Home

User's Manual For FSLIP-3, Flexstab Loads Integration

image

Contents

1. 9 99959 eC 9 6 e t ee o e 0509 E 99 9949996 95096490 a o0 Jr VO ux oo o4 N gt s 144 9 e N lt t 2 ty lt a gt a LL T ON OA NE OH E GOO GEO O8 D eA mf AOS 0 0SO IIO d 4308800 0S IAN ATA OM OO 2 rn OPS DO CTO OR F og TDI CSI eo eH hd att I INI INNO NM AM min en PFS POPS POON iun i i VIDI Cyan DO lana MY E D aD UY DE NP PN TVAE DX IOLA A Y CUN UPS EIS D VDO Uy D ID a EY EY 80 s9 25 5 033 t 2t 2 24 tr 1 46 26 I gt 3L5 5 9252782 892 T6 Tsl 99 Lal ee 9549594 T92 S6 GE2 LI 595 21 204 32 351 5 JL2 L l 0 2 965 22 9t 25 GE OLc atl e2e 0t3 80t 355 12 e6l t 000 0 022 S L2 TOT 222 9 205 0 900 0 299 0 03979 090 0 99279 SdI 4I 4 1 9 53I so2ts 2 6 ayj 43349 1945791 Ca 5l 016 594 t 65 39 0no 566 682 x29 OLE TZS 5 2 6 18 s4 00 659 50 65 LSL L9 L62 42 se tst 255 T4O 362 3t 3L LT9 L6 02 11 9 1 4C 8 c8 Cts 3 58 T11 92E 342 204 91 09652 900 etec 12 69 06 9c9 1 000 0 060 2 000 2 00059 Coco 00022 coo o SdI NI u d 0078 8C 0283 138 et t ELE
2. S MORS NER Ts e e CX E DE C gt e UE Ck CX XR e OR 4 X Ut 6 X e gt ANNNNNIMM NAN BM NNN e 2COOUOCGOOCCOCCLOUQOQCOOOUCC QU CUOI N YNNN OO OIE ONO C GIOI COO 59599 9 9 699 9 9 999 09 4099 99090 Retractor inrer terri BORE BOR MSRP NUS UNI X 2 3 3 2 xxx SAAS xx d ux SUI MSN ID VA J PF PN 4 wt X FEES SEES REESE fecus gt w gt C J t pub ux C 22 zx tunono Om af mJ c Wp OC lt lt f DO 18 gt m A Lud LL ej andra UN M wt iJ TWO 6 uA Ctl gt W x CY ry ev cx QA Stull OJOS y r DS DANA FTNA eom denote O ANNO FW FIN TDO ws ww PID 7 Dae rdiet OU ALE G9 6 ALE STONE n nen 00 e e 09 m cn enr rer x JIG 2 DDAA 2 mr Ha lt d lt 4M 0C x OX otk Lb tnd S E T na gt ty ETIO K WTLAOO ww n0 DI CIO wed T Cru eu tu tvoOtoa d A 0 gt lt lt UUJ UUM LUJ CLPU LULU NU t lt t 4 4 a OD lt lt fe f wd a ed ad aed I IO T X I ded 9 1 1 T lt J dad ed od et te 1 2 te 44 3 4 4 1n I St aee d nn bh JC 1 4 I the I LU FIRE IM Inde ee mde ted JU IU UO I CO JOOP UL LL ao ou LL UL utu uti LL LL Li
3. m 2 Dec 52 5 BONE NOM OMMOAMOD Q O Cantu us O e Le p c m mom D 1242 4 CJ 0 3 Fer Or ICO Y OPS ODDO Din rf OO OO Our HER 5 4 D gt co DOW 3 STOOD OP AIOE RM AJO try O DOK OAR OITA ArH AANOO0 DOM A 0 ADA Oo RRR 99 9 o 0999 090 0 99 9o o o 99909 99 90099 5 99 9 9 9 920 99 9 9 9 999 99 eo 9 e 9 e OO C 320 ID AO 00 UO CO O Dr JOY OAS rg nya un P 40 O O DD MF utr gn ruo O 0d DORE n M f I 0060 t gt STOMP SOAK HOD O OSU U AJ UO DAO SAN AMAAN FR NODS ex NON MAD ONNIN 00009900 39 00 CD OO eJ 4 NNN eO UO OP OS OO 4f NANNAN TONNAN Lat NC eo DINAN wee ONNAN A Ar w lt p l ANMO ANTE ANAFAA OO S ex uU eACG0m uy eICICO FUN 00009 4 ud ANA ea N 109 4 uz Zra m GO oded MNM FPS 30420 00 0 NANNAN a 2 ANM DE 12 O O N nn f ry Ot SY ANOS NOM O 4HAIM 4 8 Or IMAM ry Or SC c lan kon th Kan Kan Lumina ACI o m om e e mre f or Fer ree TA DOD LO HO 0 O O 0 000 O O 0 Of f 73 45CTEGSUl234t67 6S 123456788S 123 fs gy 4 3 3497073950123 2 7890122456072901234567 n eC e oc A DO Fog D A 2 20 DIMNANAA uS QO O DOO 000 mcn SHOW S uA Kyu 04 0
4. 4 NJ O 6J OO O O NI 064 400 SOP ANI Ce Q O CO F lt ro cn O F Q e D gt O 0 2233 VOM DOPED AN FNM ONN OP 2 00 e 4 Duy yT OO 6440 HF O DO gt nrn OO 2 nem 2 3 7 70 070 fcm NV DIN 1 OA INA It SIA Y C n AJ ry AY AO S DOP T AJ 08O00 NJ mom O4 mer o nmmom mmy DO L OO ul 77 377575 7 7 Y AJI D SD et r SHO MADRID HA eH 09 nc HAT MALA VA IH eR IA IA ROI TH 455 9 99 5 4 949 9 909 0 949 O 09 w 9 99 9 o 9 9 9 9 0 9 9 5 0900 9 0 09 299 909 5 9 0 9099 9 9 9 98 Dus uN May I Cu 1 we uy uN 4 ir ux I ORF m MF LIA DOH X ern GM rJ nuy OO Gua DGOJuya O rn O00 5 0 5055 an L 2 0 2 0 0 0 T O G OU OO Dou um OW GO O DP 0 QO OO 2320 24002353923 mo CIB ADA D 4 PPP O DUO OUO OUT OOO O O OO O QrO CAG UO O QI tU R ORO 2 Q 23222 v n 2 32 Bows OO m O CJ r ODA ODGONST 90 4YO Ww T OCOrn Cr Jf ODT AMAN AAW 5 9 6 9 9 e 9 0 9 9 9 e 9 9 9 9 99 B 9 9 9 O 904 9 9 9 9 9 Q 9 9 9 9 ect Q P usd AIO T 225 Xy Cn Z POM OD D u GO os RIP OS u y N PODS DTA OO rN SOM de N e 3 e el O m e wu m DN cJ O O WwW eA ao wN a m x cd Q en m in x ec b C
5. CHMOD Oc MANON ANFO 9 ONGNI DAO TO fme pm mo tOO0 0fr Ooe wu D OQI rn c NIM NUM uy AO OO 059 n 3709 79003 00 73 S80 Hn own o 99 e o ea o 9 9 e 8 ea o 9 95999 e 99 9 9 ee 0 9 6 5 9 9 99 s 9999 pes ter C101 tts Prem tf t 2 E1171 14014 t 11 m t DNAN DoF 0 47cm Dart o Qr Fue 220 cwm ACI GO aT mmn 5000 0425 0 0 pane PS O KAY INS 5 X O DIDS DONM GM o5 9 NO OU OO 9 emotion OATS DAM OM Ju r2r ou p RO MAIO MAM IS MAM 00S 81409 0 PAM TODD 0 430 NOD 4098 gt en ro gt O eng AN OT AMD SIO PWS 2 859 990 A 73 30 2p 5 O 71370027 0 2 9 NON 44 394 7773 O AD IVS e O 0 o 0 e o 09 0 a a 0 G E 90 090 ee ee o e eo e o h m e e e 909 096 9 9 90 e 5 116 Pee Nt e ANII pee ere L APPA ISR SOMITE SF S mcom s rermd4qoDNDO f MOsin 3 BOO 37390900 5 522000250 5302 00 PAP PP t8 Pf POD 02 p OPI F Oouo Mu Ouf FS ty My ODOC u Yu MID CN UN ED ICT dS FT HO IN hata lal COO ONUS PRO OHO P AU 0JU T erm 8 utu c fU OO 1 INT 00 9 H0 9 JF 40 000 CIF C0 mima FOOD A000 NADY OANNAAM E FUN O OfSf xO ONE e 099 9 0
6. 15 622 0 g92T bett t 6 C9 5T 16 591 8 16 co o 61 86 diee 6 5 rye 00 0 ccn Co 0 6 coto NI CA A SIXY 9S 9NI 0t 2 5r Ss0S 140 IT lt cete t Yl 9T2 rt 9oter 63 535T 59 5t 59 5255T 69 505 69 n5st 51 927 7 9272 61 3222 51 9222 1 922 26 C9aT L6 5931 LESIE 4656387 6 C99T 69 59t 2 69 52c7 6S t t 222 65 261 Lt 3192 LL 8t9 91 6 12 GLE 66 340 pg 65 52 96 0 52 nen 00 00 0 04233 cen 32359 00 0 ent yxy Suv Ttg T ANA PUN NAPA ST HFN AAI FA 4 eg rn Fn IN c 4 uq A N APA N N ANNAN MANM m rrr MN lx A Tw fa hm Pe P lt P lt Dou MINOS wt us m 13Nvd NYS WASYeMN t 352 93 N T1Y49214NI Z 8 ldwex 101 bust 3nd3no ue45044 81 4ot 2to t g92 555 222 2 t2 1l 5L2 2 c212 3 cot 92 4 NI j 1 L694259 462612 21 6C52 022I 52 s561 509 G 0295 39 3 TSs DEE Sal NI 4 5 0655605 30 6 tE 293 EJE 064 Sd IM A A Yr TITE 3t0 T1t52 42 9906t 9 PEB EZY 90652 ETE tT 94 t 05 8 L T4 92 SdI NI 1 1 90200 ZTOSL2 TT 619 GLOTT 151191 S80 6BE 656 8t 669 8 T SSS s SdIX NI 1 8 9t 20 494S4
7. 77 8 345 769 1234267 90123456789C 5 345678901234557894 12 1 263526769 12345578 x iQ Cg Ms WMV UnYMYu 999 96 e o0 OO D 4 X 40 bs BS 2 e x lt OMAN C co C A CNGIICUCSJAJJKeIIKCKI 9 9 0 9 o n er ER TE PE PERSP P B RP P DC 2 Z7131 X232 17 LATERAL 000234 9 00168 MOD agen gt Orc unu 2 OO C D O0 0 0 05 UNI Jia 5Y DOO of en enenen en en uen END OF RECORD 7 8 9 364 oco lt lt lt lea i OQ uw Net me on O Am MFN NG an 0 0 0 ea eo END OF RECORD 78 9 36 8 cO A tu o p Q wr a et a m lt N c a O d t a eu H 0 Oo a lt e x C O eC C e a e e e aman ANNO mn 2 2 InN aes j f Ow cea u O O Ow UN 4 OD wu YCO SJ Q eus e C0 fud Duy 4 gal 9 9 9 ett tq O I oU At E ft UN SIE OO wende c C O uy rN O rg n CO 4D 00 03 O O e 4 0 oen e eee 1 411 2 Lr fy hoo Ph 204 LA KAUN e e 99 o e FNF 40 o r _ m 9 49 9 9 e AO DO 2600007000000Q0 20 202300OCO0UQD 0 000500023900020207200235200 DO PT 20 29220 2 1 3 9299 020 2022000222207 3 2 552 2 OT 2 D C 2 3
8. m E Can Toa ttd 11111 ODI JDS 00 0008 mard A OOO Om e op nnan D DO OP C O C OPO neo meno eee 40 0 gt Pe Re Be RS tt qe dete SUA IS RRR RRR 4 Be ee ee ee e 4 4 i t MNF O uy OMmOars MH O cjJ CD oe s 0 cn Or m Vaal allah fs OO000 esearo WO 000 POMNO DO oman C O uA Qmm C mara 999 9 8 9 9 9 e WOM HONA om dy YTTY MODD rre eed Q OOOD 3909095 ee 90909209 HANNS O uD CO CO NNN Frere DMA Os COMA C0 ot aoo o e 0S tt a ede eem enmen ee 9 FATTY r r Q D ow a o Par atiar Yu SOV p ag nt ted 206 760 188 950 2472400 O O O O Dr uy a 9 9 o eren ecc e 4d 0 7 114 gt ond 5 3 T FA Fog Fu Im TIN eI Fu ANIM SINR RIOT BNI ANIM rink tx uj tx tu NNNNN MOOT 9 004502 MANAA NANUN AAFF WNWNN O O O C O gt NA f HANM 4 DANO TINGE DOE n mI OPS OOO A ANNU OM DO THAIN UN ONDE DIT Fu eS P tS F DD O 00 CC IO 09D COO TORO R O ONU 2 770 DDS MIO i 4e A LA HL 4 VJ N 09079 0 m me o7 uu A et te det et tide tnt et 3 4 Rt detest ded est tet drt 4 e m D en Mu 74 078961234526789012345607389512245 72901234567690212345 789C
9. t3 949 998 5 eo IOBDDWIAOIVS 999 22 0 230100 0 27275250 22525022 22 5 D Drey DO AD FO IOOMS 2 25 Dry gt O 3200 99 3270993933037 DO 5555 0 0906 ooo 9949 0996990990 o 096 099 o 9000 o oo 0 900 0 6996 1 577 20110 3005 2 DA D 3 O A 120900 Din DOO nO OO DOuy2O VIBAHDWDIOVO FINO D DOMOVNSTOOSE ONS ODMON t eO Pea n eO e COS OD e Mf OS OUO OO GO OU OO Ogg OUO rguoU OU wo OQ 9 tw dnwo odooaldx O0D 6 mqmi ruv Or Ce DA OPA QOO DOO OQ OS OUO OUO OW O y pP O OT OO OO IOOOO Um t gt 000 PUA O0 00 eu OY NI HE HO co wr OON ST ODOM SOAS DON ANI HF ODUIDAS 400 00 OD CF ODS INF O cD 7A 7 04 f LO Mr e 100099060695909069 9900090090000 0 90900606909 o 0 e 0 e 9596965 x 7 0 e Aq bo gt n ux e 4 Te J neo T iry O oo DANO dn OM OF 7 0 FIND OF 73ec0m fuD OO OPS DLE EEE EEE DODO 0 O ID PO OO OO OO OS 9 30033 34129 gt Die Ae att et tonal 0 00 AO MMMM NOM MON MMMM e 00 e oo c m e 0 eiie eoe en 0o FPF TSP TSE J f re 78 8 4567899 3 96789712345 6789G12 33 739012345678901234567890123455799012 gt L L2345678501234 CARD NJ 1 952 amp CONT NOE en O 999 e Uru MALO LOU EO rir Mwy c0 5847321 772 ee 9 qp O Om tss Dn uy Oitu 797 Lat 00 o 9 6 Nr 25 0 D 9o 11 4 Q rre COM ty inh Des Mira
10. 90 0009 O Il OC 22l1620 naoo c E Sle6gT Wer sce 1 SdIl yent SCT 1 Sdl y 19 83 2 t t 5 3 1N312133302 7v01 0231v493JN ENSSaye INT 12 21N32 2055931 2434 39792 2334 UCO 9S6T 24745 NU 535 5311 II A 9S n4 tay Ze whve 117 STL 395 239 WAS uM 321 23ie9 CC C sv13yu 02 3 7nd 17 GEYL NNS WOTESOTLSV II Ly HE TONE ZOYE CME 02 2 3F S95 Suv s 367 C is2i Set a L 1279 WAS myig L3212 1739 9U 9 5 t s Hd y 383 1 2N 9 X91 2IISv 313 11Y 380 fwc2 T cu5 45 22 2 3f S67 5 cuv T8 38v 3 5524 Srl 510 MAS wu 3 240 sy 138 U I 4ud 1i 3 Z 4 89 XSTE 2 1Sv13 LIY 38T u 2 t 6445 79 2 3E S8CS SYY te e asy J s 219 yj I l 21 WAS 24H L39125 2 5 5 2 2 18 74 1491 53 2ZN n9 MOTECIIISVITG SL Ty Xdlf kO2 T SAS 19 C4 Tn t 3549 QIlIe0 filu ASIENS 113 NTasSyi er yoYy 1 SLNNE 25 17 T2 Tc T SISTING CaN TIT ST SNOWTES 7 Cu3 5 T2 TC 4TY PSUOWEGE 3430 2 TcC 61 2 15 5 geanrtraetceer SWIL NDII1023X3 SUNOS dI ZOI E eaP ICP 14 NDTI1023X3 v Tl ao qese 800 E 2 Q 6 N3309Y01 f35GT Te T47 7 4 n TfTc cT Cc91 5 c1 44n3 474 55 c c 0 229 1 3 amp 82 175n31 c c CT 0225 sh Tae l pe w 11s zc c c7 CVer 22 Fee TSO LIMIT 2 n 8T 32z3t 2 T2e71 poV1 Lv ZC f G
11. TAPE 50 Logical TAPE 11 TAPE 19 TAPE 20 TABLE 2 INPUT OUTPUT DISK FILES Description Contains panel pressure coefficients one file per case up to 9 cases per job These files are normally copied from FLEXSTAB punched card decks Contains surface axis geometry information for each load station on each thin or slender body This file is normally created from card input and cataloged for later runs FLEASTAB GDTAPE This permanent fiie can be accessed to automatically generate the surface axis geometry file TAPE 20 Contains airload coefficients for the wind tunnel derived loads option There is usually a different file for each Mach number vehicle configuration This file is normallv created from card input and cataloged for later runs Temporary internal scratch disk used by the inte gration option subroutine axis location and GOPSR automatically computes the data for each panel and creates the data base A printout is generated which lists complete details of the integration definition If GOP 4 the surface axis file is also punched on cards This option gives the user a means to manually override the computed values on selected panels for special cases The modified deck is then rerun using GOP 2 This procedure is fully discussed in section 6 2 and illustrated with an example in section 8 4 2 2 Pressure Option The panel press
12. 1 13 320994 1 14 dete L 15 3 390 J 15 Jev 1 17 Jeu 1 19 0 1 19 999 1 22 9 9002 PUPAL ARTA 43317077 SURCACE RAN SiE s SYMMETRY VLDE Bk UN FURWARD LMJ af EY Mu MENIS SUMMED BCUT KUMBEA OF FAanELS 29 BARM IN 462 200 3734 63 285 0 196 4230 107 806 34 75 Ve ONY g OJO 0 020 we G JQ us ut ve 006 Je UJO 0 090 Ge 010 De UNU 0 000 0 020 Dea 0 000 Takn iN 0 000 COQ 6 000 wei CeQ0u0 0 000 060 Q ue CuO Q 000 0200 C enop 6 650 C ug 6 000 Q Cu PEU GeSud EF XK XR XR WANE FWD FLS SG LAT 8465 06 U e000 528500 228 500 GU 8ULDY Nake FUSELAGE CREF 184 020 POSITIVE NOSE RIiCGFT 65 S115 NUMBER TMT G ATT OM TYPE COKE s 1 T OE CIJE 1 PMR 15 pq lt 1 THPFEGOATT VA AXIS OEFTAITI IAN RAW DATA Ys ANCL NATA TOS ARE APING 1 Y eI 1 2 333 1 3 0 002 1 4 3593 S de 1 5 9673 1 7 3 ui J 1 4 Veg 1 9 3 222 15 U e 39 l lU 309 1 1 de O91 l X3 32 009 1 14 02000 1 T 1232 397 1 15 79824 3298 1 1 78254329 1 13 7646013 1 192 57794231 1 29 873 989 TATAL AREA 32344 4415 66 7 CURFACE AXaS WANE AFT FUS SG VERT k x BREF 3Y nEY4Y CLOE Ch FCkWaRO LiMiT xa AFE LINJIT fT XR MUMERTS 3UifMEu AgBCUT XR 02000 NUMBcR OF PANELS 20 BARM IN 5 000 0 000 1 2 030 STTH I
13. 12 PV 3 3 5 Aft fuselage station Vertical C ED C 13 VBT je Lateral L ar mi u BT di wer Jut Cypr RL c o c o H RL Pb C C B 14 VBTp VBT The TOTAL vertical and lateral airloads at the aft fuselage station can be computed by adding the tail induced components to the airloads on the aft fuselage itself Vertical Var 7 Uy 9 Sap r Vg Bar Cbar 4 Sar bar 2 Vir t Vent gr Chur Taur 16 Lateral Var Cy 4 Spe VyTR i Bar Ceap 9 Sar bap 2 Wop Pxyrp Turn 18 Tar 7 Tap 4 SaF Cap Wrp AZyrg t Byrp 19 Viar Myr B nr Boyz 3 4 Sign Convention for Loads Figure 1 shows the sign convention for positive shear loads Note that for thin bodies off the centerline positive shear load is always in the di rection of the LOCAL Zw axis normal to the surface For slender bodies off the centerline positive shears are always in the direction of the LOCAL YM and ZM axes For all bodies on the centerline positive shear is always to the right Positive bending and torque loads for the right side thin bodies obey the right hand rule about the local X and Y axes respectively positive tip and leading edge up The left side axes are a mirror image of the right side For slender bodies a program option allows the user to define the convention for positive bending moments either nose up nose right tail up or tail right
14. 366 3 3 653439 432916 25 173 3 6 5534 39 48 946 E fL 2 3 5 6534399 48 016 92 c52 4 1 971 472 78 316 lael3U 4 9740474 74 318 11 557 4 a 971247 74 318 4 255 4 4 9714 47 74053518 145 932 4 5 9714470 75 231 741034619 61 DANEI DATA AEX 5 1 2 5 3 5 4 5 5 6 1 e 2 3 5 6 5 PATAL AREA 62 amp A AIM 2 6630096 65306 196 651 596 C62 096 6692996 433 631 4332031 4339 39 4332931 433 031 219572132 bARH IN 1 9 72 192 6872 155 6 et 72 1 gt 5 872 132 303 132 2623 432 503 136 263 32 203 TAREAIN 5 Ou 46 657 71 523 40350 1174 257 74 903 526 5 3 1iC e E49 128 792 PHRCATCS AYTS MUMSSR a QUXFACE AX13 NAME VERT Taal RINT GO BUDY WAKE VERTTAIL PNTEGIATTIN TYPE ce 3 SKEF 2476400 BREF 76 1 84 95g9 RIGY TY2 2105 3 SY4AntTRY CLUE CN qIM373 37 BIwsS 2 THETA DEC TuTr6OATTO AXT OcFIN Tiun URICIM AT XN 12329266 YN s 7500C SWEzh ANCLE 0 00 OEG 21 PATA MINIE YN HUMBER OF PANELS L 96 566 5 2 L17 tus 5 PANEL DATA A EA IN2 BARM IN TARM IN 1 1 12172963 21 566 8 032 1 2 12 7463 21 566 484322 1 3 16179063 21 9 266 1 387 1 4 12179063 212506 51 097 5 42472053 2125456 1ltue896 1 7392196 424404 73294 2 2 7832196 424404 28 029 3 72896196 20 4 4 17 88 2 4 783 196 420494 3 194 2 5 792 9196 429404 1656735 TITI
15. 4 VERTTAIL 2 rows 10 panels 5 VERTTIP 6 rows 30 panels 6 PLATE l row 4 panels 7 CANARD l row 2 panels y WING Z SSI ET A Or UNI a ou NG AL lll epp pei e ree P sn MN usi J a 4 L re Lx Y Slender bodies O 1 FUSELAGE l row 20 panels Z777 4 ps VERTTIF LATS oy FUSELAGE VERTTAIL LLA L A T s 5 Xn k E ii PLATE Figure 16 FLEXSTAB aerodynamic model of the B 1 Card input listing for example 8 1 CARD 1 2 3 4 5 6 8 1234567630123456729112345678901234567 901234567690123450789012345676901234567080 1 GOP 4 POP 0 PIP 0 sor Oo IGP O WLP O 2 SUMMARY rRA NT TEL 3 68 SA 03 NALD 4 t WING SG AXIS WING2 3 9 1946 82u 08 184 05 1704 85 5 1161 7 230932 63452 6 2 Hurl TAIL S6 HORZTAIL 3 2 6 238 71 259 03 149 39 132 74 7 1532 02 10 75 su 9 3 VERT TAIL 55 VERTTIP 3 1 6 247 40 206 276 1884 95 172430 9 4582 76 135 70 eu 10 4 VERT TAIL ROOT VERTTATL 3 1 z 447040 2606 76 188 95 172 30 11 1535636 75 00 L 0 09 Mr Y 5 PAAD EOS SG VERT FUSEL GE 1 1 1 1946 00 t20 06 184 05 13 VJ 5285 50 268420 1 CO6 14 6 FWD FUS SG LAT FUSELAGE 2 1 1 1946 00 820 08 184 05 15 Ves 9 28425 wu 523 53 l Cu 14 7 AFT FUS SG Vc Y FuseleGe 1 1 1 1946 90 620 08 184 05 17 33720 18352 0U 2330093 el CO 18 8 Pf FUS L 1 FUSELAGE 2 1 n 1946 09 8260 98 184 05 19 1337 59 18922 1337 54 l 0u 29 E VT ROOT TSTAL amp 1 6 247240 206
