Home
OpenPowerNet User Manual
Contents
1. brakeVehicleEfficiency valueT able Table 5 Efficiency Table Model specific data used by ATM 4 2 3 2 TypDef File The TypDef File is an XML file and defines the types of energy storages see also Figure 15 The Project File will reference these types by an identifier The TypDef File observes the schema schemas TypeDefs xsd in plugin de bahntechnik dd opn bin_x x x _JJJIMMDDhhmm The HTML schema documentation is available in the GUI Help System at OpenPowerNet User Guide gt TypDef File Characteristics EE GH erae E 1 0 1 0 The container for different The container for al energy storage types ynfiguration data of one Figure 15 The elements of the TypDef File schema 4 2 3 3 Project File The project specific file is an XML file It has to correspond with the OpenTrack infrastructure data The corresponding schema file can be found in plugin de bahntechnik dd opn bin_x x x_JJJJMMDDhhmm under schemas OpenPowerNet xsd The HTML schema documentation with detailed information to each element and attribute is available in the GUI Help System at OpenPowerNet User Guide gt Project File A sample XML file is available in plugin de bahntechnik dd opn bin_x x x_JJJJMMDDhhmm under projects Sample_Network xml The Project File has three main parts e ATM configuration e PSC configuration and e Relations of courses to a Train Operating Company see Figure 16 IFB DD UM_OPN_51_01 02 02 doc Page
2. 1 A 01 00 00 01 05 00 4 01 10 00 01 15 00 4 01 20 00 01 25 00 4 01 30 00 4 01 35 00 4 01 40 00 01 45 00 4 01 50 00 01 55 00 4 02 00 00 trafo T1 to busbar OCS_BB IA Figure 55 The current from transformer T1 to the OCS busbar in substation TSS_5 In the diagram above we see that the current does not exceed 350A and we have no current between 01 50 00 and 02 00 00 as we have no courses at this time We can also see the higher current in hour 01 compared to hour 02 This is caused by the longer trains in hour 01 and short trains in hour 02 IFB DD UM_OPN_51_01 02 02 doc Page 66 of 168 DMJ 2010 05 12 OPN 51 1 2 2 3penPowerNet 7 Ze Institut f r Bahntechnik GmbH Page 67 of 168 User Manual Issue 2010 05 12 27600 TSS_5 27500 27400 27300 27200 27100 gt 27000 26900 26800 26700 26600 01 00 00 01 05 00 01 10 00 01 15 00 01 20 00 01 25 00 4 01 30 00 4 01 35 00 01 40 00 Figure 56 The voltage between OCS and Rails busbar at TSS_5 01 45 00 7 01 50 00 4 01 55 00 4 02 00 00 In this diagram we see the voltage between the OCS and Rails busbar We see very well the no load voltage of 27 5kV and voltage drops to about 26 65kV This is still above the nominal voltage of 25kV The different characteristic of the voltage caused by the long and shor
3. s km nf iR DeltaU Courses Figure 115 The potential of the earth conductor and rail to the earth node and the touch voltage between the rail RR and earth as result of the correct configured network at 1 28 37 The right y axis shows the current of the course The two figures above show the resulting voltages of the earth conductor and rail RR at 1 28 37 At this time the course CBAI_01 is close to TSS_5 The rail RL has the same voltage as RR because both are connected by very low resistances and therefore not shown The difference between both configurations is significant not only for the conductor voltages but also for the touch voltage between them 6 7 2 Neutral zone tutorial In this tutorial a 2AC system with neutral zone will be created The 2AC tutorial was simpler without a neutral zone The neutral zone shall be at TSS_5 from km 4 800 until km 5 200 and it shall be possible to feed from one feeding section via the neutral zone to the other feeding section Furthermore we add an autotransformer station at km 0 000 see Figure 116 ATS_0 TSS_5 ATS_80 T1 T2 T1 T1 sw s sw s sw s sw i rails negative feeder 80 000 i oO i i oO i i oO O O O N oo NI S vi vi Figure 116 The electrical network model IFB DD UM_OPN_51_01 02 02 doc Page 124 of 168 DMJ 2010 05 12 LE Ze OPN 51 1 2 2 pe nPowerNet Institut f r Bahntechnik GmbH
4. Page 37 of 168 User Manual Issue 2010 05 12 Make sure the DSN selected in Figure 24 uses the MySQL ODBC 3 5 1 Driver The steps below will not work with the MySQL ODBC 5 1 x Driver If no such DSN is available see document Installation Instruction to create a new DSN You can find the Installation Instruction in the Help System OpenPowerNet User Guide gt Documents Query Assistent Spalten auswahlen x Welche Spalten sollen in die Abfrage eingeschlossen werden Verf gbare Tabellen und Spalten Spalten in Ihrer Abfrage gt substation substation_has_connector Iech E system lt lt trafo H OPNversion trafo_has_connector timeStep_s Datenvarschau der ausgew hlten Spalte Si Optionen Swi Abbrechen Figure 25 For this example select table sim add the columns shown on the right to the query and click next Query Assistent Daten filtern x Um nur bestimmte Zeilen in Ihre Abfrage einzuschlie en k nnen Sie die Daten filtern Klicken Sie auf Weiter wenn die Daten nicht sortiert werden sollen Zu filternde Spalte Nur Zeilen einschlie en in denen OPNversion timeStep_s Und C oder Und GS Si lt Zur ck Abbrechen Figure 26 Click next do not filter any data IFB DD UM_OPN_51_01 02 02 doc Page 37 of 168 DMJ 2010 05 12 OPN 51 1 2 2 Cpe n Powe rN et eo Institut f r Bahntechnik GmbH Page 38 of 168 User Manual Issue 2010
5. 100 Entry Speed km h 180 Output Offset m Io Cancel Reset Itin OK Figure 59 Short circuit course configuration in OpenTrack In the OpenPowerNet Project File we need to add a new attribute to the engine lt Vehicle eddyCurrentBrake false engineID Enginel gt lt Propulsion engine electric supply AC 25kV 50Hz shortCircuitEngine true The new attribute to simulate short circuits Other attributes will be ignored by OpenPowerNet brakeCurrentLimitation none tractiveCurrentLimitation none useAuxPower true fourQuadrantChopperPhi none regenerativeBrake none tractiveEffort maxPower maxTractEffort gt lt MeanEfficiency gt lt Propulsion gt lt Vehicle gt For the short circuit simulation we usually need the short circuit current at the substation for the protection settings In this tutorial we use only TSS_5 and power off TSS_80 by opening the switches at transformer T1 in TSS_80 We only need to change the default state for the switches TSS_80_T1_OCS and TSS_80_T1_Rails from close to open After we have done all the amendments in the Project File for the short circuit simulation we run again the simulation only with course short circuit IFB DD UM_OPN_51_01 02 02 doc Page 69 of 168 DMJ 2010 05 12 OPN 51 1 2 2 3penPowerNet 7 Ze ww Institut f r Bahntechnik GmbH Page 70 of 168 User Manual Issue 2010 05 12 4000 TSS_5 3500 3000
6. true i gt OK Delete Row Figure 38 The dialog to select connectors and to configure different diagrams IFB DD UM_OPN_51_01 02 02 doc Page 44 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 45 of 168 User Manual Issue 2010 05 12 The columns displayed at the right side depend on the selection in the tree of the left side 4 5 2 3 Substations The Substations group provides diagrams related to substations A dialog opens when pressing Select See Figure 39 Select Substations 22 09 53 54 0 Network Tutorial Neutral Zol eee 1 Network D An ion O ATS E 2 Network 0 A C Substation 2 1557 a 2 a 7 3 4 5 4 6 LFeeder f t I Feeder TRLPC U LPS f t P_PS f t TRLPC Overview v z 7 m z Figure 39 The dialog to select the substations and the diagrams to be generated On the left side all substations are available as a tree view On the right side is the table with selected substations and the diagram types To add substation to the table click first the red button Enable Drag amp Drop then select a substation and then click in a row of the table By default all diagram types are selected The following diagram types are available e Feeder f t The feeder cable current versus
7. Page 125 of 168 User Manual Issue 2010 05 12 To fulfil the constraint that the current sum in each section is always 0A the neutral zone configuration shall look like in Figure 117 Tss_5 T1 T2 Ki E a i gei E 8 Lem E H 7 TSS_S_NFI TSS_5_F_ u GE rien WE Gg GREG CELL pat RR TSS_S_RF_ TSS_S_RF_r Figure 117 The configuration of a neutral zone of a 2AC system IFB DD UM_OPN_51_01 02 02 doc Page 125 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 126 of 168 User Manual Issue 2010 05 12 6 7 2 1 Configuration 6 7 2 1 1 OpenTrack We will use the OpenTrack model from the AC tutorial without changes Select only the course ABCI_01 and CBAI_01 with long trains 6 7 2 1 2 OpenPowerNet We will use the Engine and correct Project File from the Substation tutorial in chapter 6 7 1 as the basis 6 7 2 1 2 1 Engine File For this tutorial we don t need to change the Engine File 6 7 2 1 2 2 Project File First of all we need to add the negative feeder from km 0 000 to km 84 500 lt Conductor type NegativeFeeder gt lt StartPosition condName NF trackID 1 km 0 gt lt ToProperty toPos_km 9 equivalentRadius_mm 8 4 r20_Ohm_km 0 1188 temperature_GradCelsius 20 temperatureCoefficient 0 004 x m 4 W y_m 9 f lt ToProperty toPos_km 80 recordCurrent false
8. 01 00 00 01 05 00 01 10 00 15 00 01 20 00 01 25 00 01 30 00 01 35 00 01 40 00 01 Course CBAL_O1 Sim 18 Course CBAL01 Sim 20 Figure 95 The current of course CBAI_01 without sim 19 and with sim 20 brake current limitation to 50A IFB DD UM_OPN_51_01 02 02 doc Page 101 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 102 of 168 User Manual Issue 2010 05 12 U t 28000 7 27800 27600 27400 27200 5 27000 26800 26600 26400 26200 01 00 00 01 05 00 01 10 00 01 15 00 01 20 00 01 25 00 g 01 30 00 01 35 00 01 40 00 01 45 00 01 50 00 01 55 00 Course ABCLO1 Sim 182 Course ABCI_01 Sim 2 Figure 96 The pantograph voltage of course ABCI_01 witout sim 19 and with sim 20 brake current limitation The pantograph voltage of course ABCI_01 is lower during the time of regenerative braking because of the current limitation to 50A Also the brake current limitation of course CBAI_ 01 during braking between 01 22 48 and 1 24 29 Figure 92 affect the pantograph voltage of the other course 6 6 6 Auxiliary power tutorial This tutorial describes the model of auxiliary power The values of the auxiliary power are on one hand specified in OpenTrack and on the other in OpenPowerNet see also the legend of Figure 5 In OpenTrack the
9. Alt Enter E oroutps Figure 49 Start OpenPowerNet by selecting the Project File and using the context menu When using the GUI for the first time you should arrange the views as described in the GUI Help System at OpenPowerNet User Interface User Guide gt Usage gt Start amp Stop OpenPowerNet Then you will have 3 separate console views one for each module For the default configuration we run the simulation using the files as described above Start all modules via the GUI make sure the option to use OpenPowerNet in OpenTrack is set and start the simulation 6 2 3 Analysis 6 2 3 1 Default configuration For a quick overview we will use the delivered Excel Files To get a feeling of the minimum voltage we will use the file EngineAll xls This file is available via menu OpenPowerNet gt Excel tools gt All Engines As the file is quite big be patient until the file is open and then select the simulation and update the data from the database into the Excel File see also Figure 31 You can see the line voltage and pantograph current versus the time in Figure 50 We see the no load voltage is 27 5kV and the minimum line voltage at pantograph position is about 26 4kV at 01 26 00 Furthermore we see the pantograph current does not exceed 250A IFB DD UM_OPN_51_01 02 02 doc Page 63 of 168 DMJ 2010 05 12 OPN 51 1 2 2 pen Powe rN et FJL Institut f r Bahntechnik GmbH Page 64 of 168 User Manual Issue
10. Resistance Equation Air Result Unit Curve Roeckl Formula Trains Acceleration Train related Settings Max Acceleration m s 2 Strahl Sauthoff Formula B cn 3 00 T Max Drawbar Force kN Deceleration Acc Delay s 0 0 Deceleration Function Default From na Fo tent Dec tw D v max 0 60 Delete Jas Braked Weight Percentage BWP 100 Formula C1 C2 2WP cil co ii Resulting Deceleration m s 2 Correct Deceleration on Gradients m s 2 o Min Dec m s 2j Max mss Default D above km h Cancel OK Figure 46 The configuration data of train Train short in OpenTrack with one engine and one trailer As we now have trains we are able to define courses and their timetable We will use four courses two from Station A to Station C and two from Station C to Station A IFB DD UM_OPN_51_01 02 02 doc Page 54 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 55 of 168 User Manual Issue 2010 05 12 Course and timetable details e course ABCI 01 from Station A to Station C via track 2 in Station B with 60s wait time departure is 01 00 00 Train long e course ABCs 02 from Station A to Station C via track 2 in Station B with 60s wait time departure is 02 00 00 Train short e course CBAI 01 from Station C to Station A via track 1 in Station
11. d 2500 e z L 2000 Se a 1500 UNI 1000 500 0 T r T T T r r T d 0 000 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000 90 000 s km Figure 76 The line voltage at pantograph versus chainage As we would expect the minimum of the pantograph line voltage is in the middle between the two substations F f s 300 0 200 0 4 100 0 200 0 300 0 0 10 20 30 40 50 60 70 80 90 s km effort_requested kN effort_achieved_kN Figure 77 The requested and achieved effort of course ABCI_01 for the default configuration The diagram above shows the effect of the traction current limitation very clearly If we compare the travel time of course ABCI_01 in Figure 78 we will see the effect of the lower achieved effort in a 14 minutes and 5 seconds longer travel time of this course in the DC network IFB DD UM_OPN_51_01 02 02 doc Page 85 of 168 DMJ 2010 05 12 OPN 51 1 2 2 3penPowerNet O IPH ww Institut f r Bahntechnik GmbH Page 86 of 168 User Manual Issue 2010 05 12 v f t 250 200 150 v km h 100 01 00 00 01 05 00 01 10 00 01 15 00 01 20 00 01 25 00 01 30 00 01 35 00 2 01 40 00 01 45 00 EN D b CLD Sim 5 ourse ACL Dr S Course 01 50 00 01 55 00 02 00 00 02 05 00 Figur
12. Figure 93 The pantograph voltage of course ABCI_01 for the AC network sim 1 and the regenerative braking simulation sim 19 IFB DD UM_OPN_51_01 02 02 doc Page 99 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 100 of 168 User Manual Issue 2010 05 12 Fi IA 01 00 00 01 05 00 01 10 00 01 15 00 01 25 00 01 40 00 01 45 00 01 50 00 01 55 00 a 01 20 00 01 30 00 9 Cou ABCLI1 SIm 18 Cou Figure 94 The current of both courses during the regenerative braking simulation 6 6 5 Brake current limitation tutorial This tutorial describes the configuration of the brake current limitation and show the effect of the simulations results 6 6 5 1 Configuration 6 6 5 1 1 OpenTrack We will use the OpenTrack model from the AC tutorial without changes 6 6 5 1 2 OpenPowerNet 6 6 5 1 2 1 Engine File We will take the Engine File from the regenerative braking tutorial of chapter 6 6 4 as the basis We need only to add the brake current limit to the engine propulsion see the XML snipped below lt propulsion lt brakeCurrentLimitation gt lt valueTable xValueName Line Voltage xValueUnit V yValueName Current yValueUnit A gt lt valueLine xValue 0 0 gt lt values yValue 50 0 gt lt valueLine gt lt valueTable gt lt brakeCurrentLimitatio
13. Page 36 of 168 User Manual Issue 2010 05 12 4 4 Visualisation All simulation results are stored in a database For visualisation the data can be transferred into a custom Excel table sheet via external data exchange see and follow the instructions below from Figure 23 to Figure 31 H w a gt Start Einfugen Seitenlayout Formeln D ten berpr fen Ansicht Err ig E CA g E amp Verbindungen be ST Eigenschaften Aus Ausdem Aus Vorhandene Alle i Access Web Text Verbindungen aktualisieren V rkn pfungen bearbeiten Externe I Von SQL Server Erstellt eine Verbindung mit einer SQL Server Tabelle Importieren Sie Daten in Excel als Tabelle oder PivotTable Bericht Von Analysis Services Erstellt eine Verbindung mit einem SQL Server Analysis Services Cube Importieren Sie Daten in Excel als Tabelle oder PivotTable Bericht E E Vom XML Datenimport E gt N N gt XML Datei in Excel ffnen oder Excel zuordnen Vom Datenverbindungs Assistenten Importiert Daten f r ein nicht aufgef hrtes Format mithilfe des Datenverbindungs Assistenten und OLEDB HOOSON FoxPro Dateien Word his visual FoxPro Datenbank Visual FoxPro Tabellen xtreme Musterdatenbank 2005 Figure 24 Select pscresults as external data source IFB DD UM_OPN_51_01 02 02 doc Page 36 of 168 DMJ 2010 05 12 IE Institut f r Bahntechnik GmbH OPN 51 1 2 2 pen PowerNet
14. circle IFB DD UM_OPN_51_01 02 02 doc Page 165 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 166 of 168 User Manual Issue 2010 05 12 Second the radius r of the circular cross section needs to be multiplied with factor a to get the equivalent radius r ig 54r conductortype ln solid cylindrical 0 779 Al and Cu cables 7 cores 10 50mm 0 726 Al and Cu cables 19 cores 70 120mm 0 758 Al and Cu cables 37 cores 150 185mm 0 768 Al and Cu cables 61 cores 240 500mm 0 772 Al and Cu cables 91 cores 625 1000mm 0 774 1 layer Al Fe cables 16 2 5 300 50mm 0 55 1 layer Al Fe cables 44 32 120 70mm 0 7 2 layers Al Fe cables 26 cores 120 20 300 50mm 0 809 2 layers Al Fe cables 30 cores 125 30 210 50mm 0 826 3 layers Al Fe cables 54 cores 380 50 680 85mm 0 810 Table 17 Factors to calculate equivalent radius from circular cross section radius Source H Koettnitz H Pundt Berechnung Elektrischer Energieversorgungsnetze Band VEB Deutscher Verlag f r Grundstoffindustrie 1968 Page 230 7 5 How to draw a constant current You need to define a course in OpenTrack and use it with an itinerary for the tracks you want to check In the OpenPowerNet Project File you need to set the attribute constantCurrent_A to the constant current value you want see the XML snippet below
15. gt f v HE ae Pra F jni none f v Ka Auxiliary Traction Eddy Current Brake Power Power use true false use true false Pu Pas engine Pi trailer P UL Ke Vmin Pais NP ga and or Reina and or Fira and or WEN aux_trailer T const Legend configuration options of Project File configuration data of Engine File configuration data from OpenTrack Figure 5 Efficiency table engine model with power flow and configuration options IFB DD UM_OPN_51_01 02 02 doc Page 14 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 15 of 168 User Manual Issue 2010 05 12 Each component of the single component engine model is modelled with an accurate efficiency value with dependencies If one or more components do not exist in a specific propulsion structure the efficiency of these components can be set to 100 respectively the model type in the Project File can be set to none In this case the component does not have any effect while calculating the total efficiency In this way engines can be modelled deviating from the model structure of the ATM Braking energy is recovered if the demand of the auxiliary and eddy current brake power consumption is exceeded While braking OpenPowerNet only calculates the braking effort achieved through energy recovery braking of the propulsion system and eddy current brake see Figure 6 If the calculated braking effort of the pro
16. lt NegativeFeederBB gt lt Autotransformer gt lt Busbars gt lt OCSBB bbName 0CS_BB gt lt Connector name ATS_0_OCS_Feeder z_real_Ohm 0 001 z_imag Ohm 0 gt lt Position condName CW lineID A trackID 1 0 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails_BB gt lt Connector name ATS_0_Rails_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName RR lineID A trackID 1 km 0 gt lt Connector gt lt RailsBB gt lt NegativeFeederBB bbName NF_BB gt lt Connector name ATS_0_NF_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName NF lineID A trackID 1 0 gt lt Connector gt lt NegativeFeederBB gt lt Busbars gt lt Substation gt The TSS_80 shall be replaced by the ATS_80 with same parameter as ATS_0 but connected o the line at km 80 000 The TSS_5 get now two transformers 6 busbars and 3 busbar connectors see the XML snipped below lt Substation name TSS_5 gt lt ThreeWindingTransformer name T1 nomPower_MVA 10 nomPrimaryVoltage_kV 115 nomSecondaryVoltage_kV 55 noLoadLosses_kW 6 5 loadLosses_kW 230 relativeShortCircuitVoltage_percent 10 7 noLoadCurrent_A 0 06 gt lt OCSBB bbName 0CS_BB 1 zs real _Ohm 0 001 z_imag_Ohm 0 gt lt Switch name TSS_5_T1_OCS defaultState close gt lt OCSBB gt lt RailsBB bbName Rails_BB_1 z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Switch name TSS_5_T1_Rails defaultState c
17. lt xml version 1 0 encoding UTF 8 gt lt railml xmlns xsi http www w3 org 2001 XMLSchema instance xsi noNamespaceSchemaLocation D Usr OpenPowerNet 1 2 2 plugins de bahntechnik dd opn bin_x x x_JJJJMMDDhhmm schemas rollingstock xsd gt lt rollingstock rollingstockID version gt lt railml gt Now we need to configure the engine according to our needs and corresponding to OpenTrack see chapter 6 2 1 1 In addition to OpenTrack we need to configure the tractive and braking efficiency as well as the engine auxiliary power lt railml xmlns xsi http www w3 org 2001 XMLSchema instance xsi noNamespaceSchemaLocation D Usr OpenPowerNet 1 2 2 plugins de bahntechnik dd opn bin_x x x_JJJJMMDDhhmm schemas rollingstock xsd gt lt rollingstock rollingstockID version 110 gt lt vehicles gt lt vehicle length 25 bruttoWeight 75 vehicleID Enginel speed 250 gt lt engine gt lt propulsion supply AC 25kV 50Hz transmission electric engine electric power 5560 maxTractEffort 250 totalTractEfficiency 90 totalBrakeEfficiency 90 gt lt auxSupply typeStr all constPower 100 gt lt propulsion gt lt engine gt lt vehicle gt lt vehicles gt lt rollingstock gt lt railml gt As we have a very simple model of the engine the Engine File is very short 6 2 1 2 2 Project File The Project File of our example is a bit more complex as the Engine File As for any Project File we will
18. lt Propulsion constantCurrent_A 2000 This attribute defines the constant current for the engine to 2000A You can change the value to whatever reasonable value you need The following attributes will be ignored once you set this attribute brakeCurrentLimitation I f U engine electric fourQuadrantChopperPhi none regenerativeBrake maxPower maxEffort supply DC 600V tractiveCurrentLimitation I f U tractiveEffort maxPower maxTractEffort useAuxPower true gt lt EfficiencyTable gt lt Propulsion gt 7 6 How to simulate short circuits You need to define a course in OpenTrack and use it with an itinerary for the tracks you want to check In the OpenPowerNet Project File you need to set the attribute shortCircuitEngine to true see the XML snippet below lt Propulsion shortCircuitEngine true This attribute defines the engine as a short circuit between the contact wire and the rail The following attributes will be ignored once you set this attribute brakeCurrentLimitation I f U IFB DD UM_OPN_51_01 02 02 doc Page 166 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 167 of 168 User Manual Issue 2010 05 12 engine electric fourQuadrantChopperPhi none regenerativeBrake maxPower maxEffort supply DC 600V tractiveCurrentLimitation I f U tractiveEffort maxPower maxTractEffort useAuxPower true gt lt EfficiencyTable gt
19. 1 km 0 gt lt ConductorTo condName RL lineID A trackID 2 km 0 gt lt Connector gt lt Connector name RR track 1 km 0 000 to track 2 km 0 000 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 1 km 0 gt lt ConductorTo condName RR lineID A trackID 2 km 0 gt lt Connector gt lt Connector name MW track 1 km 0 650 to track 2 km 0 450 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 1 km 0 650 gt lt ConductorTo condName MW lineID A trackID 2 km 0 450 gt lt Connector gt lt Connector name CW track 1 km 0 650 to track 2 km 0 450 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName CW lineID A trackID 1 km 0 650 gt lt ConductorTo condName CW lineID A trackID 2 km 0 450 gt lt Connector gt lt Connector name RL track 1 km 0 650 to track 2 km 0 450 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 1 km 0 650 gt lt ConductorTo condName RL lineID A trackID 2 km 0 450 gt lt Connector gt lt Connector name RR track 1 km 0 650 to track 2 km 0 450 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 1 km 0 650 gt lt ConductorTo condName RR lineID A trackID 2 km 0 450 gt lt Connector gt lt Connector name MW track 1 2 km 9 750 zReal_Ohm 0 000010 zIm
20. 2 gt lt ConductorTo condName CW trackID 2 gt lt Connector gt IFB DD UM_OPN_51_01 02 02 doc Page 140 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 141 of 168 User Manual Issue 2010 05 12 lt ConnectorSlice gt The dropper configuration for track 3 lt ConnectorSlice name dropper track 3 firstPos_km 9 650 lastPos_km 20 000 maxDistance_km 0 25 gt lt Connector zReal_Ohm 0 000073 zImag_Ohm 0 gt lt ConductorFrom condName MW trackID 3 gt lt ConductorTo condName CW trackID 3 gt lt Connector gt lt ConnectorSlice gt The rail connector configuration for track 1 lt ConnectorSlice name rail connector track 1 firstPos_km 0 lastPos_km 30 4 maxDistance_km 0 25 gt lt Connector zReal_Ohm 0 00001 zImag_Ohm 0 gt lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName RR trackID 1 gt lt Connector gt lt ConnectorSlice gt The rail connector configuration for track 2 lt ConnectorSlice name rail connector track 2 firstPos_km 9 750 lastPos_km 20 000 maxDistance_km 0 25 gt lt Connector zReal_Ohm 0 00001 zImag_Ohm 0 gt lt ConductorFrom condName RL trackID 2 gt lt ConductorTo condName RR trackID 2 gt lt Connector gt lt ConnectorSlice gt The rail connector configuration for track 3 lt ConnectorSlice name rail connector track 3 firstPos_
21. 2500 2000 ITA 1500 1000 500 01 00 00 01 05 00 4 01 10 00 01 15 00 4 trafo T1 to busbar OCS_BB IA 01 20 00 4 01 25 00 4 01 30 00 Figure 60 The short circuit current of substation TSS_5 at km 5 000 versus time The red circle marks the Station B with siding From the diagram above we can see the minimum short circuit current between contact wire and rails of substation TSS_5 is about 670A compared to a maximum engine current of 250A from the default scenario see Figure 50 To check the minimum short circuit current we do the same simulation as before but with both substations Therefore we need to set the default state for the switches TSS_80_T1_OCS and TSS_80_T1_Rails to close and run the simulation again The minimum current is about 2300A see Figure 61 4500 7 1 f t 4000 3500 3000 4 2500 IA 2000 1500 1000 500 01 00 00 01 05 00 01 10 00 4 01 15 00 4 01 20 00 4 00 4 rel 01 2 powersupply T1 to busbar OCS_BB sim 3 i powersupply T1 to busbar OCS_BB sim3 Total A Figure 61 The short circuit current with both substations IFB DD UM_OPN_51_01 02 02 doc Page 70 of 168 01 30 00 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 71 of 168 Use
22. Connector gt lt ConnectorSlice gt lt ConnectorSlice name rail connector track 1 firstPos_km 0 lastPos_km 9 750 maxDistance_km 0 25 gt lt Connector zReal_Ohm 0 00001 zImag_Ohm 0 gt lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName RR trackID 1 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name rail connector track 2 firstPos_km 9 750 lastPos_km 10 250 maxDistance_km 0 25 gt lt Connector zReal_Ohm 0 00001 zImag_Ohm 0 gt lt ConductorFrom condName RL trackID 2 gt lt ConductorTo condName RR trackID 2 gt lt Connector gt lt ConnectorSlice gt line feeder top contact wire lt ConnectorSlice name line feeder to CW firstPos_km 0 lastPos_km 9 750 maxDistance_km 0 25 gt lt Connector zReal_Ohm 0 000594 zImag_Ohm 0 gt lt ConductorFrom condName LF trackID 1 gt lt ConductorTo condName CW trackID 1 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlices gt lt Leakages gt The leakages for both tracks lt Leakage firstPos_km 0 lastPos_km 9 750 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 0 lastPos_km 9 750 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RR trackID 1 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPo
23. Database name psc_analysis OK Figure 35 The dialog to choose the default connection from the list of available ODBC connections 4 5 2 Automatic Analysis The automatic analysis window provides the selection of the simulation to analyse Once a simulation is selected the selection has to be locked with the provided button Next is to choose the time window for the analysis The selected time window includes the start but not the end time Then change the designation or use the one provided by default The designation is used in the diagram titles of the generated Excel files IFB DD UM_OPN_51_01 02 02 doc Page 41 of 168 DMJ 2010 05 12 O Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 42 of 168 User Manual Issue 2010 05 12 Automatic Analysis Select Simulation Database name Simulation Unlock r Configure Analysis Time Start 00 59 59 v Time End 01 31 34 Designation Tutorial AC Network constant current 10004 Eas nothing selected Select _ eee nothing selected seeds RS nothing selected Vehicles nothing selected Erare nothing selected Seet Output path C Dokumente und EinstellungenjacobiOpenPowerNetiTutorial AC Network_090921_090100 Start Analysis Figure 36 The automatic analysis window to select the simulation configure and start the analysis Next is to select the diagrams to be generated These diagra
24. UM_OPN_51_01 02 02 doc Page 94 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 95 of 168 User Manual Issue 2010 05 12 Tractive Effort F kN v km h maxPower maxTractEffort F f v Figure 89 Possible characteristics of both available tractive effort models 6 6 2 1 Configuration 6 6 2 1 1 OpenTrack As the tractive effort characteristic curve in OpenTrack is always above the characteristic we defined in OpenPowerNet we don t need to change OpenTrack The used tractive effort will be limited to the value defined in OpenPowerNet Therefore we will use tne same OpenTrack data as for the AC tutorial described in chapter 6 2 1 1 6 6 2 1 2 OpenPowerNet 6 6 2 1 2 1 Engine File As the basis we take the Engine File from the AC tutorial and add the tractive effort versus speed table The XML snipped below has the detailed values lt tractiveEffort gt lt valueTable xValueName Speed xValueUnit km h yValueName Tractive Effort yValueUnit kN gt lt valueLine xValue 0 gt lt values yValue 250 gt lt valueLine gt lt valueLine xValue 10 gt lt values yValue 247 gt lt valueLine gt lt valueLine xValue 20 gt lt values yValue 244 gt lt valueLine gt lt valueLine xValue 30 gt lt values yValue 241 gt lt valueLine gt lt valueLine xValue 40 gt lt values yValue 238 gt l
25. W Adhesion bad so normal 125 good 150 Loss Function Edit Selected Point v km h Z KN P MW hyperb Visual Rectangle Speed max km h 270 Scale Tractive Effort max ML 270 Min WO D Autoseale Del Engine New Engine Set Data Save Depot New Depot Open Depot Figure 121 The engine configuration in OpenTrack with two propulsion systems 6 7 3 1 2 OpenPowerNet In OpenPowerNet we need also both propulsion systems in order to run the same engine on both propulsion systems 6 7 3 1 2 1 Engine File The basis shall be the Engine File from the AC tutorial in chapter 6 2 To this engine file we add the DC propulsion system with the properties listed in Table 12 see XML snippet below lt propulsion supply DC 3000V transmission electric engine electric power 3890 maxTractEffort 200 totalTractEfficiency 90 totalBrakeEfficiency 90 gt lt auxSupply typeStr all constPower 100 gt lt propulsion gt 6 7 3 1 2 2 Project File As the basis we will use the Project File from the AC tutorial in chapter 6 2 First we add the configuration of the DC propulsion system to the engine lt Propulsion engine electric supply DC 3000V brakeCurrentLimitation none tractiveCurrentLimitation none useAuxPower true fourQuadrantChopperPhi none regenerativeBrake none tractiveEffort maxPower maxTractEffort gt lt MeanEfficiency gt lt Propulsion gt It is the
26. gt lt Connector zReal_Ohm 0 000073 zImag_Ohm 0 gt lt ConductorFrom condName MW trackID 1 gt lt ConductorTo condName CW trackID 1 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name dropper track 2 station A firstPos_km 0 lastPos_km 0 450 maxDistance_km 0 05 gt lt Connector zReal_Ohm 0 000073 zImag_Ohm 0 gt lt ConductorFrom condName MW trackID 2 gt lt ConductorTo condName CW trackID 2 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name dropper track 2 station B firstPos_km 9 800 lastPos_km 10 200 maxDistance_km 0 1 gt lt Connector zReal_Ohm 0 000073 zImag_Ohm 0 gt lt ConductorFrom condName MW trackID 2 gt lt ConductorTo condName CW trackID 2 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name rail connector track 1 station A firstPos_km 0 lastPos_km 1 maxDistance_km 0 05 gt lt Connector zReal_Ohm 0 00001 zImag_Ohm 0 gt lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName RR trackID 1 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name rail connector track 1 outside station A firstPos_km 1 2 lastPos_km 25 4 maxDistance_km 0 2 gt lt Connector zReal_Ohm 0 00001 zImag_Ohm 0 gt lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName RR trackID 1 gt lt Connector gt lt ConnectorSlice gt lt Connec
27. lt StartPosition condName TSS_5_NF_1 trackID 1 km 4 7 gt lt ToProperty toPos_km 5 equivalentRadius_mm 8 4 r20_Ohm_km 0 1188 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 4 2 wv m 0 gt IFB DD UM_OPN_51_01 02 02 doc Page 126 of 168 DMJ 2010 05 12 OPN 51 1 2 2 pen PowerNet 7 Ze MLA Institut f r Bahntechnik GmbH Page 127 of 168 User Manual Issue 2010 05 12 lt Conductor gt lt Conductor type NegativeFeeder gt lt StartPosition condName TSS_5_NF_r trackID 1 km 5 gt lt ToProperty toPos_km 5 3 equivalentRadius_mm 8 4 r20_Ohm_km 0 1188 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 4 2 lt Conductor gt y_m 0 gt The changed and added conductors need to be connected to the line Therfore we need to change and add new connectors lt Connector name zReal_Ohm 0 001 zImag_Ohm 0 gt lt ConductorFrom condName TSS_5_F_1 lineID A trackID 1 km 4 7 lt ConductorTo condName CW lineID A trackID 1 km 4 7 gt lt Connector gt lt Connector name zReal_Ohm 0 001 zImag_Ohm 0 gt lt ConductorFrom condName TSS_5_F_r lineID A trackID 1 km 5 3 lt ConductorTo condName CW lineID A trackID 1 km 5 3 gt lt Connector gt lt Connector name zReal_Ohm 0 001 zImag_Ohm 0 gt lt ConductorFrom condName TSS_5_RF_1 lineID A trackID 1 km 4 7 lt ConductorTo condName RR line
28. sim 27 eddy current brake IFB DD UM_OPN_51_01 02 02 doc Page 109 of 168 DMJ 2010 05 12 OPN 51 1 2 2 3penPowerNet 7 Ze MLA Institut f r Bahntechnik GmbH Page 110 of 168 User Manual Issue 2010 05 12 Because of the eddy current brake we see the behaviour of the course ABCs_02 changed from regenerative to consuming Between 60 km h and 170 km h the difference is the maximum power of the eddy current brake of 300 kW 6 6 8 Mean efficiency model tutorial The mean efficiency model is used for all previous tutorials Read the AC tutorial in chapter 6 2 f r details 6 6 9 Efficiency table model tutorial In this tutorial we use the efficiency table model of the engine to describe the efficiency versus speed The engine shall an engine with recovery braking and the efficiencies for driving and braking shall be the same 6 6 9 1 Configuration 6 6 9 1 1 OpenTrack We will use the OpenTrack model from the AC tutorial without changes Select only the course ABCI_01 and CBAI_01 with short trains 6 6 9 1 2 OpenPowerNet We will use the Engine and Project File from the AC tutorial as the basis 6 6 9 1 2 1 Engine File We need to add to the Engine File the values for recovery braking and the efficiency values for traction and braki lt vehicle length 25 bruttoWeight 75 vehicleID Enginel speed 250 gt lt engine gt lt propulsion ng supply AC 25kV 50Hz transmiss
29. temperatureCoefficient 0 004 x_m 9 25 y_m 0 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 10 75 y_m 0 gt lt Conductor gt lt Conductor type Earth gt The earth is modelled as a virtual conductor far away from the tracks along the whole line lt StartPosition condName E trackID 1 km 0 gt lt ToProperty toPos_km 85 4 equivalentRadius_mm 450000 r20_Ohm_km 0 0393 temperature_GradCelsius 20 temperatureCoefficient 0 x_m 0 y_m 450 0 gt lt Conductor gt lt Conductors gt Now we define all the connectors of the slices lt ConnectorSlices gt lt ConnectorSlice name dropper track 1 firstPos_km 0 lastPos_km 85 4 maxDistance_km 0 25 gt This slice defines the connectors modelling the electrical connection between the messenger and contact wire for track 1 every 250m along the whole track lt Connector zReal_Ohm 0 000073 zImag_Ohm 0 gt IFB DD UM_OPN_51_01 02 02 doc Page 58 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 59 of 168 User Manual Issue 2010 05 12 lt ConductorFrom condName MW trackID 1 gt lt ConductorTo condName CW trackID 1 gt lt Connector gt lt ConnectorSlice gt lt
