Home

Agilent Technologies 33120A User's Manual

image

Contents

1. 4 MHZ J481 2 i lt 4 vec 4 el El 2160 6897 RES eae Cug9 j lu C415 j tu C422 tu AVA udis ses GND d 1U_ypE GND q lu_vGo A2GND lt Lu isve v Di R GND 2418 y B Btu vec GND qetle Blu voc azenn p DOLL Blus G Cully atu y 0417 Blu 0429 lu 5VCLK e E jv UL L3 pij ASLC CLK PG2 aSIC_CLK CNN TS is AMA eee GND St veg oy 7uF32 5 onn OS 4 BBtv yc k GND EHS 2 lu voc gnp C830 JL Blu voc E quen RENEE MS GND ei 241918 lu yee GND LOH RLY Blu yee 0414 j Q lu 0428 Lu 0432 lu y a LATCH_CLK vec GND 4 vec GND lt I vec GND lt vec GND CLK_ENAB z LCcu23 Ru2u 330 1K Y RPugu Zen o Un END 220 EXT_BMOD XY pBMQR proz ror 1a Pp fares n G 3 THF OO 12 qr WF HOLD i zem gt WF HOLD u 6 Bet ron Lag 1 WAVEFORM DAC uP_WF_HOLD A 18 uuu i uug2 14 3 VCC WALL SRAM
2. 903 T EM ER D 2 423 R420 UA 13 cus 430 s gt ai TOP SIDE 33120 66521 REV A dE MT z u13 gt R gt a E a Cp gt c xs cmi B C416 Leme A 5 E o C45 c y y 101 5 S m S S z gt u NR A 2 E C107 C410 3 gt a S 2 U202 a imi a 3 S 5 E 7 m EE S w m a mn o 422 38 0 U1051 fou L 60c 0LEN A LUO A S S S S 906 S SCH 26013 16013 AJ No q LL SON 700 9011 33120 66521 Component Locator Diagram 142 TOP SIDE 33120 66502 REV C 7437 m E edit bors SOLL Basso un EOL LU ROLLY JOELA MUSCHEL EH 0ZM LoELT LOE U LOLI ZOZ COEL ZOEN E Y0E U COEL VEL zoe voti EHN l UW 3 socia ZOb Hu 60144 il za Fo PE 33120 66502 Component Locator Diagram 143 Copyright Agilent Technologies Inc 1994 2002
3. U922 xoans T POL 3 NC TUACLY CRBT svo A Y9O1 TEEE 488 GPIB A LL Mi u997 cgt EGND L Jl d 5V0 TE 4 M2 CONNECTOR CROSSGUARD GE m SIENIE Ba svO ee 33120 66521 34401 88842 EN COMMUNICATION y ee m KH ech SVO EGND SE E DIOL 19 E aes DM he a 7 R E o y 21 e HP I BCK D102 19 LP TA 3 pl2 gr opo 8 U9gt 5v0 e SES DIO3 1745 zt DI3 3 ES ver 1 RDI BOND S 34 xr 2 32 d HANS itae Hee 315 315 902 HA S ue us ESO 18 rege FP a M usa UP e nee 3 5 l2 REWA 2 gt lt EES i 7 E 6 lias 43 OGDtQ uu DIOZ lle a2 8 DMI 15 3405 S y gt o i Com 87051 a m OBDtlo yd DIO ieee Spo Mg iE 4257 IGTXD T OGRXDX 7HACLY NC e HI OGDt2 2 Ensen G HPIBINT 15 PORT3 ua OGDC3 3 GPIB CONTROLLER 16 2239 0600 3 alsen re A NE z PORTA 38 0GDG 5 TE 23 TE 5 CPL 2211 3 x Ee ees 0GDC63 6 EGND p E3ES A IK scr int R12 usas REPL 224 322 EGND gv0 192 1 y EIN Ss EC G NIR SC E SE EE pa EE 5v0 HPIBRSTx ATN N 21 END ROBY op NG tae pez HPIBCK 28 nj RESET cot epg DEOT EGND EN oarxp POL 1 78 Sep Ports Lass NO E SRO pwede HB S gt crea i moe Pat
4. FPINT PRST vec NON VOLATILE vr vcc 2oraia ARB MEMORY 32 U186 PCL Ciis jj 0 Dlu ae hee 1 mu FILN GND vec gt sta2 FLASH MEMORY aM29F 10 120UC a FREG_ADJ Ed C115 jj 0 Dlu LOCK WER LOCK R120 EE 18V GND I OPTLONX R121 215 A ig2 ERC PG C116 r E 3 rice peels GND GLK_ENAB AA J1 02 E AV GND lt gt J122 E spy EH j 0 816 EN 7 A 18V J122 131271 B8 GND gt Jide vec vcc 5 id SE WAVALG Ge FRONT PANEL 8 U101 R114 GND lt H gt 122 CONNECTOR Lak RUE s Hu 28 oe R115 svo 2 E me Jl Mw 1610 5699 s Pas 3 EEN D u129 109 16 gt 12191 DTD gt WMEMENX 9 8 y ll CLKI a e ics E S V ei 1 3 ch 5 a d THACT 32 E HCPL 2211 300 12M A ben ER OM ES ule AG GND N u Dale i3 Li ACD Jo ge P LESSE S ERGO 1 ACL 11 PS V 7WACLU 2 i 12 FPENT R106 215 GFPINT 16 2 i GND AG Gi 9 CHINT CHINT i RE 7 AJAY ie Je GND J181 OP_RXDX 7 AC 5 SE BLIT ID Bug 8 ACE 27 eee OP_RXD 9 ACS 26 AZE2IT3 4JAV 184 didi EONRSTE PONRST ig Ang 23 Ge FPDI R109 218 1GFPDI E VCC 12 ACL2 4 i 13 ACl3 26 lu ACH 3 FPSK 215 15 ACIS 3 5108 gt Sidi 13 1 uLa2 vec PRGAL6 2 7 3 PRGA17 211 voc 18V JIG UCONTROLLER SN m ib won M
5. UAE 3 U386 sval Alta SLL sya 2 Yy de i w 5 QQREF T6 2 TL 74CD 5VAL H La 11 V Y 2 A2GND S 15VC IXRLYRST XRLYRST PEL 8310 LA Ple uag E LL 6 RP 322 10K SHT_LOOP FVAT AZGND veo 1SVC PGS SETKSA1 RP321 sel U315 PCS SRSTKSOI 14 3 5 4 U3B6 EGS SE TK502 POS RSTK522 LK 7 PG6 A eu SYM PGL w pie SETK601 Sek 6 TLO74CD gt LONG_SHT GI PGS I SEIKOA T is gg 5 P tae Y x I MUX K6 GES 371 NT A2GND 8 15VC A 1 SERD R321 RLYDAT 2 T A SERCLK E 3 R303 RLYCLK M RP3Z Tak T SERSTB e 12 R324 RLYSTB y 4 99K A TYHACT257 RP 301 Wie 2 1 PG AM INT MUD 8 HACT2S SERDAT LA i i ig ee 1820 5943 E La L 0303 8 EEG SW_AMPL RA gt TRU n 9 TL 74CD 11 9 V Y EN3 ISS AN usage A2GND S 15V0 8 SRG8 4 SVAL R g RLYCL 3 be RPE Tak Ep p i nmo EGS sETK822 B2GND 2 EGS RSTKSD2 15VC EGS SETK823 Ee 12 BOSS RSTKBUS RP 301 R319 te Hrg pos SEIK804 i2 5 12 U326 u ggk 16 peg g RSIK U T K t m PG 1 2 13 iw EGS SETK8 1 c3gu OUT OFFSET 20 b3Q RSTKBAL E E3 TL 74CD 6595 18 Blu 5 z 11 TPIC6S9SDW V x 4 99K A2GND a 15VC 8 a3 3l V AZGND A2GND C319 2 21u SERDAT2 R313 pa emi p 1 78K 619 L 2 vee 15VC RP321 16 Ups 15 2 3 4 U307 SERSTB cz TOR L PGU AM GAIN 1SVC vec gt EN3 FE 2x ia TL 74CD SRCE lu pg fi 12 4 U3L4 SERCLK are V
6. Agilent 33120A Measurement Function OUT TERM Ampl Freq Nominal Error Sine wave HIGH Z 7 0 Vrms 1 0 kHz 7 0 Vrms 0 07 Vrms Sine wave HIGH Z 5 7 Vrms 1 0 kHz 5 7 Vrms 0 057 Vrms Triangle wave HIGH Z 5 7 Vrms 100 Hz 5 7 Vrms 0 057 Vrms Ramp wave HIGH Z 5 7 Vrms 100 Hz 5 7 Vrms 0 057 Vrms Square wave HIGH Z 10 0 Vrms 100 Hz 10 0 Vrms 0 1 Vrms Square wave HIGH Z 8 0 Vrms 100 Hz 8 0 Vrms 0 08 Vrms 1 Output termination set using front panel controls HIGH Z assumes no load on output 500 assumes a 50Q 0 10 load on output 56 Chapter 4 Calibration Procedures DC Function Offset Verification DC Function Offset Verification This test verifies the DC offset and DC output specifications Set the function generator for each output indicated in the table below Use a DMM to measure the function generator dcV output Compare the measured results to the test limits shown in the table This is a HIGH Z output termination test Agilent 33120A Measurement Function OUT TERM Ampl Nominal Error DC Volts HIGH Z 10 0 Vdc 10 0 Vdc 0 20 Vdc DC Volts HIGH Z 10 0 Vde 10 0 Vde 0 20 Vdc AC Amplitude Verification This procedure is used to check the output amplitude calibration of the function generator Verification checks are performed to check the accuracy of the pre attenuator and post attenuator Make sure you have read Test Consid
7. 115 Chapter 7 Replaceable Parts 33120 66521 Main PC Assembly Reference Designator C535 C536 C539 C540 C541 C542 C543 C544 C545 C546 C547 C548 C551 C552 C553 C554 C601 C607 C608 C623 C624 C630 C631 C632 C633 C702 C703 C704 C705 C706 C707 C709 C710 C711 C712 C713 C714 C719 C720 C802 C901 C902 C903 C906 C908 C909 C911 C913 C1001 C1002 C1003 C1004 C1005 C1006 C1007 C1008 C1009 C1010 C1011 C1013 C1014 C1015 1016 Agilent Part Number 0160 5952 0160 7721 0160 5965 0160 5967 0160 7733 0160 5953 0160 5961 0160 5965 0160 6497 0160 5954 0180 3975 0160 5945 0160 5945 0160 5955 0160 5957 0160 5953 0160 5975 0160 5942 0180 3975 0160 5975 0180 3975 0180 3859 0180 3975 0180 3859 0160 6497 0160 5942 0160 5964 0160 6497 0160 5955 0160 6497 0160 5945 0160 6497 0160 6497 0180 4313 0180 3751 0180 4313 0180 3751 0180 4086 0180 3751 0160 6497 0180 4589 0180 4116 0160 6497 0180 4116 0160 6497 Qty m MI N Part Description CAP FXD 330 pF 50 V CAP FXD 82 pF 4 196 50 V CER COG CAP FXD 150pF 5 50 V CER COG CAP FXD 100 pF 5 CAP FXD 100 pF 1 50 V CER COG CAP FXD 270 pF 50 V CAP FXD 22 pF 50 V CHIP CAPACITOR CAP FXD 0 1 uF 25 V CAP 220 pF 5 50V CAP FXD 2 2 uF 20 V TA CAP FXD 0 01 uF 50 V CAP FXD 0 01 uF 50 V CAP FXD 68 pF 50 V CAP FXD 47 pF CAP FXD 270 pF 50 V CAP FXD 10 pF 50 V CAP FXD 1 pF 50V CAP
8. s 8 S 8 S 8 s 8 sj aj Um RDX go We EF P Z Wax 1 7eACT1 36 E S S 3 S 2 E 3 ES 7HACTES 3 5 5 3 3 3 3 5 3 3 3 3 2 ER P ER EREN 1 mE ppap P 2 a 5 gt gt 3 3 gt 5 E 3 3 T4ACT 32 s s T S s m s s s si 3 s E s si V V GND GND GND GND GND GND GND GND GND GND GND GND 33120 66521 sheet 1 of 10 Floating Logic Schematic 131 ASIC_OLK LEE PG4 PGL pene T um PEE ES 11 HODWRK MODWRX MRAM WR sti 7 ACT32 U218 gt 6 9 RW 8 MODOEX U212 stuer 2699 3034 HOST Acie BL PRZ 74ACT08 U218 R205 a GA asf SCT i HALR GND lt g gt JEN 1K
9. Chapter 5 Theory of Operation Filters Filters Block 5 on block diagram page 129 Schematic on page 135 The output of the Waveform DAC passes through one of two anti alias filters A 17 MHz 9th order elliptical filter is used for the sine wave and square wave output functions A 10 MHz 7th order Bessel filter is used for filtering all other output functions including all arbitrary waveshapes The diagrams below show the typical frequency response of these filters 17 MHz Elliptical 10 MHz Bessel db out 00 20 0 16 5 4 0 0 20 0 20 0 Ze frequency in MHz frequency in MHz The filters are switched in or out of the signal path by latching relays K501 and K502 Their set or reset state is selected by momentarily pulsing the appropriate coil of the relay Relay coils are pulsed with 5 volts for 15 ms through relay drivers U301 and U302 The main controller U102 writes data bytes to ASIC U103 which transmits this data to the relay drivers via the internal 3 wire serial data bus SERCLK SERDAT and SERSTB to accomplish these relay state changes When K501 and K502 are set the 10 MHz Bessel filter is selected 92 Chapter 5 Theory of Operation Waveform DAC Amplitude Leveling Waveform RAM Waveform DAC Amplitude Leveling Waveform RAM Block 4 on block diagram page 129 Schematic on page 134 The Waveform DAC U407 converts 12 bit digital data from waveform RAM s U404 and U405 into positive and negat
10. SYNC signal detection failure Bessel filter path This test runs the special waveform described in test 606 and counts transitions of the SYNC line The test should provide 8 transitions of the SYNC signal The test also checks the 7th Order Bessel filter path and U620 and U604 An incorrect number of transitions will generate an error This test will fail if a trigger signal is present on the rear panel Ext Trig BNC input SYNC signal detection failure Elliptical filter path This test runs a special waveform and counts transitions of the SYNC line The test should provide 2 transitions of the SYNC line The test checks the 9th Order Elliptical filter path An incorrect number of transitions will generate an error This test will fail if a trigger signal is present on the rear panel Ext Trig BNC input I O processor does not respond This test checks that communications can be established between U102 and U903 through the optically isolated U101 and U901 serial data link Failure to establish communication in either direction will generate an error If this condition is detected at power on self test the function generator will beep and the error annunciator will be on I O processor failed self test This test causes the earth referenced processor U903 to execute an internal ram test Failure will generate an error Checks that the calibration security disable jumper is removed If the jumper is shorted at power on all non volatile R
11. You can also enter calibration constants from the remote interface Remote operation is similar to the local front panel procedure You can use a computer to perform the adjustment by first selecting the required setup The calibration value is sent to the function generator and then the calibration is initiated over the remote interface The function generator must be unsecured prior to initiating the calibration procedure For further detailing on programming the function generator see chapters 3 and 4 in the Agilent 33120A User s Guide Recommended Test Equipment The test equipment recommended for the performance verification and adjustment procedures is listed below If the exact instrument is not available use the accuracy requirements shown to select substitute calibration standards Instrument Requirements Recommended Model Use 50 feedthrough load 500 0 1 0 Q P O T 6 1 2 digit Digital 20 Vdc 0 01 Multimeter DMM Integrating ACrms Agilent 34401A Q P T 10 Vacrms 0 1 Thermal Voltage Converter 1kHz to 15 MHz 3 Volt 50 Q termination type or Agilent E4418A with Power Meter 100 kHz to 15 MHz Agilent 8482A Q P or and 20 dB attenuator Wideband ACrms Meter 1 VAC rms 0 5 1 kHz to 20 MHz Frequency Meter 1 ppm accuracy Agilent 53131A Q P T Oscilloscope 100 MHz Agilent 54624A T Spectrum Analyzer Response to 90 MHz Agilent 8560EC O Q Quick Verification O Optional Ver
12. No part of this manual may be repro duced in any form or by any means including electronic storage and retrieval or translation into a foreign language without prior agreement and written consent from Agilent Technologies as governed by the United States and international copyright laws Manual Part Number 33120 90017 March 2002 order as 33120 90104 manual set Edition Edition 6 March 2002 Edition 5 August 1997 Edition 4 February 1996 Edition 3 May 1994 Edition 2 March 1994 Edition 1 January 1994 Printed in Malaysia Agilent Technologies Inc 815 14th Street S W Loveland Colorado 80537 U S A Assistance Product maintenance agreements and other customer assistance agreements are available for Agilent Technologies products For assistance contact your nearest Agilent Technologies Sales and Service Office Further information is available on the Agilent web site at www agilent com find assist Trademark Information Microsoft and Windows are U S registered trademarks of Microsoft Corporation All other brand and product names are trademarks or registered trademarks of their respective companies Certification Agilent Technologies certifies that this product met its published specifi cations at the time of shipment from the factory Agilent Technologies further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology
13. Triangle Ramp Arb Rise Fall Time Linearity Settling Time Jitter 20 ns 496 196 4 5 ns 2096 to 8096 to 5 MHz 4096 to 6096 to 15 MHz 40ns typical lt 0 1 of peak output lt 250 ns to 0 5 of final value 25ns OUTPUT CHARACTERISTICS 1 Amplitude into 509 2 Accuracy at 1 kHz Flatness 100 kHz 100 kHz to 1 MHz 1 MHz to 15 MHz 1 MHz to 15 MHz Offset into 500 3 Accuracy Output Impedance Resolution Output Units Isolation Protection 50 mVpp 10 Vpp 1 of specified output sine wave relative to 1 kHz 196 0 1 dB 1 5 0 15 dB 2 0 2 dB Ampl gt 3Vrms X 3 596 0 3 dB Ampl 3Vrms x 5 Vpk ac dc 2 of setting 2 mV 50 ohms fixed 3 digits Amplitude and Offset Vpp Vrms dBm 42 Vpk maximum to earth Short circuit protected 15 Vpk overdrive lt 1 minute 1 Add 1 10th of output amplitude and offset specification per C for operation outside of 18 C to 28 C range 1 year specification 2 100 mVpp 20 Vpp amplitude into open circuit load 3 Offset 2 X peak to peak amplitude 4 For square wave outputs add 2 of output amplitude additional error Chapter 1 Specifications Agilent 33120A Function Generator MODULATION CHARACTERISTICS AM Modulation Carrier 3 dB Freq Modulation Frequency Depth Source FM Modulation Modulation Frequency Peak Deviation Source Burst Modulation
14. 125W TKF TC 0 100 2M627 MCR18FX R1307 1308 0699 1330 2 RESISTOR 100K 1 125W TKF TC 0 100 2M627 MCR18FX R1309 0699 1399 1 RESISTOR 23 7K 1 125W TKF TC 0 100 2M627 MCR18FX 1119 0960 0892 ROTARY ENCODER 28480 0960 0892 U1101 33120 88813 1 87C51 PROG 28480 33120 88813 U1102 1826 1402 1 IC V RGLTR FXD POS 4 8 5 2V 8 P SOIC PKG 04713 MC78LO5ACD U1103 1826 2264 1 IC PWR MGT UND V SEN 8 PINS P SOIC PKG 04713 MC34064D 5 U1201 1820 5562 1 74HC02 GATE QUAD 2 INPUT NOR INPUT 01295 SN74HC02D U1202 1820 4966 1 IC FF CMOS 74HC D TYPE POS EDGE TRIG 01295 SN74HC74D U1203 1820 5330 1 IC INTERFACE DRIVER BIPOLAR DISPLAY 01295 SN75518FN U1204 33120 89301 1 VACUUM FLUORESCENT DISPLAY 28480 33120 89301 U1301 1826 1528 1 IC COMPARATOR LP QUAD 14 PIN PLSTC SOIC 27014 LM339M U1302 1820 6756 1 IC SHIFT REGISTER CMOS 74HC BIDIR 04713 MC74HC299D Y1101 0410 4009 1 CERO RES 12 MHZ 1 0 8 28480 0410 4009 124 M 33120A Mainframe Chapter 7 Replaceable Parts 33120A Mainframe Reference Designator CBL1 CBL2 CBL4 CD1 CVR1 F1 FRM1 HDW1 HDW2 HDW3 HDW4 KIT1 KYC1 KYC2 KYC3 MP2 PNL1 PS1 SCR1 SCR7 SCR8 SCR9 T1 WD1 Agilent Part Number 33120 66521 33120 66502 3160 0847 33120 61601 RS232 61601 33250 13603 33120 84131 2110 0458 33120 80111 0380 1820 0535 0154 3050 1547 34401 88304 34401 86010 33120 87411 34401 43711 34401 45011 33120 81911 33
15. Chapter 2 Quick Start To store the instrument state To store the instrument state You can store up to three different instrument states in non volatile memory This enables you to recall the entire instrument configuration with just a few key presses from the front panel The following steps show you how to store and recall a state Set up the function generator to the desired configuration The state storage feature remembers the function frequency amplitude dc offset duty cycle as well as any modulation parameters Turn on the state storage mode Three memory locations numbered 1 2 and 3 are available to store instrument configurations The instrument configuration is stored in non volatile memory and is remembered when power has been off TN T j v Hj Pp STORI This message appears on the display for approximately 10 seconds Repeat this step as needed Store the instrument state in memory location 2 91 Use the up and down arrow keys to select the memory location E N STORI To cancel the store operation press Shift Store again or let the display time out after 10 seconds Save the instrument state The instrument state is now stored To recall the stored state turn to the next page 1 n You can also use the knob or enter number mode to enter a memory location 31 Chapter 2 Quick Start To store the instrument state To verif
16. D SYS MI ENU 3 Move down to the COMMANDS level within the SYS MENU The OUT TERM command is your first choice on this level 1 OUT Tl 4 Move across There are six E RM to the POWER ON command on this level command choices available in the SYS MENU Each choice on this level has a number prefix for easy identification 1 2 etc 2 POWER ON You can also use the knob to scroll left or right through the choices on each level of the men u 41 Enter mn Chapter 3 Front Panel Menu Operation A front panel menu tutorial Move down a level to the PARAMETER choices The first parameter choice is DEFAULT for the POWER ON command DEFAULT is the factory setting and is stored in non volatile memory DEFAULT Move across to the LAST STATE choice 1 There are two parameter choices for POWER ON LAST STAT E Save the change and turn off the menu The function generator beeps and displays a message to show that the change is now in effect You are then exited from the menu Cycle the power to restore the default values Turn the function generator OFF and then ON The default output state will now be in effect 1 kHz sine wave 100 mV peak to peak 50Q termination You can also use the knob to scroll left or right through the choices on each level of the menu 42 Chapter
17. Palo Alto CA U S A Riverside CA U S A Sunnyvale CA U S A Santa Clara CA U S A Marietta GA U S A Clifton NJ U S A Des Plaines IL U S A St Paul MN U S A Rockford IL U S A Redwood City CA U S A Kyoto 615 JAPAN Mountain View CA U S A Ohme shi Tokyo JAPAN Zip Code 17111 75265 60013 11021 60195 91505 95014 94040 60030 16701 46514 87109 78411 75234 94086 53212 02062 85281 14070 02876 95052 60532 94303 92507 94086 95054 30067 07012 60016 55144 61101 94063 94043 126 Schematics Schematics e 33120A Block Diagram 129 e Mechanical Disasembly 130 e Floating Logic Schematic 131 e Digital Waveform Data Synthesis Schematic 132 e System DAC Schematic 133 e Waveform DAC Schematic 134 e Filters Schematic 000 135 e Sync Square Wave and Attenuator Schematic 136 e Output Amplifier Schematic 137 e Output Attenuator Schematic 138 e Earth Reference Logic Schematic 139 e Power Supplies Schematic 140 e Display and Keyboard Schematic 141 e 33120 66521 Component Locator Diagram 142 e 33120 66502 Component Locator Diagram 143 You may notice parts labeled as No Load on several schematics These are parts that were included in the original design but we
18. Service Guide Publication Number 33120 90017 order as 33120 90104 manual set Edition 6 March 2002 Copyright Agilent Technologies Inc 1994 2002 For Safety information Warranties and Regulatory information see thelast pagein this manual Agilent 33120A 15 MHz Function Arbitrary Waveform Generator Warning Note Unless otherwise indicated this manual applies to all Serial Numbers The Agilent Technologies 33120A is a high performance 15 MHz synthesized function generator with built in arbitrary waveform capability Its combination of bench top and system features makes this function generator a versatile solution for your testing requirements now and in the future Convenient bench top features e 10 standard waveforms e Built in 12 bit 40 MSa s arbitrary waveform capability e Easy to use knob input e Highly visible vacuum fluorescent display e Instrument state storage e Portable ruggedized case with non skid feet Flexible system features e Four downloadable 16 000 point arbitrary waveform memories e GPIB IEEE 488 interface and RS 232 interface are standard e SCPI Standard Commands for Programmable Instruments compatibility e Agilent IntuiLink Arb Waveform Generation Software for Microsoft Windows The procedures in this manual are intended for use by qualified service trained personnel only Agilent 33120A 15 MHz Function Arbitrary Waveform Generator The Front Panel at a G
19. e The calibration message may contain up to 40 characters The function generator can display up to 11 characters of the message on the front panel any additional characters are truncated e The calibration message is stored in non volatile memory and does not change when power has been off or after a remote interface reset 66 Shift Menu On Off Enter Chapter 4 Calibration Procedures General Calibration Adjustment Procedure General Calibration Adjustment Procedure The adjustment procedures described in chapter 4 use the CAL MENU to generate and set internal calibration constants The general menu procedure is the same for all calibration setups The following example demonstrates making the Frequency and Burst Rate adjustments Turn on the menu A MOD MENU Move across to the CAL MENU choice on this level F CAL MENU Move down a level to the UNSECURED command 1 UNSECURED If the display shows SECURED you will have to unsecure the function generator to perform the calibration procedures A procedure is given on page 47 Move across to the CALIBRATE choice 2 CALIBRATE Move down one level The display indicates the calibration setup number You can change this number to perform individual specification adjustments ETUP 00 Begin the Frequency and Burst Rate adjustment proce
20. om DS E O 29014 peN poss izo Eo EE b 1V J922 MBAVO J t ral I BUSREG2 El RE DS Eeer e Cor 7 p A NC lt gt 7 N87C51FAN7 OGD 7 0 nan 7 DNRFD 982 Vee 1 EI E 22 Gee Ap hei DA gt 2 Jogo LSH ARI DIO vii g 3 REN CR NC 39 D103 Eu te ary V DATA 1 0 DIOH V 3 1 O 4 IFC 3 EGND V a DIOS AN J902 DBUS 36 DIOE Y 3 d ON EGND 355185 gt L DAV 6 Jga2 5V0 a ims 8 ep D108 DNDAG 2a 2 S NDAC 8 SVO gt 292 J902 ED DNRED P y2 i JI 6 NRED 7 L 1 14 usg2 22 MP9914FNL gt 29 E e v2 1 Fc Ela 3 pr s y TSALS162 a AST BE EGND SN7SALS162DW EGND 1 2 922 BYPASS ei res CAPS ugg2 mo EGND ue HPIBRSTX p12 J922 20 74AC14 l 1992 5V0 5V0 5V0 5V0 5v0 7 w EGND Gi 922 o a a E oy 4 22 lt J9g2 8 a 8 8 EGND O MBAV99 ES J922 3 p E 3 3 ENKEN L24 yoga E E OGEXTX S si s s KH no EGND ei EHS yoga 5 sono EMHI lt J g2 MBAV99 CR923 EGND EGND EGND EGND EGND SVO a RS2 32 5V0 Hit gt EGND 17 CONNECTOR SVO 2 RS232 DRVR 5 i A 23 cre C2 n 45V0 R d EXTERNAL C994 B 1u y jej 1180 cz 6 C906 2 lu NC 4991 902 21 5K TRIGGER Fono lt 0983 2 10 3 va LZ C9US Lu EGND 1 8 Jgpi e A Sopa ksvo 18 lower S OGEXT D lt J923 p E 1K JUACIL 1K Ta CEX 12 s 15 TR10U1 da T2 11 8 TR20UT 4 7 c9 2 E CEXI 13 gt PIE RECT IN 2 Jeg 68p CEX2 1g PE RECZTN 633981 PMH EGND V lt PMH2 16 LT11eacs NC 2 sugi EGND 8 V y NC 85 y9g1 45V0 EGND EGND ne 25
21. 10700 DE Seet ADC CAT DG 47 ABDATa AS 57 3 ENAA 67 y peels ore VS ABC e Pre PRE ATTNI NC ACHS PQ 5 3 55 ADS SYS ADS 48 65 WEI uw T CL 3 Dig PRE_ATTN2 8 ADS P3 5 ADDATS Au AC2D 3V 6 AD wu AD PG ei NC ACH6 PQ 6 Su ADC6 6X6 ADE SE 64 5 Gen 8 28 pret A 1 12 TRG E CHINT 3 ACHT PQ 7 AD6 P3 6 53 ADC YT A ADDAT6 AS gt 17 ADS Gw ADCS PG EN E DC 52 de 57 El CH ZU 2 Lap lu TRGSELO AD7 P3 7 ADDAT7 b 1GTxD 769 ER 1K OP TXD 182 55 arp ano po apo2 ACB 8 AG A6 eB C5 DOTE Oy St 32787 18 AIOI Gye ADCO 1 16 POSS TRGSELI 1 2 OF RXT se il O ano A 5 j i AUDI 23 7 ael ADD ADC 1 1 PG TRGSEL2 PFAIL SIE l aw e22 ExrTINT ADIA P4 2 aro AO 7 aia 12 12 2 TOR Ae pyan Amea o Dl ACID ii Me Site 2 7390273 PG3 NC 3530 P2 4 T2RST ADI2 P O Lue 4H 3 L a12 RAMATU T PRZEZE ESEE SERSTB da P2 sew AD13 Pu S oro AH te a13 1620 8907 RAMCE a da M m ab D2 6 T2UP DN ADlu Pu 6 Labb A1 SCX6206AK DES Bam P2 7 T2CAPT ADIS P4 7 ao AUS IE AIS S BIS 22 1 33 zj 3 4 Ka KM622560LG 7 GND GND JM1 1 CAL SECURE DISABLE AL DEB RAMALS RAMALY g DER RAMA1 3 RAMAT l II DISABLE GND NORMAL N C EE ulga ACLS ED AC15 0 A BIN OCT PROAL PRGAL7 bly opts PG PS NV LOWX PRGATE E po 57 EB BEZ MRAM MRX H 4 1 PG Kasie m bypass Capacy tore PEREN 6 e Ei BEZ Veit HCPL 2211 Dpto BH INST E a SHE FE ASTC_CTLX vec vec vec vec ver vec vec vec VCC vec vec vec SE U211 E Pim EE 12 m PGH Pi