16. 678945 23456739 1223 a 1234 CAKD NO e e us da uy e 2 e 9 9 d eo e eo e e 4 e SO e e lt S lt gt e nj oo da oO c e c e 2 lt e ex e e D DO O T T T Cc e 4 et VNR ODO SONTINE COOOOOZCCOOSGOO2O002O0024 OOOO00000ncOO0O0O00OO0000Cc OoOOoOOOcoOocoooon0 CONDO 09 2 207257OGQOO002000072200 _ DNGODOSVMVIHVIDVIVSBSICODS O232202502230252002 Om 2 0 OOUBICOSSSCVIGASGINGOSSIO 2O0O002500o20nm0202035005002 ooO9232coo0ou uoo0co02 9 8 99999 099999 999099 oe 99 9 9 9 99 000 m 99909 e 9 9 99 290999 monu erg C OODOOT202O0002200000024 OCDIVNIO VOO BOZO SHSIOOHMA OO0o0202200O030200 4 tie I N wt ODO DO Owe PUY O SS DBO BVO SWS 3 BY DO GOUS UG 9 VOODOO 22 D 40404 40 WWIIDIONN S D CO Iy DO 273 20 NIC DMO D 00050 2007307 723 700 ANID IAA gt 2 IAL PB PP NG D GQUUO 5 2 gt 260022 BX NOITOP 20 D Cr Q0 50 200005 O30 237202 0250 230 2 202 9 eo v 9 9 e e 99 909 9 999 9999 e 9 9i 99 99 9 909 99 9090 959 9499 9 J 999009 979 e 59 4 674 OUO V NCM O NO AONAD 2ONQ2OQOO DUO O Crus DO D 2 OCy D DC Cl OD VO IO 209 299 5 OUNCES rf ffr v ONT 20 4 D gt w anaa gt dmo e gt u Uu L AMAMOMFOO DOO MTT 2 5CDI2CD r BORD BOANN
17. ATO JAN 0n fin OM 7D AAS NOP OO 79 04 00 enn f uv DIN ANIM LS VOM OO 2 4 v ADM ODP BANMNSWODM DANNA MAN 0900 0 een en yt ryifyuydya yuy 00 O O OO OO DOP ABA OTV DMV D DOTTO 4 1 rrr Pree rr rrr rer eer re rr rer Torr er or P O rere rr rrr 4 TTF T 79 7 C123456709 12345 78G0 5 345 Tt 23455678901 139 1 6769 23456 P 58 r 2234 Card Nu TTAN NOMO OONO nu uso etus LOLOL ENOS ANITO C OO O ed C4 NO FR OPM DOtMe COMMO WOMetO DOO Ow ec Duy mn Cat NOMS LODDO MAJNO ONMO cun O G Oc m ect uyo e 9 9 9 o o6 99949 9 949 e 9 99999 99989 e 9 te 228 rrt DMEMD Ouvert a no ot OUTS HONOR OCO cut 2 mopDronmm PO 0n CON uu oo c ery WOOO us s aC u OGON Pp hasa edirdim elec redeem rA nir rA eirp HUSM TENN CGU OO OFNT OO eo rth p q STOP HAJN oa STOMP INO aD I OTS OUD AIO nm wu HD 0404 20A fe n e Hd Wet Ot aue 3 Ard Way 5 T 9 99 6 o 99 o o 9 e e 99 99 999699 0004546 Re OAM 30 dr CO DVA OG ruv23 Ova OR PP eO mo ION OO PPO 4 AIM Fete MALTA MAGNO NN 090 4v Y e OF OO AONO e st a p
18. Suv T 1 Z NV T eNTA Y136 CTT 13868 ECT 36 got v138 CT 9c T 6nt ort YHdT ett YPd TY eot YH d 1Y tet CASN f99 Z T Y138 FTT Y1 8 6ct 7136 ECT Y138 ior Sct C 1 Y11339 ct WHdely ECI Y TCT C2SN 1331 t at ys d e 5 9 13 CNIS 94 it8a 2oct tTl a8 132230 02 0 230 2 93930 00230 t3 20tl0 099 00239 092 5 5 7641 SdI NI 1 113 0 GL t60 99279 3374 93359 00350 9939 tI3 2cCcet ue 5 5 55 9511 Sdl Nl 1 JI S 52l9S 1 2 2o5 BAVC 583 365tt 009 26 Q02 Cuyo 3 22 2 oc2 o 5gn 36t t 000 0 oc 000 9 5 cd 960t Saln NI d 83 85t t dSi s C53 000 0 a 060 0 09 3 53 S8 36tt cer 00c2 J9 262 J 82 3052t SdI NI 2 0000 0 0300 Zae 932 29 9 93353 000 0 020 9 3 900 0 T56 TE SAIN A ta2 ee G22 69 02C6 0 J C 9 oco o co0 0 0nc 0 82 tt o 009 ototo l55 1t Sai f 1138 Bgt4 Q 0090029 0 09000950 c32699 0 000000 0 53l4t9 C22002 0 20 000002 0 19 batle 09 330 002520 0 9300 9 0 000000 9 900000 0 v J9u00 0 S TLEO 0322 0 0 023020 0 99003 9tt so9 12 0020 0 0C00 9 30 Y
19. TOC ust OAS 4 ANOS 2 2VOORAMOOMO AA SE n nm aa eee e 6 DUO OD o0 lt MOORS Pe PER WI oo Of 20 C3 PRINS I Lan Can Tan Lan Las Lan Can Lon Eon to gt Q O O OQ 22 m 2 N JODOI IO 2 212 25 o 90909 9 SG L T e 9 e e 9 e e 9 T fr U 4 gt en ot IAM Q TOJ OG COO 230002 OC OQ t r O 3 5 cC s 9 9 CNA regt c o e eun A 1 J e7c c 4 u O 222 N 2 OOOQ Q22 23 20 9999 99 99 gt 1 f rf ph e e e 0 e 9 9 Of OHO ANNOS SAV DOAZ MANN OM 2 fu tS e DN D IO ej D DD 200O0 2225 220 25 t4 SE SE 9999 99 e 0 t bt x e ANA D VDD HAN 9 XAND t NATN MMV 2 gt N Wet DOTI t 99 e 4969 o 1 e c0 omomoi arbo OC tieni mA emi se me D erm erem AANE 04700 FOF OD OFM FW Ean Lan AN ODO 2000 WIAA AAA IN c CO c oM m eH En Ga eA ted tet Eon Lan Can Can fx Fe TMA en en emu ene oJ HOLL n een MENON HANOI Qo x x t c f unda og BR NI OI UO U O00 e ec OA cJ ch 2 32 3 Orto VIOM commen o 22 570 y OPS OAD ANTS DOM OP Oc NOM DOR DAO FIN OM OOD 93 40 4 ry og DANNA d 09ft O PON NICO DD Deer e 74 eg e C CUO AC
20. ocs aWI4d H vV1137 9 6550 05T 5T 6 59t 3C 669C6 BELLTCT 00 8 v13e cr PENAL SHSLIT 6041561 Ot6ttc2 00 0 100 Yh41Y sC 000000 0 0020092 0 tt3420 LiLo ETSAN 90 70 H 131 ECZ OQUC2QC C 000009 0 12 56T0 c26810 Lt225C 00 0 VH 41 285650 2BTIET 5 c8 56550 AGPT O 82 Ad 834 12 3c 82 tad 2 INVA 1233343 9 7 1 C2SK ONYH 1431 9 65 1 4399 0 662 4340 CLL SE 2439 6 9S Wvi ZINCH 2 ets 0090 5140 00 0 ened 9 O 950 00 y O O od 09 6 2 6 S 29 SA Y1Y0 T3NHD1 ONIM 41914 G2 e0R Suv t8 t sSv2 NOI14C 13NN J ENT 25 t L2 3354L 30 233 003 9 02200 03239 099 9 0 2 6 tL0 8G64 SeIx NI 1 89L ll 03350 9232 2 223 2 35 dogged n 93 J9 0392325340 S2lI NI 1 JI 6552l ST 1 2E 286 v20 89 4 5 000 009 occ 905 Gace 983 3LE6 Sal NI 8 t85 26t cco 00 coco 0 0c2 2 t 85 26t SdI NI 8 9CO 06 0030958 0991339 0 0 25 000 C00 9 229 2 002000 0 odpro 003000 0 009 O 000000 0 09390070 03190 C 0 0 99059 09 9 J955 Ol 9583493 SaIW A 13 50 13 8g9Tt4co 065 0030050509 000 0 000000 0 J00 2 022v 0 0 000 09900 O 309 0323032 0 099379 02 01 0u0 2 220
21. stu TIT T TS99 T too t 95G 1 828 1 TSL T yo t 9 9 TI sel 6152 20851 652 C cts t tto 9 9 1 ETT Lert s2 152 94 gt ece t 929 T ttc tor LEG 6 l JEZ goc o 355 2 000 0 J02 O 20Cc0 0 90050 39959 0900 9 voo 541 d 4 83 00 0 99905 g ct Q3 t 20047 0 90 0611 351 eset 917 TLOT 9051 225I Gert Gott 68115 051 Llet ottr 5880 t Oott OTST s91T 2 TI 91967 866817 0251 62T 2660 SS 664817 TEST goui 922T TsTt9 8511 2391 8197 0252 6599 4 42 000 9 5t YHd TY 1355 ICES SE 1 6e 5 8T6 t 666561 96 16 962 96 LT19 ts 0 6 226 L2 OEL 69 26 C6 06 29 662 ET 4TL 62 0649 t5 68 ctE 59 11 3t6 T19 6O GcEL 9Cl 41 29 tl TIR Le2 6 te tI 66 9050 626 86t L86 42 028 6 903 0 uco Oo 000 0 900 0 900 0 000 0 SdIW NI 1 1 8 Y138 40 30 0O YHj417 QI918 11V XOZ Ww2 l ShG 19 6 1 92 L8S 21 081 89 9 b 902 t6 LeL 216 266 165 66 966 90 884 941 6n6 94415899 299 t4 6 9u6 Tt9 L50126 y8e 5ct 6615192 9et 60 t5L 412 L 0 1s2 L22 20t 081598 U28 655 460 s 2 8 I 2686 L Le
22. 0 41 50 F10 0 SREF X 51 60 10 0 BREF EE 61 70 F10 0 CREF Reference semispan bending arm Default 1 0 inches Reference chord torque arm Default 1 0 inches CARD SET 11 COMPONENT FACTORS Repeated NT times CARD 10 C C FORMAT oescrzPtor r 5 11 u EXPLANATION 1 2 I2 CN X Load station number SAN of this component 1 to 50 If CN 0 VFAC BFAC and TFAC contain simple constants added to additional load Leave CL CT blank I1 CL X Component location 1 Left side 2 Right side 3 Centerline 10 I1 CT X Component type Shear load 2 Bending load 3 Torque load 11 20 F10 3 VFAC Shear factor for this component X 21 30 F10 3 BFAC Py dx Bending factor for this component 31 40 F10 3 TFAC xd Torque factor for this component RON ENERO NOTE If SC 0 on CARD 10 define the left hand components only Both left hand and right hand loads will be computed automatically H f I If SC 1 on CARD 10 additional load station is on centerline which means left hand right hand and centerline loads can be specified as components If the geometry input option is the only option requested POP ROP SOP IOP WOP 9 the remaining CARDS 12 24 are omitted 36 6 3 Wind Tunnel Data File CARDS 12 15 The card arrangement for the wind tunnel data file is shown in figure 12 These ca
23. 1 2l S 2T SvI 8 235 es4v8 O3 99S6 et3 0 54t 999 Q 105 6t 5602 Gua Q Coo 0 27 0c2 9 T10 53 1 Sdi NI 8 265 109 629 2 92E 1 090 9 ti 5 26 cco S6 602 000 0 095 097 0 C00 9 lt2 5 58tt 56 8 90290 0 2920956 9 JT L02 2L v9C O 96455 009 0 G9 tI 000 0 9JC0 2 9 0 15157 006 0 t 5d 65 5414 A TS8 9 265 9 000 0 934 909 0 390 6 920 0 GIG O 230 58 65 dl A sV 136 9220 0392 0 8sc009 tiu s00 99100050 26ETCO v09000 0O e6ttyo 000000 0 9202 0u Q0 CC OGOo C DORT DE P 0230000 0 t T o0 t9 092029 tttco Un 9eco c COE LOD P 000C20 0 COIT 603699 0 92000930 C U29022 C 020000 0 02905 0 t too 12 31 YHd Y 882220 096990 4331 5 10n0HLIM 39 4 NS ELLEN 32v4 ns 000000 0 000000 0 T10000 onnuce 8gancono naro 2 6CCG 8852C3 LINIO amp 6ti0oc nas e 000000 0 0c0009 0 s20C00 8 0000 9c2029 oc r FEET VU e 499 9 6 1050 9 0 6ce100060 600 8 000000 0 000003 0 59212C 2 29C Io 4862 50 00 000000 C 000000 0 656000 2 00 90 O 0096 9 Qgncg0 6n 0 is6900 C620606 yore JCU7JC 9 QU60609 0 009020 0 000900 0 000000 0 30 0 00002L 0 200092 0
24. 601 GIGGLE 5S L1 F60 SdI N 1 BYT 059 5941 8 622 9 8062223 064 92tO0 6i60n15 S1N3121343232 SIVO 43 430 13 ONIM 51 31 91 4933030 OL2 BEZ 8949 qe 98 an m Ur Mend ST L922 086 526 222 9 t S3S V29 OIBIZHWASY 3604 SOYD1 IGIS 1k91 609 708 s6 6 amp 91 t Sdl1W NI Sd I WANT SdI 1 e A 3SY3 50 01 60651 9 3 2 3015 13231 N18 ZI OH 2 NYS qASYe EM 8 V13860 30 0 VHd1 1V 4GIS12 4171V XOZ WZ l SMG 49 OT 2 38 SSnS Sway te T 3S N0O J12 LNTad AYYENNS 100 026L92 32tl19 94 12 832 AQ 54 34191 434302 0 581 3342 t s 2T SYL 236 edved 0038 v12g 385 9342 t t aT9C 22t 9 000002 9 t6 00 octcto 2t 9t2424 5 62 t SdIx NI Sdl NI 5411 dIX NI ScTy HI 41 1 19 92 2 1 6 3sv SAYO 13AINu30 13NNn1 ONIN 5 3191 44309 51 31139111 3 5 4 3NT c34N2 8 803028 FEEL 000 956T 3398S NO 95 2 211 1Y19S 04 054 9 NYS kASVe wM 5 1384 0531 05 1 191 4 X02 W2 T SMG 19 Qi 2 5 Ssseas Suv tn T 3S 3 NOT140 1NT4d Axuvyuuns 09 0 101 9319207 31 482 1 83 AJ 1N312144 22 s5 33t 24214 l s 2le SL 236 8705 3059 Yv138 SOL SSTT 85 26 5 08 2 9 839350 9Zt660 CEGeTE 2 51 8n T LTt Q5 5 5es g
25. 8 0 EXAMPLE PROBLEMS This section includes 3 example problems which illustrate the major program options and suggested job sequencing Section 8 1 presents an example of cre ating the integration geometry data base using the FLEXSTAB GDTAPE for input Section 8 2 is an example which creates a revised geometry data base and wind tunnel coefficient data base from card input and then executes the integration and wind tunnel loads options Section 8 3 is an example which executes the integration option only using previously created data bases with minimum input output All three examples are based on runs from the airloads research study being conducted on the B 1 aircraft Each section includes a brief discussion followed by listings of the card input and program printouts 8 1 Geometry Option Only This example represents what would normally be the first job executed through FSLIP The only option exercised is GOP 4 which will punch the integration geo metry for the B 1 airload measurement stations as defined in figure 15 Figure 16 shows the equivalent FLEXSTAB GD model which is composed of 7 thin bodies and 1 slender body Note that the wing and vertical tail are both split into 2 sep arate thin bodies Integration axes are shown at the 8 load stations which were arbitrarily as signed surface axis numbers 1 through 8 Separate vertical and lateral integra 52 tions are defined the forward and aft fuselage stations The additiona
26. Data File CARDS 12 15 Case Description Data CARDS 16 18 Pressure Data Files CARDS 19 24 A iii Page On xO OO OO O1 wn I 1 1 eme p C OY O O1 OI mD i3 uu Im m O CO o T gt W PO Pho n NP PO PH r 35 O n9 I WOO CO c tO C1 Page Jg GCOTPUT DESCRIPTION a do si io e RS 1 X4 E OR 51 7 1 Printed Output uc 51 7 1 1 Geometry option i ow amp amp amp k co 51 Z 1 2 Integration OPTION s ue lt a e EO w Ca cm 3 lx o1 Tels Wind tunnel Option s s d Cx w ar amp amp amp amp 3 51 1 140 Summary Print ODUAON e s lt O vw Sfx 51 7 2 Punched Output le a d RE Xe V xs We sh We wm 52 Pod Disk File OULDUL i z d oc 9 S De Xy Ox Ta 52 8 0 EXAMPLE PROBLEMS d x e UE amp X W VE J cec US Sh 52 8 1 Geometry Option Only us ud hes cn oh X Dc 8 2 Integration and Wind Tunnel Options 72 8 3 Integration Option With Minimum 1 0 E 3X ue VE de d cH Wo 106 REFERENCES 4 2 ow e 6 amp XS Ce C3 RO amp amp Xe do X amp 116 SOURCE CODE LISTING Microfiche supplement Inside back cover USER S MANUAL
27. Eie Tan Laa La Eon Lan AL Fan Lom ee Cam EDS LaS LAN EnS RAN Eas ToS aN AN Fan Ean Fan AIA 75 6 1 34251 Lad 7895 1234 24 57189712 r 12234 4 3 34b 78G 12345576 ic 2 72123550739 CAKD iJ 184 050 82C Cao 19469000 WP Ve I iL e wm wD aM eat ww tS P e eg Lan N LL u mtd cpet X x ert 1 J 9 Ls 2C5 76 1884 95 247 0 eo eo 9 o 9 o 184 05 184 205 820 08 620 08 1946 00 1945 00 vay Sr at ar ap el el at GL an ay al aird 4 06 9 9 9 ir 4 0 0 O O O 40 4D O D 0 40 0 4 Ane bet BS BRE er RE BRS RS BRE BS S m ae x p ar ar x x gt z Ce O C O 12 OO BCOVTODONAINGIN e 99 e 9 9 9 9 9 Aci 171 9 t erm HA ed rtr AAS N EB BE ppt Eta a BE A S SYM x m O f lt w OWN uuo tC Q MUO lt lt lt lt OQOOJIJIITI cju CA 21200 aan eo eo 9 Cunt zo m 9 gt u 1 30 O x OO e J tt Cy m4 tees JUL O eme ee 4 t t Com O LL 2 ry AGO QA co 5702 5 OO Sear YIDIVIIIIOD DIMUO ABVOO73 JO P O DJ evr en e200
28. Plane of symmetry rd Rear view Arrows indicate direction of positive shear loads E 2 Figure 1 Sign convention for positive shear loads 10 4 0 PROGRAM DESCRIPTION The FSLIP 3 program is written in FORTRAN Extended Version 4 reference 7 Current length is 1535 statements including comments A complete listing of the source code with reference maps is included in a microfiche supplement attacb d to the inside back cover 4 1 Main Program Organization The primary function of the main program is to control the execution of subroutines which create or use various mini data bases A simplified flowchart of the main program is shown in figure 2 The program first reads execution control information If requested an integration geometry data base is next created by a call to the geometry option subroutine GOPSR If no other options are requested execution stops at this point A call to the wind tunnel option subroutine WOPSR creates a data base containing wind tunnel load coefficients Next data describing each case e g a B q etc are read in If the pressure data is input on cards the pressure option subroutine POPSR is called to create this data base At this point labeled A all data input is complete and the program proceeds with the computational options A call to the integration option subroutine IOPSR generates the pressure integrated loads If specified on the geometry data base this subrout
29. Roll rate deg sec Pitch rate deg sec Yaw rate deg sec Not used Not used Not used Aileron deflection sh Elevator deflection sh Upper rudder deflection pL LE e x CY On I OO OO gt J OY A UMN Lower rudder deflection deg Left spoiler deflection deg 18 Right spoiler deflection deg 19 Not used 20 Not used n g l H H n nm ug Hu H H H H Hn H HW H 10 19 F10 0 PY 1 1 1 X Parameter value for this case 43 CARD 17 EOF TERMINATOR This card terminates CARD SET 16 and is included even if CARD SET 16 is omitted C C FORMAT DESCRIPTOR R S I W EXPLANATION EOF XIX X x 7 8 9 multipunch CARD 18 NUMBER OF CASES C C FORMAT DESCRIPTOR 5 rlw EXPLANATION mE fnm mme mee nens au RP eue ins ME 1 I1 NC X X X X Number of cases in this run 1 9 Note that if a decimal point is added in column 2 this card can be used with the pressure data files CARDS 19 24 to execute the FLEXSTAB PDPLOT program Level 1 02 only 1 x RENS A 44 Example for the case description data Assume the following 4 parameters are to be defined for 4 cases to be processed by the wind tunnel option Case 1 Qbar 1000 a 0 8 0 6h 0 Case 2 Qbar 1009 a 5 8720 Sh 0 Case 3 Qbar 1000 a 0 870 6h 5
30. S SYM Right side A mo 5 e Z or G EN VBT Weg Bvr E Svat AL GET shy SP cx s et I wer 8R CVBT SBT vs 50 Ba 0 S0 Nr A S SYM A S I f TADLE I AERODYNAMIC EFFECTS APPLICABLE TO COMPONENT LOADS Horiz Vert Fwd Aft Effect Wing tail tail fus fus a Q x X X OL X X X X X X 8 N X X x X anti sym horiz tail defl x x X spoller defl X X X c o horiz tail carryover X SRU upper rudder defl X RL lower rudder defl X x x damping in roll X X X X damping in pitch X X R damping in vaw X B a 0 A S wing X B a 0 Sym wing X 3aA S wing X BoSym wing X 0 vert tail vert tail 0 c o aft fus carrvover aft fus carryover X 7 Applicable aerodynamic effect 3 3 2 Horizontal tail station Left side CH G VBT ap VBT _ 5 VBT ver n VET V A C q ver Sgt Cypr ABT jsp VBT EA H sp Sp c o Pb QC Gp xi ovr x a p oe Right side a ET z C I Q C C M PI 2 VET peop VBT VBT T H BVT UAM I _ VET Sr gp t yr SP er SP H p ES c o Pb QC PLN BT 29 VBT Q 2V 3 3 3 Vertical tail station C ais VBT yl Cvgr 6 C 6 SP SP BI RU 10 t RL 3 9 4 Forward fuselage station Vertical C t C a 11 VBT VBT 4 VBT Lateral Cyst Cypy iid
31. WTNAME Name given to this load station 21 30 F10 0 ee ng Reference area square feet 31 40 F10 0 Oow Reference semispan inches E1070 af or p repe oe Reference chord inches x 53 59 Ts Horizontal Mts cd aes longitudinal O O1 A Co Ph re H H H H dH H moment transfer arm inches Ax between horizontal tail and aft fuselage load stations 60 66 F7 0 YHT X Horizontal tail lateral moment transfer arm inches Ay between horizontal tail and aft fuselage load stations c 67 73 F7 0 XVT X Vertical tail root longitudinal moment transfer arm inches Ax between vertical tail root and aft fuselage load stations F7 0 ZVT Xi Vertical tail root vertical moment transfer arm inches Az between vertical tail root and aft fuselage load stations NOTE XHT YHT XVT and ZVT are defined for the aft fuselage load station only WTN 6 Refer to equations 16 18 and 19 Leave blank for other load stations 39 CARD SET 14 Contains 15 cards as specified in NSEQ e F10 2 CV T CB 31 40 2 CT 24 43 63 3A7 DES s 64 80 Not read E F Xo TABLE 3 AIRLOAD COEFFICIENTS FOR WING STATION WTN 1 Refer to equation 8 CARD NSEQ DES Component effect ALPHA 0 ALPHA ALPHA DOT DELTA SPOILER ROLL DAMPING P PITCH DAMPING Q BETA ALPHA 9
