Home

Omega Vehicle Security OM-420 User's Manual

image

Contents

1. Power Supply B hl200 01 ecw Figure 2 RPS 1 Functional Block Diagram CHARGER INPUT Two terminal connections are provided for connection of an external current source for charging the RPS 1 batteries POWER SUPPLY OUTPUTS Two independent User programmable voltage power supply outputs A and B feed the twelve position terminal strip on the right side of the unit The top four terminals are all connected to the A supply output and the middle four to the B supply output The bottom four terminals are all connected together and to the COMMON circuit ground of the two supplies OUTPUT VOLTAGE MODE SWITCHES Each of the two power supplies has an eight position DIP switch associated with it The top seven switches determine the output voltage for that supply and the last switch 8 defines the mode of operation AUTO or ON for the power supply Omega Engineering Inc 2 Stamford CT USING THE RPS 1in the OM 420 CONTROL INPUT Two terminal connections are provided for connection of a low voltage power supply control signal This input signal controls the ON OFF cycling of power supplies set to the AUTO mode Typically this control input is controlled by a OM 320 420 Digital Output STATE OF CHARGE INDICATOR When the TEST button is depressed an approximate battery state of charge is displayed on the 10 position Display This display is based on the battery voltage under a slight load INSTALL
2. Replace batteries PROBLEM MAIN power switch is OFF during charging SOLUTION Switch must be ON PROBLEM Baiteries have insufficient charge to power charging start up circuitry SOLUTION Press and hold the BOOST CHARGE button for approximately 10 seconds then release it After a few minutes press the Battery State of Charge Test button and one or more of the LED lights should illuminate indicating that the batteries are starting to take a charge PROBLEM Charging input voltage is lower than the battery voltage SOLUTION Increase the CHARGER input voltage The minimum input voltage for the a MAIN POWER SWITCH setting of 12 VDC is 13 5 VDC VAC and for the 24VDC setting is 25 5 VDC VAC SYMPTOM POWER SUPPLIES DO NOT TURN ON PROBLEM Main Power switch is OFF SOLUTION Turn to 12 VDC or 24 VDC position PROBLEM CONTROL INPUT signal wire polarity is reversed SOLUTION Check polarity of signal wire with a volt meter and check connections to terminal strip Omega Engineering Inc 8 Stamford CT
3. 0 Terminal i f fafa f Strip Adapter TSA L Porte Figure 3 RPS 1 Control Wiring The MODE switch bottom or eighth switch should be set for the desired operation AUTO or ON AUTO mode configures the supply to cycle ON and OFF per the state of the control signal coming from an external device OM 320 420 When the CONTROL INPUT signal connected on the four position terminal strip is HIGH 5 VDC either power supply configured in the AUTO MODE turns ON The ON position configures the power supply to be continually outputting the selected voltage to the OUTPUT terminals The ON position is commonly used for set up and troubleshooting of the sensor wiring The power supply outputs are internally current limited and protected from shorts Current limiting occurs at approximately 250 mA If loads approaching this current level are connected the output voltage should be tested with a volt meter to insure continued proper regulation If the voltage is less than the OUTPUT VOLTAGE SWITCH programmed setting the power supply is in current limit mode and the current load must be reduced In many applications this can be simply done by reprogramming the output voltage to the next lower output voltage providing the sensor will accept the lower level The A and B power supply OUTPUT terminals should NEVER be connected together The MA
4. ATION MOUNTING The RPS 1 should be mounted in a vertical position in order to optimize rain shedding and prevent direct spray into the bottom fittings The enclosure is designed for indoor and outdoor exposure within the specified temperature limits Battery life and capacity is at a maximum when the batteries are at a temperature of 20C 68F Shading from direct sunlight and or insulation WITHOUT RESTRICTING AIR FLOW AROUND THE UNIT can optimize battery life and capacity During charging the batteries will emit small amounts of FLAMMABLE AND EXPLOSIVE HYDROGEN GAS Additionally heat is generated by the voltage regulating circuits For these two reasons ventilation around the package will maximize