22. 15V 15V 15V 15V Ej fe one 15VB XS PZT 3906 C712 C711 18v i R731 18V 15V 26 1 2 2 1000 R713 3 3 H d 0727 R769 0711 e EE 82 5 A R781 q 7 5 26 1 PZT 3906 V V 0783 NA am gt FB7 1 AGND AGND AGND pebsaniy SE 825 825 0713 MMBT 3926 R774 0714 R766 3 R768 RZA n ye 0795 A Ran PZT 3926 a peb_only 25 1 26 1 as 0701 0724 lt lt 0 RM PMBTH1 i AC 26 1 PMBTH1B Ja R726 R771 le 6 8 26 1 AGND R7 S R716 15V 2k 100 7 NC 5 NO R717 R744 102 R752 ER 1 u782 EC7a9 Ln K oy 711 lap gt 15V R745 192 R753 ER AD711JR E R711 R71 Ee PGB gt UMS R746 102 R754 ER AMP_OUT R738 c785 i5y 2 61K Y 2 ules R706 R719 Sa al p R747 100 R755 109 VN 2K ipa 13 8 s Y Taa R723 EP 19 6 lop 15V p E 0792 1 AGND EHH 15y AMP_ IN R758 S ane 19298 Ze 199 X 0715 B lu 26 1 NS MMBTHS1 p AGND R727 R772 AGND pa lu 15y AV 12 R721 SCH xa C716 Bt Ch oni AGND lt te 415v p y R760 ms C717 18 1 lu 0797 26 1 0708 R76l R734 AGND Tov R712 MMBTH8 1 Se 2775 3 3 AGND lt p E4184 Blu 15y ECH R723 Love SH our orrse ri P833 y SET PZT 3904 C719 8 1 i 122K 10K peb only MMBT 39ZU4LT L 46 4 ZT 390 AGND vlt aeg V AV 1 FB7 2 ge Se R741 R749 ia LEN 0718 1 K Y 82 5 825 825 R763 0715 33120 66521 1853 9778 AGND 3 CR782 7 5 2 PZT 3904 i 15V 15V R735 R764 i 0717 3 3 15V 15V 15V PGA AMP IN 7 26 1 Na 273904 1SVB AMP_INX 0712 C713 AV 12 R762 2 0718 2 2u T 100 u LL MM
23. 1V rms sine wave output 5 Adjust R710 for a minimum reading on the voltmeter Typical readings are less than 0 005 Vrms 6 Replace the covers as described on page 130 80 Chapter 4 Calibration Procedures Error Messages Error Messages The following tables are abbreviated lists of function generator s error messages They are intended to include errors which are likely to be encountered during the procedures described in this chapter For a more complete list of error messages and descriptions see chapter 5 in the Agilent 33120A User s Guide System Error Messages Error Error Message 330 Self test Failed 350 Too many errors 501 Isolator UART framing error 502 Isolator UART overrun error 511 RS 232 framing error 512 RS 232 overrun error 513 RS 232 parity error 514 Command allowed only with RS 232 521 Input buffer overflow 522 Output buffer overflow 550 Command not allowed in Local Self Test Error Messages Error Error Message 601 Front panel does not respond 602 RAM read write fail 603 Waveform RAM readback failed 604 Modulation RAM readback failed 605 Serial configuration readback failed 606 Waveform ASIC failed 607 SYNC signal detection failure 608 SYNC signal detection failure 625 I O Processor not responding 626 I O Processor failed self test 627 I O Processor reset possible low power line voltage 81 Chapter 4 Calibration Procedures Error Mess
24. 2 Remove the line voltage selector from the assembly EN Fuse 500 mAT for all line voltages Part Number 2110 0458 3 Rotate the line voltage selector until the correct voltage appears in the window 4 Replace the fuse holder assembly in the rear panel 100 120 220 230 or 240 Vac Verify that the correct line voltage is selected and the power line fuse is good 23 Chapter 2 Quick Start To adjust the carrying handle To adjust the carrying handle To adjust the position grasp the handle by the sides and pull outward Then rotate the handle to the desired position E C Wu HI Bench top viewing positions Carrying position 24 Freq Enter Number 1 2 MHz m Vpp Chapter 2 Quick Start To set the output frequency To set the output frequency At power on the function generator outputs a sine wave at 1 kHz with an amplitude of 100 mV peak to peak into a 50 termination The following steps show you how to change the frequency to 1 2 MHz 1 Enable the frequency modify mode The displayed frequency is either the power on value or the previous frequency selected When you change functions the same frequency is used if the present value is valid for the new function 1 000 000 0 KHz 2 Enter the magnitude of the desired frequency O Notice that t
25. 500 2M627 MCR18J R728 0699 1415 RESISTOR 100 4 196 125 W TKF TC 0 100 28480 0699 1415 R729 R730 0699 1827 2 RESISTOR 130 1 1206PKG TC 100 200V 1 8W 28480 0699 1827 R731 R732 0699 2890 4 RESISTOR 3 3 5 1206 125 W 200V TC 500 2M627 MCR18EZHJ3R3E R734 R735 0699 2890 RESISTOR 3 3 5 1206 125 W 200V TC 500 2M627 MCR18EZHJ3R3E R738 0699 1378 1 RESISTOR 2 61K 1 125 W TKF TC 0 100 28480 0699 1378 R739 0699 1387 3 RESISTOR 6 81K 1 125 W TKF TC 0 100 28480 0699 1387 R740 0699 1426 1 RESISTOR 287 1 125 W TKF TC 0 100 28480 0699 1426 R741 0699 1437 RESISTOR 825 1 125 W TKF TC 0 100 28480 0699 1437 R744 R747 0699 2488 RESISTOR 100 0 1 125 W TF TC 0 25 11502 W1206R031000BT R748 R749 0699 1437 RESISTOR 825 1 125 W TKF TC 0 100 28480 0699 1437 R750 R751 0699 1387 RESISTOR 6 81K 1 125 W TKF TC 0 100 28480 0699 1387 R752 R755 0699 2488 RESISTOR 100 0 1 125 W TF TC 0 25 11502 W1206R031000BT R756 0699 3019 14 RESISTOR 26 1 1 SM0805 1 W TC 250 100V 28480 0699 3019 R758 0699 3019 RESISTOR 26 1 1 SM0805 1 W TC 250 100V 28480 0699 3019 R760 R764 0699 3019 RESISTOR 26 1 1 SM0805 1 W TC 250 100V 28480 0699 3019 R766 R772 0699 3019 RESISTOR 26 1 1 SM0805 1 W TC 250 100V 28480 0699 3019 R774 R775 0699 3022 2 RESISTOR 46 4 1 1 W TKF TC 0 200 28480 0699 3022 R801 0699 3769 4 RESISTOR 11 8 1 125 W TKF TC 0 100 28480 0699 3769 R802 R803 0699 1423 RESISTOR
26. After acceptance you should repeat the performance verification tests at every calibration interval If the function generator fails performance verification adjustment or repair is required 55 Chapter 4 Calibration Procedures Frequency Verification Frequency Verification This test verifies the frequency accuracy of the two sources in the function generator All output frequencies are derived from a single generated frequency and only one frequency point is checked The second test verifies the burst rate frequency Set the function generator for each output indicated in the table below Use a frequency meter to measure the output frequency Compare the measured results to the test limits shown in the table This is a 500 output termination test Agilent 33120A Measurement OUT BURST BURST Function TERM Ampl Freq RATE CNT Nominal Error Sine wave 50Q 3 5 Vrms 1 00 kHz 1 00 kHz t 0 02 Hz Square wave 50Q 3 5 Vrms 1 00 kHz 500 Hz 1 CYC 500 Hz 5 Hz Function Gain and Linearity Verification This test verifies the output amplitude accuracy specification for sine wave triangle wave ramp and square wave outputs Set the function generator for each output indicated in the table below Use a DMM to measure the function generator ACrms output voltage Compare the measured results to the test limits shown in the table This is a HIGH Z output termination test
27. DDS ASIC 95 e System DACs 2 000000 eae 96 e Floating Loge 97 e Earth Referenced Logic 1 1 1 1 2 1 98 e Power Supplies 98 e Display and Keyboard 100 The self test procedures are described in chapter 6 84 Chapter 5 Theory of Operation Block Diagram Overview Block Diagram Overview This discussion pertains to the block diagram shown on page 129 The function function generator s circuitry is divided into two major blocks the floating section and the earth ground reference section All signal generation control and display functions are contained in the floating section This section also contains the function generator s main CPU The floating section can be viewed in two pieces the analog signal conditioning section System DAC Filters Sync Square wave Pre Attenuator Output Amp and Output Attenuator and the digital logic section Floating Logic Digital Waveform Data Synthesis and Waveform DAC All signal generation level control and modulation functions are performed in the floating section The waveform DAC generates two outputs normal and inverted between approximately 800 mVp p and 1 Vp p The DAC outputs are routed through anti alias low pass filters to eliminate higher frequency sampling products The nominal x10 gain of the output amplifier combined with preattenuator and output attenuator settings are
28. Sine wave 50 Q 2 8 Vrms 1 0000 kHz 2 8 Vrms 0 028 Vrms Sine wave 500 2 2 Vrms 1 0000 kHz 2 2 Vrms t 0 022 Vrms Sine wave 500 1 7 Vrms 1 0000 kHz 1 7 Vrms 0 017 Vrms Sine wave 500 1 4Vrms 1 0000 kHz 1 4Vrms 0 014 Vrms Sine wave 500 1 1 Vrms 1 0000 kHz 1 1 Vrms 0 011 Vrms Sine wave 50 Q 0 88 Vrms 1 0000 kHz 0 88 Vrms 0 0088 Vrms Sine wave 500 0 70 Vrms 1 0000 kHz 0 70 Vrms 0 0070 Vrms Sine wave 50 Q 0 55 Vrms 1 0000 kHz 0 55 Vrms 0 0055 Vrms Sine wave 500 0 44 Vrms 1 0000 kHz 0 44 Vrms 0 0044 Vrms Sine wave 50 Q 0 35 Vrms 1 0000 kHz 0 35 Vrms 0 0035 Vrms Sine wave 50 Q 0 28 Vrms 1 0000 kHz 0 28 Vrms 0 0028 Vrms Sine wave 500 0 22 Vrms 1 0000 kHz 0 22 Vrms t 0 0022 Vrms Sine wave 500 0 17 Vrms 1 0000 kHz 0 17 Vrms 0 0017 Vrms Sine wave 500 0 14 Vrms 1 0000 kHz 0 14 Vrms 0 0014 Vrms Sine wave 500 0 11 Vrms 1 0000 kHz 0 11 Vrms 0 0011 Vrms Sine wave 50 Q 0 088Vrms 1 0000 kHz 0 088Vrms 0 00088 Vrms Sine wave 500 0 070 Vrms 1 0000 kHz 0 070 Vrms 0 00070 Vrms Sine wave 500 0 055 Vrms 1 0000 kHz 0 055 Vrms 0 00055 Vrms Sine wave 500 0 044 Vrms 1 0000 kHz 0 044 Vrms 0 00044 Vrms Sine wave 500 0 035 Vrms 1 0000 kHz 0 035 Vrms 0 00035 Vrms Sine wave 500 0 028 Vrms 1 0000 kHz 0 028 Vrms 0 00028 Vrms Sine wave 500 0 022 Vrms 1 0000 kHz 0 022 Vrms 0 00022 Vrms Sine wave 500 0 018 Vrms 1 0000 kHz 0 018 Vrms 0 00018 Vrms Output termination set using front panel controls HIGH Z assu
29. is n 43 42 ANODECZJ a T ad A 12 5 D p 3 2 ANODECOI R1 302 18v zeDL on e oe 1 Datu TaD Ne R1307 a 2 J j 2 5v Gram VAGND 215 HEH 10K BSI ad 5 9699 1330 R1329 2639 1300 El E ES ies LE soca een m BN 5 3 4 E Aa t a 6 z ER astotzi 6 V eis ze 13y Ui2g2 D 3 HENTET Y z E EENEN E i E EE E i Henri RZE B mo ud b 3 5 E EE R1303 Is FEN 5 gt A EE ZE eStore EL zo 8 se 233 BELT 4 N teisa S81 is LS I mL Ba a NEJ erreur Es SIER 0 petes See gt 181 as 71213 Lat 7 En EE EE i 26 ANEDEL 31 14 PE a paaa a e a a 978 E amp 12 R1308 UNUSED PARTS DE a is dsagdesgadeded g 558 uice pipes T men m pre PM Wi s 5 dd daHsdaddaas 5 odo d son Bs Gd E 3 w GND 18V0 TS 217 GUI EE thy P136 mom HIE ik ET T 2 S ana 3 gt T 18v UM E 888888582888 EF Akt A 2 B3 E 6V Eer En E i R1304 1822 5562 mE 5 229 AS aaa ao el EE i Hg ANO E D Sr 3 Esse e zen 0630 1423 9162 5945 l 14 EPINT TTT TTTT BYPASS CAPACITORS 253 5 EEEERERERRER ps 2 fos Ach 205 3 p al al 4 4 al aa al al al 35 C1303 TL ED 13 13V 13v 13V Ce 1a 99 5 5 I S S S S S zi 2133 n EEFEEEEEEEEEE dunt ee 20 5 3 33 coru dl al MOUNTING HOLES RIXIUZT 3 18V DER E ZP1 e R z D 8 En 18v i Ee Fog 21 me a o ls a 5 g 38212 8218 ly pobfniy set KE NE A Care vaT TRI P 18V Sal mad e lid amp 18v aT Sa 18v 18v 18v 18v 18v 18v 18V xd Eb 33120 66502 sheet 1 of 1 D
30. the selected command The maximum value allowed is displayed for you to edit EXITING You will see this message if you turn off the menu by pressing Shift Menu On Off or Shift Cancel You did not edit any values on the PARAMETER level and changes were NOT saved NOT ENTERED _ You will see this message if you turn off the menu by pressing Shift Menu On Off or Shift Cancel You did some editing of parameters but the changes were NOT saved Press Enter Menu Enter to save changes made on the PARAMETER level 40 Chapter 3 Front Panel Menu Operation A front panel Menu Example 1 Shift Menu On Off The following menu tutorial steps show you how to turn on the menu move up and down between levels move across the choices on each level and turn off the menu In this example you will restore the function generator to the power on defa ult state This procedure is recommended before performing the verification procedures in chapter 4 1 Turn on the You enter the choice on this A MOD MI 2 Move across There are six menu menu on the MENUS level The MOD MENU is your first level ENU to the SYS MENU choice on this level menu group choices available on the MENUS level Each choice has a letter prefix for easy identification A B etc
31. 100 RESISTOR 1 4K 1 1206 125 W 200V TC 100 RESISTOR 19 6 1 125 W TKF TC 0 100 RESISTOR 100 1 125 W TKF TC 0 100 RESISTOR 82 5 1 125 W TKF TC 0 100 RESISTOR 19 6 1 125 W TKF TC 0 100 Mfr Code 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 11502 11502 28480 28480 32997 28480 28480 28480 28480 28480 28480 28480 28480 28480 Mfr Part Number 0699 2712 0699 1415 0699 1432 0699 1384 0699 1415 0699 1432 0699 1384 0699 1344 0699 1432 0699 2631 0699 1432 0699 2196 0699 1415 0699 1432 0699 1352 0699 1332 0699 1392 0699 1330 0699 1392 0699 1318 0699 2103 0699 1432 0699 2631 0699 1415 0699 1366 0699 1360 0699 1432 0699 1318 0699 1398 0699 1330 0699 1421 0699 2883 W1206R031003BT W1206R031002BT 0699 2631 0699 1422 3314G 1 101E 0699 2883 0699 1394 0699 1366 0699 1415 0699 2883 0699 1351 0699 1415 0699 1366 0699 1351 120 Chapter 7 Replaceable Parts 33120 66521 Main PC Assembly Reference Agilent Part Mfr Mfr Part Designator Number Qty Part Description Code Number R724 0699 1437 4 RESISTOR 825 4 196 125 W TKF TC 0 100 28480 0699 1437 R725 0699 1415 RESISTOR 100 4 196 125 W TKF TC 0 100 28480 0699 1415 R726 R727 0699 2064 2 RESISTOR 6 8 5 125 W TKF TC 0
32. 1391 0699 1374 0699 3431 0699 1318 0699 3211 0699 1400 0699 1432 0699 1344 0699 3698 0699 3041 0699 2889 0699 2832 0699 1381 0699 2489 0699 1415 0699 2937 0699 2431 0699 1318 0699 1391 0699 3594 0699 2103 0699 3431 0699 1423 0699 1431 0699 1318 0699 3763 0699 2488 0699 1433 0699 1345 0699 1826 0699 1415 0699 1433 0699 1345 0699 1826 0699 1415 0699 2712 0699 1415 Qty p PRO O uu o A A 4A w pp Part Description RESISTOR 31 6K 1 125 W TKF TC 0 100 RESISTOR 39 2K 1 1206 125 W 200V TC 100 RESISTOR 1K 1 125 W TKF TC 0 100 RESISTOR 10K 1 125 W TKF TC 0 100 RESISTOR 4 99K 1 125 W TKF TC 0 100 RESISTOR 1 24K 1 1206 125 W TC 100 200V RESISTOR 4 64K 1 125 W TKF TC 0 100 RESISTOR 10 1 125 W TKF TC 0 100 RESISTOR 619 1 125 W TKF TC 0 100 RESISTOR 10K 1 125 W TKF TC 0 100 RESISTOR 1 78K 1 125 W TKF TC 0 100 RESISTOR 4 99K 1 125 W TKF TC 0 100 RESISTOR 1K 1 125 W TKF TC 0 100 RESISTOR 39 2K 1 1206 125 W 200V TC 100 RESISTOR 26 1K 1 125 W TKF TC 0 100 RESISTOR 511 1 125 W TKF TC 0 100 RESISTOR 10 1 125 W TKF TC 0 100 RESISTOR 10 1 1W TKF TC 0 100 RESISTOR 3 48K 1 1W TKF TC 0 100 RESISTOR 4 7 5 125 W TKF RESISTOR 200 0 1 125 W TF TC 0 25 RESISTOR 3 48K 1 125W TKF TC 0 100 RESISTOR 10K 0 1 125 W TF TC 0 25 RESISTOR 100 1 125 W TKF TC 0 100 RESISTOR 16K 0 1 125W TF TC 0 25
33. 1391 0699 3034 Qty Non PNA O mm wo 20 12 11 Part Description RESISTOR 05 100 TKF RESISTOR 05 100 TKF RELAY 2C 5VDC COIL 1A 110VDC RELAY 2C 5VDC COIL 1A 110VDC RELAY 2C 5VDC COIL 1A 110VDC INDUCTOR 910 nH 2 2 INDUCTOR 560 nH 5 2 8W MMX3 4LG MM INDUCTOR SMT 270 nH 5 INDUCTOR 560 nH 5 2 8W MMX3 4LG MM INDUCTOR 680 nH 5 2 8W MMX3 4LG MM INDUCTOR 560 nH 5 2 8W MMX3 4LG MM INDUCTOR 470 nH 5 2 8W MMX3 4LG MM INDUCTOR 560 nH 5 2 8W MMX3 4LG MM RESISTOR 05 100 TKF INDUCTOR SMT 220 nH 5 TRANSISTOR PD 350 MW FT 300 MHZ TRANSISTOR PD 350 MW FT 300 MHZ TRANSISTOR PD 350 MW FT 600 MHZ TRANSISTOR PD 350 MW FT 250 MHZ TRANSISTOR PD 350 MW FT 650 MHZ TRANSISTOR PD 350 MW FT 600 MHZ TRANSISTOR PD 350 MW FT 650 MHZ TRANSISTOR PD 350 MW FT 250 MHZ TRANSISTOR PD 350 MW FT 600 MHZ TRANSISTOR PD 350 MW FT 300 MHZ TRANSISTOR NPN SI SC 59 TRANSISTOR PNP 600 MHZ TRANSISTOR PNP SI TO 261AA SOT 223 TRANSISTOR NPN 2N5943 SI TO 39 PD 1W TRANSISTOR PNP SI TO 261AA SOT 223 TRANSISTOR NPN SI TO 261AA SOT 223 TRANSISTOR P RF TO39 30V 500 MA 1GHZ RESISTOR 1K 1 125 W TKF TC 0 100 RESISTOR 215 1 125 W TKF TC 0 100 RESISTOR 5 62K 1 125 W TKF TC 0 100 RESISTOR 1K 1 125 W TKF TC 0 100 RESISTOR 10K 1 125 W TKF TC 0 100 RESISTOR 215 1 125 W TKF TC 0 100 RESISTOR 1K 1 125 W TKF TC 0 100 RESISTOR 215 1 125 W TKF TC 0 100 RESISTOR 1K 1 125 W TKF
34. 192 points 4 sec 42 sec 51 sec 4 096 points 2 5 sec 21 sec 26 sec 2 048 points 1 5 sec 11 sec 13 sec Arb Download Times over RS 232 at 9600 Baud 5 Arb Length Binary ASCII Integer ASCII Real 6 16 000 points 35 sec 101 sec 134 sec 8 192 points 18 sec 52 sec 69 sec 4 096 points 10 sec 27 sec 35 sec 2 048 points 6 sec 14 sec 18 sec 1 Trigger source ignored when External Gate is selected 2 Time to change parameter and output the new signal 3 Modulation or sweep off 4 Times for 5 digit and 12 digit numbers 5 For 4800 baud multiply the download times by two For 2400 baud multiply the download times by four etc 6 Time for 5 digit numbers For 12 digit numbers multiply the 5 digit numbers by two 15 Chapter 1 Specifications Agilent 33120A Function Generator GENERAL SPECIFICATIONS Power Supply 1 Power Line Frequency Power Installation Power Consumption Operating Environment Storage Environment State Storage Memory Dimensions W x H x D Bench Top Rack Mount Weight 100V 120V 220V 240V 10 switch selectable 50 Hz to 60 Hz 10 and 400 Hz 10 Automatically sensed at power on CAT Il 50 VA peak 28 W average O C to 55 C 80 Relative Humidity to 40 C Indoor or sheltered location 40 C to 70 C Power off state automatically saved Three 3 User Configurable Stored States Arbitrary waveforms stored separately 254 4
35. 215 1 125 W TKF TC 0 100 28480 0699 1423 R804 R806 0699 3770 4 RESISTOR 23 7 0 1 125 W TF TC 0 25 11502 W1206 R03 23R7 B R807 R808 0699 3765 4 RESISTOR 115 1 1206 125 W 100V TC 25 11502 W1206 R03 1150 B R809 0699 3762 4 RESISTOR 53 1 1206 125 W 100V TC 25 11502 W1206 R03 53R0 B R810 R811 0699 3766 2 RESISTOR 232 1 1206 125 W 100V TC 25 11502 W1206 R03 2320 B R812 R813 0699 3763 RESISTOR 69 1 1206 125 W 100V TC 25 11502 W1206 R03 69R0 B R814 0699 3767 2 RESISTOR 309 1 1206 125 W 100V TC 25 11502 W1206 R03 3090 B R815 0699 3763 RESISTOR 69 1 1206 125 W 100V TC 25 11502 W1206 R03 69R0 B R816 R817 0699 1423 RESISTOR 215 1 125 W TKF TC 0 100 28480 0699 1423 R818 0699 2852 2 RESISTOR 442 1 125 W TKF TC 0 100 28480 0699 2852 R819 0699 3770 RESISTOR 23 7 0 1 125 W TF TC 0 25 11502 W1206 R03 23R7 B R820 0699 2852 RESISTOR 442 1 125 W TKF TC 0 100 28480 0699 2852 R821 0699 3769 RESISTOR 11 8 1 125 W TKF TC 0 100 28480 0699 3769 R822 R823 0699 3764 2 RESISTOR 442 0 1 1206 125W 100V TC 25 11502 W1206 R03 4420 B R824 R825 0699 3765 RESISTOR 115 1 1206 125W 100V TC 25 11502 W1206 R03 1150 B R826 R827 0699 3763 RESISTOR 69 1 1206 125 W 100V TC 25 11502 W1206 R03 69R0 B R828 R829 0699 3769 RESISTOR 11 8 1 125 W TKF TC 0 100 28480 0699 3769 R830 R832 0699 3762 RESISTOR 53 1 1206 125 W 100V TC 25 11502 W1206 R03 53R0 B R833 0699 3767 RESISTOR 309 1 1206
36. 70V 100MA DIODE ZNR 3 3V 5 TO 236 SOT 23 DIODE ZNR 3 3V 5 TO 236 SOT 23 DIODE 70V 100MA DIODE ZNR 7 5V 5 PD 155W TC 5 3MV DIODE ZNR SMB 3 3V 5 1W DIODE ZNR SMB 3 3V 5 1W DIODE SI PN SOT23 100V 750MA DIODE ZNR SMB 24V 42MA 1 0W 5 DIODE 70V 100MA DIODE FW BRDG 400V 1A DIODE 70V 100MA DIODE ZNR 6 2V 5 PD 1 5W IR 5UA DIODE PWR RECT SMC 400V 2 5A 2 5US S3G DIODE ZNR 6 2V 5 PD 1 5W IR 5UA DIODE FW BRDG 400V 1A DIODE TVS D0214AB 43V 1500WP SMCJ43CA BEEPER FUSE SUBMINIATURE 50A 125V NTD AX UL BEAD SHIELDING CHOKE BEAD SHIELDING CHOKE BEAD SHIELDING CHOKE BEAD SHIELDING CHOKE HEATSINK TO 220 HEAT SINK SGL TO 5 TO 39 CS HEAT SINK SGL TO 5 TO 39 CS CONN POST TYPE 2 0 PIN SPCG 12 CONT CONN FRCC VERT MALE 10PIN SMC CONNECTOR RF BNC RCPT 50 OHM CONNECTOR RF SMB PLUG 50 OHM CONN PHONE VERT CONN DIS VERT MALE 2PIN FP CONN PHONE VERT CONN RECT D SUBMIN 9 CKT 9 CONT CONN RECT MICRORBN 24 CKT 24 CONT CONN RF BNC RCPT PC W STDFS 50 OHM CONN DIS FRIC LOCK VERT MALE 9PIN CONN DIS VERT MALE 2 PIN FP CONN POST TYPE 156 PIN SPCG 3 CONT Mfr Code 04222 04222 04222 4217 04222 04222 04713 04713 04713 04713 04713 04713 04713 28480 04713 04713 71744 04713 04713 71744 04713 71744 71744 51406 75915 28480 28480 28480 28480 13103 13103 13103 27264 76381 00779 00779 27264 27264 27264 00779 00779 00779 27264 27264 27264 Mfr Part Number 08055C102K
37. Gaul S3 NC h vec Vppl 67 vrai 820196 any oe poe ACE 22 PH DNI S 62K RD X EN FPDO R107 215 66 RARE 28 WRX OP_RXD 31 Aste e RD 2t 2 sg peib bes at XTALZ SEAN l ync RXD ae up PONRSTX gt 2 Le RESET INST 63 INSE BC uigi 27Poz2a GND lt 101 GND 1 e BUSWIDTH 28 PG3 22 RXD 1818 5682 Se 3 UR Hso a 38 pes 3 XRLYRST PONRST e 20 43 E HSO 1 23 poe EXT BMOD 13 est INTR Z end vec R112 1K 43 READY SID2 H80 2 3S Ep int TRIG_STB ASA ADCK12 FPDI FPDO 3 SID3 SQ 3 RILI IK 34 cki2 FPDO SZ FED VAE wer 32 x vep RE WMEMEN 22 Sine EUER FFSK FPSK ke Imus HAVATS ae NC 21 4 cNTROUT gep pk 14 SERREK PG3 cconpk Bigs A pes sip gt MN Heras 1k vec 8 rc SERDAT 15 SERDAT POS SERDAT IK EXT_TRG pre Ier 9 P1 3 apZ2 033 ONG_SHT 2 awen iie ouros SERCK 8 SERCLK PG SYNC 25 lier SCC il PA2 SECH SE A Ea ETS Uis 3 SERCLK Zare Suen BRED P1 5 30 Le WF HOLD wee Lam answ 18 z lt a gt HSI 3 HS0 5 HLDA P1 6 ALE COMP L 171 ACB SRAM 32k X 8 i MID HGLD P1 7 Lapiz PRGAL7 GND L3 ec ROME jg ROMCEX T2CLK g 5 18a ADC 0 vec Y R GND lt q o o e ACHA PA A b ADD g ADCO 49 RAMCE ott RAMCEX Fl ACZ 8 c DETLONE 5 ACHL PO 1 AM St c Lape ADC in Al ADO 35 ABDATO ap St ACZ 063 EN 7 AD Aptos A r Gen mmm re WA Abe Ae O RE w 12 B cursen a E PGE 3 COMP ENS PG2 LI R AD3 P3 3 eo 35 ADDAT3 a2 L 23 AZ Cys ADC ADCZ PGS 4 PRE ATINQ HOST_ACK gt L
38. Jggi Lenz te PMHI ca E de NC 2X 013 EGND Nc PMH 991 JWACIL V EGND 33120 66521 sheet 9 of 10 Earth Reference Logic Schematic 139 ULGBL JM1901 RAWLIN VR 18 o 2 we our L 3 18v ADJ LM337T LL can i 22 gu Ridge 237 HEH 01002 A es V 3 16K lu GND REDI V V RED Joo PGND PGND L cia28 T d1u E CRIBOL U1002 A RAWZIN VR 18 M1002 WT GRY J1881 Sie 3 ue our 2 VA 18V 2 ADJ LM317T a z 5 1 creas HIER 2202u RED2 237 ent Y R103 ciagu cas GND 3 16K lu Tag al RED Y V V PGND PGND GND 3 1 PGL GRN y J1ggi ll PSI ye e FS Coins GRN J1ggl Bl uN R1008 R BER 18v BLUE J1801 TE p qM U1923 ULODO R1009 CR1918 L cigit JM1003 RAW3I 3 24 gt UNDV SNSR G 10K SME 22u 2 4 VEE 2 INP RES POZ PGL PONRST 2 L C1013 C1016 gigas 1 RLOLO cRigg4 lu lu Y De VV w 6 2 4 GND GND 178 A 4 V 18V v RIBLI C1026 m E m IECH GND 562 ce Jg S 5VA Y Y V A 18 ERU EB PGND PGND LM2948CT 5 9 GND Bo 18v CR1 6 CR1GB7 c1807 EEN a y 2 lu RAWY IN 1 W Van 3 JM1004 geg YEL vigor i i Y CR1 8 CR1209 c g GND Gin C1908 E 2 tu 1009 2 Rind ciate CR1005 RIGL4
39. Moves the flashing digit to the right L Moves the flashing digit to the left Use the Enter Number mode to enter a number with the appropriate units MHz m Vpp kHz m Vrms Hz dBm UUUU Back Space Use Enter for those operations that do not require units to be specified AM Level Offset Duty and Store Recall State The Front Panel Menu at a Glance The menu is organized in a top down tree structure with three levels To turn on menu press MENU on ott To move To move Enter 4 J vj Up or down ES right or left A MOD MENU mm B SWP MENU C EDIT MENU mm D SYS MENU mm E UO MENU mm F CAL MENU y y y y y y LAM SHAPE 2 AM SOURCE 1 START F 1 NEW ARB 10UT TERM 1HPB ADDR 1 SECURED m To enter command press Enter A MODulation MENU 1 AM SHAPE gt 2 AM SOURCE gt 3 FM SHAPE gt 4 BURST CNT 5 BURST RATE gt gt 6 BURST PHAS 7 BURST SRC gt 8 FSK FREQ gt 9 FSK RATE 10 FSK SRC B SWP Sweep MENU 1 START F gt 2 STOPF gt 3 SWP TIME 4 SWP MODE C EDIT MENU 1 NEW ARB 2 POINTS 3 LINE EDIT 4 POINT EDIT gt 5 INVERT 6 SAVE AS 7 DELETE The commands enclosed in square brackets are hidden until you make a selection from the NEW ARB command to
40. OUT TERM command Le QUT FI d Move down a level and then across to the HIGH Z choice With the output termination set to HIGH Z the function generator allows you to set the unloaded open circuit output voltage HIGH Z Save the change and turn off the menu The function generator beeps and displays a message to show that the change is now in effect You are then exited from the menu You can also use the knob to scroll left or right through the choices on each level of the menu Ha 4 RY Shift AM Shift lt Recall Menu Chapter 3 Front Panel Menu Operation To output a modulated waveform To output a modulated waveform A modulated waveform consists of a carrier and a modulating waveform In AM amplitude modulation the amplitude of the carrier is varied by the amplitude of the modulating waveform For this example you will output an AM waveform with 80 modulation depth The carrier will be a 5 kHz sine wave and the modulating waveform will be a 200 Hz sine wave Select the function frequency and amplitude of the carrier For the carrier waveform you can select a sine square triangle ramp or arbitrary waveform For this example select a 5 kHz sine wave with an amplitude of 5 Vpp Select AM Notice that the AM annunciator turns on Use the menu to select the shape of the modulating waveform After you enable the AM