32. centroid ahead of torque axis New value of x c nondimensional x coordinate of panel aerocentroid for repunch option 41 50 F10 0 93 CARD 9A THIN BODY AXIS DATA REN FORMAT DESCRIPTOR R 5 1 M EXPLANATION X coordinate in local system of 1 10 F10 0 X integration axis origin inches 11 20 F10 0 X Y coordinate in local system of integration axis origin inches Sweep angle of intecration axis deg CARD 9B SLENDER BODY AXIS DATA FORMAT DESCRIPTOR cepe EXPLANATION F10 0 XFWD X coordinate in local system of forward limit of integration inches 11 20 F10 0 XAFT X X coordinate in local system of aft limit of integration inches 21 30 F10 0 X X coordinate in local system of moment reference point inches 31 40 F10 0 MRC X Moment reference sign convention 1 0 Positive nose up or to right 1 0 Positive tail up or to right Hu H Go D The card sequence CARD 10 CARD SET 11 is repeated for each additional load definition NALD times CARD 5 CARD 10 LOAD STATION DATA DANN Was Unique number assigned to this load station 1 to 50 FOE SANAME Name given to this load station 33 Integration type code 4 Additional load 36 I1 SC X Symmetry code 0 Load station off centerline 1 Load station on centerline 38 40 I3 NT X Number of component loads defined with CARD SET 11 Reference area square feet Default 1
33. execution field length of approximately 115K octal words Execution CP times are very problem size dependent but relatively quick Most average size jobs run in 10 to 20 CP seconds The largest size jobs may require approximately 100 CP seconds 6 0 DATA INPUT DESCRIPTION Tnis section contains a detailed description of the card input deck required for execution Figure 4 illustrates the overall card deck structure which is broken down into 5 major sections Section 6 1 contains program control data defined with card types 1 through 4 Section 6 2 is the surface axis data file card types 5 through 11 Section 6 3 is the wind tunnel data file card types 12 through 15 Card types 16 through 18 make up section 6 4 containing case description data Section 6 5 is the pressure data file card types 19 through 24 which is repeated for each case to be processed Section Figure 4 Overall card deck structure 19 6 1 is aiways required for execution Sections 6 2 6 3 6 4 and 6 5 are optional depending on the input options defined on CARD 1 Each of the five major sections are described separately 6 1 Program Control Data CARDS 1 4 The card arrangement for the program control data is shown in figure 5 Particular attention should be paid to the option control parameters on CARD 1 as they affect most of the downstream cards CARDS 2A and 2B control which in tegrated and wind tunnel loads are computed CARD SET 3 controls the summ
34. interfacing with the GDTAPE GOP 3 or 4 FSLIP is compatible with any GDTAPE except those produced by Level 3 02 FLEXSTAB The GDTAPE file structure for Level 3 02 was changed reference 8 which affects the read statements in GOPSR There are two ways to circumvent this problem for the user of Level 3 02 FLEXSTAB The read statements in GOPSR can be changed to be compatible with Level 3 02 or the user can maintain access to an earlier level GD module for creating a FSLIP compatible GDTAPE Under the FLEXSTAB system the GDTAPE may contain multiple files with each file defining a different GD model FSLIP reads the currently positioned file thus if the user wishes to process other than the first file appropriate SKIP or COPY utilities should be used to position the desired file after attaching the GDTAPE 4 4 2 FSLIP Dependent Result arrayS in FSLIP are currently sized to handle up to 9 different pressure cases per run The surface axis data file can contain up to 50 load stations to be processed for each case The pressure data is usually input from card decks punched by the SD amp SS module in FLEXSTAB However SD amp SS is limited to punching thin body pressures only If the user wishes to compute loads on slender bodies such as fuselage loads FSLIP has provisions for manually adding the slender body force coefficients computed by SD amp SS to the thin body pressure decks This procedure is described in section 6 5 A very ge
35. n it n Case 2 13 U 1 i case 3 14 n n Case 4 15 n J It H case 5 16 Hn i l Case 6 17 I n n H i case 7 18 it v 1 case 8 19 H i tt case 9 20 For surface axis data file 40 For wind tunnel data file 17 YYYYYYY Permanent File Name ZZZZ Owner I D Card 5 This card is included for each previously cataloged data file to be accessed for job execution The parameters XX YYYYYYY and 1 7 are the same as for CARD 8 with the addition XX 30 for the FLEXSTAB GDTAPE Card 7 For large jobs the print limit may have to be increased See section 7 1 for estimating amount of printout 5 2 NOS JCL To execute the FSLIP program using NOS the following system control cards are required Job Card XXXXX T300 USER XXXX YY CHARGE XX YY FTN ATTACH LGO FSLIP3 UN SIMS DEFINE TAPEXX YYYYYYY CT SPRIV ATTACH TAPEXX YYYYYYY LDSET PRESET ZERO MAP OFF LGO PL 10000 7 8 9 End of file card Data Input Deck 6 7 8 9 End of job card Oo O N O A C N KF b e N e CO NOTES Card 2 XXXXX User s Job Name Card 3 XXXX User s name YY User s password Card 4 XX YY Subtask number Card 6 This card replaces cards 4 and 8 defined above for SCOPE with the same XX and YYYYYYY parameters Card This card replaces card 5 defined above for SCOPE with the same XX and YYYYYYY parameters 18 5 3 CM and CP Time Requirements FSLIP requires a maximum
36. or 4 which uses the FLEXSTAB GDTAPE The user simply specifies the FLEXSTAB body along with the integration hi CREATE GEOMETRY DATA BASE YES CALL GOPSR PROCEED WITH COMPUTATIONAL OPTIONS CALL IOPSR NO OTHER OPTIONS INTEGRATE YES PRESSURES NO STOP CREATE COMPUTE WIND TUNNEL WIND TUNNEL DATA BASE LOADS YES CALL WOPSR NO READ PRINT CASE LOAD DATA SUMMARY CREATE PRESSURE DATA BASE YES CALL POPSR uu ALL DATA INPUT COMPLETE NO Figure 2 Main program simplified flowchart 12 MO j 10 0931691 3113 VlVO 3 ONIM INI LNOYSNS NOI1d0 SCv01 3NNM ONIM 135541 GNIM USdOM S1N312143302 QvO THIV TINNAL ONIM 2 49 I dOI LNOLNIYd 1509 avo 12401 1 Id SCcvo1 0319 9931NI 3ufis S 3d 3NIif0ugfs NOILdO NOILVN931NI AINILAONENS INAS 85401 063411 XSIO HOLYYIS Au UOdW31 d0d T 09 1nd3no 41ndu T d0M c dM 6T T13dV1 3114 viva 3855394 p 40 409 4 SIXV 32v3uhs 023dv1 3114 Viva SIXV 32v 3uftS 4 INILNOYSNS 1 0 SIYNSSIYd 3JunssiHd Q3HONNd T d0d 8V1SX313 uSd0d viva SIXV 32V3uns 3NI11fQugns 0 3qV1 1 40 349149 18131039 gV1SX313 85409 t 40 d09 V1VG SIXV F3 File Name thru
37. single body on the vehicle centerline Thin bodies have a single ACP acting normal to each panel Slender bodies may have both a vertical and lateral ACP The total integrated loads at each station are reduced to standard non dimensional form as follows e V 8 83 4 Ca Beg 5 Ce S s se 6 3 2 Additional Loads Option Once the pressure integrated loads have been computed a program option allows a new load station to be defined which is a linear combination of pre viously defined loads An additional load definition takes the generalized form of a matrix equation C11 612 13 ox Gs 7 21 22 29 B m Coo os t E L3 5 9 9 9 7 Cit 642 613 3 3 Wind Tunnel Loads Option This program option computes airloads based on linearized coefficients de rived from wind tunnel or other load surveys Table 1 lists the aerodynamic effects applicable to 5 types of load stations The overall format is based on the airload coefficients derived for the B 1 aircraft in reference 6 The total load coefficients at each station are built up from the components as listed in the generalized equations below Particular attention should be paid to the units and sign conventions for each component 3 3 1 Wing station Left side C S yer VBT ver Var var 7 SPIN SP a VBT VBT mer BT Ba 0 VET A S Ct SYM A
38. tunnel load is computed that corresponds to the specified SPI it can be printed along with the SPI load SPW should not be specified unless SPI is non zero CARD 4 SUMMARY PRINT TERMINATOR This blank card signifies the end of program control data and is always included FORMAT DESCRIPTOR parm EXPLANATION HBHH Leave columns blank or zero 6 2 Surface Axis Data File CARDS 5 11 This card section is used to create the surface axis data file when GOP 2 3 or 4 Once the file has been created this card section is omitted from the input deck if GOP 0 or 1 Some general usage guidelines are presented here followed by the detailed card input descriptions Unlike the FLEXSTAB ALOADS module FSLIP applies an integration specifi cation to one thin or slender body at a time More than one integration can be specified for a particular body For each integration the data file contains the effective area bending arm and torque arm for each panel on the specified body Two methods are available for creating the data file which are discussed separately in sections 6 2 5 and 6 2 6 6 2 1 Thin body integrations Figure 6 shows an example of the integration geometry for a typical thin body The panel coordinates are originally defined in the local thin body coordinate system XN YN as established in the FLEXSTAB GD module An arbitrary load station is defined by the coordin ates XAo YAo and sweep angle which determines the ben
39. varies from 1 to 5 pages per case depending on which stations are set true on CARD 2B The 5 stations consist of wing horizontal tail vertical tail forward fuselage and aft fuselage 7 1 4 Summary print option This option produces a concise summary of the total Toads and coefficients for each specified load station for all cases processed If IOP 2 this option must be used to print the total integrated loads The amount of output consists of 1 page per load station specified with CARD 3 9 7 2 Punched Output The only punched card output is produced by the GOP 4 option It con sists of a complete surface axis data file which may be input using GOP 2 The format of the punched deck is described in section 6 2 The number of punched cards can be estimated from the following equations For each integration defined with CARD 6 Number of cards NR NP 1 where NR number of rows on body NP number of panels on body For each additional load specified with CARD 10 Number of cards NT 1 where NT number of terms CARD 10 7 3 Disk File Output Disk files produced by FSLIP consist of the pressure data files TAPE 11 to 19 the surface axis data file TAPE 20 and the wind tunnel data file TAPE 40 The detailed format of these files is not presented as they are a direct one for one unformatted copy of each card record Thus the user is referred to sections 6 2 6 3 and 6 5 for details of the file formats
40. 0 0 098 889 teg 86 561 I A 1 3191 445202 avo savol 0921 otte vaT 9562 1 42 3 5 031Y 5341NI 68 ST 95 92 EGP EE NI 1 1 01 1Yv101 Wicl 0 I4 5 88 45 9 55 cc tte ce ere NI 96 t6 26 16 9t L6 86 Letc 86 156 ZNI Y3x Y S XY 9S ON 0 0 MP 13Nv4 If T YS 31 1 82 83 14 30 Lees in 42 920 806220 5L9 2t 0 6L16020 1N3123143202 1 3t 230t 2 c493 5 s 900 4S0LT8 T92800 2 2S59T0 834 50 51 ST9 L922 0s6 526 222 9 eu9 2ng 9t 2 t161 91 50 01 2031v4931NT TV1IC1 341 T Jat cs l 08 4RT oct 2 251 2G RE 46 G2L 3 L01 gt l et9 S 2T 59 s0t 1 409 9 21 66 SLT 412 5t2 5 6 c L 5 9 Ict 34 c2 35930 661 1 ssL Oot 60 Teoo GL 6ETH LS RE 5 624 t 9 Ost l 52 2 629 6toc l0I ece eot 601 251 TC t5T1 Sepe 621 2 9 l 2 L c86 3ct 66it 595 86 692 219 L19 2 8geog 92 1 21 49 8t 2 6 S2L 9 936951 9231 685 ls91 683 6821 l 9 6 T 894 98 5 l IT 461 26 REL 6 9 5 311 L63 TST t56 8 6t 64 ZJE 100 TE 94TH Tr 2z t 26 95L 6 t92 C9
41. 0 0 000000 0 8S 11000 09 4000 00 0 1Y21183 2eC9 69 900 O Et4t220 090030 O ELTZC0 00 600 00 1 1V311 3A O YhHhd Y 541 A 19 8 A 834 12 3d 82 834 AD 3n vA 133443 3 C3SN 1v2311v34 S L GY 1 0s 5 1 0 591 54149 80508 3358 000 9561 4315 95 54 13Y 9 NI M avg 903953 30 06 0 190 9 0 nud 0 0 8450 0 O 1S0 0 0 O C at O O ed sy 138 0000 0 sYHd1V S L9 SM 02 H V1YG TAINNAL ONIM UFSty Ce g0P 5 16 t 35 9 NOTIdG FAANAL OKITA 98 9 TTITO 24LL 9 ESEE29 Leysuye 629629 1 33 AJ 315312143322 60391 4389 e ue nn lt t4 G an Ce 008 138 Niet Met 90 l102 918 O0 I 402 21 928200 169100 GT5820 802 566 805 55 T 535139 OIFIZMKASY 904 SOYvO 3115 HOTA 953 24TYT 620 25261 266 8 ELLTON 690200 t9tte20 t8 ft29 HTI SAGIT 99 55 t SdIN NT Sdl NI SdIM SdIY NI SdIy NI SdyY 1 g A 12 83 23 1 6 A 26wj SIYO g3Ais3Q0 4 ANIA 1N312143305 SIYO 031v49 INT JINSSTud 301 133 T 30 028 1348 000 S56T 13 330 29S 3JI SIXY 9S lt ONIA T NYS 0132 aYHdly 831138 40 30 404 WAIST YL Ty X02 qt 2 25t 5 05 SHY Te T 3 v3 ININd 99 e 5cIro 235905 224600 t 88 009 26t 614 95 226920 Qot 3907 32
42. 0 42 02 069c GB CII 2 ct 9 05t 8t g0L 15 L6t 1 l6 2 SC 2tt C ct5 t 9 829 11lT 210 9802 696 l 2TEG P 95 51 CO ZET EN EES 2 9 906 LTE 80 5tL GLC 6 5488 T1 20 465 65 2E T tO tt t 9 29 65V 96c satre 92 117 23 SOT OTING 2t65 3 2 526 T T ThE T LL62 6 9 54 L6 SOT 9 5 909 8t 2 6z2 20 GLOG Y 29 l4 LB Sa 2 08 52 I5 L t42 986 2 2946 99 85 19 6T1 99 e 822 6u0t 16t 691 Zat iq 69566 1 64 52 4R cCI ot c99 Tt2 l 4 tset 5 tact 29 ETH Z 5 tLe G 4 2 1 65 6 2 169 2 6905 t t 51 e s L 145 5 l28 812 556 2 559 et sL L 116 T99 S 55T 422 950 2T9b 96 Te e 54 e 9 81 66 t42 299 tte e L 5 E T 1 26596 6 66 O5T 98t t 4 g2c t 624E t 2 26 205098 6 t c9 1955101 tc9 20 t24 1 238t T1 86 20 339 6t tc69 8 064 8 914 1l 096 t Ll s2 2 349 6t c9 t6L tt 91 51 659 l e59t 9 eo gs 6t t69 2 95 S9t2 tc0 8g 2 GSl 6 6est t 16 ts ec 95 6E ESG 980 08 6566 e6 oet 2 66tt 9 2 t 9 62 52 556 2 66 9 469 05 t9 2 HAGE om 56 S4 tS 62 62 94 2 6TS 9t 962 86 e32 2 SESE c 82 14 t9 62 62 056 t 2 t 4 65 851 15 q29 1 t
43. 00 0c o Ce 93 4 T 32606 50 19 2 4 do 4650 octo cet eaca o00 0 869 85 L95 5 9t 9n or o 5 401 LE T5 nT S T 209 0 69 T T1 L 6 6E60 cren T 5166 T 909 0 9 2991T t 8 S 00 0 CC e 592 f T voo Q 64t o9tT 00 0 CO ELE TE LL96 2 T 200 0 966 T6t 2 880 6 00 n Cc 29 TtOo Teu t X SdIW NI Sal NI 56 YJ NI NI ra OD 1 ume Wd WEYL wave Viuav 13 6 0 531 435 064 4348 99959961 243945 NO 5 ei 35v13 0n49A0C842 191 98 Sn3 434 9 52Is 51 6 5 286 008 33 CO G 9 Y138 2230 0 H4 1Y Q019IN 11Y NOZ W2 t SMG 29 0t 2 5e ssas Suv 16 TI 23 v 2 NOTLdC NOILYM931MI 87 0000090509 44 000 266000 1N312143302 OYNI 000000 0 90194 0 3d SQvO1 riot 000 0 t 09 4 L 966 T SOVOT Os3L1Yv931NT viol 000 0 906 86tT 162 t 24 2 06 5 o2 2T 5 e6 ezat t 005 0 69 959 660 1 2060 00 0 CO EZE Cc2 64146 6t T 000 0 941 636 602 4cac oc o0 6 S z et 250 et T 0C 0 368 S22 Eos 1 6620 9050 5 9518 52R4 av T oco U g89 L 9 cnegs t 20964 st T ucro 96g 9547 oo o c1 9 05 2t21 ST l 000 9 000 6 95070 Tour neen ceto oree t T 005 0 000 0 006 0 GEEN 00 0 0050 f I 000 0 cco o 91 0 oon rc c DGIN zT T 000 C 900 O 090
44. 16 Abstract This report constitutes the FSLIP program documentation and user s manual As a follow on program to the FLEXSTAB computer analysis system the primary function of this Fortran IV program is to integrate panel pressure coefficients computed by FLEXSTAB to obtain total shear bending and torque airloads on various surfaces summed relative to user specified axes The program essentially replaces the ALOADS module in FLEXSTAB with expanded capabilities and flexibility As such FSLIP is generalized to work on any FLEXSTAB model or other pressure data if in a compatible format Key Words Suggested by Author s 18 Distribution Statement FLEXSTAB Fortran program Airload prediction Pressure integration Unclassified Unlimited Subject category 61 21 No of Pages 22 Price Unclassified 116 A06 For sale by the National Technical Information Service Springfield Virginia 22161 Security Classif of this report 20 Security Classif of this page Unclassified
45. 22 4310496 444 639 4572883 4710676 Takhe amp c 131 1 195 t 399 3E 66 9 333 484267 202315 27 438 25 190 62094 2 53 295 184 442 G 11 31 263 56ei16 21 847 164 394 E 238 be 48 32 349 38 7 18 970 34 555 11 63 27 c79 33 930 64 458 19 680 13 313 6 741 CUT PANEL CUT PANEL S URCAnpZ Y S NUMBER lt 2 SURFASCE RXAS Ant HUKLZ Jaah SC GO GJuUY NAME w HGRZTAIL INTEGOATT VA TYPE CODE 3 SKEE C38 717 BREF 229 030 CREF 159 380 BAY TY5G INE 2 3 SYMMETRY COUE CFF NUM3 9 1wS 6 iHcYia 12934 CEE INT 6 T 1 AXIS 2EF I IIT ION UP IGIN AT XN 1582 0uf YN s lues 75k S WEE ANGLE Ue006 DEG DAFA NIIMZS2 YN NUMBER GF FAMELS 1 56 5 2 08 120 5 a 115 2362 5 4 164 204 5 5 257 859 5 6 2492416 5 PANE DATA Tr Y 12 BAAM IN 1 1 1263 134 16 23 F CUT PAHEL 1 3 12534 184 160 236 46 441 CUT PANEL 1 1 1253 184 16 236 22 438 CUT PANEL 1 4 12634184 450236 Cl u17 CUT PANEL 1 5 1263 184 16 230 9 595 CUT PANEL 2 1 1765 972 576370 3e195 2 2 1765 972 27 370 11 330 2 3 1765 972 57 376 46 365 2 5 1755 972 576 376 14 400 2 5 47654972 57 370 116 435 3 L 149 993299 106 112 16 883 3 2 1405 299 105 112 4 64 666 3 3 1426 99 423169412 276 649 3 4 14254 0939 196 112 71064 8342 a 3 14065099 19064112 12 64 815 4 1 1199 7 2 4534454 56 324 4 1199 7 2 153 454 t 301 4 3 1199732 1534454 106