30. toPos_km 1 000 temperatureCoefficient 0 00381 temperature_GradCelsius 40 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition km 0 trackID up condName R gt lt ToProperty x_m 0 wv m 0 r20_Ohm_km 0 0164 equivalentRadius_mm 38 52 toPos_km 1 000 temperatureCoefficient 0 0047 temperature_GradCelsius 40 gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition km 1 100 trackID up condName CW gt lt ToProperty x_m 5 y m 5 3 r20 Ohm_km 0 2138 equivalentRadius_mm 4 4 toPos_km 2 100 temperatureCoefficient 0 00381 temperature _GradCelsius 40 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition km 1 100 trackID up condName R gt lt ToProperty x_m 5 y m 0 r20 Ohm_km 0 0164 equivalentRadius_mm 38 52 toPos_km 2 100 temperatureCoefficient 0 0047 temperature_GradCelsius 40 gt lt Conductor gt lt Conductors gt lt Line gt lt Connectors gt lt Connector zReal_Ohm 0 0001 zImag_Ohm 0 0 gt lt ConductorFrom km 1 000 trackID up condName CW lineID A gt lt ConductorTo km 1 100 trackID up condName CW lineID A gt lt Connector gt lt Connector zReal_Ohm 0 0001 zImag_Ohm 0 0 gt lt ConductorFrom km 1 000 trackID up condName R lineID A gt lt ConductorTo km 1 100 trackID up condName R lineID A gt lt Connector gt lt Connectors gt IFB DD UM_OPN_51_01 02 02 doc Pa
31. transmission electric engine electric power 5560 maxTractEffort 250 totalTractEfficiency 90 totalBrakeEfficiency 90 gt lt auxSupply typeStr all constPower 100 gt lt tractiveCurrentLimitation gt Below is the table of the tractive current limitation The table defines points and the y value will be calculated by a linear interpolation between the points For x values exceeding the highest specified x value the y value for the maximum x value is used during simulation The same behaviour applies to x values lower than specified lt valueTable xValueName line voltage xValueUnit V yValueName current yValueUnit A gt lt valueLine xValue 0 gt The 0V OA point lt values yValue 0 gt lt valueLine gt lt valueLine xValue 2700 gt The 2700V 2000A point lt values yValue 2000 gt lt valueLine gt lt valueTable gt lt tractiveCurrentLimitation gt lt propulsion gt 6 4 1 2 2 Project File As the base of this Project File we will use the Project File of the AC network and adapt it First we adapt the engine model by changing the supply and useing the tractive current limitation lt Propulsion engine electric supply DC 3000V Change the supply system to DC 3000V brakeCurrentLimitation none tractiveCurrentLimitation I f U Change this value from none to I f U useAuxPower true fourQuadrantChopperPhi none regenerativeBrake none tractiveEffort maxPower maxTractEffort
32. yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RR trackID 1 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 9 750 lastPos_km 10 250 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RL trackID 2 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 9 750 lastPos_km 10 250 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RR trackID 2 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakages gt lt Line gt lt Lines gt To model the electrical connection between the two tracks we have two ways to do so First we could define a slice or second we could define connectors between lines or the same line In our example we will use the second way The electrical model will be the same These are just two different ways to define the same connectors The following XML snippet defines the electrical connection between track 1 and 2 lt Connectors recordCurrent falsetsub recordVoltage false tsub gt As we don t want to record voltages for each node and current for each connector we set both attributes to false tsub The 4 connectors for messenger wire contact wire and both rails at the BEGINNING of track 1 follow lt Connector name MW track 1 2 km 9 750 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 1 k
33. 0 gt lt Position condName TSS_5_F_r lineID A trackID 1 km 5 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails_BB_1 gt lt Connector name TSS_4 7_Rails Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName TSS_5_RF_1 lineID A trackID 1 km 5 gt lt Connector gt lt RailsBB gt lt RailsBB bbName Rails_BB_2 gt lt Connector name TSS_5 3_Rails_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName TSS_5_RF_r lineID A trackID 1 km 5 gt lt Connector gt lt RailsBB gt lt NegativeFeederBB bbName NF_BB_1 gt lt Connector name TSS_4 7_NF_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName TSS_5_NF_1 lineID A trackID 1 km 5 gt lt Connector gt lt NegativeFeederBB gt lt NegativeFeederBB bbName NF_BB_2 gt lt Connector name TSS_5 3_NF_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName TSS_5_NF_r lineID A trackID 1 km 5 gt lt Connector gt lt NegativeFeederBB gt lt Busbars gt lt OCSBBConnector z_imag_Ohm 0 0 z_real_Ohm 0 001 gt lt BusbarFrom bbName OCS_BB_1 gt lt BusbarTo bbName OCS_BB_2 gt lt Switch defaultState open name TSS_5_OCS_BB gt lt OCSBBConnector gt lt RailsBBConnector z_imag Ohm 0 0 zs real Ohm 0 001 gt lt BusbarFrom bbName Rails_ BB 1 gt lt BusbarTo bbName Rails_ BB 2 gt lt Switch defaultState open name TSS_5 Rails BB gt l
34. 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 9 25 y m 0 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 2 km 0 2 gt lt ToProperty toPos_km 0 650 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 10 75 y m 0 gt lt Conductor gt The conductors for track 2 in station B lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 3 45 r20_Ohm_km 0 2311 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 10 y m 6 9 gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 3 45 r20_Ohm_km 0 1852 temperature_GradCelsius 20 temperatureCoefficient 0 00385 x_m 10 y_m 5 3 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 9 25 wv m 0 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 temperature_GradCelsius 20
35. 0 1 yImag_S_km 0 gt lt ConductorFrom condName RR trackID 3 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakages gt lt Line gt Configuration of line B lt Line name B maxSliceDistance_km 0 5 gt lt Conductors gt The conductor configuration for track 1 IFB DD UM_OPN_51_01 02 02 doc Page 141 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 142 of 168 User Manual Issue 2010 05 12 lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 1 km 20 gt lt ToProperty toPos_km 30 4 equivalentRadius_mm 3 45 r20_Ohm km 0 2311 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 0 y_m 6 9 gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 1 km 20 gt lt ToProperty toPos_km 30 4 equivalentRadius_mm 3 45 r20_Ohm_km 0 1852 temperature_GradCelsius 20 temperatureCoefficient 0 00385 x_m 0 y_m 5 3 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 1 km 20 gt lt ToProperty toPos_km 30 4 equivalentRadius_mm 38 52 r20_ Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 0 75 y m 0 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 1 km 20 gt lt ToProperty toPos_km 30 4 e
36. 000 The negative feeder of the 2AC network will be used as line feeder and connected with the contact wire of track 1 every 250m We will use the same engine with 5 56MW maximum tractive power as before The maximum power for the long train with 30kW auxiliary power per trailer and 100kW auxiliary power of the engine is 6 08MW At nominal voltage the current will be approximately 2000A We can expect that such a high current will cause a high voltage drop Therefore we will use the tractive current limitation to stabilise the pantograph voltage The current limitation shall be 0A at OV then linear to 2000A at 2 7kV 90 of nominal voltage and then constant 2000A 6 4 1 Configuration 6 4 1 1 OpenTrack We will use the same OpenTrack data as for the AC tutorial described in chapter 6 2 1 1 6 4 1 2 OpenPowerNet 6 4 1 2 1 Engine File We need to change the power supply system and add the current limitation IFB DD UM_OPN_51_01 02 02 doc Page 81 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 82 of 168 User Manual Issue 2010 05 12 As the power supply system specified for the infrastructure in OpenTrack is used to choose the correct tractive effort curve of the engine and we do not want to change this curve we do not need to change anything in OpenTrack but the supply system of the engine propulsion system in OpenPowerNet lt propulsion supply DC 3000V
37. 02 doc Page 167 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et sek Institut f r Bahntechnik GmbH Page 168 of 168 User Manual Issue 2010 05 12 Preferences type Filter text OpenPowerNet amp General Help Install Update KR Diele Yale Working directory C Dokumente und Einstelungen jacob OpenPowerNiet General OpenPowerNet properties Clear console after how many simulation time steps 7200 Analysis APserver ATM Database Debug OpenTr ck PSC PSC Viewer PSC Viewer Diagram Appearance Connections Default Layout Pathmaps Printing Rulers And Grid E Run Debug E Team Yalidation XML Restore Defaults Apply J Figure 140 The GUI preferences to specify the working directory e Analysis Tool Within the Analysis Tool the working directory need to be specified via File gt Setup 7 11 Any other questions For any other question please contact the OpenPowerNet support team via support openpowernet de END OF DOCUMENT IFB DD UM_OPN_51_01 02 02 doc Page 168 of 168 DMJ 2010 05 12
38. 05 00 the other shall feed the left and the right section IFB DD UM_OPN_51_01 02 02 doc Page 116 of 168 DMJ 2010 05 12 CZE Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 117 of 168 User Manual Issue 2010 05 12 Transformer Substation Three Winding Transtormer Three Winding Transformer un SW eos KT NEE E bus bar connectors with switches urban lt s L s ative feeder L 4 a 5 a a F a g x 9 H L H H j u T jii x H T d T negativeFeeder L M ocs rails Figure 109 A substation with two transformers busbars and busbar connection Figure 110 The wrong configuration of the feeder from substation to the line The sum of the conductor current will not be zero because connectors are parallel to conductors and allow the current to bypass the conductor See the constraints listed in chapter 4 2 1 IFB DD UM_OPN_51_01 02 02 doc Page 117 of 168 DMJ 2010 05 12 OPN 51 1 2 2 3penPowerNet 7 Ze Institut f r Bahntechnik GmbH Page 118 of 168 User Manual Issue 2010 05 12 T1 T2 a al HI a E E E L_ Figure 111 The correct configuration of the substation with all infeeds at the same slice RF To see the effect of the wrong and the correct configuration w
39. 06_Network_Model 05_Loops OPNData Engine File xml simulationStart_s 3600 gt lt ATM gt lt Vehicles gt lt Vehicle eddyCurrentBrake false engineID Enginel gt lt Propulsion engine electric supply AC 25kV 50Hz brakeCurrentLimitation none tractiveCurrentLimitation none useAuxPower true fourQuadrantChopperPhi none regenerativeBrake maxPower maxEffort tractiveEffort maxPower maxTractEffort gt lt MeanEfficiency gt lt Propulsion gt lt Vehicle gt lt Vehicles gt lt Options tolerance_A 0 1 maxIterations 1000 record2DB true gt lt ATM gt lt PSC gt lt Network name A C use true voltage_kV 25 frequency_Hz 50 recordVoltage true recordCurrent true gt IFB DD UM_OPN_51_01 02 02 doc Page 156 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 157 of 168 User Manual Issue 2010 05 12 lt Lines gt lt Line name A maxSliceDistance_km 0 5 gt The configuration of the conductors lt Conductors gt The conductors for track 1 lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 1 km 0 2 gt lt ToProperty toPos_km 25 4 equivalentRadius_mm 3 45 r20_Ohm_km 0 2311 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 0 y_m 6 9 gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 1 km 0 2 gt lt ToProperty toP
40. 1 Power Factor tutorial In the AC tutorial with failure scenario we experienced a significant voltage drop down to 24170 V for course CBAI_01 Now we will configure a capacitive behaviour of the engine in case of low voltage Figure 85 describes the detailed behaviour and Figure 86 the values of the power factor for the engine model Legend The behaviour of the engine wether capacitive C or inductor L The value of the power factor in the engine model The resulting current of the engine at the pantograph while driving For braking the currents are turned by 180 Figure 85 The engine power factor association between engine behaviour and model parameter Phi o 24000 25000 30000 ulv Figure 86 Power factor versus line voltage IFB DD UM_OPN_51_01 02 02 doc Page 92 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 93 of 168 User Manual Issue 2010 05 12 6 6 1 1 Configuration 6 6 1 1 1 OpenTrack We will use the same OpenTrack data as for the AC tutorial described in chapter 6 2 1 1 6 6 1 1 2 OpenPowerNet 6 6 1 1 2 1 Engine File As the basis for the Engine File we use the one from the AC tutorial As we want to have a power factor depending on the line voltage we need to specify the detailed curve see the XML snipped below lt fourQuadrantChopper typeStr FOQC 1 gt lt phi gt lt valueTabl
41. 167 7 14 Any other QUST NS rer 168 IFB DD UM_OPN_51_01 02 02 doc Page 5 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 6 of 168 User Manual Issue 2010 05 12 1 Introduction 1 1 Overview The purpose of this document is to describe the usage of the OpenPowerNet software including the modules ATM and PSC It explains how to configure run and analyse simulations This document corresponds to OpenPowerNet release 1 2 2 Some of the used package names are brand names registered by companies other than IFB Please refer to the license descriptions coming with that software packages 1 2 Versions OpenPowerNet requires the following versions of associated applications Additionally the OpenPowerNet software and documentation have their own version Analysis Tool 0 1 2 1 Installation Instruction 1 2 2 MySQL 5 0 67 MySQL ODBC driver 5 1 5 amp 3 51 27 OpenPowerNet 1 2 2 OpenTrack 1 5 5 2009 11 28 OPN Database 12 RailML Rolling Stock Schema 1 03 0PN 1 1 3 Acronyms and abbreviations The following abbreviations are used within this document ATM Advanced Train Model CD Compact Disk DSN Data Source Name GUI Graphical User Interface HTML Hyper Text Markup Language OCS Overhead Catenary System ODBC Open Database Connection OPN OpenPowerNet PSC Power Supply Calculation RailML Rail
42. 2 Nam nd Ss OV UNS nern 23 4 2 3 Project specific configuration EEN 24 4 2 3 1 Engine File engine 25 4232 TypDef File seen ee 27 2233 Project File 2 524 seien 27 4 2 3 4 SWIHCHAPIC na 35 4 3 SINUAlON E 35 4 4 EE 36 4 5 a ee te ose te ee ea 40 4 5 1 File S Setup eiserne een ee 41 4 5 2 Automatic Analysis ne ee 41 4 5 2 1 DIN Sea Eee ie 42 2322 ee 44 E WEE e ea 45 4 5 3 Magnete a 2 lesen een ee see 45 4 5 4 ee EE 46 IFB DD UM_OPN_51_01 02 02 doc Page 2 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pe n P owe rN et WS Page 3 of 168 User Manual Issue 2010 05 12 4 6 Database tasks nen a tna eee ae ee a 47 5 Required technical data for the simulation 000000000aannnneneeenneeeneeeeeeea 47 6 Ton Alessi 50 6 1 EE 50 6 2 AG Network t lotlial ae 52 6 2 1 Configuration nee ee 52 6 211 ee 52 6 2 1 2 ee ee rare 55 6 2 2 SEENEN ee uses 62 6 2 3 Analysten sun ee 63 6 2 3 1 Default Configuration u nennen 63 Bere SHORT ee ee een ee 68 6 2 3 3 e EL d 71 6 2 3 4 Failure scenario eniennnankaneeenenenn 72 6 3 2AC Network total 74 6 3 1 EINEN 74 GE D S WE 8 RTE 74 6 3 1 2 Openbowerhet AEN 74 6 3 2 E elle EE 76 6 3 3 EE 76 6 3 3 1 Default EDU 76 6 3 3 2 Short e LC nur 79 06 23 33 VCONSIanEGUNENE EE 80 6 3 3 4 Failure scenario E 80 6 4 DC Network e EE 81 6 4 1 Configuration nennen ee 81 E EN WE ee a TE 81 6 4 1 2 Openbowerhet AEN 81 6 4 2 Simulation er eegen 84 6 4 3 PRN
43. 7 Ze wz gt Institut f r Bahntechnik GmbH OpenPowerNet User Manual Institut f r Bahntechnik GmbH Branch Office Dresden Document No OPN 51 1 2 2 I opn 10_documents 20_program_documentation 20_user_manual um_opn_51_01 02 02 doc Author Review Release Martin Jacob Harald Scheiner Dr J rg von Lingen Revision Record Change Reason 2006 04 10 Created 2008 11 24 Reworked 2009 06 26 Update to OpenPowerNet version 1 1 0 2009 09 22 Adding tutorials and update to version 1 2 0 2010 01 07 Adding chapters 4 2 2 7 10 2010 05 12 Update versions IFB DD UM_OPN_51_01 02 02 doc Page 1 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pe n P owe rN et WS Page 2 of 168 User Manual Issue 2010 05 12 Table of Contents 1 att ee Le le E 6 1 1 e 6 1 2 VEISIONE rear ee Reese 6 1 3 Acronyms and abbreviations ccecceeeececceeeeeeeeeeeeeeeeeeeceeeeeeeeeeeeeeeneenaaees 6 1 4 How to read this Document EEN 7 2 Simulation Philosophy cca cntiaccererescunrtianuenateceeertiansiarsiasmmctincuastiasaantiancamnds 8 3 ADDICAnION Ed EI 9 3 1 EE 11 3 2 Advanced Train Model 11 3 3 Power Supply Calculanon ENEE 17 3 4 Graphical En 20 3 5 Analysis E 20 3 6 Database EE 20 3 7 Working directory E 21 4 Glen E ne Le DE 21 4 1 Configuration of Openfrack n 21 4 2 Configuration of Openbowerhet AAA 22 4 2 1 Model CONS AUIS ne ee 23 4 2
44. 9 750 gt lt Connector gt lt Connector name RL track 1 2 km 9 750 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 1 km 9 750 gt lt ConductorTo condName RL lineID A trackID 2 km 9 750 gt lt Connector gt lt Connector name RR track 1 2 km 9 750 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 1 km 9 750 gt lt ConductorTo condName RR lineID A trackID 2 km 9 750 gt lt Connector gt IFB DD UM_OPN_51_01 02 02 doc Page 143 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 144 of 168 User Manual Issue 2010 05 12 lt Connections of rails and ocs at change over from track 1 to 2 line A gt lt Connector name MW track 1 2 km 10 250 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 1 10 250 gt lt ConductorTo condName MW lineID A trackID 2 km 10 250 gt lt Connector gt lt Connector name CW track 1 2 km 10 250 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName CW lineID A trackID 1 km 10 250 gt lt ConductorTo condName CW lineID A trackID 2 km 10 250 gt lt Connector gt lt Connector name RL track 1 2 km 10 250 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 1 km 10 250 g
45. B with 60s wait time departure is 01 00 00 Train long e course CBAs 02 from Station C to Station A via track 1 in Station B with 60s wait time departure is 02 00 00 Train short To get the departure and arrival times run the simulation and adjust the planned to the actual data After you have done so the train diagram should look like Figure 47 ZG traindiagram_A C otsimcor D Tutorial 01_AC_Network 0TDocuments Info Document Edit Format Tools Functions Windows Print Hide Quit Station A Station C Station A Station B Station G Figure 47 The train diagram for all four trains from Station A to Station C 6 2 1 2 OpenPowerNet As described before we need to set the properties in the GUI to configure the OpenPowerNet modules for details see the GUI Help System In our Tutorial we use the default properties and do not need to change anything IFB DD UM_OPN_51_01 02 02 doc Page 55 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 56 of 168 User Manual Issue 2010 05 12 The following chapters describe in detail the configuration of the Engine File Project File and the Switch File As we do not use energy storage we do not need to configure a TypDef File 6 2 1 2 1 Engine File First of all we need to create a new XML File and to specify the schema Read chapter 7 8 for how to get the schema directory The default Engine File is
46. Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 10 75 y_m 0 gt lt Conductor gt Last but not least the earth wire lt Conductor type Earth gt lt StartPosition condName E trackID 1 km 0 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 450000 r20_Ohm_km 0 0393 temperature_GradCelsius 20 temperatureCoefficient 0 x_m 0 y_m 450 0 gt lt Conductor gt lt Conductors gt lt ConnectorSlices gt The connectors between contact and messenger wire and lt ConnectorSlice name dropper track 1 firstPos_km 0 lastPos_km 9 750 maxDistance_km 0 25 gt lt Connector zReal_Ohm 0 000073 zImag_Ohm 0 gt lt ConductorFrom condName MW trackID 1 gt lt ConductorTo condName CW trackID 1 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name dropper track 2 firstPos_km 9 750 lastPos_km 10 250 maxDistance_km 0 25 gt lt Connector zReal_Ohm 0 000073 zImag_Ohm 0 gt lt ConductorFrom condName MW trackID 2 gt IFB DD UM_OPN_51_01 02 02 doc Page 133 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 134 of 168 User Manual Issue 2010 05 12 lt ConductorTo condName CW trackID 2 gt lt
47. ConductorFrom condName CW lineID A trackID 1 10 250 gt lt ConductorTo condName CW lineID A trackID 2 km 10 250 gt lt Connector gt lt Connector name RL track 1 2 km 10 250 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 1 km 10 250 gt lt ConductorTo condName RL lineID A trackID 2 km 10 250 gt lt Connector gt lt Connector name RR track 1 2 km 10 250 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 1 km 10 250 gt lt ConductorTo condName RR lineID A trackID 2 km 10 250 gt lt Connector gt lt Connectors gt Now we have already defined the electrical network along the line In the next step we have to define the substations one at km 5 000 and one far away at km 80 000 lt Substations gt This is the substation at km 5 000 lt Substation name TSS_5 gt lt TwoWindingTransformer The characteristic of the two winding transformer shall be as defined by the attributes name T1 nomPower_MVA 10 nomPrimaryVoltage_kV 115 nomSecondaryVoltage_kV 27 5 noLoadLosses_kW 6 5 loadLosses_kW 230 relativeShortCircuitVoltage_ percent 10 7 noLoadCurrent_A 0 06 gt lt OCSBB bbName 0CS_BB z_real_Ohm 0 001 z_imag_Ohm 0 gt The connection from the transformer to the OSC busbar is defined with this element lt Switch name TSS_5_T1_OCS defaultState close gt This connection shall
48. ConnectorSlice name dropper track 2 firstPos_km 9 750 lastPos_km 10 250 maxDistance_km 0 25 gt This slice defines the same as above for track 2 lt Connector zReal_Ohm 0 000073 zImag_Ohm 0 gt lt ConductorFrom condName MW trackID 2 gt lt ConductorTo condName CW trackID 2 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name rail connector track 1 firstPos_km 0 lastPos_km 85 4 maxDistance_km 0 25 gt As the rails are connected we define a slice with connectors between both rails of track 1 every 250m along the whole track lt Connector zReal_Ohm 0 00001 zImag_Ohm 0 gt lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName RR trackID 1 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name rail connector track 2 firstPos_km 9 750 lastPos_km 10 250 maxDistance_km 0 25 gt And the same as above for track 2 lt Connector zReal_Ohm 0 00001 zImag_Ohm 0 gt lt ConductorFrom condName RL trackID 2 gt lt ConductorTo condName RR trackID 2 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlices gt Now we have to define the leakage of the rails to earth lt Leakages gt lt Leakage firstPos_km 0 lastPos_km 85 4 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 0 lastPos_km 85 4
49. Course CBAI_01 Sim 1 Course CBAI_01 Sim 5 01 30 00 4 01 35 00 4 01 40 00 Figure 64 This diagram compares the line voltage for course CBAI_01 of the default configuration Sim 1 and the failure scenario Sim 5 versus the time We can see very well the difference of the line voltage at the pantograph for both simulations Izflt 300 4 250 200 4 150 I A 100 4 01 00 00 01 05 00 4 01 10 00 15 00 4 01 20 00 01 o E 5 N 5 Sim Course CBAI_O1 Sim 1 Course CBAI_01 5 01 30 00 4 01 35 00 4 01 40 00 Figure 65 This diagram compares the current for course CBAI_01 of the default configuration Sim 1 and the failure scenario Sim 5 versus the time The diagram above shows the power off effect of substation TSS_80 for the current used by course CBAI_01 As the course uses the same power in both simulations the current rises with dropping line voltage IFB DD UM_OPN_51_01 02 02 doc Page 73 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 74 of 168 User Manual Issue 2010 05 12 6 3 2AC Network tutorial In this tutorial we will use the same OpenTrack infrastructure as for the AC Network tutorial and change only the existing Project File for a 2AC electrical network To keep the file of the previous tutorial we create a copy of the Projec
50. Engine 0 Engine1 0 5252 A 3 19 948 Engine1 0 5253 A 3 19 969 Engine1 0 5254 A 3 19 989 Engine 0 5255 B 2 20 010 Engine 0 5256 B 2 20 031 Engine 0 5257 B 2 20 052 Engine 0 5258 B 2 20 073 Engine 0 5259 B 2 20 094 Figure 127 The positions of course ABDI_1010 with track change from line A to line B In Figure 127 we can see the change of course ABDI_ 1010 from line A to line B at 1 27 35 For each location there is a voltage and current value That means the positions in OpenTrack and OpenPowerNet are the same In case the position does not match than the voltage is 0 V The coupling of the conductors is only calculated for each line and no coupling between different lines The difference for track 1 can be seen on the conductors of the left track in Figure 128 and Figure 129 Magnetic Field Intensity Tutorial lines points crossings Line A km 19 950 Simulation Time 01 17 30 Height m out Gau engt Geht 75uT em Le Figure 128 The magnetic field at line A km 19 950 at 01 17 30 IFB DD UM_OPN_51_01 02 02 doc Page 148 of 168 am DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 149 of 168 User Manual Issue 2010 05 12 Magnetic Field Intensity Tutorial lines points crossings Line A km 20 125 Simulation Time 01 17 30 Si 122547 En geit Height m 2 S at em 2 0047 Figure 129 The magnetic
51. GmbH Page 54 of 168 User Manual Issue 2010 05 12 Engines x Engi Engine 1 a UA ngine xj Engine Name Engine 1 Load fi 75 Resistance Factor 3 2999 Adh Load ft IT ze Rot mass Factor i0599 Length m 25 Balise Telegram M z Loop Telegram M Speed max bat 250 panio Telegram E Tractive Effort max KN 250 Rack Traction B wi Diagram 1 AC 10 k 50 Hz gt be AC 25 k 50 Hz AC 5OkKV 50 Hz Al nc Aon Export Import Dupl Del Add Diagram Color u TAdhesion bad 80 normal 125 good 150 Loss Function Edit Selected Point y km h en ZIKNE 250 P Mwy 5 56 linear Visual Rectangle Speed max km h 270 Scale Min kN 0 Autoscale Tractive Effort max KN 270 Del Engine New Engine Save Depot New Depot Open Depot Set Data Figure 45 The properties of engine Engine1 in OpenTrack Now we can define trains We will use two types of trains a short and a long train The short train only has one trailer and the long train has 14 trailers with 20t load 25 m length and 30kW auxiliary power see Figure 46 Trains Edit Train Name MENETI Default IC Fast Train Type Category Dm Al Engines H p Engine 1 75 25 a Len m E ez sz eme tegt Len m P Loss kw No of tems vmax km Rot Ma Len m z Zeg 75 _ Trailers Trailer 1 4 Zeg zo
52. In this tutorial we use the eddy current brake As the eddy current braking is only active for regenerative engines we define e the maximum regenerative brake power to 400 kW and e maximum regenerative brake effort to 30 kN The parameter for the brake shall be e 30 kN maximum effort e 300 kW maximum power and e 10 km h minimum speed As the short trains have less auxiliary power of the trailers we will use only the short trains to show clearly the effect of the eddy current brake To see the effect of the eddy current brake we do two simulations one without and one with eddy current brake 6 6 7 1 Configuration 6 6 7 1 1 OpenTrack We will use the OpenTrack model from the AC tutorial without changes Select only the course ABCs_02 and CBAs_02 with short trains 6 6 7 1 2 OpenPowerNet We will use the Engine and Project File from the AC tutorial as the basis IFB DD UM_OPN_51_01 02 02 doc Page 107 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 108 of 168 User Manual Issue 2010 05 12 6 6 7 1 2 1 Engine File In the Engine File we need to specify the maximum braking power and effort as well as the eddy current brake parameter lt vehicle length 25 bruttoWeight 75 vehicleID Enginel speed 250 gt lt engine gt lt propulsion supply AC 25kV 50Hz transmission electric engine electric power 5560 maxTractEffort 250 totalTractEfficien
53. MW track 1 3 km 9 650 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 1 9 650 gt lt ConductorTo condName MW lineID A trackID 3 9 650 gt lt Connector gt lt Connector name CW track 1 3 km 9 650 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName CW lineID A trackID 1 km 9 650 gt lt ConductorTo condName CW lineID A trackID 3 km 9 650 gt lt Connector gt lt Connector name RL track 1 3 km 9 650 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 1 9 650 gt lt ConductorTo condName RL lineID A trackID 3 km 9 650 gt lt Connector gt lt Connector name RR track 1 3 km 9 650 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 1 km 9 650 gt lt ConductorTo condName RR lineID A trackID 3 km 9 650 gt lt Connector gt The electrical connection of track 1 and 2 at km 9 750 lt Connector name MW track 1 2 km 9 750 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 1 km 9 750 gt lt ConductorTo condName MW lineID A trackID 2 km 9 750 gt lt Connector gt lt Connector name CW track 1 2 km 9 750 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName CW lineID A trackID 1 km 9 750 gt lt ConductorTo condName CW lineID A trackID 2 km
54. OpenPowerNet Settings The dialog OpenPowerNet Settings is available at menu item Info if OpenTrack is started with parameter OpenTrack exe opn The following properties have to be set e OpenTrack Server Port 9002 default e OPN Server Port 9004 default e OPN Host network name or IP of the computer running OpenPowerNet localhost default for the same computer e Timeout in seconds recommended 120 e Use OpenPowerNet OPN checked e Keep Connection checked Increase the timeout if connection problems with OpenPowerNet appear during simulations with a large amount of iteration steps primarily for large networks if engines are allowed to recover energy to the network but the substations must not recover energy to the national power grid To be able to run OpenTrack and OpenPowerNet together it is necessary to respect the constraints from chapter 7 1 besides the OpenPowerNet model constraints in chapter 4 2 1 4 2 Configuration of OpenPowerNet The configuration of OpenPowerNet is done via the GUI For details please see the GUI Help System at OpenPowerNet User Interface User Guide gt Preferences XML Files are used for configuration Each such file belongs to a schema A schema describes the structure of an XML File The schema is specified in each XML File in the root element using the attribute xsi noNamespaceSchemaLocation See the example XML snippet below lt XML Root Elemen xsi noNamespaceSchemaL
55. Simulation For the description of the simulation see the AC network tutorial in chapter 6 2 2 6 3 3 Analysis In the following chapter we will analyse the same network configuration as we did for the AC network and compare the simulation results 6 3 3 1 Default configuration For the default configuration we want to compare some diagrams to see the difference between the two systems First we want to compare the line voltage at the pantograph Please see Figure 51 from AC network and Figure 67 from 2AC network IFB DD UM_OPN_51_01 02 02 doc Page 76 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 77 of 168 User Manual Issue 2010 05 12 U f s 28000 7 27500 27000 UNI 26000 25500 25000 Ze 24500 T T T T T T r T d 0 000 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000 90 000 s km Figure 67 The line voltage at pantograph position for the default configuration of the 2AC network versus chainage We can see that the line voltage at the pantograph is much lower than for the AC network but still sufficient as the minimum is just below the nominal voltage F f s 300 F kN 300 s km L t Sim 1 em effort_achieved_kN Course ABC _01 Sim 1 C1_01 Sim 6 effon _achieved_KN Course ABCI_D1 Sim 6 Figure 68 The reques
56. Switch defaultState open name TSS_5_OCS_BB gt lt OCSBBConnector gt lt RailsBBConnector z_imag Ohm 0 0 z real _Ohm 0 001 gt lt BusbarFrom bbName Rails_ BB 1 gt lt BusbarTo bbName Rails_ BB 2 gt lt Switch defaultState open name TSS_5 Rails BB gt lt RailsBBConnector gt lt Substation gt To minimise the recorded data we will record voltages and currents only from km 0 000 to km 9 000 lt Lines recordCurrent true recordVoltage true gt Set both attributes to true lt Line name A maxSliceDistance_km 0 5 gt lt Conductors gt Split the ToProperty at km 9 000 and set the recording to false until the end of the line lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 1 km 0 gt lt ToProperty toPos_km 9 equivalentRadius_mm 3 45 r20_Ohm_km 0 2311 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 0 wv m 6 9 gt lt ToProperty toPos_km 85 4 recordCurrent false recordVoltage false gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 1 km 0 gt lt ToProperty toPos_km 9 equivalentRadius_mm 3 45 r20_Ohm_km 0 1852 temperature_GradCelsius 20 temperatureCoefficient 0 00385 x_m 0 y m 5 3 gt lt ToProperty toPos_km 85 4 recordCurrent false recordVoltage false gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 1 km 0 gt
57. U f s 3500 7 3000 2500 2000 um 1500 1000 500 s km Course ABCs_02 Sim 11 Course ABCs_02 Sim 16 Figure 82 The line voltage at pantograph for course ABCs_02 in the DC network without Sim 11 and with Sim 16 energy storage type Type_400A IFB DD UM_OPN_51_01 02 02 doc Page 90 of 168 DMJ 2010 05 12 LE Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 91 of 168 User Manual Issue 2010 05 12 Using the prepared Excel file Storage2 xls we will compare the effect of the different maximum load and unload current of the energy storages This file is available from menu OpenPowerNet gt Excel Tools gt Compare Two Storages 3400 3 3300 3200 3100 3000 2900 2 2800 2700 2600 2500 2 EI 2 EI 2 EI 2 EI Ei o 8 8 Ss S 8 8 8 8 Ss S 8 E 6 EI P E P E fe E oS 6 EI 5 a a 8 cel D Si qi a ai ai ai a a Ei Si 5 EI EI 5 EI 5 EI 6 6 6 5 U f t Simulation 15 Tutorial Simple Storage Network A C Substation SS_45 Storage SCH U f t Simulation 16 Tutorial Simple Storage Network A C Substation SS_45 Storage ST Figure 83 The line voltage at the substation with the storage for both storage types Type_400A in simulation 16 and Type_200A in simulation 15 For the energy storage type Type 200A we see that the voltage cannot be s
58. We will use the courses with longs trains IFB DD UM_OPN_51_01 02 02 doc Page 112 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 113 of 168 User Manual Issue 2010 05 12 Engine Model Single Component Efficiencies Eta_4QC fiv Eta_inverter f v Eta_motor flv Eta_gear flv Eta_total flv Eta_trafo fill v km h A Figure 105 The efficiencies of the engine components 6 6 10 1 Configuration 6 6 10 1 1 OpenTrack We will use the OpenTrack model from the AC tutorial without changes Select only the course ABCI_01 and CBAI_01 with long trains 6 6 10 1 2 OpenPowerNet We will use the Engine and Project File from the AC tutorial as the basis 6 6 10 1 2 1 Engine File In the Engine File we need to define all the efficiencies of the engine model lt vehicle length 25 bruttoWeight 75 vehicleID Enginel speed 250 gt lt engine gt lt propulsion supply AC 25kV 50Hz transmission electric engine electric power 5560 maxTractEffort 250 totalTractEfficiency 90 totalBrakeEfficiency 90 gt lt transformer typeStr meanEfficiency 98 count 1 gt lt efficiency gt IFB DD UM_OPN_51_01 02 02 doc Page 113 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 114 of 168 User Manua
59. Windows I Use Sound Legend Ciel ad sg gy category 1 Delete v Category 2 E Cateaorv 3 mt Add A d v Braking for Signal Braking for Signal 2 _Rr kina fie Anntnach Asnart Rrakinn fine Anntnach aenart ME BA I Category Color planned Dashed Line planned I Patter Occupation Calculation ETCS Level 2 ETCS Level 3 M Use Curve Resistance Use Switch Time and Route Res Time Comm Period s 5 Optimiz Period s 30 Optimize Train Sequence M Safety Margin m 10 0 Figure 43 OpenTrack preferences Load Setfrom Dir Delete Set Save Setas Cancel OK The next step is to create the track layout signals stations and power supply area The detailed track data is Start at km 0 with home signal Station A at km 0 200 Exit signal at km 0 400 Gradient of 10 from km 1 400 to 2 400 Gradient of 0 from km 2 400 to 6 750 Gradient of 5 from km 6 750 to km 8 750 Gradient of 0 from km 8 750 to the end of the line IFB DD UM_OPN_51_01 02 02 doc Page 52 of 168 DMJ 2010 05 12 O Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 53 of 168 User Manual Issue 2010 05 12 e Home signal at km 9 650 e Turnout at km 9 750 e Exit signals on both tracks at km 9 800 e Station B at km 10 000 with two tracks e Exit signals on both tracks at km 10 200 e Turnout at km 10 250 e Home signal at km 10 350 set sight distance to 10000m to prevent braking of co
60. defaultState close name TSS_5_OCS_Feeder_5 0 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails_BB_1 gt lt Connector name TSS_5_Rails_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName RL lineID A trackID 1 5 gt lt Switch defaultState close name TSS_5_Rails_Feeder_5 0 gt lt Connector gt lt RailsBB gt lt Busbars gt lt Substation gt lt Substations gt lt Earth condName E lineID A trackID 1 km 0 gt lt Network gt lt Options tolerance_grad 0 001 tolerance_V 0 1 tolerance_A 0 1 maxIncreaseCount 500 discreteTrains true evenlyDistributedTractionReturnCurrent true maxCurrentAngleIteration 100 gt lt PSC gt lt OpenPowerNet gt IFB DD UM_OPN_51_01 02 02 doc Page 155 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 156 of 168 User Manual Issue 2010 05 12 RR Figure 133 The correct OpenPowerNet network configuration lt xml version 1 0 encoding UTF 8 gt lt OpenPowerNet xmlns xsi http www w3 org 2001 XMLSchema instance xsi noNamespaceSchemaLocation http www dd bahntechnik de opn schemas 1 2 0 a2 OpenPowerNet xsd name Network Tutorial Loop comment correct maxIterations 1000 maxFailedIterations 100 odbcDsn pscresults record2DB true record2DB_Dump true recordComputation2DB false rstFile D OPN_Projects Tutorial
