Home
Intel Core E8190
Contents
1. M O 402u001 Temperature Fan Speed Time Note The processor has only DTS and no thermal diode The in the MSR is relevant only to the DTS Thermal and Mechanical Design Guidelines 39 in tel Thermal Management Logic and Thermal Monitor Feature 4 2 11 40 Platform Environmental Control I nterface The PECI interface is a proprietary single wire bus between the processor and the chipset or other health monitoring device At this time the digital thermal sensor is the only data being transmitted For an overview of the PECI interface see PECI Feature Set Overview For additional information on the PECI see the datasheet The PECI bus is available on pin G5 of the LGA 775 socket Intel chipsets beginning with the ICH8 have included host controller interface and the Manageability Engine are key elements to the Intel Quiet System Technology Intel QST see Chapter 7 and the Intel Quiet System Technology Configuration and Tuning Manual Intel has worked with many vendors that provide fan speed control devices to provide PECI host controllers Consult the local representative for your preferred vendor for their product plans and availability Thermal and Mechanical Design Guidelines m Balanced Technology Extended BTX Thermal Mechanical Design I nformation intel 5 1 5 1 1
2. REVISION HISTORY BOARD PRIMARY SIDE 7200 975 SOCKETBALL 09 19 oe OTM D 117 288822 8 8 593988 a s es w 1695 4150 1 177 p 1081 9800 2 gt 315 PNI E x N 280 a 42 PACKAGE BOUNDARY C 1932 SOCKET HOUSING 1550 i CAVITY 1744 9500 Sn DETALA 3750 4 72 00 nd LEGEND 160 Z _ SOCKETITHERMOMECHANCAL COMPONENT KEEP INS 1550 SEEDETAL 192 100 MM MAX COMPONENT HEIGHT 2451 I S 230 72777 25MM MAX COMPONENT HEIGHT 2000 Z Y B 315 A 6 0 MM MAX COMPONENT HEIGHT Ow ran RES RN my NSS 3578 ai 777 t3 36 00 250 MM MAX COMPONENT HEIGHT 4100 801 1 8 MMMAX COMPONENT HEIGHT 8 NAN 3 BOARD ROUTING KEEP OUT E X 0600 SOCKET BALL 1 240 PACKAGE N BOUNDARY CUR Ld intel 2 Ero A mE 2 ean Ee LGA775 microATX COMPONENET KEEP INS AND MECHANICAL COVPONENET KEEP OUTS ENT KEEP INS WITH SUFFICIENT AL OMANGES FOR PLACEMENT AND SUE TOLERANCES se COMPONEN J ASSINESMINETRY FOR OVENS UNED AND EDGES rs A 0 3 _ i NA SCALE NONE DONOTSCALEDRAWNG SHEET 10F 3 8 7 6 5 T 4 2 1 112 Thermal and Mechanical Design Guidelines 1 Mechanical Drawings in
3. 7 4444 11 21 1 21 1 4 25 3 Thermal Metrology cette ERR sa 27 3 1 Characterizing Cooling Performance 1 27 3 1 1 Examples u debe ree nka einen 28 3 2 Processor Thermal Solution Performance 29 3 3 Local Ambient Temperature Measurement Guidelines 29 3 4 Processor Case Temperature Measurement Guidelines 32 4 Thermal Management Logic and Thermal Monitor 33 4 1 Processor Power 100 33 4 2 Thermal Monitor memes 33 4 2 1 PROCHOL Signal EDI EE E 34 4 2 2 Thermal Control Circuit ene 34 4 2 2 1 Thermal 1 34 4 2 3 Thermal Monitor 2 gu a asas ERE 35 4 2 4 Operation and Configuration 36 4 2 5 On Demand Mode u pee t det ace a ates RR ENERO 37 Thermal and Mechanical Design Guidelines 3 4 2 6 System 5 r rn 37 4 2 7 Operating System and Application Software Considerations 38 4 2 8 THERMTRI
4. 96 Figure 7 25 Cutting 5 0 0 111 96 Figure 7 26 Positioning Solder on 5 1 97 Thermal and Mechanical Design Guidelines Figure 7 27 Solder Station 98 Figure 7 28 View Through Lens at Solder Station r rr 99 Figure 7 29 Moving Solder back onto Thermocouple 99 Figure 7 30 Removing Excess 5 0 100 Figure 7 31 Thermocouple placed into 101 Figure 7 32 Removing Excess Solder 111 101 Figure 7 33 Filling Groove with Adhesive rr 102 Figure 7 34 Application of 102 Figure 7 35 Removing Excess Adhesive from 1 103 Figure 7 36 Finished Thermocouple Installation 103 Figure 7 37 Thermocouple Wire 104 Figure 7 38 System Airflow Illustration with System Monitor Point Area Identified 106 Figure 7 39 Thermal sensor Location Illustration 107 Figure 7 40 ATX nATX Motherboard Keep out Footprint Definition and Height Restriction
5. 4 4 4 1 nemen 83 Appendix D Case Temperature Reference 1 1 rr 85 D 1 Objective and Scope ice reos rbi reU reta bie i teeter iter 85 D 2 Supporting Test 85 D 3 Thermal Calibration and Controls rr 87 D 4 luxe EEUU 87 D 5 Thermocouple Attach 91 D 5 1 Thermocouple Conditioning and 91 D 5 2 Thermocouple Attachment to the 92 D 5 3 Solder Process spyse prira 97 0 5 4 Cleaning and Completion of Thermocouple Installation 100 D 6 Thermocouple Wire memes 104 Appendix E Balanced Technology Extended BTX System Thermal Considerations 105 Appendix F Fan Performance for Reference 1 rr 109 Appendix G Mechanical 5 41 402044 41100 mener nennen 111 Appendix H Intel Enabled Reference Solution Information csse 127 Thermal and Mechanical Design Guidelines 5 Figures Figure 2 1 Figure 2 2 Figure 2 3 Figure 3 1 Figure 3 2 Figure 3 3 Figure 4 1 Figure 4 2
6. 1 1 4444 4 1 73 Board Deflection Metric Implementation Example 74 A 3 4 Additional 75 A 3 4 1 Motherboard Stiffening Considerations 76 A 4 Heatsink Selection Guidelines 4 4444 4711 04 4 4 14 11 76 Appendix Heatsink Clip Load Metrology 4 401 rr 77 1 eM Glebe oaae ron 77 B 2 Test PrepatatloD uoce ror rt dax canta rene x ttp aaa 77 B 2 1 Heatsink 77 2 2 Typical Test 80 Test Procedure 111 80 3 1 Time Zero Room Temperature Preload Measurement 81 B 3 2 Preload Degradation under Bake Conditions 81 Appendix Thermal Interface 4 1 66 nnns 83 C 1 Bond Line Management T A RES 83 C 2 Interface Material 1 2 4 1 0 114 6 nnn 83 Interface Material
7. 047 0011 2X 3 3240 05 2X 3 380 1 1 1314 011 153 003 X 0 8140 03 9 0 032 001 0551 2X 0 770 063 C D30 DDI 1 0821 SECTION SECTION 411 PA 1 2X 5 10 1 2X 4 40 1 C 202 0031 E ITE 0031 2 540 05 t 1004 0011 I 2X 0 5140 03 2X 0 60 03 m eet 0 380 05 s 0011 024 0011 094 001 124 Thermal and Mechanical Design Guidelines Mechanical Drawings Figure 7 53 Reference Fastener Sheet 4 TEXTURED SURFACE ARROW GRAPHIC TO BE TEXTURED IN NOLD POLISHED SURFACE i 24 7340 13 9743 0051 2X 1 350 05 103 0 05 053 001 334 0011 MARK PART REVISION APPROXIMATELY WHERE SHOWN WAX HEIGHT OF TEXT 05 BEYOND PART SURFACE 0 07 0021 lt 9 SURFACE DEFINED FROM Wa ez WO DRAFT EQUIRES SURFACE FINISH OF SPI I kay 19 1 2640 05 4 286 0011 fone ye 10 SECTION A A Bian E oA s a e L 197 0031 0 07 1 0021 5 c SECTI Thermal and Mechanical Design Guidelines 125 Figure 7 54 Intel E18764 001 Reference Solution Assembly Mechanical Drawings
8. NOTES NORMAL AND LATERAL LOADS ON THE IHS MUST BE MINIMIZED gt On te MACHINE WITH CLEAN DRY AIR ONLY NO FLU ALL MACHINE SURFACES TO BE 32 MILL FINISH OR BETTER UNLESS OTHERWISE SPECIFIED DURING MACHINING OPERATION IDS OR OILS IHS MATERIAL IS NICKEL PLATED COPPER CUT DIRECTION IS AS SHOWN ALL MACHINED EDGES TO BE FREE FROM BURRS THE 0 015 DEPTH AT PKG CENTER IS CRITICAL SCALE 2 000 DO NOT SCALE DRAWING SHEET OF 88 Thermal and Mechanical Design Guidelines Case Temperature Reference Metrology Figure 7 13 775 LAND LGA Package Reference Groove Drawing at 3 o clock Exit Old Drawing SEE DETAIL 040 1 021 SCALE DETAIL A 20 000 PACKAGE CENTER PACKAGE CENTER DETAIL B SCALE 20 000 NOTES 2 3 4 5 6 1 r 020 003 0 5140 07 01504 0015 0 38140 038 MACHINE WITH CLEAN DRY AIR ony UNLESS OTHERWISE SPECIFIED NORMAL AND LATERAL LOADS N THE IHS MUST BE MINIMIZED DURING MACHINING OPERAT IOI NO FLUIDS OR OILS ALL MACHINE SURFACES TO BE 32 MILL FINISH OR BETTER IHS MATERIAL IS NICKEL PLATED COPPER CUT DIRECTION IS AS SHOWN ALL MACHINED EDGES TO BE FREE FROM BURRS THE 0 015 DEPTH AT PKG CENTER IS CRITICAL a LLL 3X 0 05 0 010 2 UNLESS OTHERWISE SPECIFIED DESIGNED BY DEPARTMENT INTERPRET DIMENSIONS AND
9. n tel Case Temperature Reference Metrology 14 Using a fine point device place a small amount of flux on the thermocouple bead Be careful not to move the thermocouple bead during this step Figure 7 24 Ensure the flux remains in the bead area only Figure 7 24 Applying Flux to the Thermocouple Bead 15 Cut two small pieces of solder 1 16 inch 0 065 inch 1 5 mm from the roll using tweezers to hold the solder while cutting with a fine blade Figure 7 25 Figure 7 25 Cutting Solder 96 Thermal and Mechanical Design Guidelines m Case Temperature Reference Metrology tel 16 Place the two pieces of solder in parallel directly over the thermocouple bead Figure 7 26 Figure 7 26 Positioning Solder on IHS D 5 3 4 17 Measure the resistance from the thermocouple end wires again using the DMM refer to Section D 5 1 step 2 to ensure the bead is still properly contacting the IHS Solder Process 18 Make sure the thermocouple that monitors the Solder Block temperature is positioned on the Heater block Connect the thermocouple to a handheld meter to monitor the heater block temperature 19 Verify the temperature of the Heater block station has reached 155 C x5 C before you proceed 20 Connect the thermocouple for the device being soldered to a second hand held meter to monitor IHS temperature during the solder process Thermal and Mechanical Design
10. 58 Thermal and Mechanical Design Guidelines m ATX Thermal Mechanical Design Information intel 6 3 1 2 1 6 3 1 2 2 6 3 2 Recommended Test Sequence Each test sequence should start with components that is motherboard heatsink assembly and so forth that have never been previously submitted to any reliability testing The test sequence should always start with a visual inspection after assembly and BIOS CPU Memory test refer to Section 6 3 3 Prior to the mechanical shock amp vibration test the units under test should be preconditioned for 72 hours at 45 2C The purpose is to account for load relaxation during burn in stage The stress test should be followed by a visual inspection and then BIOS CPU Memory test Post Test Pass Criteria The post test pass criteria are 1 No significant physical damage to the heatsink attach mechanism including such items as clip and motherboard fasteners 2 Heatsink must remain attached to the motherboard 3 Heatsink remains seated and its bottom remains mated flatly against IHS surface No visible gap between the heatsink base and processor IHS No visible tilt of the heatsink with respect to its attach mechanism 4 No signs of physical damage on motherboard surface due to impact of heatsink or heatsink attach mechanism 5 No visible physical damage to the processor package 6 Successful BIOS Processor memory test of post test samples 7 Thermal complianc