41. TC 0 100 RESISTOR 10K 1 125 W TKF TC 0 100 RESISTOR 1K 1 1W TKF TC 0 100 Mfr Code 28480 28480 28480 28480 28480 02113 24226 24226 24226 24226 24226 24226 24226 28480 09021 04713 04713 04713 04713 04713 04713 04713 04713 04713 04713 28480 28480 28480 04713 28480 28480 04713 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 2M627 Mfr Part Number 0699 1503 0699 1503 0490 1664 0490 1664 0490 1664 1008CS 911XGBC 03273 SM3 270J 03273 03273 03273 03273 03273 0600 1503 KL32TER22J MMBT3904 MMBT3904 MMBTH81 MMBT3906 MMBTH10 MMBTH81 MMBTH10 MMBT3906 MMBTH81 MMBT3904 1854 1445 5063 1420 1853 0728 2N5943 1853 0728 1854 1303 2N5583 0699 1318 0699 1423 0699 1386 0699 1318 0699 1391 0699 1423 0699 1318 0699 1423 0699 1318 0699 1391 MCR10 FZHM F 1001 118 Chapter 7 Replaceable Parts 33120 66521 Main PC Assembly Reference Designator R301 R302 R303 R304 R305 R307 R308 R309 R310 R311 R313 R314 R316 R317 R318 R320 R321 R322 R323 R324 R401 R402 R404 R405 R406 R407 R408 R409 R410 R411 R412 R413 R414 R415 R418 R420 R421 R422 R423 R424 R501 R502 R521 R522 R601 R602 R609 R610 R611 R614 R615 R616 R622 R623 R624 R625 R626 R627 R628 Agilent Part Number 0699 1403 0699 3211 0699 1318 0699 1391 0699 3431 0699 1937 0699 1384 0699 1344 0699 1434 0699
42. amplitude and enter the value 6 Perform the AC Amplitude Verification procedures beginning on page 57 75 Chapter 4 Calibration Procedures DC Output Adjustment DC Output Adjustment The function generator stores nine calibration constants related to DC volts output The constants are calculated from the adjustment value entered The calibration constants are stored following completion of setup 59 No calibration constants are stored if the procedures are aborted at any other setup 1 Use a DMM to measure the function generator deV output voltage for each setup in the following table These adjustments use a HIGH Z output termination Nominal Output SETUP DC Volts Adjustment for 50 8 0 Vdc Negative offset gain 51 8 0 Vdc Positive offset gain 52 0 0 Vdc AM offset 53 0 0 Vdc 2 dB Pre attenuator offset 54 0 0 Vdc 4 dB Pre attenuator offset 55 0 0 Vdc 6 dB Pre attenuator offset 56 0 0 Vdc 8 dB Pre attenuator offset 57 0 0 Vdc 10 dB Pre attenuator offset 58 0 0 Vdc 12 dB Pre attenuator offset 59 0 0 Vdc 14 dB Pre attenuator offset 2 Use the CALIBRATE menu to adjust the displayed output voltage at each setup to match the measured voltage and enter the value 3 Perform the DC Function Offset Verification procedures on page 57 76 Chapter 4 Calibration Procedures Duty Cycle Adjustment Duty Cycle Adjustment The function generator stores two calibrati
43. chosen such that the desired output amplitude is produced The ground reference section uses a processor configured as a slave to the main CPU This processor establishes external I O communication with the main CPU through a bi directional optically isolated serial communications link The earth referenced processor controls low level GPIB IEEE 488 and RS 232 interface operation The ground referenced rear panel external trigger input uses a dedicated optical isolator to couple a trigger signal to the main CPU in the floating section Separate power supplies are provided for the floating and ground reference sections The front panel operates from the floating section with its logic common different from the CPU logic common 85 Chapter 5 Theory of Operation Output Attenuator Output Attenuator Block 8 on block diagram page 129 Schematic on page 138 The Output Attenuator provides 0 to 30 dB of signal attenuation between the output amplifier section and the output BNC connector Output signal levels are controlled by combining coarse amplitude control from the output attenuator section and pre attenuator section with fine amplitude control from the Waveform DAC AMP_CTL signal Four switched output attenuator pads are combined to achieve the desired signal attenuation as shown in the table below Relays K801 through K804 either bypass an attenuator pad or select that attenuator K801 selects a 2 dB attenuator K802 select
44. control registers U108 and U202 When loading data into Waveform RAM or Modulation RAM addresses on the WA and MA busses are incremented by ASIC U206 ASIC addresses are incremented by each rising edge of the TRIG line while writing data into these RAM The state of the HOST_RQ line controls whether the main CPU or the modulation RAM U205 is sourcing instructions to the DDS ASIC internal state machines The Modulation RAM is loaded with frequency values and amplitude flatness correction values or AM modulation data for latch U309 and AM dac U313 Data multiplexer U217 and flip flop U215 are used to preselect and synchronize the modulation sync source available to the SYNC output terminal multiplexer U604 The external trigger input OGEXT is optically isolated by U213 and applied to an input of trigger source multiplexer U214 The external trigger input is used for triggering the start of a frequency sweep or burst output and for externally gating the output signal on and off asynchronously U214 selects one of seven trigger sources for use by U206 for initiating its internal program 95 Chapter 5 Theory of Operation System DACs System DACs Block 3 on block diagram page 129 Schematic on page 133 All output amplitudes are derived from the internal voltage reference of System DAC U303 The system dac track hold amplifier outputs are used to provide controllable bias voltages to various analog circuits including AM modulation dep
45. count feature provides an independent serialization of your calibrations You can determine the number of times that your function generator has been calibrated By monitoring the calibration count you can determine whether an unauthorized calibration has been performed Since the value increments by one for each calibration a complete calibration increases the value by approximately 85 counts e The calibration count is stored in non volatile memory and does not change when power has been off or after a remote interface reset Your function generator was calibrated before it left the factory When you receive your function generator read the calibration count to determine its value e The calibration count increments up to a maximum of 32 767 after which it wraps around to 0 There is no way provided to program or reset the calibration count It is an independent electronic calibration serialization value Calibration Message You can use the calibration message feature to record calibration information about your function generator For example you can store such information as the last calibration date the next calibration due date the function generator s serial number or even the name and phone number of the person to contact for a new calibration You can record information in the calibration message only from the remote interface You can read the message from either the front panel menu or the remote interface
46. critical analog components which determine amplitude in AM modulation you should perform the calibration again 72 Chapter 4 Calibration Procedures AC Amplitude Adjustment 5002 AC Amplitude Adjustment 500 pal The function generator stores 16 calibration constants related to 500 output The constants are calculated from the adjustment value entered The calibration constants are stored following completion of setup 49 and the calibration procedure may be aborted after that point No calibration constants are stored if the procedures are aborted at any other setup Use the DMM to measure the resistance of a 509 feedthrough load Record the measurement for step 3 You can measure the load and cable resistance recommended procedure or just the load as shown below INCLUDING CABLE RESISTANCE MOST ACCURATE fr J WITHOUT CABLE RESISTANCE A C A BLE 3 Enter the following setup and use the calibrate menu to enter the measured value of the 50Q feedthrough load and cable This number will be used to calculate the 50Q output amplitude calibration constants Nominal Input SETUP LOAD Z 33 500 Enter measured value of load Once the value of the 50Q load and cable are entered use the SAME load and cable for all 50Q tests 73 Chapter 4 Calibration Procedures AC Amplitude Adj
47. initiate a new edit session D SYStem MENU 1 OUT TERM gt 2 POWER ON gt 3 ERROR 4 TEST gt 5 COMMA 6 REVISION E Input Output MENU 1 HPIB ADDR 2 INTERFACE 3 BAUD RATE 4 PARITY 5 LANGUAGE F CALibration MENU 1 SECURED or 1 UNSECURED gt 2 CALIBRATE gt 3 CAL COUNT 4 MESSAGE The commands enclosed in square brackets are hidden unless the function generator is UNSECURED for calibration Display Annunciators fa T Agilent se Mra PONIGA rh Waveform Generator y PY His ELS EUN ELS PY EUN EL Hie FLY v K Adrs Rmi Trig AM FM Ex FSK Burst Swp ER Offset Shif Adrs Function generator is addressed to listen or talk over a remote interface Rmt Function generator is in remote mode remote interface Trig Function generator is waiting for a single trigger or external trigger Burst Sweep AM AM modulation is enabled FM FM modulation is enabled Ext Function generator is set for an external modulation source AM FSK Burst FSK FSK frequency shift keying modulation is enabled Burst Burst modulation is enabled Swp Sweep mode is enabled ERROR Hardware or remote interface command errors are detected Offset The waveform is being output with an offset voltage Shift Shift key has been pressed Press Shift again to turn off Num Enter Number mode is enabled Press Shift Cancel to disable Arb Arbit
48. mm x 103 6 mm x 374 mm 212 6 mm x 88 5 mm x 348 3 mm 4 kg 8 8 Ibs 1 For 400 Hz operation at 120 Vac use the 100 Vac line voltage setting Safety Designed to EMC Vibration and Shock Acoustic Noise Warm Up Time Warranty Remote Interface Programming Language Accessories Included EN61010 CSA1010 UL 1244 EN61326 1 1997 1A 1998 MIL T 28800E Type III Class 5 data on file 30 dBa 1 hour 3 years standard IEEE 488 and RS 232 standard SCPI 1993 IEEE 488 2 User s Guide Service Guide Quick Reference Card IntuiLink Arb software RS 232 cable Test Report and power cord 16 Chapter 1 Specifications Agilent 33120A Function Generator PRODUCT DIMENSIONS o20000005 uzooooace O BEE 254 4 mm II Doooooos 295900050082 O 216 6 mm M4 X 07 4 PLACES 19 68 2X 552 SO M35 X 066 4 PLACES All dimensions are shown in millimeters 17 18 Quick Start Quick Start One of the first things you will want to do with your function generator is to become acquainted with its front panel We have written the exercises in this chapter to prepare the function generator for use and help you get famil
49. stores three calibration constants related to amplitude modulation depth The constants are calculated from the adjustment value entered If the calibration procedure is aborted before all setup steps have been completed no calibration constants are stored 1 Use a DMM to measure the function generator ACrms output voltage for each setup in the following table These adjustments use a HIGH Z output termination Nominal Output SETUP FREQUENCY AMPLITUDE Adjustment for 30 1 kHz 3 5 Vrms 0 modulation depth 31 1 kHz 0 707 Vrms 50 modulation depth 32 1 kHz 6 36 Vrms 100 modulation depth 2 Use the CALIBRATE menu to adjust the displayed amplitude at each setup to match the measured amplitude and enter the value 3 Perform the AM Modulation Depth Verification procedures on page 61 NEW CALIBRATION A new calibration SETUP 85 Rev 4 0 has been added to eliminate a small residual error in the AM amplitude system which could potentially cause a failure of the AM amplitude verification The new calibration operates just like the other AM calibrations SETUP 30 31 32 in that the external measurement is AC Vrms with no load The new calibration is not allowed until the other AM gain calibrations SETUP 30 31 32 are performed The new algorithm is designed such that the calibration should not be required again once the function generator has been calibrated at the factory However if you change any
50. to the extent allowed by that organization s calibration facility and to the calibra tion facilities of other International Standards Organization members Warranty The material contained in this document is provided as is and is subject to being changed with out notice in future editions Further to the maximum extent permitted by applicable law Agilent disclaims all warranties either express or implied with regard to this manual and any information contained herein including but not limited to the implied warranties of merchant ability and fitness for a particular purpose Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing use or performance of this docu ment or any information contain ed herein Should Agilent and the user have a separate written agreement with warranty terms covering the material in this docu ment that conflict with these terms the warranty terms in the separate agreement will control Technologies Licenses The hardware and or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license Restricted Rights Legend If software is for use in the perform ance of a U S Government prime contract or subcontract Software is delivered and licensed as Commercial computer software as defined in DFAR 252 227 7014 June 1995 or as a co
51. 0 Chapter 4 Calibration Procedures AC Amplitude Adjustment High Z Nominal Output SETUP FREQUENCY AMPLITUDE Adjustment for 8 1 kHz 5 5 V rms 2 dB Output Attenuator 9 1 kHz 4 4 V rms 4 dB Output Attenuator 10 1 kHz 3 5V rms 6 dB Output Attenuator 11 1 kHz 2 8Vrms 8 dB Output Attenuator 12 1 kHz 2 2Vrms 10 dB Output Attenuator 13 1 kHz 1 7Vrms 12 dB Output Attenuator 14 1 kHz 1 4 rms 14 dB Output Attenuator 15 1 kHz 1 1 V rms 16 dB Output Attenuator 16 1 kHz 0 88 V rms 18 dB Output Attenuator 17 1 kHz 0 70 V rms 20 dB Output Attenuator 18 1 kHz 0 55 V rms 22 dB Output Attenuator 19 1 kHz 0 44 V rms 24 dB Output Attenuator 20 1 kHz 0 35 V rms 26 dB Output Attenuator 21 1 kHz 0 28 V rms 28 dB Output Attenuator 22 1 kHz 0 22 V rms 30 dB Output Attenuator 23 1 kHz 5 5 V rms 2 dB Pre attenuator 24 1 kHz 4 4Vrms 4 dB Pre attenuator 25 1 kHz 3 5V rms 6 dB Pre attenuator 26 1 kHz 2 8Vrms 8 dB Pre attenuator 27 1 kHz 2 2V rms 10 dB Pre attenuator 28 1 kHz 1 7 V rms 12 dB Pre attenuator 29 1 kHz 1 4 Vrms 14 dB Pre attenuator 2 Use the CALIBRATE menu to adjust the displayed amplitude at each setup to match the measured amplitude and enter the value 3 Perform the AC Amplitude Verification procedures on page 57 71 Chapter 4 Calibration Procedures Modulation Adjustment Modulation Adjustment The function generator
52. 0 RESISTOR 100 1 125 W TKF TC 0 10 RESISTOR 511 1 125 W TKF TC 0 100 RESISTOR 4 64K 1 125 W TKF TC 0 100 RESISTOR 10 1 125 W TKF TC 0 100 RESISTOR 511 1 125 W TKF TC 0 100 RESISTOR 2K 1 125 W TKF TC 0 100 RESISTOR 511 1 125 W TKF TC 0 100 RESISTOR 78 7 1 1206 125 W 200 V TC 100 RESISTOR 100 1 125 W TKF TC 0 100 RESISTOR 511 1 125 W TKF TC 0 100 RESISTOR 21 5 1 125 W TKF TC 0 100 RESISTOR 196K 1 125 W TKF TC 0 100 RESISTOR 11K 1 125W TKF TC 0 100 RESISTOR 100K 1 125 W TKF TC 0 100 RESISTOR 11K 1 125 W TKF TC 0 100 RESISTOR 1K 1 125 W TKF TC 0 100 RESISTOR 49 9 1 125 W TKF TC 0 100 RESISTOR 511 1 125 W TKF TC 0 100 RESISTOR 2K 1 125 W TKF TC 0 100 RESISTOR 100 1 125 W TKF TC 0 100 RESISTOR 82 5 1 125 W TKF TC 0 100 RESISTOR 46 4 1 125 W TKF TC 0 100 RESISTOR 511 1 125 W TKF TC 0 100 RESISTOR 1K 1 125 W TKF TC 0 100 RESISTOR 21 5K 1 125 W TKF TC 0 100 RESISTOR 100K 1 125 W TKF TC 0 100 RESISTOR 178 1 125 W TKF TC 0 100 RESISTOR 1 4K 1 1206 125 W 200V TC 100 RESISTOR 100K 0 1 125 W TF TC 0 25 RESISTOR 10K 0 1 125 W TF TC 0 25 RESISTOR 2K 1 125 W TKF TC 0 100 RESISTOR 196 1 125 W TKF TC 0 100 RESISTOR TRMR 100 20 TKF TOP ADJ 1 TRN RESISTOR 1 4K 1 1206 125 W 200V TC 100 RESISTOR 14 7K 1 125 W TKF TC 0 100 RESISTOR 82 5 1 125 W TKF TC 0 100 RESISTOR 100 1 125 W TKF TC 0
53. 0 015 pe A 4 6UK gt 12K 22u R 6 2 FB10 2 ORG J1ggl y SVCLK F d V V XFORNER ER PGND PGND V Ee 1 ue GND sheets OVERVOLTAGE SNSR T 22u 2 GENSE1 DRV_OUT 9 NC 3 SENSE2 IND OUT PGI y R1052 iM 5 EP PFAIL V Man R1013 SH emracrur t_soe i END PGND 7X MC3423D Loros d tu y MEL PGND V Y PGND P ND AL vu SMCU43CA EGND GND FAN EARTH REFERENCED CIRCUIT POWER SUPPLY pate EGND lt gt y 1002 A GND PGND AGND i BRNI 31002 J1051 2940 5 GRN WHITE Tm A US E UMLESL w dui zi 2d 11VUNREG 1 SEE 50G SA V A com o EGND etna d 0153 tL ons EES 2 BRN2 0 01 22u 2 UND SNSR 1 J1051 INP RESET XOGRST MC 34064 D 5 XFORMER i Y C1055 E ND EGND EGND Gina EGND EGND HS1221 HS1202 HS1223 HS1224 E HEAT HEAT tt CHEAT SINK SINK NGHE SINK 3312 56521 1225 7882 33122 6652 225 2882 33122 66521 1225 2882 33122 66521 1205 2882 GND GND GND THESE PARTS NOT ON PC BOARD PWR TRANSFORMER BLK 240 RED Zare BLK ORA WHITE 3 E 3 3 lt E P1 L 7 a BLK YELLOW 120 GE S Ske Lid 283 BLK RGRN 1 u lt P1 g1 5 a 4 A ORANGE P1001 4 a lt GREEN P1 L 3 o lt BLUE PIQO1 2 E sze 4 GREEN ronn _BLK RED NUET GRN WHLITE ___ P1251 3 CZ l 88 P1051 2 BRN PIBSl 1 POWER MODULE VIEWED FROM INSIDE UNIT BLK
54. 02 11855 13103 18324 20859 24355 24444 24226 25403 27014 27264 28480 32997 34335 34649 51406 71744 75915 76381 93907 2L446 2M627 0545 4217 Manufacturer s Name Amp Inc Texas Instruments Inc Coilcraft Inc AVX Corp Motorola Inc LYN TRON Inc Fairchild Semiconductor Corp Raytheon Co Semiconductor Div Hq MidwestCo Enterprises Inc KOA Speer Electronics Inc CTS Corp Nobel Mercantile Co IRC Inc Delta Electronic Industries Co Thermalloy Inc Signetics Corp Mellowes Co Analog Devices Inc General Semiconductor Ind Inc Gowanda Electronics Corp NV Philips Elcoma National Semiconductor Corp Molex Inc Agilent Technologies Inc Bourns Networks Inc Advanced Micro Devices Inc Intel Corp Murata Corporation Of America General Instrument Corp Littelfuse Inc 3M Corp Camcar Screw and Mfg Co ADAC Screw Machine Products Rohm Corp NEC Electronics Inc Nippon Chemi Con Corp Manufacturer s Address Harrisburg PA U S A Dallas TX U S A Cary IL U S A Great Neck NY U S A Roselle IL U S A Burbank CA U S A Cupertino CA U S A Mountain View CA U S A Grayslake IL U S A Bradford PA U S A Elkhart IN U S A Alburquerque NM U S A Corpus Christi TX U S A Taipei Taiwan Dallas TX U S A Sunnyvale CA U S A Milwaukee WI U S A Norwood MA U S A Tempe AZ U S A Gowanda NY U S A Eindhoven Netherlands Santa Clara CA U S A Lisle IL U S A
55. 02 Q704 and Q707 form the complementary input differential amplifiers Q708 and Q705 are current sources which provide bias to the input differential amplifiers Q709 and Q710 are emitter follower amplifiers used to couple the respective differential amplifier outputs to the gain stage transistors Q711 and Q715 which provide virtually all of the amplifiers open loop gain x1000 The power output stage is a wideband class C buffer amplifier Emitter followers Q714 and Q716 buffer the gain stage output from loading by the power output emitter follower transistors Q713 and Q718 Idle current bias for these power output transistors is set by the ratios of R732 R726 and transistor matching between Q713 Q714 and their equivalents in the other half of the stage R734 R727 and Q718 Q716 Transistors Q712 and Q717 are current sources which provide bias to emitter followers Q714 and Q716 respectively The low frequency and dc performance of the amplifier is controlled by U702 This amplifier is used to sense the dc offset present at the AMP_IN and AMP IN inputs and servo the output amplifier dc offset to zero volts to the limit of U702 s own dc offset performance U702 also provides a means to add a desired de offset value into the output signal path through the x 1 gain of the OUT_OFFSET signal The output amplifier employs a current feedback technique to set the closed loop gain The emitters of Q701 and Q702 are the virtual summing node p
56. 10 5 MHz 3 0V rms 10 5 MHz amplitude flatness 74 11 MHz 3 0Vrms 11 MHz amplitude flatness 75 11 5 MHz 3 0Vrms 11 5 MHz amplitude flatness 76 12 MHz 3 0Vrms 12 MHz amplitude flatness 77 12 5 MHz 3 0Vrms 12 5 MHz amplitude flatness 78 13 MHz 3 0Vrms 13 MHz amplitude flatness 79 13 5 MHz 3 0Vrms 13 5 MHz amplitude flatness 80 14 MHz 3 0 Vrms 14 MHz amplitude flatness 81 14 5 MHz 3 0Vrms 14 5 MHz amplitude flatness 82 15 MHz 3 0Vrms 15 MHz amplitude flatness 4 Perform the Amplitude Flatness Verification procedures on page 60 Shift Menu On Off Completion of adjustment procedures Return the function generator to the normal operating mode EXITING 79 Chapter 4 Calibration Procedures Output Amplifier Adjustment Optional Output Amplifier Adjustment Optional This adjustment procedure should only be performed following repairs to the Output Amplifier circuitry The adjustment improves the high frequency performance of the Output Amplifier 1 Remove the function generator power and cover as described on page 130 2 Use a DMM to measure the ACrms voltage across J701 as shown below Cable Shield is Circuit Ground 33120A FIG 4 2 3 Turn on the function generator 4 Set the function generator for a 1 kHz
57. 104KAT A 12065C104KAT A KME50VB222M18X35LL TAJB105M035 KME50VB222M18X35LL TAJB105M035 SME25VN103M22X45LL TAJB105M035 12065C104KAT A SMH16VN153M22X35LL TAJD226M020 12065C104KAT A TAJD226M020 12065C104KAT A 116 Chapter 7 Replaceable Parts 33120 66521 Main PC Assembly Reference Designator C1017 1019 C1020 1021 C1051 C1052 C1053 C1054 C1055 CR301 CR302 CR303 CR401 CR601 CR701 CR702 CR703 CR704 CR709 CR710 CR801 CR802 CR803 CR804 CR901 CR904 CR1001 CR1002 1003 CR1004 1005 CR1006 1009 CR1010 CR1051 CR1052 E901 F801 FB401 FB402 FB601 FB701 FB702 FB1001 1002 HS1001 1004 HSQ713 HSQ718 J101 J102 J301 J401 J601 J701 J801 J901 J902 J903 J1001 J1002 J1051 Agilent Part Number 0160 5947 0160 5945 0160 6497 0180 4086 0180 4116 0160 6497 1906 0291 1902 1541 1902 1541 1906 0291 1902 1512 1902 1610 1902 1610 1901 1386 1902 1807 1906 0291 1906 0407 1906 0291 1902 1609 1901 1607 1902 1609 1906 0407 1901 1346 9164 0173 2110 0716 9170 1421 9170 1421 9170 1421 9170 1421 1205 0880 1205 0213 1205 0213 1252 4484 1252 4683 1250 1884 1250 0257 1251 2969 1251 5066 1251 2969 1252 2266 1252 2161 1250 1884 1252 5136 1251 5066 1252 4487 Qty NN MI a sch Part Description CAP FXD 1000 pF 50 V CAP FXD 0 01 uF 50 V CAP FXD 0 1 uF 25 V CAP FXD 01 F 20 25 VDC CAP FXD 22 uF 20 V TA CAP FXD 0 1 uF 25 V DIODE
58. 120 40211 33120 86201 0515 0433 0624 0862 9100 5090 33120 49321 Qty aos aap aaa zc cb eck w ze eet ech A A Mi zl A ch A Part Description MAIN PC ASSEMBLY DISPLAY AND KEYBOARD PC ASSEMBLY FAN TBAX 12V 5 3 CFM NOM CABLE BNC RS 232 CABLE AGILENT INTUILINK ARB SOFTWARE CD COVER FUSE 500 MAT CHASSIS SPACER 438 IN LG 280 IN OD NUT HEX SGL CHAM M9 0 X 0 75 2MM THK WASHER FL MTLC 9 0 9 2 MM ID 14 MM OD AL REAR PANEL BUMPERS FRNT REAR amp POWER MOD CVR FRONT PANEL KNOB PUSH ROD POWER ON CARRYING HANDLE FRONT PANEL KEYPAD FRONT PANEL BEZEL ASSEMBLY POWER MODULE FUSE amp FUSE DRWR SCREW M4 X 8MM LG PAN HD SCREW TPG 750 IN LG PAN HD PHL STL 1022 TRANSFORMER PWR 100 120 220 240V FRONT DISPLAY WINDOW Mfr Code 28480 28480 11855 28480 28480 28480 28480 75915 28480 28480 11239 11239 28480 28480 28480 28480 28480 28480 28480 28480 28480 93907 08807 28480 Mfr Part Number 33120 66521 33120 66502 DFB0412L SG 33120 61601 RS232 61601 33250 13603 33120 84131 239 500 33120 80111 0380 1820 3 9 03 4 9 01 34401 88304 34401 86010 33120 87411 34401 43711 33120 45011 33120 81911 33120 40211 33120 86201 0515 0433 225 44395 890 8470B45 33120 49321 125 Chapter 7 Replaceable Parts Manufacturer s List B Manufacturer s List Mfr Code 00779 01295 02113 04222 04713 05971 07263 07933 08807 09021 11236 11239 115
59. 125 W 100V TC 25 11502 W1206 R03 3090 B R834 R836 0699 3763 RESISTOR 69 1 1206 125 W 100V TC 25 11502 W1206 R03 69R0 B R837 0699 1383 1 RESISTOR 4 22K 1 125 W TKF TC 0 100 28480 0699 1383 R901 0699 1318 RESISTOR 1K 1 125 W TKF TC 0 100 28480 0699 1318 R902 0699 1330 RESISTOR 100K 1 125 W TKF TC 0 100 28480 0699 1330 R904 R905 0699 1318 RESISTOR 1K 1 125 W TKF TC 0 100 28480 0699 1318 R906 0699 1374 RESISTOR 1 78K 1 125 W TKF TC 0 100 28480 0699 1374 R907 0699 1398 RESISTOR 21 5K 1 125 W TKF TC 0 100 28480 0699 1398 121 Chapter 7 Replaceable Parts 33120 66521 Main PC Assembly Reference Designator R908 R909 R910 R1001 R1002 R1003 R1004 R1008 R1009 R1010 R1011 R1012 R1013 R1014 R1052 RP301 RP302 RP401 RP403 RP404 RP601 SHD902 SPR1 SPR2 SPR10 SPR20 U101 U102 U103 U104 U105 U106 U107 U108 U109 U201 U202 U203 U204 U205 U206 U210 U211 U212 U213 U214 U215 U216 U217 U218 Agilent Part Number 0699 1318 0699 3408 0699 1391 0699 1380 0699 1424 0699 1380 0699 1424 0699 1391 0699 1421 0699 1433 0699 1391 0699 1380 0699 1384 0699 1327 1810 1360 1810 1065 1810 1331 1810 1159 33120 00614 0380 0643 2190 0577 1990 1552 1821 1479 1820 8907 33120 88861 1818 4777 1818 5699 1820 5808 1820 5941 1820 5944 1820 6306 1820 5808 1820 6306 1818 5093 1821 0976 1820 7244 1820 5940 1820