61. equivalentRadius_mm 3 45 r20_Ohm km 0 2311 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 0 y_m 6 9 gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 1 km 0 gt lt ToProperty toPos_km 25 4 equivalentRadius_mm 3 45 r20_Ohm km 0 1852 temperature_GradCelsius 20 temperatureCoefficient 0 00385 x_m 0 y_m 5 3 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 1 km 0 gt lt ToProperty toPos_km 25 4 equivalentRadius_mm 38 52 r20_Ohm km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 0 75 y_m 0 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 1 km 0 gt lt ToProperty toPos_km 25 4 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 0 75 y_m 0 gt lt Conductor gt for track2 in station A lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 2 km 0 gt lt ToProperty toPos_km 0 450 equivalentRadius_mm 3 45 r20_Ohm_km 0 2311 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 10 y_m 6 9 gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 2 km 0 gt lt ToProperty toPos_km 0 450 equivalentRadius_mm 3 45 r20_Ohm_km 0 1852 temperature_GradCelsius 20
62. experience that the network is not able to cope with the failure of TSS_80 The simulation will abort because the iteration between ATM and PSC will not find a stable network state as the network is overburden U t 3500 3000 2500 2000 1000 500 01 00 00 01 05 00 4 01 10 00 3 01 15 00 01 25 00 01 30 00 4 01 35 00 Sim 14 E 01 20 00 4 Course CBAL_01 Sim 11 Figure 81 The line voltage for course CBAI_01 in default configuration sim 11 and failure scenario sim 14 In the diagram above we can see the red curve from the failure scenario simulation As we have configured in Project File to allow a maximum of 100 failed iterations between ATM and PSC before the simulation terminates we see the incorrect values after 01 05 00 IFB DD UM_OPN_51_01 02 02 doc Page 87 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 88 of 168 User Manual Issue 2010 05 12 6 5 DC Network with Energy Storage tutorial In this tutorial we will add an energy storage to the DC network of the tutorial in chapter 6 4 The DC tutorial analysis shows us a significant line voltage drop With the storage we will support the line voltage at the location with the lowest line voltage at km 45 000 see Figure 76 Furthermore we will analyse and compare two kinds of energy storage and use the courses with short trains
63. failure scenario lt Substations gt lt Substation name TSS_5 gt lt Rectifier name R1 internalResistance_Ohm 0 01 The internal resistance of the rectifier nomVoltage_kV 3 3 The no load voltage of the rectifier shall be 10 higher than the system voltage of 3kV energyRecovery false gt lt OCSBB bbName 0CS_BB z_real_Ohm 0 001 z_imag_Ohm 0 gt lt RailsBB bbName Rails_BB z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Rectifier gt lt Busbars gt lt OCSBB bbName 0CS_BB gt lt Connector name TSS_5_OCS_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName CW lineID A trackID 1 km 5 gt lt Connector gt lt Connector name TSS_5_LF_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName LF lineID A trackID 1 km 5 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails_BB gt lt Connector name TSS_5_Rails_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName RR lineID A trackID 1 km 5 gt lt Connector gt lt RailsBB gt lt Busbars gt lt Substation gt lt Substation name TSS_80 gt lt Rectifier name R1 internalResistance_Ohm 0 01 nomVoltage_kV 3 3 energyRecovery false gt lt OCSBB bbName 0CS_BB z_real_Ohm 0 001 z_imag_Ohm 0 gt lt RailsBB bbName Rails_BB z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Rectifier gt lt Busbars gt lt OCSBB bbName 0CS_BB gt lt Connector name TSS_80_OCS_Feeder z_real_Oh
64. gt lt Network gt 6 7 4 1 3 Simulation To check the timetable and correct configuration of OpenTrack the first simulation run shall be without OpenPowerNet Go in OpenTrack to Info gt OpenPowerNet Settings and deselect Use OpenPowerNet The train graphs shall look like in Figure 125 and Figure 126 IFB DD UM_OPN_51_01 02 02 doc Page 146 of 168 DMJ 2010 05 12 7 74 OPN 51 1 2 2 Cape nPowerNet Institut f r Bahntechnik GmbH Page 147 of 168 User Manual Issue 2010 05 12 Network_Model 04_Lines_Points_Crossings 0TDocuments lt D o om 10 20 EI ap 50 02 00 02 00 Legend Category Braking for Route Braking for Signal Braking for Approach Aspect 5 Stopat Signal 9 Late Arival Late Depanure Late Passing mm 02 00 Late Departure o Late Passing Figure 126 The train graph from station A to D After the correct timetable is confirmed we run the simulation IFB DD UM_OPN_51_01 02 02 doc Page 147 of 168 DMJ 2010 05 12 OPN 51 1 2 2 3penPowerNet LE Ze Institut f r Bahntechnik GmbH Page 148 of 168 User Manual Issue 2010 05 12 6 7 4 1 4 Analysis For analysis we will use Excel file Engine xls P GA WO sch un 1056 ABDI_1010 1057 ABDI_1010 1058 ABDI_1010 1059 ABDI_1010 1060 ABDI_1010 1061 ABDI_1010 1062 ABDI_1010 1063 ABDI_1010 1064 ABDI_1010
65. gt lt Conductor type Rail gt lt StartPosition condName RL trackID 3 km 9 650 gt lt ToProperty toPos_km 20 000 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 19 25 y m 0 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 3 km 9 650 gt lt ToProperty toPos_km 20 000 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 20 75 y m 0 gt lt Conductor gt The earth conductor lt Conductor type Earth gt lt StartPosition condName E trackID 1 km 0 gt lt ToProperty toPos_km 30 4 equivalentRadius_mm 450000 r20_Ohm_km 0 0393 temperature_GradCelsius 20 temperatureCoefficient 0 x_m 0 y_m 450 0 gt lt Conductor gt lt Conductors gt lt ConnectorSlices gt The dropper configuration for track 1 lt ConnectorSlice name dropper track 1 firstPos_km 0 lastPos_km 30 4 maxDistance_km 0 25 gt lt Connector zReal_Ohm 0 000073 zImag_Ohm 0 gt lt ConductorFrom condName MW trackID 1 gt lt ConductorTo condName CW trackID 1 gt lt Connector gt lt ConnectorSlice gt The dropper configuration for track 2 lt ConnectorSlice name dropper track 2 firstPos_km 9 750 lastPos_km 20 000 maxDistance_km 0 25 gt lt Connector zReal_Ohm 0 000073 zImag_Ohm 0 gt lt ConductorFrom condName MW trackID
66. gt lt Line name A maxSliceDistance_km 0 1 recordCurrent true recordVoltage true gt lt Conductors gt lt Conductor type ContactWire gt lt StartPosition km 1 900 trackID up condName CW gt lt ToProperty x_m 0 y_m 5 3 r20_Ohm km 0 2138 equivalentRadius_mm 4 4 toPos_km 3 000 temperatureCoefficient 0 00381 temperature_GradCelsius 40 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition km 1 900 trackID up condName R gt lt ToProperty x_m 0 y_m 0 r20_Ohm_km 0 0164 equivalentRadius_mm 38 52 toPos_km 3 000 temperatureCoefficient 0 0047 temperature_GradCelsius 40 gt lt Conductor gt lt Conductors gt lt Line gt lt Connectors gt lt Connector zReal_Ohm 0 0001 zImag_Ohm 0 0 gt lt ConductorFrom km 2 100 trackID up condName CW lineID A gt lt ConductorTo km 1 900 trackID up condName CW lineID A gt lt Connector gt lt Connector zReal_Ohm 0 0001 zImag_Ohm 0 0 gt lt ConductorFrom km 2 100 trackID up condName R lineID A gt lt ConductorTo km 1 900 trackID up condName R lineID A gt lt Connector gt lt Connectors gt 7 3 How to organise the files and folders See chapter 6 1 7 4 How to calculate the equivalent radius First determine the cross section A of the given conductor and convert this value to radius r of a circular cross section with same area A see the formula below circle A A 7 r
67. gt lt ToProperty toPos_km 85 4 equivalentRadius_mm 450000 r20_Ohm_km 0 0393 temperature_GradCelsius 20 temperatureCoefficient 0 x_m 0 y_m 450 0 gt lt Conductor gt lt Conductors gt lt ConnectorSlices gt The connectors between contact and messenger wire lt ConnectorSlice name dropper track 1 firstPos_km 9 750 lastPos_km 85 4 maxDistance_km 0 25 gt lt Connector zReal_Ohm 0 000073 zImag_Ohm 0 gt lt ConductorFrom condName MW trackID 1 gt lt ConductorTo condName CW trackID 1 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name rail connector track 1 firstPos_km 9 750 lastPos_km 85 4 maxDistance_km 0 25 gt lt Connector zReal_Ohm 0 00001 zImag_Ohm 0 gt lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName RR trackID 1 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlices gt lt Leakages gt The leakages for the track lt Leakage firstPos_km 9 750 lastPos_km 85 4 yReal_S_km 0 1 yImag_S_km 0 gt IFB DD UM_OPN_51_01 02 02 doc Page 135 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 136 of 168 User Manual Issue 2010 05 12 lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 9 750 lastPos_km 85 4 yReal_S_km 0 1 yImag_S_km 0 gt lt Co
68. other during the simulation Each program respective module has a clearly delimited task OpenTrack simulates the course operation control and the driving dynamics The OpenPowerNet PSC module simulates voltages of the electrical network in respect of the course current consumption and position The OpenPowerNet engine simulation module ATM simulates the requested current and achieved effort in respect of the available line voltage at course position The sequence of simulation starts in OpenTrack First a start request is sent to the other modules and some initial tasks are organised A matrix representing the electrical network is set up and the voltages of the electrical network without load are calculated After initialisation the first requested tractive or braking effort of a course is sent from OpenTrack to the PSC at time step 0 The line voltage of the course corresponding to course position calculated in the initial phase is sent to ATM where the achieved effort is calculated and returned to OpenTrack If there is more than one course the calculation of the other course efforts follows the same principle Then the sequence for the time step 1 follows The first effort request at time step 1 starts the network calculation with all known courses from time step 0 Next the line voltage at course position is forwarded to ATM and the achieved effort is calculated and sent to OpenTrack All other courses follow the same procedure as course 1 but no
69. recordVoltage false gt lt Conductor gt Next we change the Feeder and ReturnFeeder and add the NegativeFeeder conductors parallel to the neutral zone Note The parallel conductors are from km 4 700 to km 5 000 and from km 5 000 to km 5 300 lt Conductor type Feeder gt lt StartPosition condName TSS_5_F_1l trackID 1 km 4 7 gt lt ToProperty toPos_km 5 equivalentRadius_mm 8 4 r20_Ohm_km 0 1188 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 4 y m 0 gt lt Conductor gt lt Conductor type Feeder gt lt StartPosition condName TSS_5_F_r trackID 1 km 5 gt lt ToProperty toPos_km 5 3 equivalentRadius_mm 8 4 r20_Ohm_km 0 1188 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 4 y m 0 gt lt Conductor gt lt Conductor type ReturnFeeder gt lt StartPosition condName TSS_5_RF_1 trackID 1 km 4 7 gt lt ToProperty toPos_km 5 equivalentRadius_mm 8 4 r20_Ohm_km 0 1188 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 4 1 y_m 0 gt lt Conductor gt lt Conductor type ReturnFeeder gt lt StartPosition condName TSS_5_RF_r trackID 1 km 5 gt lt ToProperty toPos_km 5 3 equivalentRadius_mm 8 4 r20_Ohm_km 0 1188 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 4 1 y_m 0 gt lt Conductor gt Following the two new negative feeder conductors lt Conductor type NegativeFeeder gt
70. specified in the IFB DD UM_OPN_51_01 02 02 doc Page 31 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 32 of 168 User Manual Issue 2010 05 12 Project File see Figure 21 The attribute trainID corresponds with the course ID in OpenTrack The consumed energy of not specified courses is summarised for a Train Operating Company with the name unknown Therefore it is not advised to name a Train Operating Company unknown Besides the configuration of the engine model network and operating company it is necessary to define recording of simulation results To record data to the database the connection properties need to be set The configuration of recording is structured hierarchical The attributes in element OpenPowerNet are at the highest level and define the general recording behaviour see XML snippet below lt OpenPowerNet xmlns xsi http www w3 org 2001 XMLSchema instance xsi noNamespaceSchemaLocation http www dd bahntechnik de opn schemas 1 1 0 b6 OpenPowerNet xsd name Tutorial AC Network comment failure scenario maxIterations 1000 maxFailedIterations 100 dbUser opndbusr The database user name dbPasswd lmargst3 The database user password odbcDsn pscresults The DSN name this is the name specified as ODBC data source name record2DB true Whether to record data to database or not default is false record2D
71. temperatureCoefficient 0 00385 x_m 10 y_m 5 3 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 2 km 0 gt lt ToProperty toPos_km 0 450 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 9 25 wv m 0 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 2 km 0 gt lt ToProperty toPos_km 0 450 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 10 75 y_m 0 gt lt Conductor gt and for station B lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 3 45 r20_Ohm_km 0 2311 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 10 y_m 6 9 gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 3 45 r20_Ohm_km 0 1852 temperature_GradCelsius 20 temperatureCoefficient 0 00385 x_m 10 y_m 5 3 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 9 25 y m 0 gt lt Co
72. temperatureCoefficient 0 004 x_m 10 75 y_m 0 gt lt Conductor gt lt Conductor type Earth gt lt StartPosition condName E trackID 1 km 0 2 gt lt ToProperty toPos_km 25 4 equivalentRadius_mm 450000 r20_Ohm_km 0 0393 temperature_GradCelsius 20 temperatureCoefficient 0 x_m 0 y_m 450 0 gt IFB DD UM_OPN_51_01 02 02 doc Page 157 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 158 of 168 User Manual Issue 2010 05 12 lt Conductor gt lt Conductors gt The definition of connector slices To have more detailed recoding data the slice distance in the station A shall be only 50m Outside the stations A and B the slice distance shall be 200m And track 2 in station B slice distance 100m lt ConnectorSlices gt lt ConnectorSlice name dropper track 1 station A firstPos_km 0 2 lastPos_km 1 maxDistance_km 0 05 gt lt Connector zReal_Ohm 0 000073 zImag_Ohm 0 gt lt ConductorFrom condName MW trackID 1 gt lt ConductorTo condName CW trackID 1 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name dropper track 1 outside station A firstPos_km 1 2 lastPos_km 25 4 maxDistance_km 0 2 gt lt Connector zReal_Ohm 0 000073 zImag_Ohm 0 gt lt ConductorFrom condName MW trackID 1 gt lt ConductorTo condName CW trackID 1 gt lt Connector gt lt ConnectorSlice gt lt
73. trackID 1 km 20 gt lt Connector gt lt Connector name RL track A 2 B 1 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 2 km 20 gt lt ConductorTo condName RL lineID B trackID 1 km 20 gt lt Connector gt lt Connector name RR track A 2 B 1 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 2 km 20 gt lt ConductorTo condName RR lineID B trackID 1 km 20 gt lt Connector gt lt Connector name E track 1 Line A B zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName E lineID A trackID 1 km 20 gt lt ConductorTo condName E lineID B trackID 1 km 20 gt IFB DD UM_OPN_51_01 02 02 doc Page 144 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 145 of 168 User Manual Issue 2010 05 12 lt Connector gt lt Connector name MW track A 3 B 2 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 3 SEH gt lt ConductorTo condName MW lineID B trackID 2 km 20 gt lt Connector gt lt Connector name CW track A 3 B 2 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName CW lineID A trackID 3 km 20 gt lt ConductorTo condName CW lineID B trackID 2 km 20 gt lt Connector gt lt Connector name RL track A 3 B 2 zR
74. voltage 6 6 1 3 Analysis We will use Engine2 xls and check to power factor of course CBAI_01 and compare the pantograph voltage with the failure simulation of the AC tutorial IFB DD UM_OPN_51_01 02 02 doc Page 93 of 168 DMJ 2010 05 12 CZE Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 94 of 168 User Manual Issue 2010 05 12 Phi f s 3 000 7 2 500 2 000 221 500 a 1 000 0 500 0 000 0 10 20 30 40 50 60 70 80 30 s km Course CBAIL_01 Sim 5 Course CBAI_01 Sim 17 Figure 87 The pantograph current angle of course CBAI_01 versus location U f s 28000 7 27500 27000 26500 26000 um 25500 25000 24500 24000 s km Course CBAI_01 Sim 5 Course CBAI_01 Sim 17 Figure 88 The pantograph position of course CBAI_01 with constant power factor of 0 sim 5 and with po wer factor depending on line voltage sim 17 We can see very clear the line voltage supporting behaviour of the capacitive engine model used in this simulation 6 6 2 Tractive effort tutorial In this tutorial we want to use a table for the tractive effort characteristic of the engine In the AC tutorial we used maximum power and maximum tractive effort to define the characteristic The engine model is more flexible when using the table see Figure 89 IFB DD
75. which may act as a library for all simulations similar to the rolling stock depot of OpenTrack described in chapter 4 2 3 1 The model type and other choices used by the simulation will be set in the Project File described in chapter 4 2 3 3 The electrical propulsion system of an engine consists of the following main components e Transformer e Four quadrant chopper e Inverter e Motor and e Gear Power consumers are e Auxiliaries of engine and trailers e Eddy current brake and e Traction power An engine can be modelled in different ways in particular as the efficiency depends on the chosen model type see Figure 3 to Figure 5 IFB DD UM_OPN_51_01 02 02 doc Page 11 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et Zi Institut f r Bahntechnik GmbH Page 12 of 168 User Manual Issue 2010 05 12 Kat zap ne none f U C u rrent ke aegeiegs none f U p none mean f P ecn T V t U f I UD Transfo rmer n none mean f l 4QC n none mean f v Inverter n none mean f v Motor n none mean f v Finech Gear n none mean f v Effort E FCV Man F regenerative NONE f v HF nao Pma Single Component Model Auxiliary Traction Eddy Current Brake Power Power use true false use true false Poix Fi engine Pi trailer P UL Ke Vmin Pais NP ga and or Reina and or Fira and or Roraxing aux_trailer const Legend
76. 0 6000 5000 4000 3000 2000 1000 km h Drive Recovery kW Eddy Power kW 0 Auxiliary Power kW amp Total Recovery kW Figure 7 Brake power calculation deducts power used by eddy current brake and auxiliary from recovered power IFB DD UM_OPN_51_01 02 02 doc Page 16 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 17 of 168 User Manual Issue 2010 05 12 3 3 Power Supply Calculation The PSC calculates the load flows within the electrical network including voltages and currents The network calculation uses the current required by a course to model this course as a current source During simulation this current source is inserted at discrete positions while driving along the line These discrete positions are called slices see Figure 8 Slice 0 Slice 1 Slice 2 Negative Feeder Conductor Position Connector X zo we X 1 2 Figure 8 Abstract electrical network model of PSC A reasonable slice distance should be about 50m up to 400m depending on the size of the network the length and number of conductors and the typical speed of the courses If the applied slice distance is too large the network model gets inexact and if it is too small the memory demand is significantly larger and the simulation may fail One possibility of keeping the network siz
77. 0 02 15 00 02 20 00 02 25 00 02 30 00 02 35 00 suxPower_KW Course ABCs_02 Sim 21 suxPower_kW Course ABCs_02 Sim 24 02 40 00 02 45 00 02 50 00 Figure 100 The auxiliary power of course ABCs_02 without engine auxiliary power sim 21 and with constant auxiliary power while braking sim 24 In simulation 24 is the model with constant auxiliary power while braking used We can identify the two time periods while braking and see the 100 kW additional to the 30 kW from the trailer auxiliary power IFB DD UM_OPN_51_01 02 02 doc Page 106 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 107 of 168 User Manual Issue 2010 05 12 Paux f t 140 7 120 100 P kW 40 20 02 00 00 02 05 00 02 10 00 4 02 15 00 4 02 20 00 02 25 00 02 30 00 02 35 00 4 02 40 00 02 45 00 02 50 00 suxPower_KW Course ABCs_02 Sim 23 suxPower_kW Course ABCs_02 Sim 25 Figure 101 The auxiliary power of course ABCs_02 with constant engine auxiliary resistance sim 23 and with constant auxiliary resistance while braking sim 25 In Figure 101 we see both resistance auxiliary models used for the simulations During braking both curves are exactly the same but during driving they are different 6 6 7 Eddy current brake tutorial
78. 0 01 05 00 01 10 00 01 15 00 01 20 00 01 25 00 01 30 00 01 35 00 01 40 00 01 45 00 01 50 00 01 55 00 02 00 00 PmachikW PeiikvAj Figure 53 The mechanical and electrical power of the course ABCI_01 IFB DD UM_OPN_51_01 02 02 doc Page 65 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 66 of 168 User Manual Issue 2010 05 12 In this diagram the effect of the gradients can be seen again between 01 01 00 and 01 07 00 The course is waiting for about 15min in Station B We can see this in the diagram where the mechanical power is OKN At this time we have only the auxiliary power demand of 520kW Besides the courses the substations are very interesting to analyse For this we use Excel File PowerSupply xls with the prepared diagrams for I f t U f t P f t and E f t This file is available from the menu via OpenPowerNet gt Excel tools gt One Power Supply First we will analyse the substation TSS_5 at km 5 000 In the Excel File we have to select the substation transformer feeder and busbar voltages see Figure 54 for details 1 Simulation _ 001 02 06 2009 9 31 38 Tutorial ACNetwork 7 Simulation Time LI om 1 Network AC ime Step Tl 1 Substation 1 Trafo Ti D A lin Feeder to busbar OC5_BB v 1 first U OCS_BB v 2 secondu Rasse ooo A CER Figure 54 The selection of power supply for substation TSS_5 TSS_5 400
79. 0 04 10 Cla 2006 06 15 12 24 10 2006 06 15 12 25 58 HSL current limit 250A start 35km h 0 04 10 J29 2006 06 15 12 29 54 2006 06 15 12 32 12 HSL current limit 250A start 33km h 0 04 10 Clan 2006 06 15 12 43 55 2006 06 15 12 45 40 HSL Current limit 242A start 33km h 0 04 1 0 J36 2006 06 15 15 59 05 _ 2006 06 15 16 0219 HSL current limit 242A start 33km h 0 04 10 37 2006 06 15 16 05 22 2006 06 15 16 08 32 HSL Current limit 242A start 33km h 0 04 10 J39 2006 06 15 17 17 21 2006 06 15 17 21 05 HSL current limit 2424 start 33km h 0 04 10 Cla 2006 06 15 17 28 51 2006 06 15 17 32 10 HSL Current limit 243A start 33km h 0 04 10 Ela 2006 06 15 17 33 46 2006 06 15 17 36 57 HSL Current limit 250A start 33km h 0 04 10 ae 2006 06 15 18 26 25 2006 06 15 18 29 40 HSL current limit 250A start 33km h 0 04 10 a 2006 0616 17 1440 2006 06 16 17 19 12 HSL current limit 250A start 33km h 0 04 10 Figure 29 The results of the query are listed in the table Select Return Data to Microsoft Excel from file menu to insert the data into an Excel table Please see the Excel documentation for further questions Daten importieren w hlen Sie das Format aus in dem Sie diese Daten in der Arbeitsmappe anzeigen m chten Tabelle is PivotTable Bericht e PivotChart und PivotTable Bericht G Mur Ve rhir dung arste ler Wo sollen de Daten eingef gt werden Bestehendes Arbeitsblatt Fs CH Neues Arbeitsblatt Ei
80. 00 4 02 15 00 02 20 00 02 25 00 02 30 00 4 02 35 00 suxPower_kW Course ABCs_02 Sim 22 suxPower_KW Course ABCs_02 Sim 23 02 40 00 02 45 00 4 02 50 00 Figure 98 The auxiliary power of course ABCs_02 with constant engine auxiliary power sim 22 and constant auxiliary resistance 23 In Figure 98 we see the constant power and constant resistance auxiliary have about the same values But of course the constant auxiliary has the auxiliary power as a function of the pantograph voltage compare to the pantograph voltage in Figure 99 IFB DD UM_OPN_51_01 02 02 doc Page 105 of 168 DMJ 2010 05 12 OPN 51 1 2 2 3penPowerNet LE Ze ww Institut f r Bahntechnik GmbH Page 106 of 168 User Manual Issue 2010 05 12 27700 27600 27500 27400 gt 27300 27200 27100 27000 26900 U t 02 00 00 02 05 00 02 10 00 02 15 00 4 20 00 A t 02 30 00 02 35 00 4 02 25 00 7 Course ABCs _02 Sim 22 Course ABCs _02 Sim 23 02 40 00 02 45 00 4 02 50 00 Figure 99 The pantograph voltage of course ABCs_02 with constant engine auxiliary power sim 22 and constant auxiliary resistance 23 140 120 100 80 60 P kW 40 20 Paux fft 02 00 00 02 05 00 4 02 10 0
81. 05 12 Query Assistent Sortierreihenfolge x Geben Sie an wie die Daten sortiert werden sollen Klicken Sie auf Weiter wenn die Daten nicht sortiert werden sollen Sortieren nach Aufsteigend C Absteigend id _ dann nach Te C Autsteigend Absteigend gt Aufsteigend lt Zur ck Abbrechen Figure 27 Select id in the upper combo box to sort by the column id of table sim Query Assistent Fertig stellen x Wie soll fortgefahren werden C Daten an Microsoft Excel zur ckgeben Abfrage speichern C Einen OLAP Cube aus dieser Abfrage erstellen lt Zur ck Fertig stellen Abbrechen Figure 28 Select the centre radio button and click finish IFB DD UM_OPN_51_01 02 02 doc Page 38 of 168 DMJ 2010 05 12 OPN 51 1 2 2 3penPowerNet Institut f r Bahntechnik GmbH Page 39 of 168 User Manual Issue 2010 05 12 rosoft Query Abfrage von pscresults DO Datei Neu ffnen Schlie en Speichem Speichern unter Bearbeiten Ansicht Format Tabelle Kriterien Datens tze Fenster 7 Tabellendefinition SQL Ausf hren OLAP Cube erstellen Abbrechen und zu Microsoft Excel zur ckkehren i start finish prjName mi OPNversion timeStep_s CJ 2006 06 15 11 55 09 2006 06 15 11 56 49 HSL Current limit 5004 0 04 1 0 Zen 2006 06 15 12 03 58 2006 06 15 12 05 42 HSL current limit 250A
82. 089 36 217 0 000 27408 6 355 4 20 5 20 5 74 88 1 15 57 CBAI_01 JA 2 0 068 36 217 0 000 27408 5 355 6 20 5 20 5 74 88 1 15 58 Figure 137 The simulation values to course CBAI_01 for the wrong simulation with missing data at 1 15 51 In Figure 137 the values of course CBAI_01 are incomplete because the configuration of OpenTrack infrastructure is not correct respective does not match with the OpenPowerNet positions The course CBAI_01 is approaching station A and change from track 1 to track 2 at km 0 650 OpenTrack determine the chainage always counting the distance from the last vertex Counting or depends on the direction of the edge and the direction of the course In our case the course pass vertex at km 0 650 and move to track 2 So the actual position is the vertex at km 0 650 minus 15 m this is km 0 635 at track 2 The solution may be to add an additional vertex at the end of track 2 km 0 450 with an edge length of 0 m to vertex km 0 650 at track 1 This is a workaround for this problem but the electrical configuration is still wrong This tutorial shows the very important constraint to have always a current sum of 0 A for all conductors in the same section This means it is not allowed to add connectors parallel to conductors 7 FAQ 7 1 What needs to be considered in OpenTrack to use OpenPowerNet During creation of the OpenTrack project the following constraints need to be considered e Direction of edges has to be continu
83. 2010 05 12 U I f t 27600 300 27400 I ome 250 27200 e i e e 200 om Aan E 2 D e E d SN F 27000 Ze A Ze KN En D d E ai 150 S er 2 xe ty i Fs 400 26600 C F d a t Er sa 3 50 26400 aw Sn Pare SEE u eg 26200 r r 0 a e 2 o o e e e o a 8 8 8 8 8 8 S S g g 8 g S 2 amp 3 S S S 3 S 3 S 5 g S S 8 S S S S 5 3 5 amp S S 5 5 S S Time Um Al Figure 50 The line voltage and pantograph current versus time for all courses To see the location of the minimum line voltage at pantograph position we use the diagram in sheet U f s see Figure 51 This diagram shows the minimum voltages at km 12 500 and also very well the location of substation TSS_80 by the local voltage maxima at km 80 000 U f s 27600 7 x 27400 d 27200 Einen a a a 27000 D a gt Se 5 er 26800 E Ns S Z8 26600 26400 26200 r r r r r r r d 0 000 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000 90 000 s km Figure 51 The line voltage at pantograph versus chainage for all courses Next we will use the Excel File Engine xls This is available at menu OpenPowerNet gt Excel tools gt One Engine This file provides diagrams of the pantograph current and voltage versus time and location Very interesting is also the tractive effort versus the loca
84. 27 of 168 DMJ 2010 05 12 LE Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 28 of 168 User Manual Issue 2010 05 12 Parent element for all configuration data of Advanced Train Model ATM Co D The root element of the OpenPowerNet kb Project file The container of all Train Operating companies Figure 16 The main branches of the Project File in schema view Figure 17 to Figure 21 show an example Project File ai OpenPowerHet name Sample_Network comment OpenPowerNet sample project file xmins xs http www w3 org 2001 XMLSchema instance xsi noNamespaceSchemal ocation D srciatm psciischemas OpenPowerNet xsd record2DB true recordComputation2DB false record2DB_Dump true maxiterations 10000 maxFailediterations 10 odbcDns pscresults dbUser opndbusr dbPasswd Imargst3 ignoreTrainsOutside true rstFile D OPN_Projects examples Sample1 Sample_RST xml typedefsFile switchStateFile simulationStart_s 0 simulationEnd_s 86400 Figure 17 General configuration in OpenPowerNet Project File IFB DD UM_OPN_51_01 02 02 doc Page 28 of 168 DMJ 2010 05 12 OPN 51 1 2 2 3penPowerNet 7 Ze ww Institut f r Bahntechnik GmbH Page 29 of 168 User Manual Issue 2010 05 12 ai ATM 4 Vehicles Vehicle enginelD Engine1 eddyCurrentBrake false 4 Propulsion engine electric supply
85. 5 Figure 90 The tractive effort of course CBAI_01 from default AC network simulation sim 5 and tractive effort table model simulation sim 18 IFB DD UM_OPN_51_01 02 02 doc Page 96 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 97 of 168 User Manual Issue 2010 05 12 When we compare the diagrams in Figure 90 and Figure 89 there seems to be a contradiction The tractive effort between 25km h and 100km h is lower than expected This is because of the limited adhesion of the engine By default the normal adhesion is used for the simulation in OpenTrack see Figure 91 The adhesion type can be set using the Simulation panel of OpenTrack ZG AC_Network depot 0 Tutorial 01_ AC Network G1Date Info Document Edit Format Tools Functions Windows Print Hide Quit IX NIM Figure 91 Tractive effort versus speed characteristic in OpenTarck engine model For the speed below 25km h and above 100km h we can see clearly the effect of the used table model compared with the maximum power maximum effort model of the default AC network simulation 6 6 3 Tractive current limitation tutorial Please see the DC tutorial in chapter 6 4 for an example of tractive current limitation 6 6 4 Regenerative braking tutorial In this tutorial we will learn how to configure the OpenPowerNet engine model to use regenerative braking The engine model shall be defined by maximum b
86. 5 12 lt Switch name TSS_80_T1_OCS defaultState close gt lt OCSBB gt lt RailsBB bbName Rails_BB z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Switch name TSS_80_T1_Rails defaultState close gt lt RailsBB gt lt TwoWindingTransformer gt lt Busbars gt lt OCSBB bbName 0CS_BB gt lt Connector name TSS_80 OCS Feeder z_real_Ohm 0 001 z_imag Ohm 0 gt lt Position condName CW lineID A trackID 1 km 80 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails_BB gt lt Connector name TSS_ 80 Rails Feeder z_real_Ohm 0 001 z_imag Ohm 0 gt lt Position condName RR lineID A trackID 1 km 80 gt lt Connector gt lt RailsBB gt lt Busbars gt lt Substation gt lt Substations gt Now only two things are left before we have completed the Project File One is to define the earthing point and the other is to set some options for the PSC The definition of the earthing point is very simple lt Earth condName E lineID A trackID 1 km 0 gt And the options for module PSC are as well very simple lt Options tolerance_grad 0 001 The maximum allowed tolerance of the engine current angle between the iteration inside the PSC maxCurrentAngleIteration 100 The maximum allowed iteration to achieve the value specified above tolerance_V 0 1 The maximum allowed tolerance of the node voltage between the iteration of ATM and PSC tolerance_A 0 1 The maximum allowed tolera
87. 6 5 1 Configuration 6 5 1 1 OpenTrack We will use the same OpenTrack data as for the AC tutorial described in chapter 6 2 1 1 6 5 1 2 OpenPowerNet For OpenPowerNet we need to define an energy storage in the TypDef File and add a substation with this energy storage at km45 000 to the Project File The Engine File does not need to be changed 6 5 1 2 1 Engine File We will use the same engine as for DC Network tutorial and therefore we do not need to change the Engine File 6 5 1 2 2 TypDef File First of all we need to create a new XML File and to specify the schema The latest schema can be found in plugin de bahntechnik dd opn bin_1 2 2_JJJJMMDDhhmm schemas TypeDefs xsd see chapter 7 9 We will define two kinds of energy storage One with 400A and one with 200A load and unload current limitation The energy storage shall have the following characteristic e Maximum load of 300MWs e Initial load of 300MWs e Losses of the energy storage of 100W e Internal load resistance of 5mQ e Internal unload resistance of 5mQ and e Auxiliary power of 10kW The energy storage control shall have the following function e Maximum load current is limited to 400A resp 200A e Maximum unload current is limited to 400A resp 200A e Start loading if the line voltage is higher than 3000V e Stop loading if the line voltage is lower than 2999V e Start unload if the line voltage is lower than 2700V and IFB DD UM_OPN_51_01 02 02 doc Page 88 o
88. 6 9 gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 2 km 9 750 gt lt ToProperty toPos_km 20 000 equivalentRadius_mm 3 45 r20_Ohm_km 0 1852 temperature_GradCelsius 20 temperatureCoefficient 0 00385 x_m 10 y_m 5 3 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 2 9 750 gt lt ToProperty toPos_km 20 000 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 9 25 y_m 0 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 2 km 9 750 gt lt ToProperty toPos_km 20 000 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 10 75 y_m 0 gt lt Conductor gt The conductor configuration for track 3 lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 3 km 9 650 gt lt ToProperty toPos_km 20 000 equivalentRadius_mm 3 45 r20_Ohm_km 0 2311 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 20 y_m 6 9 gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 3 km 9 650 gt lt ToProperty toPos_km 20 000 equivalentRadius_mm 3 45 r20_Ohm_km 0 1852 temperature_GradCelsius 20 temperatureCoefficient 0 00385 x_m 20 y m 5 3 gt lt Conductor
89. 6 9 2 Simulation We will do two simulations to be able to compare the mean efficiency with the table efficiency model Run both simulations e Do everything as described above and run the simulation e Replace lt MeanEfficiency gt with lt EfficiencyTable gt give a meaningful comment in the Project File and run the simulation 6 6 9 3 Analysis We use Excel file Engine2 xls to compare the simulation IFB DD UM_OPN_51_01 02 02 doc Page 111 of 168 DMJ 2010 05 12 OPN 51 1 2 2 pen PowerNet CZE Ze Institut f r Bahntechnik GmbH Page 112 of 168 User Manual Issue 2010 05 12 etha f v 100 etha A S 0 50 100 150 200 250 v km h Course ABC DI Sum 28 Course ABCI_01 Sim 23 Figure 104 The efficiencies of course ABCI_01 with mean efficiency and efficiency table model 6 6 10 Single component model This tutorial describes the handling of the single component model of the engine see also Figure 3 The components of the model are The Transformer Four quadrant chopper Traction inverter Motor and Gear efficiencies shall be as in Figure 105 Note that the transformer efficiency is versus current and the others constant or versus speed To see the effect of the transformer efficiency we will run one simulation with an mean transformer efficiency of 98 and one simulation with the efficiency as in Figure 105
90. AC 15k 16 2 3Hz regenerativeBrake tractiveEffort useAuxPower true tractiveCurrentLimitation f U brakeCurrentLimitation l f U fourQuadrantChopperPhi Phi f v retryRecovery false EfficiencyTable 4 Propulsion engine electric supply AC 25kV 50Hz brakeCurrentLimitation l f U tractiveCurrentLimitation f U useAuxPower true regenerativeBrake tractiveEffort maxPower maxTractEffort fourQuadrantChopperPhi Phi f u i retryRecovery true SingleComponent gear LRE transformer a Options record2DB true tolerance_A 0 1 maxiterations 100 maxPower maxEffort maxPower maxTractEftort maxPower maxEffort tractionMotor fourQuadrantChopperEfficiency efficiency f v tractioninverter efficiency f v F efficiency f v efficiency f v efficiency f Figure 18 Example ATM configuration of one engine in the Project File in Altova XMLSpy grid view This example uses a very detailed calculation with all propulsion components as efficiency curves for the AC 25kV 50Hz propulsion system see Figure 18 IFB DD UM_OPN_51_01 02 02 doc Page 29 of 168 DMJ 2010 05 12 OPN 51 1 2 2 3penPowerNet LE Ze MLA Institut f r Bahntechnik GmbH Page 30 of 168 User Manual Issue 2010 05 12 a PSC Network name frequence_Hz voltage_kV use comment recordCurrent recordVoltage Lines xi Substations al Earth