46. 239052 0 b5v L3 8916522 6541 A 12 YQ 0090 9 30 s113g 0000 9 HdlY 26638l 3968412 32Y 48 5 00600006 6 000009 60 CEBETO 9664 5c ager 900090 0 0000090 90200 9200 COJ4 O0C 00 000090 6 909900 O 6Iti00 Z26t00no 946 00 0 0000060 60 000000 0 01299 4960C gere 0GC0 0 O00CO00 0 627090 LLio00 55 000 aren 202030 90120005 I29160 000COO O TE EOI0 0 Ot4lOO0 00 C e65981 969125 OEZOTO 2ttz0 1 00 E 82 A 834 12 834 8 834 AD 3n VA 6 081 434 91 902 4338 00 29 41385 0 2 L8c12 39Y 43805 000030 0 000000 0 3966690 02 622tco 00 0 0002520 0 JNJCOO U I95t60g t66t20 90 C CCc90520 9 002300 9 0 Que600 0 60090 0 0000060 0 00 0 000020 0 000000 0 0O0t8t 20 6e2oo 9960C nore 900609C 0 000909 0 t20000 80000 0412600 00 0 009090 C 000050 Q Cc0502n tOECCC 00 0 09C200 0 000002 0 201020 SEQ0G 91 L3o 241854242 LEENIN F9FSEur 82 9 834 1 834 82 834 INVA 2 6 88l 4383 91 902 3358 C0 4 2 3J3i4S 0 591840 0O0 O nw G 150 0 0 150 6 19 5 Tew VivO IINNNL QNI 6 9 NO Savol Vins 9 4 1 M 20534 YA ers 4 d 2C13 1159 ifs TWA POF 613 Y17150 1 d
47. 3 278 438 3 2458245 5 4 2834 22n 5 5 312 775 5 h 3472552 5 387 246 5 8 423 704 5 9 456 229 5 PANEL DATA I DeY AP zA iH2 IN TaRNeIN 1 1 2 0 0 000 04 000 l 2 0 03J Jes Jo veiu 1 3 9 009 02006 0 000 1 3 615 071 9 239 7 201 CUT PANEL 1 5 443 684 23 2 1 1uv94 02 CUT PANEL 2 1 9 000 3 330 0 Gu 2 2 Jein Gatut k 2 3 2494559 92391 23 688 CUT PANEL 2 24099382 37 266 svell2 CUT PANEL 2 5 3973 947 984 123 amp 4 3951 3 t 2 1 Ve G2 Je Cu 3 2 3484747 420542 13 358 CUT PANEL 3 3 2139756 39 654 11 371 CUT FANEL 3 4 2643 773 97 892 404 015 3 5 26194773 16424997 1 4 199 57 PANEL DATA TIENEY RR WON 6 QA n o 7 APM c Mo NI OD 700 Ji 4 o Ne a5 09 TATAL AREA 58 Ax E Y 12 792 891 22294 5123 2389 686 2389 08 233926394 186354969 1265 2509 16630959 18554969 4863 959 22266145 22266145 22296145 2226 145 22250245 19 244 591 19340694 1904 691 i995 ADL 1994 691 12104113 1215 113 1215 113 12154113 1216 113 397 976 397 976 197 976 3976976 397 976 664992123 Banii fh 19 598 502026 L Te 243 16844294 294 965 tos Gl 1c2 61e 172 323 234 35 2896740 154 478 204 366 254 258 345 4148 354030 954 436 297 681 3429 927 384 473 4270416 343 147 374 094 495 CA 4356990 406 236 418434
48. 411457 C D YCGDTAPF E TAPE30 14 11 48 M4 QFE 1 5 114a5341LG1 PLo12629 15 05 704 Yel STU 15 43 20817 C SECDNDS EXECUTILA TIME 154 574 5 7 90092816 WURUS FILE OUTPUT DC 4Q 15 57 55 n 003231344 WIRDS FALE PUNCH GC iu FS 0572492074 29874 SEU 22874 ADJ 15 05 704300 24 39616 SEC 309606 ADJ 15 95 49 7 191606 SEC lel62 15 574 504 704 2790049 KWSe 164482 ADJ 1593 242125 154 574 5 pP 9 519 SEC DATE 08 10 81 154 4574 E J END OF JIB Be RACE thui B1FS1 I s ENG OF L ST amp MEARE AY 31FS14 EXO OF LIST 4 8 2 Integration and Wind Tunnel Options This example creates the revised geometry file with GOP 2 and the wind tun nel coefficient file with WOP 2 using card input For brevity only 1 pressure case for an asymmetric flight condition a 0 8248 is input on cards with POP 1 The integration and wind tunnel loads options are then executed for all load stations In addition comparisons for 6 selected load stations are output using the summary print option fe Card input listing for example 8 2 7 5 24122456789612345 7894 6 3656759 5 4 78901234567390123456796912 3 2 2078901234256173901234 1 1234 CARD Ng e Or rae az 2 t gt lt gt va lt ml u uwz zZ QJ lt lt gt ry aw Cas E or aL 4 2 me rx 4 3 ex e e lt gt lt a c
49. 4348 sV 138 C 0 094 L52 YHj1Y 698 901 90059 6l6 5 936 J 000 0 LT6 966 5 6 904 SdiyX NI 8 33us e6 Lot C09 0 000 0 866 0t roo o 0 TAKI a Sdl A 9 v138 0 30 0evHg 40191941 02 W2 l S45 10 00051 C 0 0 goo O oco t 000 0 0 59 9 sOLIVI 1 9 JN 000 0 oc2 t eno o 000 0 000 1 09 19 19 4 8 5595 183121443302 ONY 09050 non 1 0ooo c oco o occ t 8012Y4 A 5321I Savor 1Y101 8 6 1659 616 5tt 856 Eo zhy1 8nt 1 118 0565 945 SL INVA or 2 5e Sssos 1 13 1CO IYI 183 9 19 1508 TIVL L 3A A 12 100 1JYVL 197A 95 1 32 9 3IY1 193 8 13 9S TIY1 113 2 A 32 9S IVL LSSA f 1 14189533 IN3NCdk2 3 11551 33 1TY101 1CON eNYS KASY wy 5 1 35v NCIJ 0 1 01 J v CI1100Y 90 Cc0220 0 96500 020000 0 9 9 0527 20 0 2ISCOG P 6 99 Ous5stczct 0133993 0559109915 L1L1 9CC2 053200 0 0202C2 9 12 82 SO 9g81 434 s 2ls SYL 286 347892 908 0601 970 90990090 00970 YIVICIFO 07289 55ct0J 715 91293 90 90970 QCCOGQO O A N 2080C0 000 0 A2 dl 80 6280 3348 2vy1238 NI 1 9000 9961 YHd1Y I 1 t842 15 4922 309 209 le2 t261 65 L504 09 4 54 000 0 Sdl NI 9 13 5 oco o C
50. 457 4 4 1199 79 1534454 131 533 4 5 1199 792 153 454 156 610U 59 DANTL DATA TOTAL ARFA 60 TIMEX s A T gt A wiv x Api 142 79382922 793 e922 798492 798 922 798 922 72254942 722364942 722 952 725 942 7254942 357992196 Bakrie LE 107 149 197 199 497 139 197 1539 197 129 364 66 38 66 2384 656 238 566 2322666 24 26 113 2048 134e76u 542441 4 503 127 4261 15362 6 1394750 175 994 1572 2239 TUKRTA CIAYTS QUARSA s 3 HMAHE VERY TALL lt 5G GU BuCY Rake w VERTTIP 1 PYPE CODE 3 Scoff s 247 457 BREF s 2064760 CREF 1 8 950 TY AIDE 3 SYM Aci2Y CODE Ch YUMIFO qS 6 THETA 9 s o LEG I T G ATTTM AXIS OEFYTaAIlTiJl OkaG XN s 1582 NGO YN a 136 590 SWEEP ANGLE wedut DEG DATA Mj una Y NUMSCP OF PANELS 1 137 790 5 2 1526245 5 3 184 576 5 5 213 878 5 R 2424432 5 269 123 5 DANEEL SATA AREA TN2 PARH IK TARE XN 1 1 5534 15 6 553 965 303 CUT PANEL 1 3 553 150 9 653 49 133 CUT PAREL 1 3 25361523 5 653 70964 CUT PAMEL 1 4 5234157 6 653 33 206 CUT PANEL 1 5 553 159 653 76 375 CUT PAkcL 2 1 949 299 294685 84034 2 2 949 289 25 85 300376 2 3 94 239 25 685 7 203 2 4 9432239 254 685 44 S94 2 3 9436289 c5 bbs 8Z 600 3 Y 653 4390 48 016 41 906 3 2 653 392 43 6016
51. 5 5d 8235 o LO 56 89T1 0t6 412 eS l 0920 9L tfFT TY 4 t 26 85 t 6TE 4 O2 6 L ouc GL9 LEL 942 SET 939 e6c2r l2 T1 TTL e6 351 13 43 33 S9L ei EO c41 sts 962 8Cc0 066 064 c c215 99 26 T1 461l e65 80651 t 6 FET PES s Tt logit Le9 49i 60 1 SEET 19 9ST co Est 0L 561t 3E 5 031 Tez L3t t 22 l 665l 1 526 SETT 5 t31 nL 66Tt 15219 L3c 36 s E920 602 9 029 6 90 100 95 9 l 4 F sgt 04 6511 STE oT 1c0o L2 ett ea rec t 852l gr Te co get GL 651T e 09 5 i 45 98 sS2 tc4 t Ltte 60 222 L6t 609 9 56 t 6195 0L 6611 4 354964 CES 2 CcLI e 5 9C5 22 9 0 54l 00901 28 9tl TT e5T OT SOST t 877 591 6 S T 609I 62 ooT 6661 tl I a 9ct 9 l22 5 3935 z41 6 9 e2t6 l46 6 552 8 1900 6e 91 T1 0T 92 T t 331 l TIG ZE 28 Sieg 92 66 S65 4SET 892 1 8 9 5 Y C17 anet z 135 55 C5 542 tt 9 2 s LZ 5C62 91 u65 9L ls 5 90245 88 ST TT sot OTP 90ST GES ESE 29 59T 536 2 eov 2 1t 6 182 916 8 125 2 ote cA BE Ka LELE LE 59411 2 T12 3551 ble r 6531 o
52. 5 cot g l2l0 GETETO OD0 560 OQo rt 90 661 00 T 6541 eb 1 A YI 301273 1 s012Yd4 8 012Y3 A Saye 2032500N1 095 15 G326S00 21 O2ISUC OZEDEI 39vd hS NO 1T71D1 et 269 32 02 200 O22200 062000 0O t000 OF9TOU 17831Y1 vi38 eco 0902 0 C996299 0 0Ou60200 9000090 9800965 otioco 0020003 00 C 1Y1 d ALI2013A 1103 403 2 9 9 099 GU 900 0 Q0n040 C 90 oTeona 9g6r66ec 3c 6 1 38G1 330n 110 633299 0 0022200 0 050020 50 022C90 00 0 1V1 3uI d H 711320 tf 9 000 0 09106090 020060 0 2010000 010020 49 C 1Y1 0 9 YHdIY vite 09 89c 2t 0362C9 O05200 088910 04t0200 O0t006 Oll C0 90509 1v110 3 O vHdl1Y 713189 t09 561 A 12 82 AJ 83d 19 u3d 82 3d AJ INVA 123333 JIWYNACCYIY 035SN 1v211v1 Us52 t 6 SL0010 11 1Y31153A 39Y13Sn3 1379 NO savo iot TT 85 22710 39713504 idv OL 9NIOOv SavOT Wvt ich OT N 7 Tttooo C t SdIX NI SETS RRS 1 1H cort SdIW NI 352 E6CE 1 s T 602000 204000 0S 2 00 T 54 2 8 T A LHY se2 9 ELTOTO o2 eo t S413 G22 S9 A 141 sOChLOVd 1 3012vJ OLIVA A 50101 oa2naNI OIY1 TET OT 0090000 0 E 4I220 00t600 39v44n 37101 6 NIA 6 9 9 0239 0 0 COCOCQ 0 00000
53. 50 9 Y138 0 30 C YH4d lY OIOIM 11Y YOZ u2 l S G 19 Qt 2 2E t5035 Suv 19 T 3SY O NOIi1dD 1NINd Avvuwuns 104 SN1 8To T 50vY dIIN LE TCCT SINNETO TT 353v t S 6c Ot 5255941754 421 SuNn 562 t SKRINI ESTES OFT SNC HES DEA Cane Sun 2c6 0 earan es errea 3 11 NO11033X3 SONCO 2S dd E44 S C6 01I 514 NO0Ii1n23X3 WnWIXYW Gn 4015 25 66c CT QCCEEST 035 w30vO1 T Y 1 WI 31 3J0 dvYM 92 Cc CT 0332 138S c 123 1 c2 c oT AI9 dS 12 2dC T87 534d 1 3537 330 G2 0 AT 4dS 123 dC91 20230ev1 3N 1430 G2 CG T d11 4 091 H2v1 1v nS CT N123 29 91 239Y v49 2 CC CT S 1S 435n 52 n0c CT S02 99c C TOV Y u232n 52 0G 0I ent1 2Ssdt8 2 C6 01 OTSON SCN 29 40 20 10 T8 105 8 3 Integration Option With Minimum 1 0 In this final example the geometry file and pressure data files already exist GOP 1 and POP 2 so the card input is at a minimum Output is mini mized by executing IOP 2 for symmetric flight cases where the aircraft is trimmed at 4 different load factors Output for the vertical tail and lateral fuselage stations is suppressed with CARD 2A The wind tunnel option is not executed The only printed output is generated by the summary print option for the wing horizontal tail and vertical
54. 6 GT 727 3E T1T e v0 H27 11 0 2 2 5T do9ies 23d7 f2 n 6T dI 151 1 221179 S 7 sect 512629491 ZIG ETON c eT 5e 15 425n Tq cet CT 8235 3 0 C ONDE NC eT PC VTLS SATIS Ger cecT OISCN SCR 2 415 41 3 SIZVORIS 114 Dryden Flight Research Center National Aeronautics and Space Administration July 17 1981 115 10 REFERENCES Tinoco E N and Mercer J E FLEXSTAB A Summary of the Functions and Capabilities of the NASA Flexible irplane Analysis Computer System NASA CR 2564 1974 Hink G R Snow R N Bhatia K G Maier R E Bills G Henderson D M Bailey D C Dornfeld G M and D Auria P V A Method for Predicting the Stability Characteristics of an Elastic Airplane Volume II FLEXSTAB 1 02 00 User s Manual NASA CR 114713 1974 Bills G R Hink G R and Dornfeld G M A Method for Predicting the Stability Characteristics of an Elastic Airplane Volume II FLEXSTAB 3 01 00 User s Manual AFFDL TR 77 55 Vol II Air Force Flight Dynamics Lab Wright Patterson AFB Ohio June 1977 A Method for Predicting the Stability Characteristics of an Elastic Airplane Volume II FLEXSTAB 3 02 00 User s Manual 06 44361 2 Boeing Commercial Airplane Co and Boeing Computer Services Co Oct 1978 Carter Alan L and Sims Robert L Comparison of Theoretical Predictions of Orbiter Airloads with Wind Tunnel and Flight Test Re
55. 676 188 95 21 3 1 TT bie56 40044 22 03 3 2 Jed l Oo yell 223 63 3 3 34 32 yeu 1200 24 04 3 1 le JeGu Yeuh 28 21 3 2 2 02 1 02 0 36 4 3 a deut Jeud le GQ 27 32 AFT FUS SG V TOT 4 1 1946 00 820 08 184 05 248 37 3 Lev Qe v2 0 00 20 y 3 2 JeG 3 Lew Jeud 35 3 L i ae VU 254 2 Jeu 11 12 bev 244 38 Q v 32 392 1 3 2 00 1 0 00 33 A 2 3 Ue UU L 00 Ueul f 3 4 33 AFT FUS SG L TO 4 J 10 1946 00 820 08 1644 05 35 08 3 1 659 3 09 14 08 3 2 J uO 1200 3200 37 08 3 3 Yeu f i VO 38 31 3 1 s 108 Glee i9 31 3 2 D fu SM 1 60 4 31 3 3 JJ Let Yeu 41 02 1 1 0 00 Q 10 75 4 02 2 j deu Vey 10 795 43 02 1 Devi Je 0 1 44 Q2 2 2 0 00 Ue OQ 15 00 55 56 Program output listing for example 8 1 5EOMFTRY OPTION 4 8 SURFAZE 72X2S5 DEFIMZT JES Yo dE COMPFUTED AND PUNCHED 5 LEXSTAB GNTAPE Fit 1 Fri CASE IO s B1 ARS GD 2 ee 6 67 6 YD s MASA DFKC 8 STHS EXT 308 54 UNITS OPTION s INCH 3 ADDITTIMaL LOANS TO Be DEFINED SURFAZZ AYTS NUMSSR 1 SURE 8 NIME WING 20 AXIS GU BuDY NAME MING2 TN TEGOAYT ON TY eE CCOE 3 S8cF 4 19404J9U BREF 820 080 FEF w 1846450 BONY TYPE CODE 3 CCDE OFF NUMBER QF ROWS 9 THETA 3 94 CEE TuYS69 ATTI AXIS DEFLNITLON GAIGIN aT XN a 1161 670 YN s 39 920 SWEEP ANCLE 034 520 DEG RAW DATA NMA YN NUMBER UF PANELS 1 146 923 5
56. 95 98cc2o0 ezett 1 tT 200 ETZ62C 00951 82 A2 3d 12 834 82 43d AD JNIA 8tC00 ocego 4531 CeYhdlY 1NOHLIM 32v4Wng 900 629629 39 43 900020 0 1000909020 1 OC 245600G 88520 7110000 TTEO00 9058 000000 0 2002000 0 20010 G6000v 9e2200 O 9 100 240900 641990 91000 661000 00 8 9000390 0 00C06C 0 9 29Ce2to 8625c eee 000000 0 909000 0 g220 0 2 G66000 LEZENN acer 062990 0 0 s5t coc 062cnc fO C 000020 C 990000 0 000000 0 0 0 0 060990 0 00 09 000020 C OOIUGOTO 622t 0c Ts6etc ocer T 8600 12520 T 20 I 5800 tteze ec no T 82 83d LI 834 83 834 AJ IN TVA 0 81 3392 803068 4398 00059946 31 C9 0 180 930 nag PO 350 00 0 C y 09 6 2 6 19 SM 02 1YO T3INNNL ONIM 61919 HO SGYG1 KAS kAS 0 12 S Y 7 C932 1Y101 JY 101 YHe 1 Vh d 1r Yhd V 61 C JOVIA 3116 d JU13 11 31IC4S 1130 100 0 e 1333433 JIKYNAGNDAIY save KO 5 WAS 0537 S Y S Y 0X32 IYICL 1v 101 YH471Y 4 YHe TY vuec ty 0 JOA 2119 d 05134 TIGY 8311045 1 9 G s 1293443 31 13 SIXY 9S SNI C G G 02 d0F 0 0 a
57. A SO 681 43920 90 028 2 33w8 00C 9561 2374S 95 540534 G 9t e 2T1sS 71 J000 O 0009099 5 30 0030 140 0009 0 0 450 00 150 Q C y O 236 navad J003 sY138 0009 0 Hdl 08 62 6 amp L9 SM 02 N TIYO 193 QONIM 1919 66 0 Sav T 35 NOILdO TINKANI ONIN 97 8 Q9Tot2 823 2s1tc 203 26t 891 053 L2 l SSE TOL s 3 s 5 35 6S25 L 3 L681 t 2 918 33253 c33 0 29399 2223 9 l l 01 SdIxX NI 1 032 06 20034 03 9 5411 1 1 c9 1A2 OI s5cls5 S71 e 256 5780 c21 28t 2 tot 6t 5 2 822 35 02 22 9203 4t 0 92 C062 9 oco Cures a6t 2914 SdI3 N 69 5 6LGl e621 tce5t stl 365 SSL COOE C i 3ctE 1 16 9ce 96 5t 199 926 305t 56 8 9 6 19 8 6565 5 90 9u20 021 89 1 331 1 39v isnd 143v NO SOYO LOL ST ONTR 0 22T990 SESSTO 004550 J9v lsSnd LIV OL 9 Soyo VIC ET STITOO co t SdIM NI Of9 2EE 1534 S32RI0 9051 Sdl M AITF P 1H1 Te st 2 SdIy Zt T A 1 56100 u 5941 502 63 A 1H1 6 2230 Go t Sdly NI ELN OCLE 1 s1A 6 9929 00 5 z 351t 5 9 MLA 06
58. A S BETA ALPHA A S BETA ALPHA 0 SYM BETA ALPHA SYM BLANK FILLER NOT USED O CO J O cn P 1 N Ec m O 14 12 BLANK FILLER NOT USED 15 13 BLANK FILLER NOT USED 14 14 BLANK FILLER NOT USED 14 15 BLANK FILLER NOT USED m raa a Format DESCRIPTOR R s 1 w 35 SES vgl Mou aer i sapie ESE component effect user for a deck ID AIRLOAD COEFFICIENTS Table 3 Ming station Table 4 Horizontal tail station Table 5 Vertical tail Table 6 Forward fuselage station Table 7 Aft fuselage station EXPLANATION Component sequence number See tables Shear coefficient for this component effect i Bending coefficient for this Torque coefficient for this component effect Descriptive name Alpha numeric of this component effect See tables m MEM These columns are available to the TABLE 4 AIRLOAD COEFFICIENTS FOR HORIZONTAL TAIL STATION WIN 2 Refer to equation 9 Component effect NSEQ DES 14 1 201 ALPHA 0 14 2 202 ALPHA 14 3 203 DELTA H 14 4 204 ALPHA DOT 14 5 205 BETA 14 6 206 DELTA H PRIME 14 7 207 DELTA SPOILER 14 8 208 DELTA SPOILER C O 14 9 209 ROLL DAMPING P 14 10 210 PITCH DAMPING Q 14 11 211 BLANK FILLER NOT USED 14 12 212 BLANK FILLER NOT USED 14 13 213 BLANK FILLER NOT USED 14 14 214 BLANK FILLER NOT USED 14 18 215 BLANK FILLER NOT USED
59. AI ALES JI 00 09 07 00 ON 06 0 FPP P y dgmd X Ximegnmineondcnmno 0 0 O cO O D O gt AI CUA NN QU QUAI NAJAJNAJNINAJNG NIC eg egegeg ALAN CUOI OJ CJ QSQOg od eg AJ 76 R 6 7 OL234567FSC1234567850 5SO789C1L23456799CL2346545795G 53 29486799 2 Lc3426769241234567590 1224 MYNKYUNUNMOYUNYUNM AYMASUNKNU LY 99990990999 99 9990 P PF I NS DN DS ND lt 4D 4 O O O O sO 2 4 4D O 09 BRE Pu ME pt pu e NE Cw 0 TE CX 7x C gt C x Z gt lt y lt MMMAMNMM HNN n C C 2 O NC r t gc Cu OCA CJI I CJJ 9 9 0 9 9 9 9 e 9 o 9 ripy srt e p ed ps md get rt et eto E B RSS E ROR BY RR RRS RS BS XE2332 EZXE XZXZ2 ee Bae Oe AN Naa gt Livin oo gt I SEU P res M E danla OD lt te OW c An e FO Itnuw gt afr c y Q NUNS irm un AO f t KUN ORO C Mf LO OLIN 40 t lt MAP N sr sao Tet 2 2 Te AJ e e o 9 9 o0 6 NONESMA DA oek C aa sio p Lan a PMO 4 F TS OAR ALS e 70 2 2 Au 2704230 C tg 90 9 299 0 7 onu RPO I Jen Amon cou TO e 30 Mee ARS M s ONAN r 400 F ILIDMNM CEE E EE r E r E ENUIA uE i AUNUYI3A 60 069 99 9099 949 ad ed Dad eed Dad tool DM and maci an na aai FN D O U TO O O
60. Airload coefficients for the vertical tail root station are input using the same format as TABLE 5 with NSEQ numbers in 400 series TABLE 5 AIRLOAD COEFFICIENTS FOR UPPER VERTICAL TAIL STATION WIN 3 CARD 14 14 a 9 9 9 O OO O1 co MN Refer to equation 10 DES Component effect BETA ALPHA 0 BETA ALPHA DELTA H PRIME DELTA SPOILER DELTA RUDDER UPPER DELTA RUDDER LOWER ROLL DAMPING P YAW DAMPING R BLANK FILLER NOT BLANK FILLER NOT BLANK FILLER NOT BLANK FILLER NOT BLANK FILLER NOT BLANK FILLER NOT BLANK FILLER NOT USED USED USED USED USED USED USED Vertical tail root loads should be defined if tail induced lateral loads at the aft fuselage station are to be computed TABLE 6 WTN 5 ATRLOAD COEFFICIENTS FOR FORWARD FUSELAGE STATION Refer to equations 11 amp 12 CARD NSEQ DES Component effect 14 1 501 14 2 502 14 3 503 14 4 504 14 5 505 14 6 506 14 7 507 14 8 508 14 9 509 14 10 510 14 11 511 14 12 512 14 13 513 14 14 514 14 15 515 ALPHA 0 VERTICAL ALPHA VERTICAL ROLL DAMP P LAT BETA LATERAL BLANK FILLER NOT BLANK FILLER NOT BLANK FILLER NOT BLANK FILLER NOT BLANK FILLER NOT BLANK FILLER NOT BLANK FILLER NOT BLANK FILLER NOT BLANK FILLER NOT BLANK FILLER NOT BLANK FILLER NOT USED USED USED USED USED USED USED USED USED USED USED TABLE 7 AI