11. 3 fase is a LAS vee 0 4 SL 126 Thermal and Mechanical Design Guidelines m Intel Enabled Reference Solution Information intel Appendix HI ntel Enabled Reference Solution Information This appendix includes supplier information for Intel enabled vendors for E18764 001 reference design and BTX reference design The reference component designs are available for adoption by suppliers and heatsink integrators pending completion of appropriate licensing contracts For more information on licensing contact the Intel representative mentioned in Table 7 4 Table 7 4 Intel Representative Contact for Licensing Information of BTX Reference Design mm Intel Corporation Intel Corporation DeLeon DeLeon Leon 253 371 9339 371 9339 Tony deleon intel com The following tables list suppliers that produce Intel enabled reference components The part numbers listed below identifies these reference components End users are responsible for the verification of the Intel enabled component offerings with the supplier OEMs and System Integrators are responsible for thermal mechanical and environmental validation of these solutions Table 7 5 E18764 001 Reference Thermal Solution Providers Part Supplier Jack Chen I I Jack Chen Foxconn com Foxconn 001 Reference Wanchi
12. TMA reference design is 484 N mm 2764 lb in Note These preload and stiffness recommendations are specific to the TMA mounting scheme that meets the BTX Interface Specification and Support Retention Mechanism SRM Design Guide For TMA mounting schemes that use only the motherboard Thermal and Mechanical Design Guidelines 51 m e In tel Balanced Technology Extended BTX Thermal Mechanical Design Information mounting hole position for TMA attach the required preload is approximately 10 15N greater than the values stipulated in Figure 5 6 however Intel has not conducted any validation testing with this TMA mounting scheme Figure 5 7 Thermal Module Attach Pointes and Duct to SRM I nterface Features Rear attach point use 6x32 screw Front attach point use 6x32 screw SRM See detail A Detail A Chassis PEM nut Duct front interface feature see note 2 NOTES 1 Forclarity the motherboard is not shown in this figure In an actual assembly the captive 6x32 screws in the thermal module pass through the rear holes in the motherboard designated in the socket keep in Figure 7 43 through Figure 7 47 in Appendix G and screw into the SRM and chassis PEM features 2 This front duct ramp feature has both outer and inner lead in that allows the feature to slide easily into the SRM slot and around the chassis PEM nut Note that the front PEM nut is part of the chassis not the SRM 52 The
13. 4 2 5 Note 4 2 6 Regardless of the configuration selected PROCHOT will always indicate the thermal status of the processor The power reduction mechanism of thermal monitor can also be activated manually using an on demand mode Refer to Section 4 2 5 for details on this feature On Demand Mode For testing purposes the thermal control circuit may also be activated by setting bits in the ACPI MSRs The MSRs may be set based on a particular system event such as an interrupt generated after a system event or may be set at any time through the operating system or custom driver control thus forcing the thermal control circuit on This is referred to as on demand mode Activating the thermal control circuit may be useful for thermal solution investigations or for performance implication studies When using the MSRs to activate the on demand clock modulation feature the duty cycle is configurable in steps of 12 596 from 12 5 to 87 5 For any duty cycle the maximum time period the clocks are disabled is 3 us This time period is frequency dependent and decreases as frequency increases To achieve different duty cycles the length of time that the clocks are disabled remains constant and the time period that the clocks are enabled is adjusted to achieve the desired ratio For example if the clock disable period is 3 us and a duty cycle of 2596 is selected the clock on time would be reduced to approximately 1
14. Note that the BOL and EOL preload and board deflection differ This is a result of the creep phenomenon The example accounts for the creep expected to occur in the motherboard It assumes no creep to occur in the clip However there is a small amount of creep accounted for in the plastic fasteners This situation is somewhat similar to the reference design The impact of the creep to the board deflection is a function of the clip stiffness e The relatively compliant clips store strain energy in the clip under the BOL preload condition and tend to generate increasing amounts of board deflection as the motherboard creeps under exposure to time and temperature e In contrast the stiffer clips stores very little strain energy and therefore do not generate substantial additional board deflection through life NOTES 1 Board and clip creep modify board deflection over time and depends on board stiffness clip stiffness and selected materials 2 Designers must define the BOL board deflection that will lead to the correct end of life board deflection Thermal and Mechanical Design Guidelines m LGA775 Socket Heatsink Loading tel Figure 7 7 Example Defining Heatsink Preload Meeting Board Deflection Limit eo Kclip 100 Ibffin s Kclip 500 Ibflin Kclip 1000 Ibfiin Kelip 2000 Ibffin Kelip 3000 Ibffin 2 9 2 S EOL
15. 1 3760 49 00 SOCKET amp PROCESSOR VOLUMETRIC KEEP IN 1460 2450 5 X 300 H 660 4 SOCKETHOUSING i ES RB2 CAVITY CPU PACKAGE oe Sas OS 2900 He N c 1 Z 1925 3760 3 00 N i l A PM 1410 i E 66 p F 160 i 2 30 00 25 jeu J 58 d ss e m N i 80 s d 4X 35 SOCKET BALL 1 7 Lap 380 1687 89 H f i m mo LEVERMOTION SPACE gt DE gt Z REQUREDTORELEASE lt x LOAD PLACE AM LEVERMOTONSPACE lt aiit FARSIDE REQUREDTORELEASE N SOCKET LOAD PLATE B B 580 Z Z Z Le 580 i i SECTION 380 NOTES 1 SOCKET CENTER PLANES ARE REFERENCED FROM GEOMETRIC OF SOCKET HOUSING CAVITY FOR CPU PACKAGE ALIGNES WITH DATUM REFERENCE GIVEN FOR BOARD COMPONENT KEEP INS 2 SOCKET KEEP IN VOLUVE VERTICAL HEIGHT ESTABLISHES LIMIT OF SOCKET A CPU PACKAGE ASSEMBLY IN THE SOCKET LOCKED DOWN POSITION A IT ENCOMPASSES SOCKET AND CPU PACKAGE DIMENSIONAL T AND DEFLECTION SHAPE CHANGES DUE TO DSL LORD 3 SOCKET KEEPIN VOLUME ENCOMPASS THE SOCKET NOMINAL VOLUME Sey ara AND ALLOWANCES FOR SIZE TOLI 3 TOP SIDE VIEW DEVELOPERS SHALL DESIGN TO THE OUTSIDE OF SOCKET KEEP IN VOLUME WITH eme er ea CLEARANCE MARGINS SOCKET DEVELOPERS SHALL DESIGN TO THE INSIDE VOLUME w intel me 3 1 SCALE NONE
16. 2 Duo processor E8300 and E7200 e Added Intel Core 2 Duo processor E8600 and E7300 e Added Intel Core 2 Duo processor E7400 Added Pentium dust core processor E5300 e Added Intel Pentium dual core processor E5400 e Added Intel Core 2 Duo processor E7500 009 O e Added Intel Core 2 Duo processor E7600 e Added Intel Pentium dual core processor E6600 e Intel Celeron processor E3400 e Added Intel Pentium dual core processor E6700 June 2010 e Added Intel Pentium dual core processor E5700 August 2010 Thermal and Mechanical Design Guidelines 9 10 Thermal and Mechanical Design Guidelines Introduction 1 1 1 1 1 1 1 2 Introduction Document Goals and Scope Importance of Thermal Management The objective of thermal management is to ensure that the temperatures of all components in a system are maintained within their functional temperature range Within this temperature range a component is expected to meet its specified performance Operation outside the functional temperature range can degrade system performance cause logic errors or cause component and or system damage Temperatures exceeding the maximum operating limit of a component may result in irreversible changes in the operating characteristics of this component In a system environment the processor temperature is a function of both system and component thermal characteristics The system level thermal cons
17. 34 PROCHOT Signal The primary function of the PROCHOT signal is to provide an external indication that the processor has reached the TCC activation temperature While PROCHOT is asserted the TCC will be activated Assertion of the PROCHOT signal is independent of any register settings within the processor It is asserted any time the processor die temperature reaches the trip point PROCHOT be configured using BIOS as an output or bi directional signal As an output PROCHOT will go active when the processor temperature of either core reaches the TCC activation temperature As an input assertion of PROCHOT will activate the TCC for both cores The TCC will remain active until the system de asserts PROCHOT The temperature at which the PROCHOT signal goes active is individually calibrated during manufacturing Once configured the processor temperature at which the PROCHOT signal is asserted is not re configurable One application of the Bi directional PROCHOT is for the thermal protection of voltage regulators VR System designers can implement a circuit to monitor the VR temperature and activate the TCC when the temperature limit of the VR is reached By asserting PROCHOT pulled low which activates the TCC the VR can cool down as a result of reduced processor power consumption Bi directional PROCHOT can allow VR thermal designs to target maximum sustained current instead of maximum current Systems should still
18. Balanced Technology Extended BTX Thermal Mechanical Design Information Overview of the BTX Reference Design The reference thermal module assembly is a Type BTX compliant design and is compliant with the reference BTX motherboard keep out and height recommendations defined in Section 6 6 The solution comes as an integrated assembly An isometric view of the assembly is provided in Figure 5 4 Target Heatsink Performance Table 5 1 provides the target heatsink performance for the processor with the BTX boundary conditions The results will be evaluated using the test procedure described in Section 5 2 The table also includes a TA assumption of 35 5 C for the Intel reference thermal solution at the processor fan heatsink inlet discussed in Section 3 3 The analysis assumes a uniform 35 C external ambient temperature to the chassis of across the fan inlet resulting in a temperature rise of 0 5 C Meeting T4 and Yc targets maximize processor performance refer to Sections 2 2 2 4 and Chapter 4 Minimizing Ta can lead to improved acoustics Table 5 1 Balanced Technology Extended BTX Type 11 Reference TMA Performance Thermal Requirements T Processor Wea Assuniption Mean 3c Intel Core 2 Duo Processor E8000 series with 6 MB cache ML Intel Core 2 Duo processor E7000 series with 3 MB cache Intel Pentium dual core processor E6000 E5000 series 0 594 C W 35 5 C with 2 MB c