60. 2 No calibration constants are stored if the procedures are aborted at any other setup 77 Chapter 4 Calibration Procedures AC Amplitude Flatness Adjustment This procedure can be performed with one of three types of measurement device a broadband ACrms voltmeter a power meter or a thermal voltage converter The procedure differs slightly depending upon the type of measurement device used These adjustments us a 50Q output termination Use a DMM to measure the ACrms output voltage of the function generator and enter the measurement value for the setup in the table below Nominal Output SETUP FREQUENCY AMPLITUDE Reference for 64 1 kHz 3 0Vrms_ 1 kHz flatness DAC gain a If you are using a broadband ACrms voltmeter proceed to step 3 b If you are using a power meter capable of measurements at 1 kHz use the power meter to measure the function generator output and enter the value for the setup in the table below If your power meter does not measure to 1 kHz see the transfer measurement procedure below Nominal Output SETUP FREQUENCY AMPLITUDE Reference for 83 1 kHz 3 0 V rms Vrms dBm Transfer Measurement Procedure If you are using a power meter not capable of measurement to 1 kHz you can perform the transfer measurement at a different frequency For example the Agilent E4418A Power Meter with the Agilent 8482A probe and 20 dB attenuator are specified
61. 25 R308 A2GND lt lt SHT_LOOP E Si A2GND a 1sve SS e Tp 20 w 3 S TLA74CD Ui RPI 11 H 19K NC AZGND PG34 5 REF e CR321 15vC NE SUE pee RP 321 Ne 13 u 5 4 U307 A 1 K Fi R302 39 2K 1g MBAV99 EXT_A AM gk Trio BEE SCH TLOTUCD REN i 11 n A2 ND V V 1 GND A2GNp R3 1SVC 2 r J30i PGL 39 I SERRBK 21 1258 1884 R323 26 1K PMH1 A2GND 1 PMH2 vec GND A u3ags 16 R316 1SV 10K acq at 3 u Ugly Big 02 1 AM OFFSET c 3 03 US AM OFFSET INH 6 Qu Eu MI 2 TL 74CD soy TE Te y A Nap le CR382 ast ts yz A2GND A2GND axe a 8VA GND Gu vec Mos a 3 3 xa gt 15VC 18V xu Bait RSE 15VG x5 ae UE A2GND lt t 5VAL GND lt Q VEE 33 1 s 7WHC4251D xe Ree 5 uate C328 Tu 0312 N ADLSSIR xi fa 1 gt E Be le V 7178 C320 Geis TLO7uCD a si A2GND lee ar 19VA1 GND sees vcc 2GND B 1u CR383 si LL gu P i 5 AZGND E E R311 D Lu VEE A2GND 15VC GND 2310 THIS VCC A2GND EST 15VC 15VC 18V 19 3 3 V A2GND kee 15VC BZX8UC 3V3 A2GND E VEE 33120 66521 sheet 3 of 10 System DAC Schematic 133
62. 26 3517 1826 1619 1826 1622 1820 4377 1820 5732 1813 0861 1821 0434 1826 2797 1820 8830 1826 1950 1821 0622 1826 1991 1990 1552 1820 7244 34401 88842 1821 1721 1820 7662 1820 6176 1820 6175 1826 0527 1826 0393 1826 0527 1826 1597 1826 2264 1826 2801 1826 2794 1826 2264 3050 0447 3050 0447 1200 0181 1200 0181 0410 4009 0410 4009 Qty Bb 0 n NN Dana 2 p Part Description IC DRVR 8X S 20SOL 45V 250MA IC DA VOUT SER 16SOL 16BIT AD1851R IC ANLG MUXR DEMUXR CMOS HC 8 CHAN IC SHF RGTR CMOS 74HC SYNCHRO SERIAL IN IC OP AMP LOW BIAS H IMPD QUAD 14 PIN IC OP AMP LOW BIAS H IMPD QUAD 14 PIN IC MUXR DATA SEL CMOS 74ACT 2 TO 1 LINE IC XLTR ECL 10KH TTL TO ECL QUAD IC FF BICMOS ABT D TYPE POS EDGE TRIG IC 256K BIT SRAM 15 NS CMOS D A 12 BIT 28 PLCC MISC D A 8 BIT 20 PLCC CMOS IC OP AMP LOW BIAS H IMPD QUAD 14 PIN IC GATE TTL F NAND QUAD 2 INP IC LCH CMOS 74HC D TYPE OCTL CLOCK OSCILLATOR XTAL 40 000 MHZ 0 01 IC ANLG MUXR DEMUXR CMOS HC 8 CHAN IC MULTIPLIER HS 14 PIN DIP P IC MUXR DATA SEL CMOS ACT 8 TO 1 LINE IC COMPARATOR HS SGL 8 PIN PLSTC SOIC IC DRVR BICMOS ABT LINE OCTL IC OP AMP HS SINGLE 8 PIN PLSTC SOIC OPTO ISOLATOR LED IC GATE IF 10MA MAX IC SCHMITT TRIG CMOS 74AC INV HEX IC ROM PROGRAMMED IC GPIB CONTROLLER IC INTERFACE DRVR RCVR BIPOLAR DUAL IC INTERFACE XCVR BIPOLAR BUS OCTL IC INTERFACE XCVR BIPOLAR BUS OCTL IC V RGLTR ADJ NEG 1 2 37V 3 TO 220 PKG IC V RGLT
63. 3 Front Panel Menu Operation A front panel menu tutorial Menu Example 2 Some commands in the menu require that you enter a numeric parameter value The following steps show you how to enter a number in the menu For this example you will change the output amplitude Ampl 1 Select amplitude adjustment The function generator displays the current output amplitude 100 0 mVPP lt 2 Move the flashing cursor over to edit the first digit The cursor movement wraps around 100 0 mVPP 3 Increment the first digit until 300 0 mVPP is displayed 91 The output amplitude of the function changes as you adjust the displayed value 300 0 mVPP 1 you can also use the knob and arrow keys to enter a number 43 Shift Menu On Off gt Enter Chapter 3 Front Panel Menu Operation To select the output termination To select the output termination The function generator has a fixed output impedance of 50 ohms on the OUTPUT terminal You can specify whether you are terminating the output into a 500 load or an open circuit Incorrect impedance matching between the source and load will result in an output amplitude or dc offset which does not match the specified value Turn on the menu A MOD MENU Move across to the SYS MENU choice on this level D SYS MENU Move down a level to the
64. 32k X 8 E VVY 4 WALu 7 wi 2r HE NC Lam ne E p WAS 6 2 dL 62832 a apra Hro H E 7 WALT Y Wt L i LATCH ENABLE E ACT 30 N I 15 NC uror mr In 42 321 10 ADWALID 34 n NI 4 El 2 190 cont AMP IN 18 Rug2 12 IWAL TI 21 3277 GND 5 No E 2 cont Amp our 818 DS LE 74ABTS74 aware 38 NENENG wl by 4 i tg 12 LSB U212 BND 1818 1983 DID EFIE c ca E Lu RUGS a ULT PGS 3 a i 5 Ee 3 WRLx GND Ee EE E REHAT 6 E Z our gt DACOUT WR GND q AZN iino E ie oc m m Locci2 D EZ amp DRUS S S gt JUACT 32 pA M eee keke EE Mn Z Toor 1 E His GS y DACOUT 8 SA he a PAE 3 in D ps wncrisg 4282 A BAL aUsalcal alla 2 1 AE 8 8 8 8 SES GND 281 JIMSBI CO Io Di Di Di D WAL C14 124 Poz Up u4g3 REIS td la PT5 p w E 1 WALI ig g P 32k x a AN e A C ub halt SPTS 30 SC gl gl gl 8 E 3 2 WALZ 3 LLATCH CORT Le Rugu S8 7 al AES 3 ES WC ES z x RU 16 R417 Z WALS 2 62832 a WDS 2 m vh VEEA V CEN SER HS 19 GND GND GND GND pob oniy EE ESO WD2 85 16 V V N se dad 5 E AGND GND VEEA ACND AGND cen GND El HEN KEE VEED 7 GND 2 12 NGC y 220 g 74ABTS74 U212 DD 3 1818 4983 R P u GND lt A at OS w hron EGA Pai 5 WRH 21 fe2MSMS278 15 gt z GND 4 22 1 eN2 KEE 13 4 R409 vec 3 48K ZAD 14 3 ia NC E m ne AT 1 asgl MMBT 3904 no eam NO d ER R413 RULY HDAC_REF AMP cm 3 P83 ma 3 32K E AM GA 1N3 EG3 AHLGAIN 20 5K 16K AM FMx 3 EG2 AM FMX VCC C4g8 R415 D CRY 1
65. 4 To set the output frequency 25 To set the output amplitude 26 To set a dc offset voltage 27 To set the duty cycle 28 To output a stored arbitrary waveform 29 To output a de voltage 30 To store the instrument state 31 To rack mount the function generator 33 Chapter 3 Front Panel Menu Operation Front panel menu reference 37 A front panel menu tutorial 39 To select the output termination 44 To output a modulated waveform 45 To unsecure the function generator for calibration 47 Chapter 4 Calibration Procedures Agilent Calibration Services 51 Calibration Interval 51 Time Required for Calibration 51 Automating Calibration Procedures 52 Recommended Test Equipment 52 Test Considerations 53 Performance Verification Tests 54 Frequency Verification 56 Function Gain and Linearity Verification 56 DC Function Offset Verification 57 AC Amplitude Verification 57 Amplitude Flatness Verification 60 AM Modulation Depth Verification 61 Optional Performance Verification Tests 62 CH e gt m OD gt mp Contents Contents Chapter 4 Calibration Procedures continued Calibration Security Code 64 Calibration Count 66 Calibration Message 66 General Calibration Adjustment Procedure 67 Aborting a Calibration in Progress 69 Frequency and Burst Rate Adjustment 69 Function Gain and Linearity Adjustment 70 AC Amplitude Adjustment High Z 70 Modulation Adjustment 72 AC Amplitude Adjustment 500 73 DC O
66. 5 Vrms 0 0035 Vrms Sine wave HIGH Z 0 28 Vrms 1 00 kHz 0 28 Vrms 0 0028 Vrms Sine wave HIGH Z 0 22 Vrms 1 00 kHz 0 22 Vrms 0 0022 Vrms Sine wave HIGH Z 0 17 Vrms 1 00 kHz 0 17 Vrms 0 0017 Vrms Sine wave HIGH Z 0 14 Vrms 1 00 kHz 0 14 Vrms 0 0014 Vrms Sine wave HIGH Z 0 11 Vrms 1 00 kHz 0 11 Vrms 0 0011 Vrms Sine wave HIGH Z 0 088 Vrms 1 00 kHz 0 088Vrms 0 00088 Vrms Sine wave HIGH Z 0 070 Vrms 1 00 kHz 0 070 Vrms 0 00070 Vrms Sine wave HIGH Z 0 055 Vrms 1 00 kHz 0 055 Vrms 0 00055 Vrms Sine wave HIGH Z 0 044 Vrms 1 00 kHz 0 044 Vrms 0 00044 Vrms Sine wave HIGH Z 0 036 Vrms 1 00 kHz 0 036 Vrms 0 00036 Vrms 1 Output termination set using front panel controls HIGH Z assumes no load on output 50Q assumes a 50Q 0 19 load on output 58 Chapter 4 Calibration Procedures AC Amplitude Verification Install the 500 feedthrough load between the DMM and the function generator output Set the function generator for each output indicated in the table on the next page Use a DMM to measure the ACrms output voltage of the function generator Compare the measured results to the test limits shown in the table This is a 50Q output termination test Agilent 33120A Measurement Function OUT TERM Ampl Freq Nominal Error Sine wave 50 Q 3 5 Vrms 1 0000 kHz 3 5 Vrms 0 035 Vrms
67. 5 and CR1011 form a clamp circuit to provide over voltage protection in the event of a mains or transformer failure The PFAIL and PONRST signals are derived from the floating 5 Vdc supply PFAIL is asserted when the raw 5 Vdc supply drops below 6 4 V signaling an unstable power supply condition to the main CPU U102 Current instrument state information is copied to non volatile RAM U106 for future recall if needed The PONRST signal holds the main CPU and other logic in a reset state until after the 5 Vdc logic power supply is fully operational This signal is generally active only following application of line power to the instrument The floating 18 volt supplies are produced by bridge rectifier CR1001 filter capacitors C1001 and C1008 and regulators U1001 and U1002 These supplies are used to power all analog circuits in the function generator In addition the vacuum fluorescent display is driven from the 18 volt supplies A separate winding of T1 provides a center tapped 6 Vrms filament supply for the display Bias circuit CR1010 R1009 and C1011 generate the required cathode dc bias for the display filament supply The 5 volt earth referenced supply is produced by rectifier CR1051 C1053 and regulator U1051 This supply is earth referenced through the screw used to mount the PC board to the instrument chassis The GPIB IEEE 488 and RS 232 computer interfaces and the rear panel EXT Trigger circuits are powered from this sup
68. 5944 1990 1552 1820 8830 1820 5937 1820 4998 1820 5943 1821 0559 Qty NN EF 0 N VES Mi asu NN A Mi A sch N Part Description RESISTOR 1K 1 125 W TKF TC 0 100 RESISTOR 1K 5 1 W TKF TC 0 200 RESISTOR 10K 1 125 W TKF TC 0 100 RESISTOR 3 16K 1 125 W TKF TC 0 100 RESISTOR 237 1 125 W TKF TC 0 100 RESISTOR 3 16K 1 125 W TKF TC 0 100 RESISTOR 237 1 125 W TKF TC 0 100 RESISTOR 10K 1 125 W TKF TC 0 100 RESISTOR 178 1 125 W TKF TC 0 100 RESISTOR 562 1 125W TKF TC 0 100 RESISTOR 10K 1 125 W TKF TC 0 100 RESISTOR 3 16K 1 125 W TKF TC 0 100 RESISTOR 4 64K 1 125 W TKF TC 0 100 RESISTOR 1M 1 125 W TKF TC 0 100 RESISTOR NETWORK 16PINS THICK FILM SMD NET RES 15 1 0K OHM 16 PIN NET RES 8 220 0 OHM 16 PIN RESISTOR NETWORK RFI SHIELD STANDOFF HEX 255 IN LG 6 32 THD WASHER NO 10 194 IN ID 294 IN OD OPTO ISOLATOR LED IC GATE IF 10 MA MAX IC BIT SLICE MPU MCU IC GATE ARY CMOS PROG PAL IC 256K BIT SRAM 70 NS CMOS IC CMOS AMB 32 PIN 120 NANOSECONDS IC FF CMOS 74HC D TYPE POS EDGE IC DCDR CMOS 74ACT BIN 8 TO 1 LINE 74ACT32 GATE QUAD 2 INPUT OR IC TRANSCEIVER CMOS HCT BUS OCTL IC FF CMOS 74HC D TYPE POS EDGE IC TRANSCEIVER CMOS HCT BUS OCTL IC 256K BIT SRAM 25 NS CMOS IC MODULATOR ANLG 68 PIN PLCC IC SCHMITT TRIG CMOS 74AC INV HEX IC GATE CMOS 74ACT AND QUAD 2 INP 74ACT32 GATE QUAD 2 INPUT OR OPTO ISOLATOR LED IC GATE IF 10M
69. 601 Law PG 6 SO SINE Ge U 13 aeg hH 2 veer tesa Kee 1sy 135 nenom Des ES L681 1 teaa g7 Oar 4 AGND lt 2 2 OS gt 8 FUNCT LON AGN el aaa Lo Y id E o 3 12 AM_OUT PGS R6B2 11 fR683 11 Reds 11 fRe8S 11 Rede 11 Bop 11 Re88 11 Rego 11 2 NC E 2 i FLT OUT 8TT7 mea eo I lo m gd z C682 gtu n D AGND SE RT RPEDI PEL RPODL SEH RP6g1 P6DL RP6DL R619 z 562 220 220 220 220 220 220 220 u5 3 AGND R612 180 Wee R661 i a KB K ka a E a 21 5K AGNID 8 AD734AN 5 E gt E 5 gt 5 Y S R613 ER 15V AGND AGND AGND AGND AGND AGND AGND AGND AGND FSVA 15v ueg2 cea3 D lu 16 gt AGND KEB2 K601 MUXDX u au z rsa 10 6 PG3 y RSTKGZ2 z jag 74HC4 51D S PHI ere R663 R66 U 3 e SVA SETK681 178 1 uK G8 13 Apr 5 K682 lu FA prem Kent E 153i Lbd2 2 8 PG7 1 A 3 a 3 ee AGND EG MP LIN READ c Par 3 FUNCTLON FUNCT ON 7 Bes a y o are S 7 ap A S FLT_OUT R6L6 11 R amp 17 11 ng 11 Rete 11 Reza 11 R amp 21 11 R amp 22 11 m et B N a E e cogu 2 tu KGBZ y 2 2 2 2 2 i GRONO R615 PEBL RPODL PODL RPODL PODL GH R623 1 SHE e S 562 S220 S 220 S220 220 S 220 220 45 3 ABND E ML VEE SVA PG3 y S TKGB2 a le ta ta ta U E E gt gt gt AGND AGND AGND AGND AGND AGND AGND AGND K682 SVA 20 E AGND lt A 3 PGZ R PSZ 5 a R653 FUNCTION 4 ER Re51 49 9 3 R647 196K 11K SVA 0605 egs ROMS 196K Ca MMBT 3926 SW_AMPL AM 5VA SVA R646 R649 13 5 FB6G1 GR R640 NED vec 7 5V6 12 511 511 C
70. 69 e Function Gain and Linearity Adjustment 70 e AC Amplitude Adjustment High Z 70 e Modulation Adjustment 72 e AC Amplitude Adjustment 50Q 73 e DC Output Adjustment 76 e Duty Cycle Adjustment 77 e AC Amplitude Flatness Adjustment 77 e Output Amplifier Adjustment Optional 80 e Error Messages ee eee 81 50 Chapter 4 Calibration Procedures Agilent Calibration Services Closed Case Electronic Calibration The function generator features closed case electronic calibration since no internal mechanical adjustments are required for normal calibration The function generator calculates correction factors based upon the input reference value you set The new correction factors are stored in non volatile memory until the next calibration adjustment is performed non volatile memory does not change when power has been off or after a remote interface reset Agilent Calibration Services When your function generator is due for calibration contact your local Agilent Service Center for a low cost recalibration The 33120A Function Generator is supported on automated calibration systems which allow Agilent to provide this service at competitive prices Calibrations to MIL STD 45662 are also available at competitive prices Calibration Interval The function generator should be calibrated on a regular interval determin
71. 699 1415 RN73E2BTE1602B 0699 2431 0699 1318 0699 1391 W1206R03 2052B 0699 2103 0699 3431 0699 1423 0699 1431 0699 1318 W1206 R03 69R0 B W1206R031000BT 0699 1433 0699 1345 0699 1826 0699 1415 0699 1433 0699 1345 0699 1826 0699 1415 0699 2712 0699 1415 119 Chapter 7 Replaceable Parts 33120 66521 Main PC Assembly Reference Designator R629 R630 R631 R632 R633 R634 R635 R636 R637 R638 R639 R640 R641 R642 R643 R644 R645 R646 R647 R648 R649 R650 R651 R652 R653 R654 R655 R656 R657 R658 R659 R660 R661 R662 R663 R664 R701 R702 R703 R704 R705 R706 R707 R708 R710 R711 R712 R713 R715 R716 R717 R718 R719 R720 R722 R723 Agilent Part Number 0699 2712 0699 1415 0699 1432 0699 1384 0699 1415 0699 1432 0699 1384 0699 1344 0699 1432 0699 2631 0699 1432 0699 2196 0699 1415 0699 1432 0699 1352 0699 1332 0699 1392 0699 1330 0699 1392 0699 1318 0699 2103 0699 1432 0699 2631 0699 1415 0699 1366 0699 1360 0699 1432 0699 1318 0699 1398 0699 1330 0699 1421 0699 2883 0699 2843 0699 2489 0699 2631 0699 1422 2100 4199 0699 2883 0699 1394 0699 1366 0699 1415 0699 2883 0699 1351 0699 1415 0699 1366 0699 1351 Qty PP DP DN u Part Description RESISTOR 255 1 125 W TKF TC 0 100 RESISTOR 100 1 125 W TKF TC 0 10 RESISTOR 511 1 125 W TKF TC 0 100 RESISTOR 4 64K 1 125 W TKF TC 0 10
72. A MAX IC MUXR DATA SEL CMOS ACT 8 TO 1 LINE IC FF CMOS 74AC D TYPE POS EDGE TRIG IC GATE TTL F OR QUAD 2 INP IC MUXR DATA SEL CMOS 74ACT 2 TO 1 LINE IC FF BICMOS ABT D TYPE POS EDGE TRIG Mfr Code 28480 2M627 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 11236 11236 28480 28480 28480 20859 28480 34649 27014 28480 28480 34335 04713 28480 28480 27014 04713 27014 04713 01295 27014 28480 07263 28480 04713 07263 27014 07263 01295 Mfr Part Number 0699 1318 MCR1001KJ 0699 1391 0699 1380 0699 1424 0699 1380 0699 1424 0699 1391 0699 1421 0699 1433 0699 1391 0699 1380 0699 1384 0699 1327 1810 1360 767161102G 767163221G 1810 1159 33120 00614 0380 0643 03118 HCPL 221 1 300 N80C196KB SCX6206AKO 33120 88861 1818 4777 AM29F010 120JC MC74HC273DW 1820 5941 1820 5944 MM74HCT245WM MC74HC273DW MM74HCT245WM MCM6206DJ25 F107563FN 74AC14SC 1820 5940 02237 HCPL 2211 300 MC74ACT251D 02237 74F32SC 02237 SN74ABT16374ADL 122 Chapter 7 Replaceable Parts 33120 66521 Main PC Assembly Reference Designator U301 U302 U303 U304 U305 U306 U307 U314 U315 U401 U402 U403 U404 U405 U407 U409 U410 U411 U412 U413 U601 U602 U603 U604 U620 U621 U702 U901 Agilent Part Number 1821 0964 1826 2793 1821 0434 1820 5790 1826 1622 1826 1622 1820 5943 1820 6524 1820 8461 1818 4983 18
73. AM is reset to initial factory values 111 112 Replaceable Parts Replaceable Parts This chapter contains information to help you order replacement parts for your 33120A Function Generator The parts lists are divided into the following groups e 33120 66521 Main PC Assembly A1 e 33120 66502 Front Panel Display and Keyboard PC Assembly A2 e 33120A Mainframe e Manufacturer s List Parts are listed in alphanumeric order according to their schematic reference designators The parts lists include a brief description of the part with applicable Agilent part number and manufacturer part number To Order Replaceable Parts You can order replaceable parts from Agilent using the Agilent part number or directly from the manufacturer using the manufacturer s part number Note that not all parts listed in this chapter are available as field replaceable parts To order replaceable parts from Agilent do the following 1 Contact your nearest Agilent Sales Office or Agilent Service Center 2 Identify the parts by the Agilent part number shown in the replaceable parts list Note that not all parts are directly available from Agilent you may have to order certain parts from the specified manufacturer 3 Provide the instrument model number and serial number 114 Chapter 7 Replaceable Parts 33120 66521 Main PC Assembly M 33120 66521 Main PC Assembly Reference Designator C101 C102 C103 C105
74. AT A 08055C103KAT A 12065C104KAT A SME25VN103M22X45LL TAJD226M020 12065C104KAT A MBAV99 BZX84C3V3 BZX84C3V3 MBAV99 BZX84C7V5 1SMB5913B 1SMB5913B 1901 1386 1SMB5934BT3 MBAV99 DF04S MBAV99 1SMB5920B S3G 1SMB5920B DF04S SMCJ43CA PKM24 4A0 1 R251 500T1 9170 1421 9170 1421 9170 1421 9170 1421 7021B TC10 MT 2228B 2228B 52007 1210 N3662 6202 227161 6 413990 3 15 24 0503 22 04 1021 15 24 0503 748959 1 554923 2 227161 6 26 64 4090 22 04 1021 26 64 4030 117 Chapter 7 Replaceable Parts 33120 66521 Main PC Assembly Reference Designator JM1001 1004 JM1051 K501 K502 K601 K602 K801 K804 L501 L502 L503 L504 L505 L506 L521 L522 L531 L532 L533 L534 L535 L536 L537 L538 L601 L602 L801 Q401 Q601 Q602 Q603 Q604 Q605 Q701 Q702 Q704 Q705 Q707 Q708 Q709 Q710 Q711 Q712 Q713 Q714 Q715 Q717 Q718 R101 R104 R106 R109 R110 R111 R112 R114 R116 R117 R118 R119 R120 R121 R201 R203 R205 Agilent Part Number 0699 1503 0699 1503 0490 1664 0490 1664 0490 1664 9140 1716 9140 1102 9140 1425 9140 1102 9140 1103 9140 1102 9140 1101 9140 1102 0699 1503 9140 1099 1854 1037 1854 1037 1853 0516 1853 0567 1854 1148 1853 0516 1854 1148 1853 0567 1853 0516 1854 1037 1854 1445 5063 1420 1853 0728 1854 0597 1853 0728 1854 1303 1853 0293 0699 1318 0699 1423 0699 1386 0699 1318 0699 1391 0699 1423 0699 1318 0699 1423 0699 1318 0699
75. BK serial read back is used by self test to verify operation of U103 relay drivers U301 U302 and System DAC shift register U305 97 Chapter 5 Theory of Operation Earth Referenced Logic The main CPU U102 communicates with the earth referenced logic through an optically isolated asynchronous serial data link U101 isolates the incoming data OG_RXD from the earth referenced logic Similarly U901 isolates the data from U102 OG_TXD to the earth reference logic Data is sent in an 11 bit frame at a rate of 187 5 k bits second When the RS 232 interface is selected data is sent across the serial link at 93 75 k bits second The 11 bit internal data frame is configured for one start bit eight data bits one control bit and one stop bit Earth Referenced Logic Block 9 on block diagram page 129 Schematic on page 139 The earth referenced section provides all rear panel input output capability Microprocessor U903 handles GPIB IEEE 488 control through bus interface chip U904 and bus receiver driver chips U907 and U908 The RS 232 interface is also controlled through U903 RS 232 transceiver chip U906 provides the required level shifting to approximate 9 volt logic levels through on chip charge pump power supplies using capacitors C904 and C906 Communication between the earth referenced logic interface circuits and the floating logic is accomplished through an optically isolated bi directional serial interface Isolator U101 c
76. BTH81 R728 R730 26 1 S 102 130 roe Ain R728 196 18V E 15V 15V 15V 15V R776 R74 peb_only 287 ee OUT_REF Peena JI 33120 66521 sheet 7 of 10 Output Amplifier Schematic 137 TENUATO epp epp K803 K803 CA Le SVA ud 5 18v i el ht is ath sva elg sn 821 E eu U a Tl SVA Keg2 K803 BER 0R822 z SVA ES a LU 2 8 SS SVA n SVA 5 SVA i 7 w Pat GE Log FBDL PG7 3 ga a AMP Dur PSA o W I ly a 9 gt 228r a s SC Bau El RB37 cag2 K8g2 Sh 22K y 188p A Xo ao a o Ack D 11 8 on 1 8 a 53 53 AG AGND AGND A AGND ANN R628 Raza RBL yy 18V LES Les 18 ROUS 8832 53 i T CR803 gt a BAT IN e REDE ES SR ie REIT PGND lt t 18V S 215 as 232 232 ey t a 24 R816 215 CRBZ4 v Y V V Y pad AGND AGND AGNI A AGND AGNI AGND AGND AGI PGND lt t RH en d 24 33120 66521 sheet 8 of 10 Output Attenuator Schematic 138 SVO 14
77. C107 C108 C109 C110 C111 C113 C114 C117 C201 C202 C203 C204 C205 C206 C207 C208 C210 C211 C213 C301 C306 C308 C309 C310 C312 C313 C318 C319 C320 C401 C402 C404 C405 C406 C407 C408 C409 C410 C411 C412 C413 C422 C423 C424 C425 C426 C427 C428 C429 C432 C503 C504 C505 C506 C507 C508 C509 C510 C521 C522 C531 C532 C533 C534 Agilent Part Number 0160 6497 0160 5945 0160 5945 0160 6497 0160 5945 0160 6497 0160 5945 0160 6497 0160 5945 0160 6497 0160 5945 0160 6497 0160 5945 0160 6497 0160 6497 0160 6497 0160 5945 0160 6497 0160 5945 0160 6497 0160 6497 0160 5967 0160 5962 0160 5967 0160 5962 0160 5967 0160 6497 0160 5945 0160 6497 0160 5945 0160 6497 0160 5959 0160 5947 0160 6497 0160 6736 0160 5967 0160 6497 0160 7405 0160 5953 0160 5964 0160 5958 0160 5954 0160 5955 0160 5976 Qty 78 26 Ww oP PROD Part Description CAP FXD 0 1 uF 25 V CAP FXD 0 01 uF 50 V CAP FXD 0 01 uF 50 V CAP FXD 0 1 uF 25 V CAP FXD 0 01 uF 50 V CAP FXD 0 1 uF 25 V CAP FXD 0 01 uF 50 V CAP FXD 0 1 uF 25 V CAP FXD 0 01 uF 50 V CAP FXD 0 1 uF 25 V CAP FXD 0 01 uF 50 V CAP FXD 0 1 uF 25 V CAP FXD 0 01 uF 50 V CAP FXD 0 1 uF 25 V CAP FXD 0 1 uF 25 V CAP FXD 0 1 uF 25 V CAP FXD 0 01 uF 50 V CAP FXD 0 1 uF 25 V CAP FXD 0 01 uF 50 V CAP FXD 0 1 uF 25 V CAP FXD 0 1 uF 25 V CAP FXD 100 pF 50 V CAP FXD 15 pF 50 V CAP FXD 100 pF 50 V CAP FXD 15 pF 50 V CAP
78. CAUTION notice until the indicated conditions are fully understood and met all Earth ground symbol M Chassis ground symbol WARNING Only qualified service trained person nel who are aware of the hazards involved should remove the cover from the instrument WARNING For continued protection against fire replace the line fuse only with a fuse of the specified type and rating
79. Carrier Frequency Count Start Phase Internal Rate Gate Source Trigger Source FSK Modulation Frequency Range Internal Rate 10 MHz typical Any internal waveform plus Arb 10 mHz to 20 kHz 0 05 to 2 5 kHz then decreases linearly to 0 4 at upper limit 0 to 120 Internal External Any internal waveform plus Arb 10 mHz to 10 kHz 0 05 to 600 Hz then decreases linearly to 0 8 at upper limit 10 mHz to 15 MHz Internal Only 5 MHz max 1 to 50 000 cycles or Infinite 360 to 360 10 mHz to 50 kHz 1 Internal or External Gate Single External or Internal Rate 10 mHz to 15 MHz 0 05 to 600 Hz then decreases linearly to 4 at upper limit 10 mHz to 50 kHz Source Internal External 1 MHz max FREQUENCY SWEEP Type Linear or Logarithmic Direction Up or Down Start F Stop F 10 mHz to 15 MHz Time 1ms to 500 sec 10 176 Source Single External or Internal REAR PANEL INPUTS External AM Modulation External Trigger FSK Burst Gate Latency Jitter 5 Vpk 100 Modulation 5 kQ Input Resistance TTL low true 1 3 us 25 ns SYSTEM CHARACTERISTICS Configuration Times 2 Function Change 80 ms Frequency Change 30 ms Amplitude Change 30 ms Offset Change 10 ms Select User Arb 100 ms Modulation Parameter Change 350 ms Arb Download Times over GPIB Arb Length Binary ASCH Integer ASCII Real 4 16 000 points 8 sec 81 sec 100 sec 8