61. CCLE SYMIETRY SINE s VTL 19 AUABER s 3 QN 4 SU FACE AXaAS HAME w VT ROOT YJTAL sdk huhBbes CAMP ENT NE EYRTTIGN FOR TERM O WN eH 68 THOICES 3 3 1 3 3 2 3 3 3 3 i 4 3 2 3 3 Lad JF 247 5 Tc5M a CENTERL NE LGAD COMPOJDNcHT VER VeRT VE T VERT VEKT VEAI AiL TAAL TAIL TAIL TAIL TA LL 6 QUSCRIrFTALCN SG CL SG CL SG CL RENT CL ROIT CL CL v4 CO lt OO lt BREF V FACTUK 1 0 0 s 0600 Jedd 1 009 Je C29 04 000 296 760 B FACTUK 61 2560 1eCOC GCI 0 050 l CC4 Q QuO ChEF TF ACTOR 40 440 0 C00 1 000 0 000 Je CoO 1000 188 9720 ADDTITTOWaL LAO OPTION SHUPFAPE AXTS NUABER 32 INT GRATTIN TYPE CODE SYMIETOY AONE e QN 4 SURFACE AXYS NAME AFT FUS SG V TOT SheF 19456432452 NUMJER JF TERMS 2QM DONENT FOR TERM A Q gt 5 TNOICES 3 1 3 2 1 1 2 2 d T X 3 2 2 3 CENTEKLINE LOAD 6 COMPUNENT DGCoCRAPTIUON FUS SG VE AFT FUS SG VE HQxX1Z VAL H RIZ TALL HUR Z TAIL HORIZ Taal Ra kT CL CL LH RH LH RH Settee 09 lt BREF V FACTOR 42000 0 000 1 0600 le00u Oe 000 660 080 B FACTOR 0 000 l COQ 254 500 2449590 1 000 e 0930 CREF T FACTOR 00609 Oe 009 Je 009 9 600 de 00 Voth 184 050 ADDTT ONAL 9405 JPTININ SURZAC
62. CZO 24528 000 9494T 4385 ay 138 90 9 eVHd TV 602 6TT coo 0 0 0 000 0 2950 tco a 2o4 L0T 000 0 t00 0 62 2T 541 A 91136 4053040 TV 40191141 1 YOZ W2 T SMG 19 51 3 91344302 ONY Qoo t 000 0 000 0 coo t 0Co0 0 600 0 0s4 0t 0C2 0 coore 0 oco o c00 0 Qoc c 009 T ENDON 00151 C00 0 Ccoo c 000 T 0995661 eorn 000 l 0G0 O 005 0 Qoc o 9Co T one s XOLIY 1 sOLIVS 8 8019 4 A Ol IN NO 2S 5 91I sayo 1v101 C96 26 9EZ ELET 222 6 628 1 301 e55 45T 090 C 965n r G L 2 21 3 1 Hy H Hy K1 13 13 19 13 19 12 gt moe gt Ne gt gt D CD 9 9 JS 58 VV TV 1 ly LY 1v1 HCJ1dIN2S3Q0 IN3NCdWC 101 1 9 ond 13v ot 2z 2e ssas ZIYCH 2 T VIvt 7I4C4 2 6 VIVE 2180H 2 9 111 ZIVCH 2 L ICL iCO JA T 9 1G1 19rC3 IA 101 109X LA TE 95 n1 137 0 95 1041 14 6 2 98 554 13Y 8 t INT 19319133 EE NYS kASY UH Suv Tg T 5 NCI2d0 50101 1vNolI100v 92 NOlleD TYNOTLIOGY ONY 31314819 1 2tv3 NO1LdO NCI1YY931NI 93 9321 505 9395 tt102 00 Q 99 L 58 s 093 03t 61 902 9 922 923025 05 0 C02 9 03 3d4I NI 1 39t 94 399 241 t 02C 0 S L 585 0020 93t 6T5 03370 3993 909 G 9 9 399 0 382 20TIt aIl N
63. Case 4 Qbar 500 a 0 8 5 0 CARD SECTION 16 18 would consist of the following cards 03 1000 Qbar cases 1 3 03 500 Qbar case 4 01 a case 2 case 1 defaults to 0 01 a Cases 3 4 02 8 case 4 14 6h case 3 cases 1 3 default to 0 case 4 EOF Number of cases Note that if the inteqration option were executed without the wind tunnel option CARD SET 16 would contain CARDS 16 6 and 16 7 only Alpha Beta and Qbar values would be obtained directly from the pressure data files 45 6 5 Pressure Data Files CARDS 19 24 This card section is for the creation of the pressure data files If POP O or 2 these cards are omitted This entire card section is normally punched by the FLEXSTAB SD amp SS program references 2 4 Current versions of FLEXSTAB punch only thin body pressures but slender body force coefficients can be manually added to the deck punched by FLEXSTAB The card arrangement is shown in figure 14 CARDS 19 20 and 21 are identification and control data The card sequence CARD 22 CARD 23 CARD SET 24 is repeated for each thin body Within this sequence CARD 23 CARD SET 24 is repeated for each row on the body Any slender bodies are added to ANY ADDED SLENDER BODIES 22 23 24 EH REMAINING RONS 28 PANEL DATA FIRST ROW DATA BODY DATA FIRST THIN B
64. F LOAD DEFINITIONS Figure 10 Card arrangement for the surface axis data file if GOP 2 FIRST ADDITIONAL LOAD SLENDER BODY INTEGRATION THIN BODY L INTEGRATION LOAD STATION DATA THIN BODY AXIS DATA LOAD STATION DATA NUMBER OF LOAD DEFINITIONS Figure 11 Card arrangement for the surface axis data file if GOP 3 or 4 CARD 5 NUMBER OF LOAD DEFINITIONS If GOP 0 or 1 OMIT this card section and skip to CARD 12 The total number of load definitions NSAD NALD must not exceed 50 Frame uscire s s T i Ili I EXPLANATION Number of integrations defined with card sequence 6 7 8 if GOP 2 or card sequence 6 9 if GOP 3 or 4 RPM ode 2 NALD Number of additional loads defined with card sequence 10 11 31 If GOP 2 the card sequence CARD 6 CARD 7 CARD SET 8 is repeated for each integration definition NSAD times If GOP 3 or 4 the card sequence CARD 6 CARD 9 is repeated for each integration definition NSAD times CARD 6 LOAD STATION DATA EDEN ial 23 T SABODY EXPLANATION Unique number assigned to this load station 1 to 50 Name given to this load station Name of body associated with this load station Must match exactly left justified with a CPBODY name defined in pressure data files CARD 22 These are the body names used in the GD program Integration type code 1 S
65. FOR FSLIP 3 FLEXSTAB LOADS INTEGRATION PROGRAM Robert L Sims Dryden Flight Research Center 1 0 INTRODUCTION In the last decade computer programs for theoretical aerodynamic analysis have evolved with increasing accuracy and sophistication A most useful output from these panel method programs is the prediction of surface pressures on fairly arbitrary three dimensional configurations These surface pressures can be integrated to obtain total forces and moments on complete configurations or airloads acting on individual vehicle components The FLEXSTAB computer program system references 1 4 is being evaluated at NASA Dryden Flight Research Center for the prediction of airloads on rigid and aeroelastic configurations Predicted airloads are being compared with wind tunnel and flight measured loads for a variety of vehicles including the B 1 and Space Shuttle Orbiter reference 5 An existing FLEXSTAB module called ALOADS was written to integrate pressures to obtain airloads However certain restrictions in the ALOADS module make it ill suited for predicting airloads which are comparable to many typical flight measured airloads The most important restriction is that the pressures are summed at a user specified point relative to the reference axis system which means the integration axis must be parallel to the model centerline with no sweep angle The ALOADS model is also limited to symmetric flight conditions Because of these restrict
66. Hd lY 56 6sC 06T5T1 831 OeVHaty nOHLIM 32v49shS SOvYC Awiol N 29900 22L 00 39v3snS SAYDI IWANA N71 000090 0 000000 0 90462 lLE 962 091 6c6 b 41130713A HILT ct C Ccora0 0 00200 0 0 9602 blacn erer d ALJJOVIA 1108 6C2 090090 0 009000 O 89T090 51000 5 33711ndasS VINA 0069900 0 00 0 0 69t090 4T1 000 WAS u37IneS Y1133 Lc 000000 0 000000 0 GELEZC G8g6 50 0 0 3 184 H Y11720 9c2 46660 52619 l1 e 9 5n0 66900 BELLTO 9056 118 02 ODNIO 0O02CO9 C 61201 6 ot6tf2 aere 100 VWHdlv 96 UJv0DC QO GANACOTO ttn 20 L0Olt4c0 T6090 oo o H Y11343 EC 000900 0 909099 L42 6l0 C26910 LEczec YHa 17 e02 285p6 0 CRTIET 9TTi70 Z85650 2919 1 gt O YHd7V dJ2 Ad 834 12 s3d 8 Nie AD 30 1YA 123343 JIWVYNAGOUQY 02SN ONVH IHOT 55650 06TST WJ31 OeVHd TY 32v390S NO S0V01 viol s sn TA 3980342 329v4Nn0S tC SOVD IWIN O20UC20 0 002900 O0 902452 TLOYGZ 09T 66 crea ALTIGTIA HILT CT 0000n 0 t TE2200 30206 625200 00 0 d A1t2013 11r ec 00000C C 891000 ICOC LLe5ocn 90 C S Y 931ICdS VIIA ec 000000 0 900009 0 69 000 LIE000 064C C noto WAS w21100eS Y11339 LC 9909309 20220 sEeLzz0 8C6 0
67. I 1 541 SdIX Ni SdIM 4Iy NI S Ty NT 541 1 8 A 12 80 AD 1 8 A 3 v2 5401 O3AIW3Q 13NNn ONIM 1N3121 44302 54501 021Y4931NT 3en 53xd 3NI1831N32 4 91 902 54388 00953196 1345 NO 2S s21I 9S TIY1 183A NYC kASY xN 00 0 YHd1 Y 8 Y134 0 30 0 Yhd 1 401918 LIY WOZ W2 l SMC 10 Sev Y 35v NDILdO ANIYA 102 3 8135 5 980l 963142 12 82 A 54 3 19134433 5 88l 3383 1 SYL 236 37382 QU 8 38 c 40 364 O8 SLES ET 68916597 685Tl2 slo T 25 9 265 101 T SdI NANI Sdl NI Sdi SAINI SdI SdI 1 8 A 13 83 AJ 1 8 35 9 SQYO Q3AIS3O0 3 ONIA 1N3191443C 50 01 O3LV OGINT I NSSIuq IN 9331 33 9 94 902 4328 094 2L92 33vY NO 2S t 5311 YY101 1009 JA NYS TSUN 000 svHdTy 8 7138 0 30 C YHd TV GIOIA TY voe WZ l SMe 49 0 7 2 SYY t8 t 3 Yv2 NOIldC JNTMd 103 9 59C20 Q2L 92 5193 9 443402 me Nue DOF on a a vi qt Cir 85 3910t2 E2L OIEZE 220940 009910 29290 G L1 T5T9Ic 641 t 092 601 51lt t 3d 9 NT SdIN NI SdI SdIYSNI S ly NI SdI 1 g A 13 82 AQ 1 6 35 93 SJ U1 43 1946 T3INNNL ONIM 51931 91 3 3 303 SGVOT dQ34I 493JNT 3ynss s3 d 3NI1331N3 T aN TA 90 02 4388 000 9561 43 NO b JII 1601 7 9S Sng idy t NYS WMASYe NH 00
68. L ARTA 9985 297 63 SUPFA T E XAYTA SUMBER 5 UKFaACE aX S NAME rhe SG VEKT GU 3ULY H3ME s FUSELACE INTtG ATI CODE x SEF w d946 00J9 ERZF a CREF 184 650 BIDY fv r AIOE lt i SYRECTRY CSOE w GN 7 IWS 1 INTEGAA T1 AXES 1 L Mil 4 Xn s veut KET L1M1 X2 a 5264560 MIMERTS SURFED ABCUT XR a 208 J FCS IIVE NOSE UP RAW VATA Y oe 4272 NUKBER OF FANELS 28 PAMER DATA 64 TUNE x AREA 7H2 TAPN IN l 2734 6 4625 00 1 2 56774 2311 373 630 06 000 1 3 4 322 0 0 0u0 1 4 074 412 L960 43v Ueud 1 5 13341 92 107 690 G C00 1 5 83084122 31 75 G 1 n rO wew 0 0 000 1 9 1523 we UAG o e 520 1 49 0 3 De FAQ e Qu 1 339 Je FIG 6 060 1 LT 3 939 0 020 0 000 T 12 ie wID wend 1 13 22000 02600 G 000 1 14 J 6259 9 000 Ge 060 1 15 Je e GIG Gedy 1 19 32009 Qe 0 000 1 17 JeugJA Ge LUG Q 1 13 Jef 0 090 C 000 1 12 3 227 Deu We OU 1 29 Q Qe OJU 0 TOTAL 74 433170 7 7 SHRSAPC AXT S5 HUMRER 5 T GP ATT M TYPE SADE 2 33DY TY 210 FE AWS s 1 TAJTSGRATTYYI AXIS DEFINITION RNW DA A Y s Ye u 9ANEL JATA INDEX AKEA IN 1 1 27312006 1 3 56774311 1 3 7439403 2 I 4 9974 412 1 5 10341094 1 5 8238 122 1 32 034 1 3 GW 1 9 3 0923 1 13 290 1 1 Dotty 1 12 322094
69. L468 t5 4621 t WLC om 2e es 46517 9454 2 T 056 S2 TOL PST 23 3 2959 to 826 S 12 90 T21 T 1 SdIN NI Se I NI S dIx NT NI NI 8 1 U amA 2 havi kryg v3dY 13 4 5 83l 4353 92 sG2 34158 0C L 243M S 00 06 Yv13Hl NO 5 t 21I 11V1142A4 A008 22 1tO IYL 152 NYS s2l STI 255 0093 e 13a 909509 sVHdTY 8 V138 0O 30 O YHdT1Y701918711V XOZ W2 I ShG 19 Qrt Z 2t SSQ0S Suy T8 T 35 9 NOf1d40 NOILIY S3INMI 0009099050 91tL100 1N31231433059 On0090 0 86 60 2 56t 5l0 veb 434 SOYO3 WNL 000 0 I 4 07 OTST SOYO 2O031Y9931NI Wiel 9C2 0 nco n 300 0 2L62 00950 cecep 00 0 02 T 000 0 oco s 0609 Q 1060 09 0 6 0 co o et t 000 0 00 0 000 0 L0e0 00 0 6 2 0 0 et t 90359 060 0 n2Cc 0 65c0 00 0 r c 0054 Mot 005 0 000 0 000 0 92195 enen Cc c 24 91 T 990 5 ocpn o c0 5 CE Q0 0654 eror 09 9 et t 99050 00070 00070 toot 0050 c n 00 0 cCO Q 9 0 0 noo 0 6tco0 00 0 0 00 0 T T 0CO O0 000 0 000 0 OTEC 06 0 9n zt t 390970 000 C 006 C 2020 06 0 tT t 000 0 Orgs 00 0 BOON Ge ones anen c t 270 o gco o C30 v 540 00 0 co o Caen 6 t 000 0 000 0 000 0 660t 2 0 e I Ue0 C 000 0 00070 t9to 0c n CO O 00 0 2 1 90070 090 4n2 226 9 zatt 0050 GL T zt 93ana 9 T 69l cIt 2l6 ot 05 1 00 C CELIN ZH TSENT t oon Z
70. NASA Technical Memorandum 81364 USER S MANUAL FOR FSLIP 3 FLEXSTAB LOADS INTEGRATION PROGRAM Robert L Sims August 1981 VASA NASA Technical Memorandum 81364 USER S MANUAL FOR FSLIP 3 FLEXSTAB LOADS INTEGRATION PROGRAM Robert L Sims Dryden Flight Research Center Edwards California NASA National Aeronautics ang Space Administration 1981 1 0 2 0 320 3 Ji ja 55 SRRWRRRANYE Cc HDD CONTENTS INTRODUCTION SYMBOLS AND ABBREVIATIONS COMPUTATIONAL TASK DESCRIPTION 1 Pressure Integrated Loads 2 Additional Loads Option 3 Wind Tunnel Loads Option 3 3 1 Wing station 3 3 2 Horizontal tail station 3 3 3 Vertical tail station 3 3 4 Forward fuselage station 3 3 5 Aft fuselage station 4 Sign Convention for Loads PROGRAM DESCRIPTION Main Program Organization Input Output Data Flow 2 1 Geometry option 2 2 Pressure option 2 3 Integration option 2 4 Wind tunnel option Option Requirements Program Restrictions and Limitations 4 1 FLEXSTAB dependent 4 2 FSLIP dependent PROGRAM EXECUTION SCOPE JCL wo NOS JGL z a 3 CM and CP Time Requirements DATA INPUT DESCRIPTION Program Control Data CARDS 1 4 Surface Axis Data File CARDS 5 11 l Thin body integrations 2 Hinge moment integrations 3 Slender body integrations 4 Additional load A 5 Card input for GOP I 6 Card input for GOP or 4 Wind Tunnel
71. O 2020 oreto rr o oss T 0030 6co o gann ace enee 26 5 et t 20058 0 0 000 0 5240 cc o oo o 1 000 3co o occ c 6tot oc o onsa 000 0 90950 CUO 9t0 0c 0 coon c n Q900 C Qeo o 900 C zatte corn Cn 9 1 0C2 0 000 0 000 0 C65T onee paee Q c T ocote ototo C 9 C 9C6 2 very 5 gt T 000 0 000 0 000 0 0 t2 00 0 care t T 900760 99 0 Ccco c oagr 00 0 creo 00 5 2 TI 000 0 000 0 050 0 8460 90 C ceceo neen T Sdl1 NI SdI NI Sdi NI NI ent 43 Wuyi kuve y3uv 12NYe 50991 94339 8v 292u 4386 300 9561 4345 NO 05 15211 39v13Sn3J3 AQC842 142A 9S SN 147 Z NYS sZTe SYL WASY NM 2 S5 s3739 0096 211385 eVHdlY 8 Y138 0 30 O YHd1Y 0191841 1 WOZ w2 l SMG 49 Qql 2 3 ScOC Te t 35 3 NCT140 NOT1YN921NT 88 000000 0 65 000 2l 9c0 S1N312133302 9090090950 6 18656 81s210 4vat 43d 51 Wor 950 055 Le2 2l 504101 Q31YM931NI 990 0 L1 190 90867 00 0 C2 2Ts 86 eLET cz t 00 0 CO EZE ATE 61 T 000 9 9 L0 610t ZOT E T 00 90 reece O F592 eT t 005 0 00 9 0591 4 000 C 644 OSH 2468 oroen e EC 2354 ST T 9000 G5E 64 E 15c 00 0 4 9 0 1 000 0 060 0 00C O o
72. O O O lt J O O COW 9 MORI eC SOIOO AIOO A AVeesCUN 9909909 9 e 9 0 9 6 Las Pio Lnd tend het ed NY Md E NE NI X BE BRR E ONE d gt x x x rx gt DO 4D 40 0 0 00 UO uw duy uu 99 e 9 O A D 0 lt O 4 eco em eie enm OS det tet M lwo O x 8 c Cc nad A Q amd oad TT eo tu eon af lt lt lt X Cavi IIHI me ee i ee Q 20 Re L3 e te dd te dd dd EO PANN 0 mod on oael LL eee eed LILES bt lt va LLL IL ILU OU UL LLL rmmexcogoc Q T DULE L U PADO 700 Qf j M 2 UC Co aec lt eo bist Sr Or ay ey al bt Bile al ala at a e eeee eeeeeeseeeeseeee o bosd aad band Dond et Daai Dand ed FN od BNS SO C SD 4D D 40 40 0 Ou O O O O p BOERS BOIS REP p ST TET B Te Bx Tg gt x gt Tp EBA ALMNMOMNNM MUNN C oO oOoo OC ONG 9 e 9 0 e e e 9 9 e oy4r T 4 0 m0 eod tet eR eS Eher REIR LM SN d d d d X22 32 21 X3333 x ay al al VC at al afar av 09 uS HON Y aT alg 9 9 00699 699 4 99 9 e p 0 eee RRRARRERRR RRR ARE eR RARARE 0000 4 Det0 4040 C 4D DO
73. ODY CASE CONTROL USER IDENTIFICATION CASE IDENTIFICATION Figure 14 Card arrangement for the pressure data files 46 the deck using the same format as for thin bodies The slender body data is analogous to a thin body with one row If any slender bodies are added the number of bodies entered on CARD 21 must be changed to reflect the total num ber of bodies now in the deck The entire card sequence 19 24 is repeated for any additional cases It is important to note that the pressure decks punched by FLEXSTAB contain a STEADY PRESSURE DISTRIBUTION header card at the beginning of each case These header cards must be discarded from each case for execution in both this program and the FLEXSTAB PDPLOT program If POP 0 or 2 X OMIT this card section CARD 19 CASE IDENTIFICATION C C FORMAT DESCRIPTOR R S I 1 72 18A4 CID X X X i Case title This title card is the same as input to the SDASS program It is printed as part of the page header for the repunch section integration and summary print options EXPLANATION CARD 20 USER IDENTIFICATION C C FORMAT DESCRIPTOR S I NW EXPLANATION 1 72 18A4 UID X iX Xi User subtitle BU ON ene mE 5 CARD 21 CASE CONTROL C C FORMAT DescRrPTORTRTSTITWT EXPLANATION w inne Pe A RARER m _ ARR I 19 F10 4 NTB gt X X X Number of thin bodies PLUS any 1 slender bodies ma
74. OI DO DO WIN CNCUOUOJ JUOD MM 008 00 Lu arr 99 Ow 4 4 D ni NOL 2us cenn Q oe n rn Mm Nat Dea 4 5 I r r cocnen men t 9 9 o et el eed a AVG VEN SVU GL CU NIY PF ONEAN t Je 2 35 2000 OO OID 12207000 O0 DIN 0X0 ON e c e wo PPE 0000 0025252 Q DDD WOM PPA I paro le ae Lea DO DAIS ER DAD DR OS CS EON ON CN OS OOD Pe Atr tet AIN AA MOM rm ey eno atn wr uuu rx S C 75 7G C e 9590 995090 0 9 960 0 0 99 9 0 9 9 724v 0D OO OD C Dar R O TONU UD ONIS uw daa MOMMA FOND SEMAM OAM ern 0 2OOOD30nm mamnnm o 240 LOO BD 70400 IF O OO 500 O O f eu ICI OF xr r Dux adve PRI SII FOU DOE 0mmammreto PIOSAN qO O O OO e OD 4 040CJ0 OC OO 00 G0 SOAS f T rq ng vet Lam Lanian Pan Laa kaa EO OW 0 010 OIG gt e eH 64 cno ug OFT Stan v4 en en de u e eee D SMW I 4 4 EN eteo 9 e6 euin enam S NUMM y iY ry e 0 set oC 168 950 2474400 OITO OAM OSM NONTON o NOAM Sr MATON t DAN E an aa Cas
75. P w or ip H Z 2 e tx I lends 0 J cx lt lt gt Fendi Ra ben lt t wt i PE 2 KK JTF a la LT 2I 573 a 7 0171 aA t Z uU pet b e T gt gt lt M ej Oe Ee aM ON ONT Oee gt QO 5 34 rm N 4D ere 4o guam e e VN oo v e sn Cc ceo T 4 4 e a en T 2 9 L a Og N a N gt e lt a4 e e no eo e r t ooo DODONA QOOewSO ANTOM MODON ONAMO Meroe OFM ODON 4O OMD c gt Oc De4w NONAS MOTOM OHMS SP TINON BOEING Cu AF Ci Won DOOD AMMO NOM AMAR USA DRM MONON OFONA ett T 9 9 o 99 e o6 o o ee e e o 9 9 9 s o o ao LOO VC C OS OMANO J O 0O00 DOMING MWOAO O40 fom zt MUAMOD SON Asura AAT FNEMO SNEMO Set ENN MAING met ac MOH 4 i r0 F3 1 Po I I l e e m gt wx 22 5 d OD Cc inu C PS uryCO DCO SALVIA QS OU SON OO 20 00 00 OD Y O e L9 60 IN TOU CJ OS 0 uU 42 DO OmU BIND QNOD GANS MOWSM Munna SOram BO nat menm Duo COOMA NADTO NUNS TOMON eoe COONS HDOOS WF NANN 4 989 99 9 9 e o eo 9 ea 9 9 999 e 9 9999 9 gt oo 9 o 99 o oe oh e 9 Q DOD Qf Ocf 23 Cg ONTT verses THOT 0 Geir OUUU mo AMO MANDON ONNMAMDV NONN OC TOMO rior t t rt r4 I Kas La AANN ANNAA MOSSE HE were