91. B gt lt Connector name MW track 1 2 km 29 750 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName MW lineID B trackID 1 km 29 750 gt lt ConductorTo condName MW lineID B trackID 2 29 750 gt lt Connector gt lt Connector name CW track 1 2 km 29 750 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName CW lineID B trackID 1 km 29 750 gt lt ConductorTo condName CW lineID B trackID 2 km 29 750 gt lt Connector gt lt Connector name RL track 1 2 km 29 750 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RL lineID B trackID 1 km 29 750 gt lt ConductorTo condName RL lineID B trackID 2 km 29 750 gt lt Connector gt lt Connector name RR track 1 2 km 29 750 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RR lineID B trackID 1 29 750 gt lt ConductorTo condName RR lineID B trackID 2 km 29 750 gt lt Connector gt lt Connection between the lines gt lt Connector name MW track A 2 B 1 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 2 km 20 gt lt ConductorTo condName MW lineID B trackID 1 km 20 gt lt Connector gt lt Connector name CW track A 2 B 1 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName CW lineID A trackID 2 km 20 gt lt ConductorTo condName CW lineID B
92. BB gt lt Busbars gt lt Storage name S1 storageReference Type_400A This is the reference to the storage defined in the TypDef File recordStatus true We want to record the status of this storage to the database unlimitedLoad false gt The storage shall not have an unlimited load lt BusbarFrom bbName OCS_BB gt The energy storage is connected to this busbar lt BusbarTo bbName Rails_BB gt and this busbar lt Storage gt lt Substation gt To load the TypDef File at simulation start we need to define the attribute typedefsFile in the Project File s root element OpenPowerNet typedefsFile D OPN_Projects Tutorial 04_Simple_Storage OPNData TypDef File xml As we want to run the short trains only we should set the simulation start time to 2 00 in the Project File s root element OpenPowerNet simulationStart_s 7200 6 5 2 Simulation We will run two simulations only with the short train courses ABCs_01 and CBAs_01 One simulation shall be with the Type_200A energy storage and one with the Type_400A energy storage Just take care to set the energy storage reference in substation SS_45 and to give each simulation a meaningful comment 6 5 3 Analysis First we will compare the DC network with and without energy storage type Type_400A We use Engine2 xls from menu OpenPowerNet gt Excel Tools gt Compare Two Engines The data for the network without storage is available from the DC tutorial
93. B_Dump false Whether to use dump files to speed up the simulation default is false recordComputation2DB false Whether to record computation data during ATM PSC iteration it is not recommended to set this value to true default is false The data recorded with this option is not necessary for analysis rstFile D OPN_Projects Tutorial 01_AC_Network OPNData Engine File xml switchStateFile D OPN_Projects Tutorial 01_AC_Network OPNData Switch File xml gt To record engine data set the attribute openPowerNet ATM Options record2DB to true The recording of currents and voltages for electrical networks is configured according to the element hierarchy of the Project File beginning at element openPowerNet PSC Network using the attributes recordCurrent and recordVoltage These two attributes have three allowed values true Record data of this element if higher hierarchy is not set to false sub true sub Record data of this and all lower elements false sub Do not record data of this and all lower elements To record the data of a storage set the attribute recordStatus in element OpenPowerNet PSC Network Substations Substation Storage to true This attribute is directly inherited from the top level attribute of the hierarchy Example XML snippet with recording attributes lt Network name A frequency Hz 0 voltage_kV 0 6 recordCurrent true Record currents for this network recordVoltage true gt Record volt
94. CS gt lt Switch state open time 01 05 00 name TSS_80_Rails gt lt Switch state open time 01 05 00 name TSS_80_LF gt lt Switch state close time 01 22 00 name TSS_80_OCS gt lt Switch state close time 01 22 00 name TSS_80_Rails gt lt Switch state close time 01 22 00 name TSS_80_LF gt lt SwitchSetting gt lt TPD gt lt ADE gt 6 4 2 Simulation For the description of the simulation see the AC network tutorial in chapter 6 2 2 6 4 3 Analysis 6 4 3 1 Default configuration U I f t 3500 2500 3000 2000 2500 t 1500 2000 I A 1500 d 1000 um 1000 500 500 02 10 00 02 20 00 4 02 30 00 4 02 40 00 4 02 50 00 48 03 00 00 01 00 00 01 10 00 01 20 00 4 01 30 00 4 01 50 00 4 G E 3 02 00 00 a Figure 75 The pantograph line voltage and current versus time for the DC network default configuration In the diagram above we can see the current limitation very well in hour 01 as the current drops as well as the voltage Usually it is as in hour 02 where the currents rise while the voltage drops to keep the constant power respective constant traction effort IFB DD UM_OPN_51_01 02 02 doc Page 84 of 168 DMJ 2010 05 12 CZE Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 85 of 168 User Manual Issue 2010 05 12 U f s 3500 4 3000
95. ConnectorSlice name dropper track 2 station A firstPos_km 0 2 lastPos_km 0 650 maxDistance_km 0 05 gt lt Connector zReal_Ohm 0 000073 zImag_Ohm 0 gt lt ConductorFrom condName MW trackID 2 gt lt ConductorTo condName CW trackID 2 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name dropper track 2 station B firstPos_km 9 800 lastPos_km 10 200 maxDistance_km 0 1 gt lt Connector zReal_Ohm 0 000073 zImag_Ohm 0 gt lt ConductorFrom condName MW trackID 2 gt lt ConductorTo condName CW trackID 2 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name rail connector track 1 station A firstPos_km 0 2 lastPos_km 1 maxDistance_km 0 05 gt lt Connector zReal_Ohm 0 00001 zImag_Ohm 0 gt lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName RR trackID 1 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name rail connector track 1 outside station A firstPos_km 1 2 lastPos_km 25 4 maxDistance_km 0 2 gt lt Connector zReal_Ohm 0 00001 zImag_Ohm 0 gt lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName RR trackID 1 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name rail connector track 2 station A firstPos_km 0 2 lastPos_km 0 650 maxDistance_km 0 05 gt lt Connector zReal_Ohm 0 00001 zImag_Ohm 0 gt lt ConductorFrom condName RL track
96. D pos km r current real Alv current ir voltage voltage _ reffort requested_r effort achieved _ speed Time CBAI_01 JA 1 0 906 36 153 0 000 27459 0 143 7 20 5 20 5 74 88 1 15 37 CBAI_01 JA 1 0 885 36 162 0 000 27451 6 177 0 20 5 20 5 74 88 1 15 38 CBAI_01 JA 1 0 864 36 172 0 000 27443 8 211 3 20 5 20 5 74 88 1 15 39 CBAI_01 JA 1 0 843 36 182 0 000 27436 1 244 9 20 5 20 5 74 88 1 15 40 CBAI_01 JA 1 0 822 36 193 0 000 27427 8 279 3 20 5 20 5 74 88 1 15 41 CBAI_01 JA 1 0 802 36 203 0 000 27419 7 313 0 20 5 20 5 74 88 1 15 42 CBAI_01 JA 1 0 781 36 213 0 000 27411 4 346 9 20 5 20 5 74 88 1 15 43 CBAI_01 JA 1 0 760 36 224 0 000 27402 6 381 5 20 5 20 5 74 88 1 15 44 CBAI_01 JA 1 0 739 36 235 0 000 27393 9 415 5 20 5 20 5 74 88 1 15 45 CDA Di JA 1 0 718 36 247 0 000 27384 7 450 2 20 5 20 5 74 88 1 15 46 CBAI_01 JA 1 0 697 36 258 0 000 27375 5 484 3 20 5 20 5 74 88 1 15 47 CDA Di JA 1 0 677 36 215 0 000 27410 2 350 7 20 5 20 5 74 88 1 15 48 CDA Di JA 1 0 656 36 215 0 000 27409 9 351 4 20 5 20 5 74 88 1 15 49 CDA Di JA 2 0 635 0 000 0 000 0 0 0 0 20 5 0 0 74 88 1 15 50 CDA Di JA 2 0 193 194 978 0 000 26901 7 1878 0 206 0 206 0 74 52 1 15 52 CDA Di JA 2 0 173 36 217 0 000 27408 7 355 0 20 5 20 5 74 88 1 15 53 CBAI_01 JA 2 0 152 36 217 0 000 27408 7 355 0 20 5 20 5 74 88 1 15 54 CBAI_01 JA 2 0 131 36 217 0 000 27408 7 355 0 20 5 20 5 74 88 1 15 55 CBAI_01 JA 2 0 110 36 217 0 000 27408 6 355 4 20 5 20 5 74 88 1 15 56 CBAI_01 JA 2 0
97. D A trackID 1 km 5 gt lt Switch defaultState close name TSS_5_Rails_Feeder_5 0 gt lt Connector gt lt RailsBB gt lt Busbars gt lt Substation gt lt Substations gt lt Earth condName E lineID A trackID 1 km 0 2 gt Note the beginning of the earth conductor at km 0 200 lt Network gt lt Options tolerance_grad 0 001 tolerance_V 0 1 tolerance_A 0 1 maxIncreaseCount 500 discreteTrains true evenlyDistributedTractionReturnCurrent true maxCurrentAngleIteration 100 gt lt PSC gt lt OpenPowerNet gt 6 7 5 1 3 Simulation Run both simulations one after the other Make sure that you upload the dump files after the first simulation IFB DD UM_OPN_51_01 02 02 doc Page 160 of 168 DMJ 2010 05 12 OPN 51 1 2 2 3penPowerNet 7 Ze ww Institut f r Bahntechnik GmbH Page 161 of 168 User Manual Issue 2010 05 12 6 7 5 1 4 Analysis For analysis we will use the Excel files Engine xls and CurrentTotal xls as well as the analysis tool KR Maximum Rail Earth Potential Network Tutorial Loop wrong Line A km 0 000 to 25 400 t E S swan Sut C U_max_1_RL U _max_1_RR A S 15 000 Position km U _max_2_RL U _max_2_RR 20 000 Return feeder U_nom 25 000 S Figure 134 The maximum rail earth potential of the simulation with the wrong network configuration 704 Vol
98. DB false rstFile D OPN_Projects Tutorial 01_AC_Network OPNData Engine File xml switchStateFile D OPN_Projects Tutorial 01_AC_Network OPNData Switch File xml The added Switch File simulationStart_s 3600 gt Do not forget to change the constant current engine in the Project File back to the default configuration After the simulation has finished we should check substation TSS_80 For this we will use PowerSupply2 xls and Engine2 xls P f t 7 00 6 00 5 00 7 4 00 4 2 00 4 1 00 0 00 01 00 00 01 05 00 01 10 00 01 15 00 01 20 00 01 25 00 4 01 30 00 4 35 00 4 01 40 00 01 45 00 7 01 50 00 01 55 00 02 00 00 01 P TSS_80 sim 1 zb TSS_80 sim 5 Figure 63 The diagram compares the power supplies of the transformer in TSS_80 between the default configuration P1 and the failure scenario P2 In the diagram above we can see that the transformer in TSS_80 had been switched off from 01 05 00 to 01 22 00 as it was defined in the Switch File IFB DD UM_OPN_51_01 02 02 doc Page 72 of 168 DMJ 2010 05 12 OPN 51 1 2 2 pen PowerNet LE Ze ww Institut f r Bahntechnik GmbH Page 73 of 168 User Manual Issue 2010 05 12 U t 28000 27500 27000 26500 26000 um 25000 24500 24000 01 00 00 01 05 00 4 01 10 00 4 01 15 00 4 01 20 00 4 01 25 00 4
99. Engine1 gt Propulsion suphly 4C 25k 50Hz brakeCurrentLimitation none tractiveCurrentLimitation none useAuxPower true fourQuadrantChopperPhi none regenerativeBrake none engine electric tractiveEtfort maxPowerimaxTractEffort gt MeanEfficiency gt lt Vehicles gt Options tolerance_A 0 1 maxiterations 1000 record2DB true gt 1 sie 5 lt PSC Network name A C use true vollage_kV 25 frequence_Hz 50 recordVoltage true recardCurrent true gt ines recordCurrent false sub recordVoltage false sub gt Line name A maxSliceDistance_km 0 5 gt Conductors gt Conductor type MessangerVVire gt StartPosition condName MW trackID 1 km 0 gt ToProperty toPos_km 85 4 equivalentRadius_mm we_GradCelsius 20 temperatureCoefficient 0 00 onductor r20_Ohm_km 0 2311 x_m 0 BEE onductor type ContactWire gt StartPosition condName CW tracklD 1 km 0 gt ToProperty toPos_km 85 4 equivalentRadius_mm 3 45 r20_Ohm_km 0 1852 re_GradCelsius 20 temperstureCoefficient 0 00385 x_m 0 y_m 5 3 gt onductor gt onductor type Rail gt StartPosition condName RL trackID 1 km 0 lt ToProperty toPos_km 85 4 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 rature_GradCelsius 20 temperatureCoefficient 0 004 x_m 0 75 y_m 0 gt onductor gt onductor type Rail gt StartPosition condName RR tracklD 1 km 0 gt ToPrope
100. Figure 32 Wp sum 22 270 51 603 26 127 Figure 32 Proportional portioned energy consumption of Train Operating Companies expressed in percent of the total energy consumptions of all Train Operating Companies 4 5 Analysis The Analysis Tool is available from the GUI OpenPowerNet menu and starts up as a separate application see Figure 33 Messages from the tool are displayed in the GUI console with name OPN These messages give information about the progress of the analysis warnings and failures IFB DD UM_OPN_51_01 02 02 doc Page 40 of 168 DMJ 2010 05 12 CZE Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 41 of 168 User Manual Issue 2010 05 12 OpenPowerNet Analysis File Bic Tools Help Automatic Analysis Magnetic Field recor Figure 33 The Analysis Tool main window 4 5 1 File gt Setup The setup define the output directory Figure 34 and the default ODBC connection Figure 35 Restart the application to make your changes effective Ordner suchen Select OpenPowerNet Work Directory IF you escape or cancel this dialog the folders are extract to D Usr Jacob Analysis_Out Bo O Lines O Network Tutorial Loop Network Tutorial Loop_20090912_111730_0 Network Tutorial Loop_20090912_112113_0 Sendto Ordner OpenPowerNet Figure 34 The dialog to select the default output directory Select Database
101. Help System for details The general usage of OpenPowerNet consists of three main tasks configuration simulation and visualisation see Figure 2 First the project files for the electrical network engines and switch states have to be prepared in correspondence with the operational project files of OpenTrack This is probably the most extensive job The second task is running the simulation in co simulation with OpenTrack The third task is the visualisation and analysis of the resulting simulation data 4 1 Configuration of OpenTrack OpenTrack is the railway operation simulation program It handles the driving dynamics respecting the track alignment the train characteristics the signalling system and the operation program For the handling of OpenTrack please check the documentation delivered with the program For inter process communication it is necessary to set some special configurations in OpenTrack see Figure 14 IFB DD UM_OPN_51_01 02 02 doc Page 21 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 22 of 168 User Manual Issue 2010 05 12 OpenPowerNet Settings x OpenTrack Server Port Default 9002 9002 Server Status E Running Start OPN Server Port Default 8004 9004 OPN Server localhost Timeout s 1000 000 IV Use OpenPowerNet OPN M Keep Connection OK Figure 14 OpenPowerNet configuration dialog in OpenTrack Menu Info gt
102. ID 2 gt lt ConductorTo condName RR trackID 2 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name rail connector track 2 station B firstPos_km 9 800 lastPos_km 10 200 maxDistance_km 0 1 gt lt Connector zReal_Ohm 0 00001 zImag_Ohm 0 gt lt ConductorFrom condName RL trackID 2 gt lt ConductorTo condName RR trackID 2 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlices gt The configuration of the leakages lt Leakages gt Leakage of track 1 in station A lt Leakage firstPos_km 0 2 lastPos_km 25 4 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 0 2 lastPos_km 25 4 yReal_S_km 0 1 yImag_S_km 0 gt IFB DD UM_OPN_51_01 02 02 doc Page 158 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 159 of 168 User Manual Issue 2010 05 12 lt ConductorFrom condName RR trackID 1 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt Leakage of track 2 in station A lt Leakage firstPos_km 0 2 lastPos_km 0 650 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RL trackID 2 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 0 2 lastPos_km 0 650 yReal_S_km 0 1 yImag_S_km 0 gt lt Con
103. ID A trackID 1 km 4 7 gt lt Connector gt lt Connector name zReal_Ohm 0 001 zImag_Ohm 0 gt lt ConductorFrom condName TSS_5_RF_r lineID A trackID 1 km 5 3 lt ConductorTo condName RR lineID A trackID 1 km 5 3 gt lt Connector gt These are the connectors to the new negative feeder lt Connector name zReal_Ohm 0 001 zImag_Ohm 0 gt lt ConductorFrom condName TSS_5 NF_1 lineID A trackID 1 km 4 7 lt ConductorTo condName NF lineID A trackID 1 km 4 7 gt lt Connector gt lt Connector name zReal_Ohm 0 001 zImag_Ohm 0 gt lt ConductorFrom condName TSS_5_NF_r lineID A trackID 1 km 5 3 lt ConductorTo condName NF lineID A trackID 1 km 5 3 gt lt Connector gt gt gt gt gt gt gt Instead of isolators we use now conductor switches Remove the Isolators and add the XML snipped below lt Switches gt lt ConductorSwitch gt lt Switch defaultState open name TSS_5 4 8 CW gt lt Position km 4 8 trackID 1 condName CW gt lt ConductorSwitch gt lt ConductorSwitch gt lt Switch defaultState open name TSS_5 4 8 MW gt lt Position km 4 8 trackID 1 condName MW gt lt ConductorSwitch gt lt ConductorSwitch gt lt Switch defaultState open name TSS_5_4 8_NF gt lt Position km 4 8 trackID 1 condName NF gt lt ConductorSwitch gt lt ConductorSwitch gt lt Switch defaultState o
104. Imag_Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 1 km 0 200 gt lt ConductorTo condName RR lineID A trackID 2 km 0 200 gt lt Connector gt lt Connector name MW track 1 2 km 0 650 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 1 km 0 650 gt lt ConductorTo condName MW lineID A trackID 2 km 0 650 gt lt Connector gt lt Connector name CW track 1 2 km 0 650 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName CW lineID A trackID 1 290 650 f gt lt ConductorTo condName CW lineID A trackID 2 km 0 650 gt lt Connector gt lt Connector name RL track 1 2 km 0 650 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 1 0 650 gt lt ConductorTo condName RL lineID A trackID 2 km 0 650 gt lt Connector gt lt Connector name RR track 1 2 km 0 650 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 1 km 0 650 gt lt ConductorTo condName RR lineID A trackID 2 km 0 650 gt lt Connector gt lt Connector name MW track 1 2 km 9 750 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 1 km 9 750 gt lt ConductorTo condName MW lineID A trackID 2 km 9 750 gt lt Connector gt lt Connector name CW track 1 2 km 9 750 zReal_Ohm 0 000010 zIm
105. N sheet to display the correct curves etha Trafo Figure 106 The cell in the Excel sheet SELECTION to set the transformer efficiency IFB DD UM_OPN_51_01 02 02 doc Page 115 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 116 of 168 User Manual Issue 2010 05 12 etha f v 100 90 oy Pp ee REH 70 3 60 som 4 8 i D 40 30 i 20 H H 10 0 t t t t 0 50 100 150 200 250 v km h Effi_tract Effi_total Figure 107 The tractive and total efficiency of course ABCI_01 versus speed etha_total f v 100 80 t 60 40 Aa T T e 20 Ww rT ss 0 oO amp 5 20 40 60 80 100 0 50 100 150 200 250 v km h eCourse ABCLOt Sim 30 eCourse ABCI_O1 Sim 31 Figure 108 The total efficiency of course ABCI_01 with mean sim 30 and versus current sim 31 transformer efficiency 6 7 Network model In the following tutorials we will focus on advanced network configuration 6 7 1 Substations tutorial In this tutorial we will create a substation two transformers Each transformer shall have a busbar and connectors between them The substation shall be same as in Figure 109 but with two winding transformers The infeeds shall be at km 5 000 and km 6 000 At 1 04 30 one transformer shall be disconnected and at 1
106. Name depot Project_Name courses Project_Name dest Project_Name stations Project_Name timetable Project_Name trains OTDocuments OpenTrack infrastructure Project_Name opentrack OTOutput OpenTrack output directory The folder and file structure above has to be prepared manually For the output data structure refer to chapter 3 7 To achieve a correct simulation result it is necessary to have sufficient information about the railway electrical network and engines For a detailed list of required technical information please see chapter 5 The following list is a minimum of necessary information to create the configuration data OpenTrack IFB DD UM_OPN_51_01 02 02 doc Page 50 of 168 DMJ 2010 05 12 OPN 51 1 2 2 7 Ze LLA Institut f r Bahntechnik GmbH 3penPowerNet Page 51 of 168 User Manual Issue 2010 05 12 e Track layout length e Timetable e e Signalling system OpenPowerNet curves gradients points crossings Engine effort speed diagram weight resistance formula values auxiliary power e Electrical network layout conductor and connector characteristic e Power supply transformer or rectifier data feeder cable characteristic e Switch position and default state e Engine effort speed diagram or maximum power amp maximum effort efficiency auxiliary power As editor for the XML Files we use Altova XML
107. OpenTrack The bases are the configuration files from the AC tutorial in chapter 6 2 We need to e Change the propulsion system of the infrastructure Figure 120 and e Add the 3 kV DC propulsion system to Engine1 Figure 121 S Tutorial_AC DC_Networks opentrack 0 Tutorial 06_Network_Model 03_AC DC_Networks OTDocuments Info Document Edit Format Tools Functions Windows Print Hide Quit Station A Station B Station C r e z u z Oe i s 0 _ D Hr r tele Leger ei en ee LI T 4 Ie H Li Bebe au A Figure 120 The OpenTrack infrastructure indicating the AC blue and DC orange power supply system IFB DD UM_OPN_51_01 02 02 doc Page 131 of 168 DMJ 2010 05 12 CZE Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 132 of 168 User Manual Issue 2010 05 12 Engines xj Engine Engine Name Engine 1 Load ft 75 Resistance Factor 3 2999 Adh Load ft 75 Rot mass Factor 1 0599 AC DC_Networks depot 0 Tutorial 06 Network ModehGs Ate oj x Length m 25 Balise Telegram Info Document Edit Format Tools Functions Windows Print Hide Quit Vv Loop Telegram M iv Speed max km h 250 Radio Telegram E Tractive Effort max kny 250 Rack Traction a k N e 4 V DC 2400 V IC 3000 V pc sooo v Engine Disgem 1 Export Import Dupl Del Aad d spot por vi Del Diagram Color MEE Diagram 2
108. Options discreteTrains tolerance_grad tolerance_V tolerance_A maxincreaseCount maxCurrent nglelteration TestNetwork 50 25 true AC 25k 50Hz true true Line name recordCurrent recordVoltage Conductors condName R linelD Line1 trackID up km a false 0 001 Di 1 500 eventyDistributedTractionReturnCurrent true 1000 Line1 maxSliceDistance_km 0 1 false sub false sub Conductor 2 type StartPosition 1 ContactWire aj StartPosition condName CV trackID up km D 2 Rail StartPosition condName R trackiD up km D 3 ToProperty a ToProperty equivalentRadius_mm 5 4 toPos_km 10 r20_Ohm_km 0 1852 temperature_GradCelsius 20 temperatureCoefficient 0 00385 xm 0 vm 53 ToProperty equivalentRadius_mm 38 52 toPos_km 10 r20_0hm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 xm 0 7175 y_m D Figure 19 Example network configuration including line substation earthing node and general PSC options IFB DD UM_OPN_51_01 02 02 doc Page 30 of 168 DMJ 2010 05 12 OPN 51 1 2 2 3penPowerNet CZE Ze ww Institut f r Bahntechnik GmbH Page 31 of 168 User Manual Issue 2010 05 12 Substations Substation name TSS_10 ai TwoWindingTransformer name TT 01 nomPower_MVA 85 nomPrimaryVoltage_kV 150 nomSecondaryVoltage_kV 27 noLoadLosses_kW 28 1 loadLosse
109. R lineID A trackID 2 km 9 750 gt lt Connector gt lt Connectors gt lt Substations gt lt Substation name TSS_5 gt The substation at km 5 000 with rectifier lt Rectifier name R1 internalResistance_Ohm 0 01 nomVoltage_kV 3 3 energyRecovery false gt lt OCSBB bbName 0CS_BB z_real_Ohm 0 001 z_imag_Ohm 0 gt lt RailsBB bbName Rails_ BB z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Rectifier gt lt Busbars gt IFB DD UM_OPN_51_01 02 02 doc Page 134 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 135 of 168 User Manual Issue 2010 05 12 lt OCSBB bbName 0CS_BB gt lt Connector name TSS_5_OCS_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName CW lineID A trackID 1 5 gt lt Connector gt lt Connector name TSS_5_LF_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName LF lineID A trackID 1 km 5 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails_BB gt lt Connector name TSS_5_Rails_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName RR lineID A trackID 1 km 5 gt lt Connector gt lt RailsBB gt lt Busbars gt lt Substation gt lt Substations gt lt Earth condName E lineID A trackID 1 km 0 gt lt Network gt The AC network lt Network name B C use true voltage _kV 25 The nominal voltage and frequ
110. SN euere ee 84 6 4 3 1 Default configuration nee ee 84 BASE enger Le ee 86 E EE See ug dE 86 6 4 3 4 Failure Scenarld n ann 87 6 5 DC Network with Energy Storage Tutorial 88 6 5 1 Te It e E 88 IFB DD UM_OPN_51_01 02 02 doc Page 3 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pe n P owe rN et WS Page 4 of 168 User Manual Issue 2010 05 12 6 5 1 1 el TEE 88 6 5 1 2 Openbowerhet AEN 88 6 5 2 SITU ON ee nee nee es 90 6 5 3 eeh 90 6 6 Engine e EE 92 6 6 1 Power Facl riUl fl l e uecseenc tee 92 6 6 1 1 Configuration EE 93 Ge E e 93 66 1 3 TE 93 6 6 2 Tractive effort tutorial ENEE 94 6 6 2 1 Configuration sense 95 6 6 22 SU AND ee ee 96 6623 Anal seien 96 6 6 3 Tractive current limitation Tutorial 97 6 6 4 Regenerative braking tutorial ccccceceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaaees 97 6641 GONIGULANON ee 97 G En EE e 98 GE E E 98 6 6 5 Brake current limitation tutorial EEN 100 6 6 5 1 Configuration E 100 665 2 SEENEN 101 E WE 101 6 6 6 Auxiliary power W nden 102 6 6 6 1 Configuration E 103 6662 UE e 104 6 6 6 3 Analysis anne 104 6 6 7 Eddy current brake total 107 6 6 7 1 Configuration E 107 667 2 SMUAIN ssassn as a ne EEE A E EEEO E 108 e WE E 109 6 6 8 Mean efficiency model tutorial EEN 110 6 6 9 Efficiency table model tutorial EEN 110 66 91 CONMQUKANON E 110 6 6 9 2 SIMUlalon e ee 111 BEI E 111 6 6 10 Single component model E 112 IFB DD UM_OPN_51
111. S_5_Rails_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName RF 1 lineID A trackID 1 km 501 gt lt Switch defaultState close name TSS_5_Rails_Feeder_5 0 gt lt Connector gt lt RailsBB gt lt OCSBB bbName OCS_BB_2 gt lt Connector name TSS_5_OCS_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName IF 7 lineID A trackID 1 km 5 1 gt lt Switch defaultState close name TSS_5_OCS_Feeder_6 0 gt lt Switch gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails_BB_2 gt lt Connector name TSS_5_Rails_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName RF lineID A trackID 1 km 5 01 gt lt Switch defaultState close name TSS_5_Rails_Feeder_6 0 gt lt Connector gt lt RailsBB gt lt Busbars gt 6 7 1 1 3 Simulation First we run the wrong and then the correct simulation Note the message at the beginning of the simulation You can see which currents and voltages are recorded to the database A oy symbolize a recorded value and a a not recorded value 6 7 1 1 4 Analysis For analysis we will use the Excel files CurrentTotal xls and Voltage xls I A 250000 7 200000 150000 100000 50000 0 000 I_total f s wrong real img 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000 9 000 10 000 s km Figure 112 The sum of the conductor current for e
112. Spy Any other text editor can be used as well but for convenience it should be an XML Editor that can use an XML Schema to evaluate the XML File and gives editing support While editing the file it is advised to open the Info Window to see the description to the selected element or attribute as well as to open the Editing Support Window see Figure 42 E Altova XMLSpy Project File xml zl sl Datei Bearbeiten Projekt XML DTD Schema Schema Design XSL XQuery Authentic Konvertieren Ansicht Browser Extras ET o EEEN SM ee Pr z Attribute supply Dane whiteSpace required string preserve IAC 15kV 16 2 3Hz IAC 11KV 16 23Hz AC 10kV 50Hz JAC 25kV SOHZ JAC 50kV 50Hz DC 00v DC 750V The type of power supply system for electric engines go SS gg Fenster Hilfe Mae me xml version 1 0 encoding UTF 8 E lt OpenPowerNet xmins xsi http www w3 org 2001 xMLSchema instance xsinoNamespaceSchemalocation s OpenPowerNet xsd name Tutorial AC Network comment maxtterations 1 000 maxFailediterations 100 dbUser opndbusr dbPasswd lmargst3 odboDns pscresults record2DB true record2DB_Dump false recordComputation2DB false rstFile D OPN_Projects Tutoriali01_AC_Network OPNData Engine File xml switchStateFile D OPN_Projects Tutoriali01_AC_Network OPNDatalSwitch File xml ee selected attribute lt Vehicles gt ehicle eddyCurgitBrake talse enginelD
113. Switch name TSS_5_T1_OCS defaultState close gt lt OCSBB gt lt RailsBB bbName Rails_BB z_real_Ohm 0 001 z_imag Ohm 0 gt lt Switch name TSS_5_T1_Rails defaultState close gt lt RailsBB gt lt NegativeFeederBB bbName NF_BB z_real_Ohm 0 001 z_imag Ohm 0 gt The new negative feeder busbar lt Switch name TSS_5_TI_NF defaultState close gt lt NegativeFeederBB gt lt ThreeWindingTransformer gt lt Busbars gt lt OCSBB bbName 0CS_BB gt lt Connector name TSS_5_OCS_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt IFB DD UM_OPN_51_01 02 02 doc Page 74 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 75 of 168 User Manual Issue 2010 05 12 lt Position condName CW lineID A trackID 1 km 5 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails_BB gt lt Connector name TSS_5_Rails_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName RR lineID A trackID 1 km 5 gt lt Connector gt lt RailsBB gt lt NegativeFeederBB bbName NF_BB gt The new feeder for the negative feeder lt Connector name TSS_5_NF_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName NF lineID A trackID 1 km 5 gt lt Connector gt lt NegativeFeederBB gt lt Busbars gt lt Substation gt Third we change TSS_80 to ATS_80 with autotransformer and busbars for OCS rails and negative f
114. Unit gt lt valueLine xValue 0 gt lt values yValue 40 gt lt valueLine gt lt valueLine xValue 10 gt lt values yValue 75 gt lt valueLine gt lt valueLine xValue 30 gt lt values yValue 85 gt lt valueLine gt lt valueLine xValue 50 gt lt values yValue 88 gt lt valueLine gt lt valueLine xValue 80 gt lt values yValue 91 gt lt valueLine gt lt valueLine xValue 150 gt lt values yValue 91 gt lt valueLine gt lt valueLine xValue 250 gt lt values yValue 88 gt lt valueLine gt lt valueTable gt lt brakeVehicleEfficiency gt lt propulsion gt lt engine gt lt vehicle gt 6 6 9 1 2 2 Project File In the Project File we need to set only the regenerative brake and to specify the efficiency model lt Vehicle eddyCurrentBrake false engineID Enginel gt lt Propulsion engine electric supply AC 25kV 50Hz brakeCurrentLimitation none tractiveCurrentLimitation none useAuxPower true fourQuadrantChopperPhi none regenerativeBrake maxPower maxEffort Set this to use regenerative braking tractiveEffort maxPower maxTractEffort gt lt MeanEfficiency gt Use this element to specify the efficiency model in the second simulation by replacing this element with lt EfficiencyTable gt lt Propulsion gt lt Vehicle gt Set the right Engine File and don t forget to set a meaningful project name and comment in the project file 6
115. _01 02 02 doc Page 4 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pe n P owe rN et WS Page 5 of 168 User Manual Issue 2010 05 12 GENEE WE ue tele E 113 56 102 Simllalon ee ee 115 66 102 MEN 115 6 7 Network MOB een 116 6 7 1 S bstations e CT serie ee ee 116 6 7 1 1 Configuration DE 118 6 7 2 Neutral zone t l tlala nn 124 6 7 2 1 Copfig rati Eau 126 6 7 3 AC DC networks DT E 131 Pcl e ie le EE 131 6 7 4 Network with multiple lines points and crossings tutorial 137 6 7 4 1 Configuration E 139 6 7 5 T rning loops Oe TEE 149 6 7 5 1 Configuration nern 149 7 Eege 162 7 1 What needs to be considered in OpenTrack to use OpenPowerNet 162 7 2 How to deal with broken chainage ee 163 7 2 1 Positive broken chainage 164 7 2 2 Negative broken chainage EEN 165 7 3 How to organise the files and oder 165 7 4 How to calculate the equivalent radius cccceeeeeeeeeeeeeeeeeeeeeeeeeeeees 165 7 5 How to draw a constant current sessssseeeeeeeeeseerrrrrrrrneseerrrrrnnnnnneeerenne 166 7 6 How to simulate short circuits ANEN 166 7 7 How to prevent the consideration of the achieved effort in OpenTrack while using OpenPowerNet u u u2220e 2 nn 167 7 8 Where are the SM Gchemase 167 7 9 Which XML Schema for which XML File 0 eeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 167 7 10 How to change the working directory sssssessssssrernreesseerrrrnrnrenseerrnee
116. abase schema e Export data from database e Import data into database and e Upload dump files into database The detailed description of all tasks is available in the Help System under openPowerNet User Interface User Guide gt Usage 5 Required technical data for the simulation Track alignment and signalling e Track layout e Chainage e Longitudinal declination begin end gradient sign e Begin and end of single or multiple track sections IFB DD UM_OPN_51_01 02 02 doc Page 47 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 48 of 168 User Manual Issue 2010 05 12 e Position of switches crossings and junctions e Begin end and radius of bending curves e Begin and end of tunnels e Begin and end of different track types and rail profiles e Position and kind of signals and signalling sections Operational data e Position of passenger stations and signal related stopping points e Permissible speed profiles e Stopping times at stations turning times at termini e Time table of all line sections including internal rides e Train types train configuration and loading grade per section e Operation concept incl special operational scenarios Vehicle data e Vehicle or train mass empty laden e Adhesion mass e Maximum speed e Driving resistance formula e Factor for rotating mass e Propulsion characteristics as follows e Tra
117. ach section and all time steps with the wrong configuration IFB DD UM_OPN_51_01 02 02 doc Page 122 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 123 of 168 User Manual Issue 2010 05 12 I_total f s correct real imag 0 000 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000 9 000 10 000 s km Figure 113 The sum of the conductor current for each section and all time steps with the correct configuration When we compare both diagrams above we can see the wrong configuration results in a current sum much higher than 0 A In Figure 113 the resulting current is almost 0 A The current is not exact 0 A due to numeric rounding during the calculation and analysis U f s mr eg d 7 250 200 150 I A 100 s km mE RR DeltaU Courses Figure 114 The potential of the earth conductor and rail to the earth node and the touch voltage between the rail RR and earth as result of the wrong configured network at 1 28 37 The right y axis shows the current of the course IFB DD UM_OPN_51_01 02 02 doc Page 123 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 124 of 168 User Manual Issue 2010 05 12 U f s 200 150 M UO r 100
118. ag_Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 1 9 750 f gt lt ConductorTo condName MW lineID A trackID 2 km 9 750 gt lt Connector gt lt Connector name CW track 1 2 km 9 750 zReal_Ohm 0 000010 zImag_ Ohm 0 gt lt ConductorFrom condName CW lineID A trackID 1 km 9 750 gt IFB DD UM_OPN_51_01 02 02 doc Page 154 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 155 of 168 User Manual Issue 2010 05 12 lt ConductorTo condName CW lineID A trackID 2 km 9 750 gt lt Connector gt lt Connector name RL track 1 2 km 9 750 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 1 km 9 750 gt lt ConductorTo condName RL lineID A trackID 2 km 9 750 gt lt Connector gt lt Connector name RR track 1 2 km 9 750 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 1 km 9 750 gt lt ConductorTo condName RR lineID A trackID 2 750 ZS lt Connector gt lt Connector name MW track 1 2 km 10 250 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 1 km 10 250 gt lt ConductorTo condName MW lineID A trackID 2 km 10 250 gt lt Connector gt lt Connector name CW track 1 2 km 10 250 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condN
119. ag_Ohm 0 gt lt ConductorFrom condName CW lineID A trackID 1 km 9 750 gt lt ConductorTo condName CW lineID A trackID 2 9 750 gt lt Connector gt lt Connector name RL track 1 2 km 9 750 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 1 km 9 750 gt lt ConductorTo condName RL lineID A trackID 2 km 9 750 gt IFB DD UM_OPN_51_01 02 02 doc Page 159 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et TIL Institut f r Bahntechnik GmbH Page 160 of 168 User Manual Issue 2010 05 12 lt Connector gt lt Connector name RR track 1 2 km 9 750 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 1 km 9 750 gt lt ConductorTo condName RR lineID A trackID 2 km 9 750 gt lt Connector gt lt Connector name MW track 1 2 km 10 250 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 1 km 10 250 gt lt ConductorTo condName MW lineID A trackID 2 10 250 gt lt Connector gt lt Connector name CW track 1 2 km 10 250 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName CW lineID A trackID 1 10 250 f gt lt ConductorTo condName CW lineID A trackID 2 km 10 250 gt lt Connector gt lt Connector name RL track 1 2 km 10 250 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFr
120. ages for this network lt Lines gt No recording attributes set therefore the default value true will be applied lt Line name A recordCurrent false tsub Do not record currents for this line and all subordinate elements recordVoltage false tsub gt Do not record voltages for this line and all subordinate elements lt Line gt lt Lines gt lt Substations recordCurrent true Record currents for all substations if not contrary defined for a specific substation IFB DD UM_OPN_51_01 02 02 doc Page 32 of 168 DMJ 2010 05 12 OPN 51 1 2 2 penP 7 Ze Mh Institut f r Bahntechnik GmbH owerNet User Page 33 of 168 Manual Issue 2010 05 12 recordVoltage true gt Record voltages for all specific substation lt Substation name TSS_A recordCurrent true Record currents for this recordVoltage true gt Record voltages for thi lt Substation gt lt Substation name BC recordCurrent false sub Do not record curre recordVoltage false sub gt Do not record volt lt Busbars gt lt Busbars gt lt Storage name 1 storageReference Typ_600V recordStatus true gt Record status for this s lt BusbarFrom bbName ocsbb gt lt BusbarTo bbName railsbb gt lt Storage gt lt Substation gt lt Substations gt substations if not contrary defined for a substation s substation nts for this substation ages for this substation torage including storage cur