19. Wanchi Chen Foxconn Solution 2 408 919 6135 Aheng en com Intel E18764 Yuji Fujikura 001 Reference RPG 7029 408 988 7478 yuji fujikura com Solution Yasuda Motokazu Intel E18764 FO9A Nishimura l notes nidec co jp Nidec 001 Reference 12BS201AC 2H3 CX sae 360 666 2445 Karl Mattson Nidec com attson Base Foxconn Fastener C33389 408 919 6135 Wanchi Chen Foxconn co Cap m C33390 Base ITW C33389 773 307 Fastex Fastener 9035 rknell itwfastex com C33390 Thermal and Mechanical Design Guidelines 127 m in tel Intel Enabled Reference Solution Information Note These vendors and devices are listed by Intel as a convenience to Intel s general customer base but Intel does not make any representations or warranties whatsoever regarding quality reliability functionality or compatibility of these devices This list and or these devices may be subject to change without notice Table 7 6 BTX Reference Thermal Solution Providers Mitac International Support and Michael Tsai 886 3 328 Corp Retention Module 9000 Ext 6545 iil pw iem DB09238B 1886 2 odule Fan ASIA Vital Weste pene David Chao 22996930 Components Co Ltd 2004 Extension 619 Type Thermal AVC 886 2 Module Fan DB07038B ASIA Vital I David Chao 22996930 Components Co Ltd 2004 Extension 619 Type Thermal TBD Module ran TBD TBD Assembly 65W 2006 CC
20. and the PROCHOTZ output pin are available to monitor the Thermal Monitor behavior Thermal and Mechanical Design Guidelines Thermal Management Logic and Thermal Monitor Feature In tel Figure 4 1 Thermal Monitor Control 4 2 3 PROCHOT Normal clock Internal clock Duty cycle control Resultant internal clock Thermal Monitor 2 The second method of power reduction is TM2 TM2 provides an efficient means of reducing the power consumption within the processor and limiting the processor temperature When TM2 is enabled and a high temperature situation is detected the enhanced TCC will be activated The enhanced TCC causes the processor to adjust its operating frequency by dropping the bus to core multiplier to its minimum available value and input voltage identification VID value This combination of reduced frequency and VID results in a reduction in processor power consumption A processor enabled for TM2 includes two operating points each consisting of a specific operating frequency and voltage The first operating point represents the normal operating condition for the processor The second operating point consists of both a lower operating frequency and voltage When the TCC is activated the processor automatically transitions to the new frequency This transition occurs very rapidly on the order of 5 microseconds During the frequency transition the processor is unable to service any bus r
21. as well as other design considerations air duct and so forth For BTX form factor it is recommended to use e The BTX motherboard keep out footprint definitions and height restrictions for enabling components for platforms designed with the LGA77 socket in Appendix G of this design guide e overview of other BTX system considerations for thermal solutions can be obtained in the latest version of the Balanced Technology Extended BTX System Design Guide found at http www formfactors org Heatsink Mass With the need to push air cooling to better performance heatsink solutions tend to grow larger increase in fin surface resulting in increased mass The insertion of highly thermally conductive materials like copper to increase heatsink thermal conduction performance results in even heavier solutions As mentioned in Section 2 1 the heatsink mass must take into consideration the package and socket load limits the heatsink attach mechanical capabilities and the mechanical shock and vibration profile targets Beyond a certain heatsink mass the cost of developing and implementing a heatsink attach mechanism that can ensure the system integrity under the mechanical shock and vibration profile targets may become prohibitive Thermal and Mechanical Design Guidelines m Processor Thermal Mechanical nformation n te D The recommended maximum heatsink mass for the ATX thermal solution is 550g This mass includes the fan
22. intel Material and concepts available in the following documents may be beneficial when reading this document Material and concepts available in the following documents may be beneficial when reading this document Document Location Intel Core 2 Duo Processor E8000 and E7000 Series Datasheet www intel com design processor d atashts 318732 htm Intel Pentium Dual Core Processor E6000 and E5000 http download intel com design Series Datasheet processor datashts 320467 pdf Intel Celeron Processor E3x00 Series Datasheet http download intel com design processor datashts 322567 pdf LGA775 Socket Mechanical Design Guide http developer intel com design Pentium4 guides 302666 htm uATX SFF Design Guidance http www formfactors org Fan Specification for 4 wire PWM Controlled Fans http www formfactors org ATX Thermal Design Suggestions http www formfactors org microATX Thermal Design Suggestions http www formfactors org Balanced Technology Extended BTX System Design http www formfactors org Guide Thermally Advantaged Chassis Design Guide http www intel com go chassis 1 3 Definition of Terms Term Description The measured ambient temperature locally surrounding the processor The T ambient temperature should be measured just upstream of a passive heatsink or at the fan inlet for an active
23. that is in the interval for example over target time 5 seconds target time 5 seconds B 3 2 Preload Degradation under Bake Conditions This section describes an example of testing for potential clip load degradation under bake conditions 1 Preheat thermal chamber to target temperature 45 9C or 85 2C for example 2 Repeat time zero room temperature preload measurement 3 Place unit into preheated thermal chamber for specified time 4 Record continuous load cell data as follows e Sample rate 0 1 Hz for first 3 hrs e Sample rate 0 01 Hz for the remainder of the bake test 5 Remove assembly from thermal chamber and set into room temperature conditions 6 Record continuous load cell data for next 30 minutes at sample rate of 1 Hz 8 Thermal and Mechanical Design Guidelines 81 82 Heatsink Clip Load Metrology Thermal and Mechanical Design Guidelines Thermal I nterface Management intel Appendix C Thermal I nterface Management To optimize a heatsink design it is important to understand the impact of factors related to the interface between the processor and the heatsink base Specifically the bond line thickness interface material area and interface material thermal conductivity should be managed to realize the most effective thermal solution C 1 Bond Line Management Any gap between the processor integrated heat spreader IHS and the heatsink base degrades thermal solution performance
24. 4 Safety 6 49 5 5 Geometric Envelope for Intel Reference BTX Thermal Module Assembly 49 5 6 Preload and TMA 5 55 r nn 50 5 6 1 Structural Design 54 50 5 6 2 TMA Preload verse Stiffness r 50 ATX Thermal Mechanical Design rr 53 6 1 ATX Reference Design Requirements eee 53 6 2 Validation Results for Reference 1 55 6 2 1 Heatsink Performance eene 55 6 2 2 ACOUSLICS 56 6 2 3 nds bad as bre lean S alas EEEE 56 6 2 4 Heatsink Thermal Validation rr 57 6 3 Environmental Reliability Testing 57 6 3 1 Structural Reliability Testing sss 57 6 3 1 1 Random Vibration Test 57 6 3 1 2 Shock Test 58 6 3 2 Power Cycling 59 6 3 3 Recommended BI OS CPU Memory Test Procedures 60 6 4 Material and Recycling Requirements 60 6 5 Safety Requirement
25. 7 2 Board and System I mplementation of ntel QST 68 To implement Intel QST the board must be configured as shown in Figure 7 3 and listed below e ME system 50 51 with Controller Link connected and powered e DRAM with Channel A DIMM installed and 2 MB reserved for Intel QST FW execution e SPI Flash with sufficient space for the Intel QST Firmware e SST based thermal sensors to provide board thermal data for Intel QST algorithms e Intel QST firmware Figure 7 3 Intel QST Platform Requirements Controller Link FSC Control SPI Note Simple Serial Transport SST is a single wire bus that is included in the ICH8 to provide additional thermal and voltage sensing capability to the Intel Management Engine ME Thermal and Mechanical Design Guidelines m Intel Quiet System Technology Intel QST intel Figure 7 4 shows the major connections for a typical implementation that can support processors with Digital thermal sensor or a thermal diode In this configuration a SST Thermal Sensor has been added to read the on die thermal diode that is in all of the processors in the 775 land LGA packages shipped before the Intel Core 2 Duo processor With the proper configuration information the ME can accommodate inputs from PECI or SST for the processor socket Additional SST sensors can be added to monitor system thermal see 0 for BTX recommendations for placement Figure 7 4 Example Acousti
26. A 3 4 1 A 4 76 Motherboard Stiffening Considerations To protect LGA775 socket solder joint designers need to drive their mechanical design to e Allow downward board deflection to put the socket balls in a desirable force state to protect against fatigue failure of socket solder joint refer to Sections A 3 A 3 1 and A 3 2 e Prevent board upward bending during mechanical shock event e Define load paths that keep the dynamic load applied to the package within specifications published in the processor datasheet Limiting board deflection may be appropriate in some situations like e Board bending during shock e Board creep with high heatsink preload However the load required to meet the board deflection recommendation refer to Section A 3 2 with a very stiff board may lead to heatsink preloads exceeding package maximum load specification For example such a situation may occur when using a backing plate that is flush with the board in the socket area and prevents the board to bend underneath the socket Heatsink Selection Guidelines Evaluate carefully heatsinks coming with motherboard stiffening devices like backing plates and conduct board deflection assessments based on the board deflection metric Solutions derived from the reference design comply with the reference heatsink preload for example e The Boxed Processor e The reference design E18764 001 Intel will collaborate with vendors participating in