76. RLOAD COEFFICIENTS FOR AFT FUSELAGE STATION WIN 6 Refer to equations 13414 DES Component effect 14 1 6011 ALPHA 0 VERTICAL 14 2 602 ALPHA VERTICAL 14 3 603 BETA ALPHA 0 C 0 LAT 14 4 604 BETA ALPHA C O LAT 14 5 605 DELTA H PRIME LAT 14 6 606 DELTA RUD LOWER LAT 14 7 16071 ROLL DAMPING P LAT 14 8 608 BETA LATERAL 14 9 609 BLANK FILLER NOT USED 14 10 610 BLANK FILLER NOT USED 14 111 611 BLANK FILLER NOT USED 14 12 612 BLANK FILLER NOT USED 14 13 613 BLANK FILLER NOT USED 14 141 614 BLANK FILLER NOT USED 14 15 615 BLANK FILLER NOT USED 4 CARD 15 TERMINATOR Terminates wind tunnel data file EXPL EXPLANATION 7 8 9 multipunch ie a t puas a HER TESI D EE ER RD 2 6 4 Case Description Data CARDS 16 18 The card arrangement for the case description data is shown in figure 13 CARD SET 16 defines aerodynamic parameters a 8 etc describing each specific case to be processed It is required for execution of the wind tunnel option WOP 1 or 2 For the integration option it provides printout header information only and is optional Alpha beta and Qbar values only are obtained from the pressure data files for the integration option CARD SET 16 contains one card for each parameter to be defined for each case However to minimize the card count an automatic recycle feature is incorporated that works as follows All parameter values for case l are i
77. S AXTS NUMBER 33 TNTEGIATTIN TYPE CODE s SYMMETRY CODE COMPONENT FOR TERM 4Q t 70 TMDICES 3 3 1 8 3 2 B 3 3 31 3 1 31 3 2 31 3 3 2 1 1 2 lt 2 1 2 2 ON 4 SREF 4 19464260 NUMBER OF TERMS 10 CENTERLINE LEAD CUMPONENT OESCRIPTiUA AFT FUS SG LAT AFT FLS SG LAT AFT FUS SG LAT VT ROOT TOTAL V Ru Y Y2TAL ROOT TITAL HURLZ TAIL SG HORIZ FAIL lt SG H x Z Tail SG H R Z Gail SG CL CL CL Ct CL CL LH nH LH RH t OD lt lt lt q n lt Oo BREF v FACTOR 22009 0 0 000 le GQ ve 00y 0 090 0 CQO 04 000 Qe QUO Qe QuO SURFACE AXi3 NAME AFT FUS SG L 1CT 8204080 B FACTOR Je 00G LetvI Je COQ 198 etd 126060 06 0 000 0e Qu Q gud CREF T FACTOR Qe 000 1 000 41 vv 1 0 090 10 759 10 750 1 006 1 dtu 1849020 MF 3 2 0117 CMR G 37 23 81 1 58 15 D1F5S14I FROM LHe Mahe 0209 384 WIKDS FILE TNPUT CC v6 498 15 31755 T77 75FTN 1462 5 D 8 ITT ATTACH OLGO PFSLIP352 109 SIMS MR 1 Y 38 118 PC CYCLE NC yl UG 4 8 153 AUSE FLEASE HCUKT FRCO 7 16 he Pe as GT 146 19259 1 51 71 SNOELKEL 14 99 9 20 0 Lh 1 11 VSNeERCuU775 V4 4 11 5 ATTACHUGUTAPE 2581 Gu 2U055 10231A2S Rs1 SN 1 5 411 55 4FLRF1 1 11 55 P CYCLE NO QJ2 144
78. S2 ee oc t9 c2 62 055 2 2 96 4TI 89g4 9 2 99 3 52 2 56 t 2 45 E6 09t 8 L62 1 Otet 0t 4 co g T 85l 95 52 6 NES TH T t t GT ESS 5 t Gt2 6 14 4 09t t 40t 9 9 GT EGS t T 612 62 946 G6 94ct 1T 9 9 ST ESS 2 1 29g8 02t t 9 2 tsc t LY 56 Ot 6 C5 9 T T SdI NI SdI NI Sdl NI NI 2NI CESI 8 d9 PEESI wave v3yy 12N d 00s 52 00 06 y13h1 NO JiT ASILLYIA 100643 9S TIVE 13A RYS so2te 65636 2 0 06 71398 ON O VHdT 5 138 40 336 405 1 40191841 1 YOZ WZ I SMG 29 OI 2 2t 5S50 Suv t8 3 v2 NOILdD NOIIVY38931H 88 85 61t lo 8669to 6 65L2l S1N3125133302 2OYC Wich 91t 699 5 t T 6 965 1to 43d SOvYC 98 5 4199 615 5t6 866 0t SOVOT 2031V9931NI 1Y10L 154 92 9tt ot t 8650 I4 601 5 02 034 2 182 2TT tt 9 1 092 T LOEE P 6L E9 25 6 s s 969 965 64E EGOS P ge 21 5 2 02 2341 t c SBE 6 842 lvt e9ecS 9 9 C524 2 94 2 Ll sTE nc24 08t 92 5 6008 56 t4 C5 2 o2 ce t 2 t 49 99 365 gect le 5ot iG l2 90 LT2T t sLT TT 992 21 AAI GENH IT TS L5 12 gCc tt2t a Tt 9t 4 93 L 5ni LeS CGEG Y 6 T 45 12 serz t T tcs t3lt
79. SFNDVOOSONO SL C COCO 2 OCO OO 2 O 2 240 4D O 0 20 F 2 y d 2 464064 DVO 22 ID gt 2 y OO 215720 32 2 2 2 Or 00 22 22 22 y OQ 5232 2 200 8 ry 4 p DODO ba ES 92 7200 2279 2 7 7309305 073 i 0h73 720 C 5 29 2 C y c G 7050 OD a 9 9 0 0 9 9 9 949 4 0 99 0 o 9 9 0699 990 o 9 9 9 9 9 L s 9099 99 9 9 s sx hE PSS 5 gt gt O AM ST t e 2 O D Z 9399999 DOA T f HDD IO DODO mO C 5O lt DOO 0 e c0 0o n0 ADD OD O D enr AM FOO CJCJ N e P If PSS D di O 9 e ed e rA 05 06 gt cO 770 u 4 va wy ANG FTAD OOO OPS DCC AIM FOO P eno Hn 40 000 0079 ANNI HOPrOODBAANMS eem IA Kenon C tt ALL e n0 0o e 03 04 me eU ecd m m eA e ea Dm ee aes NONLIN er 004 teat 4 Moe c3 tec L mie o 7 04 o0 74 e M 00 M 0 4 REO eo 04 0434 M em 4 4 OT D r4 e TIF NOM O D NNF NOP NANM CO CF DIANA LAN NANM SD ONO TOAN try ON DOS 79e4 970 t u y OPS OP e 09400 AFFF FF PA ADA DINU DOO O OM DOD EERE EMM OOV T O CO O O OO 239 GO 720 10204 Ate eet dat M Ban ioes Kom Luma Lom Bana L aa Kan nM Ci Lan ete 4 Aten Bos Las Pan Lan ban
80. Sdly NTT 1 50101 n31v 34 cgre tsrg2 Tc2 2eat 6TF 25 17T SER 4062 Sd M 02 2 2 32 2 1 S50 4e 5545 38l1 W02 I SM5 49 v2 2 1 0 3 557 a SQvO7 JITE IF9IX N 08 P 3919 1331 T envs WAS P HAs a ag Ae re QE QA wk 5 gt we lt gt 4 gt 4 s cu 1 u 3 v 109 38 651l 9 S21 130I2 4 50 9552215 SYL J 35 0 56521 S71 452124 15 39 13321 71 L3932l1 37323 9 6S 2 mw Om Qt Aw ee m iw Yo Ge roi Co D o 95 t 34L 8 2 a lt 9 2 2N h9 a lt 689 s1N f M9 O TaZN FRO a Ic ro Ia aa lt AUS i 63 0 2N h9 501701 3CTS 1091 3 v2 11Y sQd NOTLOW JIALIWWAS OTe 1437 e260v T96 95 Q94c 29 6T LiT 2225 152 95 0 28t 2 l6e9 0 6 5t809 T 99476391 G99 LE 8259t 0136 50 3G09321 364 12 9792 cT85 L 9955 68997Y1 GNE aCc2 t 240 2 SdIX NI SdTw NI 541 13 82 A 1 a 5 31 144309 SQvVOT 31 849 1 nsS 14d 440 2S t 31 9S IT7L 279 n4 y9lF 9 T15v13 11y NET 02 2 3g 2SS0S Cav 49TE DILSY13 11Y 8t wo2 t 555 19 32 2 7 SSQs Say T8 491 115v13 1 1v x erf
81. UC TEESE 636 4t 9 62 aren S5T Y b Co Ff 0C69 9 49 99 6t8 ll 0 t2 00 9 C0 S92 00 a9gt c242 I32 4 csgt CO ELE TE LL9S z T 0Cc0 06 Ttl 2 8 228 l 46C greg C2 294 T29 tt 42 t T Sd Ix NI S lX NI 641 NT NI ZAI a l YA u 42 Wav 33Y 12 4 315931 333 2 84 028 25438 0905956 9434S NO 11 39 11 5 4 100862 143A 9S SNS 04 G 252l1 235 O0 S 1134 900 HdTY amp ef138 0 zg OsYHd Ov OT19Im 1 IY XC2 Hu2 l S a 49 2 2 Suv 19 I 3 Yv5 NOT1d0 NOTLY 31N 86 000000 0 t650C 0stGto S1H3121434309 0791 wv1irl 0Cc0C00 0 219523 1 t428620 AYSO 834 50 51 3v101 200 0 ct 9 4 t t 62 SOVOT O031 931MI 0Co o crore noren 9086 0 0 cc o 0c T 000 0 0cc o0 09c o 946C 0en troc 00 et t 000 0 0co o 000 Q0 900 oc c 99 0 et T 000 C G00 0 pc e cn orto Ltt 90070 000 0 99950 neen re ec o0 et 1 etcoo groto Cog G79 C 0 00 2 t 000 0 000 0 OTSO oc o oreo Tt T C 0C0 0 0000 ETTO oc o o 05 9 T T 000 0 ocg o 00 C 0 9C 9 COT et 1 9 0 50 000 0 06015 00 0 COLE anes tt t o5C vu 0900 0 0nc 49 6 94n Oren otn res T creo p 000 0 TI60 00 C cc o 6 1 000 0 069 c coc c ec n 00 97 T 990 0 600 O G00 O 4t
82. ary print option In the detailed card descriptions that follow each data field is listed with its card columns format descriptor name and explanation In addition 4 columns labeled R S I and W denote the major computational options listed on CARD 1 as the Repunch option Section data option Integration option and Wind tunnel option The Repunch and Section data options are not currently in corporated in FSLIP but have been included for compatibility reasons because several input fields have been allocated for varibles that apply only to the Repunch or Section data options If an X appears in a particular cc umn it signifies that the varible applies to that option and should be defined If the column is blank the varible does not apply to that option and the field may be left blank If an I appears in the column it denotes a varible that is not used in any computation but provides information that will be printed as part of the page headers SUMMARY PRINT TERMINATOR SUMMARY PRINT OPTION WIND TUNNEL LOADS SELECTION INTEGRATED LOADS SELECTION OPTION CONTROL Figure 5 Card arrangement for the program control data 20 CARD 1 OPTION CONTROL Note The following options are not currently available ROP 1 ROP 2 SOP 1 EH Geometry input option 0 Surface axis data not input 1 Data on disk TAPE20 2 Data read from cards copied to disk 3 Data computed from input a
83. ates Xpyp and XAFT All panel areas outside of this interval are set to zero Effective panel areas within the interval are computed as shown on the figure The bending axis location is specified by the coordinate Xun which is independent of and XApr Bending arms are computed from the midpoint of the effective pane area The parameter MRC controls the sign convention for positive bending moments The example shown in the figure represents an integration definition for computing vertical loads at a forward fuselage station An identical integra tion definition could be applied separately to compute lateral loads Other types of load stations can be established by defining appropiate locations to Xewn XAFT and Xyp Aft fuselage loads could be defined by placing and XMR at the load station and placing Xarp1 at any point aft of the last panel area Loads on the complete slender s could be defined by placing XFWD anead of the first panel and placing XAFT aft of the last panel Bending moments equivalent to a pitching moment would be summed about Xmp which could be placed at the body quarter chord or center of gravity YM Yn Bending axis Top view Equivalent panels p wW m cir Bas k masan gt u z Xp Bending ari Panel 3 Bending arm Panel 2 Effeclive area S so SAXIS BARK a X aX 3 run APT 1 MR 1 0 for pos
84. ax MA Ma m rw 99 Cu n l mua Ge Ge UF Gp G lt G lt Beak ow AJ ow mo P THO is beh ot ee deur 39 23 23 Hd iv 1 17 3 z7nd ejg wy Hd 17 202 9 5T1 JES 2u2N f amp 9 e39 32N n9 IsIN P9 3 2 1N F9 90036259 AIA EF Lad Rie o 000003 3 9090920350 13 5 1 32114359 9 911 5113411 N9tt otiSe13 11v X9i f oTtset3ti11v X9 TE LS Y 1717 62t00 BITEZ 9 o5 t scceoc TESTA eH 99200 3 _ l5000 A I 31I Me n c n angen SAI HANI 1 S0v01 31 49111 WOT 9 8i1 un2 SPc 19 xgt uog TftsMc 19 WEE TSGI 41 11945 EJE TOES SHE 2 amp 54 7 11 LT Sdiy n Saty A VANSS34d LYA 9 SAF t47 Qc 2 3f S 085 S47 c 4 66nc 54 T2 3 S G OS 27 S417 9 NOTLIdO LiT 44 N 387 INT 1153141939 L NTS re gt gt wo w uu Ae in n An lt x gt u o 7 8 ax A X WE ut gt N2 gt w x u T gt 2 112 co0con n EGELTO Q264495 099 CTV RETH Te Kreg ge Unt2U VAG C CLE GSECZ T amp s1 000000 0 42 210 uee 4 8 65 57 List
85. cre C 0 t T 95070 0900 0 000 0 t tro ec o coo 00 0 l t 00 0 000 O 000 Q SETO oc o 6 2 21 T 00070 000 0 000 0 05017 noro c o anes TYT 05 3 cco 0 ocs oc rl T JCO v 949050 000 0 lt6o 00 0 6 t1 000 0 050 0 u00 0 4060 or o coso e T voo o 0C0 0 030 0 Ltoo0 00 0 creo 5033 010 C oco o Lesc oneto 9 t 000 0 000 0 020 9 geSr nn o c c n T vore negen Qo 6e 6n prt r 90 0O T 000 0 000 0 0c o ooer t T 0Cc2 c ocn o Ccco o 6 vetl 0n o 000 0 000 0 090 0 te22 0c o cern 1 541 1 SdI NI 541 NI NI ent u 1 u 9 4 d2 WUVE huve v34Y TANYd 0 v3l 43349 386368 43348 000 9 56l1 9434S NO 2S 22211 39v135n4 AQ0C AD 1 95 5n4 LIY A NYS l s 21 5 WASY sYW 235 33780 094 eVLIJE CO G 8 95138 0 30 0 vHd lY Ot9IN 11v XOZ W2 l SMe 49 2 2 Suv T3 T 2Sv 1 NOTLVUS3ing 89 685150 6IE TO 09023400 C 5225 9 g2522 Cc3200C2 0 i2t 412 13 se 381 63s1l2 000000 2 s52310 3C 3 099 AALL 33433t60 82 434 so2te See 285 LOT TO2s 290002 0 NEG LGI 29 4099 2 490 9 Oosd2t 20 2 vefUJCO uU ZHT SOET 2250000 0 VOLE 45 OSGE A SdI Wont 1 9L SC2
86. ding XA and torque YA axes The bending axis may cut through certain panels with the effective area of each panel normally taken as that portion outboard of the bending axis The effective bending and torque arms are measured normal to the axes from the effective panel centroid Note that a panel centroid aft of the torque axis produces a negative torque arm YN Torque axis JN Negative Torque arm Uniform pressure assummed Over each panel LI lll Panel 29 Effective area Panel 11 ZA Y oe E Bending aru vA 4 Panel 20 PAS Bending axis E Local thin body coordinate system N Figure 6 integration geometry for thin body loads 25 When executing GOP 3 or 4 the geometry subroutine ill automatically compute the effective panel geometry as described above All panel areas inboard of the bending axis are set to zero If the user wishes to override any computed values the punched deck from GOP 4 should be modified and resubmitted using GOP 2 6 2 2 Hinge moment integrations Control surface hinge moments can be com puted as a special class of thin body integrations as shown in figure 7 In this case the torque axis is aligned with the hinge axis of an aileron made up of 9 panels If the effective areas of all the non aileron panels is set to zero the torque integration is equivalent to the hinge momen
87. ds Summary printout o tion must be used to printout the total integrated loads The case data ead from cards by the main program are passed to IOPSR via common and is optional Its only function in IOPSR is to provide case descriptiva data printed in the page header for each integration If IOP 0 IOPSR is not called and no integrations are performed 4 2 4 Wind Tunnel Option To compute wind tunnel derived airloads sub routine WOPSR is initially executed with WOP 2 which copies the load coefficients from card input to the unformatted disk file Future runs are then made by using the file directly with WOP 1 For either option the load coefficient data file is combined with the case describing data to compute the airloads for each case The wind tunnel loads printout produces a listing of the coefficients and component loads for each aero dynamic effect For comparison purposes a summary of the wind tunnel loads can be printed out along with the pressure integrated load only if the integration option is executed The wind tunnel option can also be executed by itself by setting GOP POP and IOP to zero In this mode only the standard wind tunnel loads printout is generated If WOP O WOPSR is not called Creation of the wind tunnel data file is describea in detail in section 6 3 and illustrated with an example in section 8 2 4 3 Option Requirements The input and computational options discussed above are listed in detail
88. e 90 6 Ce Qu Je 000 0 000 Je DIU ve JI Ge GUO 0 GUN Yo wats 0 000 VeVAY veld Ue Sd ew 0 0920 0 ve 20 04 000 990 g e un 02090 Ce Cu 75 57 620 0 000 190 450 Ge uv 235 006 3234630 0 000 412 2986 60909 3202450 1337 56C Love eIvk 1337 550 GD du Y NaNe FUSELAGE CREF 1849050 PUSITIVE TALL UP SUR AZZ AXTS NUMBER SURFACE AXAS M ME AFT FUS SG LAT GU BubY NAME e FUSELAGE TMTEGOANTTTOM NLE 2 59Er s 19466509 BAEF B20 eV BL CREF it 59 ggnY 1 SYNMEfaY CCDE ON YUMI E 17 BPW 1 TMTEG ATTOM AXIS JEFTATTaun FUXBNARO L iM R s 1337 500 AFT LiMil AT XR 1800 000 M MENTS SUMMED ABLUI XR 133765 PUSiIT VE TAIL RIGHT NAW DATA Y s Ye JUD NUMBER UF FANELS 2 SAMC DATA INDEX AREAMIN2 BAA riTIN TAF h 1M 1 V Very JevQD 02009 1 2 22099 2 0 ve9J0 1 3 9 090 Gu 1 Jesu veu JG 1 5 70909 2 006 6 030 5 9 NY Leu 1 020 0 090 Qe QuO 1 a 22999 veut CG 000 1 9 Je U Je Qu Yeun 1 19 32009 Us 0J9O 6 0602 1 3 322 we JOG Ge Jul v 6 30 n Q e C90 1 13 39 0323 Je 020 ve C90 1 1 Q 0u2 Je e 0U0 l 15 123242327 6 156 C920 1 15 79824328 Coxu 1 1 7825 329 1460 s wQ 1 1 3 76564180 235 020 G 600 1 19 5779 221 323 609 90 1 72 15739989 41 2 290 ARFA 323440415 4 0 TIT1AL LOADS SHRT 4 55 AXT3 TNTEGRATT N TYPE
89. f a load station in fuselage station in generalized airload eq 7 rolling velocity deg sec positive left wing up pitching velocity deg sec positive nose up free stream dynamic pressure psf yawing velocity deg sec positive nose right radius at a slender body aerocentroid in reference area of a load station ft effective area of a panel inf torque airload in lbs shear airload lbs true velocity ft sec waterline in integration axis coordinate system X X FWD X AFT N N AXyTR coordinates defining the origin of a thin body integration axis system in fig 6 effective centroid of a slender body panel in coordinates defining a slender body integration in fig 8 slender body local coordinate system thin body local coordinate system effective torque arm of a panel in effective bending arm of a panel in angle of attack deg positive nose up angle of attack derivative deg sec positive nose up angle of sideslip deg positive nose left symmetric horizontal tail deflection 6 j 2 deg positive trailing edge down L oR asymmetric horizontal tail deflection 2 deg positive produces right roll L R lower rudder deflection deg positive trailing edge left upper rudder deflection deg positive trailing edge left left spoiler deflection deg negative trailing edge up right spoiler deflection deg positive trailing edge u