80. FXD 100 pF 50 V CAP FXD 0 1 uF 25 V CAP FXD 0 01 uF 50 V CAP FXD 0 1 uF 25 V CAP FXD 0 01 uF 50 V CAP FXD 0 1 uF 25 V CAP FXD 33 pF 50 V CAP FXD 1000 pF 50 V CAP FXD 0 1 uF 25 V CAP FXD 0 01uF 10 50 V CER X7R CAP FXD 100 pF 50 V CAP FXD 0 1 uF 25 V CAP FXD 560 pF 10 50 V CER X7R CAP FXD 270 pF 50 V CAP FXD 180 pF 50 V CAP FXD 39 pF 50 V CAP 220 pF 5 50V CAP FXD 68 pF 50 V CAP FXD 12 pF 50 V Mfr Code 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 51406 04222 04222 28480 02444 04222 04222 04222 04222 04222 Mfr Part Number 12065C104KAT A 08055C103KAT A 08055C103KAT A 12065C104KAT A 08055C103KAT A 12065C104KAT A 08055C103KAT A 12065C104KAT A 08055C103KAT A 12065C104KAT A 08055C103KAT A 12065C104KAT A 08055C103KAT A 12065C104KAT A 12065C104KAT A 12065C104KAT A 08055C103KAT A 12065C104KAT A 08055C103KAT A 12065C104KAT A 12065C104KAT A 08051A101JAT A 08051A150JAT A 08051A101JAT A 08051A150JAT A 08051A101JAT A 12065C104KAT A 08055C103KAT A 12065C104KAT A 08055C103KAT A 12065C104KAT A 08051A330JAT A 08055C102KAT A 12065C104KAT A GRM426X7R103K50 08051A101JAT A 12065C104KAT A 0160 7405 08051A271JAT A 08051A181JATRA 08051A390JAT A 08051A221JAT A 08051A680JATRA 08051A120JAT A
81. FXD 2 2 uF 20 V TA CAP FXD 10 pF 50 V CAP FXD 2 2 uF 20 V TA CAP FXD 1000 uF 20 35 VDC CAP FXD 2 2 uF 20 V TA CAP FXD 1000 uF 20 35 VDC CAP FXD 0 1 uF 25 V CAP FXD 1 pF 50V CAP FXD 180 pF 50 V CAP FXD 0 1 uF 25 V CAP FXD 68 pF 50 V CAP FXD 0 1 uF 25 V CAP FXD 0 01 uF 50 V CAP FXD 0 1 uF 25 V CAP FXD 0 1 uF 25 V CAP 2200 uF 50V CAP FXD 1 uF 35 V TA CAP FXD 2200 uF 50V CAP FXD 1 uF 35 V TA CAP FXD 01 F 20 25 VDC AL CAP FXD 1 uF 35 V TA CAP FXD 0 1 uF 25 V CAP FXD 20 16 V AL ELCTLT CAP FXD 22 uF 20 V TA CAP FXD 0 1 uF 25 V CAP FXD 22 uF 20 V TA CAP FXD 0 1 uF 25 V Mfr Code 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 04222 02444 04222 04222 04222 04222 04222 4217 04222 4217 04222 04222 04222 04222 04222 04222 04222 04222 04222 4217 04222 4217 04222 4217 04222 04222 4217 04222 04222 04222 04222 Mfr Part Number 08055A331JAT A 08055A820FATMA 08051A151JAT A 08051A101JAT A 08055A101FAT_A 08051A271JAT A 08051A220JAT A 08051A151JAT A 12065C104KAT A 08051A221JAT A TAJB225M020 08055C103KAT A 08055C103KAT A 08051 A680JATRA 08051A470JAT A 08051A271JAT A 08051A100JAT A 08051A1ROCAT A TAJB225M020 08051A100JAT A TAJB225M020 SME35VB102M12 5X25LL TAJB225M020 SME35VB102M12 5X25LL 12065C104KAT A 08051A1ROCAT A 08051A181JATRA 12065C104KAT A 08051 A680JATRA 12065C104KAT A 08055C103KAT A 12065C
82. H e gt OD gt mp 12 Specifications WAVEFORMS Standard Waveforms Arbitrary Waveforms Waveform Length Amplitude Resolution Sample Rate Non Volatile Memory Chapter 1 Specifications Agilent 33120A Function Generator Sine Square Triangle Ramp Noise DC volts Sine x x Negative Ramp Exponential Rise Exponential Fall Cardiac 8 to 16 000 points 12 bits including sign 40 MSa sec Four 16 000 point waveforms FREQUENCY CHARACTERISTICS Sine Square Triangle Ramp Noise Gaussian Arbitrary Waveforms 8 to 8 192 points 8 193 to 12 287 points 12 288 to 16 000 points Resolution Accuracy Temperature Coefficient Aging 100 y Hz 15 MHz 100 wHz 15 MHz 100 uHz 100 kHz 100 uHz 100 kHz 10 MHz bandwidth 100 uHz 5 MHz 100 uHz 2 5 MHz 100 Hz 200 kHz 10 Hz or 10 digits 10 ppm in 90 days 20 ppm in 1 year 18 C 28 C lt 2 ppm C 10 ppm yr SINEWAVE SPECTRAL PURITY into 500 Harmonic Distortion DC to 20 kHz 20 kHz to 100 kHz 100 kHz to 1 MHz 1 MHz to 15 MHz Total Harmonic Distortion DC to 20 kHz Spurious non harmonic Output DC to 1 MHz Output 1 MHz Phase Noise 70 dBc 60 dBc 45 dBc 35 dBc 0 04 65 dBc 65 dBc 6 dB octave 55 dBc in a 30 kHz band SIGNAL CHARACTERISTICS Squarewave Rise Fall Time Overshoot Asymmetry Duty Cycle
83. MOC 29 TAE ig SRAM 32k X B 74F 32 3EN2 7 MOCZ 30 pra MAZ A a 2 dc a A8 We 8 A AUD 2 vp 4 Lat NC MA2 E B 2v 17 MA3 6 erig NC We 5 6206 ana N6 Di MAG 4 par _f MA7 A 2D 3V ela MU L MAS geg WDCZ 2 n 2 pS wig i E 23 74HCT245 MALL 2 1820 6306 ds 6 U216 ECH it TESTA MALY 1 14 1818 5093 RDWRX 9 TESTI MAIS GND 1 20 G1 PGH PGL 18 8 WV DEH 19 nl G3 21 102 WV HIGH RD 3ENI FLO7S63FN 22 m 1 2EN3 THF 32 3EN2 GN MCM62 6BBEJ25 vi 4 gt 2V MDC7 2 MD 7 PB 007 0 74HCT245 PGL ADC7 8 1820 6306 A ADC7 0 ADEL PCY 3upc11 9 TRG_ENX 58 TRGSELO Arer TRGSELL per TRGSEL2 y t vec vee 5V0 8 U213 R201 1K R203 0699 1318 v218 LOK 2 EET GC Aa 13 ps 12 EXT TROX 0699 1391 Gas i EXT TRG 5 O teg EXT_TRG THACLY SSC Bypass Capacitors s 1992 1552 Bypass for HCPL 221 1 308 1 MCPL 2211 Opto V Y 74ACT251 vec vcc VCC VCC vec VCC vec vec VCC VCC VCC VCC vec PG PGL i QE EXT_TRG gt A m amp 2 a 5 S s zi NI m S N A N A N S S N N AI EY O D O D 8 O S O 8 D 3 S 3 3 gt 2 3 2 2 3 3 3 2 R a z a H B a a P El S s 2 S A s s s s s s s MRAM_RDX LBE TRIG STB year GND GND GND GND GND GND GND GND GND GND GND GND GND 33120 66521 sheet 2 of 10 Digital Waveform Data Synthesis Schematic 132
84. Office One power cord One RS 232 serial cable One User s Guide M This Service Guide One folded Quick Reference card Certificate of Calibration Agilent IntuiLink Arb Waveform Generation Software Connect the power cord and turn on the function generator If the function generator does not turn on see chapter 6 for troubleshooting information The front panel display will light up while the function generator performs its power on self test The GPIB bus address is displayed Notice that the function generator powers up in the sine wave function at 1 kHz with an amplitude of 100 mV peak to peak into a 50Q termination To review the power on display with all annunciators turned on hold down Shift as you turn on the function generator Perform a complete self test The complete self test performs a more extensive series of tests than those performed at power on Hold down Shift as you press the Power switch to turn on the function generator hold down the key for more than 5 seconds The self test will begin when you release the key If the self test is successful PASS is displayed on the front panel If the self test is not successful FAIL is displayed and the ERROR annunciator turns on See chapter 6 for instructions on returning the function generator to Agilent for service 21 Chapter 2 Quick Start If the function generator does not tur
85. R ADJ POS 1 2 37V 3 TO 220 PKG IC V RGLTR ADJ NEG 1 2 37V 3 TO 220 PKG IC V RGLTR FXD POS 4 85 5 15V TO 220 PKG IC PWR MGT UND V SEN 8 PINS P SOIC PKG IC V RGLTR OV V SEN 8 P SOIC PKG IC V RGLTR FXD POS 4 85 5 15V 3 TO 220 IC PWR MGT UND V SEN 8 PINS P SOIC PKG WASHER FL NM NO 8 192 IN ID 37 IN OD WASHER FL NM NO 8 192 IN ID 37 IN OD INSULATOR XSTR NYLON INSULATOR XSTR NYLON CERO RES 12 MHZ 1 0 8 CERO RES 12 MHZ 1 0 8 Mfr Code 01295 24355 18324 18324 04713 04713 07263 04718 01295 28480 28480 24355 04718 27014 04713 28480 18324 24355 04713 28480 18324 24355 28480 27014 28480 01295 28480 01295 01295 27014 27014 27014 27014 04718 04713 27014 04713 28480 28480 13103 13103 28480 28480 Mfr Part Number TPIC6595DW AD1851R 74HC4051D 74HC4094D TLO74CD TLO74CD 02237 MC10H124FN SN74ABT574ADW 1818 4983 1826 3517 AD7528JP TLO74CD 74F00SC MC74HC573ADW 1813 0861 74HC4051D AD734AN MC74ACT251D 1826 1950 74ABT540D AD711JR HCPL 221 1 300 74AC14SC 34401 88842 MP9914FNL 1820 7662 SN75ALS160DW SN75ALS162DW LM337T LM317 LM337T LM2940CT MC34064D 5 MC3423D LM2490CT 5 0 LBO1 MC34064D 5 3050 0447 3050 0447 7717 5 N 7717 5 N 0410 4009 0410 4009 123 Chapter 7 Replaceable Parts 33120 66502 Display and Keyboard PC Assembly M 33120 66502 Display and Keyboard PC Assembly Reference Agilent Part Mfr Mfr Part Design
86. RED ES BLK GRN O x E BLK YEL a BLK ORN L THE POWER MODULE INCLUDES THE POWER SWITCH THE POWER FUSE AND THE LINE VOLTAGE SELECTION SWITCH C117 177p pop C1018 100 0p Cou C1219 j1002p Senn 33120 66521 sheet 10 of 10 Power Supplies Schematic 140 A 4 y gt Crear 741183 41102 ee n aa n ZPL ZPL ZPL ZP1 SHIFT ENTER NUM ENTRY ARB ut1g23 PEA A a r81105 rrpiii2 TB 186 T8113 UN gt VS 5 WE CPu mer FA d a ay I ra a x NP RESET Dos d Zug ELA E di piea so47 m 1620 5862 ment ZPL ZPL ZPL ZP1 R KE 13V SUPPLY 18v 10K 2659 1301 una TRIG sa aw
87. RESISTOR 3 32K 1 125 W TKF TC 0 100 RESISTOR 1K 1 125 W TKF TC 0 100 RESISTOR 10K 1 125 W TKF TC 0 100 RESISTOR 20 5K 0 1 125W TF TC 0 25 RESISTOR 49 9 1 125 W TKF TC 0 100 RESISTOR 4 99K 1 125 W TKF TC 0 100 RESISTOR 215 1 125 W TKF TC 0 100 RESISTOR 464 1 125 W TKF TC 0 100 RESISTOR 1K 1 125 W TKF TC 0 100 RESISTOR 69 1 1206 125 W 100V TC 25 RESISTOR 100 0 1 125 W TF TC 0 25 RESISTOR 562 1 125 W TKF TC 0 100 RESISTOR 11 1 125 W TKF TC 0 100 RESISTOR 45 3 1 125 W TKF TC 0 100 RESISTOR 100 1 125 W TKF TC 0 100 RESISTOR 562 1 125 W TKF TC 0 100 RESISTOR 11 1 125 W TKF TC 0 100 RESISTOR 45 3 1 125 W TKF TC 0 100 RESISTOR 100 1 125 W TKF TC 0 100 RESISTOR 255 1 125 W TKF TC 0 100 RESISTOR 100 1 125 W TKF TC 0 100 Mfr Code 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 2M627 2M627 2M627 11502 2M627 11502 28480 09021 28480 28480 28480 11502 28480 28480 28480 28480 28480 11502 11502 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 Mfr Part Number 0699 1403 0699 3211 0699 1318 0699 1391 0699 3431 0699 1937 0699 1384 0699 1344 0699 1434 0699 1391 0699 1374 0699 3431 0699 1318 0699 3211 0699 1400 0699 1432 0699 1344 MCR10 F 10R0 MCR10 F 3481 MCR18J4R W1206R032000BT MCR18 F 3481 W1206R031002BT 0
88. ages Calibration Error Messages Error Error Message 701 Cal security disabled by jumper 702 Cal secured 703 Invalid secure code 704 Secure code too long 705 Cal aborted 706 Cal value out of range 707 Cal signal measurement out of range 708 Flatness cal failed 709 Cannot calibrate frequency while externally locked Option 001 760 RAM checksum failure 850 Cal setup invalid 851 Negative offset gain cal required CAL SETup 50 852 Flatness DAC gain cal required CAL SETup 64 853 AM cal 1 required CAL SETup 30 854 AM cal 2 required CAL SETup 31 855 Cal load resistance not specified CAL SETup 33 856 Square wave positive offset cal required CAL SETup 60 857 Square wave 50 duty cycle cal required CAL SETup 62 858 AM cal 3 required CAL SETup 32 82 Theory of Operation Theory of Operation This chapter is organized to provide descriptions of the circuitry contained on the schematics shown in chapter 8 A block diagram overview is provided followed by more detailed descriptions of the circuitry contained in the schematics chapter e Block Diagram Overview 85 e Output Attenuator llle 86 e Output Amplifier ll 87 e AM Modulation ln 89 e Pre attenuator 90 e Square Wave and Syne 90 a Filters 2 oro derer tu eee Ro re Rn 92 e Waveform DAC Amplitude Leveling Waveform RAM 98 e Direct Digital Synthesis
89. all sides for the instrument Use static free packaging materials to avoid additional damage to your unit Agilent suggests that you always insure shipments Cleaning Clean the outside of the instrument with a soft lint free slightly dampened cloth Do not use detergent Disassembly is not required or recommended for cleaning 105 WARNING Chapter 6 Service Electrostatic Discharge ESD Precautions Electrostatic Discharge ESD Precautions Almost all electrical components can be damaged by electrostatic discharge ESD during handling Component damage can occur at electrostatic discharge voltages as low as 50 volts The following guidelines will help prevent ESD damage when servicing the function generator or any electronic device e Disassemble instruments only in a static free work area e Use a conductive work area to dissipate static charge e Use a conductive wrist strap to dissipate static charge accumulation e Minimize handling e Keep replacement parts in original static free packaging e Remove all plastic styrofoam vinyl paper and other static generating materials from the immediate work area e Use only anti static solder suckers SHOCK HAZARD Only service trained personnel who are aware of the hazards involved should remove the instrument covers To avoid electrical shock and personal injury make sure to disconnect the power cord from the function generator before removing the
90. ator Number Qty Part Description Code Number C1101 0160 5945 3 CAP FXD 0 01 uF 50 V 04222 08055C103KAT A C1102 1103 0180 3751 10 CAP FXD 1 uF 35 V TA 0545 NRS105M35R8 C1104 0160 6497 3 CAP FXD 0 1 uF 25 V 04222 12065C104KAT A C1105 0160 5947 CAP FXD 1000 pF 50 V 04222 08055C102KAT A C1201 1203 0160 6497 CAP FXD 0 1 uF 25 V 04222 12065C104KAT A C1301 1302 0160 5947 CAP FXD 1000 pF 50 V 04222 08055C102KAT A C1303 1304 0160 5945 CAP FXD 0 01 uF 50 V 04222 08055C103KAT A C1305 1310 0160 6497 CAP FXD 0 1 uF25VA 04222 12065C104KAT A CR1101 1906 0291 1 DIODE 70 V 100 MA 04713 MBAV99 CR1102 1906 0395 1 DIO SIG 2X SOT143L 75V 215MA 2PF 25403 BAS28 CR1105 1902 1542 1 DIODE ZNR 6 2V 5 TO 236 SOT 23 04713 BZX84C6V2 J1301 34401 61602 1 DISPLAY CABLE ASSY 8 8L 28480 34401 61602 L1301 9170 1431 1 SHIELDING CORE BEADS 28480 9170 1431 M1301 33120 0061 1 1 SHIELD ESD 28480 33120 00611 R1101 0699 1399 2 RESISTOR 23 7K 1 125W TKF TC 0 100 2M627 MCR18FX R1102 0699 1391 4 RESISTOR 10K 1 125W TKF TC 0 100 2M627 MCR18FX R1103 1106 0699 1344 4 RESISTOR 10 1 125 W TKF TC 0 100 28480 0699 1344 R1107 0699 1391 RESISTOR 10K 1 125W TKF TC 0 100 2M627 MCR18FX R1108 0699 1378 1 RESISTOR 2 61K 1 125W TKF TC 0 100 2M627 MCR18FX R1109 0699 1435 1 RESISTOR 681 1 125W TKF TC 0 100 2M627 MCR18FX R1301 1304 0699 1423 4 RESISTOR 215 1 125W TKF TC 0 100 2M627 MCR18FX R1305 1306 0699 1391 RESISTOR 10K 1
91. ator outputs the waveform with the displayed offset Notice that the Offset annunciator turns on indicating that the waveform is being output with an offset The annunciator will turn on when the offset is any value other than 0 volts To turn off the flashing digit move the cursor to the left of the display using the arrow keys 01 50 mVDC You can also use the knob and arrow keys to enter a number 27 Shift Duty Enter Number 4 5 Enter mn Chapter 2 Quick Start To set the duty cycle To set the duty cycle Applies only to square waves At power on the duty cycle for square waves is 50 You can adjust the duty cycle for a square waveform from 20 to 80 in increments of 1 for frequencies above 5 MHz the range is 40 to 60 The following steps show you how to change the duty cycle to 45 Select the square wave function Notice that the annunciator turns on indicating that the square wave function is enabled Enable the duty cycle modify mode The displayed duty cycle is either the power on value or the previous value selected 50 DUTY 25 N NS This message appears on the display for approximately 10 seconds Repeat this step as needed Enter the desired duty cycle Notice that the Num annunciator turns on and ENTER NUM flashes on the display indicating that the number mode is enabled To cancel the nu
92. aveform is output You can also use the knob to scroll left or right through the choices in the list 29 Enter Number 1 5 5 Shift v kHz m Vrms Chapter 2 Quick Start To output a dc voltage To output a dc voltage In addition to generating waveforms you can also output a de voltage in the range 5 Vdc into a 50Q termination The following steps show you how to output 155 mVdc Press the Offset key and hold it down for more than 2 seconds To enter the dc voltage mode press the Offset key or any key in the top row of function keys and hold it down for more than 2 seconds The displayed voltage is either the power on value or the previous offset voltage selected 0 000 VDC U Q Enter the magnitude of the desired voltage 01 Notice that the Num annunciator turns on and ENTER NUM flashes on the display indicating that the number mode is enabled 155 To cancel the number mode press Set the units to the desired value At this point the function generator outputs the displayed dc voltage Notice that the Offset annunciator turns on all other annunciators are off indicating that a de voltage is being output The annunciator will turn on when the offset is any value other than 0 volts 155 0 mVDC You can also use the knob and arrow keys to enter a number w 0 Shift Store Enter
93. aving changes press Shift Cancel 39 Chapter 3 Front Panel Menu Operation A front panel menu tutorial Messages Displayed During Menu Use TOP OF MENU You pressed while on the MENUS level this is the top level of the menu and you cannot go any higher To turn off the menu press Shift Menu On Off To move across the choices on a level press lt or gt To move down a level press v MENUS You are on the MENUS level Press lt or gt to view the choices COMMANDS You are on the COMMANDS level Press or gt to view the command choices within the selected menu group PARAMETER You are on the PARAMETER level Press lt or gt to view and edit the parameter for the selected command MENU BOTTOM You pressed v while on the PARAMETER level this is the bottom level of the menu and you cannot go any lower To turn off the menu press Shift Menu On Off To move up a level press ENTERED The change made on the PARAMETER level is saved This is displayed after you press Enter Menu Enter to execute the command MIN VALUE The value you specified on the PARAMETER level is too small for the selected command The minimum value allowed is displayed for you to edit MAX VALUE The value you specified on the PARAMETER level is too large for
94. c range frequency range and resolution bandwidth adequate for the measurement Select each function generator output in the table below Use a spectrum analyzer connected to the function generator output Set the fundamental frequency reference to 0 dB and measure the 2nd through 5th harmonic frequencies relative to this reference This test is a 50Q output termination test Agilent 33120A Measurement harmonic Function our Ampl Freq Fundamental 2nd 3rd 4th 5th ero Sine wave 50Q 1 1 Vrms 20 00 kHz reference 40 kHz 60 kHz 80 kHz 100 kHz 70 dB Sine wave 50Q 1 1 Vrms 100 00 kHz reference 200 kHz 300 kHz 400 kHz 500 kHz 60 dB Sine wave 50Q 1 1 Vrms 1 00 MHz reference 2 MHz 3 MHz 4MHz 5MHz lt 45dB Sine wave 50Q 1 1 Vrms 15 00 MHz reference 30 MHz 45 MHz 60 MHz 75 MHz 35 dB S Output termination set using front panel controls HIGH Z assumes no load on output 50Q assumes a 50Q 0 19 load on output 63 Chapter 4 Calibration Procedures Calibration Security Code Calibration Security Code This feature allows you to enter a security code electronic key to prevent accidental or unauthorized calibrations of the function generator When you first receive your function generator it is secured Before you can adjust calibration constants you must unsecure the function generator by entering the correct security co
95. correction data are stored in calibration memory during calibration These data are used to produce a modulation program with corresponding 8 bit amplitude correction data values which are gated to latch U412 during operation These data provide real time correction of the output amplitude level as frequency changes are made Amplifier U408 and Q401 use the waveform DAC reference voltage to center the waveform DAC output signal near 0 volts U404 and U405 are the high speed waveform RAM Together U404 and U405 form a 16383 x 12 bit RAM Each RAM stores and outputs 6 bits of the waveform DAC 12 bit WD data bus RAM U404 drives the least significant 4 bits and U405 drive the most significant 8 bits of the WD data bus Note that DAC U407 calls D1 the most significant bit MSB and D12 it s least significant bit LSB Waveform RAM addresses are controlled by the DDS ASIC s WA waveform address bus 94 Chapter 5 Theory of Operation Direct Digital Synthesis DDS ASIC Direct Digital Synthesis DDS ASIC Block 2 on block diagram page 129 Schematic on page 132 The DDS ASIC U206 controls the WA waveform address and MA modulation address busses The waveform address is used by the waveform RAMs U404 and U405 The modulation data bus is used by the modulation RAM U205 The DDS ASIC is comprised of several internal registers and addressing state machines Instructions are written to the DDS ASIC by the main CPU via memory mapped
96. covers Surface Mount Repair Surface mount components should only be removed using soldering irons or desoldering stations expressly designed for surface mount components Use of conventional solder removal equipment will almost always result in permanent damage to the printed circuit board and will void your Agilent factory warranty 106 Chapter 6 Service To Replace the Power Line Fuse To Replace the Power Line Fuse The power line fuse is located within the function generator s fuse holder assembly on the rear panel see page 22 The function generator is shipped from the factory with a 500 mAT slow blow fuse installed part number 2110 0458 This is the correct fuse for all line voltages To Replace the Output Protection Fuse F801 The Output Protection Fuse is located inside the function generator This fuse is a thru hole soldered 500 mA part part number 2110 0716 The fuse is located near the output connector J801 on the main PC board You will need to disassemble the function generator to replace this fuse use a TORX T 15 driver to remove the screws located on the rear panel The disassembly procedure is shown on page 130 N J 33120A FIG 4 4 107 Chapter 6 Service Troubleshooting Hints Troubleshooting Hints This section provides a brief c
97. d 3 3 Up e kiEVG ROP Sek FB4G2 FBYGI DUAL DAC Y A2GND Y 1 2 1 2 A Y esi __Us12 ERE roka 3 2 AU usta AZ ND VEEA VEE VEED VEE PG2 joes GND 1 fen raaa 7 gt e recz 2 Oy lt a SH A aonn a franc C422 8 lu cual j 8 Lu 74F 02 g MDa 2 Ay p19 14 la 1i VELA gt GND VEED gt GND Hp 5 3 S 2162 6497 2162 6497 2063 30 225 3 MD3 5 16 LE 15VC GND saN 6 me te af ros O Cu28 C427 2 91 C426 0 01 Blu Blu GND E Ne 6 m 8 13 8 a p 02g in VEEA k t GND NEED onn THEM CBE ee Ld e 100p 2162 6736 2162 6736 Bas 74HC573 AD7S28JP 15VC MD 7 D 5 1 1826 1619 9 Pl una GND A2GND PIE BP AM_INT_MOD A20ND i TLA74CD 1826 1622 15VC 33120 66521 sheet 4 of 10 Waveform DAC Schematic 134 1 MHZ 7TH DEGREE BESSEL FILTER K5 1 6 RSTKS21 gt PS 2 ep D 9 8 DACOUT 3 8 7 o K5 1 3 s serksg1 3 283 A a K5 1 u 2 3 pacouT LEA o 2490 1664 L5 1 L583 L5 5 vv pei AA 2 910n 2 Sean 2 2790 m 2 M RSB1 Losas C507 S CH 9 g 69 272p 182p P 3 V V V AND AGND AGND AGND ETH CH L5g6 2 9120 2 S gn 1 2 27980 m Sb s e R5B2 0526 C512 Gee 2705 2p Za Y Y V AGND AGND AGND AGND L533 L535 L537 2 2 21 po A 48Zn 568
98. d back data are read by the microprocessor at port pins P1 0 through P1 3 for decoding and communication to the floating logic circuits Rotary knob quadrature inputs are read directly by the microprocessor port pins P1 6 and P1 7 100 Service Service This chapter discusses the procedures involved for returning a failed function generator to Agilent for service or repair Subjects covered include the following e Operating Checklist o 103 e Types of Service Available 104 e Repackaging for Shipment 105 Cleaning 6 acd ede lobe ees v eR UR BORSE AR 105 e Electrostatic Discharge ESD Precautions 106 e Surface Mount Repair 1 142 24 11 106 e To Replace the Power Line Fuse 107 e To Replace the Output Protection Fuse F801 107 e Troubleshooting Hints 108 e Self Test Procedures 1 222211 110 102 Chapter 6 Service Operating Checklist Operating Checklist Before returning your function generator to Agilent for service or repair check the following items Is the function generator inoperative Verify that the ac power cord is connected to the function generator Verify that the front panel Power switch is depressed Verify that the power line fuse is good see page 22 The function generator is shipped from the factory with a 500 mAT fuse installed This
99. de A procedure to unsecure the function generator is given on page 47 The security code is set to HP033120 when the function generator is shipped from the factory The security code is stored in non volatile memory and does not change when power has been off or after a remote interface reset To secure the function generator from the remote interface the security code may contain up to 12 alphanumeric characters as shown below The first character must be a letter but the remaining characters can be letters or numbers You do not have to use all 12 characters but the first character must always be a letter A 12 characters To secure the function generator from the remote interface but allow it to be unsecured from the front panel use the eight character format shown below The first two characters must be HP and the remaining characters must be numbers Only the last six characters are recognized from the front panel but all eight characters are required To unsecure the function generator from the front panel omit the HP and enter the remaining numbers H P 8 characters If you forget your security code you can disable the security feature by adding a jumper inside the function generator and then entering a new code See the procedure on the following page 64 WARNING a G M Fa Chapter 4 Calibration Procedures Calibration Security Code To Unsecure the Function Generator Without th