121. alentRadius_mm 3 45 r20_Ohm_km 0 2311 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 0 wv m 6 9 gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 1 km 0 gt lt ToProperty toPos_km 30 4 equivalentRadius_mm 3 45 r20_Ohm_km 0 1852 temperature_GradCelsius 20 temperatureCoefficient 0 00385 x_m 0 y m 5 3 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 1 km 0 gt lt ToProperty toPos_km 30 4 equivalentRadius_mm 38 52 r20_ Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x m 0 75 y m 0 gt IFB DD UM_OPN_51_01 02 02 doc Page 139 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 140 of 168 User Manual Issue 2010 05 12 lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 1 km 0 gt lt ToProperty toPos_km 30 4 equivalentRadius_mm 38 52 r20_Ohm km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 0 75 y_m 0 gt lt Conductor gt The conductor configuration for track 2 lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 2 km 9 750 gt lt ToProperty toPos_km 20 000 equivalentRadius_mm 3 45 r20_Ohm_km 0 2311 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 10 y_m
122. ame CW lineID A trackID 1 km 10 250 gt lt ConductorTo condName CW lineID A trackID 2 km 10 250 gt lt Connector gt lt Connector name RL track 1 2 km 10 250 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 1 km 10 250 gt lt ConductorTo condName RL lineID A trackID 2 km 10 250 gt lt Connector gt lt Connector name RR track 1 2 km 10 250 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 1 km 10 250 gt lt ConductorTo condName RR lineID A trackID 2 km 10 250 gt lt Connector gt lt Connectors gt The substation at km 5 000 lt Substations gt lt Substation name TSS_5 gt lt TwoWindingTransformer name T1 nomPower_MVA 10 nomPrimaryVoltage_kV 115 nomSecondaryVoltage_kV 27 5 noLoadLosses_kW 6 5 loadLosses_kW 230 relativeShortCircuitVoltage_percent 10 7 noLoadCurrent_A 0 06 gt lt OCSBB bbName 0CS_BB 1 z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Switch name TSS_5_T1_OCS defaultState close gt lt OCSBB gt lt RailsBB bbName Rails_BB_1 z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Switch name TSS_5_T1_Rails defaultState close gt lt RailsBB gt lt TwoWindingTransformer gt lt Busbars gt lt OCSBB bbName OCS_BB_1 gt lt Connector name TSS_5_OCS_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName CW lineID A trackID 1 km 5 gt lt Switch
123. auxiliary power for each trailer of a train can be specified as a constant power This is possible in the Train Edit dialog of OpenTrack In this tutorial we focus only on the possibilities in OpenPowerNet In OpenPowerNet we have 4 different auxiliary power models of an engine It is possible to combine all 4 models within one engine The auxiliary models are e Constant power e Constant resistance e Constant power during braking and e Constant resistance during braking As the auxiliary power while braking is only active for regenerative engines we define the maximum regenerative brake power and maximum regenerative brake effort with the same values as for traction The value of the auxiliary power shall be 100 kW The resistance shall produce a power of 100 kW at a pantograph voltage of 27 4 kV and is therefore 7507 4 Q see the formulas below R P IFB DD UM_OPN_51_01 02 02 doc Page 102 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 103 of 168 User Manual Issue 2010 05 12 2172 7507 6QD 27400 V 100000W To be able to compare the different auxiliary models we do 5 simulations The first without auxiliary power and then one by one the different models As the short trains have less auxiliary power of the trailers we will use only the short trains to show clearly the effect of the engine auxiliary 6 6 6 1 Configuration 6 6 6 1 1 Op
124. ble 9 Typical rectifier configuration Characteristics type simple maxLoad_MWs 15 initialLoad_MWs 15 lossPower_kW 0 1 loadRi_Ohm 0 005 unloadRi_Ohm 0 005 auxPower1_kW 10 Function minLoadAllowUnload_MWs 0 loadMaxCurrent1_A 200 unloadMaxCurrenti_A 1400 voltage1LoadStart_kV 0 725 voltage1LoadStop_ kV 0 720 voltage1 UnloadStart_kV 0 715 voltage1 UnloadStop_kV 0 720 Table 10 Typical storage configuration contact Ri150 150mm 0 1185 0 0054 0 00393 wire Ri120 120mm2 0 1481 0 0048 0 00393 messenger Cu150 150mm 0 1185 0 00531 0 004 wire Cu120 120mm 0 1481 0 00468 0 004 feeder Al 625 625mm 0 0459 0 01092 0 004 Al St260 23 260mm Al amp 0 1068 0 00733 0 004 23mm steel rail UIC60 0 0306 0 03852 0 004 UIC54 0 0339 0 03659 0 004 third rail Al 5100 Al 5100mm2 0 0064 0 0314 0 00382 Fe 7600 7600mm steel 0 0159 0 0383 0 005 Table 11 Typical conductor configuration values IFB DD UM_OPN_51_01 02 02 doc Page 34 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 35 of 168 User Manual Issue 2010 05 12 4 2 3 4 Switch File The optional switch state file is an XML file It observes the schema schemas ADE xsd in plugin de bahntechnik dd opn bin_x x x_JJJJMMDDhhmm The HTML schema documentation can be found in the GUI Help System at OpenPowerNet User Guide
125. configuration options of Project File configuration data of Engine File configuration data from OpenTrack Figure 3 Single component engine model with power flow and configuration options IFB DD UM_OPN_51_01 02 02 doc Page 12 of 168 DMJ 2010 05 12 OPN 51 1 2 2 3penPowerNet 7 Ze w 2 Institut f r Bahntechnik GmbH Page 13 of 168 User Manual Issue 2010 05 12 3 Si gt a 2 DI c G Auxiliary Traction Power use true false Pac F odim P orak Pais TP aa and or Reonst and or Fira and or WEN aux_trailer T const Legend configuration options of Project File configuration data of Engine File configuration data from OpenTrack T none f U Limit_regenerative none t U P none mean f P ecn f v f U f I SOU Niractive mean mean n regenerative F sasive gt f v HE ae Pra none f v f F a0P regenerative Sech Eddy Current Brake Power use true false P HP Fra max el Figure 4 Mean efficiency engine model with power flow and configuration options IFB DD UM_OPN_51_01 02 02 doc Page 13 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et Zi Institut f r Bahntechnik GmbH Page 14 of 168 User Manual Issue 2010 05 12 T none f U Cu rrent ke sgan none f U P none mean f P ecn f v f U I SOU Niractive f v d Efficiency Table Model F sasive
126. configure the Engine and Switch File used the Engine model and the electrical model First of all we need to create a new XML File and to specify the schema The latest schema can be found in plugin de bahntechnik dd opn bin_x x x_JJJJMMDDhhmm schemas OpenPowerNet xsd At the beginning we will configure the general simulation data lt OpenPowerNet xmlns xsi http www w3 org 2001 XMLSchema instance xsi noNamespaceSchemaLlocation D Usr OpenPowerNet 1 2 2 plugins de bahntechnik dd opn bin_ x X X_JJJJMMDDhhmm schemas OpenPowerNet xsd name Tutorial AC Network comment This is a comment for a specific simulation maxIterations 1000 maxFailedIterations 100 odbcDsn pscresults record2DB true record2DB_Dump false recordComputation2DB false simulationStart_s 3600 rstFile D OPN_Projects Tutorial 01_AC_Network OPNData Engine File xml gt IFB DD UM_OPN_51_01 02 02 doc Page 56 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 57 of 168 User Manual Issue 2010 05 12 Besides the name of the project and a comment set the allowed maximum iterations to 1000 the allowed failed iterations to 100 so the simulation will not abort in case iterations for some time steps fail Time steps fail in case a network is overburden As we want to write the simulation data directly into the database we need to set a ODBC DSN that we want to record data but not i
127. coveryVoltage tractive effort max engine propulsion power engine propulsion maxTractEffort curve engine propulsion tractive Effort valueT able eddy current none brake max brakes eddyCurrentBrake maxPower brakes eddyCurrentBrake maxEffort brakes eddyCurrentBrake minSpeed Note Eddy current braking is only active for engines with recovery braking Table 2 Common data used by ATM transformer none mean transformer meanEfficiency curve transformer efficiency valueT able four none S quadrant mean fourQuadrantChopper meanEfficiency chopper curve fourQuadrantChopper efficiency valueTable traction none inverter mean tractionInverter meanEfficiency curve traction Inverter efficiency valueT able motor none mean tractionMotor meanEfficiency curve tractionMotor efficiency valueT able gear none mean gear meanEfficiency curve gear efficiency value Table IFB DD UM_OPN_51_01 02 02 doc Page 26 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 27 of 168 User Manual Issue 2010 05 12 Table 3 Single Component Model specific data used by ATM totalTractEfficiency totalBrakeEfficiency Table 4 Mean Efficiency Model specific data used by ATM tractiveVehicleEfficiency valueT able
128. ction force and braking force characteristics related to running speed e Pantograph current characteristics driving and braking related to running speed or efficiency characteristic e Information about voltage related current or power limitation of the propulsion control e Maximum average power consumption of the auxiliary systems lighting air condition heating e Maximum recuperation voltage Power supply system and conductor data e Type of substation e Nominal voltage e Position of substations connection points to the power grid e Feeding scheme sectioning inclusive chainage IFB DD UM_OPN_51_01 02 02 doc Page 48 of 168 DMJ 2010 05 12 OPN 51 1 2 2 3penPowerNet 7 Ze Institut f r Bahntechnik GmbH Page 49 of 168 User Manual Issue 2010 05 12 Busbar voltage of the substations line side no load and nominal load e if available internal resistance of the substations respectively short circuit voltage of the converter transformers e If available settings of the transformer and converter protection devices e g I gt t I gt gt e If available protection settings of the power rail overload protection devices I gt t I gt gt di dt etc e Number length and cross section of feeding and return current cables from substation to track or connections from track to track e Position of feeding points and return current cable connection points to the power rai
129. cy 90 totalBrakeEfficiency 90 maxBrakePower 400 We need to set the braking maximum power maxBrakeEffort 30 gt and maximum brake effort lt auxSupply typeStr all constPower 100 gt lt propulsion gt lt engine gt lt brakes gt lt eddyCurrentBrake This is the eddy current brake and there parameter maxEffort 30 maxPower 300 minSpeed 10 gt lt brakes gt lt vehicle gt 6 6 7 1 2 2 Project File As we use short trains only and they start at 2 00 we have to set the simulation start time to 7200s simulationStart_s 7200 Then we need to set the regenerative brake option and set the use of the eddy current brake to true for the second simulation lt Vehicle eddyCurrentBrake false This need to be set to false for the first and to true for the second simulation engineID Enginel gt lt Propulsion engine electric supply AC 25kV 50Hz brakeCurrentLimitation none tractiveCurrentLimitation none useAuxPower true fourQuadrantChopperPhi none regenerativeBrake maxPower maxEffort Set this to use the regenerative brake tractiveEffort maxPower maxTractEffort gt lt MeanEfficiency gt lt Propulsion gt lt Vehicle gt Set the right Engine File and don t forget to set a meaningful project name and comment in the project file 6 6 7 2 Simulation Run both simulations e Do everything as described above and run the simulation e Change the attribute eddyCurrentBrake in the Pr
130. d efficient way This tool provides the automatic analysis and the magnetic field calculation as main functionality A detailed description is available in chapter 4 5 3 6 Database A database is used to store the simulation results for later visualisation and analysis The detailed database documentation can be found in the Help System under OpenPowerNet User Guide gt Database IFB DD UM_OPN_51_01 02 02 doc Page 20 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 21 of 168 User Manual Issue 2010 05 12 To speed up the simulation it is possible to write the current of conductors and connectors as well as the voltage of nodes to dump files After the simulation is finished the user has to upload these dump files to the database using the functionality provided by the GUI Note that the user has to upload the dump files before a new simulation starts 3 7 Working directory The folders and files in the working directory are created by OpenPowerNet during simulation Only the working directory itself needs to be created manually and specified in OpenPowerNet GUI Working directory structure OPN_WorkingDir Project_Name Network_NetworkName Containing network matrices and model text files data Containing the dump files eee 4 OpenPowerNet handling The configuration of the runtime environment usually has to be done once using the GUI see the
131. ductorFrom condName RR trackID 2 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt Leakage of track 2 in station B lt Leakage firstPos_km 9 750 lastPos_km 10 250 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RL trackID 2 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 9 750 lastPos_km 10 250 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RR trackID 2 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakages gt lt Line gt lt Lines gt The connectors used to connect the conductors of the tracks lt Connectors gt lt Connector name MW track 1 2 km 0 200 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 1 km 0 200 gt lt ConductorTo condName MW lineID A trackID 2 o 200 f gt lt Connector gt lt Connector name CW track 1 2 km 0 200 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName CW lineID A trackID 1 km 0 200 gt lt ConductorTo condName CW lineID A trackID 2 km 0 200 gt lt Connector gt lt Connector name RL track 1 2 km 0 200 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 1 0 200 f gt lt ConductorTo condName RL lineID A trackID 2 km 0 200 gt lt Connector gt lt Connector name RR track 1 2 km 0 200 zReal_Ohm 0 000010 z
132. e Institut f r Bahntechnik GmbH Page 44 of 168 User Manual Issue 2010 05 12 e BE Only the maximum values out off all time steps e BEE Only the minimum values out off all time steps e v The minimum and maximum values out of all time steps e WI The reference The buttons Append Row and Delete Row add a new respective delete the selected row The select lines dialog close when pressing the OK button 4 5 2 2 Connectors The Connectors group provides diagrams for connectors specified in the Project File under XML element OpenPowerNet PSC Network Connectors These diagrams are e U l fft The curves of the voltage between the both ends of the connector and the current thru the connector versus the time e U I Isum f t Same as above plus the current sum of all selected connectors e P f t The power consumed by the connector versus time e P Psum f t Same as above plus the sum of all selected connectors e TRLPC The current of the selected connector as the Time Rated Load Periods Curve e P TRLPC The power of the selected connector as the Time Rated Load Periods Curve Select Connectors 21 2009 09 21 09 03 36 0 Tutorial AC Network ANA te Network A C ri SIN rk A C Dez Trach ew pem _ P mw L few track 1 CW track 1 MW track 1 MW track 1 RL track 1 2 RL track 1 2 10 250 Som men Pr 10 250 true
133. e course short circuit and run the simulation f t of simulation Tutorial 2AC Network shortcircuit 2500 2000 1500 1 A 1000 500 01 00 00 01 05 00 4 01 10 00 4 01 15 00 01 20 00 4 01 25 00 01 30 00 TSS_5 trefo T1 to busbar OCS_BB IJA ATS_80 trafo T1 to busbar OCS_BB IJA Total A Figure 72 The short circuit current of the 2AC network The short circuit current is the total of TSS_5 and ATS_80 current IFB DD UM_OPN_51_01 02 02 doc Page 79 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 80 of 168 User Manual Issue 2010 05 12 6 3 3 3 Constant current From Figure 72 we can see that the minimum short circuit current is about 1200A Therefore we will use a constant current of 1000A for the constant current simulation We need to do the same configuration as for the AC tutorial except we have to set the current to 1000A To be able to compare AC and 2AC configurations we will also run an additional constant current simulation with 1000A for the AC network U 1 s 30000 7 SE eee lL Lue 20000 15000 um 10000 5000 s km Course constant current Sim 5 Course constant current Sim 3 Figure 73 The constant current with 1000A causes a voltage drop down to less than 10kV at the end of the line in the 2AC net
134. e 78 The speed versus time for course ABCI_01 in the AC network sim 1 and DC network sim 11 6 4 3 2 Short circuit 4000 1 f t 3500 3000 2500 2000 ITA 1500 1000 500 01 00 00 01 05 00 01 10 00 4 01 15 00 4 01 20 00 4 01 25 00 4 powersupply R1 to busbar OCS_BB sim 11 powersupply RI to busbar OCS_BB sim 11 Total A Figure 79 The short circuit simulation of the DC network 01 30 00 The simulation is done as for the AC network The y axis is limited to 4000A as the current at the substation is very high and we are interested in the minimum short circuit current 6 4 3 3 Constant current As we can see in Figure 79 the minimum current is above 2500A Therefore we will do the constant current simulation with 1000A as in the previous tutorials IFB DD UM_OPN_51_01 02 02 doc Page 86 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 87 of 168 User Manual Issue 2010 05 12 U I f s 3500 1200 3000 1000 2500 800 2000 600 D 1500 H 400 1000 F 200 500 0 T T T T T T T T t0 D 10 20 30 40 50 60 70 80 90 s km 4 Figure 80 The voltage versus chainage of constant current simulation 6 4 3 4 Failure scenario See chapter 6 2 3 4 to configure the Project File and to run the simulation We will
135. e Comment the auxiliary with constant resistance in the Engine File and uncomment the constant power while braking auxiliary give a meaningful comment in the Project File and run the simulation e Comment the auxiliary with constant power while braking in the Engine File and uncomment the constant resistance while braking auxiliary give a meaningful comment in the Project File and run the simulation 6 6 6 3 Analysis We use Excel file Engine2 xls to compare the simulations IFB DD UM_OPN_51_01 02 02 doc Page 104 of 168 DMJ 2010 05 12 OPN 51 1 2 2 3penPowerNet 7 Ze ww Institut f r Bahntechnik GmbH Page 105 of 168 User Manual Issue 2010 05 12 Paux f t 140 120 100 80 60 P kW 40 20 02 00 00 02 05 00 4 02 10 00 02 15 00 02 20 00 02 30 00 02 35 00 4 02 25 00 uxPower_kW Course ABCs_02 Sim 21 suxPower_kW Course ABCs_02 Sim 22 02 40 00 02 45 00 4 02 50 00 Figure 97 The auxiliary power of course ABCs_02 without engine auxiliary sim 21 and with constant auxiliary power sim 22 In the diagram above we can see the auxiliary power of the trailers is 30kW and on top of this are the 100 kW of the engine This is in total 130 kW for course ABCs_02 132 Paux fft P kW 126 02 00 00 02 05 00 4 02 10
136. e Station B with siding Therefore the voltage drop in this station is less compared to the open line between the stations with only one track The diagram above is from the file Engine xls The current is of course constant and has the value specified in the Project File The voltage is calculated according to the electrical network IFB DD UM_OPN_51_01 02 02 doc Page 71 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 72 of 168 User Manual Issue 2010 05 12 6 2 3 4 Failure scenario As described in chapter 4 2 3 4 we want to disconnect the transformer in TSS_80 from 01 05 00 to 01 22 00 and have a power supply during that time only from TSS_5 In OpenTrack we will use all courses from the default configuration For OpenPowerNet we need to adapt the project file slightly We only need to specify the Switch File and to give the simulation a proper comment see XML snippet below lt OpenPowerNet xmlns xsi http www w3 org 2001 XMLSchema instance xsi noNamespaceSchemaLocation D Usr OpenPowerNet 1 2 2 plugins de bahntechnik dd opn bin_x x x_JJJJMMDDhhmm schemas OpenPowerNet xsd name Tutorial AC Network comment failure scenario This is a comment for the failure scenario maxIterations 1000 maxFailedIterations 100 dbUser opndbusr dbPasswd lmargqst3 odbcDsn pscresults record2DB true record2DB_Dump false recordComputation2
137. e added have no gradient or radius Create the tracks and use the information from Figure 124 Note e The track names of the crossing and the cross over are the same as for the main line tracks The electrical network model shall be simplified and the catenary for the crossing tracks and the cross over tracks shall not be modelled Only the main tracks shall have a catenary model Therefore the positions within the crossing and cross over have to be mapped to the main tracks A position is always the triplet of line name track name and chainage Create all paths routes and itineraries to run the trains as listed in Table 14 Note e The courses drive by default at the right track 6 7 4 1 2 OpenPowerNet We will use the Engine and Project File from the AC tutorial as the basis 6 7 4 1 2 1 Engine File For this tutorial we don t need to change the Engine File 6 7 4 1 2 2 Project File From the AC tutorial we will used the substation configuration the properties of the conductors connectors and connector slices We need to change the beginning and the end of the conductors and slices The configuration of the engine model does not need to be changed First the configuration of line A lt Line name A maxSliceDistance_km 0 5 gt lt Conductors gt The conductor configuration for track 1 lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 1 km 0 gt lt ToProperty toPos_km 30 4 equiv
138. e low is to separate the network into several parts if possible for the particular network structure The structure of these smaller networks can be calculated faster During simulation all network parts can be used at the same time Note that the simulation does not have any retroactive effect between the networks PSC is designed but not limited to calculate 1AC see Figure 9 as well as the 2AC see Figure 10 and DC power supply systems see Figure 11 IFB DD UM_OPN_51_01 02 02 doc Page 17 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 18 of 168 User Manual Issue 2010 05 12 substation ocs rails Figure 9 The 1AC power supply system substation autotransformer autotransformer autotransformer mg ocs rails negative feeder ae aa NOT in a eens in mar Figure 10 The 2AC power supply system rectifier substation rectifier substation ocs rails Figure 11 The DC power supply system IFB DD UM_OPN_51_01 02 02 doc Page 18 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 19 of 168 User Manual Issue 2010 05 12 The configuration data of an electrical network see Figure 12 contains information about e Substations including o Transformers or rectifiers o Busbars and o Switches Conductors like rails contact wire messenger wire Connec
139. e run both simulations and record all currents and voltages between km 0 000 and km 9 000 6 7 1 1 Configuration 6 7 1 1 1 OpenTrack We will use the OpenTrack model from the AC tutorial without changes Select only the course ABCI_01 and CBAI_01 with long trains 6 7 1 1 2 OpenPowerNet We will use the Engine and Project File from the AC tutorial as the basis 6 7 1 1 2 1 Engine File For this tutorial we don t need to change the Engine File IFB DD UM_OPN_51_01 02 02 doc Page 118 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 119 of 168 User Manual Issue 2010 05 12 6 7 1 1 2 2 Project File As there are two different configurations we will have two Project Files One Project File with the wrong configuration same as in Figure 110 and one Project File with the correct configuration same as in Figure 111 First we do the Project File with the wrong configuration The substation TSS_5 shall be adapted and the network shall be split at km 5 100 by adding isolators in the messenger and contact wire First we add the isolators to the line The XML snipped below if nested in the element Line lt Isolators gt lt ConductorIsolator gt lt Position km 5 1 trackID 1 condName CW gt lt ConductorIsolator gt lt ConductorIsolator gt lt Position km 5 1 trackID 1 condName MW gt lt ConductorIsolator gt lt Isolators gt Ne
140. e xValueName LineVoltage xValueUnit V yValueName Phi yValueUnit Deg gt lt valueLine xValue 0 0 gt lt values yValue 5 0 gt lt valueLine gt lt valueLine xValue 24000 0 gt lt values yValue 5 0 gt lt valueLine gt lt valueLine xValue 25000 0 gt lt values yValue 0 0 gt lt valueLine gt lt valueTable gt lt phi gt lt fourQuadrantChopper gt 6 6 1 1 2 2 Project File We will amend the Project File from AC tutorial in chapter 6 2 1 2 2 The four quadrant chopper model has to be defined in the Project File see XML snipped below lt Vehicle eddyCurrentBrake false engineID Enginel gt lt Propulsion engine electric supply AC 25kV 50Hz brakeCurrentLimitation none tractiveCurrentLimitation none useAuxPower true fourQuadrantChopperPhi Phi f u This value need to be set to use the power factor depending on line voltage regenerativeBrake none tractiveEffort maxPower maxTractEffort gt lt MeanEfficiency gt lt Propulsion gt lt Vehicle gt Furthermore we need to set the Switch File same as for the failure scenario in the AC tutorial switchStateFile D OPN_Projects Tutorial 05_Engine_Model 01_Power_Factor OPNData Switch File xml Set the right Engine File and don t forget to set a meaningful project name and comment in the project file 6 6 1 2 Simulation We will run the simulation only with the long trains to see the effect of the power factor versus line
141. eLine xValue 250 gt lt values yValue 0 98 gt lt valueLine gt lt valueTable gt lt efficiency gt lt tractionInverter gt lt tractionMotor typeStr gt lt efficiency gt lt valueTable xValueName Speed xValueUnit km h The speed yValueName Efficiency yValueUnit 1 gt the efficiency and zValueName Effort zValueUnit kN gt the effort unit We want to use the same efficiency for any traction force therefore the values between 0 kN and 250 kN are the same the column for 0 kN and for 250 kN lt columnHeader zValue 0 gt lt columnHeader zValue 250 gt lt valueLine xValue 0 gt lt values yValue 0 6 gt lt values yValue 0 6 gt lt valueLine gt lt valueLine xValue 30 gt lt values yValue 0 92 gt lt values yValue 0 92 gt lt valueLine gt lt valueLine xValue 60 gt lt values yValue 0 95 gt lt values yValue 0 95 gt lt valueLine gt lt valueLine xValue 105 gt lt values yValue 0 93 gt lt values yValue 0 93 gt lt valueLine gt lt valueLine xValue 250 gt lt values yValue 0 93 gt lt values yValue 0 93 gt lt valueLine gt lt valueTable gt lt efficiency gt lt tractionMotor gt lt gear typeStr ratio 1 meanEfficiency 97 5 gt lt gear gt lt auxSupply typeStr all constPower 100 gt lt propulsion gt lt engine gt lt vehicle gt 6 6 10 1 2 2 Project File In the Project file we need to change the efficiency model to Single compo
142. eal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 3 km 20 gt lt ConductorTo condName RL lineID B trackID 2 km 20 gt lt Connector gt lt Connector name RR track A 3 B 2 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 3 km 20 gt lt ConductorTo condName RR lineID B trackID 2 km 20 gt lt Connector gt lt Connectors gt Last but not least the configuration of the substations TSS_5 TSS_A_25 and TSS _B 25 lt Substations gt lt Substation name TSS_5 gt lt TwoWindingTransformer name T1 nomPower_MVA 10 nomPrimaryVoltage_kV 115 nomSecondaryVoltage_kV 27 5 noLoadLosses_kW 6 5 loadLosses_kW 230 relativeShortCircuitVoltage_percent 10 7 noLoadCurrent_A 0 06 gt lt OCSBB bbName 0CS_BB z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Switch name TSS_5_T1_OCS defaultState close gt lt OCSBB gt lt RailsBB bbName Rails_BB z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Switch name TSS_5_T1_Rails defaultState close gt lt RailsBB gt lt TwoWindingTransformer gt lt Busbars gt lt OCSBB bbName 0CS_BB gt lt Connector name TSS_5_OCS_ Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName CW lineID A trackID 1 5 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails_BB gt lt Connector name TSS_5_Rails_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Positio
143. ectrical network All files are XML files While it is possible to do basic editing with any text editor it is recommended to use any XML editor like the commercial one Altova XMLSpy for convenient configuration The schemas for validation and assisted creation of the XML files can be found in the sub folder schemas of the de bahntechnik dd opn bin_x x x_JJJJMMDDhhmm plugin If the XML files are loaded into the XML editor together with schema files they help creating and understanding the structure of the configuration files and lots of values can be suggested automatically Please refer to the user manual of your editor for further details on editing XML files The project specific files that are used for simulation are configured in the root element of the Project File The Project File and these referenced files are read every time a simulation has started Hence it is not necessary to restart OpenPowerNet after changing the name or content of a project specific file IFB DD UM_OPN_51_01 02 02 doc Page 24 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 25 of 168 User Manual Issue 2010 05 12 4 2 3 1 Engine File This file acts as a library of engines and contains all information for a simulation It has to correspond with the OpenTrack engine data The engine ID is used for mapping the engine data between both programs The XML file observes the RailML Rolling St
144. ed to set the schema The latest schema can be found in plugin de bahntechnik dd opn bin_x x x_JJJJMMDDhhmm schemas ADE xsd For this example we define to disconnect the transformer in substation at km 80 000 from 01 05 00 until 01 22 00 lt xml version 1 0 encoding UTF 8 gt lt ADE xmlns xsi http www w3 org 2001 XMLSchema instance xsi noNamespaceSchemaLocation D Usr OpenPowerNet 1 2 2 plugins de bahntechnik dd opn bin_x x x_JJJJMMDDhhmm schemas ADE xsd gt lt TPD gt lt SwitchSetting gt lt Switch state open time 01 05 00 name TSS_80_T1_OCS gt lt Switch state open time 01 05 00 name TSS_80_T1_Rails gt lt Switch state close time 01 22 00 name TSS_80_T1_OCS gt lt Switch state close time 01 22 00 name TSS_80_T1_Rails gt lt SwitchSetting gt lt TPD gt lt ADE gt 6 2 2 Simulation For the simulation it is advised to backup the database in case you want to keep old simulation data and then to create a new empty database via the GUI just select create new database from the OpenPowerNet menu Next is to start the OpenPowerNet modules via the GUI Select the Project File and then Start OpenPowerNet from the context menu see Figure 49 IFB DD UM_OPN_51_01 02 02 doc Page 62 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 63 of 168 User Manual Issue 2010 05 12 st k E L Project Explorer 52 an P
145. eeder lt Substation name ATS_80 gt lt Autotransformer This is the autotransformer name T1 nomPower_MVA 5 nomPrimaryVoltage_kV 55 nomSecondaryVoltage_kV 27 5 noLoadLosses_kW 5 loadLosses_kW 10 relativeShortCircuitVoltage_percent 1 8 noLoadCurrent_A 0 2 gt lt OCSBB bbName 0CS_BB z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Switch name ATS_80_T1_OCS defaultState close gt lt OCSBB gt lt RailsBB bbName Rails_BB z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Switch name ATS_80_T1_Rails defaultState close gt lt RailsBB gt lt NegativeFeederBB bbName NF_BB z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Switch name ATS_80_T1_NF defaultState close gt lt NegativeFeederBB gt lt Autotransformer gt lt Busbars gt lt OCSBB bbName 0CS_BB gt lt Connector name ATS_80_OCS Feeder z_real_ Ohm 0 001 z_imag Ohm 0 gt lt Position condName CW lineID A trackID 1 km 80 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails_BB gt lt Connector name ATS_80_Rails_ Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName RR lineID A trackID 1 km 80 gt lt Connector gt lt RailsBB gt lt NegativeFeederBB bbName NF_BB gt lt Connector name ATS_80_NF_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName NF lineID A trackID 1 km 80 gt lt Connector gt lt NegativeFeederBB gt lt Busbars gt lt Substation gt After all this chan
146. enTrack We will use the OpenTrack model from the AC tutorial without changes Select only the course ABCs_02 and CBAs_02 with short trains 6 6 6 1 2 OpenPowerNet We will use the Engine and Project File from the AC tutorial as the basis 6 6 6 1 2 1 Engine File In the Engine File we need to specify the maximum braking power and effort as well as the 4 different available auxiliary models In the XML snipped below we see the constant auxiliary power and as comments the other three auxiliary power models An XML comment is always between lt and gt lt vehicle length 25 bruttoWeight 75 vehicleID Enginel speed 250 gt lt engine gt lt propulsion supply AC 25kV 50Hz transmission electric engine electric power 5560 maxTractEffort 250 totalTractEfficiency 90 totalBrakeEfficiency 90 maxBrakePower 5560 We need to set the braking maximum power maxBrakeEffort 250 gt and maximum brake effort lt auxSupply typeStr constant power constPower 100 gt lt auxSupply typeStr constant resistance constResistance 7507 6 gt lt auxSupply typeStr constant power while braking constPowerBraking 100 gt lt auxSupply typeStr constant resistance while braking constResistanceBraking 7507 6 gt ds lt propulsion gt lt engine gt lt vehicle gt For simulation 2 to 5 we use only one auxiliary power model and comment the others by using XML comment syntax 6 6 6 1 2 2 P
147. ency Hz 50 frequency for the AC network recordVoltage true recordCurrent true gt lt Lines recordCurrent false tsub recordVoltage false sub gt lt Line name A maxSliceDistance_km 0 5 gt lt Conductors gt The conductors for track 1 from km 9 750 to km 85 400 lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 1 9 750 7 gt lt ToProperty toPos_km 85 4 equivalentRadius_mm 3 45 r20_Ohm_km 0 2311 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 0 y_m 6 9 gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 1 km 9 750 gt lt ToProperty toPos_km 85 4 equivalentRadius_mm 3 45 r20_Ohm_km 0 1852 temperature_GradCelsius 20 temperatureCoefficient 0 00385 x_m 0 y_m 5 3 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 1 km 9 750 gt lt ToProperty toPos_km 85 4 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 0 75 y_m 0 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 1 km 9 750 gt lt ToProperty toPos_km 85 4 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 0 75 y_m 0 gt lt Conductor gt lt Conductor type Earth gt lt StartPosition condName E trackID 1 km 9 750
148. erview of naming scopes IFB DD UM_OPN_51_01 02 02 doc Page 23 of 168 DMJ 2010 05 12 OPT OPN 51 1 2 2 3penPowerNet User Manual Institut f r Bahntechnik GmbH Issue 2010 05 12 Page 24 of 168 2 winding transformer Substation TwoWindingTransformer name 3 winding transformer Substation TreeWindingTransformer name Additional load in none AdditionalLoad name substation Autotransformer Substation Autotransformer name Busbar Substation OCSBB RailsBB bbName NegativeFeederBB Conductor Track StartPosition condName Connector none Connector name Connector between none NegativeFeederBBConnector name negative feeder busbars Connector between OCS none OCSBBConnector name busbars Connector between rails none RailsBBConnector name busbars Leakage none Leakage name Line Network Line name Network Project Network name Rectifier Substation Rectifier name Slice none ConnectorSlice name Storage none Storage name Substation Network Substation name Switch Project Switch Name Engine name Project Engine File vehicle vehiclelD Project File Vehicle enginelD Table 1 The naming conventions of the model elements versus scope 4 2 3 Project specific configuration The project specific configuration files describe the engines the used engine model the definition of power supply the electrical network and optionally the switch states of the el
149. f 168 User Manual Issue 2010 05 12 Tutortal LPC_Setwork cpentrack ON Tutortal U6 Network Model Gs tines Ponts Creesmys U TUocumenti Info Deosert Edt Format Tools Furctions Windows Prt Hds Gut GC rn ve Cen Gs SC cr ah Lk ae Lk Idee Lie JB Lk ll bee JL em 4 a Ce ZAK Kg KE NOSE L ie Lime hen AM E bk Ze ke ES eg jl Sg eg K ee 7 CeL 1b I ie m Ca LS ALR zE lu Figure 124 The OpenTrack infrastructure with chaininage line and track names Signal km 29 600 track 2 set sight distance to 10000m ABCI_0100 Start Stop 300s Terminate 01 00 00 track 2 CBAI_0100 Terminate Stop 600s Start track 1 01 00 00 DBAI_1000 Terminate Stop 60s Start Timetable track 3 01 00 00 track 1 ABDI_0110 Start Stop 60s Terminate 01 10 00 track 2 track 2 DBAI_ 1015 Terminate Stop 60s Start track 2 01 15 00 track 1 Table 14 OpenTrack infrastructure properties and timetable Substation km 5 000 amp km 25 000 km 25 000 Power system 25 kV 50 Hz Table 15 OpenPowerNet network properties IFB DD UM_OPN_51_01 02 02 doc Page 138 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 139 of 168 User Manual Issue 2010 05 12 6 7 4 1 Configuration 6 7 4 1 1 OpenTrack As the basis we take the data from the AC tutorial The tracks to b