27. B 02 007 36 44 14 NOTES 1 THIS DRAWING TO BE USED IN CONJUNTION WITH SUPPLIED 30 KE DATABASE FILE ALL DIVENSIONS AND TOLERANCES ON THS DRAWING TAKE PRECEDENCE OVER SUPPLIED FILE AND ARE APPLICABLE AT PART FREE UNCONSTRAINED STATE UNLESS INDICATED OTHERWISE 2 MATERIAL D A TYPE AISI 1065 COLD DRAWN STEEL OR EQUIVALENT 16MM THICKNESS CRITICAL MECHANICAL MATERIAL PROPERTIES FOR EQUIVALENT MATERIAL SELECTION ELASTIC MODLLUS 206 8 GPA 9 900 KSJ MN TENSILE YIELD STRENGTH ASTM D638 gt 490 MPa 71KS SQ 535 02 C MASS 35 4 GRAMS 2106 007 3 SECONDARY OPERATIONS 271057018 FINISH NICKEL PLATE REQUIRED AFTER FORMING 05 019 4 ALL DIMENSIONS AND TOLERANCES ARE SHOWN AFTER PLATING C PUNCH DIRECTION 6 BREAK ALL SHARP CORNERS AND BURRS 7 CRITICAL TO FUNCTION DIMENSION 1 E 8 COINING REQUIRED AS SPECIFIED 5 SECONDARY UNIT TOLERANCES SHOULD BE CALCULATED FROM PRIMARY UNITS TO AVOID ROUND OFF ERROR D PERMANENTLY MARK PART NUMBER AND REVISION LEVEL APPROXIMATELY WHERE SHOWN REV XX gt w 2402 779 007 85609 001 CLIP STEEL STAMPED av reno PART NUV
28. Beginning of Life EOL End of Life Thermal and Mechanical Design Guidelines LGA775 Socket Heatsink Loading Figure 7 6 Board Deflection Definition TOI OOOO tt v Socket body Socket body corner d1 corner d2 48 mm c ls ds fa Motherboard Displacements Board Deflection Limits Deflection limits for the ATX form factor are A 3 2 d_ref 0 09 mm d EOL d ref gt 0 15 mm And gt 0 09 mm and d EOL d gt 0 15 mm NOTES 1 2 Thermal and Mechanical Design Guidelines The heatsink preload must remain within the static load limits defined in the processor datasheet at all times Board deflection should not exceed motherboard manufacturer specifications a n tel LGA775 Socket Heatsink Loading 74 Board Deflection Metric Implementation Example This section is for illustration only and relies on the following assumptions e 72mm x 72 mm hole pattern of the reference design e Board stiffness 900 Ib in at BOL with degradation that simulates board creep over time Though these values are representative they may change with selected material and board manufacturing process Check with your motherboard vendor e Clip stiffness assumed constant No creep Using Figure 7 7 the heatsink preload at beginning of life is defined to comply with d EOL d ref 0 15 mm depending on clip stiffness assumption
29. Figure 4 3 Figure 5 1 Figure 5 2 Figure 5 3 Figure 5 4 Figure 5 5 Figure 5 6 Package IHS Load Areas 4 4 4444 44 4 0 nnn 15 Processor Case Temperature Measurement 19 Example Thermal meme 20 Processor Thermal Characterization Parameter Relationships 28 Locations for Measuring Local Ambient Temperature Active ATX Heatsink31 Locations for Measuring Local Ambient Temperature Passive Heatsink 31 Thermal Monitor Control eei er eee di tar ore e Rd aie 35 Thermal Monitor 2 Frequency and Voltage 36 Tcontrot for Digital Thermal 010 1 1 39 Effective TMA Fan Curves with Reference 44 Random Vibration PSD u stents KK EQUO qaqpusyawaqu 46 Shock Acceleration 1 46 Intel Type TMA 65W Reference 49 Upward Board Deflection During 50 Minimum Required Processor Preload to Thermal Module Assembly Stie S Sooman e enar E c en cana C E A 51 Figure 5 7 Figure 6 1 Figure 6 2 Figure 6 3 Figure 6 4 Figure 6 5 Figure 6 6 Figure 6 7 Figure
30. Guidelines Intel Quiet System Technology Intel QST intel 7 7 1 Note Intel Quiet System Technology Intel QST In the Intel 965 Express Family Chipset a new control algorithm for fan speed control is being introduced It is composed of an Intel Management Engine ME in the Graphics Memory Controller Hub GMCH which executes the Intel Quiet System Technology Intel QST algorithm and the ICH8 containing the sensor bus and fan control circuits The ME provides integrated fan speed control in lieu of the mechanisms available in a SIO or a stand alone ASIC The Intel QST is time based as compared to the linear or state control used by the current generation of FSC devices A short discussion of Intel QST will follow along with thermal solution design recommendations For a complete discussion of programming the Intel QST in the ME Consult the Intel Quiet System Technology Intel QST Configuration and Tuning Manual Fan speed control algorithms and Intel QST in particular rely on a thermal solution being compliant to the processor thermal profile It is unlikely that any fan speed control algorithm can compensate for a non compliant thermal solution See Chapter 5 and Chapter 6 for thermal solution requirements that should be met before evaluating or configuring a system with Intel QST Intel QST Algorithm The objective of Intel QST is to minimize the system acoustics by more closely controlling the therm
31. Guidelines 97 m in tel Case Temperature Reference Metrology Figure 7 27 Solder Station Setup 21 Remove the land side protective cover and place the device to be soldered in the solder station Make sure the thermocouple wire for the device being soldered is exiting the heater toward you Note Do not touch the copper heater block at any time as this is very hot 22 Move a magnified lens light close to the device in the solder status to get a better view when the solder begins to melt 23 Lower the Heater block onto the IHS Monitor the device IHS temperature during this step to ensure the maximum IHS temperature is not exceeded Note The target IHS temperature during reflow is 150 C 3 C At no time should the IHS temperature exceed 155 C during the solder process as damage to the device may occur 98 Thermal and Mechanical Design Guidelines m Case Temperature Reference Metrology In tel 24 You may need to move the solder back toward the groove as the IHS begins to heat Use a fine tip tweezers to push the solder into the end of the groove until a solder ball is built up Figure 7 28 and Figure 7 29 Figure 7 28 View Through Lens at Solder Station Thermal and Mechanical Design Guidelines 99 in tel Case Temperature Reference Metrology 25 Lift the heater block and magnified lens using tweezers quickly rotate the device 90 degrees clockwise Usin
32. Incorporated 44911 Industrial Drive 2222 Wellington Ct Fremont CA 94538 USA Lisle IL 60532 510 252 0786 phone 1 800 78MOLEX phone 510 252 1178 fax 1 630 969 1352 fax sales bizlinktech com amerinfo molex com Figure 7 38 System Airflow Illustration with System Monitor Point Area Identified Graphics Add IniCard i hermal Module OM16791 106 Thermal and Mechanical Design Guidelines Balanced Technology Extended BTX System Thermal Considerations Figure 7 39 Thermal sensor Location Illustration r Thermal Sensor N Thermal and Mechanical Design Guidelines 107 m in tel Balanced Technology Extended BTX System Thermal Considerations 108 Thermal and Mechanical Design Guidelines m Fan Performance for Reference Design In tel Appendix F Fan Performance for Reference Design The fan power requirements for proper operation are listed in Table 7 3 Table 7 3 Fan Electrical Performance Requirements Fan start up current draw maximum 1 0 second duration Fan header voltage 12 V 596 Tachometer output 2 pulse per revolution Tachometer output signal Open collector open drain PWM signal input frequency 21 kHz to 28 kHz PWM signal pull up in fan 3 3 V recommended max 5 25 V absolute max PWM signal current source Imax 5 mA short circuit current PWM signal maximum voltage for logic VIL 0 8 V low PWM compliant function RPM must be wi
33. SOCKET LOCKED DOWN POSITION IT ENCOMPASSES SOCKET AND CPU PACKAGE DIMENSIONAL TOLERANCES AND DEFLECTION SHAPE CHANGES DUE TO DSL LOAD 3 SOCKET KEEP IN VOLUME ENCOMPASS THE SOCKET NOMINAL VOLUME AND ALLOWANCES FOR SIZE TOLERANCES THERMAL MECHANICAL COMPONENT DEVELOPERS SHALL DESIGN TO THE OUTSIDE OF SOCKET KEEP IN VOLUME WITH CLEARANCE MARGINS SOCKET DEVELOPERS SHALL DESIGN TO THE INSIDE VOLUME TOP SIDE VIEW BOTTOM SIDE VIEW P BOX 50119 0 CORP CLARA CA 95052 6114 DEPARTMENT w rg 2200 NISSION COLLEGE styp EI CODE DRAWING NUMBER 90 REV SCALE NONE 00 NOT SCALE DRAVING SHEET 5 OF 5 8 T 5 5 3 2 118 Thermal and Mechanical Design Guidelines Mechanical Drawings Figure 7 47 BTX Thermal Module Keep Out Volumetric Sheet 5 k CHASSIS PAN PLANAR CHASSIS PAN PLANAR gt 5 0040 25 SRM HEIGHT 7 2 50 MAX SRM HEIGHT 260 35 3 Thermal and Mechanical Design Guidelines 119 Mechanical Drawings intel Figure 7 48 ATX Reference Clip Sheet 1 5 L 4 3 2 pm CERES REMOVE ALL BURRS OR SHARP EDGES AROUND PERIMETER OF PART SHARPNESS OF EDGES SUBJECT TO HANDLING ARE REQUIRED TO MEET THE UL1439 TEST G 4X 10402 304 007 05 019 A
34. TOLERANCES 2200 MISSION COLLEGE BLVD IN ACCORDANCE WITH ASME 114 59 1994 IIR 4 P O BOX 58119 DIMENSIONS ARE IN INCHES CORP SANTA CLARA 95052 8119 TOLERANCES 30 2 Angles 0 2 CHECKED BY DATE TITLE X THIRD ANGLE PROJECTION APPROVED BY DATE THERMOCOUPLE ATTACH LGA775 IHS GROOVE FOR SOLDER MATERIAL SIZE COPPER CAGE CODE DRAWING NUMBER C82347 FINISH REV 4 SCALE 2 000 DG NOT SCALE DRAWING SHEET OF Thermal and Mechanical Design Guidelines 89 m e in tel Case Temperature Reference Metrology The orientation of the groove at 6 o clock exit relative to the package pin 1 indicator gold triangle in one corner of the package is shown in Figure 7 14 for the 775 Land LGA package IHS Figure 7 14 IHS Groove at 6 o clock Exit on the 775 LAND LGA Package IHS Groove When the processor is installed in the LGA775 socket the groove is parallel to the socket load lever and is toward the IHS notch as shown Figure 7 15 Figure 7 15 IHS Groove at 6 o clock Exit Orientation Relative to the LGA775 Socket Select a machine shop that is capable of holding drawing specified tolerances IHS groove geometry is critical for repeatable placement of the thermocouple bead ensuring precise thermal measurements The specified dimensions minimize the impact of the groove on the IHS under the s
35. There is no closed loop control between Intel QST and the thermistor however they can work in tandem to provide the maximum fan speed reduction The BTX reference design includes a thermistor on the fan hub This Variable Speed Fan curve will determine the maximum fan speed as a function of the inlet ambient temperature and by design provides a Yc sufficient to meet the thermal profile of the processor Intel QST by measuring the processor Digital thermal sensor will command the fan to reduce speed below the VSF curve in response to processor workload Conversely if the processor workload increases the FSC will command the fan using the PWM duty cycle to accelerate the fan up to the limit imposed by the VSF curve Care needs to be taken in BTX designs to ensure the fan speed at the minimum operating speed provides sufficient air flow to support the other system components Figure 7 5 Digital Thermal Sensor and Thermistor 70 Variable Speed Fan VSF Curve Full Speed 100 Fan Speed Operating Range Min with FSC Operating Fan Speed RPM Fan Speed PWM Duty Cycle Min Inlet Temperature C Thermal and Mechanical Design Guidelines m LGA775 Socket Heatsink Loading intel Appendix ALGA775 Socket Heatsink 1 2 Loading LGA775 Socket Heatsink Considerations Heatsink clip load is traditionally used for e Mechanical performance in mechanical shock and vi