100. dis R_ASTOX ASTC_CLK ASIC_CLK Ape z GND 4 2 ZEN cz U211 pS B 5 3 1 wagy GND Iie FP 1v NC WAL CL 1 R m i WA uu LE NACI 43 5b PGL PB2 ote SWAG ui B MRAM_RDX SH 3 WAG ug El U221 2 MAC 38 ri U211 74F 32 EN_MOD ME 37 12 2 RDWRX G3 T WAC 36 13 ig E RDx 1 Eu 13_WACL3 35 2 74ACTE8 3EN2 12_WACI2 33 16 4 D 11 WACID 32 17 vL a beg 18 MDD a 3 CHI 5 5 gt 2v 10 NACIO 23 2 RDX 17 MD 1 WACH 7 DAT ADO 2 U206 P S 4p15 MDG 3 GND 1 NC u MDCH u Ei z me asic 74ABT16374 BERGER 5 272 cuo SIGN E NC punx PGE PGR PGZ py FMX 11 MBCD 7 AS C_RSTX Ut nl RESET RUN Ee RUNX US Her ASIC_CLR _US PIRA NC UI CLEAR oe cuc Hd NC z 1922 6306 OP_FETCH NC EN HOST_ACK PE HOST ACKX PG1 PG2 HOST_ACKX AM EHS 1 Gi u2u2 TRIGGERED R PONRSTx P G10 PG1 PONRST il see PIR_SEL ona PG ACexge 2 UK A gt E ASIC_CTLx JT ASIC_CTLX U Sc TRIG 43 CARRY CSX1 Eaves 3 v NC G d CSx2 1 4 g AD mi 2 HOST ROX Go wb 27 SEN 1 ADCL y S CARRY lost ez e Sr Det 2 ADC 6 ASIC CLRX e E 1 el A Saz 3 ADC 9 ASIC RSTX WAS 12 i 3 ci EM MoD _SYNCx A e PGT POZ RAM Ers Ka 2 2 Tim 7 5 AD 14 15 PEO LSO SINEX WAS 74ACT257 Lar amp D 1 16 creo ane ur V EE 19 PG6 5vNC SELI WAT MACIUS 1 GND HS CSIRO VE OE WAB 74HC273 g MD 23 patag WAG 1822 5808 n SE DATAL WAID PGI Y MSYNC_CLR See U216 U203 3 MDC3 SEI NAM Wu ne Et DL MV OEL 19 Lo i DATAS WAI u205 DEE ED 3EN1 a
101. dure 67 Chapter 4 Calibration Procedures General Calibration Adjustment Procedure lt gt 7 Move the flashing cursor over the digit to be edited A v 8 Change the value in the display to match the measured frequency 1 000 0040KHz Enter 9 Calculate and save the new value CALIBRATING 10 Perform the next adjustment procedure The setup number and function generator output is automatically set for the next adjustment procedure ETUP 01 You will press ENTER twice for each calibration step once to select the setup as described in step 6 and once to enter the adjustment as described in step 9 You can also use the knob to scroll left or right through the choices on each level of the menu o 8 Chapter 4 Calibration Procedures Aborting a Calibration in Progress Aborting a Calibration in Progress Sometimes it may be necessary to abort a calibration after the procedure has already been initiated You can abort a calibration at any time by pressing any front panel key except Shift Cancel When performing a calibration from the remote interface you can abort a calibration by issuing a remote interface device clear message or by pressing the front panel LOCAL key Frequency and Burst Rate Adjustment The function generator stores two calibration constants related to frequency and burst rate output The constants are calculated fr
102. e RECALL STATE NOISE 3 0 x v 781128 TBS TB1127 F114 ROS END UCONTROLLER Ei 13V II R1102 21 xmi ALE BROG eooo Fee PEU Ee Kee eod E Aa HK 22 a racz YLIGL Zi PSE Ne CR1101 T 2 pre L3 peg CH pr DISP SDATA Gecke w ER zP1 ZPL ZPL ZPL a tars s 18V E DISP SAK E bi KEY_DAVTTT E i PEPE f TATCH is zi KY TEVIZT pm S pen E CES a sour orar Tun E 1906 0291 FL SREIRL 372 poate S738 rB1118 1117 1199 1116 RIOS 5 nenm gt GES ia 6V SUPPLY Ze E zie a 2609 1 mu Sl eg Au x x M srota ALS Ea e ue ipie StOEET Fan 26 Slots 2 R1106 ev apen pont 8505 BR ZPL ZPL ZPL ZPL Ese Storey ie av EN Sa s pool 3 29 erore bei d e stos a 30 sigre 6 ka 2 069951399 2 ER FREQ SINE Gas A 1982 12 y R11A1 FEST FTBi111 T 1118 Lu ee C1lg4 gt Ta 2 7 Dio 18v SSC EET iae 3751 p 2182 3751 2 Be aen VOG PIN uu A GND PIN 22 T M iav iBV Tm 18V vec L3V VGG 18v ZPL ZPL DISP_BLANK E KNB SENSEB a KNB SENSEA a s1119 E i E i Gran a 21 ER ig Gun s 2 Ei WEE ZP1 10 7 Fene 18V VAGND 30421 1692 IGFPSCK sa Mi E ma 2 EEN 18V na CA EY REM ECH u12a2 Er Dur d y e RAP KEE C1202 P lu AGND py 3 Ter iz mer apen 2 En a d DE Se FA Ez NE piz DESS c IGFPRES LIB 0 R1301 ER m zeg aod am CE o E Sen SDE FA FLUDR DISP K id 18 Y 5 v AGND mieten IGFPINT 2639 1423 ses ew A ES pn AGND 2168 5347 13V 3 seis ES 7 1826 1520 i Son HE INDIES ci s a Pue av cee Qu meer T nz rex a
103. e Security Code To unsecure the function generator without the correct security code follow the steps below A procedure to unsecure the function generator is given on page 47 Also see Electrostatic Discharge ESD Precautions in chapter 6 before beginning this procedure SHOCK HAZARD Only service trained personnel who are aware of the hazards involved should remove the instrument covers The procedures in this section require that you connect the power cord to the instrument with the covers removed To avoid electrical shock and personal injury be careful not to touch the power line connections Disconnect the power cord and all input connections front and rear terminals Remove the instrument cover Refer to the disassembly drawing on page 130 Connect the power cord and turn on the function generator Apply a short between the two exposed metal pads on JM101 located near U106 and U205 as shown in the figure below 351204 FIG 4 3 While maintaining the short enter any unsecure code The function generator is now unsecured 6 Remove the short at JM101 Turn off and reassemble the function generator The function generator is now unsecured and you can enter a new security code Be sure you take note of the new security code 65 Chapter 4 Calibration Procedures Calibration Count Calibration Count The calibration
104. e a high confidence 90 that the function generator is operational 54 Chapter 4 Calibration Procedures Performance Verification Tests Quick Performance Check The quick performance check is a combination of internal self test and an abbreviated performance test specified by the letter Q in the performance verification tests This test provides a simple method to achieve high confidence in the function generator s ability to functionally operate and meet specifications These tests represent the absolute minimum set of performance checks recommended following any service activity Auditing the function generator s performance for the quick check points designated by a Q verifies performance for normal accuracy drift mechanisms This test does not check for abnormal component failures To perform the quick performance check do the following e Set the function generator to the default power on state power on default A procedure is given on page 41 e Perform a complete self test A procedure is given on page 21 e Perform only the performance verification tests indicated with the letter Q If the function generator fails the quick performance check adjustment or repair is required Performance Verification Tests The performance verification tests are recommended as acceptance tests when you first receive the function generator The acceptance test results should be compared against the 1 year test limits
105. e squarewave outputs of U620 are amplified by variable gain amplifiers Q603 and Q604 The amplifier gain output level is controlled by the variable current source Q605 and U307D in response to the System DAC dc signal SW_AMP Squarewave variable gain amplifier output signal levels are unbalanced by resistors R643 and R644 to correct for the output amplifier and gain differences as discussed in the preattenuator section on page 90 Latching relay K601 connects the square wave into the FUNCTION and FUNCTION paths The relay set or reset state is selected by momentarily pulsing the appropriate coil Relay coils are pulsed with 5 volts for 15 ms through relay driver U301 The main controller U102 writes data bytes to ASIC U103 which transmits this data to the relay drivers via the internal 3 wire serial data bus SERCLK SERDAT and SERSTB to accomplish relay state changes Multiplexer U604 selects one of five sources for the SYNC output off modulation sync square wave comparator output RUN or Arbitrary waveform sync ARB_SYNC is derived from the WA14 line through U210B U215B and U210C control the pulse width of the ARB_SYNC arbitrary waveform sync signal Square wave sync is taken from the inverting output of square wave comparator U620 U620 also generates the MOD_SYNC modulation sync through U217 Buffer U621 inverts the sync signal and provides the output current drive to the SYNC output BNC connector 91 db out
106. e2u tl c623 BVA 2 01 2 2 SVA S 0683 0604 u u 160K V R625 MMBTHBL END END ER V R642 RO4S 2 ROSS BOND S11 SLL 2k FLT_OUT BECH f Dedi 100 ha MBT3984LT1 SES AGND R632 4 6uK R630 R633 4 64K T m R639 18 voc R626 wb SVA ROL R643 Reys SVB 255 6 2K 78 7 108 C632 0633 511 cove Blu U621 47p Hip 16 U604 20 JEE LTIDL6CSE Ra LE SYNC OUTPUT GND p Ren o n acto m eg PINO ann H2 ui R658 Jegi SYNC_SEL a n s com A il SYNCZSELI jc a c eg b vp o San J PG2 2 D 16 Pa 680 p3 R656 190 MOD SYNC gt 2 x d 1s 5 1 v EEGEN X E wt R659 511 RUN MES 22 vp a LE Nc si sni 293 mm re SE 8 Le N ul 3 11 51 ARB_SYNC 5 NC Sa 12 1a m CRODL EN GND C627 GI 7 74ABT54 vss gt onn il 2 ECH U215 et THACTZS1 a AYE GND 1 bp vec ER R638 10 f u218 MC74ACT251D NEE PG2 3 4 1113 2 Leg Xi WALUR P pro R660 GND GND MBAV99 PGS R627 EN nen2 muaciy NDS pp a S m FLT_OUT 1K TUACLU R657 PGL 4 E MMBT39Q4LTL ESCH Wy SYNC R636 4 BUK R634 R637 4 64K y m GND R629 255 vEE 33120 66521 sheet 6 of 10 Sync Square Wave and Attenuator Schematic 136 15V 19v to 15v converters 15V 15V 15V RS ESCH 196 R725 15V R767 R729 1 C7 0709 108 130 A EE 26 1 M NIE 1SV
107. eadback failed This test writes and reads a 5Ay and A5H checker board pattern 8 bit to each address of Modulation ram U205 The test writes and reads the pattern twice at alternating addresses Any incorrect readback will cause a test failure 110 605 606 607 608 625 626 701 Chapter 6 Service Self Test Procedures Serial configuration readback failed This test re sends the last 3 byte serial configuration data to all the serial path SERDAT SERBCK SERCLK The data is then clocked back into U103 and compared against the original 3 bytes sent A failure occurs if the data do not match This tests checks the serial data path through U301 U302 and U305 This tests does not check the serial path to the system DAC U308 Waveform ASIC failed This test is the first part of test 607 below This test sets up a burst modulation program of a special waveform a four period ramp wave where the data at each waveform address is the same as the last 12 bits of its address The burst modulation waveform is run for 1 cycle plus 1 address and the waveform data is read back and compared A correct result infers that the modulation program ran correctly and halted at the correct address This checks the ability of U205 and U206 to correctly run a burst modulation program This test and test 604 give a high confidence in the modulation circuitry This test will fail if a trigger signal is present on the rear panel Ext Trig BNC input
108. ed by the measurement accuracy requirements of your application A 1 or 2 year interval is adequate for most applications Agilent does not recommend extending calibration intervals beyond two years for any application Whatever calibration interval you select Agilent recommends that complete re adjustment should always be performed at the calibration interval This will increase your confidence that the 33120A will remain within specification for the next calibration interval This criteria for re adjustment provides the best long term stability Performance data measured using this method can be used to extend future calibration intervals Time Required for Calibration The 33120A can be automatically calibrated under computer control With computer control you can perform the complete calibration procedure and performance verification tests in less than 15 minutes Manual calibrations using the recommended test equipment will take approximately 45 minutes 51 Chapter 4 Calibration Procedures Automating Calibration Procedures Automating Calibration Procedures You can automate the complete verification and adjustment procedures outlined in this chapter if you have access to programmable test equipment You can program the instrument configurations specified for each test over the remote interface You can then enter readback verification data into a test program and compare the results to the appropriate test limit values
109. een these 2 dB steps are set by smoothly varying the Waveform DAC output level from 0 dB to 2 dB of its nominal level via the AMP_CTL signal Output attenuator 6 dB steps preattenuator 0 dB 2 dB and 4 dB steps and small variations 0 dB to 2 dB of the Waveform DAC output level are combined to produce each amplitude setting In the preattenuator U601 and U602 are operated as 8 to 1 multiplexers each providing selectable 2 dB attenuation steps Because of the gain imbalance of the output amplifier x 12 on AMP_IN and x 10 on AMP_IN the signal path U601 has an additional 2 dB attenuation always present R601 and R602 to equalize the nominal gains in both the plus and minus signal paths Square Wave and Sync Block 6 on block diagram page 129 schematic on page 136 During square wave outputs a sine wave signal is generated internally and squared up by comparator U620 Square wave amplitude control is accomplished by variable gain amplifier Q603 and Q604 and switched into the output signal path through relay K601 A simplified diagram of the square wave generator is shown below SUFFER OGIC VARIABLE GAIN MPLIFI COMPARATOR AMPLIFIER Ah 90 Chapter 5 Theory of Operation Square Wave and Sync Transistors Q601 and Q602 buffer the output of the sine wave anti alias filter to the input of comparator U620 Square wave duty cycles are controlled by the SQ_SYM input on the inverting input of the comparator Th
110. enerator is protected from accidental application of voltages 10 volts for short durations 86 Chapter 5 Theory of Operation Output Amplifier Output Amplifier Block 7 on block diagram page 129 Schematic on page 137 The output amplifier drives the function generator s signal output through the output attenuator section The output amplifier exhibits an approximate 35 MHz bandwidth and 1000 V us slew rate AC signals originating from the DAC and DAC signal paths are combined at the input of the amplifier The output amplifier exhibits a nominal x 10 voltage gain from its AMP_IN input and a nominal x12 voltage gain from its AMP_IN input A dc offset signal related to the front panel output offset value is also summed with the ac signal at the input of the amplifier A simplified block diagram of the output amplifier is shown below INPUT DIFFERENTIAL POWER AMPLIFIER GAIN OUTPUT DC AMPLIFIER STAGE STAGE STAGE SSS NO E Ne ES N TRA OUT_OFFSET ANN ANN ANN 87 Chapter 5 Theory of Operation Output Amplifier The block diagram shows four basic stages de amplifier input differential amplifier gain and power output The amplifier s input differential amplifier stage and gain stage are symmetrical The AMP_IN and AMP_IN inputs are both amplified through complementary amplifiers whose outputs are summed together at the input of the power output stage Transistors Q701 Q7
111. er 6 Service Troubleshooting Hints Power Supply Problems SHOCK HAZARD Only service trained personnel who are aware of the hazards involved should remove the instrument covers The procedures in this section require that you connect the power cord to the instrument with the covers removed To avoid electrical shock and personal injury be careful not to touch the power line connections Check that the input to the supply voltage regulator is at least 1 volt greater than its output Circuit failures can cause heavy supply loads which may pull down the regulator output voltage Check the main supply voltages as tabulated below Power Supply Minimum Maximum 5 Ground Ref 4 75V 5 25V 5 Floating 4 75V 5 25V 5 2 Floating 5 46V 4 94V 18 Floating 17 0V 19 1V 18 Floating 19 1V 17 0V 5REF Floating 4 75V 5 25V Some circuits produce their own local power supplies derived from the main supplies Be sure to check that these local supplies are active In particular the output amplifier and front panel sections have local supplies Always check that the power supplies are free of ac oscillations using an oscilloscope 109 601 602 603 604 Chapter 6 Service Self Test Procedures Self Test Procedures Power On Self Test Each time the function generator is powered on a small set of self tests are performed These tests check that the minimum set
112. erations on page 53 Set the function generator for each output indicated in the table on the next page Use a DMM to measure the ACrms output voltage of the function generator Compare the measured results to the test limits shown in the table This is a HIGH Z output termination test S Output termination set using front panel controls HIGH Z assumes no load on output 50Q assumes a 500 0 10 load on output 57 Chapter 4 Calibration Procedures AC Amplitude Verification Agilent 33120A Measurement Function OUT TERM Ampl Freq Nominal Error Sine wave HIGH Z 7 0 Vrms 1 00 kHz 7 0 Vrms 0 070 Vrms Sine wave HIGH Z 5 7 Vrms 1 00 kHz 5 7 Vrms 0 057 Vrms Sine wave HIGH Z 5 5 Vrms 1 00 kHz 5 5 Vrms 0 055 Vrms Sine wave HIGH Z 4 4 Vrms 1 00 kHz 4 4 Vrms 0 044 Vrms Sine wave HIGH Z 3 5 Vrms 1 00 kHz 3 5 Vrms 0 035 Vrms Sine wave HIGH Z 2 8 Vrms 1 00 kHz 2 8 Vrms 0 028 Vrms Sine wave HIGH Z 2 2 Vrms 1 00 kHz 2 2 Vrms 0 022 Vrms Sine wave HIGH Z 1 7 Vrms 1 00 kHz 1 7 Vrms 0 017 Vrms Sine wave HIGH Z 1 4 Vrms 1 00 kHz 1 4Vrms 0 014 Vrms Sine wave HIGH Z 1 1 Vrms 1 00 kHz 1 1 Vrms 0 011 Vrms Sine wave HIGH Z 0 88 Vrms 1 00 kHz 0 88 Vrms 0 0088 Vrms Sine wave HIGH Z 0 70 Vrms 1 00 kHz 0 70 Vrms 0 0070 Vrms Sine wave HIGH Z 0 55 Vrms 1 00 kHz 0 55 Vrms 0 0055 Vrms Sine wave HIGH Z 0 44 Vrms 1 00 kHz 0 44 Vrms 0 0044 Vrms Sine wave HIGH Z 0 35 Vrms 1 00 kHz 0 3
113. erator can internally synthesize an 8 bit modulation wave shape through DAC U313 Data from any standard or arbitrary wave shape can be used as the modulating wave shape Modulating wave shapes are automatically expanded or compressed in length as required to meet the specified modulating frequency setting Changes in the function generator output will lag changes in the modulating frequency because new modulation data must be computed and downloaded internally for every frequency change The AM GAIN and AM OFFSET dc signals are used to calibrate and vary the am modulation depth settings AM GAIN controls the peak to peak output level from U313 in response to modulation depth setting changes Likewise the AM OFFSET signal varies inversely to the AM GAIN signal as the AM depth setting is varied to produce a constant signal offset in the composite AM IN modulation signal The net AM IN offset is independent of the modulating ac signal component or AM depth setting 89 Chapter 5 Theory of Operation Pre attenuator Pre attenuator Block 6 on block diagram page 129 Schematic on page 136 All signals except square waves pass through the preattenuator The preattenuator multiplexes eight resistive 2 dB attenuators to provide attenuation from 0 dB to 14 dB in 2 dB steps The 0 dB 2 dB and 4 dB attenuation steps are used for level settings between the 6 dB steps selected in the output attenuator section Amplitude settings betw
114. function the recall menu key will automatically take you to the AM SHAPE command in the MOD MENU 1 AM SHAPE 45 Enter Shift Freq Shift Level 7 Chapter 3 Front Panel Menu Operation To output a modulated waveform Move down a level verify that SINE is selected For the modulating waveform you can select a sine square triangle ramp noise or arbitrary waveform For this example you will modulate the carrier with a sine waveform Notice that the AM annunciator flashes indicating that the displayed parameter is for AM Save the change and turn off the menu The modulating waveform is now a sine waveform Set the modulating frequency to 200 Hz Notice that the AM annunciator flashes indicating that the displayed frequency is the modulating frequency Also notice that the modulating frequency is displayed with fewer digits than the carrier frequency MOD 200 0 Hz This message appears on the display for approximately 10 seconds Repeat this step as needed Set the modulation depth to 80 Notice that the AM annunciator flashes indicating that the displayed percentage is the AM depth also called percent modulation 080 DEPTH This message appears on the display for approximately 10 seconds Repeat this step as needed At this point the function generator outputs the AM waveform with the specified modu
115. he Num annunciator turns on and ENTER NUM flashes on the display indicating that the number mode is enabled LA N To cancel the number mode press Shift Cancel 3 Set the units to the desired value The units are selected using the arrow keys on the right side of the front panel As soon as you select the units the function generator outputs the waveform with the displayed frequency To turn off the flashing digit move the cursor to the left of the display using the arrow keys 1 200 000 0 MHz You can also use the knob and arrow keys to enter a number 25 Ampl Enter Number 5 0 Shift v kHz m Vrms Chapter 2 Quick Start To set the output amplitude To set the output amplitude At power on the function generator outputs a sine wave with an amplitude of 100 mV peak to peak into a 50Q termination The following steps show you how to change the amplitude to 50 mVrms Enable the amplitude modify mode The displayed amplitude is either the power on value or the previous amplitude selected When you change functions the same amplitude is used if the present value is valid for the new function 100 0 mVPP Enter the magnitude of the desired amplitude QT Notice that the Num annunciator turns on and ENTER NUM flashes on the display indicating that the number mode is enabled To cancel the number mode press Shif
116. hecklist of common failures Before trouble shooting or repairing the function generator make sure the failure is in the instrument rather than any external connections Also make sure that the instrument is accurately calibrated The function generator s circuits allow troubleshooting and repair with basic equipment such as a 614 digit multimeter and a 100 MHz oscilloscope Unit is Inoperative Verify that the ac power cord is connected to the function generator Verify that the front panel Power switch is depressed Verify that the power line fuse is good see page 22 The function generator is shipped from the factory with a 500 mAT fuse installed This is the correct fuse for all line voltages Verify the power line voltage setting See To prepare the function generator for use on page 21 Unit Reports Error 760 This error may be produced if you accidentally turn off power the unit during a calibration or while changing a non volatile state of the instrument Recalibration or resetting the state should clear the error If the error persists a hardware failure may have occurred Unit Fails Self Test Verify that the correct power line voltage setting is selected Also ensure that all terminal connections both front panel and rear terminals are removed while the self test is performed Failure of the System DAC U03 will cause many self test failures 108 WARNING Chapt
117. iar with some of the front panel operations The front panel has two rows of keys to select various functions and operations Most keys have a shifted function printed in blue above the key To perform a shifted function press Shift the Shift annunciator will turn on Then press the key that has the desired label above it For example to select the AM amplitude modulation function press Shift AM the shifted version of the NL key If you accidentally press Shift just press it again to turn off the Shift annunciator Most keys also have a number printed in green next to the key To enable the number mode press Enter Number the Num annunciator will turn on Then press the keys that have the desired numbers printed next to them For example to select the number 10 press Enter Number 1 0 next to the NL and Recall keys If you accidentally press Enter Number just press Shift Cancel to turn off the Num annunciator 20 Chapter 2 Quick Start To prepare the function generator for use To prepare the function generator for use The following steps help you verify that the function generator is ready for use Check the list of supplied items Verify that you have received the following items with your function generator If anything is missing contact your nearest Agilent Technologies Sales