150. f 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 89 of 168 User Manual Issue 2010 05 12 e Stop unload if the line voltage is higher than 2701V The XML below is the content of the TypDef File lt xml version 1 0 encoding UTF 8 gt lt TypeDefs xmlns xsi http www w3 org 2001 XMLSchema instance xsi noNamespaceSchemaLocation http www dd bahntechnik de opn schemas 1 1 0 b6 TypeDefs xsd gt lt StorageTypes gt lt StorageType name Type 400A gt The name of the energy storage used as reference in the Project File lt Characteristics type simple The type of the energy storage As we have only one it is always simple Following attributes describe the characteristic of the energy storage maxLoad_MWs 300 initialLoad_MWs 300 lossPower_kW 0 1 loadRi_Ohm 0 005 unloadRi_Ohm 0 005 auxPowerl_kW 10 gt lt Function The control function is described by the following attributes according to the bullet points above minLoadAllowUnload_MWs 0 loadMaxCurrent1_A 400 unloadMaxCurrent1_A 400 voltagelLoadStart_kV 3 000 voltagelLoadStop_kV 2 999 voltagelUnloadStart_kV 2 700 voltagelUnloadStop_kV 2 701 gt lt StorageType gt The energy storage with 200A load and unload current limitation lt StorageType name Type_200A gt Note the different names of the two energy storage definistions lt Characteristics type simple maxL
151. field at line A km 20 125 at 01 17 30 6 7 5 Turning loops tutorial In this tutorial we will compare the effect of a wrong and a correct configuration for turning loops Turning loops are typical for tram networks but also for other railway systems The wrong configuration will be wrong for OpenTrack and also wrong for OpenPowerNet The simulation will still run but produce incorrect simulation results We will use 25 kV 50 Hz power supply system with one substation at km 5 000 The line shall be about 25km long and have 3 Station Two courses shall run as follow ABCI_01 Start 01 00 00 Stop 60s track 2 Terminate track 1 CBAI_01 Terminate track 1 Stop 60s track 1 Start 01 00 00 loop via track 2 Table 16 Timetable of courses in the loops totorial 6 7 5 1 Configuration 6 7 5 1 1 OpenTrack As the basis for the infrastructure we take the data from the AC tutorial We need to add the loop and to change the chainage according to Figure 130 and Figure 131 IFB DD UM_OPN_51_01 02 02 doc Page 149 of 168 DMJ 2010 05 12 LE Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 150 of 168 User Manual Issue 2010 05 12 0 210 0 400 0 600 0 650 O Tulerial 05 Network Model OS Loops DTDecunents Dix Took Funts Wandew e fide Que cat P Station B Station C E gt D s Ge BR ra ran ran gen a Legend o oj ojo oO oO Track 1 el 9 9 2 S v S A s
152. ge 164 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 165 of 168 User Manual Issue 2010 05 12 7 2 2 Negative broken chainage The model in OpenTrack is the same as for positive broken chainage Set km 2 100 at one side of the double vertex and km 1 900 at the other and define a new line name for the following edges Always take care of the edge direction In OpenPowerNet we need to have two lines In this example the line A from km 0 000 to 2 100 and line A from km1 900 to 3 000 Then we have to connect the conductors with each other using low resistance connectors see Figure 139 The Project File XML snippet shows the conductor and connector configuration of the example lt Line name A maxSliceDistance_km 0 1 recordCurrent true recordVoltage true gt lt Conductors gt lt Conductor type ContactWire gt lt StartPosition km 1 100 trackID up condName CW gt lt ToProperty x_m 5 y_m 5 3 r20_Ohm km 0 2138 equivalentRadius_mm 4 4 toPos_km 2 100 temperatureCoefficient 0 00381 temperature_GradCelsius 40 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition km 1 100 trackID up condName R gt lt ToProperty x_m 5 y_m 0 r20_Ohm_km 0 0164 equivalentRadius_mm 38 52 toPos_km 2 100 temperatureCoefficient 0 0047 temperature_GradCelsius 40 gt lt Conductor gt lt Conductors gt lt Line
153. genschaften IFB DD UM_OPN_51_01 02 02 doc Page 39 of 168 Figure 30 Click OK and the data will be inserted to the table at position A 1 DMJ 2010 05 12 OPN 51 1 2 2 Cpen Powe rN et FJL Institut f r Bahntechnik GmbH Page 40 of 168 User Manual Issue 2010 05 12 Mappel Kompatibilit tsmodus Microsoft Excel Tabellentools EE SS t ls Add ins ES votTable zusammenfassen ften I berschrift F er I r oft Duplikate entfernen ffnen Ergebniszeile le Exportieren 4 In Bereich konvertieren Tools jpfung aufheben V Verbundene Zeilen Ve Optionen f r Tabelly A Aktualisieren B Alle aktualisieren OI Status aktualisiere example Storage simple id x start 3 Figure 31 Now the data in the table retrieved from database is ready for further evaluation and visualisation For easy handling of the external data source query it is recommended to use the Table Tools menu Verbindungseigenschaften OpenPowerNet comes with Excel files already prepared for data analysis These files are accessible from the GUI See the GUI Help System at OpenPowerNet Analysis User Guide gt Usage for details The Excel File Consumption xls visualises the energy consumption of all courses in all networks of the simulation summarised by the Train Operating Company see Figure 21 and expressed as percentage of total energy consumption of all courses see
154. ges we check the new configuration using PSC Viewer and we will see the added negative feeder as in Figure 66 IFB DD UM_OPN_51_01 02 02 doc Page 75 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 76 of 168 User Manual Issue 2010 05 12 the added negative feeder Figure 66 A snippet of the 2AC network with TSS_5 and negative feeder 6 3 1 2 3 Switch File We need to adapt the Switch File of the failure scenario simulation First we change the switch names and second we add also the switches of the negative feeder lt xml version 1 0 encoding UTF 8 gt lt ADE xmlns xsi http www w3 org 2001 XMLSchema instance xsi noNamespaceSchemaLocation D Usr OpenPowerNet 1 2 2 plugins de bahntechnik dd opn bin_x y z_YYYYMMDDhhmm schemas ADE xsd gt lt TPD gt lt SwitchSetting gt lt Switch state open time 01 05 00 name ATS_80_T1_OCS gt lt Switch state open time 01 05 00 name ATS_80_T1_Rails gt lt Switch state open time 01 05 00 name ATS_80_TI_NF gt The open time definition of the added negative feeder switch lt Switch state close time 01 22 00 name ATS_80_T1_OCS gt lt Switch state close time 01 22 00 name ATS_80_T1_Rails gt lt Switch state close time 01 22 00 name ATS_80_T1_NF gt The close time definition of the added negative feeder switch lt SwitchSetting gt lt TPD gt lt ADE gt 6 3 2
155. gt lt MeanEfficiency gt lt Propulsion gt Next we add the line feeder as a conductor with the same characteristics as the negative feeder of the 2AC tutorial lt Conductor type Feeder gt Change the type of the conductor lt StartPosition condName LF trackID 1 km 5 gt and change the name to LF lt ToProperty toPos_km 80 equivalentRadius_mm 8 4 r20_Ohm_km 0 1188 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 4 y_m 9 gt lt Conductor gt Then we need to add the connectors every 250m from the line feeder to the contact wire of track 1 The resistance per meter shall be the same as for the line feeder and the length shall be approximately 5m Therefore the connector resistance is 0 594mQ 0 11880 km 1000 5m 0 000594 lt ConnectorSlice IFB DD UM_OPN_51_01 02 02 doc Page 82 of 168 DMJ 2010 05 12 CZE Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 83 of 168 User Manual Issue 2010 05 12 name line feeder to CW firstPos_km 5 lastPos_km 80 maxDistance_km 0 25 gt lt Connector zReal_Ohm 0 000594 zImag_Ohm 0 gt lt ConductorFrom condName LF trackID 1 gt lt ConductorTo condName CW trackID 1 gt lt Connector gt lt ConnectorSlice gt Now we configure the substation models with DC rectifier and we use switches in the connectors from the busbars to the line The switches will be used during the
156. gt Switch File The Switch File configures the state changes for each switch in the power supply network during the simulation time The default state of the switch is configured in the Project File The Switch File is only needed if switch states shall be changed during the simulation ADE xmins xsi http Awww w3 org 2001 XMLSchema instance xsinoNames ADE xsd TPD 4 SwitchSetting al Switch 4 state time name 1 open 10 00 00 TI OCH 2 open 10 00 00 TSS1_R 3 close 10 10 00 TSS1_OCS 4 close 10 10 00 TSS1_R Figure 22 Switch configuration for network calculation The switches are open for 10 minutes beginning at 01 00 00 This means the substation is disconnected from the line see Figure 20 4 3 Simulation The OpenPowerNet GUI handles the start and stop of the three modules APserver PSC and ATM To start the modules Start OpenPowerNet has to be selected from the context menu of the particular Project File The OpenPowerNet settings in OpenTrack have to be configured to run co simulations see Figure 14 The simulation can be started as usual with OpenTrack simulation panel Further details on how to start and stop OpenPowerNet and how to run the simulation are available in the GUI Help System see OpenPowerNet User Interface User Guide gt Usage IFB DD UM_OPN_51_01 02 02 doc Page 35 of 168 DMJ 2010 05 12 7 74 OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH
157. have a switch to enable us to disconnect the transformer during the failure scenario lt OCSBB gt lt RailsBB bbName Rails_BB z_real_Ohm 0 001 z_imag Ohm 0 gt The connection to the rail busbar including switch lt Switch name TSS_5_T1_Rails defaultState close gt lt RailsBB gt lt TwoWindingTransformer gt Below is the definition of the busbars and the feeder cables from the busbars to the line lt Busbars gt lt OCSBB bbName OCS_BB gt lt Connector name TSS_5_OCS_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName CW lineID A trackID 1 km 5 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails_BB gt lt Connector name TSS_5_Rails_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName RR lineID A trackID 1 km 5 gt lt Connector gt lt RailsBB gt lt Busbars gt lt Substation gt Below is the substation at km 80 000 same as the one at km 5 000 lt Substation name TSS_80 gt lt TwoWindingTransformer name T1 nomPower_MVA 10 nomPrimaryVoltage_kV 115 nomSecondaryVoltage_kV 27 5 noLoadLosses_kW 6 5 loadLosses_kW 230 relativeShortCircuitVoltage_percent 10 7 noLoadCurrent_A 0 06 gt lt OCSBB bbName 0CS_BB z_real_Ohm 0 001 z_imag_Ohm 0 gt IFB DD UM_OPN_51_01 02 02 doc Page 60 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 61 of 168 User Manual Issue 2010 0
158. he position and time period of the magnetic field need to be defined Then the calculation of the values starts with click on button Calculate Magnetic Field Then the diagram configuration is enabled The diagram style is normal or as ISO lines and the values may be absolute or not A preview at a specific time step is possible The output is available as separate pictures or as movie made from the single pictures 4 5 4 Tools The Analysis Tool provides an editor to change the comment of the simulation in the database This comment is used e g as part of the default designation for diagram titles IFB DD UM_OPN_51_01 02 02 doc Page 46 of 168 DMJ 2010 05 12 CZE Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 47 of 168 User Manual Issue 2010 05 12 OpenPowerNet Simulation Property Editor Select Simulation Database name psc_analysis Simmlation 1 72009 09 12 11 17 30 0 Network Tutorial Loop correct Simmlation Start 2009 09 12 11 17 30 0 Sinmlation Eng 2009 09 12 11 19 00 0 00 59 59 Time End 01 16 47 ls 120 2 Time Start Timestep size OPN Version Edit Properties Comment correct Figure 41 The simulation property editor of the analysis tolll 4 6 Database tasks All simulation results are stored in a database This database needs to be maintained by the user The following tasks are available via the GUI e Create new dat
159. ies Therefore the model of the neutral zone is correct v f s 250 7 v km h 0 10 20 30 40 50 60 70 80 90 s km Figure 119 The speed versus location of course ABCI_01 In the diagram above we can see the speed is reduced in the area of the neutral zone near km 5 000 This is because in the neutral zone is no power supply available Usually the courses are powered off before and powered on after they have passed the neutral zone This power off and on is possible by the power signals in OpenTrack Please see the OpenTrack documentation for details IFB DD UM_OPN_51_01 02 02 doc Page 130 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Page 131 of 168 User Manual Issue 2010 05 12 Institut f r Bahntechnik GmbH 6 7 3 AC DC networks tutorial In this tutorial we will create a project file with an AC and a DC network The engines shall have to propulsion system One propulsion system shall be for 25 kV 50 Hz and the other for 3 kV DC Fmax 250 kN 200 kN Pmax 5 56 MW 3 89 MW Table 12 The engine properties of the AC DC tutorial Substation km 45 000 km 5 000 Chainage track 1 from km 9 750 to track 1 from km 0 000 to km 85 400 km 9 750 and track 2 from km 9 750 to km 10 250 Line feeder none yes from km 0 000 to km 9 750 Table 13 The network properties of the AC DC tutorial 6 7 3 1 Configuration 6 7 3 1 1
160. ik de opn schemas 1 2 0 a2 OpenPowerNet xsd name Network Tutorial Loop comment wrong maxIterations 1000 maxFailedIterations 100 odbcDsn pscresults record2DB true record2DB_Dump true recordComputation2DB false rstFile D OPN_Projects Tutorial 06_Network_Model 05_Loops OPNData Engine File xml simulationStart_s 3600 gt lt ATM gt lt Vehicles gt lt Vehicle eddyCurrentBrake false engineID Enginel gt lt Propulsion engine electric supply AC 25kV 50Hz brakeCurrentLimitation none tractiveCurrentLimitation none useAuxPower true fourQuadrantChopperPhi none regenerativeBrake maxPower maxEffort tractiveEffort maxPower maxTractEffort gt lt MeanEfficiency gt lt Propulsion gt lt Vehicle gt lt Vehicles gt lt Options tolerance_A 0 1 maxIterations 1000 record2DB true gt lt ATM gt lt PSC gt lt Network name A C use true voltage_kV 25 frequency_Hz 50 recordVoltage true recordCurrent true gt lt Lines gt lt Line name A maxSliceDistance_km 0 5 gt The configuration of the conductors IFB DD UM_OPN_51_01 02 02 doc Page 151 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 152 of 168 User Manual Issue 2010 05 12 lt Conductors gt The conductors for track 1 lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 1 km 0 gt lt ToProperty toPos_km 25 4
161. inds of broken chainage as example Each kind has to be handled different in OpenTrack and OpenPowerNet See Figure 139 for the PSC Viewer Diagram of the solution in OpenPowerNet The detailed description follows in the next chapters IFB DD UM_OPN_51_01 02 02 doc Page 163 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 164 of 168 User Manual Issue 2010 05 12 f 0 000 Z 1 000 1 100 2 100 eg Line A ee TE Figure 139 The positive and negative broken chainage modelled in OpenPowerNet 7 2 1 Positive broken chainage Positive is easier to model than the other one According to the example in Figure 138 we just need in OpenTrack to set km 1 000 at one side of the double vertex and km 1 100 at the other side In OpenPowerNet we define conductors ending at km 1 000 and start new conductors at km 1 100 Then we have to connect the conductors with each other using low resistance connectors see the upper conductors in Figure 139 The Project File XML snippet shows the conductor and connector configuration of the example lt Line name A maxSliceDistance_km 0 1 recordCurrent true recordVoltage true gt lt Conductors gt lt Conductor type ContactWire gt lt StartPosition km 0 trackID up condName CW gt lt ToProperty x_m 0 y m 5 3 r20 Ohm_km 0 2138 equivalentRadius_mm 4 4
162. ion electric engine electric power 5560 maxTractEffort 250 totalTractEfficiency 90 This values will be ignored if we choose totalBrakeEfficiency 90 efficiency table model in the Project File maxBrakePower 5560 maxBrakeEffort 250 gt lt auxSupply typeStr all constPower 100 gt lt tractiveVehicleEfficiency gt The efficiency for traction lt valueTable xValueName Speed xValueUnit km h yValueName Efficiency yValueUnit gt lt valueLine lt valueLine lt valueLine lt valueLine lt valueLine lt valueLine lt valueLine lt valueTable gt xValue 0 gt xValue 10 gt xValue 30 gt xValue 50 gt xValue 80 gt xValue 150 gt xValue 250 gt lt tractiveVehicleEfficiency gt lt brakeVehicleEfficiency gt The IFB DD UM_OPN_51_01 02 02 doc lt values yValue 40 lt values yValue 75 lt values yValue 85 lt values yValue 88 lt values yValue 91 lt values yValue 91 lt values yValue 88 Page 110 of 168 ZS gt S gt gt gt gt efficiency for braking lt valueLine gt lt valueLine gt lt valueLine gt lt valueLine gt lt valueLine gt lt valueLine gt lt valueLine gt DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 111 of 168 User Manual Issue 2010 05 12 lt valueTable xValueName Speed xValueUnit km h yValueName Efficiency yValue
163. ion condName CW lineID A trackID 1 km 5 gt lt Switch defaultState close name TSS_5_ OCS Feeder_5 0 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails_BB_1 gt Change the name to make a unique busbar name lt Connector name TSS_5_Rails_Feeder z_real_Ohm 0 001 zs imag _Ohm 0 gt lt Position condName RR lineID A trackID 1 km 5 gt lt Switch defaultState close name TSS_5_Rails_Feeder_5 0 gt lt Connector gt lt RailsBB gt lt OCSBB bbName OCS_BB_2 gt lt Connector name TSS_5_OCS_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName CW lineID A trackID 1 km 6 gt lt Switch defaultState close name TSS_5_OCS_Feeder_6 0 gt lt Switch gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails_BB_2 gt IFB DD UM_OPN_51_01 02 02 doc Page 119 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 120 of 168 User Manual Issue 2010 05 12 lt Connector name TSS_5_Rails_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName RR lineID A trackID 1 km 6 gt lt Switch defaultState close name TSS_5_Rails_Feeder_6 0 gt lt Connector gt lt RailsBB gt lt Busbars gt Here the busbar connectors including switches lt OCSBBConnector z_imag_Ohm 0 0 z_real_Ohm 0 001 gt lt BusbarFrom bbName OCS_BB_1 gt lt BusbarTo bbName OCS_BB_2 gt lt
164. k gt lt railml gt engine ID required vehiclelD engine type required engine propulsion engine transmission required engine propulsion transmission supply required engine propulsion supply power angle none mean engine propulsion fourQuadrantChopper meanPhi curve engine propulsion fourQuadrantChopper phi valueTable tractive none current ee limitation curve engine propulsion tractiveCurrentLimitation valueT able optional engine propulsion zeroSpeedCurrentLimitation brake current none limitation curve engine propulsion brakeCurrentLimitation valueT able IFB DD UM_OPN_51_01 02 02 doc Page 25 of 168 DMJ 2010 05 12 OPN 51 1 2 2 penPowerNet CZ Ze Institut f r Bahntechnik GmbH Page 26 of 168 User Manual Issue 2010 05 12 use auxiliary no power yes engine propulsion auxSupply constPower engine propulsion auxSupply constResistance engine propulsion auxSupply constPowerBraking engine propulsion auxSupply constResistanceBraking Note Auxiliary while braking is only active for engines with recovery braking recovery none braking max engine propulsion maxBrakePower engine propulsion maxBrakeEffort engine propulsion maxRecoveryVoltage curve engine propulsion brakeEffort value Table engine propulsion maxRe
165. km 9 650 lastPos_km 20 000 maxDistance_km 0 25 gt lt Connector zReal_Ohm 0 00001 zImag_Ohm 0 gt lt ConductorFrom condName RL trackID 3 gt lt ConductorTo condName RR trackID 3 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlices gt lt Leakages gt The leakage configuration for track 1 lt Leakage firstPos_km 0 lastPos_km 30 4 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 0 lastPos_km 30 4 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RR trackID 1 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt The leakage configuration for track 2 lt Leakage firstPos_km 9 750 lastPos_km 20 00 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RL trackID 2 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 9 750 lastPos_km 20 000 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RR trackID 2 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt The leakage configuration for track 3 lt Leakage firstPos_km 9 650 lastPos_km 20 00 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RL trackID 3 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 9 650 lastPos_km 20 000 yReal_S_km
166. l Issue 2010 05 12 lt valueTable xValueName Current xValueUnit A The current and yValueName Efficiency yValueUnit 1 gt the efficiency unit lt valueLine xValue 0 gt lt values yValue 0 4 gt lt valueLine gt lt valueLine xValue 30 gt lt values yValue 0 9 gt lt valueLine gt lt valueLine xValue 60 gt lt values yValue 0 93 gt lt valueLine gt lt valueLine xValue 105 gt lt values yValue 0 98 gt lt valueLine gt lt valueLine xValue 250 gt lt values yValue 0 93 gt lt valueLine gt lt valueTable gt lt efficiency gt lt transformer gt lt fourQuadrantChopper typeStr gt lt efficiency gt lt valueTable xValueName Speed xValueUnit km h The speed and yValueName Efficiency yValueUnit 1 gt the efficiency unit lt valueLine xValue 0 gt lt values yValue 0 95 gt lt valueLine gt lt valueLine xValue 30 gt lt values yValue 0 97 gt lt valueLine gt lt valueTable gt lt efficiency gt lt fourQuadrantChopper gt lt tractionInverter typeStr gt lt efficiency gt lt valueTable xValueName Speed xValueUnit km h The speed and yValueName Efficiency yValueUnit 1 gt the efficiency unit lt valueLine xValue 0 gt lt values yValue 0 88 gt lt valueLine gt lt valueLine xValue 30 gt lt values yValue 0 95 gt lt valueLine gt lt valueLine xValue 60 gt lt values yValue 0 99 gt lt valueLine gt lt valu
167. lose gt lt RailsBB gt lt NegativeFeederBB bbName NF_BB_1 z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Switch name TSS_5_TI_NF defaultState close gt lt NegativeFeederBB gt lt ThreeWindingTransformer gt lt ThreeWindingTransformer name T2 nomPower_MVA 10 nomPrimaryVoltage_kV 115 nomSecondaryVoltage_kV 55 noLoadLosses_kW 6 5 loadLosses_kW 230 relativeShortCircuitVoltage_percent 10 7 noLoadCurrent_A 0 06 gt lt OCSBB bbName 0CS_BB_ 2 z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Switch name TSS_5_ T2_ OCS defaultState close gt lt OCSBB gt lt RailsBB bbName Rails_BB 2 z_real_Ohm 0 001 z_imag Ohm 0 gt lt Switch name TSS_5 T2 Rails defaultState close gt lt RailsBB gt lt NegativeFeederBB bbName NF_BB_ 2 z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Switch name TSS_5_T2_NF defaultState close gt lt NegativeFeederBB gt lt ThreeWindingTransformer gt lt Busbars gt lt OCSBB bbName OCS_BB_1 gt lt Connector name TSS_4 7_OCS_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName TSS_5_F_1 lineID A trackID 1 km 5 gt lt Connector gt lt OCSBB gt IFB DD UM_OPN_51_01 02 02 doc Page 128 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 129 of 168 User Manual Issue 2010 05 12 lt OCSBB bbName 0OCS_BB_2 gt lt Connector name TSS_5 3_OCS_Feeder z_real_Ohm 0 001 z_imag_Ohm
168. ls e Type of catenary number and cross section of single conductors e Additional feeding conductors connection points and cross section e Switch state of the power rail system e Position and cross section of rail and track bonds IFB DD UM_OPN_51_01 02 02 doc Page 49 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 50 of 168 User Manual Issue 2010 05 12 6 Tutorial This tutorial is a step by step description how to use OpenPowerNet It starts with the folder structure continues with the configuration then simulation and analysis for four different types of networks If you do not want to create the configuration files you can go to OpenPowerNet User Guide gt PDF Documents download them and the database backup from the Help System as zip files Please read chapter 4 6 for the description of the database import 6 1 General It is advised to always use the same folder structure for all simulations as it helps to keep order In principle each simulation has two kinds of data One kind is the input amp analysis data and the other kind the output data Input and analysis data structure Project_Name OPNAnalysis output directory for the Analysis Tool OPNData OpenPowerNet configuration data Engine File xm TypDef File xm Project File xml OTData OpenTrack configuration data Project_
169. lt Propulsion gt 7 7 How to prevent the consideration of the achieved effort in OpenTrack while using OpenPowerNet You need to set the attribute returnRequestedEffort to true The requested effort will be returned to OpenTrack but the courses using these engine will be calculated in the network simulation as usually see the XML snippet below lt Propulsion returnRequestedEffort true This attribute defines to return the requested effort brakeCurrentLimitation I f U engine electric fourQuadrantChopperPhi none regenerativeBrake maxPower maxEffort supply DC 600V tractiveCurrentLimitation I f U tractiveEffort maxPower maxTractEffort useAuxPower true gt lt EfficiencyTable gt lt Propulsion gt 7 8 Where are the XML Schemas The directory path to all XML Schemas is available via the GUI Select Schema directory from menu OpenPowerNet Then a dialog displaying the directory path will open and the directory path is copied to the clipboard 7 9 Which XML Schema for which XML File Project File OpenPowerNet xsd Engine File rollingstock xsd TypDef File TypeDefs xsd Switch File ADE xsd 7 10 How to change the working directory Working directories need to be defined for OpenPowerNet GUI and also for the analysis tool e GUI The OpenPowerNet working directory needs to be specified within the GUI preferences at Window gt Preferences gt OpenPowerNet IFB DD UM_OPN_51_01 02
170. lt ToProperty toPos_km 9 equivalentRadius_mm 38 52 r20_ Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 0 75 y m 0 gt lt ToProperty toPos_km 85 4 recordCurrent false recordVoltage false gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 1 km 0 gt lt ToProperty toPos_km 9 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x _m 0 75 wv m 0 gt lt ToProperty toPos_km 85 4 recordCurrent false recordVoltage false gt lt Conductor gt lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 3 45 r20_Ohm_km 0 2311 temperature_GradCelsius 20 temperatureCoefficient 0 004 x _m 10 y m 6 9 recordCurrent false recordVoltage false gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 3 45 r20_Ohm_km 0 1852 temperature_GradCelsius 20 temperatureCoefficient 0 00385 x_m 10 y m 5 3 recordCurrent false recordVoltage false gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 temperature_GradCelsius 20 tempe
171. m 0 001 z_imag Ohm 0 gt lt Switch defaultState close name TSS_80_OCS gt lt Position condName CW lineID A trackID 1 km 80 gt lt Connector gt lt Connector name TSS_80_LF_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Switch defaultState close name TSS_80_LF gt lt Position condName LF lineID A trackID 1 km 80 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails_BB gt lt Connector name TSS_80_Rails_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName RR lineID A trackID 1 km 80 gt lt Switch defaultState close name TSS_80_Rails gt lt Connector gt lt RailsBB gt lt Busbars gt lt Substation gt lt Substations gt IFB DD UM_OPN_51_01 02 02 doc Page 83 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 84 of 168 User Manual Issue 2010 05 12 6 4 1 2 3 Switch File We need to adapt the Switch File of the AC tutorial for the failure scenario simulation First we change the switch names and second we add also the switches to the line feeder lt xml version 1 0 encoding UTF 8 gt lt ADE xmlns xsi http www w3 org 2001 XMLSchema instance xsi noNamespaceSchemaLocation D Usr OpenPowerNet x y z plugins de bahntechnik dd opn bin_1 1 0 b6_200905261507 schemas ADE xsd gt lt TPD gt lt SwitchSetting gt lt Switch state open time 01 05 00 name TSS_80_O
172. m 9 750 gt lt ConductorTo condName MW lineID A trackID 2 km 9 750 gt lt Connector gt lt Connector name CW track 1 2 km 9 750 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName CW lineID A trackID 1 km 9 750 gt lt ConductorTo condName CW lineID A trackID 2 km 9 750 gt lt Connector gt lt Connector name RL track 1 2 km 9 750 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 1 km 9 750 gt IFB DD UM_OPN_51_01 02 02 doc Page 59 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 60 of 168 User Manual Issue 2010 05 12 lt ConductorTo condName RL lineID A trackID 2 km 9 750 gt lt Connector gt lt Connector name RR track 1 2 km 9 750 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 1 km 9 750 gt lt ConductorTo condName RR lineID A trackID 2 km 9 750 gt lt Connector gt The 4 connectors for messenger wire contact wire and both rails at the END of track 1 follow lt Connector name MW track 1 2 km 10 250 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 1 km 10 250 gt lt ConductorTo condName MW lineID A trackID 2 km 10 250 gt lt Connector gt lt Connector name CW track 1 2 km 10 250 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt
173. mPower_MVA 10 nomPrimaryVoltage_kV 115 nomSecondaryVoltage_kV 27 5 noLoadLosses_kW 6 5 loadLosses_kW 230 relativeShortCircuitVoltage_percent 10 7 noLoadCurrent_A 0 06 gt lt OCSBB bbName 0CS_BB z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Switch name TSS_B 25 T1_OCS defaultState close gt lt OCSBB gt lt RailsBB bbName Rails_BB z_real_Ohm 0 001 z_imag Ohm 0 gt lt Switch name TSS_B 25 T1_Rails defaultState close gt lt RailsBB gt lt TwoWindingTransformer gt lt Busbars gt lt OCSBB bbName 0CS_BB gt lt Connector name TSS_B 25 OCS Feeder z_real_Ohm 0 001 z_imag Ohm 0 gt lt Position condName CW lineID B trackID 1 25 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails_BB gt lt Connector name TSS_B_25_Rails_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName RR lineID B trackID 1 km 25 gt lt Connector gt lt RailsBB gt lt Busbars gt lt Substation gt lt Substations gt As results only the engine data substation currents and voltages shall be recorded lt Network name A C use true voltage_kV 25 frequency_Hz 50 recordVoltage true recordCurrent true gt lt Lines recordCurrent false recordVoltage false gt lt Lines gt lt Connectors recordCurrent falsetsub recordVoltage false tsub gt lt Connectors gt lt Substations gt lt Substations gt lt Earth condName E lineID A trackID 1 km 0
174. m_km 0 0393 temperature_GradCelsius 20 temperatureCoefficient 0 x_m 0 y_m 450 0 gt lt Conductor gt lt Conductors gt lt ConnectorSlices gt The dropper configuration for track 1 lt ConnectorSlice name dropper track 1 firstPos_km 20 lastPos_km 30 4 maxDistance_km 0 25 gt lt Connector zReal_Ohm 0 000073 zImag_Ohm 0 gt lt ConductorFrom condName MW trackID 1 gt lt ConductorTo condName CW trackID 1 gt lt Connector gt lt ConnectorSlice gt The dropper configuration for track 2 lt ConnectorSlice name dropper track 2 firstPos_km 20 lastPos_km 30 4 maxDistance_km 0 25 gt lt Connector zReal_Ohm 0 000073 zImag_Ohm 0 gt lt ConductorFrom condName MW trackID 2 gt lt ConductorTo condName CW trackID 2 gt lt Connector gt lt ConnectorSlice gt The rail connector configuration for track 1 lt ConnectorSlice name rail connector track 1 firstPos_km 20 lastPos_km 30 4 maxDistance_km 0 25 gt lt Connector zReal_Ohm 0 00001 zImag_Ohm 0 gt lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName RR trackID 1 gt IFB DD UM_OPN_51_01 02 02 doc Page 142 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 143 of 168 User Manual Issue 2010 05 12 lt Connector gt lt ConnectorSlice gt The rail connector configuration for track 2 lt ConnectorSlice name
175. me LF_1 lineID A trackID 1 km 5 gt lt ConductorTo condName CW lineID A trackID 1 km 5 gt lt Connector gt lt Connector name zReal_Ohm 0 0001 zImag_Ohm 0 gt lt ConductorFrom condName RF_1 lineID A trackID 1 km 5 gt lt ConductorTo condName RR lineID A trackID 1 km 5 gt lt Connector gt lt Connector name zReal_Ohm 0 0001 zImag_Ohm 0 gt lt ConductorFrom condName LF_r lineID A trackID 1 km 6 gt lt ConductorTo condName CW lineID A trackID 1 km 6 gt lt Connector gt lt Connector name zReal_Ohm 0 0001 zImag_Ohm 0 gt lt ConductorFrom condName RF_r lineID A trackID 1 km 6 gt lt ConductorTo condName RR lineID A trackID 1 km 6 gt lt Connector gt Finally all infeeds from the substation need to be connected at km 5 100 to the Feeder and ReturnFeeder conductors lt Busbars gt IFB DD UM_OPN_51_01 02 02 doc Page 121 of 168 DMJ 2010 05 12 OPN 51 1 2 2 7 Ze penPowerNet gt Institut f r Bahntechnik GmbH Page 122 of 168 User Manual Issue 2010 05 12 lt OCSBB bbName 0CS_BB_1 gt lt Connector name TSS_5_OCS_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName IF lineID A trackID 1 km 5 1 gt lt Switch defaultState close name TSS_5_OCS_Feeder_5 0 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails_BB_1 gt lt Connector name TS
176. ms are divided into different groups according to the select options available in Figure 36 For Lines Conductors and Substations a new dialog open See the following chapters for a detailed description Vehicles and Energy can only be selected or not and no extra dialog open The output path displays the actual setup After all configurations are finished the button Start Analysis will start the analysis In the console with name OPN of the GUI all messages from the analysis process are displayed At the beginning of each analysis the message console will be erased Note Before the analysis start close Excel and during the analysis do not use Excel 4 5 2 1 Lines The Lines group provides diagrams along the line These diagrams are e U Panto f s The pantograph voltage of the courses along the line If selected also conductors of type ContactWire with reference to conductors of type Rail e U Rail Earth f s The potential between conductors of type Rail to the conductor of type Earth IFB DD UM_OPN_51_01 02 02 doc Page 42 of 168 DMJ 2010 05 12 OPN 51 1 2 2 3penPowerNet 7 Ze Institut f r Bahntechnik GmbH Page 43 of 168 User Manual Issue 2010 05 12 e U Conductors f s The potential between any conductors to a reference As reference any conductor is allowed but should be whether only one per line or one per all tracks e Leakage f s The current between any co
177. n condName RR lineID A trackID 1 km 5 gt lt Connector gt lt RailsBB gt lt Busbars gt lt Substation gt lt Substation name TSS_A_25 gt lt TwoWindingTransformer name T1 nomPower_MVA 10 nomPrimaryVoltage_kV 115 nomSecondaryVoltage_kV 27 5 noLoadLosses_kW 6 5 loadLosses_kW 230 relativeShortCircuitVoltage_percent 10 7 noLoadCurrent_A 0 06 gt lt OCSBB bbName 0CS_BB z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Switch name TSS_A 25 T1_OCS defaultState close gt lt OCSBB gt lt RailsBB bbName Rails_BB z_real_Ohm 0 001 zs imag Ohm 0 gt lt Switch name TSS_A 25 TI Rails defaultState close gt lt RailsBB gt lt TwoWindingTransformer gt lt Busbars gt lt OCSBB bbName 0CS_BB gt lt Connector name TSS_A 25 OCS Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName CW lineID A trackID 1 km 25 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails_BB gt lt Connector name TSS_A 25 Rails Feeder z_real_Ohm 0 001 z_ imag Ohm 0 gt lt Position condName RR lineID A trackID 1 km 25 gt lt Connector gt lt RailsBB gt lt Busbars gt IFB DD UM_OPN_51_01 02 02 doc Page 145 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et Wd Institut f r Bahntechnik GmbH Page 146 of 168 User Manual Issue 2010 05 12 lt Substation gt lt Substation name TSS_B_25 gt lt TwoWindingTransformer name T1 no
178. n el oi F 2323 3 d A oS Ss i i Figure 130 The wrong OpenTrack infrastructrue configuration of the loop tracks ojl et 8 gt Z 3 Al Sj amp amp D Tutorial 06 Network Modul B5 Coups OTRecuments m Info och Findtons Widows hie s gt Quit 5 2 Station B Station C 0 000 is Legend ol of ol elelelel S 3 jg Si sl 8 Track 1 SE Bl S 8 H Dj oj of oO Al ln ol A Y Nj sl e oi TI F m dk ak Track 2 oj ele vol O wo ol of of Ol sl o 0 oi aint oe sl Ir Al N N Figure 131 The correct OpenTrack infrastructrue configuration of the loop tracks Next after configuration of the infrastructure create new paths routs itineraries and courses according to Table 16 6 7 5 1 2 OpenPowerNet 6 7 5 1 2 1 Engine File The engine file is the same as in the AC tutorial 6 7 5 1 2 2 Project File According to the infrastructure defined in OpenTrack we need to configure the electrical network in OpenPowerNet IFB DD UM_OPN_51_01 02 02 doc Page 150 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 151 of 168 User Manual Issue 2010 05 12 Figure 132 The wrong OpenPowerNet network configuration Lets first configure the wrong electrical network lt xml version 1 0 encoding UTF 8 gt lt OpenPowerNet xmlns xsi http www w3 org 2001 XMLSchema instance xsi noNamespaceSchemaLocation http www dd bahntechn