90. f any vt130 CL 1 y23liOd4S v1130 Sch CL IM 3WI4d H Y1130 Ens c4 1r vVHdl 7139 CL OFvHe WY vise 1234433 JIWYNAGCHESY t3SN 1609 IIVI 137 Y NO SOYCI G 5 W1 JOVIA PA ert 92 CET d 23C13 110 9c get ACT Qn v113qg SCE 9c at l df ONY Y17130 sce 9C OET wITINES 1130 9Ct 3kl2a H vi113 EGE 9c StT YHd 7 713 eot GG CET C vHdJlY VJE Ice 133233 JIWYNANOARY C3SN 1IY 153 sN 0 800 sd C2 e 0P Sav Ttg t 3SYv2 NOT1140 3 QNI O 985 9842 t 6 31802 Z2E Lla O82ETO 0989659 JIVIYNS NO SOVOT TviDL 8 93s 9s 2 S 31390 2 re le 0262100 8 089650 066020 0O0991co 0T2460C Ors 1Yv321vV1 Vise 9930 occ 909 O 093009 D O00000 0 000000 0 020030 050009 ons IYYI1Y T d 13 1103 ECS SdIX NI 1 Sdl NI 8 5411 A 13 80 Ad M3d 19 834 82 834 AD 3n vA 123333 2IWYMAQO Y 365 1v 31v1 903 C LT9 ag2T 090 9 09000 0 27228020 J9Y4vnS NO SOVO1 9289509 009120 90950 032009 0 000000 0 9000000 s09Cco caertcc 9070 1V3 11833A YHd 1Y C22 2 Lt3 382i 90959 9 29210 0 228000 000000 0 228000 C1IY21143A CevHdly 541 8 1 1 Sdi NI 8 Sdi A 13 83 A 834 Ld 834 82 834 AD AINTVA 193333 JInNVNADQA27 DISN TWITLUI
91. fuselage stations 107 S3SY2 es 010933 40 ON 6 6 n 33 39 9 41 y e a dE Pod ch on or 3 YDLYNINYIL LET PIPERIS ae 03A seo gy H i t 334 Stev OF 323 fo Sixv 56 1 to f 1913HMAS 31Y4931NI 1 wm dot I 0 344 Z 411 0 dns 0 dO 2 dCi t 609 900 96 E2 LOS PEZ TpenLOGSEZID6n9GSEZTOODLOCSEZ TC6020 s 92 12692065 C2 O60 L0 G St T CN 8 L 9 5 2 t uty 8 ldwex 101 151 yndut pie 3131449 5 3575 3131d4C 25v 3131449 2 csv2 311144 T 3979 NUILdO Sayl qIvyNotiragy ANV WOTILIC 31 7 8 ldwex 10 151 wesboudg 108 ee Cur Soy Maur VS 54 ae x e Our S Sin UN oo eim eirt Can Kan on Cs Trt G the ms u a am MO M2 MO 2 Vr vw iy 2338 v1 13 7139 evisd 1133 83 023 239 VHd1 17 b 344 VHdlf z 1 41 40 y 1 341 24346 535 9 TY TSETOD 020909 6l122 bolto aL9ST9 11 110 oct 20 69 tare 2T16n9g 866t50 9644207 amp 10n22 1N319144309 60 955t 9 2 ZN 9 HITECIIISVI3 LIY MATIC PT SSK S929 89 2ZN 49 y3TE 211SY13 11Y 8l1 ky 2 l Sn6 29 Q I272N M9 x97 2IISY331 11Y xalfWG2 t SM5 49 33 0 ZN M9 M3TE E 2ILS7143 11V MOS NCILOW 21513 amp 4A 4 27F 2 97S GE9 2 655 9S b L56 C29
92. i fI CBU co mar lt Airy O N e 0 MTFOr oO OQ rex noo eM ACID tira oo as oo o uy roO NJ D UD wy O T Ort 237479 4 4 C n lt GJ oa uy u a C uy HOTEN ait ai 15 Ko D OO ANN m ot am Can OOOO c Th De EN mn tN cn eO C 99 e 9 r3 0uc10 0o un 00 un ANLA C3 4 n0 4 99599 et OM iin fe wus or dy f 99999 mMM TAO OT Co Fon ham 198 e mH 444 PFP Q eO P OW th Cee O ONO Oen e ene e eA MOONEN uy eto monic ACS s es o ONHAN OD e AD 0 Que 4 4 999 98 uy O t CO C OO sees es Gant mo ry OCI Ceci en eje m0 NiNOod AUN DO 4 D0 fA e Or A 9949 99 v ph HOS Oe rA D 90 00 Y 4 C Fe hem Fam been EERE fne ES un edm eme Dew wf NOONO x gt eneno Eas Cas Ean Cann e 0 o 9 amp WOVEN ett FTO rH e 99 9 CIC OD tity f eux TI 50250 Omo eeneee CIL e300 GO NOHO MT PAUN 74 e e e n4 cQ co 00 0 0 ACI O 4 ee tein 999 9 9 uy O P O 2 O FOS HHO MM mH v9 mA OOO Torres wae te 99 9 9 o en cc OID 4 NOD u rT Nu AONO OO x A Arto eet 8 o AMON SO m O02 Q mmu 3002440 eeo ooo I r4 4154 1523 7915 02846 0400 OO BaD
93. in the input description for CARD 1 section 6 1 The user can individually select the form by which the data input files are created or accessed and the computational options performed on these files In general any combination of program options are allowed through proper system control cards see JCL section 5 1 and 5 2 The only requirements are listed below 1 Execution of the geometry option with GOP 3 or 4 requires access to a FLEXSTAB GDTAPE TAPE 30 2 Execution of the integration option requires access to both a surface axis data file TAPE 20 and a pressure data file for each case TAPE 11 19 Thus if either GOP or POP 0 IOP must 0 3 Execution of the wind tunnel option requires access only to a airload coefficient file TAPE 40 4 4 Program Restrictions and Limitations 4 4 1 FLEXSTAB Dependent The FSLIP program was written to be compatible with any FLEXSTAB GD model Thus any restrictions in the GD module ref 2 4 also apply to FSLIP While there is no limit on the number of bodies defining a GD model each slender body is limited to 100 control points and each thin body is limited to 200 panels The most important restriction affecting FLEXSTAB jobs involves the use of units FSLIP assumes the aerodynamic model is defined in inches thus the units option in the GD module must be INCHES FSLIP also assumes that dynamic pressure is in PSF thus the units option in the SDSS module must be IN FT or FT When
94. ine also computes any additional loads defined as a linear combination of previously computed loads If wind tunnel derived loads are desired the wind tunnel option subroutine WOPSR is called again At this point all loads have been computed and the only remaining task is an option to print a summary of specified results in a very concise format 4 2 Input Output Data Flow As just discussed a set of subroutines creates or uses a number of discrete disk files containing data required by the computational options Table 2 describes the function of each disk file allocated for data input Output The overall data flow between the subroutines is shown in figure 3 and is discussed below in terms of the primary program options Specific details of the unformatted disk files are provided in the DATA INPUT DESCRIP TION sections 6 2 6 3 and 6 5 4 2 1 Geometry Option The surface axis data file Tape 20 provides the foundation for the integration process For each integration this data base contains the effective area bending arm and torque arm for each panel on the specified body The user has several means of creating the surface axis data file via subroutine GOPSR which is controlled by tne geometry option parameter GOP If GOP 1 the file is assumed to exist and the subroutine is not called GOP 2 indicates that tne file is copied from card input GOP 0 means the file is not input An initial run is usually made with GOP 3
95. ions a new follow on integration program called FSLIP was written which has expanded capabilities and flexibility FSLIP is generalized to work on any FLEXSTAB model with no restriction on the type of case or definition of the integration axis system The effective area bending arm and torque arm for each panel can be individually defined FSLIP also has a built in interface with the FLEXSTAB GDTAPE data base to automatically generate the geometric integration data Included in the program is an option for computing airloads derived from linearized wind tunnel coefficients for comparison to FLEXSTAB predicted loads This report consitutes the FSLIP program documentation and user s manual An outline of the computational tasks is followed by sections describing the program s organization execution detailed data input and output Examples are included which illustrate the main program options A microfiche supplement contains a listing of the source code and reference map 2 0 SYMBOLS AND ABBREVIATIONS The program assumes all varibles are input in U S Customary Units as spec ified below B BP b 2 13 ve VBT FS Ol bending moment airload in Tlbs butt plane in reference semispan of a load station in shear bending and torque constants respectively eq 7 shear bending and torque airload coefficients eq 4 5 and 6 respectively generalized airload coefficient eq 8 14 reference chord o
96. is directly copied to the unformatted disk file TAPE 20 For each integration definition the card sequence CARD 6 CARD 7 CARD SET 8 is repeated Within this sequence CARD 7 and CARD SET 8 is repeated for each row on the body The order of the integration definitions is arbitrary More than one integration may be specified for a particular body The format is the same for both thin and slender bodies After all integrations are specified any additional loads are defined The card sequence CARD 10 CARD SET 11 is repeated for each additional load definition Note that CARD 9 is not used in this deck 6 2 6 Card input for GOP 3 or 4 A different card arrangement is used for this option as shown in figure 11 The deck format is essentially the same except that all of the row and panel data cards for a given integration are replaced by a single card which specifies the integration axis CARD 9A is used for thin bodies and CARD 9B is used for slender bodies The geometry subroutine will then interface the axis data with the FLEXSTAB GDTAPE and automatically generate the row and panel data Any additional load defin itions follow the integration definitions as before The disk file created by this option is identical to that for GOP 2 29 30 FIRST COMPONENT FACTORS ADDITIONAL LOAD LOAD STATION DATA REMAINING INTEGRATIONS FIRST INTEGRATION REMAINING ROVS FIRST_ROW DATA LOAD STATION DATA NUMBER O
97. itive nose up MR MRC 1 0 for positive teil up Figure 8 Integration geometry for slender body loads 27 6 2 4 Additional load definitions This option is used to define any addition al loads that are a linear combination of previously integrated loads To illus trate the general setup a simple example is shown in figure 9 The total shear and bending at a aft fuselage station L7 Lg are to be computed These loads are generated from the integrated loads on the aft fuselage itself 1912 and the horizontal tail root loads L4 Lg The component factors are assembled in matrix form as shown below Each row of the matrix is read in using CARD SET 11 Figure 9 Additional load example L45 Aft fuselage vertical shear L Aft fuselage bending L3 Horizontal tail shear left La Horizontal tail shear right Horizontal tail torque left Le Horizontal tail torque right Total aft fuselage shear L 77 Ly L4 Ly Total aft fuselage bending Lg Lo AX L t Ax L Ls L6 Total aft fuselage torque 0 28 1 0 0 CARD 11 1 0 1 0 CARD 11 2 lu Le lu i P L Le l AX 0 CARD 11 3 1 AX 0 CARD 11 4 0 l 0 CARD 11 5 0 1 0 CARD 11 6 Shear factors E Bending factors Torque factors 6 2 5 Card input for GOP 2 The card arrangement for the surface axis data file if GOP 2 is shown in figure 10 Under this option each inte gration is defined on a panel by panel basis In fact each card record
98. l loads option is used to define 3 new loads surface axis numbers 31 33 for com puting total aft fuselage loads First the two vertical tail stations are sum med to get the total vertical tail root loads Second the horizontal tail com ponents are added to the aft fuselage to get total vertical loads at the aft fuselage station Third vertical tail root and horizontal tail components are added to the aft fuselage to get total lateral loads at the aft fuselage station Note that the wing integration applies to WING2 only The geometry sub routine will compute effective areas for all panels outboard of the XA axis but it was desired to neglect the area of the two shaded panels to account for the nacelle and fairings For this reason the punched deck from this job must be modified and resubmitted with GOP 2 as shown in the next example LW RW left and right wing BP 239 779 in FS 1161 87 in WL 9 107 in LHT RHT left and right horizontal Lail BP 10 75 in FS 1582 0 in WL 126 0 in UVT upper vertica tail WL 136 56 in FS 1582 0 in BP 0 0 in VTR vertical tail root WL 75 0 in FS 1535 56 in BP 0 0 in FF forward fuselage FS 528 5 in WL 32 0 in BP 0 0 in AF aft fuselage FS 1337 5 in WL 34 0 in BP 0 0 in Figure 15 B 1 airload measurement stations 25 54 Thin bodies 1 WINGI 2 rows 10 panels 2 WING2 9 rows 45 panels 3 HORZTAIL 6 rows 30 panels
99. l 69 le9 e tt T98 6E SL2 000 0 EEO GAT 812 Cc2 LC 0ng e ocorre 20C0 0 000 0 0 oco o oote SdIY X NI 1 8 eVI3HL LETAR ETY ot t 1 699 1 91 T s T l ZUL 28 T 029 I 2tc 2 EL0 2 T96 T ETS T 82801 609 veg 92 66651 586 T y8 T nii t 1 04151 00 1 TYE 98681 sb ZLE 000 0 000 0 006 0 096 O 000 Q0 Gut 0 Cc2Cc Q Sdl I A 440535 e6 5c 6 L92Y 96e0 96115 7 gie 8615917 49515 g2tl wart 820I otrt GE4T 9ntt geane eTOT eoct 2 65807 nt425 EGLO ES2T 9996 Efo ss 00 g690 61t6 6922 421 9580 9800 LEZ0 ott 510 ted t 21I 82 12 9g tT GS E 6 91 6t t o 65 84 92 52 G o 9T SE LE 92 Tt T9 9 q Offs 46 29 Tere b5 1 2 2 C 95 f 6S 0 a f Ne B 0c T 1 9 c8 2 5 9t ct 0c 0 Gn sg t2 0c 6s 2 uten 00 0 00 0 0 0 00 0 cree oc 0 NI TAB 2 9NIM A0ned2 5595 HN EOS GT ESE c L2 R9 5 b 562 0 5 t O62 4 9n e 56T cL 5e2 HO E 7e Olt G 227 C6 S9
100. le is created by using the FLEXSTAB GDTAPE A printout is generated which lists complete details of each integration definition including effective areas and arms com puted for each panel on the specified body Any panels cut by the bending axis are flagged Total panel area outboard of the bending axis is also listed Details of any additional load definitions are printed out An example of these listings is shown in section 8 1 The amount of output can be estimated from the following equation Number of pages 1 5 NSAD NALD 1 where NSAD and NALD are as specified on CARD 5 7 1 2 Integration option If IOP 1 a printout is generated for each inte gration definition set true on CARD 2A The listing includes a panel by panel description of the integration process After all integrations are performed any additional load definitions are listed The printout is then repeated for any succeeding cases Section 8 2 contains an example of this printout If IOP 2 this printout is suppressed The amount of output can be estimated from the following equation Number of pages 1 5 x NSAD NALD 1 NC where NSAD and NALD are now the number of integrations and additional loads set true on CARD 2 and NC is the number of cases specified on CARD 18 7 1 3 Wind tunnel option A printout is generated for each load station showing the component loads due to each aerodynamic effect An example is shown in section 8 2 The amount of output
101. lender body vertical load 2 Slender body lateral load 3 Thin body Symnetry code Q Body off centerline Body on centerline can leave blank if GOP 3 or 4 Number of rows on body Always 1 for slender bodies can leave blank if GOP 3 or 4 Reference area square feet Default 1 0 Reference semispan bending arm Default 1 0 inches l Reference chord torque arm Default 1 0 inches 91460 F10 0 BREF 61 70 F10 0 CREF 71 80 F10 0 CAVG 2 Gur a rm Average chord inches 41 50 F10 0 SREF E CO CARD 7 ROW DATA The card sequence CARD 7 CARD SET 8 is repeated for each row on the body NR times CARD 6 HEN mima Row number Nondimensional semispan station 11 20 F10 0 Y coordinate in local system of row centroid inches 29 30 LAE Number of panels in row 31 40 F10 0 CRONW Chord of row at centroid inches CARD SET 8 PANEL DATA Contains NP cards one card for each panel on row leading to trailing edge DESCRIPTOR R S 1 wl EXPLANATION X Pane index lst integer row number 2nd integer panel number 11 20 F10 0 Effective panel area outboard of load station square inches If entire panel is inboard of bending axis set SP 0 0 21 30 F10 0 E 31 40 F10 0 TARM Effective bending arm of panel in Effective torque arm of panel in positive for effective panel
102. lt t lt lt ctien C36 ur O da c O 9U 10 C Cu C 9 e c NO 0 fed FOI Cum c5 3010 Coo eJ MAO Oot O 1 23 D C cn e tn e Oin E MHOD JOO oD ie Ch OO 2 29 Ooo 33 OQeds0son 99 4 9 9 9o o 9 e e 899 98 tt I t 1 2 oO 2 e SANDS eod eco MARANAN MNM PUY ONAL O TPS 4 4 Od M TOM O qt 6 O Q Q tien 2 4 e TODA TAD 223599 AnD IN ADOD 72 2 2 gt gt 30020 232013 2 gt O Ep v 9o9 9 99 9 es oo e 95 9 9 9 4 46 14 LI ee FROM DOWN amp MP moO red Oro CJ f un rA G eng t f eti INOT CO 4 730 rn nr er WON 52Orn2 72 2 2 lt x gt 5 Dar OOD 5 00 272 KQ0720 000 513 WDORIDOG 4 ee se e ee e e 99 9 11 t Li DANO fuy HAIN SIN Dein nT ry OM 23 241 OG AIO Artes uL OoO02 200200dqQueAmHeeui io2 2320 o 0 ft SP HOO OIA O O O O O O O Ls wu gt p iL lt lt D AOD POMS AN Dh OO OS D eoe T uS DND OO NW OR MO DANO OM DO O0 O c m df O00 O 01r A OD Cy NI OO dn QUO O D OR OY O OG O 539090 DDr Hrm MIRE NAUN oO eed N Jede e emen n men e 600 09 0 in mm 04 74e 0d N MAM NOAM mne m ee tutu ry Ns mne 00 0600 y 00 NAMM an en e en 0 60 n en yr n nen e 6 00 00 06 e ncn 0 ea
103. nd GDTAPE TAPE30 4 Data computed and punched from input and GDTAPE TAPE30 Pressure data input option 0 Data not input Data on cards punched by SN amp SS 2 Data on disk TAPE11 19 f Repunch pressure data option 0 Not desired l Repunch ACP data with new x c s 2 Punch non FLEXSTAB ACP data Section data option 0 Not desired 1 Section data computed Integration option Not desired Integrate pressures and print panel by panel details 2 Integrate pressures but suppress panel by panel details Summary print option CARD SET 3 must be used to print loads fh M D Wind tunnel loads option 0 Not desired Compute wind tunnel loads coefficients on disk 2 Compute wind tunnel loads coefficients read from cards copied to disk Ho Il 2 CARD 2A INTEGRATED LOADS SELECTION OMIT this card if 10 0 CARD 1 The card column number corresponds to the load station number defined on CARD 6 or 10 One column for each load station up to 50 maximum Applies to all cases processed in this job FORMAT DESCRIPTOR R S I W EXPLANATION Load station selection T Loads at this station will be computed F or blank Loads at this station will NOT be computed 22 OMIT this card if CARD 1 The card column number cor