36. aall Less curvature in region between SRM and TMA TMA Preload verse Stiffness The Thermal Module assembly is required to provide a static preload to ensure protection against fatigue failure of socket solder joint The allowable preload range for BTX platforms is provided in Table 5 4 but the specific target value is a function of the Thermal Module effective stiffness The solution space for the Thermal Module effective stiffness and applied preload combinations is shown by the shaded region of Figure 5 6 This solution space shows that the Thermal Module assembly must have an effective stiffness that is sufficiently large such that the minimum preload determined from the relationship requirement in Figure 5 6 does not exceed the maximum allowed preload shown in Table 5 4 Furthermore if the Thermal Module effective stiffness is so large that the minimum preload determined from Figure 5 6 is below the minimum required value given in Table 5 4 then the Thermal Module should be re designed to have a preload that lies within the range given in Table 5 4 allowing for preload tolerances Thermal and Mechanical Design Guidelines m Balanced Technology Extended BTX Thermal Mechanical Design I nformation intel Table 5 4 Processor Preload Limits Parameter Minimum Required M Notes Processor Preload 98 N 22 Ibf 222 N 50 Ibf 1 NOTES 1 These values represent upper and lower bounds for the processo
37. and creep e Board stiffness is modified by fixtures like backing plate chassis attach and so forth Thermal and Mechanical Design Guidelines 71 a e n tel LGA775 Socket Heatsink Loading A 3 1 Simulation shows that the solder joint force is proportional to the board deflection measured along the socket diagonal The matching of Faxia required to protect the LGA775 socket solder joint in temperature cycling is equivalent to matching a target MB deflection Therefore the heatsink preload for LGA775 socket solder joint protection against fatigue failure can be more generally defined as the load required to create a target board downward deflection throughout the life of the product This board deflection metric provides guidance for mechanical designs that differ from the reference design for form factor Motherboard Deflection Metric Definition Motherboard deflection is measured along either diagonal refer to Figure 7 6 d dmax 41 d2 2 d dmax d 1 d 2 2 Configurations in which the deflection is measured are defined in the Table 7 1 To measure board deflection follow industry standard procedures such as IPC for board deflection measurement Height gauges and possibly dial gauges may also be used Table 7 1 Board Deflection Configuration Definitions Configuration Processor Socket 72 d_BOL yes yes BOL deflection with preload d_EOL yes yes EOL deflection NOTES BOL
38. and the heatsink only The attach mechanism clip fasteners and so forth are not included The mass limit for BTX heatsinks that use Intel reference design structural ingredients is 900 grams The BTX structural reference component strategy and design is reviewed in depth in the latest version of the Balanced Technology Extended BTX System Design Guide Note The 550g mass limit for ATX solutions is based on the capabilities of the reference design components that retain the heatsink to the board and apply the necessary preload Any reuse of the clip and fastener in derivative designs should not exceed 550g ATX Designs that have a mass of greater than 550g should analyze the preload as discussed in Appendix A and retention limits of the fastener Note The chipset components on the board are affected by processor heatsink mass Exceeding these limits may require the evaluation of the chipset for shock and vibration 2 3 3 Package I HS Flatness The package IHS flatness for the product is specified in the datasheet and can be used as a baseline to predict heatsink performance during the design phase Intel recommends testing and validating heatsink performance in full mechanical enabling configuration to capture any impact of IHS flatness change due to combined socket and heatsink loading While socket loading alone may increase the IHS warpage the heatsink preload redistributes the load on the package and improves the resulting IHS flat
39. board supplier to know the system into which a board will be installed It is therefore important for BTX board suppliers to select a System Monitor thermal sensor location that will function properly in most systems A BTX system should be designed such that the TMA exhaust is the primary airflow stream that cools the rest of the system The airflow passes through the chipset heatsink and its temperature will rise as the memory controller chipset power increases Since chipset power will increase when other subsystems such as memory graphics are active a System Monitor thermal sensor located in the exhaust airflow from the chipset heatsink is a reasonable location It is likely that a thermal sensor that is not mounted above the board and in the chipset exhaust airflow will reflect board temperature and not ambient temperature It is therefore recommended that the Thermal sensor be elevated above the board Thermal and Mechanical Design Guidelines 105 in tel Balanced Technology Extended BTX System Thermal Considerations The thermal sensor location and elevation are reflected in the Flotherm thermal model airflow illustration and pictures see Figure 7 38 and Figure 7 39 The Intel Boxed Boards in the BTX form factor have implemented a System Monitor thermal sensor The following thermal sensor or its equivalent can be used for this function Part Number C83274 002 Part Number 68801 0170 BizLink USA Technology Inc Molex
40. clip A 4255 shoulder traps clip in place The mechanical interface with the reference attach mechanism is defined in Figure 6 7 and Figure 6 8 Complying with the mechanical interface parameters is critical to generating a heatsink preload compliant with the minimum preload requirement given in Section 2 1 2 2 Additional requirements for the reference attach mechanism clip and fasteners include e Heatsink fan mass lt 550 g that is total assembly mass including clip and fasteners lt 595g e Whole assembly center of gravity lt 25 4 mm measured from the top of the IHS Whole assembly Heatsink Fan Attach clip Fasteners Thermal and Mechanical Design Guidelines 63 64 intel ATX Thermal Mechanical Design Information Figure 6 7 Critical Parameters for I nterfacing to Reference Clip See Detail A Clip Fin Array Detail A Figure 6 8 Critical Core Dimension 1 00 0 10 mm 38 68 0 30 mm 36 14 0 10 mm Gap required to avoid core surface blemish during clip assembly Recommend 0 3 mm min 1 00 mm min R 0 40 mm max R 0 40 mm max 2 596 0 10 mm Cos NOTE Dimension from the bottom of the clip to the bottom of the heatsink core or base should be met to enable the required load from the heatsink clip i e 43 Ibf nominal 10 Ibf Thermal and Mechanical Design
41. from the processor three basic parameters should be considered e The area of the surface on which the heat transfer takes place Without any enhancements this is the surface of the processor package IHS One method used to improve thermal performance is by attaching a heatsink to the IHS A heatsink can increase the effective heat transfer surface area by conducting heat out of the IHS and into the surrounding air through fins attached to the heatsink base e The conduction path from the heat source to the heatsink fins Providing a direct conduction path from the heat source to the heatsink fins and selecting materials with higher thermal conductivity typically improves heatsink performance The length thickness and conductivity of the conduction path from the heat source to the fins directly impact the thermal performance of the heatsink In particular the quality of the contact between the package IHS and the heatsink base has a higher impact on the overall thermal solution performance as processor cooling requirements become stricter Thermal interface material TI M is used to fill in the gap between the IHS and the bottom surface of the heatsink and thereby improve the overall performance of the stack up 5 Heatsink With extremely poor heatsink interface flatness or roughness TIM may not adequately fill the gap The TIM thermal performance depends on its thermal conductivity as well as the pressure applied to it Refer to Se
42. heatsink The case temperature of the processor measured at the geometric center of the topside of the IHS The ambient air temperature external to a system chassis This temperature is usually measured at the chassis air inlets Heatsink temperature measured on the underside of the heatsink base at a 5 location corresponding to Tow The maximum case temperature as specified in a component specification Case to ambient thermal characterization parameter psi A measure of u thermal solution performance using total package power This is defined as Tc Ta Total Package Power Note Heat source must be specified for measurements Thermal and Mechanical Design Guidelines 13 14 Introduction Term Description Case to sink thermal characterization parameter A measure of thermal interface material performance using total package power This is defined as Fos Tc Ts Total Package Power Note Heat source must be specified for measurements Sink to ambient thermal characterization parameter A measure of heatsink thermal performance using total package power This is defined as Ts T4 Poa Total Package Power Note Heat source must be specified for measurements Thermal Interface Material The thermally conductive compound between the TIM heatsink and the processor case This material fills the air gaps and voids and en