179. n gt lt propulsion gt As the limit should be 50A for any line voltage we need only to specify the 50A at OV 6 6 5 1 2 2 Project File We will take the Project File from the regenerative braking tutorial of chapter 6 6 4 as the basis Only the brakeCurrentLimitation attribute need to be changed from none to I f U see the XML snuipped below lt Vehicle eddyCurrentBrake false engineID Enginel gt lt Propulsion IFB DD UM_OPN_51_01 02 02 doc Page 100 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 101 of 168 User Manual Issue 2010 05 12 engine electric supply AC 25kV 50Hz brakeCurrentLimitation I f U These value need to be set tractiveCurrentLimitation none useAuxPower true fourQuadrantChopperPhi none regenerativeBrake maxPower maxEffort tractiveEffort maxPower maxTractEffort gt lt MeanEfficiency gt lt Propulsion gt lt Vehicle gt Set the right Engine File and don t forget to set a meaningful project name and comment in the project file 6 6 5 2 Simulation We need only to simulate the long trains to see effect of the brake current limitation 6 6 5 3 Analysis We use Excel file Engine2 xls to compare the simulation results from tutorial regenerative braking and this tutorial Figure 95 shows the limited brake current to 50A Eng 300 7 I A 200
180. nce of engines inside the electrical network has to be realistic as each course inside the network consumes at least its auxiliary power If a course is created at the wrong time step or behaves unrealistic this has an effect inside the electrical network although the operational simulation may not be affected All courses that turn up inside the electrical network during the target simulation time have to be modelled even if they may only stand on a station track powered on If parts of other lines are connected to the main line e g powered by the same substations and the entire electrical situation shall be analysed these parts and its course operations also have to be modelled This can be only omitted when no load is on the connected parts If there are engines with same OpenTrack input data but different electrical parameters for the same catenary system these engines have to be handled separately A multi system traction unit can be handled as a single engine though To keep the number of nodes in the electrical network down special track arrangements should be kept simple Example Double track line junction in track Up is located 2 m before junction in track Down In such a case both junctions should get the same position to save one slice All configuration data has to use ASCII characters 4 2 2 Naming Conventions Names used for model elements need to be unique within a specific scope The table below gives the ov
181. nce of the source currents between the iteration of ATM and PSC maxIncreaseCount 500 The maximum allowed number of increasing voltage tolerance between ATM and PSC iteration steps discreteTrains true The courses should be inserted at the slices and the current shall not be distributed to both neighbouring slices evenlyDistributedTractionReturnCurrent true gt The traction current shall be evenly distributed to both rails Now we have done the configuration of the Project File To check for failures and to visualise what we have done we will use the PSC Viewer see 3 4 The PSC Viewer creates a graphical representation of the electrical network using nodes conductors connectors and substations For questions regarding the PSC Viewer consult the GUI Help System A diagram snippet is shown in Figure 48 IFB DD UM_OPN_51_01 02 02 doc Page 61 of 168 DMJ 2010 05 12 O Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 62 of 168 User Manual Issue 2010 05 12 Figure 48 A snippet of the electrical network at Station B with siding in the PSC Viewer diagram 6 2 1 2 3 Switch File As we later also want to simulate a failure scenario besides the default configuration we have to prepare a Switch File This file enables us to disconnect a transformer at a specific time by opening the switches between the transformer and the busbar As for the two XML Files before we ne
182. nductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 10 75 y m 0 gt lt Conductor gt lt Conductor type Earth gt lt StartPosition condName E trackID 1 km 0 gt lt ToProperty toPos_km 25 4 equivalentRadius_mm 450000 r20_Ohm_km 0 0393 temperature_GradCelsius 20 temperatureCoefficient 0 x_m 0 y_m 450 0 gt lt Conductor gt lt Conductors gt The definition of connector slices To have more detailed recoding data the slice distance in IFB DD UM_OPN_51_01 02 02 doc Page 152 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 153 of 168 User Manual Issue 2010 05 12 the station A shall be only 50m Outside the stations A and B the slice distance shall be 200m And track 2 in station B slice distance 100m lt ConnectorSlices gt lt ConnectorSlice name dropper track 1 station A firstPos_km 0 lastPos_km 1 maxDistance_km 0 05 gt lt Connector zReal_Ohm 0 000073 zImag_Ohm 0 gt lt ConductorFrom condName MW trackID 1 gt lt ConductorTo condName CW trackID 1 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name dropper track 1 outside station A firstPos_km 1 2 lastPos_km 25 4 maxDistance_km 0 2
183. nductor type Rail gt lt StartPosition condName RL trackID 1 km 0 gt The left rail lt ToProperty toPos_km 85 4 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 0 75 y m 0 gt Note the horizontal x position and the equivalent radius of the rail lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 1 km 0 gt The right rail lt ToProperty toPos_km 85 4 equivalentRadius_mm 38 52 r20_ Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 0 75 y_m 0 gt lt Conductor gt Now conductors for track 2 follow lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 3 45 r20_Ohm_km 0 2311 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 10 y_m 6 9 gt Note the start and end of the wire lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 3 45 r20_Ohm_km 0 1852 temperature_GradCelsius 20 temperatureCoefficient 0 00385 x_m 10 y_m 5 3 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 temperature_GradCelsius 20
184. nductorFrom condName RR trackID 1 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakages gt lt Line gt lt Lines gt lt Substations gt The substation at km 45 000 with two winding transformer lt Substation name TSS_45 gt lt TwoWindingTransformer name T1 nomPower_MVA 10 nomPrimaryVoltage_kV 115 nomSecondaryVoltage_kV 27 5 noLoadLosses_kW 6 5 loadLosses_kW 230 relativeShortCircuitVoltage_percent 10 7 noLoadCurrent_A 0 06 gt lt OCSBB bbName 0CS_BB z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Switch name TSS_45_T1_OCS defaultState close gt lt OCSBB gt lt RailsBB bbName Rails_BB z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Switch name TSS_45_T1_Rails defaultState close gt lt RailsBB gt lt TwoWindingTransformer gt lt Busbars gt lt OCSBB bbName OCS_BB gt lt Connector name TSS_45 OCS Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName CW lineID A trackID 1 km 45 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails_BB gt lt Connector name TSS_45_Rails_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName RR lineID A trackID 1 km 45 gt lt Connector gt lt RailsBB gt lt Busbars gt lt Substation gt lt Substations gt lt Earth condName E lineID A trackID 1 km 9 750 gt lt Network gt 6 7 3 1 3 Simulation Run the simulation with long trains only 6 7 3 1 4 Analysis F
185. nductors to a reference in amps per meter As reference any conductor is allowed but should be whether only one per line or one per all tracks The selection dialog provid e Name es the following columns To specify the name of the diagram If set the default diagram title will be replaced with the given text The designation will be added to the title and the subtitle with name of line and tracks will still be used e Type The type of the diagram e Line xyz The name of a line grouping different tracks e Track xyz The name of a track grouping different conductors e Panto The column to select the curves for pantograph voltage belonging to the track and line indicated in the rows e Conductor Name xyz above The column to select the curves for the conductor with name xyz belonging to the track and line indicated in the rows above Select Lines 7 2009 09 22 09 53 54 0 Network Tutorial Neutral Zo Network A C rk A C S E Networ mw VK mes LR es r OK __ lAppend Row Figure 37 The dialog to configure the diagrams versus the line position The columns displayed at the right side depend on the selection in the tree of the left side In Figure 37 all conductors fo r line A are displayed The table provides the following selection options IFB DD UM_OPN_51_01 02 02 doc Page 43 of 168 DMJ 2010 05 12 OPN 51 1 2 2 3penPowerNet 7 Z
186. nent IFB DD UM_OPN_51_01 02 02 doc Page 114 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 115 of 168 User Manual Issue 2010 05 12 lt Vehicle eddyCurrentBrake false engineID Enginel gt lt Propulsion engine electric supply AC 25kV 50Hz brakeCurrentLimitation none tractiveCurrentLimitation none useAuxPower true fourQuadrantChopperPhi none regenerativeBrake none tractiveEffort maxPower maxTractEffort gt lt SingleComponent This element specifies the efficiency model transformer meanEfficiency The efficiencies are mean fourQuadrantChopperEfficiency efficiency f v versus speed tractionInverter efficiency f v versus speed gear meanEfficiency mean and tractionMotor efficiency f v F gt versus speed and force lt Propulsion gt lt Vehicle gt Set the right Engine File and don t forget to set a meaningful project name and comment in the project file 6 6 10 2 Simulation We will do two simulations to be able to compare two transformer efficiency models Run both simulations e Do everything as described above and run the simulation e Change the attribute transformer in the Project File to efficiency f I give a meaningful comment in the Project File and run the simulation 6 6 10 3 Analysis We use Excel file Engine2 xls to compare the simulation We have to set the transformer efficiency in the SELECTIO
187. network calculation will take place In general at the beginning of each time step the voltages of the electrical network with the known course positions and requested efforts of the previous time step are calculated Iteration between ATM and PSC takes place and is terminated in case each node voltage changes less as a configured threshold e g 1V ATM calculates the current according to the line voltage simulated by PSC and PSC calculates the line voltage considering the currents used by courses Each course is handled as a current source in the electrical network IFB DD UM_OPN_51_01 02 02 doc Page 8 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 9 of 168 User Manual Issue 2010 05 12 3 Application structure OpenPowerNet is divided into three modules for simulation Each is executable software see Figure 2 The module Power Supply Calculation psc exe realises the electrical network calculation the Advanced Train Model atm exe is responsible for the engine calculation and the APserver apserver exe is the communication interface among the OpenPowerNet modules themselves and to OpenTrack The configuration of the three modules is done within the Graphical User Interface GUI The simulation specific configuration data is stored in XML files and read at the beginning of a simulation The GUI is used to control the simulation to provide access
188. nto a dump file and that we do not want to record computation data The recording of the simulation results shall start with the first course at 01 00 therfore we set the simulation start time to 3600 seconds Furthermore we need to set the Engine File just configured in the previous chapter The next step is to configure the engine model lt ATM gt lt Vehicles gt lt Vehicle eddyCurrentBrake false engineID Enginel gt lt Propulsion supply AC 25kV 50Hz engine electric tractiveCurrentLimitation none brakeCurrentLimitation none useAuxPower true fourQuadrantChopperPhi none regenerativeBrake none tractiveEffort maxPower maxTractEffort gt lt MeanEfficiency gt lt Propulsion gt lt Vehicle gt lt Vehicles gt lt Options tolerance_A 0 1 maxIterations 1000 record2DB true gt lt ATM gt Note the green data has to correspond to OpenTrack and Engine File Our engine will not use eddy current brake has no tractive or brake current limitation uses auxiliary power has no model for power factor as attribute fourQuadrantChopperPhi is set to none The engine also has no regenerative bake and the tractive effort model is defined by maximum power and maximum tractive effort The efficiency of the engine shall be modelled as mean efficiency As we want to record data to the database set the simulation option for module ATM For the internal ATM iteration we need to define the maximum allowed current tolerance be
189. oad_MWs 300 initialLoad_MWs 300 lossPower_kW 0 1 loadRi_Ohm 0 005 unloadRi_Ohm 0 005 auxPowerl_kW 10 gt lt Function minLoadAllowUnload_MWs 0 loadMaxCurrent1_A 200 unloadMaxCurrent1_A 200 voltagelLoadStart_kV 3 000 voltagelLoadStop_kV 2 999 voltagelUnloadStart_kV 2 700 voltagelUnloadStop_kV 2 701 gt lt StorageType gt lt StorageTypes gt lt TypeDefs gt 6 5 1 2 3 Project File As the base of this Project File we will use the Project File of the DC network and add a substation with an energy storage at km 45 000 See the XML snippet with the substation configuration lt Substation name SS_45 gt lt Busbars gt The definitions of busbars and the connections to the line follow lt OCSBB bbName OCS_BB gt lt Connector name SS_45_OCS_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName CW lineID A trackID 1 km 45 gt lt Switch defaultState close name SS_45 OCS gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails_BB gt lt Connector name SS_45_Rails_ Feeder z_real_Ohm 0 001 zs imag _Ohm 0 gt lt Position condName RR lineID A trackID 1 km 45 gt lt Switch defaultState close name SS_45_Rails gt IFB DD UM_OPN_51_01 02 02 doc Page 89 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 90 of 168 User Manual Issue 2010 05 12 lt Connector gt lt Rails
190. ocation the xml schema xsd gt lt XML Root Elemen gt See also the FAQs in chapter 7 8 and 7 9 for an answer of how to get the directory path and which schema to use for which file IFB DD UM_OPN_51_01 02 02 doc Page 22 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 23 of 168 User Manual Issue 2010 05 12 4 2 1 Model constraints Besides the constraints derived from the OpenTrack model mentioned in chapter 7 1 the model has to fulfil further constraints Otherwise the simulation is not possible or the results will be wrong The following constraints have to be fulfilled Auto Two Winding and Three Winding Transformer e O lt relativeShortCircuitVoltage nomPower noLoadLosses e 0 lt nomPrimaryVoltage noLoadCurrent noLoadLosses For AC networks the sums of all conductor currents of each section between two slices within a line have to be 0 This means e Itis not allowed to add connectors parallel to conductors e Feeder and return feeder from a substation to the line have to be connected at the same slice and e Lines shall not be connected in a triangular manner e Itis not possible to add a switch between the busbar and a rectifier but you can still use a switch in the feeder cable to the line e tis not allowed to have more than one contact wire per track e Itis not allowed to have more than two rails per track The occurre
191. ock Schema 1 03 0PN 1 provided as file schemas rollingstock xsd The schema specification documentation is available in the GUI Help System under OpenPowerNet User Guide gt Engine File Table 2 to Table 5 list the data processed by ATM considering the engine models from Figure 3 to Figure 5 The position where the data shall be inserted into the Engine File is described by X Path which is similar to a path of the file system XML elements can be understood as folders and XML attributes as files containing the data A path to an attribute contains an as prefix of the attribute name Below is an example Engine File with one engine equipped with one propulsion system Note the colour code explained in chapter 1 4 lt xml version 1 0 encoding UTF 8 gt lt railml xmlns xsi http www w3 org 2001 XMLSchema instance xsi noNamespaceSchemaLocation D Usr OpenPowerNet x y z plugins de bahntechnik dd opn bin_1 1 0 b6_200905261507 schemas rollingstock xsd gt lt rollingstock rollingstockID version 110 gt lt vehicles gt lt vehicle length 25 bruttoWeight 75 vehicleID Enginel speed 250 gt lt engine gt lt propulsion supply AC 25kV 50Hz transmission electric engine electric power 5560 maxTractEffort 250 totalTractEfficiency 90 totalBrakeEfficiency 90 gt lt auxSupply typeStr all constPower 100 gt lt propulsion gt lt engine gt lt vehicle gt lt vehicles gt lt rollingstoc
192. oject File to true give a meaningful comment in the Project File and run the simulation IFB DD UM_OPN_51_01 02 02 doc Page 108 of 168 DMJ 2010 05 12 OPN 51 1 2 2 7 Ze 3penPowerNet Institut f r Bahntechnik GmbH Page 109 of 168 User Manual Issue 2010 05 12 6 6 7 3 Analysis We use Excel file Engine2 xls to compare the simulation As we are only interested in the values while braking we filter the column with requested effort and select only the values lt 0 This has to be done for both SELECTION sheets Achived Effort f v F kN 1 1 1 40 60 80 100 120 140 160 180 200 220 v km h Course ABCs_02 Sim 25 Course ABCs_02 Sim 27 Figure 102 The achived effort by the engine of course ABCs_02 without sim 26 and with sim 27 eddy current brake Between 60 km h and 170 km h the achived brake effort of the simulation with eddy current brake sim 27 is 30 kN more than without Note that for a speed less than 10 km h both curves are the same For the other speeds the achived effort in simulation 27 is just as much as requested compare also the values in sheet SELECTION 2 Pel f v 40 60 80 100 120 140 160 180 200 220 v km h Course ABCs_02 Sim 25 Course ABCs_02 Sim 27 Figure 103 The electrical power by course ABCs_02 without sim 26 and with
193. om condName RL lineID A trackID 1 km 10 250 gt lt ConductorTo condName RL lineID A trackID 2 10 250 gt lt Connector gt lt Connector name RR track 1 2 km 10 250 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 1 10 250 Za lt ConductorTo condName RR lineID A trackID 2 km 10 250 gt lt Connector gt lt Connectors gt lt Substations gt The substation at km 5 000 lt Substation name TSS_5 gt lt TwoWindingTransformer name T1 nomPower_MVA 10 nomPrimaryVoltage_kV 115 nomSecondaryVoltage_kV 27 5 noLoadLosses_kW 6 5 loadLosses_kW 230 relativeShortCircuitVoltage_percent 10 7 noLoadCurrent_A 0 06 gt lt OCSBB bbName 0CS_ BB 1 zs real Ohm 0 001 z imag Ohm 0 gt lt Switch name TSS_5_T1_OCS defaultState close gt lt OCSBB gt lt RailsBB bbName Rails_BB_ 1 z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Switch name TSS_5_T1_Rails defaultState close gt lt RailsBB gt lt TwoWindingTransformer gt lt Busbars gt lt OCSBB bbName OCS_BB_1 gt lt Connector name TSS_5_OCS_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName CW lineID A trackID 1 km 5 gt lt Switch defaultState close name TSS_5_OCS_Feeder_5 0 gt lt Connector gt lt OCSBB gt lt RailsBB bbName Rails_BB_1 gt lt Connector name TSS_5_Rails_Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Position condName RL lineI
194. or analysis we use the Excel file EngineAll xls and Engine xls IFB DD UM_OPN_51_01 02 02 doc Page 136 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 137 of 168 User Manual Issue 2010 05 12 Achieved Effort f v 300 7 250 Jee 0 50 100 150 200 250 v km h Figure 122 The achieved effort of the engines in the DC and AC network In the diagram above we can see very well the two different efforts versus speed characteristics The higher curve belongs to the AC and the lower to the DC propulsion system U I f s 30000 e 2000 25000 20000 SC U 10000 5000 s km um ia Figure 123 The line voltage and current at pantograph of course ABCI_01 In Figure 123 are the curves for voltage and current in both electrical networks The line voltage of the two systems is significant different and the location of the system change over visible 6 7 4 Network with multiple lines points and crossings tutorial In This tutorial we will create an OpenTrack infrastructure with two lines and multiple points and one crossing For the simulation of the electrical power supply we create a network also with two lines and 3 substations IFB DD UM_OPN_51_01 02 02 doc Page 137 of 168 DMJ 2010 05 12 OPN 51 1 2 2 penPowerNet OA Institut f r Bahntechnik GmbH Page 138 o
195. os_km 25 4 equivalentRadius_mm 3 45 r20_Ohm_km 0 1852 temperature_GradCelsius 20 temperatureCoefficient 0 00385 x_m 0 y_m 5 3 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 1 km 0 2 gt lt ToProperty toPos_km 25 4 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 0 75 y_m 0 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 1 km 0 2 gt lt ToProperty toPos_km 25 4 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 0 75 y_m 0 gt lt Conductor gt The conductors for track 2 in station A lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 2 km 0 2 gt lt ToProperty toPos_km 0 650 equivalentRadius_mm 3 45 r20_Ohm _km 0 2311 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 10 y_m 6 9 gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 2 km 0 2 gt lt ToProperty toPos_km 0 650 equivalentRadius_mm 3 45 r20_Ohm_km 0 1852 temperature_GradCelsius 20 temperatureCoefficient 0 00385 x_m 10 y_m 5 3 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 2 km 0 2 gt lt ToProperty toPos_km 0 650 equivalentRadius_mm 38 52 r20_Ohm_km
196. ous IFB DD UM_OPN_51_01 02 02 doc Page 162 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 163 of 168 User Manual Issue 2010 05 12 e Chainage has to be positive e Set km point of each double vertex e Set length of all edges e Set line ID of all edges e Set track ID of all edges e Specify power supply areas It is helpful to prevent unnecessary changes in chainage or line and track IDs during creation of the OpenTrack project to simplify the electrical network model If there are engines with same OpenTrack input data but different electrical parameters for the same catenary system these engines have to be handled separately A multi system traction unit can be handled as a single engine though Phase insulation gaps or voltage free areas should get power off and power on signals in OpenTrack Note Check Use Curve Resistance in OpenTrack preferences to respect each curve in your track layout If this option is not set OpenTrack uses a mean radius to calculate driving resistance 7 2 How to deal with broken chainage In general it is advised to avoid broken chainage There are two different kinds of broken chainage a positive and a negative see Figure 138 distance 0 000 1 000 2 000 3 000 chainage 0 000 1 000 1 100 2 100 1 900 2 900 positive negative broken chainage broken chainage add 100m go back 200m Figure 138 The two k
197. ovided from both substations and Figure 71 for the 2AC network provided only from TSS_5 E fft 01 00 00 01 05 00 01 10 00 01 15 00 01 20 00 01 25 00 01 30 00 4 01 35 00 01 40 00 01 45 00 01 50 00 01 55 00 02 00 00 E TS5_5 sim 1 E TSS_80 sim 1 Figure 70 Energy supply from both TSS of the AC network in default configuration IFB DD UM_OPN_51_01 02 02 doc Page 78 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 79 of 168 User Manual Issue 2010 05 12 E f t of simulation Tutorial 2AC Network default 5 0 3 0 E MWh 0 0 01 00 00 01 05 00 4 01 10 00 4 1 15 00 4 01 25 00 4 01 30 00 4 01 35 00 01 40 00 01 50 00 01 55 00 02 00 00 T o e e N 5 D 2 01 45 00 4 d i TSS_5E MWh busberOCS_BB TSS_5 E MWh busbar ME ER Tots i Figure 71 Energy supply from TSS_5 of the 2AC network in default configuration The total energy consumption of the AC network is 6 34MVA TSS_5 supplied 3 11MVA and TSS_80 3 23MVA compared to 6 46MVA of the 2AC network The difference of about 2 is caused by the auto transformer losses and the higher losses caused by the higher currents due to lower line voltage 6 3 3 2 Short circuit For the short circuit simulation we modify the engine as described in the AC tutorial use th
198. pecial engine model To evaluate the results we will use the Excel Files PowerSupply xls OpenPowerNet gt Excel Tools gt One Power Supply and PowerSupply2 xls OpenPowerNet gt Excel Tools gt Compare Two Power Supplies The second file provides diagrams for two substations versus time To match the time easily with a location we want to run the course with constant speed of 36km h respective 10m s In this way it is easy to match the time with the location In OpenTrack we need to set the speed limit of all edges to 36km h for speed type A Then we create a new course with name short circuit and the itinerary from Station A to Station C via track 1 set the speed type to A and the entry speed to 36km h see Figure 59 Now we have a course with constant speed along the whole line from Station A to Station C IFB DD UM_OPN_51_01 02 02 doc Page 68 of 168 DMJ 2010 05 12 CZE Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 69 of 168 User Manual Issue 2010 05 12 Courses Services Edit A Course ID short circuit z Description Comment gt I1_IEOS ACE_EOS ES k1_ZEOS ACE_EOS at v LABI C 1 Ieper kACE_BOS 1_1BOS Search Train Train long Speedtype Reihe A Route Reservation Release Discrete Route Additional Reservation Time s 0 0 D D Route Additional Release Time s oo Performance on Time 9 100 Performance delayed
199. pen name TSS_5_5 2_ CW gt lt Position km 5 2 trackID 1 condName CW gt lt ConductorSwitch gt lt ConductorSwitch gt lt Switch defaultState open name TSS_5_5 2_MW gt lt Position km 5 2 trackID 1 condName MW gt lt ConductorSwitch gt lt ConductorSwitch gt lt Switch defaultState open name TSS_5_5 2_NF gt lt Position km 5 2 trackID 1 condName NF gt lt ConductorSwitch gt lt Switches gt After we have done the line configuration we need to add and adapt the substations First we add the autotransformer station ATS_0O at km 0 000 lt Substation name ATS_0 gt IFB DD UM_OPN_51_01 02 02 doc Page 127 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 128 of 168 User Manual Issue 2010 05 12 lt Autotransformer name T1 nomPower_MVA 5 nomPrimaryVoltage_kV 55 nomSecondaryVoltage_kV 27 5 noLoadLosses_kW 5 loadLosses_kW 10 relativeShortCircuitVoltage_percent 1 8 noLoadCurrent_A 0 2 gt lt OCSBB bbName OCS_BB z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Switch name ATS_0_T1_OCS defaultState close gt lt OCSBB gt lt RailsBB bbName Rails_BB z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Switch name ATS_0_T1_Rails defaultState close gt lt RailsBB gt lt NegativeFeederBB bbName NF_BB z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Switch name ATS_0_T1_NF defaultState close gt
200. pulsion and eddy current brake is less than the requested effort of the driving simulation OpenTrack implies that the mechanical brake is able to achieve the remaining brake effort and calculates the driving dynamics using the total requested effort A current limitation can be configured for each propulsion system The tractive current limitation reduces the power consumption and the achievable effort which affects the driving dynamics The braking current limitation only limits the regenerated energy into the electrical network Additionally a maximum recovery voltage can be configured that limits the energy output while braking to respect this voltage 500 00 450 00 400 00 350 00 300 00 KN 250 00 200 00 150 00 100 00 50 00 0 00 0 20 40 60 80 100 120 140 160 180 200 km h Braking Effort kN Eddy Current Brake Effort kN amp Total Braking Effort Figure 6 Brake effort calculated with maximum recovery effort maximum recovery power and eddy current brake IFB DD UM_OPN_51_01 02 02 doc Page 15 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 16 of 168 User Manual Issue 2010 05 12 In case that during braking the recovered energy exceeds the energy consumption of the course the excessive energy is regenerated into the electrical network see Figure 7 kW 8000 700
201. quivalentRadius_mm 38 52 r20_ Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 0 75 wv m 0 gt lt Conductor gt The conductor configuration for track 2 lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 2 km 20 gt lt ToProperty toPos_km 30 4 equivalentRadius_mm 3 45 r20_Ohm_km 0 2311 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 10 y m 6 9 gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 2 km 20 gt lt ToProperty toPos_km 30 4 equivalentRadius_mm 3 45 r20_Ohm_km 0 1852 temperature_GradCelsius 20 temperatureCoefficient 0 00385 x_m 10 wv m 5 3 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 2 km 20 gt lt ToProperty toPos_km 30 4 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 9 25 wv m 0 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 2 km 20 gt lt ToProperty toPos_km 30 4 equivalentRadius_mm 38 52 r20_ Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 10 75 y m 0 gt lt Conductor gt The earth conductor lt Conductor type Earth gt lt StartPosition condName E trackID 1 km 20 gt lt ToProperty toPos_km 30 4 equivalentRadius_mm 450000 r20_Oh
202. r Manual Issue 2010 05 12 6 2 3 3 Constant current To check the pantograph voltage in a network we want to draw a constant current along the whole line This can be done easily by OpenPowerNet Just add one course in OpenTrack e g with name constant current use the itinerary from Station A via track 1 in Station B to Station C and add a timetable As we have seen in the previous simulation the maximum short circuit current is about 2300A so we will use a lower current of 2000A for this simulation Otherwise the network is overburden Then add one attribute to the Project File lt Vehicle eddyCurrentBrake false engineID Enginel gt lt Propulsion engine electric supply AC 25kV 50Hz constantCurrent_A 2000 This is the new attribute Other attributes will be ignored by OpenPowerNet brakeCurrentLimitation none tractiveCurrentLimitation none useAuxPower true fourQuadrantChopperPhi none regenerativeBrake none tractiveEffort maxPower maxTractEffort gt lt MeanEfficiency gt lt Propulsion gt lt Vehicle gt and set a proper comment in the Project File to identify this simulation while analysing the data U I f s 25000 2500 20000 2000 15000 1500 I A 10000 1000 5000 500 s km UV z i Figure 62 The voltage and current along the line for the constant current of 2000A The green arrows point to the substation positions The red circle is th
203. rail connector track 2 firstPos_km 20 lastPos_km 30 4 maxDistance_km 0 25 gt lt Connector zReal_Ohm 0 00001 zImag_Ohm 0 gt lt ConductorFrom condName RL trackID 2 gt lt ConductorTo condName RR trackID 2 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlices gt lt Leakages gt The leakage configuration for track 1 lt Leakage firstPos_km 20 lastPos_km 30 4 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 20 lastPos_km 30 4 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RR trackID 1 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt The leakage configuration for track 2 lt Leakage firstPos_km 20 lastPos_km 30 4 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RL trackID 2 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 20 lastPos_km 30 4 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RR trackID 2 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakages gt lt Line gt After the configuration of the conductors for both lines and all tracks the electrical connection between the lines and tracks shall be configured The electrical connection of track 1 and 3 at km 9 650 lt Connectors gt lt Connector name
204. rake power and maximum brake effort The values shall be the same as for traction 6 6 4 1 Configuration 6 6 4 1 1 OpenTrack We will use the OpenTrack model from the AC tutorial without changes IFB DD UM_OPN_51_01 02 02 doc Page 97 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 98 of 168 User Manual Issue 2010 05 12 6 6 4 1 2 OpenPowerNet 6 6 4 1 2 1 Engine File As the basis we use the Engine File from the AC tutorial We need only to set the values for max brake effort and max brake power see the XML snipped below lt vehicle length 25 bruttoWeight 75 vehicleID Enginel speed 250 gt lt engine gt lt propulsion supply AC 25kV 50Hz transmission electric engine electric power 5560 maxTractEffort 250 totalTractEfficiency 90 totalBrakeEfficiency 90 maxBrakeEffort 250 These and maxBrakePower 5560 gt these values need to be set lt auxSupply typeStr all constPower 100 gt lt propulsion gt lt engine gt lt vehicle gt 6 6 4 1 2 2 Project File As the basis we use the Project File from the AC tutorial The regenerative effort model has to be specified We want to use the maxPower maxEffort model A table same as for the tractive effort described in chapter 6 6 2 is also available lt Vehicle eddyCurrentBrake false engineID Enginel gt lt Propulsion engine electric supply AC 25kV 50Hz brakeC
205. ratureCoefficient 0 004 x _m 9 25 wv m 0 recordCurrent false recordVoltage false gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 2 km 9 750 gt IFB DD UM_OPN_51_01 02 02 doc Page 120 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 121 of 168 User Manual Issue 2010 05 12 lt ToProperty toPos_km 10 250 equivalentRadius_mm 38 52 r20_Ohm km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 10 75 y_m 0 recordCurrent false recordVoltage false gt lt Conductor gt lt Conductor type Earth gt lt StartPosition condName E trackID 1 km 0 gt lt ToProperty toPos_km 9 equivalentRadius_mm 450000 r20_Ohm km 0 0393 temperature_GradCelsius 20 temperatureCoefficient 0 x_m 0 y_m 450 0 gt lt ToProperty toPos_km 85 4 recordCurrent false recordVoltage false gt lt Conductor gt lt Conductors gt Set the recording option for the connector slices and leakage to false lt ConnectorSlices recordCurrent false recordVoltage false gt lt Leakages recordCurrent false recordVoltage false gt After we finished the wrong configuration we will do the right configuration Copy the just created Project File and add the following Add both Feeder and ReturnFeeder conductors left and right of the substation lt Conductor type Feeder g
206. rents and voltages lt Earth lineID A trackID up km 0 condName E gt lt Network gt Please note that recording line voltages and currents increases the amount of written data significantly and slows down the simulation as well as the analysis Record these values only if necessary The tables below list some typical configurat ion data for power supply nomPower_MVA 10 nomPrimaryVoltage_kV 115 nomSecondaryVoltage_kV 16 25 noLoadLosses_kW 6 5 loadLosses_kW 230 relativeShortCircuitVoltage_percent 10 7 noLoadCurrent_A 0 06 Table 6 Typical two winding transformer configuration nomPower_MVA 85 nomPrimaryVoltage_kV 150 nomSecondaryVoltage_kV 53 8 noLoadLosses_kW 38 loadLosses_kW 136 relativeShortCircuitVoltage_percent 8 6 noLoadCurrent_A 1 43 Table 7 Typical three winding transformer configuration nomPower_MVA 20 nomPrimaryVoltage_kV 55 nomSecondaryVoltage_kV 27 5 IFB DD UM_OPN_51_01 02 02 doc Page 33 of 168 DMJ 2010 05 12 OPN 51 1 2 2 3penPowerNet CZ Ze Institut f r Bahntechnik GmbH Page 34 of 168 User Manual Issue 2010 05 12 noLoadLosses_kW 8 loadLosses kW 17 relativeShortCircuitVoltage_percent 1 76 noLoadCurrent_A 0 33 Table 8 Typical auto transformer configuration internalResistance_Ohm 0 015 nomVoltage_kV 0 750 energyRecovery false Ta
207. roject File As we use short trains only and they start at 2 00 we have to set the simulation start time to 7200s simulationStart_s 7200 IFB DD UM_OPN_51_01 02 02 doc Page 103 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 104 of 168 User Manual Issue 2010 05 12 Then we need to set the regenerative brake option and set the use of the engine auxiliary to false for the first simulation lt Vehicle eddyCurrentBrake false engineID Enginel gt lt Propulsion engine electric supply AC 25kV 50Hz brakeCurrentLimitation none tractiveCurrentLimitation none useAuxPower false Set this to false in the first simulation and to true for the other fourQuadrantChopperPhi none regenerativeBrake maxPower maxEffort Set this to use the regenerative brake tractiveEffort maxPower maxTractEffort gt lt MeanEfficiency gt lt Propulsion gt lt Vehicle gt Set the right Engine File and don t forget to set a meaningful project name and comment in the project file 6 6 6 2 Simulation Run all simulation e Do everything as described above and run the simulation e Set useAuxPower in the Project File to true give a meaningful comment and run the simulation e Comment the auxiliary with constant power in the Engine File and uncomment the constant resistance auxiliary give a meaningful comment in the Project File and run the simulation
208. rty toPos_km 85 4 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 tempersture_GradCelsius 20 temperatureCoefficient 0 004 x_m 0 75 y_m 0 gt fF EEE sConductor gt onductor type MessangervVire gt StartPosition condName MW tracklD 2 km 9 750 gt ToProperty toPos_km 10 250 equivalentRadius_mm 3 45 r20_Ohm_km 0 2311 we_GradCelsius 20 temperatureCoefficient 0 004 x_m 10 y_m 6 9 gt onductor onductor type ContactWire gt IN CECR SDL _ Authentic se D WsrWacob Martin Eclipse_3 4 1 plugins de bahntechnik dd opn bin_1 1 0 b6_200905261507 schema A Element Attribute constantCurrent_A retryRecovery shortCircuitEngine Ent amp Ent apos Ent ot Ent tt Ent quot fimbEngine File xml ffahProject File xml ffmlUnbenannt2 xml ffmlUnbenannts xml XMLSpy v2006 sp1 U Registriert f r Joerg Lingen Institut fuer Bahntechnik GmbH 1998 2005 Altova GmbH Figure 42 The Altova XMLSpy with a Project File and opened Info Window and Editing Support Window showing the context according to the selected attribute IFB DD UM_OPN_51_01 02 02 doc Page 51 of 168 DMJ 2010 05 12 OPN 51 1 2 2 3penPowerNet 7 Ze ww Institut f r Bahntechnik GmbH Page 52 of 168 User Manual Issue 2010 05 12 6 2 AC Network tutorial In this tutorial we will create a single line to learn how to set up a simple OpenTrack and OpenPowerNet co simula