104. neral restriction in FSLIP relates to the printed output which makes extensive use of fixed field F formats These fields have been sized to handle physically realistic problems and thus should not present a practical limitation Specific restrictions related to the card input is discussed in the DATA INPUT DESCRIPTION section 6 16 5 9 PROGRAM EXECUTION FSLIP is presently operational on DFRC s CDC Cyber 73 computer The program has been executed using both the SCOPE and NOS operating systems Section 5 1 describes the Job Control Language JCL required for the SCOPE 3 4 operating system reference 9 Section 5 2 contains the JCL required for the NOS 1 4 operating system reference 10 5 1 SCOPE JCL To execute the FSLIP program using SCOPE the following system control cards are required 1 Job Card XXXXX T300 FTN YYYY ATTACH LGO FSLIP3 ID SIMS MR 1 REQUEST TAPEXX PF ATTACH TAPEXX YYYYYYY ID227Z2Z MR 1 MAP OFF LGO PL 10000 CATALOG TAPEXX YYYYYYY ID ZZZZ 7 8 9 End of file card Data Input Deck 6 7 8 9 End of job card CO CON DD CO Aa W N 9 e 9 CO 2 NOTES Card 1 Estimated wall clock time of 2 to 5 minutes should be sufficient for most jobs Card 2 XXXXX User s Job Name YYYY Subtask number Card 4 These two cards are included for each data file to be input on and 8 cards and cataloged for use in later runs XX 11 For pressure data file case 1 12
105. nitially defaulted to zero The user defines any non zero parameters These values are automatically used for each succeeding case until reset with an additional card defining the new value A simple example is included after the card descriptions at the end of this section CARD 17 serves as an EOF terminator for CARD SET 16 It is always included even if CARD SET 16 is omitted CARD 18 controls the number of cases processed for the pressure data integration and wind tunnel options NJMBER OF CASES EOF TERMINATOR SPECIFIC CASE DATA Figure 13 Card arrangement for the case description data 42 If POP 0 AND WOP 0 OMIT this card section CARD SET 16 SPECIFIC CASE DATA Required for wind tunnel option Optional for integration option This card set incorporates an automatic recycle feature Only non zero value parameters need be defined and or thereafter only if they change for a succeeding case Order does not matter as long as the case number for any specific parameter always increases The use of this card set is clarified in the example after CARD 18 C C FORMAT DESCRIPTOR R1S EXPLANATION 1 I1 CT I I I X Case index 1 9 t EPE E Ui TS Pe vie Babs E TES se E v hs EN t 5 6 12 PI I I I X Parameter index Angle of attack deg Angle of sideslip deg Dynamic pressure psf True airspeed ft sec Alpha dot deg sec CNA airplane normal force coeff
106. nually added i to this case 11 20 10 4 MR X X X Motion reference 1 0 Symmetric motion 2 0 Asymmetric motion 21 30 F10 4 MI A x Mach number F10 4 A1 X I 3 Angle of attack deg ae F10 4 B1 Kd X Angle of sideslip deg 91 60 F10 4 QI X T Ts x Dynamic pressure psf E 48 The card sequence CARD 22 CARD 23 CARD SET 24 is repeated for each body in this case NTB times CARD 22 BODY DATA Q m oOo O O vo__ C C FORMAT DESCRIPTOR iR iS EXPLANATION CPBODY X X Name of body from GD program NAF Number of rows on body always equals 1 for slender bodies Dihedral angle of thin body deg blank or zero for slender bodies The card sequence CARD 23 CARD SET 24 is repeated for each row on the body NAF times CARD 23 ROM DATA EXPLANATION Y coordinate in Reference system of row centroid inches Number of panels in row 49 CARD SET 24 PANEL DATA Contains NPT cards one card for each I on row leading to trailing edge ES C FORMAT DESCRIPTOR R PRIS TI Ime wn 31 40 F10 4 III 50 EXPLANATION X C nondimensional x coordinate of aerocentroid Pressure coefficient ACP due to Symmetric motion For thin bodies If MR 1 0 symmetric motion CPS is used for both left and right hand surfaces so that CPR and CPL need not be defined CPS CPR CPL For slender bodie
107. oo 0 e22 9 9S6 9T 00 0 968 t SdIN A Cceo o0 000 0 o6c vo 000 0 000 0 090 9 UD1IJYJ i 9 1N 1N31214430j ONY 0020 I 0o0Q I 0065 592 000 tI 0Co 0 4C12 Y4 8 95 Coro COT con 000 C Cont 8U012Y4 A 95911 sayo ST4 L922 03 2598 2 2 S 09 54 9658 1 3 1 10 Fu F1 FH 19 19 Z Q gt gt o 9 9 9 95 1 34 INIA 11 ZYCH 1 v1 1 VIVi ZI OH TIVI ZICH 95 504 11 95 snd Lav N5DI1dI323530 1N3NCdWD INT 101 A 95 Sn3J 13v 89 VL9I90930 OH VHd TV 019111 TY WZ l SMG 19 QI 2 3 SSOS Suv T8 P of CQ GJ NUN ANA PAO 1821132 e NYS WASYsMW tT 3Ssv 5 MCII4O0 S0vG1 TrurrilIOOY 91 220999 5322 2 99390 990007 32 30 2 6223022 2 61 3 695 2252 12 JJjJ2S 2 0 99020056 93339370 13 20 3T t 521e 235 Wvco 0233312 1216350 C20000 9 0204090 230022 933200 3235222 J 0922525 7023 1032050959 83 23332 Svi 9 8 29790 B822 l16191 gGLl E2032 NCUOGE O 036 526 000 0 620932 0 9 2 000 9 06COO0 O 43 99 000 0 J360C2 60 L So tLl 300 VUCOCO Y Lot tozse PULLI 693 l1e23 9 9t 6095 2t 6 1821l2 JCCO0Cc o 002 06 000 0 1200020 029 G 960 09S 21 5300 909070 000 0 A SdIW NI 1 541 1 8 GY
108. p differential pressure coefficient of a panel horizontal tail moment transfer arm longitudinal in eq 16 effective longitudinal width of a slender body panel in vertical tail root moment transfer arm longitudinal in eq 18 Ayr horizontal tail moment transfer arm lateral in eq 19 AZyTR vertical tail root moment transfer arm vertical in eq 19 sweep angle of a thin body integration axis system deg subscripts AF aft fuselage A S asymmetric c o carryover effect FF forward fuselage LHT RHT left and right horizontal tail LW RW left and right wing SYM symmetric UVT upper vertical tail VT vertical tail VTR vertical tail root 3 0 COMPUTATIONAL TASK DESCRIPTION Sections 3 1 3 2 and 3 3 outline the major computational tasks performed by the program Section 3 4 discusses the sign convention for the loads 3 1 Pressure Integrated Loads The primary program task is to integrate pressures on a finite number of panels making up a single thin or slender body The pressures are summed rel ative to an integration axis system to produce shear bending and torque loads as follows V 27 ACP s 1 1 B P ACP S y 2 T 8YLAC s x 3 1 The integration geometry for each load station is stored on a data base for repeated use The pressure coefficients are stored on a separate data base for each case to be processed Each body may have a left and right hand side or be a
109. rds are included only if WOP 2 on CARD 1 The card sequence CARD 13 CARD SET 14 is repeated for each of 6 possible load stations Any station that is not applicable to the configuration is simply omitted For each station CARD SET 14 contains 15 cards which define the airload coeffi cients as specified in tables 3 thru 7 Two separate sets of coefficients can be entered for the vertical tail EOF TERMINATOR AFT FUSELAGE LOAD STATION DATA 13 FORWARD FUSELAGE LOAD STATION DATA 13 AIRLOAD COEFFICIENTS 14 1 14 15 VERTICAL TAIL ROOT LOAD STATION DATA 13 VERTICAL TAIL UPPER LOAD STATION DATA 13 LOAD STATION DATA HORIZONTAL TAIL AIRLOAD COEFFICIENTS 14 1 14 15 WING LOAD STATION DATA DECK IDENTIFICATION Figure 12 Card arrangement for the wind tunnel data file 37 If or 1 OMIT this card section and skip to CARD SET 16 CARD 12 DECK IDENTIFICATION roma oescuieros s s s w mI 7 JI EXPLANATION Wind tunnel deck identification Alpha numeric 38 The card sequence CARD 13 CARD SET 14 is repeated for each of the 6 possible load stations to be defined CARD 13 LOAD STATION DATA Si NE Load station number Wing Horizontal tail Vertical tail upper Vertical tail root Forward fuselage Aft fuselage a M NE 5 20 4A4
110. responds to a particular load as listed in the table below One column for each load up to 14 maximum CARD 2B WIND TUNNEL LOADS SELECTION Applies to all cases processed in this job FORMAT DESCRIPTOR R 5 I W I C Load assignments EXPLANATION Wind tunnel loads selection T Loads at this station will be computed F or blank Loads at this station will NOT be computed Wind tunnel lSurface number load number WTN on CARD13 WLN Description Wing loads total Wing loads without a 0 term a Horizontal tail loads total Horizontal tail loads without a 0 term Vertical tail loads upper Vertical tail loads root 7 5 Forward fuselage vertical loads 8 b Forward fuselage lateral loads 9 6 Aft fuselage vertical loads on fuselage itself 10 6 Aft fuselage tail induced vertical loads 11 6 Aft fuselage total vertical loads 12 6 Aft fuselage lateral loads on fuselage itself 13 6 Aft fuselage tail induced lateral loads 14 6 Aft fuselage total lateral loads 23 CARD SET 3 SUMMARY PRINT OPTION one page summary is produced for each load station specified One card per load station up to 50 maximum c c Format pescrrPtor a s rw EXPLANATION 1 2 I2 SPI X Load station number SAN on CARD 6 or 10 Can be an integrated or additional load 6 7 I2 SPW XI Wind tunnel load number WLN 1 14 If a wind
111. s CPS is the vertical force coefficient DELTA CP ZM from the SD amp SS printout Applies to left and right hand or centerline bodies Pressure coefficient for the right hand surface aerocentroid Pressure coefficient for the left hand surface aerocentroid For thin bodies If MR 2 0 asymmetric motion CPRZCPLZCPS Note that for a positive sideslip nose left FLEX STAB sian conventions for a vertical tail on the centerline THETA 90 result in CPR being positive and CPL CPR Thus only CPL is used to com pute loads so that a positive side Slip produces a negative vertical tail load For slender bodies CPR is the latera force coefficient DELTA CP YM on the right hand OR centerline body CPL is the lateral force coefficient on the left hand slender body X coordinate in Reference system of aerocentroid inches 7 0 OUTPUT DESCRIPTION Output from FSLIP consists of line printer listings punched cards and disk permanent files as described in section 4 2 Each of these is briefly outlined below along with equations for estimating the amount of printed or punched output 7 1 Printed Output Printed output is produced by 4 of the major program options as described below Specific details of the printed output are not presented here as the printout makes generous use of headers and descriptors See section 8 0 for example output listings 7 1 1 Geometry option If GOP 3 or 4 the surface axis data fi
112. sults for a Mach Number of 0 52 NASA TM 81358 1981 Bartlett M D Olsen A D Jr and Wildermuth P F Airloads Research Study Airload Coefficients Derived from Wind Tunnel Data NA 76 563 Rockwell International Los Angeles Div Sept 1976 Revised Aug 1979 FORTRAN Extended Version 4 Reference Manual Pubn No 60305600 Control Data Corp C 1974 A Method for Predicting the Stability Characteristics of an Elastic Airplane Volume III FLEXSTAB 3 02 00 Program Description D6 44361 3 Boeing Commercial Airplane Co and Boeing Computer Services Co Oct 1978 SCOPE Version 3 4 Reference Manual Pubn No 60307200 Control Data Corp c 1974 NOS Version 1 Reference Manual Pubn No 60435400 Control Data Corp c 1980 1 Report No 2 Government Accession No 3 Recipient s Catalog No NASA TM 81364 USER S MANUAL FOR FSLIP 3 August 1981 6 Performing Organization Code RTOP 505 33 54 7 Author s FLEXSTAB LOADS INTEGRATION PROGRAM 8 Performing Organization Report No H 1158 13 Type of Report and Period Covered Technical Memorandum 14 Sponsoring Agency Code Robert L Sims 9 Performing Organization Name and Address NASA Dryden Flight Research Center P O Box 273 Edwards California 93523 12 Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington D C 20546 15 Supplementary Notes Microfiche supplement is attached
113. t When executing the automatic geometry option the bending axis should be located inboard of the aileron panels so that the total area of the 9 panels is computed Note however that the geometry subroutine will also compute a non zero area for all panels outbeard of the bending axis The user should correct the punched deck from GOP 4 by setting the areas of all non aileron panels to zero The modified deck is then input using GOP 2 YA Torque axis Negative Torque arm Panel 35 Torque axis aligned with hinge axis Positive hinge moment is trailing edge down Xa Bending axis Figure 7 Integration geometry for hinge moments 26 6 2 3 Slender body integrations An example of the integration geometry for a slender body is shown in figure 8 Slender bodies are defined by a series of aerocentroids lying along ihe local slender body XM axis Each aerocentroid has a radius R and interval Ax which form the equivalent of panels within one row Both vertical and lateral force coefficients can exist at each aerocen troid The bending axis YA is established at a point along the axis The torque axis XA is assummed to be coincident with the Xm axis which implies that torque loads are not normally computed for simple bodies When executing the automatic geometry option the integration geometry is determined in a manner unique to slender bodies First an integration inter val is established by the coordin
114. t2 t6t 901 9 8 1 e4St PA D S L6 c91t 2 2358 55 5 931 9 3J9 TOE 89c L000 4t 9 5 ZE LS L6 S9LT 2 765 9 GUE SE 219 Josc 03 12 53 90T 66851 t cIl EE YT ee le 6 49LT 2 2 21155 tee Lic 944 E Erte soz 0gL Ltt 6t6 6 8665 l 682 L6 6911 l 2 933 3 t 1 609 22 t5t l 9T91 1 69L 61 8t2 ti l 5I 665 66 52 9T 81 t 9 1 t set e4 I35 51 661 I rteri 926 0L t4g et 291 1 eT eC TS 2 91 agt eoet E ssst L e9 0 62 LL 9 L99 5 682 55 22 2 91 at e9 T T esit ST2 et t430 269 L2 S 8 12 leet T 9t 42 51 gtT fozrT 2 Y 65l t1 Lta 5t Zar 9532 61 t6lt gtL 965 t 6 t bs C b 2L S c 9t 31 t 5 t t t SdI NI SdI NI 541 541 1 SdIX NI Sadi NI NI 3 1 8 3 und 1 1 1 8 1A 1 742 wari Keys vayy 13 4 39448 Eu 6s2e 54348 CLL 4355 00 1 sY13HL 440 95 211 lIv1240H AQC842 9 Z2T OH Z NYS 1t 5521 SVL WAC Yau E 236 4VES g 156 00 0 17 8 130 0 30 0 VHdv Ot9oIS l1v XOZ w2 T S AG L9 GTS 2 9E SSGS Say 18 T 35 9 NOTEdC NOILIT O34NI 89 2320 2t 660 1131914430 Wici 2691EE l 899080 5 tt8410 4Y80 3d S 0YO 25l1 80ET Lt8 06565 95 94 SOVOT Q31YN921NI 1v101 o er t9s9 9t 05t 45r 64 9 21 SG ZET ec eco 9 ses 27 02
115. uoz ttsMc 19 82 2 3 SSJS 544 9115113411 yet Tt T eg eat Suv T93 4 14 1184 an mM 1331 sk y S 110 00C002 0 8262200 99619 2 o n Z2C2 5 0C0300 2 68u36 ErZaTUe n 06 ILL EGT L 5 000002 0 626 C39 2 0094013 51G6 e96 22552 2 00900090 32O9t6000 924809 ooo r te 1 PCa r 2Y 3T t Sd Ly NI Sd THANE Sal 12 9 A2 1 A 2 S 1N312143302 0701 034Y9931KT 35435 342 111114 2 5al 2434 195378 4348 6 3 NO t 0911 LIA 94 OYJ eye cle STL 89 J 99 HAS mew L 39123782 v138 92 eed Ty 9 2 2N M9 W9IE OIISYv13 11Y D8THc2 1 6H5 49 Q2 7 vf S60 SYY I9 3553 2 i 21e Syl 34 39 WAS t 13001 755 00 7138 E6 99 I 2N M9 WX31 2I1S 13 11Y w8t We2 Y ss 40 2 cu csv 2 21 svi QJ 23 HAT BYR ETL 20C 9FID C 5 3J3 3 74417 O RAZNEMD MSTCF DIISVI3 1 1V 481 HCZ l SMa 1O0 2 Cony T Z 3553 21 S7L 9i 2 10 AAS v4 2321 1v382 O30993 alig 3 Vind 1 3 0 2N 9 9TE OT1SY13 13N 8l uc2 1 595 49 2 2 3 60 44 Sur vC 7T 3251 KILLIN Adik unc 111 Mar PUES ei pd us ux i lus 42 MCTS ur ver cde 00 4 8 a lt aw tor Lw NU lt w as
116. ure data are usually input from FLEXSTAB punched card decks In this case the pressure option parameter POP 1 which directs subroutine POPSR to copy each case to a separate unformatted disk file If desired these files can be cataloged for later runs where they are input directly using POP 2 Pressure data from a source other than FLEXSTAB could be processed if input in the same card format or written directly to the disk files by the generating aerodynamic program or an interface program If no pressure data are to be input POP 0 4 2 3 Integration Option Subroutine IOPSR processes each integration definition on the surface axis data file by calling subroutine SYNC which searches the current pressure file for matching pressure data If SYNC cannot find pressure data for the specified body a message is printed and IOPSR proceeds to the next integration The user can also individually suppress any particular integration definition residing on the surface 14 axis file Any additional load definitions are processed after all integrations have been completed for the first case IOPSR then recycles to repeat the process for any succeeding cases The user has two options when executing IOPSR which controls the printed output For IOP 1 a detailed listing is generated for each integration which shows the area arms pressure coefficient and loads for each panel on the body If IOP 2 this detailed listing is suppressed and the loa

Download Pdf Manuals

image

Related Search

Related Contents

MC67 Regulatory Guide Italian(P/N 72-161171  Toshiba e-STUDIO500P Printer User Manual    Modo de empleo del PM TOTAL ENGINE CONDITIONER  PROTEJA - Cristófoli  

Copyright © All rights reserved.
Failed to retrieve file