43. matrix could be used is if a sensor located next to the memory is sensitive to changes in both the processor heatsink fan and 2 fan in the system By placing a factor in this matrix additional the Intel QST could command the processor thermal solution fan and this 274 fan to both accelerate a small amount At the system level these two small changes can result in a smaller change in acoustics than having a single fan respond to this sensor Proportional l ntegral Derivative PI D The use of Proportional Integral Derivative PID control algorithms allow the magnitude of fan response to be determined based upon the difference between current temperature readings and specific temperature targets A major advantage of a PID Algorithm is the ability to control the fans to achieve sensor temperatures much closer to the Figure 7 2 is an illustration of the PID fan control algorithm As illustrated in the figure when the actual temperature is below the target temperature the fan will slow down The current FSC devices have a fixed temperature versus PWM output relationship and miss this opportunity to achieve additional acoustic benefits As the actual temperature starts ramping up and approaches the target temperature the algorithm will instruct the fan to speed up gradually but will not abruptly increase the fan speed to respond to the condition It can allow an overshoot over the target temperature for a short period of tim
44. performance TIMs such as thermal greases are not as sensitive to applied pressure Designs should consider a possible decrease in applied pressure over time due to potential structural relaxation in retention components e Ensuring system electrical thermal and structural integrity under shock and vibration events The mechanical requirements of the heatsink attach mechanism depend on the mass of the heatsink and the level of shock and vibration that the system must support The overall structural design of the motherboard and the system have to be considered when designing the heatsink attach mechanism Their design should provide a means for protecting LGA775 socket solder joints One of the strategies for mechanical protection of the socket is to use a preload and high stiffness clip This strategy is implemented by the reference design and described in Section 6 7 Package pull out during mechanical shock and vibration is constrained by the LGA775 socket load plate refer to the LGA775 Socket Mechanical Design Guide for further information Heatsink Clip Load Requirement The attach mechanism for the heatsink developed to support the processor should create a static preload on the package between 18 Ibf and 70 Ibf throughout the life of the product for designs compliant with the reference design assumptions e 72mm x 72 mm mounting hole span for ATX refer to Figure 7 40 e TMA preload versus stiffness for BTX within the limits shown on F
45. radiation convection by conduction through thermocouple leads or by contact between the thermocouple cement and the heatsink base Appendix D defines a reference procedure for attaching a thermocouple to the IHS of a 775 Land LGA processor package for Tc measurement This procedure takes into account the specific features of the 775 Land LGA package and of the LGA775 socket for which it is intended Thermal and Mechanical Design Guidelines m Thermal Management Logic and Thermal Monitor Feature tel 4 Thermal Management Logic and Thermal Monitor Feature 4 1 Processor Power Dissipation An increase in processor operating frequency not only increases system performance but also increases the processor power dissipation The relationship between frequency and power is generalized in the following equation P CV F where P power C capacitance V voltage F frequency From this equation it is evident that power increases linearly with frequency and with the square of voltage In the absence of power saving technologies ever increasing frequencies will result in processors with power dissipations in the hundreds of watts Fortunately there are numerous ways to reduce the power consumption of a processor and Intel is aggressively pursuing low power design techniques For example decreasing the operating voltage reducing unnecessary transistor activity and using more power efficient circuits can significantly reduce
46. to update specifications or product descriptions with information Designers must not rely on the absence or characteristics of any features or instructions marked reserved or undefined Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them The hardware vendor remains solely responsible for the design sale and functionality of its product including any liability arising from product infringement or product warranty Intel provides this information for customer s convenience only Use at your own risk Intel accepts no liability for results if customer chooses at its discretion to implement these methods within its business operations Intel makes no representations or warranties regarding the accuracy or completeness of the information provided Copies of documents which have an order number and are referenced in this document or other Intel literature may be obtained by calling 1 800 548 4725 or by visiting http www intel com The Intel Core 2 Duo processor E8000 E7000 series and Intel Pentium Dual Core Processor E6000 E5000 series and Intel Celeron processor E3x00 series components may contain design defects or errors known as errata which may cause the product to deviate from published specifications Current characterized errata are available on request ntel processor numbers are not a measure of perform
47. to use a fixture like processor tray or a plate to help holding the unit in place for the rest of the attach process Thermal and Mechanical Design Guidelines 93 m e n tel Case Temperature Reference Metrology 11 While still at the microscope press the wire down about 6mm 0 125 from the thermocouple bead using the tweezers or your finger Place a piece of Kapton tape to hold the wire inside the groove Figure 7 20 Refer to Figure 7 21 for detailed bead placement Figure 7 20 Position Bead on the Groove Step Wire section into the groove to prepare for final bead placement Kapton tape Figure 7 21 Detailed Thermocouple Bead Placement TC Wire with Insulation IHS with Groove 94 Thermal and Mechanical Design Guidelines m Case Temperature Reference Metrology n tel Figure 7 22 Third Tape Installation 12 Place a 3 piece of tape at the end of the step in the groove as shown in Figure 7 22 This tape will create a solder dam to prevent solder from flowing into the larger IHS groove section during the melting process 13 Measure resistance from thermocouple end wires hold both wires to a DMM probe to the IHS surface This should be the same value as measured during the thermocouple conditioning Section D 5 1 step 3 Figure 7 23 Figure 7 23 Measuring Resistance between Thermocouple and IHS Thermal and Mechanical Design Guidelines 95
48. us on time 1 us total cycle time 3 1 us duty cycle Similarly for a duty cycle of 7 8 87 5 the clock on time would be extended to 21 us 21 21 3 7 8 duty cycle In a high temperature situation if the thermal control circuit and ACPI MSRs automatic and on demand modes are used simultaneously the fixed duty cycle determined by automatic mode would take precedence On demand mode cannot activate the power reduction mechanism of Thermal Monitor 2 System Considerations Intel requires the Thermal Monitor and Thermal Control Circuit to be enabled for all processors The thermal control circuit is intended to protect against short term thermal excursions that exceed the capability of a well designed processor thermal solution Thermal Monitor should not be relied upon to compensate for a thermal solution that does not meet the thermal profile up to the thermal design power TDP Each application program has its own unique power profile although the profile has some variability due to loop decisions I O activity and interrupts In general compute intensive applications with a high cache hit rate dissipate more processor power than applications that are 1 intensive or have low cache hit rates The processor TDP is based on measurements of processor power consumption while running various high power applications This data is used to determine those applications that are interesting from a power perspective These a
49. used will be the Intel enabled reference solution for ATX UATX systems See the applicable BTX form factor reference documents to design a thermal solution for that form factor Thermal and Mechanical Design Guidelines 11 i n te Introduction 1 1 3 12 Document Scope This design guide supports the following processors e Intel Core 2 Duo processor E8000 series with 6 MB cache applies to Intel Core 2 Duo processors E8600 E8500 E8400 E8300 E8200 and E8190 e Intel Core 2 Duo processor E7000 series with 3 MB cache applies to Intel Core 2 Duo processors E7600 E7500 E7400 E7300 and E7200 e Intel Pentium dual core processor E5000 series with 2 MB cache applies to Intel Pentium dual core processors E5700 E5500 E5400 E5300 and E5200 e Intel Pentium dual core processor E6000 series with 2 MB cache applies to Intel Pentium dual core processor E6700 E6600 E6500 and E6300 e Intel Celeron processor E3x00 series with 1 MB cache applies to the Intel Celeron processor E3400 E3300 and E3200 In this document when a reference is made to the processor it is intended that this includes all the processors supported by this document If needed for clarity the specific processor will be listed In this document when a reference is made to the the reference design it is intended that this means ATX reference designs E18764 001 supported by this document If needed for clarify the specific referen
50. 18764 001 Reference Heatsink Performance Ta rget Thermal Performance T Processor Wea Assuniption Mean 3c Intel Core 2 Duo processor E8000 5 z Intel Core 2 Duo processor E7000 series with 3 MB cache Intel Pentium dual core processor E6000 E5000 0 52 C W 40 C series with 2 MB cache Intel Celeron processor E3x00 series 1 Performance targets W ca as measured with a live processor at TDP 2 difference U ca between the Intel Core 2 Duo processor E8000 series with 6 MB cache and Intel Core 2 Duo processor E7000 series with MB cache Intel Pentium dual core processor E6000 E5000 series with 2 MB cache and Intel Celeron processor E3x00 series with 1 MB cache is due to a slight difference in the die size Thermal and Mechanical Design Guidelines 55 a tel ATX Thermal Mechanical Design Information 6 2 2 Acoustics To optimize acoustic emission by the fan heatsink assembly the reference design implements a variable speed fan A variable speed fan allows higher thermal performance at higher fan inlet temperatures T and lower thermal performance with improved acoustics at lower fan inlet temperatures The required fan speed necessary to meet thermal specifications can be controlled by the fan inlet temperature and should comply with requirements in Table 6 2 Table 6 2 Acoustic Results for ATX Reference Heatsink E18764 001 Thermist Note 6 2 3 56 or Set The