209. s_kW 100 8 relativeShortCircuitVoltage_percent 10 5 noLoadCurrent_A 1 06 4 OCSBB bbName OCSBB 01 z real Ohm 0 001 z_imag_Ohm 0 001 al Switch name TSS_10_TT 01 0CSBB 01 ay defaultState close RailsBB bbName RBB 01 z real Ohm 0 001 z_imag_Ohm 0 001 Switch name TSS_10_TT 01 RBB 01 E d Si defaultState close Busbars wi OCSBB 1 bbName Connector 4 OCSBB 01 ai Connector z_ real Ohm_km 0 0957 z_imag_Ohm_km 0 08437 length_km Di temperatureCoefficient 4 temperature_GradCelsius 20 number 1 Position condName Cu linelD Une trackiD up I km 10 RailsBB bbHame Connector 1 RBB 01 a Connector z_real_Ohm_km 0 0957 z_imag_Ohm_km 0 08437 length_km 0 1 temperatureCoefficient 4 temperature_GradCelsius 20 number 1 Position condName R linelD Line1 trackID up D x km 10 Figure 20 Substation element of example network configuration with transformer busbars and feeder with switch TOCs TOC 2 name Train 1 TOC Train 2 e trainiD 1 Train i 2 Train2 2 Toc100 Train 2 trainiD 1 Tram 2 4 2 Train102 Figure 21 Example configuration of Train Operating Companies For accumulation of energy consumption several courses can be grouped to so called Train Operating Companies This feature can be used to attribute a portion of energy to different operators type of trains or any arbitrary selection by using the courses
210. s_km 9 750 lastPos_km 10 250 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RL trackID 2 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 9 750 lastPos_km 10 250 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RR trackID 2 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakages gt lt Line gt lt Lines gt These are the connectors from track 1 to track 2 conductors lt Connectors recordCurrent falsetsub recordVoltage false tsub gt lt Connector name MW track 1 2 km 9 750 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 1 km 9 750 gt lt ConductorTo condName MW lineID A trackID 2 9 750 gt lt Connector gt lt Connector name CW track 1 2 km 9 750 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName CW lineID A trackID 1 km 9 750 gt lt ConductorTo condName CW lineID A trackID 2 9 750 Za lt Connector gt lt Connector name RL track 1 2 km 9 750 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 1 km 9 750 gt lt ConductorTo condName RL lineID A trackID 2 km 9 750 gt lt Connector gt lt Connector name RR track 1 2 km 9 750 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 1 km 9 750 gt lt ConductorTo condName R
211. same as for AC but the attribute supply has a different value Second is the configuration of the electrical networks IFB DD UM_OPN_51_01 02 02 doc Page 132 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 133 of 168 User Manual Issue 2010 05 12 The DC network lt Network name A B use true voltage_kV 3 Set the voltage and frequency_Hz 0 frequency for DC recordVoltage true recordCurrent true gt lt Lines recordCurrent false sub recordVoltage false sub gt lt Line name A maxSliceDistance_km 0 5 gt lt Conductors gt First the conductors for track 1 from km 0 000 to km 9 750 lt Conductor type Feeder gt lt StartPosition condName LF trackID 1 km 0 gt lt ToProperty toPos_km 9 750 equivalentRadius_mm 8 4 r20_Ohm_km 0 1188 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 4 y m 9 gt lt Conductor gt lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 1 km 0 gt lt ToProperty toPos_km 9 750 equivalentRadius_mm 3 45 r20_Ohm_km 0 2311 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 0 y_m 6 9 gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 1 km 0 gt lt ToProperty toPos_km 9 750 equivalentRadius_mm 3 45 r20_Ohm_km 0 1852 temperature_GradCelsius 20 temperatureCoefficient 0 00385
212. stem During simulation these compressed matrices are used for the corresponding simulation time step IFB DD UM_OPN_51_01 02 02 doc Page 19 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 20 of 168 User Manual Issue 2010 05 12 3 4 Graphical User Interface OpenPowerNet has a Graphical User Interface GUI to provide an easy to use interface to the user It provides a project explorer as a tree with folders and files The user can start and stop OpenPowerNet do database tasks upload dump files and start the analysis tools Furthermore the GUI provides the PSC Viewer The PSC Viewer creates a graphical representation of the electrical network configured in the Project File All descriptions related to the GUI are available in the Help System The Help System is available by menu Help gt Help Contents and contains GUI specific help topics Via the integrated update system available at menu Help gt Software Updates new OpenPowerNet versions and additional plugins can be installed into the GUI Please see the integrated Help System for detailed information PSC Viewer APserver Message Console ATM Message Console PSC Message Console Figure 13 The OpenPowerNet perspective of the GUI 3 5 Analysis Tool OpenPowerNet has a comprehensive analysis tool to create Excel diagrams in an easy standardised an
213. t lt ConductorTo condName RL lineID A trackID 2 km 10 250 gt lt Connector gt lt Connector name RR track 1 2 km 10 250 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 1 km 10 250 gt lt ConductorTo condName RR lineID A trackID 2 km 10 250 gt lt Connector gt lt Connections of rails and ocs at the crossing gt lt Connector name MW track 2 3 km 10 450 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 2 10 450 gt lt ConductorTo condName MW lineID A trackID 3 km 10 450 gt lt Connector gt lt Connector name CW track 2 3 km 10 450 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName CW lineID A trackID 2 km 10 450 gt lt ConductorTo condName CW lineID A trackID 3 km 10 450 gt lt Connector gt lt Connector name RL track 2 3 km 10 450 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RL lineID A trackID 2 km 10 450 gt lt ConductorTo condName RL lineID A trackID 3 10 450 gt lt Connector gt lt Connector name RR track 2 3 km 10 450 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RR lineID A trackID 2 km 10 450 gt lt ConductorTo condName RR lineID A trackID 3 km 10 450 gt lt Connector gt lt Connections of rails and ocs at change over from track 1 to 2 line
214. t trains mentioned for Figure 10 00 55 can also be seen here TSS_5 01 00 00 01 05 00 4 01 10 00 4 01 15 00 01 20 00 01 25 00 4 01 30 00 4 01 35 00 4 01 40 00 4 Figure 57 Power demand of the transformer in substation TSS_5 01 45 00 4 01 50 00 4 01 55 00 4 02 00 00 This diagram shows the power demand of transformer T1 in substation TSS_5 at km 5 000 Same as in the two diagrams before we see very well the difference in the characteristic for the long and the short trains IFB DD UM_OPN_51_01 02 02 doc Page 67 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 68 of 168 User Manual Issue 2010 05 12 TSS_5 2 500 2 000 1 500 E MWh 1 000 0 500 0 000 01 00 00 01 05 00 4 01 10 00 01 15 00 01 20 00 01 25 00 01 30 00 4 01 35 00 01 40 00 01 45 00 01 50 00 01 55 00 02 00 00 Figure 58 Provided energy by the transformer in substation TSS_5 The diagram above shows the energy versus time We see clearly that there is no energy consumption between 01 50 00 and 02 00 00 We see also a steeper flank of the curve in hour 01 because of the higher energy consumption of the long train compared with the short train in hour 02 6 2 3 2 Short circuit Usually it is interesting to calculate the short circuit currents This is done in OpenPowerNet with a s
215. t lt valueLine gt lt valueLine xValue 210 gt lt values yValue 61 gt lt valueLine gt lt valueLine xValue 220 gt lt values yValue 53 gt lt valueLine gt lt valueLine xValue 230 gt lt values yValue 47 gt lt valueLine gt lt valueLine xValue 240 gt lt values yValue 41 gt lt valueLine gt lt valueLine xValue 250 gt lt values yValue 36 gt lt valueLine gt lt valueTable gt lt tractiveEffort gt 6 6 2 1 2 2 Project File lt Vehicle eddyCurrentBrake false engineID Enginel gt lt Propulsion engine electric supply AC 25kV 50Hz brakeCurrentLimitation none tractiveCurrentLimitation none useAuxPower true fourQuadrantChopperPhi none regenerativeBrake none tractiveEffort F f v gt This value need to be set to use the table model lt MeanEfficiency gt lt Propulsion gt lt Vehicle gt Set the right Engine File and don t forget to set a meaningful project name and comment in the project file 6 6 2 2 Simulation We need only to simulate the long trains to see effect of the changed tractive effort model of the engine 6 6 2 3 Analysis We use the Excel file Engine2 xls to compare course CBAI_01 of the AC network default simulation with this simulation Achived Effort f v 300 F kN 0 20 40 60 80 100 120 140 160 180 200 220 v km h Course CBAL_O1 Sim 18 Course CBAI_01 Sim
216. t RailsBBConnector gt lt NegativeFeederBBConnector z_imag_Ohm 0 0 z_real_Ohm 0 001 gt lt BusbarFrom bbName NF_BB_1 gt lt BusbarTo bbName NF_BB_2 gt lt Switch defaultState open name TSS_5_NF_BB gt lt NegativeFeederBBConnector gt lt Substation gt 6 7 2 1 3 Simulation Run the simulation using the long trains 6 7 2 1 4 Analysis After the simulation we will check the total current sum at each section and for all time steps For this we use the Excel file CurrentTotal xls Furthermore we want to check the effect of the neutral zone to the speed of the course IFB DD UM_OPN_51_01 02 02 doc Page 129 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 130 of 168 User Manual Issue 2010 05 12 I_total f s BB connectors conductor switches real irag o 4 0 000 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000 9 000 10 000 s km Figure 118 The sum of the current per section of ther whole simulation period As we can see from Figure 118 the maximum total current sum is about 2 4 A in the area of the neutral zone This may look like a lot bus as the simulation runs from 1 00 00 until 1 49 08 in time steps of 1s the number of time steps is 2948 To get the average total current sum per time step we divide 2 4 A by 2948 The result is 0 8 mA and this is very close to 0 A in the context of railway power suppl
217. t The left feeder with the properties same as a rail lt StartPosition condName LF_1 trackID 1 km 5 gt lt ToProperty toPos_km 5 1 equivalentRadius_mm 3 45 r20_Ohm_km 0 2311 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 4 Make sure to set the cross section for each conductor to a unique location y_m 0 gt lt Conductor gt lt Conductor type Feeder gt The right feeder lt StartPosition condName LF_r trackID 1 km 5 1 gt lt ToProperty toPos_km 6 equivalentRadius_mm 3 45 r20_Ohm_km 0 2311 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 4 2 wv m 0 gt lt Conductor gt lt Conductor type ReturnFeeder gt left return feeder and lt StartPosition condName RF_1 trackID 1 km 5 gt lt ToProperty toPos_km 5 1 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 4 1 y_m 0 gt lt Conductor gt lt Conductor type ReturnFeeder gt right return feeder lt StartPosition condName RF_r trackID 1 km 5 1 gt lt ToProperty toPos_km 6 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 4 1 y_m 0 gt lt Conductor gt Then we need to connect the new conductors with the contact wire and rail at km 5 000 respective km 6 000 lt Connector name zReal_Ohm 0 0001 zImag_Ohm 0 gt lt ConductorFrom condNa
218. t valueLine gt lt valueLine xValue 50 gt lt values yValue 237 gt lt valueLine gt lt valueLine xValue 60 gt lt values yValue 236 gt lt valueLine gt lt valueLine xValue 70 gt lt values yValue 235 gt lt valueLine gt lt valueLine xValue 80 gt lt values yValue 235 gt lt valueLine gt lt valueLine xValue 90 gt lt values yValue 202 gt lt valueLine gt lt valueLine xValue 100 gt lt values yValue 176 gt lt valueLine gt lt valueLine xValue 110 gt lt values yValue 155 gt lt valueLine gt lt valueLine xValue 120 gt lt values yValue 139 gt lt valueLine gt lt valueLine xValue 130 gt lt values yValue 125 gt lt valueLine gt lt valueLine xValue 140 gt lt values yValue 114 gt lt valueLine gt lt valueLine xValue 150 gt lt values yValue 104 gt lt valueLine gt lt valueLine xValue 160 gt lt values yValue 95 gt lt valueLine gt IFB DD UM_OPN_51_01 02 02 doc Page 95 of 168 DMJ 2010 05 12 OPN 51 1 2 2 3penPowerNet 7 Ze ww Institut f r Bahntechnik GmbH Page 96 of 168 User Manual Issue 2010 05 12 lt valueLine xValue 170 gt lt values yValue 88 gt lt valueLine gt lt valueLine xValue 180 gt lt values yValue 82 gt lt valueLine gt lt valueLine xValue 190 gt lt values yValue 76 gt lt valueLine gt lt valueLine xValue 200 gt lt values yValue 71 g
219. t ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 0 lastPos_km 0 450 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RR trackID 2 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt Track 2 in station B lt Leakage firstPos_km 9 750 lastPos_km 10 250 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RL trackID 2 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 9 750 lastPos_km 10 250 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RR trackID 2 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakages gt lt Line gt lt Lines gt The connectors used to connect the conductors of the tracks lt Connectors gt lt Connector name MW track 1 km 0 000 to track 2 km 0 000 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName MW lineID A trackID 1 km 0 gt lt ConductorTo condName MW lineID A trackID 2 km 0 gt lt Connector gt lt Connector name CW track 1 km 0 000 to track 2 km 0 000 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName CW lineID A trackID 1 km 0 gt lt ConductorTo condName CW lineID A trackID 2 km 0 gt lt Connector gt lt Connector name RL track 1 km 0 000 to track 2 km 0 000 zReal_Ohm 0 000010 zImag_Ohm 0 gt lt ConductorFrom condName RL lineID A trackID
220. t File 6 3 1 Configuration 6 3 1 1 OpenTrack We will use the same OpenTrack data as for the AC tutorial described in chapter 6 2 1 1 6 3 1 2 OpenPowerNet 6 3 1 2 1 Engine File We will use the same engine as for AC and therefore we do not need to change the Engine File 6 3 1 2 2 Project File For the 2AC system we change the transformer in TSS_5 to a three winding transformer and change substation TSS_80 to autotransformer station ATS_80 For the negative phase we add a negative feeder from km 5 000 to km 80 000 First we add the negative feeder lt Conductor type NegativeFeeder gt lt StartPosition condName NF trackID 1 km 5 gt The beginning of the negative feeder at km 5 000 and the name NF lt ToProperty toPos_km 80 The end of the negative feeder at km 80 000 equivalentRadius_mm 8 4 Following the characteristic r20_Ohm_km 0 1188 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 4 and the cross section position y_m 9 gt lt Conductor gt Second we change the transformer in TSS_5 to a three winding transformer lt Substation name TSS_5 gt lt ThreeWindingTransformer This is the new three winding transformer name T1 nomPower_MVA 10 nomPrimaryVoltage_kV 115 nomSecondaryVoltage_kV 55 noLoadLosses_kW 6 5 loadLosses_kW 230 relativeShortCircuitVoltage_ percent 10 7 noLoadCurrent_A 0 06 gt lt OCSBB bbName 0CS_BB z_real_Ohm 0 001 zs imag Ohm 0 gt lt
221. tabilised at 2700V because of the unload current limitation The maximum load current limitation is visible at about 02 23 and 02 45 500 400 300 200 100 D 100 a 200 KN Ki 300 400 500 D e 2 9 D 8 2 s a 8 g 8 8 8 8 8 8 8 8 8 8 E B E g P G 8 P S S S S amp 3 5 S E 8 ai ai R A A D a a a ai 8 8 8 8 8 amp amp 8 8 8 8 1 fit Simulation 15 Tutorisl Simple Storage Network A C Substation SE 38 Storage S1 1 Simulation 1 amp Tutorial Simple Storage Network A C Substation SS_45 Storage S1 u Load A Sim 15 Storage St Max Current Load A Sim 16 Storage Er Max Current Unload A Sim 15 Storage St Max Current Unioad A Sim 16 Storage St Figure 84 The load and unload current of both simulations simulation 16 with 400A and simulation 15 with 200A load and unload current limitation IFB DD UM_OPN_51_01 02 02 doc Page 91 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 92 of 168 User Manual Issue 2010 05 12 The diagram above clearly shows the different current limitations as well as the load and unload currents respecting their limitations 6 6 Engine model In the following tutorials we will configure different engine models and analyse the calculated simulation data Each of following chapters describes one aspect of the engine model 6 6
222. tage V 20 20 60 4 Maximum Rail Earth Potential Network Tutorial Loop correct Line A km 0 200 to 25 400 Eat Pender Satos tt U _max_1_AL U _max_1_RR 10 000 15 000 Position km U _max_2_RL U _max_2_RR 20 000 Return feeder U_nom smc amp 8 Figure 135 The maximum rail earth potential of the simulation with the correct network configuration Figure 134 and Figure 135 show the maximum rail earth potential for both simulations For the wrong simulation the rail earth potential in station A is much higher than for the correct simulation Figure 136 shows the values of the current sum of all conductors per section for the total simulation time Between km 0 405 and km 0 650 the value is not close to 0 A this means there is a connector parallel to conductors And this is against the model constraints listed in chapter 4 2 1 IFB DD UM_OPN_51_01 02 02 doc Page 161 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 162 of 168 User Manual Issue 2010 05 12 Total real Total mag from pos kr to pos km r Conductor center pos km 0 025 0 075 0 125 0 175 0 225 0 275 0 325 0 375 0 425 0 475 0 525 0 575 0 625 0 675 0 725 Figure 136 The sum of sum currents per section over the total simulation time of the wrong simulation trainID mei trackI
223. ted and achieved effort for course ABCI_01 in AC network sim 1 and 2AC network sim 6 All curves for our model are the same Therefore there will be no difference in the operational simulation in OpenTrack see Figure 68 As there is no difference in the effort we may expect to have the same power demand for TSS_5 in both configurations IFB DD UM_OPN_51_01 02 02 doc Page 77 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 78 of 168 User Manual Issue 2010 05 12 SumP Q S f t of simulation Tutorial2AC Network default Sum P Q S MVA 01 00 00 01 05 00 01 10 00 01 15 00 01 20 00 01 25 00 01 30 00 01 35 00 01 40 00 01 45 00 01 50 00 01 55 00 02 00 00 PIMVA QIMA SIMVA Figure 69 The power demand of substation TSS_5 for the 2AC network Now we will compare the power demand for the AC network in Figure 57 with Figure 69 for the 2AC network using Excel File PowerSupply2AC xls We see the power demand for the 2AC network is much higher than for the AC network This is the case because for the AC network we have two substations and for the 2AC network only one substation and one auto transformer station Therefore TSS_5 has to supply the total power and losses in the 2AC network Another comparison can be done for the energy consumption Figure 70 shows the energy consumption of the AC network pr
224. time e Feeder TRLPC The feeder cable current as time rated load period curves e U I_PS f s The voltage and current versus time for each power supply within the substation e P_PS f s TRLPC The power versus time and as time rated load periods curve for each power supply within the substation e Overview Overview of values for feeders and power supply like RMS of current and power At the end click OK to return to the Automatic Analysis window 4 5 3 Magnetic Field The Magnetic Field Tool calculates the magnetic field at a specific location for a specific time as a diagram or as a movie over a time period IFB DD UM_OPN_51_01 02 02 doc Page 45 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 46 of 168 User Manual Issue 2010 05 12 OpenPowerNet Magnetic Field Select Position Database name Ipsc_analysis Sinmlation 1 2009 09 12 11 17 30 0 Network Tutorial Loop correct Network Line Position km 0 225 Time Start 00 59 v 00 59 59 Configure View Title B Limit uT x min m z x max m y min m 2 y max m i Grid Legend Ticks Style xi Absoh te Values Preview Timestep 00 59 59 Create Images Create Video Figure 40 The Magnetic Field Tool window First t
225. tion As an example we will use the course ABCI_01 and sheet F f s see Figure 52 IFB DD UM_OPN_51_01 02 02 doc Page 64 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 65 of 168 User Manual Issue 2010 05 12 F f s 300 0 200 0 4 100 0 4 200 0 300 0 0 10 20 30 40 50 60 70 80 90 s km effort_requested_kN effort achieved _kN Figure 52 The requested and achieved effort of course ABCI_01 for the default configuration The achieved effort corresponds to the requested effort for positive effort requests The achieved effort while braking is 0 0kN because our engine has no recovery braking We also see the changes in effort requests caused be the varying gradients From km 1 400 to km 2 400 the gradient is 10 which causes a raising effort and from km 6 750 to km 8 750 we have the adverse effect for a gradient of 5 o The course ABCI_01 has an auxiliary power of 520kW For the correct calculation of the efficiency we have to insert these value in cell W 2 in sheet SELECTION After we have done so we will see the efficiency is at any time as expected 90 constantly like in the engine configuration Furthermore we may have a look at the mechanical and electrical power of the course ABCI_01 P f t 8000 7000 6000 5000 4000 3000 2000 1000 o 01 00 0
226. tion The line shall have three stations and a 25kV 50Hz AC power supply system with two substations We will have two kinds of trains and a very simple timetable with four courses Never the less we will have an interesting simulation with OpenPowerNet and we will compare the normal operation with a failure scenario 6 2 1 Configuration 6 2 1 1 OpenTrack The first step in OpenTrack is to create a new set of preferences To do so save first the set with a new name and then set the path and file names see Figure 43 for details Preferences hl Selected Set OPN Tutorial AC Network OpenTrack Home Dir O7_Home Change Preferences Path CAOT_Home Librany Opentrack Itinerary Information Tutorial o 1_AC_Network OTData AC_Network dest Search Engine Depot ONTutorial o 1_AC_Network OTData AC_Network depot Search Trains oxTutoriano _AC_Network OTData AC_Networktrans _ Search Courses O Tutorial o 1_AC_Network OTData AC_Network courses Search Stations OsTutoriaio1_AC_Network OTData AC_Networkstations Search Timetable O xTutorial 0 1_AC_Network OTData AC_Network timetable Search Output Path oxTutoriano _AC_NetworkO TO EU Search Train Speedtypes No Name Del 1 Reihe R Gees 2 ReiheA zl Add Saving Drawing Sound Legend Train Categories Conflicts Train Diagram Create Backup Files I Autosave every 10 Minutes T Highlight sel Edges M Show Switch Pos M Toggle
227. to the analysis tools and to do tasks related to the database It also provides the PSC Viewer a tool to create a graphical representation of the electrical network The resulting data of a simulation is stored in a database The visualisation and analysis of simulation results use the data from the database in post processing IFB DD UM_OPN_51_01 02 02 doc Page 9 of 168 DMJ 2010 05 12 LE Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 10 of 168 User Manual Issue 2010 05 12 Simulation Dump Files Upload Visualisation Figure 2 OpenPowerNet workflow and application structure IFB DD UM_OPN_51_01 02 02 doc Page 10 of 168 DMJ 2010 05 12 OPN 51 1 2 2 3penPowerNet 7 Ze Institut f r Bahntechnik GmbH Page 11 of 168 User Manual Issue 2010 05 12 3 1 APserver The APserver is the communication server of OpenPowerNet This server is the interface to railway simulation programs like OpenTrack ATM and PSC do not communicate directly with other programs The APserver manages the iteration of electrical network and engine simulation as well as the actual course status It is also responsible for writing the course data into the database and for calculating their energy consumption 3 2 Advanced Train Model The Advanced Train Model simulates the propulsion system of the engines The configuration data is stored in the Engine File
228. torSlice name rail connector track 2 station A firstPos_km 0 lastPos_km 0 450 maxDistance_km 0 05 gt lt Connector zReal_Ohm 0 00001 zImag_Ohm 0 gt lt ConductorFrom condName RL trackID 2 gt lt ConductorTo condName RR trackID 2 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlice name rail connector track 2 station B firstPos_km 9 800 lastPos_km 10 200 maxDistance_km 0 1 gt lt Connector zReal_Ohm 0 00001 zImag_Ohm 0 gt lt ConductorFrom condName RL trackID 2 gt lt ConductorTo condName RR trackID 2 gt lt Connector gt lt ConnectorSlice gt lt ConnectorSlices gt The definition of the leakage lt Leakages gt Track 1 lt Leakage firstPos_km 0 lastPos_km 25 4 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RL trackID 1 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt lt Leakage firstPos_km 0 lastPos_km 25 4 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RR trackID 1 gt lt ConductorTo condName E trackID 1 gt lt Leakage gt IFB DD UM_OPN_51_01 02 02 doc Page 153 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 154 of 168 User Manual Issue 2010 05 12 Track 2 in station A lt Leakage firstPos_km 0 lastPos_km 0 450 yReal_S_km 0 1 yImag_S_km 0 gt lt ConductorFrom condName RL trackID 2 gt l
229. tors connecting the conductors e g the left and right rail Section isolators within a conductor and Switches within conductors and connectors The conductors are described with resistance at 20 C temperature coefficient temperature cross section layout and equivalent radius The impedances of the conductors within a line resulting from electromagnetic coupling are calculated by the PSC using the cross section layout and the equivalent radius of the conductors Note that all conductors of a line are coupled but no coupling is calculated between different lines and networks r itranstormer Substation Three Winding Transformer 1 Three Winding Transformer 2 hoek me Gs Wen 1 S in Sines bus bar connectors with switches sw sw negative feeder sw negative feeder lt ocs 1 4 rails JH Lei Lei rd negativeFeeder T Figure 12 Components of the electrical network At simulation start the network structure will be analysed and mapped to a matrix Each configuration of switch states during the simulation requires a separate matrix During creation of the matrices there is a peak of memory demand Afterwards the matrices are compressed and saved to the file sy
230. tween the iteration steps and a maximum number of allowed iterations After the definition of engines we will define the electrical network The electrical network shall have two substations One is at km 5 00 and the other at km 80 000 Each substation has one transformer one feeder from busbar to the contact wire and one to the rails for the return current We will define a messenger wire a contact wire and two rails for each track The model shall also contain the connectors between the messenger wire and contact wire as well as between the rails Furthermore we will define a conductor modelling the earth The origin of the cross section ordinates is defined in the middle of track 1 at a height of the rails Let s start to define the network model step by step First the network parameter lt Network name A C use true voltage_kV 25 frequency_Hz 50 recordVoltage true recordCurrent true gt We have to set a network name and to tell OpenPowerNet that we want to use this network in the simulation As we want to record voltages and currents we have to set the last two attributes of the above XML snippet to true Next is to define a line explanations added as black bold text into the XML snippet IFB DD UM_OPN_51_01 02 02 doc Page 57 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen Powe rN et IIL Institut f r Bahntechnik GmbH Page 58 of 168 User Manual Issue 2010 05 12 lt Lines recordC
231. urrent false sub recordVoltage false sub gt As we don t want to record voltages for each node and current for each conductor and connector we set both attributes to false tsub lt Line name A maxSliceDistance_km 0 5 gt The line name has to correspond with our OpenTrack infrastructure and the maximum slice distance shall be 500m While defining the electrical network consider the magnetic coupling is always calculated only between conductors of the same line lt Conductors gt Now conductors for track 1 follow lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 1 km 0 gt This conductor starts at km 0 000 lt ToProperty toPos_km 85 4 equivalentRadius_mm 3 45 r20_Ohm_km 0 2311 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 0 y_m 6 9 gt The end of the conductor is at the end of the track at km 85 400 The equivalent radius resistance at 20 C and temperature coefficient shall be as defined The messenger wire is located in the middle of track 1 in a height of 6 9m lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 1 km 0 gt lt ToProperty toPos_km 85 4 equivalentRadius_mm 3 45 r20_Ohm_km 0 1852 temperature_GradCelsius 20 temperatureCoefficient 0 00385 x_m 0 y_m 5 3 gt Same as above except the height of the contact wire is set to 5 3m so we have a system height of 1 6m lt Conductor gt lt Co
232. urrentLimitation none tractiveCurrentLimitation none useAuxPower true fourQuadrantChopperPhi none regenerativeBrake maxPower maxEffort These property need to be set tractiveEffort maxPower maxTractEffort gt lt MeanEfficiency gt lt Propulsion gt lt Vehicle gt Set the right Engine File and don t forget to set a meaningful project name and comment in the project file 6 6 4 2 Simulation We need only to simulate the long trains to see effect of the regenerative brake 6 6 4 3 Analysis The regenerative brake will only affect the simulation results during braking In Figure 92 we can see the times of braking In Figure 93 we can see very well the higher pantograph voltage from course ABCI_01 during the braking time of course ABCI_01 as well as course CBAI_01 IFB DD UM_OPN_51_01 02 02 doc Page 98 of 168 DMJ 2010 05 12 OPN 51 1 2 2 3penPowerNet LE Ze MP Institut f r Bahntechnik GmbH Page 99 of 168 User Manual Issue 2010 05 12 250 v f t v km h 5 5 5 EE EEN 5 5 5 5 Figure 92 The speed versus time diagram of the courses in the regenerative brake simulation U f t 28000 T 27800 27600 27400 27200 S 26800 26600 26400 7 e 8 8 8 8 g 8 8 8 8 8 8 S 8 8 8 8 8 Z Z S 8 5 5 5 5 5 5 zZ A a
233. urses while approaching the signal e Exit signal at km 85 000 e Station C at km 85 200 e End of line and exit signal at km 85 400 e Line speed is 75km h from km 0 000 to 10 350 and 200km h until km 84 400 e Power supply area of AC 25kV 50 Hz The line name is A and the track name is 1 Only the siding in Station B has the track name 2 but the same line name Group the station areas and create all routes paths and itineraries The courses shall run from Station A via track 2 in Station B to Station C and from Station C via track 1 in Station B to Station A Ss Tutorial_AC_Network opentrack 0 Tutorial 01_AC_Network OTDocuments Info Document Edit Format Tools Functions Windows Print Hide Quit Station A Station B Station C Gi Gi eis E EE LL i h gt If e L t 4 a SI ER H lm e Figure 44 The OpenTrack infrastructure including tracks signals stations and power supply area After the infrastructure is built we need to define an engine and trains before we can configure the courses and a timetable Engine data e Name is Engine1 e Max effort is 250kKN e Max power is 5 56MW gt constant power is in the speed range from 80km h with 250kN to 250km h with 80kN e Propulsion system is AC 25kV 50Hz e For further details see Figure 45 IFB DD UM_OPN_51_01 02 02 doc Page 53 of 168 DMJ 2010 05 12 OPN 51 1 2 2 3penPowerNet LE Ze ww Institut f r Bahntechnik
234. way Markup Language RMS Root Mean Square TRLPC Time Rated Load Periods Curve XML Extensible Markup Language IFB DD UM_OPN_51_01 02 02 doc Page 6 of 168 DMJ 2010 05 12 OPN 51 1 2 2 3penPowerNet 7 Ze ww Institut f r Bahntechnik GmbH Page 7 of 168 User Manual Issue 2010 05 12 1 4 How to read this Document This document uses snippets of XML The XML is highlighted by the following text format code XML marked in green has to correspond with data in OpenTrack XML marked in red is required by OpenPowerNet XML marked in light orange is optional XML evaluated by OpenPowerNet is marked in bold and may be mixed with the colours above The blue attributes are not required by OpenPowerNet but by the corresponding schema and have no effect on the simulation Any other XML is just black IFB DD UM_OPN_51_01 02 02 doc Page 7 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 8 of 168 User Manual Issue 2010 05 12 2 Simulation Philosophy OPENSTRACK effort position effort speed current voltage effort OpenPowerNetl Figure 1 Overview of co simulation The OpenTrack railway operation simulation is realised by a constant time step calculation OpenTrack and OpenPowerNet work together in a so called co simulation This means that both programs are communicating and interacting with each
235. work sim 8 The AC network with a constant current of 1000A is from simulation 9 As we can see in the diagram above the line voltage drops much more for this 2AC configuration as it does for AC 6 3 3 4 Failure scenario For the failure scenario the same configuration tasks as for the AC network have to be done but we need to specify the Switch File from chapter 6 3 1 2 3 IFB DD UM_OPN_51_01 02 02 doc Page 80 of 168 DMJ 2010 05 12 7 Ze OPN 51 1 2 2 pen PowerNet Institut f r Bahntechnik GmbH Page 81 of 168 User Manual Issue 2010 05 12 U f t 28000 27000 26000 25000 24000 um 23000 22000 21000 20000 01 30 00 4 01 35 00 01 00 00 01 05 00 01 10 00 3 01 15 00 01 20 00 01 25 00 4 Course CBAL Di S 1 Sim 10 fo Ne Figure 74 The failure scenario line voltage at pantograph for course CBAI_01 in AC sim 5 and 2AC sim 10 network As expected we see a voltage drop between 01 05 00 and 01 22 00 because the TSS _ 80 respective the ATS_80 was powered off It is also not surprising to see a lower voltage for 2AC as we have compared the line voltage for 1000A constant current in Figure 73 and found that the lower curve belongs to the 2AC network 6 4 DC Network tutorial In this tutorial we will change the power supply to a 3kV DC system with two substations at the same positions as before km 5 000 and 80
236. x_m 0 y_m 5 3 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 1 g ZS lt ToProperty toPos_km 9 750 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 0 75 y_m 0 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RR trackID 1 km 0 gt lt ToProperty toPos_km 9 750 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 0 75 y_m 0 gt lt Conductor gt Then the conductors for track 2 from km 9 750 to km 10 250 lt Conductor type MessengerWire gt lt StartPosition condName MW trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 3 45 r20_Ohm_km 0 2311 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 10 y_m 6 9 gt lt Conductor gt lt Conductor type ContactWire gt lt StartPosition condName CW trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 3 45 r20_Ohm_km 0 1852 temperature_GradCelsius 20 temperatureCoefficient 0 00385 x_m 10 y_m 5 3 gt lt Conductor gt lt Conductor type Rail gt lt StartPosition condName RL trackID 2 km 9 750 gt lt ToProperty toPos_km 10 250 equivalentRadius_mm 38 52 r20_Ohm_km 0 0306 temperature_GradCelsius 20 temperatureCoefficient 0 004 x_m 9 25 wv m 0 gt lt
237. xt is to add the second transformer to TSS_5 and to add the infeeds lt Substation name TSS_5 gt lt TwoWindingTransformer name T1 nomPower_MVA 10 nomPrimaryVoltage_kV 115 nomSecondaryVoltage_kV 27 5 noLoadLosses_kW 6 5 loadLosses_kW 230 relativeShortCircuitVoltage_percent 10 7 noLoadCurrent_A 0 06 gt lt OCSBB bbName 0CS_BB 1 The new busbar name z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Switch name TSS_5_T1_OCS defaultState close gt lt OCSBB gt lt RailsBB bbName Rails_BB_ 1 The new busbar name z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Switch name TSS_5_T1_Rails defaultState close gt lt RailsBB gt lt TwoWindingTransformer gt This is the second transformer with the same properties as Tl lt TwoWindingTransformer name T2 nomPower_MVA 10 nomPrimaryVoltage_kV 115 nomSecondaryVoltage_kV 27 5 noLoadLosses_kW 6 5 loadLosses_kW 230 relativeShortCircuitVoltage_percent 10 7 noLoadCurrent_A 0 06 gt lt OCSBB bbName 0CS_BB 2 z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Switch name TSS_5_T2_OCS defaultState close gt lt OCSBB gt lt RailsBB bbName Rails_BB 2 z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Switch name TSS_5_T2 Rails defaultState close gt lt RailsBB gt lt TwoWindingTransformer gt lt Busbars gt lt OCSBB bbName OCS_BB_1 gt Change the name to make a unique busbar name lt Connector name TSS_5_OCS_ Feeder z_real_Ohm 0 001 z_imag_Ohm 0 gt lt Posit
Download Pdf Manuals
Related Search
Related Contents
SR 25, SR38, SR 65, SR68, SR 75 (S) - WEKA Service Scanner di Immagini fi-4530C Design and Transient Simulation of Vehicle Air Conditioning Systems QVC視聴ガイドブック FoodSaver V3840 Copyright © All rights reserved.
Failed to retrieve file