range has been selected by clicking on the radio button This causes the values in the table to be displayed in the graph to the left In order to append new values to the current table all you need to do is click on the Start button This will cause the software to read dP every 2 seconds and the balance every 4 seconds When the cumulative weight change exceeds 0 02 g a new set of values for Flow and dP will appear in the memo boxes to the left of the Start button For the lower ranges Green and Orange a value of 0 02 is okay but for higher flow rates you will want to select a bigger dW by clicking on the drop down text box and selecting a higher value You can also Revision 3 11 2008 71 Pyn MMA Dynamax Inc lt r
109. uld agree within 1 or 2 when compared between quasi steady state and transient methods The transient values are higher than the quasi steady state value because part of the water entering during the transient goes to compress the air bubble But during quasi steady state measurements after 40 minutes of perfusion the bubbles are compressed to a quasi equilibrium volume where further volume change depends on the slow dissolution of the air in water The dissolution proceeds slowly over many hours in large stems Oak species contain lots of air in old wood so the transient conductance can be 2 to 4 times the quasi steady state conductance The quasi steady state value is likely to be the most accurate value if stem plugging has not occurred For more details see Nardini A M T Tyree 1999 Root and shoot hydraulic conductance of seven Quercus species Annals of Forest Science 56 371 377 6 4 Cautions when measuring small flows conductance or large resistances The elasticity of the tube connecting the outlet of the HPFM to the object being measured can seriously affect the accuracy of measurements Small conductance should be measured with small diameter and rigid connection tubes It is always a good practice to measure flow versus pressure with a solid plug inserted in place of the object to be measured Conductances are computed from the slope of F versus PT2 Plasticity of connection tubes may give a slight slope of F versus PT2 when measur
110. ut 7 10 kPa 1 1 5 PSI per second The Needle Valve can be used to regulate the rate of increasing pressure Close the Compressed Air Valve AV in Photo 4 page 23 when you have reached the required pressure in a range from 200 to 500 kPa 29 to 72 PSI If you are doing a transient pressure test release CAT pressure at 0 to 7 kPa 0 to 1 PSI and turn the pressure regulator screw until the outlet pressure is at least 4 1 Mpa 600 PSI Make sure that the needle valve is opened about 2 3 turns so that the pressure increases about 7kPa 1 PSI per second Open Compressed Air Valve only in conjunction to starting the software for the test 4 4 Adding De gassed Water to the HPFM The Captive Air Tank CAT is a two compartment tank The upper compartment contains water and the lower section can be pressurized with air A flexible rubber diaphragm separates the two compartments The large stainless steel CAT allows you to pressurize the water without the air and water mixing together The CAT will hold 7 0 liters of water and it is best to refill while there is still at least 0 5 liters of water in the tank If the CAT is initially empty then refer to Subsection 4 4 3 Priming a totally empty tank Normal tap water or water that has been standing naturally absorbs air The particles in naturally found water and or tap water plug the very small inner diameters of the tubing used in HPFM as well CAUTION Always use Distilled Degassed Water
111. y constant with time Figure 1 Schematic of High Pressure Flow Meter HPFM The rapid change in water pressure is achieved using a pressure regulator R a needle valve NV and a captive air tank CAT A pressure regulator R delivers compressed air from the compressed air tank AT The pressure regulator keeps the compressed air at a steady pressure of 4 to 5 MPa 580 725 PSI through a needle valve NV The NV is connected to the air chamber A of a captive air tank CAT A rubber diaphragm separates the air from water W in the CAT The NV is adjusted to permit a rate of airflow to pressurize the air volume at a rate of 3 to 7 kPa s approx 1 PSI s The volumes of air and water are approximately equal in the CAT The CAT can be pressurized or depressurized by turning the 3 way ball valve AV A pressure release valve PR prevents accidental over pressurization The pressure release valve is set to vent air when the pressure exceeds about 0 6 MPa 87 PSI Since the pressure in A never exceeds 0 6 MPa and the air supply is 4 2 MPa 609 PSI the pressure drop across the NV is approximately constant This allows the rate of pressurization in the water to be approximately linear with time Revision 3 11 2008 5 BynAmAx Dynamax Inc lt e Pressurized water flows from the CAT to the 8 Way Inlet manifold 8WI through a 9 mm Inside Diameter ID nylon reinforced Tygon tubing At a distance of 0 3 m f

Download Pdf Manuals

image

Related Search

Related Contents

2009 Ram Truck 1500 (Gas) Owner Manual  ビジネスにおける中小企業経営のエッセンス−第 3回  無垢フローリング取扱説明書(PDF)  

Copyright © All rights reserved.
Failed to retrieve file