51. 6 8 Figure 7 1 Figure 7 2 Figure 7 3 Figure 7 4 Figure 7 5 Figure 7 6 Figure 7 7 Figure 7 8 Thermal Module Attach Pointes and Duct to SRM Interface Features 52 E18764 001 Reference Design Exploded 54 Bottom View of Copper Core Applied by TC 1996 54 Random Vibration PSD u veces ret RES 58 Shock Acceleration 58 Upward Board Deflection during 62 Reference Clip Heatsink 63 Critical Parameters for Interfacing to Reference 64 Critical Core ama qa menn nnns 64 Intel QST Overview 0 heme he he eene re reser rere 66 PID Controller Fundamentals 1 nmm 67 Intel QST Platform Requirements 68 Example Acoustic Fan Speed Control Implementation 69 Digital Thermal Sensor and Thermistor 70 Board Deflection 2 r 73 Example Defining Heatsink Preload Meeting Board Deflection Limit 75 Load Cell Installat
52. BER DESORPTION PARTS LIST DEPRRWENT TD COP SANTA CLARA CA 98052 8119 mr A 111777 7 L352 02 139 2 007 RCFH4 HS CLIP 35mm core CB5909 POALE NONE DO NOT SCALE DRAWING pe ie 1002 120 Thermal and Mechanical Design Guidelines Mechanical Drawings Figure 7 49 ATX Reference Clip Sheet 2 8 7 6 5 o 4 3 2 m H 15 i w J 5 731 G 288 1 2X R05 7 1 991 J N 185 aa 06 L N X i Dus F QUE TR ta eo I JR3 SECTION DD N x WM SCALE 8 p 142 E 75 2021007 289 BOUNDARY 7 DETAIL A a SCALE 10 TYPICAL 4 PLACES D Jas TA B D 205109 Wa gt X 4X LI C DETAIL 5 SCALE 10 TYP 4 PLACES B 1511 7 DETAIL B SCALE 20 297 117 TEPARTMENT P 8 2200 MIS
53. CESSOR CENTER 4 PLACEMENT 4 SOCKET CAVITY COMPONENT KEEP IN PROCESSOR PACKAG OUTLINE BOARD COMPONENT KEEP IM INTERNAL BOUNDARY DATUM E 4X 55 35 100 55 NOTES GEOMETRIC CENTER OF CPU PACKAGE SOCKET HOUSING CAVITY 2 BOARD COMPONENET KEEP INS AND MECHANICAL COMPONENET KEEP OUTS A TO BE UTILIZED WITH SUFFICIENT ALLOWANCES FOR PLACEMENT AND SIZE TOLERANCES ASSEMBLY PROCESS ACCESS AND DYNAMIC EXCURSIONS 3 ASSUME SYMMETRY FOR UNDIMENSIONED CORNERS AND EDGES 4 POSITION OF PACKAGE CENTER TO BE WITHIN 2 3 15 p E ZONE ORIENTATION OF SOCKET IS NON SPECIFIC TRANSLATING AND ROTATING THE SOCKET REQUIRES KEEP IN BOUNDARIES ASSOCIATED WITH SOCKET OUTLINE TO FOLLOW THE EXACT MOVEMENT RELATIVE TO PROCESSOR PACKAGE GEOMETRIC CENTER 62 84 5 4 ra 155 88 44 00 155 88 62 87 LEGEND COMPONENT KEEP OUT SOCKET KEEP IN 10 16 MAX COMPONENT HEIGHT D C B PACKAGE LANDS SOCKET HOUSING CAVITY 7 7 PACKAGE BOUNDARY 2 80 O 22e wissios eum mwn cup PO CLARA apost 116 Thermal and Mechanical Design Guidelines Mechanical Drawings Figure 7 45 BTX Thermal Module Keep Out Volumetric Sheet 3 8 I T I 6 BOARD SECONDARY SIDE SS T eR 2 5 SAN ERE NOTES GEOMETRIC CENTER OF CPU PACKAGE SOCKET HOUSING CAVITY 2 SECONDARY SIDE COMPONENT
54. DONOT SCALE DRAWING SHEET 30F 3 8 7 6 5 4 3 2 1 114 Thermal and Mechanical Design Guidelines Mechanical Drawings Figure 7 43 BTX Thermal Module Keep Out Volumetric Sheet 1 8 4 1 sU T TC BUE T GER 20 04 293 31 TS Y SIDE 232 41 A NENT KEEP IN 16 73 33 02 91 17 4 gt KEEP IN INTERNAL BOUNDARY SEE SHEET 2 113 67 11 76 5 88 3 N D m NOTES 1 DATUM PLANES AXES D BLISHED BY THE ARE DENT W ETRIC CENTER L n T 22 x sss SER em 2 CHECKED i S LG BIX MB APPROVED BY aT oe a NT KEEP INS Le 66 04 mee NUMBER REY FINISH v m SERE 00 XOT SEHLE ORANG SWEET T GF 3 8 1 6 5 E 3 Thermal and Mechanical Design Guidelines 115 intel Figure 7 44 BTX Thermal Module Keep Out Volumetric Sheet 2 Mechanical Drawings oO SOCKET VOLUMETRIC KEEP IN BOUNDARY SEE SHEET 4 DATUM 0 REF 3 75 ZONE OF PRO
55. I Harry Lin 714 739 5797 Chaun Choung Extrusion TBD Technology Corp Extension 131 886 2 ASIA Vital Fan and Duct TBD Components Co Ltd David Chao 22996930 Extension 619 1 Part numbers were not available at the time of release of this document Contact the company for part number identification prior to the next revision of this document 2 The user should note that for the 2004 Type I Intel reference Thermal Module Assembly also meets 2005 Performance 130W and Mainstream 84W as well as the 2004 Performance 115W 3 The user should note that for the 2004 Type II Intel reference Thermal Module Assembly meets the requirements for 115W 2004 Performance 775_VR_CONFIG_04 and 95W 2005 Mainstream 775 VR CONFIG 05 4 Type TMA designed for 65W 2006 FMB has been optimized for acoustics and cost It is not interchangeable with the 95W Type 11 reference design Note These vendors devices are listed by Intel as a convenience to Intel s general customer base but Intel does not make any representations or warranties whatsoever regarding quality reliability functionality or compatibility of these devices This list and or these devices may be subject to change without notice 128 Thermal and Mechanical Design Guidelines
56. I nlet Temperature of Intel Reference Thermal Solutions Heatsink Inlet Temperature 35 59 1 Intel reference designs 18764 001 for ATX assume the use of the thermally advantaged chassis refer to Thermally Advantaged Chassis TAC Design Guide for TAC thermal and mechanical requirements The TAC 2 0 Design Guide defines a new processor cooling solution inlet temperature target of 40 C The existing TAC 1 1 chassis can be compatible with TAC 2 0 guidelines Table 2 2 Heatsink I nlet Temperature of Intel Boxed Processor Thermal Solutions 2 4 2 24 Topic Boxed Processor for Intel Core 2 Duo Processor E8000 E7000 Series Intel Pentium Dual Core Processor E6000 E5000 Series and Intel Celeron Processor E3x00 Series NOTE 1 Boxed Processor thermal solutions for ATX assume the use of the thermally advantaged chassis refer to Thermally Advantaged Chassis TAC Design Guide for TAC thermal and mechanical requirements The TAC 2 0 Design Guide defines a new processor cooling solution inlet temperature target of 40 C The existing TAC 1 1 chassis can be compatible with TAC 2 0 guidelines Improving Chassis Thermal Performance The heat generated by components within the chassis must be removed to provide an adequate operating environment for both the processor and other system components Moving air through the chassis brings in air from the external ambient environment and transports the heat gene
57. IONS ARE APPROXIMATE Note Drawing Not to Scale Figure 3 3 Locations for Measuring Local Ambient Temperature Passive Heatsink AIRFLOW r me gt MEASURE T AS INDICATED LOCATIONS ARE 25 51 1 0 TO 2 0 IN Dag 13 25 MM 0 5 1 0 IN 51 MM HEATSINK BASEBOARD SIDE VIEW TOP VIEW Note Drawing Not to Scale Thermal and Mechanical Design Guidelines 31 n tel Thermal Metrology 3 4 32 Processor Case Temperature Measurement Guidelines To ensure functionality and reliability the processor is specified for proper operation when Tc is maintained at or below the thermal profile as listed in the datasheet The measurement location for Tc is the geometric center of the IHS Figure 2 2 shows the location for Tc measurement Special care is required when measuring Tc to ensure an accurate temperature measurement Thermocouples are often used to measure Tc Before any temperature measurements are made the thermocouples must be calibrated and the complete measurement system must be routinely checked against known standards When measuring the temperature of a surface that is at a different temperature from the surrounding local ambient air errors could be introduced in the measurements The measurement errors could be caused by poor thermal contact between the junction of the thermocouple and the surface of the integrated heat spreader heat loss by
58. Intel Core 2 Duo Processor E8000 and E7000 Series Intel Pentium Dual Core Processor E6000 E5000 Series and Intel Celeron Processor E3x00 Series Thermal and Mechanical Design Guidelines August 2010 Document Number 318734 015 THIS DOCUMENT AND RELATED MATERIALS AND INFORMATION ARE PROVIDED AS IS WITH NO WARRANTIES EXPRESS OR IMPLIED INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE NON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL SPECIFICATION OR SAMPLE INTEL ASSUMES NO RESPONSIBILITY FOR ANY ERRORS CONTAINED IN THIS DOCUMENT AND HAS NO LIABILITIES OR OBLIGATIONS FOR ANY DAMAGES ARISING FROM OR IN CONNECTION WITH THE USE OF THIS DOCUMENT Intel products are not intended for use in medical life saving life sustaining critical control or safety systems or in nuclear facility applications Intel Corporation may have patents or pending patent applications trademarks copyrights or other intellectual property rights that relate to the presented subject matter The furnishing of documents and other materials and information does not provide any license express or implied by estoppel or otherwise to any such patents trademarks copyrights or other intellectual property rights Intel may make changes to specifications and product descriptions at any time without notice Intel accepts no duty
59. KEEP IN VOLUME ASSUMES BOARD FINAL POSITION IN THE CHASSIS SECONDARY SIDE COMPONENTS MAY IMPEDE A TOP DOWN SYSTEM ASSEMBLY PROCESS THIS KEEP IN DEFINITION IS COMPLEMENTARY TO THE BIGWATER FORM FACTOR SPECIFICATION AND SHALL SUPERSEDE IT IN COMMON AREAS RI0 00 36 03 11 00 coat p 1 11 00 COMPONENT 4 Z AR TTOM COMPONENT KEEP OUT PLANE LEGEND COMPONENT KEEP OUT ver ae rie ew 00 mum sr a joe COLLEGE BLE ene pem oi scu To wit emt emer sors Thermal and Mechanical Design Guidelines intel Figure 7 46 BTX Thermal Module Keep Out Volumetric Sheet 4 Mechanical Drawings 3 ma 2X 45 X 3 00 32 85 AN 2 50 45 X 3 50 LEVER MOTION SPACE REQUIRED TO RELEASE v 48 00 SOCKET amp PROCESSOR VOLUMETRIC KEEP IN 37 60 31 60 14 60 SOCKET HOUSING CAVITY CPU PACKAGE 30 00 SOCKET LOAD PLATE m 46 11 B 5 80 3 80 SECTION 7 NOTES I SOCKET CENTER PLANES ARE REFERENCED FROM GEOMETRIC CENTER OF SOCKET HOUSING CAVITY FOR CPU PACKAGE ALIGNS WITH DATUM REFERENCE GIVEN FOR BOARD COMPONENT KEEP INS 2 SOCKET KEEP IN VOLUME VERTICAL HEIGHT ESTABLISHES LIMIT OF SOCKET bos A AND CPU PACKAGE ASSEMBLY IN THE