performance as well as minimize risk of potentially hazardous explosions WIRING The OM 420 is factory configured to use OM 320 420 Digital Output 1 to control the RPS 1 These connections are as follows The positive Digital Output Marked D01 on the TSA is connected to the RPS 1 positive CONTROL INPUT terminal The negative Digital Output Marked GND on the TSA is connected to the RPS 1 negative CONTROL INPUT terminal See Figure 2 Power Supply wiring should be routed through the liquid tite fittings in the bottom of the OM 420 enclosure For most applications 18 AWG wire will suffice without excessive voltage drop 18 AWG will result in less than 0 1 V drop in 100 feet at 150 mA PVC jacketed multi conductor wire is a good choice that seals wel
5. IN POWER SWITCH must be set in the 12VDC or the 24VDC position for the power supplies to function For optimum battery life set the MAINPOWER SWITCH at 12VDC if neither power supply Omega Engineering Inc 4 Stamford CT USING THE RPS 1in the OM 420 voltage is set to 12 VDC or higher output For 12VDC or higher power supply OUTPUT VOLTAGE settings the MAIN POWER SWITCH must be set to 24VDC In the 12VDC mode the two batteries are in parallel hence the amp hour capacity is doubled i e approx 4AH In the 24VDC mode the two batteries are connected in series and the amp hour capacity is approximately 2AH CONTROL INPUT The two CONTROL INPUT terminals are provided for connection of an external control signal When HIGH 5 VDC any power supplies set to AUTO mode will turn on their outputs When the control signal returns to a LO 0 VDC state the supply outputs will turn OFF Note Ensure polarity is correct when making control wiring connections CHARGING The two internal gel cell batteries can be charged from a current source connected to the CHARGER terminals Charging can be performed simultaneous with power supply operation The CHARGER input will accept an AC or DC source and polarity of connection is not specified as an integral rectifier bridge circuit compensates for AC or either polarity of DC With the MAIN POWER SWITCH set in the 12 VDC position CHARGER input voltages of 13 5 to 20 VAC or VDC are acceptable With the switch
6. USING THE RPS 1in the OM 420 USING THE RPS 1 RECHARGEABLE POWER SUPPLY IN THE OM 420 OVERVIEW The RPS 1 is a self contained battery power source for use in conjunction with the OM 320 420 System Base to power transducers requiring external power e g Strain Gages Pressure transducers 4 to 20ma Loop Transmitters etc over a voltage range from 3 5 to 22 VDC The RPS 1 contains two User configurable rechargeable gel cell type batteries and integral recharging circuitry The charging circuitry will accept AC or DC current from Photovoltaic arrays wind generators utility sourced transformers plug in power supplies or other current sources The sealed batteries are capable of operating in any orientation and over a temperature range of 10 to 60C A slide switch allows the User to configure the RPS 1 for 12 or 24VDC operation Two User programmable Power Supply outputs are available which can source 7 different regulated voltage levels from 3 5VDC to 22VDC Outputs are short circuit over current protected The two Power Supplies can be independently programmed for output voltage as well as type of operational mode Two modes are available Continuous ON or AUTOMATIC Operation In AUTOMATIC Operation the power supply is under control of an optically isolated low voltage 5VDC 0 5mA control input signal This control INPUT interfaces directly to a OM 320 420 Digital Output line which can be programmed to cycle the RPS 1 power supplies ON
7. View of RPS 1 circuit board front panel open hl200 03 ecw Figure 4 Omega Engineering Inc 6 Stamford CT USING THE RPS 1in the OM 420 BATTERY REPLACEMENT NOTE USE CAUTION IN WORKING WITH THE GEL CELL BATTERIES TO PREVENT SHORTING OF THE TERMINALS OR WIRING AT ALL TIMES Under reasonable operating conditions and temperatures the two gel cell batteries should provide several hundred charge discharge cycles When the batteries will not charge completely and or they discharge rapidly they will need to be replaced To remove the batteries follow these steps hp TURN THE MAIN POWER SWITCH OFF Unscrew the four thumbscrews from the battery pack cover On the inside of the enclosure door ONO OR Disconnect the two plastic wiring connectors Remove the old batteries and insert the new ones Reconnect the two plastic wiring connectors Ensure that all wires match colors Tuck the connectors between the batteries and the edge of the enclosure door Replace cover amp install thumbscrews CAUTION CHECK THESE CONNECTIONS BEFORE TURNING THE MAIN POWER SWITCH ON INCORRECT CONNECTION WILL RESULT IN PERMANENT DAMAGE TO THE RPS 1 TROUBLESHOOTING SYMPTOM OUTPUT VOLTAGE IS LOW PROBLEM SOLUTION PROBLEM SOLUTION PROBLEM SOLUTION PROBLEM SOLUTION Batteries are discharged Recharge the batteries Power Supply is in current limiting mode Decrease the load current draw by reducing supply volt