118. ibrations must be UNSECURED Reads the total number of times the function generator has been calibrated Reads the calibration string up to 11 characters entered from remote The commands enclosed in square brackets are hidden unless the function generator is UNSECURED for calibration Chapter 3 Front Panel Menu Operation A front panel menu tutorial A front panel menu tutorial This section is a step by step tutorial which shows you how to use the front panel menu We recommend that you spend a few minutes with this tutorial to get comfortable with the structure and operation of the menu before attempting verification calibration or adjustments The menu is organized in a top down tree structure with three levels menus commands and parameters You move down lv orup a the menu tree to get from one level to the next Each of the three levels has several horizontal choices which you can view by moving left lt or right gt Menus Commands Parameters The menu is organized in a top down tree structure with three levels e To turn on the menu press Shift Menu On Off e To turn off the menu press Shift Menu On Off e To execute a menu command press Enter e To recall the last menu command that was executed press Shift Recall Menu e To turn off the menu at any time without s
119. ification Tests P Performance Verification Tests T Troubleshooting 52 Chapter 4 Calibration Procedures Test Considerations Test Considerations To ensure proper instrument operation verify that you have selected the correct power line voltage prior to attempting any test procedure in this chapter See page 22 in chapter 2 for more information For optimum performance all test procedures should comply with the following recommendations e Verify the function generator is set to the default power on state power on default A procedure is given on page 41 e Make sure that the calibration ambient temperature is stable and between 18 C and 28 C e Make sure ambient relative humidity is less than 80 e Allow a 1 hour warm up period before verification or adjustment e Use only RG 58 or equivalent 50Q cable e Keep cables as short as possible consistent with the impedance requirements 53 Chapter 4 Calibration Procedures Performance Verification Tests Performance Verification Tests The performance verification tests use the function generator s specifications listed in chapter 1 Specifications starting on page 13 You can perform four different levels of performance verification tests e Self Test A series of internal verification tests that give a high confidence that the function generator is operational e Quick Verification A combination of the internal self tests and se
120. ine wave 500 3 0 Vrms 7 00 MHz lt reference gt 0 06 Vrms Sine wave 500 3 0 Vrms 9 00 MHz lt reference gt 0 06 Vrms Sine wave 500 3 0 Vrms 11 00 MHz lt reference gt 0 06 Vrms Sine wave 500 3 0 Vrms 13 00 MHz lt reference gt 0 06 Vrms Q Sine wave 500 3 0 Vrms 15 00 MHz lt reference gt 0 06 Vrms t Output termination set using front panel controls HIGH Z assumes no load on output 50 assumes a 500 0 1Q load on output 60 Chapter 4 Calibration Procedures AM Modulation Depth Verification AM Modulation Depth Verification This test verifies the modulation depth specification Select each function generator output in the table below Use a DMM to measure the function generator ACrms output voltage Compare the measured results to the test limits shown in the table This is a HIGH Z output termination test Agilent 33120A Measurement AM Modulation e OUT Function TERM Ampl Freq Shape Freq Depth Nominal Error Sine wave HIGH Z 1 0 Vrms 1 00 kHz Sinewave 100 Hz 0 0 50Vrms 0 005 Vrms Sine wave HIGH Z 1 0 Vrms 1 00 kHz Sinewave 100Hz 100 0 61 Vrms 0 0061 Vrms S Output termination set using front panel controls HIGH Z assumes no load on output 50Q assumes a 50Q 0 19 load on output 61 Chapter 4 Calibration Procedures Optional Performance Verification Tests Optional Performance Verification Tests These te
121. is the correct fuse for all line voltages Verify the power line voltage setting See To prepare the function generator for use on page 21 Does the function generator fail self test Verify that the correct power line voltage is selected See To prepare the function generator for use on page 21 Is the function generator s output inoperative Turn off the function generator and remove the power cord Using an ohmmeter measure the resistance between the output BNC center conductor and case If the ohmmeter measures gt 1000 the internal output protection fuse F801 may be open 103 Chapter 6 Service Types of Service Available Types of Service Available If your function generator fails during the warranty period within three years of original purchase Agilent will replace or repair it free of charge After your warranty expires Agilent will repair or replace it at a competitive price The standard repair process is whole unit exchange The replacement units are fully refurbished and are shipped with new calibration certificates Standard Repair Service worldwide Contact your nearest Agilent Technologies Service Center They will arrange to have your function generator repaired or replaced Agilent Express Unit Exchange U S A only You will receive a refurbished calibrated replacement Agilent 33120A in 1 to 4 days Call 1 877 447 7278 and ask f
122. isplay and Keyboard Schematic 141 C192 EX 4 w es sa a Se p a e ped im gt o ober el 2 AS 2 o TT gt o EE e E HE N a S S San ca 3 SS r SER e SEB SiS 3 LJ GR Lu CA NJ n CUM LU D
123. ive analog voltages A simplified diagram of the Waveform DAC circuitry is shown below The preattenuator filters and associated circuits in the output signal path provide an approximate 250 load for the Waveform DAC The Waveform DAC nominally produces a 40 mA differential output current yielding differential 1 Vac output signals Wave shape amplitude data is loaded into the waveform RAM by the main controller CPU U102 Once loaded these data are addressed by the DDS ASIC The rate at which addresses are incremented determines the output waveform frequency Waveform RAM output data is latched and shifted to ECL levels by U402 and U403 for input to the waveform digital to analog converter DAC U407 DDS ASIC U206 waveform data latches U402 and U403 and the Waveform DAC U407 are clocked at 40 MHz The 40 MHz clock is generated by oscillator U413 and ECL level shifter U401 93 Chapter 5 Theory of Operation Waveform DAC Amplitude Leveling Waveform RAM The Waveform DAC voltage reference is driven by U410B This reference controls the magnitude of the nominal 0 to 40 mA DAC output current The reference level is varied to produce 0 to 2 dB fine amplitude level control via de signal AMP_CTL and 2 dB of dynamic amplitude flatness correction for static and swept frequency operation via flatness correction dac U409 These reference voltage adjustments are summed together in amplifier U410B Amplitude flatness
124. lance D MENU On Off FUNCTION MODULATION AM FM FSK Burst Sweep Arb List ES ips CS a a kk Recall Menu i i 33120A Xt Agilent 16 MHz Function Arbitrary Wavdform Generator s rm FUNCTION MODULATION MENU SYNC FM FSK Burst Sweep ArbList On Off e r Power PE ES ke NY Enter 4 kHz a W HE s gt m Vrms T Level d Duty Internal Store Cancel Hz gt a Off prz e oraa Sings Recall Enter BY dBm mon 6 7 8 Number lt Back Space amp MODIFY J TRIG STATE LOCAL ES Recall Menu J L L L L L l L L L aj T Ca Let ras s 9 5E E meng AM FM req Level Duty 0 MHz Freq ane onn m Vpp es m Vrms l gt MODIFY J CJ Jas dBm O J Back Space Function Modulation keys Menu operation keys Waveform modify keys Single Internal Trigger key Burst and Sweep only RO DP Recall Store instrument state key Enter Number key Shift Local key Enter Number units keys NO Oo Front Panel Number Entry You can enter numbers from the front panel using one of three methods Use the knob and the arrow keys to modify the displayed number Use the arrow keys to edit individual digits LA Increments the flashing digit v Decrements the flashing digit
125. lation parameters A 6 Chapter 3 Front Panel Menu Operation To unsecure the function generator for calibration To unsecure the function generator for calibration The function generator can use a calibration security code to prevent unauthorized or accidental calibration This procedure shows you how to unsecure the function generator for calibration Shift 1 Turn on the menu Menu On Off A MOD MENU lt 2 Move across to the CAL MENU choice on this level F CAL MENU v 3 Move down a level to the SECURED command 1 SECURED If the display shows UNSECURED you do not need to perform this procedure to execute a calibration 47 0 3 1 2 ENTER Chapter 3 Front Panel Menu Operation To unsecure the function generator for calibration 4 Move down to the parameters level 000000 CODE 5 Unsecure the function generator by entering the security code 033120 COD E The security code is set to HP33120 when the function generator is shipped from the factory The security code is stored in non volatile memory and does not change when the power has been off or after a remote interface reset To enter the security code from the front panel enter only the six digits To enter the security code from the remote interface you may enter up to 12 characters Use the knob or arrow keys to move lef
126. lected verification tests e Performance Verification Tests An extensive set of tests that are recommended as an acceptance test when you first receive the function generator or after performing adjustments e Optional Verification Tests Tests not performed with every calibration These tests can can be used to verify additional instrument specifications following repairs to specific circuits Self Test A brief power on self test occurs automatically whenever you turn on the function generator This limited test assures that the function generator is capable of operation To perform a complete self test hold down the Shift key as you press the Power switch to turn on the function generator hold down the key for more than 5 seconds a complete description of these tests can be found in chapter 6 The function generator will automatically perform the complete self test procedure when you release the key The self test will complete in approximately 5 seconds You can perform many tests individually or all tests at once using the TEST command in the SYS MENU You can also perform a self test from the remote interface see chapter 3 in the Agilent 33120A User s Guide e Ifthe self test is successful PASS is displayed on the front panel e Ifthe self test fails FAIL is displayed and the ERROR annunciator turns on If repair is required see chapter 6 Service for further details e Ifall tests pass you hav
127. mber mode press Shift Cancel Output the waveform with the displayed duty cycle 45 DUTY You can also use the knob and arrow keys to enter a number 28 Shift Arb List Enter 1 Chapter 2 Quick Start To output a stored arbitrary waveform To output a stored arbitrary waveform There are five built in arbitrary waveforms stored in non volatile memory for your use You can output these waveforms directly from non volatile memory The following steps show you how to output an exponential rise waveform from memory Display the list of arbitrary waveforms The list contains the five built in arbitrary waveforms sinc negative ramp exponential rise exponential fall and cardiac The list may also contain up to four user defined arbitrary waveform names The first choice on this level is SINC E DN SINC SE This message appears on the display for approximately 10 seconds Repeat this step as needed Move across to the EXP_RISE choice 1 EXP_RISE Select and output the displayed arbitrary waveform Notice that the Arb annunciator turns on indicating that the output is an arbitrary waveform The waveform is output using the present settings for frequency amplitude and offset unless you change them The selected waveform is now assigned to the Arb key Whenever you press this key the selected arbitrary w
128. mes no load on output 50Q assumes a 50Q 0 19 load on output 59 Chapter 4 Calibration Procedures Amplitude Flatness Verification Amplitude Flatness Verification This test verifies the output amplitude flatness specification at selected frequencies If you use a TVC recommended or a wide band ACrms voltmeter with a 500 feed through load perform this procedure as described If you are using a measurement device that requires a transfer measurement for example a power meter make the transfer in the reference measurement at 100 kHz Set the function generator to the first output indicated in the table below and make a reference measurement Select each function generator output in the table below and adjust the function generator output amplitude until the measured output is at the reference measurement Compare the amplitude level set on the front panel to the test limits shown in the table This test is a 50Q output termination test Agilent 33120A Measurement Function SE Ampl Freq Nominal Error Q Sinewave 50Q 3 0 Vrms 1 00 kHz lt reference gt Sine wave 500 3 0 Vrms 100 00 kHz lt reference gt 0 03 Vrms Sine wave 500 3 0 Vrms 500 00 kHz reference 0 045 Vrms Q Sinewave 50Q 3 0 Vrms 1 00 MHz reference 0 045 Vrms Sine wave 500 3 0 Vrms 3 00 MHz reference 0 06 Vrms Sine wave 500 3 0 Vrms 5 00 MHz lt reference gt 0 06 Vrms S
129. mmercial item as defined in FAR 2 101 a or as Restricted computer software as defined in FAR 52 227 19 June 1987 or any equivalent agency regulation or con tract clause Use duplication or disclosure of Software is subject to Agilent Technologies standard commercial license terms and non DOD Departments and Agencies of the U S Government will receive no greater than Restricted Rights as defined in FAR 52 227 19 c 1 2 June 1987 U S Government users will receive no greater than Limited Rights as defined in FAR 52 227 14 June 1987 or DFAR 252 227 7015 b 2 November 1995 as applicable in any technical data Safety Notices Do not install substitute parts or perform any unauthorized modifica tion to the product Return the product to an Agilent Technologies Sales and Service Office for service and repair to ensure that safety features are maintained WARNING A WARNING notice denotes a hazard It calls attention to an operating proce dure practice or the like that if not correctly performed or adhered to could result in personal injury or death Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met CAUTION A CAUTION notice denotes a hazard It calls attention to an operating proce dure practice or the like that if not correctly performed or adhered to could result in damage to the product or loss of important data Do not proceed beyond a
130. n 47 n S60n 0533 C539 Cous C551 gt 1 12p 82a 122p 22p L0535 L CSu1 C543 0547 1 0553 E 2 330p 150p 120p 270p 120p Cal L521 220pq i 568n 1 V V V V ACN AGND AGND AGND AGND R521 102 L532 _ L534 L536 L538 2 DA ees 682n 562n 472n S62n AGND CS 34 EG C556 C552 U H I U 12p 820 120p 22p gt 0536 Lc542 OS L 0548 Loess cs22 7 L522 330p 150p 100p 270p 120p 220pq 560n j V V V V AGND AGND AGND AGND AGND RS22 100 9TH DEGREE ELLIPTICAL LOW PASS FILTER V AGND 522 5va t 6 P83 y RSTKS 2 KSD2 a 9 o 8 PCE p T_OUT AED o Du 1661 KSu2 AREE 5VA E PG3 SETKS 2 KSg2 20 3 NE PGE cr OUT o 2492 166 33120 66521 sheet 5 of 10 Filters Schematic 135 R611 I PG3 Pa BA ae SVA AMIN L KH 1u 16 gt AGND 15V 15V Kool PGL i NUXDX PRE ATTNO PRI 18 DL TUHCUBS1D R662 DRE ALINL Cegt 5 Je sva PG3 4R5TK
131. n on If the function generator does not turn on Use the following steps to help solve problems you might experience when turning on the function generator If you need more help see chapter 6 for instructions on returning the function generator to Agilent for service 1 Verify that there is ac power to the function generator First verify that the function generator s Power switch is in the On position Also make sure that the power cord is firmly plugged into to the power module on the rear panel You should also make sure that the power source you plugged the function generator into is energized 2 Verify the power line voltage setting The line voltage is set to the proper value for your country when the function generator is shipped from the factory Change the voltage setting if it is not correct The settings are 100 120 220 or 240 Vac for 230 Vac operation use the 220 Vac setting See the next page if you need to change the line voltage setting 3 Verify that the power line fuse is good The function generator is shipped from the factory with a 500 mAT fuse installed This is the correct fuse for all line voltages See the next page if you need to change the power line fuse To replace the 500 mAT fuse order Agilent part number 2110 0458 22 Chapter 2 Quick Start If the function generator does not turn on 1 Remove the power cord Remove the fuse holder assembly from the rear panel
132. of logic and measurement hardware are functioning properly The power on self test performs checks 601 625 and 626 Complete Self Test Hold the shift key while turning on the power to perform a complete self test The tests are performed in the order shown below Performing Individual Tests You can perform individual self tests through the SYStem menu and TEST command The parameters allowed are ALL 603 604 605 606 607 and 608 All numbered tests are looped to give a continuous pass fail indication when started from the menu they will repeat the waveform or sync signal until interrupted Front panel does not respond The main CPU U102 attempts to establish serial communications with the front panel processor U1101 During this test U1101 turns on all display segments Communication must function in both directions for this test to pass If this error is detected during power up self test the function generator will beep twice This error is only readable from the remote interface RAM read write failed This test writes and reads a 554 and AA checker board pattern to each address of ram U103 Any incorrect readback will cause a test failure Waveform RAM readback failed This test writes and reads a A55y and 5AA checker board pattern 12 bit to each address of waveform ram U404 and U405 The test writes and reads the pattern twice at alternating addresses Any incorrect readback will cause a test failure Modulation RAM r
133. oints in the amplifier Amplifier closed loop gain is controlled predominately by the following ratios 2 R740 R710 R717 ppd 2 R740 R710 R711 R715 R716 R719 R720 Variable resistor R710 is used to match the gain through the high frequency feedback path described above and the dc feedback path summed through resistors R705 R706 The feedback signal current is injected into the amplifier through the emitters of Q701 and Q702 respectively 88 Chapter 5 Theory of Operation AM Modulation AM Modulation Blocks 3 and 6 on block diagram page 129 Schematics on pages 136 and 133 Amplitude modulation is performed by analog multiplier U603 combining the AM_IN and FUNCTION and FUNCTION signals Modulation depths from 0 to 120 are set by varying the signal at AM_IN When the amplitude modulation function is selected the output of U603 is switched into the AMP_IN signal path by K602 At the same time the AMP_IN signal path is grounded cutting the output signal amplitude in half to accommodate the more than two times peak signal levels required by gt 100 modulation depth FUNCTION AM OFFSET w A OR Ze d i V K602 o o gt AMP_IN 331204 FIG 5 6 o Ma ska AM_GAIN gt V o o gt AMP IN The AM IN signal is a combination of any external modulation inputs applied to the rear panel BNC connector and the internally generated AM signals The function gen
134. om the adjustment value entered and are stored at the completion of each setup 1 Use a frequency meter to measure the function generator output frequency for each setup in the following table These adjustments use a 50 output termination Nominal Output SETUP FREQUENCY AMPLITUDE Adjustment for main frequency R TRO KHZ 10 Vpp generator sine wave output Adjustment for burst rate timing 01 500 Hz 10 Vpp pulse output A new calibration SETUP 86 Rev 4 0 has been added as an alternative to SETUP 00 The new calibration outputs a 10 MHZ sine wave rather than the 1 kHz signal used for SETUP 00 The new calibration reduces slew rate dependent errors in the frequency measurement and is especially important when calibrating the Phase Lock Assembly Option 001 Note that either setup is sufficient to calibrate the carrier frequency and you don t need to perform both 2 Use the CALIBRATE menu to adjust the displayed frequency at each setup to match the measured frequency and enter the value 3 Perform the Frequency Verification procedures on page 56 69 Chapter 4 Calibration Procedures Function Gain and Linearity Adjustment Function Gain and Linearity Adjustment The function generator stores six calibration constants related to function gain and linearity The constants are calculated from the adjustment value entered If the calibration procedure is aborted before all setup step
135. on constants related to squarewave offset and two calibration constants related to squarewave duty cycle The constants are calculated from the adjustment value entered The calibration constants are stored following completion of setup 63 No calibration constants are stored if the procedures are aborted at any other setup Use a DMM to measure the function generator dcV output voltage for each setup in the following table These adjustments use a HIGH Z output termination For this test the DMM must be set to a fixed range capable of measuring from 10 V to 10 V Do not use an auto ranging function for this test Nominal Output SETUP FREQUENCY AMPLITUDE 60 10 0 Vdc Positive squarewave offset 61 10 0Vdc Negative squarewave offset 62 300 Hz 0 0 Vdc 5096 duty cycle squarewave 63 300 Hz 5 0 Vdc 75 duty cycle squarewave Use the CALIBRATE menu to adjust the displayed output voltage at each setup to match the measured voltage and enter the value Perform the Squarewave Duty Cycle Verification procedures on page 62 AC Amplitude Flatness Adjustment The function generator stores eleven calibration constants related to AC Amplitude Flatness from 1 kHz to 15 MHz The constants are calculated from the adjustment value entered and one of two calculation constants related to the type of measurement device you are using The calibration constants are stored following completion of setup 8
136. or Agilent Express e You will be asked for your serial number shipping address and a credit card number to guarantee the return of your failed unit e Ifyou do not return your failed unit within 15 business days your credit card will be billed for the cost of a new 33120A Agilent will immediately send a replacement 33120A directly to you e The replacement unit will come with instructions for returning your failed unit Please retain the shipping carton and packing materials to return the failed unit to Agilent If you have questions regarding these instructions please call 1 877 447 7278 e The replacement unit will have a different serial number than your failed unit If you need to track your original serial number a blank label will be shipped with the replacement unit to record your original serial number 104 Chapter 6 Service Repackaging for Shipment Repackaging for Shipment If the unit is to be shipped to Agilent for service or repair be sure to e Attach a tag to the unit identifying the owner and indicating the required service or repair Include the instrument model number and your full serial number e Place the unit in its original container with appropriate packaging material e Secure the container with strong tape or metal bands If the original shipping container is not available place your unit in a container which will ensure at least 4 inches of compressible packaging material around
137. ouples data from U903 to microprocessor U102 Isolator U901 couples data from U102 to microprocessor U903 Power Supplies Block 10 on block diagram page 129 Schematic on page 140 The power supply section is divided into two isolated blocks similar to the floating logic and earth referenced logic sections discussed earlier The floating supply outputs are 18 Vdc 5 Vdc 5 2 Vde VEE and a 6 Vrms center tapped filament supply for the vacuum fluorescent display All earth referenced logic is powered from a single 5 Vdc supply Power on reset signals are provided by both the floating and earth referenced power supplies In addition the floating section 5 Vdc supply incorporates a power failure detection circuit which provides a priority interrupt signal to the main CPU U102 98 Chapter 5 Theory of Operation Power Supplies The ac mains are connected by a fused power entry module P1 This module incorporates the functions of mains connection on off switching fusing and line voltage selection 100 120 220 230 240 The line voltage selection function of module P1 selects which primary winding of power transformer T1 is energized The transformer secondary windings are connected to the main pc board through connector J1001 The floating 5 Vdc and 5 2 Vdc supplies are produced by a bridge rectifier formed by diodes CR1006 through CR1009 filter capacitors C1005 and C1009 and voltage regulators U1003 and U1004 U100