8. age if compatible with sensor requirements switching some of the load to the other Power Supply More than one OUTPUT VOLTAGE PROGRAMMING SWITCH is ON Review the OUTPUT VOLTAGE setting table and correct the switch settings Desired power supply output voltage is 12 VDC or greater and the MAIN POWER SWITCH is set to 12 VDC Switch the MAIN POWER SWITCH to 24 VDC SYMPTOM OUTPUT VOLTAGE IS CORRECT BUT VOLTAGE AT SENSOR IS LOW PROBLEM SOLUTION SOLUTION Excessive voltage drop in sensor wiring Check for bad connections in wiring loop Use larger gage wire 18 AWG should be sufficient for most applications SYMPTOM STATE OF CHARGE INDICATOR DOES NOT LIGHT PROBLEM The MAIN POWER SWITCH is OFF SOLUTION Switch to 12VDC or 24VDC position Omega Engineering Inc 7 Stamford CT USING THE RPS 1in the OM 420 PROBLEM Batteries are fully discharged SOLUTION Charge the batteries SYMPTOM STATE OF CHARGE INDICATOR SHOWS LESS THAN FULL PROBLEM Batteries are slightly discharged SOLUTION Charge PROBLEM Power supplies are ON dropping the battery voltage SOLUTION Turn off supplies before checking the SOC or use the measurement as a relative SOC only PROBLEM Batteries are cold SOLUTION SOC readings are affected by temperature Use the display as a relative measure only PROBLEM Batteries are worn out SOLUTION Replace batteries SYMPTOM BATTERIES DO NOT APPEAR TO CHARGE PROBLEM Batteries are bad SOLUTION
9. and OFF providing transducer excitation under OM 320 420 control during a logging session This automatic power supply cycling technique maximizes RPS 1 battery life See Figure 1 for a sample Hypernet e RPS CTRL FlowexXrntr Figure 1 RPS 1 Control Using HyperWare Warm Up Icon Omega Engineering Inc 1 Stamford CT USING THE RPS 1in the OM 420 An integral State of Charge SOC indicator is provided which will display an approximate Battery State of Charge based on battery voltage under a fixed load Test is actuated by depressing a momentary SOC Test Switch HARDWARE USER CONTROLS Figure 1 illustrates the functional blocks contained within the RPS 1 An explanation of each block follows MAIN POWER SWITCH Provides ON OFF control of the RPS 1 In the OFF position the batteries are disconnected from the RPS 1 circuits power supplies State of Charge indicator charging circuits etc This switch in either 12 VDC or 24 VDC ON position selects how the two 12 volt gel cell batteries are connected parallel for 12 VDC nominal output or series for 24 VDC nominal output Note For charging the Main Power switch must be in either the 12VDC or 24VDC position External Power Battery State of Supply Control Charge light bar Signal 12 V Gel Cell BATTERY Main Power Switch 12 V Gel Cell t BATTERY Battery Charging circuitry Power Supply A
10. in the 24 VDC setting input voltages of 25 5 to 32 VAC or VDC are acceptable Charging current is limited within the RPS 1 to a maximum of 200 mA Photovoltaic arrays can be directly connected to the CHARGER terminal allowing for extremely long term stand alone operation contact factory for photovoltaic module and mounting kit information NOTE The MAIN POWER SWITCH must be in the 24VDC or 12VDC position to allow charging BOOST CHARGE The BOOST CHARGE momentary push button switch on the RPS 1 provides initial charging current to units with batteries that have been completely discharged If the RPS 1 batteries have been 100 discharged insufficient voltage exists to enable the charging circuitry and allow the batteries to recharge The BOOST CHARGE button bypasses the charging circuitry and allows a direct charging current to flow into the batteries To use the BOOST CHARGE feature on batteries that are suspected as being completely dead eg no lights glow when the Battery State of Charge TEST button is depressed connect up the charging source to the correct terminals on the RPS 1 as normal Then press and hold the BOOST CHARGE button for approximately 10 seconds then release it To insure that the unit is charging wait a few minutes then press the Battery State of Charge TEST button and one or more lights should glow indicating that the battery voltage is increasing NOTE Batteries that have been completely discharged may be permanentl