138. ply A controlled power on reset signal for processor U903 is generated by U1052 99 Chapter 5 Theory of Operation Display and Keyboard Display and Keyboard Block 11 on block diagram page 129 Schematic on page 141 The front panel circuits consist of vacuum fluorescent display control display high voltage drivers and keyboard scanning Communication between the front panel and floating logic circuits is accomplished through a 4 wire bi directional serial interface The main CPU U102 can cause a hardware reset to processor U1101 by signal IGFPRES The front panel logic operates from 13 volts logic 1 and 18 volts logic 0 The four serial communication signals are level shifted by comparator U1301 from the floating logic 0 V to 5 V levels to the 18 V to 13 V levels present on the front panel assembly The front panel logic high supply 13 volts is produced from the 18 volt supply by voltage regulator U1102 Display anode and grid voltages are 18 volts for an on segment and 18 volts for an off segment The 12 V cathode bias for the display is provided by the main pc board s filament winding center tap bias circuit CR1010 R1009 and C1011 shown on the power supply schematic see page 140 Keyboard scanning is accomplished through a conventional scanned row column key matrix Keys are scanned by outputting data at microprocessor U1101 port pins P0 0 through P0 4 to poll each key column for a key press Column rea
139. provide digital communication with the 256k byte program ROM U104 32k byte RAM U105 128k byte non volatile EEPROM U106 32k byte high speed Modulation RAM U205 16k x 12 bit high speed waveform RAM U404 and U405 and DDS ASIC U206 Gate array U103 provides CPU address latching and memory mapping functions There are four internal registers in U103 a configuration register an 8 bit counter register a serial transmit receive register and an internal status register RAM chip select signal RAMCE and CPU port bits RAMA13 and RAMA14 are used to access 4 8k byte banks of program data RAM Similarly 4 banks of 56k non volatile EEPROM and 2 banks of 56k non volatile RAM are gated from CPU port bits PRG16 PRG17 and WAVA16 and U103 signal ROMCE Addresses on the CPU address bus are valid when the ALE line is high Memory mapping of control of registers U107 and U202 DDS ASIC U206 data transceivers U201 U203 U204 and write enables for RAM U404 and U405 and U205 are controlled by data selector U108 The U108 serial register controls the front panel relay drivers U301 and U302 and System DAC U303 through a serial data bus Front panel signals are FPDI FPSK and FPDO Interrupts from the front panel are detected by U103 and signaled to U102 by CHINT The FPINT line from U102 signals the front panel that U103 has data to send The internal 3 bit serial data bus U102 uses SERCK SERDAT and SERSTB to send data to various registers SERR
140. r with a few of its front panel features Front Panel Menu Operation Chapter 3 introduces you to the front panel menu and describes some of the function generator s menu features Calibration Procedures Chapter 4 provides calibration verification and adjustment procedures for the function generator Theory of Operation Chapter 5 describes block and circuit level theory related to the operation the function generator Service Chapter 6 provides guidelines for returning your function generator to Agilent for servicing or for servicing it yourself Replaceable Parts Chapter 7 contains a detailed parts lists of the function generator Schematics Chapter 8 contains the function generator s block diagram schematics disassembly drawings and component locator drawings For information on using the Phase Lock Option for the 33120A refer to the User s and Service Guide included with the Option 001 If you have questions relating to the operation of the 33120A call 1 800 452 4844 in the United States or contact your nearest Agilent Technologies Sales Office If you believe your 33120A has failed refer to Operating Checklist Types of Service Available and Repackaging for Shipment at the beginning of chapter 6 Contents Chapter 1 Specifications Chapter 2 Quick Start To prepare the function generator for use 21 If the function generator does not turn on 22 To adjust the carrying handle 2
141. rary waveform function is enabled N Sine waveform function is enabled Fl Square waveform function is enabled N Triangle waveform function is enabled ia Ramp waveform function is enabled To review the display annunciators hold down the Shift key as you turn on the function generator The Rear Panel at a Glance CD E P Ext Trig Modulstion d 777 hina 45 440 Hz BOVA Max oo lo 100 sv emo 220 220 290 Fuse 250V 500mAT GO 9 GE Ka Max T 1 Chassis ground 5 External Trigger FSK Burst modulation 2 Power line fuse holder assembly input terminal 3 Power line voltage setting 6 GPIB IEEE 488 interface connector 4 AM modulation input terminal 7 RS 232 interface connector Use the front panel Input Output Menu to e Select the GPIB or RS 232 interface see chapter 4 in User s Guide e Set the GPIB bus address see chapter 4 in User s Guide e Set the RS 232 baud rate and parity see chapter 4 in User s Guide In This Book Specifications Chapter 1 lists the function generator s specifications and describes how to interpret these specifications Quick Start Chapter 2 prepares the function generator for use and helps you get familia
142. re removed later to enhance performance or reduce cost 128 iwi V SET w V AM OFFS OLLER CONTR OptoCouplers TROLLER CON MAIN Block Diagram 129 Pull To Remove Press Down To Unlatch Cable Pull Off Handle DO _TDOOOCOG 500000005 Sb a Loosen Captive Screws J IL Remove Bottom Screw 8 Pry Outward SS From This Side Pull Up To __ Disconnect Front Panel _ Remove Screw Will Pull Off Mechanical Disassembly 130
143. s have been completed no calibration constants are stored Use a DMM to measure the function generator ACrms output voltage for each setup in the following table These adjustments use a HIGH Z output termination Nominal Output SETUP FREQUENCY AMPLITUDE 02 1 kHz 7 07 V rms Adjustment for sine wave gain 03 1 kHz 5 6 V rms Adjustment for amplitude linearity 04 100 Hz 5 6 V rms Adjustment for triangle wave gain 05 100 Hz 5 6 V rms Adjustment for ramp gain 06 100 Hz 10 0 V rms Adjustment for square wave gain 07 100 Hz 1 1 Vrms Adjustment for square wave linearity Use the CALIBRATE menu to adjust the displayed amplitude at each setup to match the measured amplitude and enter the value Perform the Function Gain and Linearity Verification procedures on page 56 AC Amplitude Adjustment High Z The function generator stores twenty two calibration constants related to HIGH Z output and sixteen calibration constants related to 50Q output The constants are calculated from the adjustment value entered The cal ibration constants are stored following completion of setup 22 HIGH Z output and the calibration procedure may be aborted after that point No calibration constants are stored if the procedures are aborted at any other setup Use a DMM to measure the function generator ACrms output voltage for each setup in the following table These adjustments use a HIGH Z output termination 7
144. s a 4 dB attenuator K803 selects a 8 dB attenuator and K804 selects a 16 dB attenuator Relays are sequenced to provide signal attenuation in 6 dB steps Intermediate amplitude levels are controlled by selecting 0 dB 2 dB or 4 dB of signal attenuation through the pre attenuator solid state switches in combination with reducing the output level of the waveform DAC itself The AMP_CTL signal provides smoothly varying control of the Waveform DAC output level over a 0 dB to 2 dB range This operation is described further in the Waveform DAC and System DAC discussions Output Attenuation K801 K802 K803 K804 0dB set set set set 6 dB reset reset set set 12 dB set reset reset set 18 dB reset set set reset 24 dB set set reset reset 30 dB reset reset reset reset K801 through K804 are latching relays Their set or reset state is selected by momentarily pulsing the appropriate coil of the relay Relay coils are pulsed with 5 volts for 15 ms through relay drivers U301 and U302 The main controller U102 writes data bytes to ASIC U103 which transmits this data to the relay drivers via the internal 3 wire serial data bus SERCLK SERDAT and SERSTB to accomplish the relay state changes A 30 MHz filter composed of L801 C801 and C802 eliminates wideband noise from the function generator output The output amplifier and output attenuators are protected from damage by clamps CR801 and CR802 and by fuse F801 The function g
145. square brackets are hidden until you make a selection from the NEW ARB command to initiate a new edit session 37 Chapter 3 Front Panel Menu Operation Front panel menu reference D SYStem MENU 1 OUT TERM 2 POWER ON 3 ERROR gt 4 TEST gt 5 COMMA 5 6 REVISION OUT TERM POWER ON ERROR TEST COMMA REVISION OORO NP E Input Output MENU Selects the output termination 504 or high impedance Enables or disables automatic power up in power down state 0 Retrieves errors from the error queue up to 20 errors Performs a complete self test Enables or disables a comma separator between digits on the display Displays the function generator s firmware revision codes 1 HPIB ADDR gt 2 INTERFACE CG 3 BAUD RATE gt 4 PARITY gt 5 LANGUAGE 1 HPIB ADDR 2 INTERFACE 3 BAUD RATE 4 PARITY 5 LANGUAGE F CALibration MENU Sets the GPIB bus address 0 to 30 Selects the GPIB or RS 232 interface Selects the baud rate for RS 232 operation Selects even odd or no parity for RS 232 operation Verifies the interface language SCPI 1 SECURED gt 1 UNSECURED gt 2 CALIBRATE 3 CAL COUNT 4 MESSAGE 1 SECURED 1 UNSECURED 2 CALIBRATE 3 CAL COUNT 4 MESSAGE The function generator is secured against calibration enter code to unsecure The function generator is unsecured for calibration enter code to secure Performs individual cal
146. sts are not intended to be performed with every calibration They are provided as an aid for verifying additional instrument specifications Square Wave Duty Cycle Verification This test verifies the duty cycle specification of the squarewave output Select each function generator output in the table below Use an integrating DMM to measure the Vdc output of the function generator Compare the measured results to the test limits shown in the table This is a HIGH Z output termination test Agilent 33120A Measurement our Duty A Function TERM Ampl Freq Cycle Nominal Error Square wave HIGHZ 1 0Vrms 300 00 Hz 50 0 00 Vdc 0 020 Vdc Square wave HIGHZ 1 0Vrms 300 00 Hz 25 0 50Vdc 0 020 Vdc Square wave HIGHZ 1 0Vrms 300 00 Hz 75 0 50Vdc 0 020 Vdc The DMM used for this test must be an integrating multimeter If the first step does not measure 0 Vdc use an oscilloscope for this test Do not use an auto ranging function on the DMM for this test Fix the DMM measurement range at 10 Vdc 1 Output termination set using front panel controls HIGH Z assumes no load on output 50Q assumes a 50Q 0 19 load on output 62 Chapter 4 Calibration Procedures Optional Performance Verification Tests Distortion Verification This test checks the Harmonic Distortion at selected frequencies and harmonics This test requires the use of a spectrum analyzer with dynami
147. t Cancel Set the units to the desired value The units are selected using the arrow keys on the right side of the front panel As soon as you select the units the function generator outputs the waveform with the displayed amplitude To turn off the flashing digit move the cursor to the left of the display using the arrow keys 50 00 mVRMS You can also use the knob and arrow keys to enter a number 26 Offset Enter Number 1 Shift v kHz m Vrms Chapter 2 Quick Start To set a dc offset voltage To set a dc offset voltage At power on the function generator outputs a sine wave with a dc offset voltage of 0 volts into a 50Q termination The following steps show you how to change the offset to 1 5 mVdc Enable the offset modify mode The displayed offset voltage is either the power on value or the previous offset selected When you change functions the same offset is used if the present value is valid for the new function 0 000 VDC Enter the magnitude of the desired offset 91 Notice that the Num annunciator turns on and ENTER NUM flashes on the display indicating that the number mode is enabled Notice that toggles the displayed value between and Ls Sr To cancel the number mode press Shift Cancel Set the units to the desired value At this point the function gener
148. t or right between digits Use the up or down arrow keys to change the digits To re secure the function generator following a calibration perform this procedure again Additional information about the calibration security feature is given on page 64 48 Calibration Procedures Calibration Procedures This chapter contains procedures for verification of the function generator s performance and adjustment calibration The chapter is divided into the following sections e Agilent Calibration Services 51 e Calibration Interval 51 e Time Required for Calibration 51 e Automating Calibration Procedures 52 e Recommended Test Equipment 52 e Test Considerations 1 444411 53 e Performance Verification Tests 54 e Frequency Verification 56 e Function Gain and Linearity Verification 56 e DC Function Offset Verification 57 e AC Amplitude Verification 57 e Amplitude Flatness Verification 60 e AM Modulation Depth Verification 61 e Optional Performance Verification Tests 62 e Calibration Security Code 1 2 1 64 e Calibration Count 66 e Calibration Message 66 e General Calibration Adjustment Procedure 67 e Aborting a Calibration in Progress 69 e Frequency and Burst Rate Adjustment
149. th square wave amplitude square wave duty cycle output de offset and output amplitude level The System DAC is programmed and responds to the main controller via the internal 3 wire serial data bus SERCLK SERRBK and SERSTB The System DAC is multiplexed to 7 track hold amplifiers through U304 Each track hold amplifier is refreshed approximately every 3 ms to maintain its output setting Changes to track hold amplifier outputs are accomplished by dwelling on that position for an extended period NNIN n SE e 5 00 REF AN SERIA SERCLK SERIAL J ZE Ma SERRBK f SERSTB ANN Zi gt AM_GAIN AM_OFFSET A y gt S i 96 Chapter 5 Theory of Operation Floating Logic Floating Logic Block 1 on block diagram page 129 Schematic on page 131 The floating logic controls the operation of the entire function function generator All output functions and bus command interpretation is performed by the main CPU U102 The front panel and earth referenced logic operate as slaves to U102 The main CPU portion of the floating logic section is clocked from a 12 MHz ceramic resonator Y101 Non volatile EEPROM U106 stores arbitrary waveform data calibration constants calibration secure code calibration count and last instrument state The main CPU U102 is a 16 bit micro controller The 16 bit A address bus and 8 bit AD address data bus are used to
150. to a low frequency of 100 kHz To use this measurement device perform step 1 then use setup 65 to obtain a 100 kHz output Measure the output with the power meter and record the measured value Perform setup 83 and enter the recorded value not a new measurement Then perform step 3 you will use setup 65 twice This procedure assumes the output of the function generator is flat from 1 kHz to 100 kHz c If you are using a Thermal Voltage Converter TVC use the TVC to measure the function generator output and enter the measurement for the setup in the table below TVC values entered are in mVdc Nominal Output SETUP FREQUENCY AMPLITUDE Reference for 84 1 kHz 3 0 V rms Thermal Voltage Converter 78 Chapter 4 Calibration Procedures AC Amplitude Flatness Adjustment 3 For each setup in the table below use the CALIBRATE command to change the displayed amplitude to match the measured amplitude Nominal Output SETUP FREQUENCY AMPLITUDE Adjustment for 65 100 kHz 3 0Vrms 100 kHz amplitude flatness 66 500 kHz 3 0Vrms 500 kHz amplitude flatness 67 1 MHz 3 0Vrms 1 MHz amplitude flatness 68 3 MHz 3 0Vrms 3 MHz amplitude flatness 69 5 MHz 3 0Vrms 5 MHz amplitude flatness 70 7 MHz 3 0Vrms 7 MHz amplitude flatness 71 9 MHz 3 0Vrms 9 MHz amplitude flatness 72 10 MHz 3 0Vrms 10 MHz amplitude flatness 73
151. unction Generator Remove the carrying handle and the front and rear rubber bumpers before rack mounting the function generator Wa TH gounooooz O nononoco To remove the handle rotate it to the vertical position and pull the ends outward E PAN al JA EI Ho A f m PRA r1 H HH UU y HH MI LUI UO J ES EE Eee ooooaogog Kamp SSES ER Front Rear bottom view To remove the rubber bumper stretch a corner and then slide it off 33 Chapter 2 Quick Start To rack mount the function generator Mallon BEE rt eter ZE tm N AJ e za DODODODOU Q O O a A O ad DODODODOS To rack mount a single instrument order adapter kit 5063 9240 I HE Maler SITZ rt o EN j HE Aa E y Mtn EN DZ o y K a GA TA Ol moog Doboooa O A mE PET O gt O e Ct wooo O CDD O To rack mount two instruments side by side order lock link kit 5061 9694 and flange kit 5063 9212 To install one or two instruments in a sliding support shelf order shelf 5063 9255 and slide kit 1494 0015 for a single instrument also order filler panel 5002 3999 34 Front Panel Menu Operation Front Panel Menu Operation By now you should be familiar with some of the basic feat
152. ures of the front panel Chapter 2 shows you how to prepare the function generator for use and describes a few of the front panel features If you are not familiar with this information we recommend that you read chapter 2 Quick Start starting on page 19 Chapter 3 introduces you to the use of the front panel menu This chapter does not give a detailed description of every front panel key or menu operation It does however give you an overview of front panel menu operations related to verification adjustment and service See chapter 3 Features and Functions in the User s Guide for a complete discussion of the function generator s capabilities and operation If you purchased the Phase Lock Option for the 33120A an additional menu G PHASE MENU is available from the front panel For inform ation on using the Phase Lock Option refer to the User s and Service Guide included with Option 001 36 Chapter 3 Front Panel Menu Operation Front panel menu reference Front panel menu reference A MODulation MENU 1 AM SHAPE gt 2 AM SOURCE 3 FM SHAPE gt 4 BURST CNT 5 BURST RATE gt c 6 BURST PHAS gt 7 BURST SRC gt 8 FSK FREQ gt 9 FSK RATE 10 FSK SRC 1 AM SHAPE Selects the shape of the AM modulating waveform 2 AM SOURCE Enables or disables the internal AM modulating source 3 FM SHAPE Selects the shape of the FM modulating waveform 4 BURST CNT Sets the number of c
153. ustment 5002 4 Use the DMM to measure the function generator ACrms output voltage for each setup in the table on the next page These adjustments use the 50Q load and cable measured in step 2 and connected as shown below INCLUDING CABLE RESISTANCE WITHOUT MOST ACCURATE CABLE RESISTANCE DMM DMM 33120A FIG 4 6 FUNCTION GENERATOR FUNCTION GENERATOR F3 Q M Y d JRE OAD OAD 74 Chapter 4 Calibration Procedures AC Amplitude Adjustment 5002 Nominal Output SETUP FREQUENCY AMPLITUDE Adjustment for 34 1 kHz 3 5 Vrms 0 dB Output Attenuator 35 1 kHz 2 8 Vrms 2 dB Output Attenuator 36 1 kHz 2 23 Vrms 4 dB Output Attenuator 37 1 kHz 1 77 Vrms 6 dB Output Attenuator 38 1 kHz 1 41 Vrms 8 dB Output Attenuator 39 1 kHz 1 12 Vrms 10 dB Output Attenuator 40 1 kHz 887 Vrms 12 dB Output Attenuator 41 1 kHz 704 Vrms 14 dB Output Attenuator 42 1 kHz 559 Vrms 16 dB Output Attenuator 43 1 kHz 442 Vrms 18 dB Output Attenuator 44 1 kHz 350 Vrms 20 dB Output Attenuator 44 1 kHz 281 Vrms 22 dB Output Attenuator 46 1 kHz 223 Vrms 24 dB Output Attenuator 47 1 kHz 177 Vrms 26 dB Output Attenuator 48 1 kHz 141 Vrms 28 dB Output Attenuator 49 1 kHz 112 Vrms 30 dB Output Attenuator 5 Use the CALIBRATE menu to adjust the displayed amplitude at each setup to match the measured
154. utput Adjustment 76 Duty Cycle Adjustment 77 AC Amplitude Flatness Adjustment 77 Output Amplifier Adjustment Optional 80 Error Messages 81 Chapter 5 Theory of Operation Block Diagram Overview 85 Output Attenuator 86 Output Amplifier 87 AM Modulation 89 Pre attenuator 90 Square Wave and Sync 90 Filters 92 Waveform DAC Amplitude Leveling Waveform RAM 93 Direct Digital Synthesis DDS ASIC 95 System DACs 96 Floating Logic 97 Earth Referenced Logic 98 Power Supplies 98 Display and Keyboard 100 10 Contents Chapter 6 Service Operating Checklist 103 Types of Service Available 104 Repackaging for Shipment 105 Cleaning 105 Electrostatic Discharge ESD Precautions 106 Surface Mount Repair 106 To Replace the Power Line Fuse 107 To Replace the Output Protection Fuse F801 107 Troubleshooting Hints 108 Self Test Procedures 110 Chapter 7 Replaceable Parts Replaceable Parts 113 Chapter 8 Schematics 33120A Block Diagram 129 Mechanical Disassembly 130 Floating Logic Schematic 131 Digital Waveform Data Synthesis 132 System DAC Schematic 133 Waveform DAC Schematic 134 Filters Schematic 135 Sync Square Wave and Attenuator Schematic 136 Output Amplifier Schematic 137 Output Attenuator Schematic 138 Earth Reference Logic Schematic 139 Power Supplies Schematic 140 Display and Keyboard Schematic 141 33120 66521 Component Locator Diagram 142 33120 66502 Component Locator Diagram 143 11 C
155. y that the state was stored properly you can turn the power off before recalling the state Recall 5 Recall the stored instrument state To recall the stored state you must use the same memory location used previously to store the state Use the up and down arrow keys to change the displayed storage location m ECALL 2 JA No To cancel the restore operation press Recall again This message appears on the display for approximately 10 seconds Repeat this step as needed Enter 6 Restore the instrument state The function generator should now be configured in the same state as when you stored the setup on the previous page When power is turned off the function generator automatically stores its state in memory location 0 You can recall the power down state but you cannot store the state to location 0 from the front panel Use the POWER ON ENABLE command in the SYS MENU to automatically recall the power down state when power is turned on See chapter 3 for more information on using the front panel menus 32 Chapter 2 Quick Start To rack mount the function generator To rack mount the function generator You can mount the function generator in a standard 19 inch rack cabinet using one of three optional kits available Instructions and mounting hardware are included with each rack mounting kit Any Agilent System IT instrument of the same size can be rack mounted beside the 33120A F
156. ycles per burst 1 to 50 000 cycles 5 BURST RATE Sets the burst rate in Hz for an internal burst source 6 BURST PHAS Sets the starting phase angle of a burst 360 to 360 degrees 7 BURST SRQ Selects an internal or external gate source for burst modulation 8 FSK FREQ Sets the FSK hop frequency 9 FSK RATE Selects the internal FSK rate between the carrier and FSK frequency 10 FSK SRC Selects an internal or external source for the FSK rate B SWP Sweep MENU 1 START F gt 2 STOPF gt 3 SWP TIME gt 4 SWP MODE 1 START F Sets the start frequency in Hz for sweeping 2 STOP F Sets the stop frequency in Hz for sweeping 3 SWP TIME Sets the repetition rate in seconds for sweeping 4 SWP MODE Selects linear or logarithmic sweeping C EDIT MENU 1 NEW ARB 2 POINTS 3 LINE EDIT gt 4 POINT EDIT gt 5 INVERT gt 6 SAVE AS gt 7 DELETE 1 NEW ARB Initiates a new arb waveform or loads the selected arb waveform 2 POINTS Sets the number of points in a new arb waveform 8 to 16 000 points 3 LINE EDIT Performs a linear interpolation between two points in the arb waveform 4 POINT EDIT Edits the individual points of the selected arb waveform 5 INVERT Inverts the selected arb waveform by changing the sign of each point 6 SAVE AS Saves the current arb waveform in non volatile memory 7 DELETE Deletes the selected arb waveform from non volatile memory The commands enclosed in

Download Pdf Manuals

image

Related Search

Related Contents

(ntj1_02) NTJ Apr 95 - United Network of Newton Archives  Whitehaus Collection WHNDB3016-BSS Installation Guide  PORTUGUÊS INSTRUÇÕES DE UTILIZAÇÃO  Goodman GSC13-DRY Installation & Service Reference  Microsoft Expression Media User Guide  Imetec Dolcevita SM2  Premios a la Innovación TIC  HL-x9 Quad Color Flood 9x8W LED  Robertshaw RS4220C Install Sheet    

Copyright © All rights reserved.
Failed to retrieve file