11. l in the liquid tite fittings OPERATION SET UP POWER SUPPLIES Select the desired output voltage for the A and B power supplies from the following table 1 22 VDC 2 18VDC 3 15 VDC 4 12VDC 5 10 VDC 6 5 VDC 7 3 5 VDC Set ONE of the seven VOLTAGE PROGRAMMING switches to the desired choice on each supply Ifa supply is not utilized set all switches OFF to the left Correct voltage setting can be verified with a volt meter reading from the OUTPUT terminal to the COMMON terminal ONLY ONE voltage programming switch should be ON for each supply Omega Engineering Inc 3 Stamford CT USING THE RPS 1in the OM 420 Battery State of Charge L T T T T T T I I RPS 1 Power 4 20mA transmitter _ to Port 1 Chan ee Oa Power Supply Output 5VDC Powered mV Output Transducer Signal to mV Output Port 1 Chan A EIRE s Power Supply Output Charger Input Com Control MON Input VBP QP lala 2222 2 2 2 2 RPS 1 Power Supplies _ fA Controlled by one of the b 4 Z al 4 standard OM 420 Digital Outputs La LR DO1 DO3 AZ GPDI Input GND DO2 D D D S OM 320 42
12. osition This allows for nominal 0 and 5 VDC operation as provided from the OM 320 420 Digital Output For special applications it may be desired to bypass the RPS 1 current limiting resistor and provide external current limiting The RPS 1 can be configured for this by placing the red pin jumper on the PCB in the EXTERNAL position See Figure 4 This RED colored jumper is located on the back of the RPS 1 circuit board Access is gained by the following steps TURN THE RPS 1 amp OM 320 420 POWER OFF Remove the OM 320 420 TSA retaining thumbscrew and unplug the TSA Remove the three thumbscrews at the top of the OM 320 420 200 enclosure Slowly tug on the front panel handle located near the top of the front panel and the front panel will swing open on its hinge POs If this RED jumper is moved to the EXTERNAL position current limiting MUST BE PROVIDED to limit the current flowing through the opto isolator diode to less than 5 mA Typical turn on current is approximately 200 uA Assume a 1 2 Volt drop across the diode for calculations Shorting Jumper Resistor limits current a through opto isolator 3 HA RPS 1 Control 8 2K Ohm Resistor be a Signal Input Y er O Opto Coupler Control Input Equivalent Circuit Shorting Jumper E Shorting Jumper position for internal current limit this is the factory default Position for NO setting X internal current limiting 3 gold pins on circuit board A
13. y damaged and will exhibit shortened life unless they are immediately recharged fully It is not advisable to discharge batteries to the point where the BOOST CHARGE is needed to initiate charging If the batteries do not recharge after a 24 hour period or discharge very quickly after removal from the charging source it is likely that they have been damaged and should be replaced STATE OF CHARGE SOC INDICATION Depressing the TEST switch connects a slight load across the batteries and displays a relative battery voltage indicative of state of charge of the battery on the 10 step LED display The test button should be Omega Engineering Inc 5 Stamford CT USING THE RPS 1in the OM 420 held down for approximately 10 seconds to dissipate any battery surface charge and give the most consistent reading Best SOC readings are given with both power supplies off and no charging current If the supplies are delivering current to an external load the SOC will indicate slightly lower than actual If charging current is flowing into the batteries the SOC will indicate slightly higher than actual MISCELLANEOUS CONTROL INPUT SPECIAL APPLICATIONS The CONTROL INPUT circuit is schematically shown in Figure 3 The signal is optically isolated from the RPS 1 circuitry through the opto isolator diode The signal current flowing through the diode is limited by the 8 2K series resistor as shipped from the factory red circuit board jumper in the INTERNAL p

Download Pdf Manuals

image

Related Search

Related Contents

製品安全データシート - シスメックス・ビオメリュー  CableWholesale 50W1-905304 surge protector  Une génération bouc émissaire. Enquête sur les baby  4 IN 1 #95145  REUNION DE COORDINACION 9/07/2015 - sattra  Bleaching Products - Prestige Dental Products  cover feature  

Copyright © All rights reserved.
Failed to retrieve file