60. MB cache and Intel Pentium dual core processor E6000 and E5000 series with 2 MB cache and Intel Celeron processor E3x00 series with 1 MB cache are defined such that there is a single thermal solution for all of the 775 VR CONFIG 06 processors To determine compliance to the thermal profile a measurement of the actual processor power dissipation is required The measured power is plotted on the Thermal Profile to determine the maximum case temperature Using the example in Figure 2 3 for a processor dissipating 50 W the maximum case temperature is 58 C See the datasheet for the thermal profile Figure 2 3 Example Thermal Profile 2 2 4 20 Note g 2 5 o a Thermal Profile e TDP 0 10 20 30 40 50 60 70 Power W defines the maximum operating temperature for the digital thermal sensor when the thermal solution fan speed is being controlled by the digital thermal sensor The Tcontro parameter defines a very specific processor operating region where fan speed can be reduced This allows the system integrator a method to reduce the acoustic noise of the processor cooling solution while maintaining compliance to the processor thermal specification The Tcontrot Value for the processor is relative to the Thermal Control Circuit TCC activation set point which will be seen as 0 using the digital t
61. No P reload Preload P reload Kclip BOL Preload d d_ref EOL Preload d_EOL d ref Ib mm Ib mm dO 244 oog 180 u15 A 3 4 Additional Considerations Intel recommends to design to d_BOL d_ref 0 15 mm at BOL when EOL conditions are not known or difficult to assess The following information is given for illustration only It is based on the reference keep out assuming there is no fixture that changes board stiffness d_ref is expected to be 0 18 mm on average and be as high as 0 22 mm As a result the board should be able to deflect 0 37 mm minimum at BOL Additional deflection as high as 0 09 mm may be necessary to account for additional creep effects impacting the board clip fastener assembly As a result designs could see as much as 0 50 mm total downward board deflection under the socket In addition to board deflection other elements need to be considered to define the space needed for the downward board total displacement under load like the potential interference of through hole mount component pin tails of the board with a mechanical fixture on the back of the board NOTES 1 The heatsink preload must remain below the maximum load limit of the package at all times Refer to processor datasheet 2 Board deflection should not exceed motherboard manufacturer specifications Thermal and Mechanical Design Guidelines 75 a e In tel LGA775 Socket Heatsink Loading
62. P Signal ierat wad eere RR EGER RC ERR EH 38 4 2 9 Cooling System Failure 38 4 2 10 Digital Thermal 39 4 2 11 Platform Environmental Control Interface 40 Balanced Technology Extended BTX Thermal Mechanical Design Information 41 5 1 Overview of the BTX Reference 1 12 41 5 1 1 Target Heatsink 41 5 1 2 ACOUSTICS M MP nm 42 5 1 3 Effective Fan CUFVQ iiis eee rer Fe o cie red eid rer edo ead 43 5 1 4 Voltage Regulator Thermal 44 5 1 5 Orin 45 5 1 6 Reference Heatsink Thermal 45 5 2 Environmental Reliability Testing cece m 45 5 2 1 Structural Reliability Testing 45 5 2 1 1 Random Vibration Test 45 5 2 1 2 Shock Test Procedure n 46 5 2 2 Power Cyclilig s uu u eu ukana RC RE UE I EN D REN 47 5 2 3 Recommended BI OS CPU Memory Test Procedures 48 5 3 Material and Recycling lt 48 5
63. Package movement during socket actuation is along the Z direction perpendicular to substrate only Refer to the LGA775 Socket Mechanical Design Guide for further information about the LGA775 socket The processor package has mechanical load limits that are specified in the processor datasheet The specified maximum static and dynamic load limits should not be exceeded during their respective stress conditions These include heatsink installation removal mechanical stress testing and standard shipping conditions e When a compressive static load is necessary to ensure thermal performance of the thermal interface material between the heatsink base and the IHS it should not exceed the corresponding specification given in the processor datasheet e When a compressive static load is necessary to ensure mechanical performance it should remain in the minimum maximum range specified in the processor datasheet e The heatsink mass can also generate additional dynamic compressive load to the package during a mechanical shock event Amplification factors due to the impact force during shock must be taken into account in dynamic load calculations The total combination of dynamic and static compressive load should not exceed the processor datasheet compressive dynamic load specification during a vertical shock For example with a 0 550 kg 1 2 Ib heatsink an acceleration of 50G during an 11 ms trapezoidal shock with an amplification factor of 2 result
64. SION COLLEGE BLVD TMD intel SANTA CLARA CA Al 1 DONOT SCALE DRAWING et 2c 2 8 7 6 5 D 4 3 e Thermal and Mechanical Design Guidelines 121 intel Mechanical Drawings Figure 7 50 Reference Fastener Sheet 1 LII Bx 8 25 1 n iom 194 46 3 1 n ENS Z Une 4 2 97 5 01 1 197 83 DEAT 5 N asear 15 9 12 m ogg 000 2X 0 7140 05 s gt x m 5 1 028 021 NEU 1 2008 103 2 1 r oosi i 8 20 8842 13 15 080 05 5 bd n PART REVISICH APPROXIMATELT WHERE SHOWN FEATURES OF MARKING SHALL NOT PROTRUDE DEYOND OUTER PART SURFACE 2X SURFACE DEFINED FRON A WIRES SURFACE FINISH OF amp DRAFT OR FLASH ON DATUA 4 2 40 05 DATUM A EZAN a VI TT eK r 122 Thermal and Mechanical Design Guidelines Mechanical Drawings Figure 7 51 Reference Fastener Sheet 2 3 4939 1 1132476031 DETAIL B SCALE 20 1 SURFACE 4 2 2 C 27 07 tei AT TREORETICAI INTERSECT ICH ZK 3 13 05 3 8 01 2 Thermal and Mechanical Design Guidelines 123 intel Mechanical Drawings Figure 7 52 Reference Fastener Sheet 3 Fe 02 0 05 5 118 0011 ooa faje RI 20 03 RI 240 03
65. The larger the gap between the two surfaces the greater the thermal resistance The thickness of the gap is determined by the flatness and roughness of both the heatsink base and the integrated heat spreader plus the thickness of the thermal interface material for example thermal grease used between these two surfaces and the clamping force applied by the heatsink attach clip s C 2 Interface Material Area The size of the contact area between the processor and the heatsink base will impact the thermal resistance There is however a point of diminishing returns Unrestrained incremental increases in thermal interface material area do not translate to a measurable improvement in thermal performance C 3 I nterface Material Performance Two factors impact the performance of the interface material between the processor and the heatsink base e Thermal resistance of the material e Wetting filling characteristics of the material Thermal resistance is a description of the ability of the thermal interface material to transfer heat from one surface to another The higher the thermal resistance the less efficient the interface material is at transferring heat The thermal resistance of the interface material has a significant impact on the thermal performance of the overall thermal solution The higher the thermal resistance the larger the temperature drop is across the interface and the more efficient the thermal solution heatsink fan must
66. W Maximum fan speed 100 PWM duty cycle Case 2 tow Thermal Design Power 2500 T 23 C I 0 56 C W System PSU HDD TMA i Fan speed limited by the fan hub thermistor C Low Case 3 1400 T 23 lt 3 4 BA 0 87 C W 50 Thermal Design Power TMA Only Case 3 1400 T 23 lt 4 0 0 87 C W 50 Thermal Design Power i System PSU HDD TMA Note 1l Acoustic performance is defined in terms of measured sound power LwA as defined in 150 9296 standard and measured according to ISO 7779 2 Acoustic testing will be for the TMA only when installed in a BTX S2 chassis for Case 1 and 3 3 Acoustics testing for Case 2 will be system level in the same a BTX S2 reference chassis and commercially available power supply Acoustic data for Case 2 will be provided in the validation report but this condition is not a target for the design The acoustic model is predicting that the power supply fan will be the acoustic limiter 4 The fan speeds RPM are estimates for one of the two reference fans and will be adjusted to meet thermal performance targets then acoustic target during validation The designer should identify the fan speed required to meet the effective fan curve shown in Section 5 1 3 While the fan hub thermistor helps optimize acoustics at high processor workloads by adapting the maximum fan speed to support the processor thermal profile additional acoustic improvements can b
67. abling Components Sheet 1 Motherboard Keep out Footprint Definition and Height 113 Restrictions for Enabling Components Sheet 2 Motherboard Keep out Footprint Definition and Height 114 Restrictions for Enabling Components Sheet 3 BTX Thermal Module Keep Out Volumetric Sheet 1 BTX Thermal Module Keep Out Volumetric Sheet 2 BTX Thermal Module Keep Out Volumetric Sheet 3 BTX Thermal Module Keep Out Volumetric Sheet 4 BTX Thermal Module Keep Out Volumetric Sheet 5 ATX Reference Clip Sheet 1 ATX Reference Clip Sheet 2 Reference Fastener Sheet 1 Reference Fastener Sheet 2 Reference Fastener Sheet 3 Reference Fastener Sheet 4 Intel E18764 001 Reference Solution Assembly Thermal and Mechanical Design Guidelines 111 ntel Mechanical Drawings Figure 7 40 ATX pATX Motherboard Keep out Footprint Definition and Height Restrictions for Enabling Components Sheet 1
68. ache Intel Celeron processor E3x00 series with 1 MB cache 1 Performance targets W ca as measured with a live processor at TDP 2 difference U ca between the Intel Core 2 Duo processor E8000 series with 6 MB cache Intel Core 2 Duo processor E7000 series with MB cache Intel Pentium dual core processor E6000 E5000 series with 2 MB cache and Intel Celeron processor E3x00 series is due to a slight difference in the die size 3 This data is pre silicon data and subject to change with the post silicon validate results Thermal and Mechanical Design Guidelines 41 42 m e In tel Balanced Technology Extended BTX Thermal Mechanical Design I nformation 5 1 2 Acoustics To optimize acoustic emission by the fan heatsink assembly the reference design implements a variable speed fan A variable speed fan allows higher thermal performance at higher fan inlet temperatures T4 and the appropriate thermal performance with improved acoustics at lower fan inlet temperatures Using the example in Table 5 2 for the Intel Core 2 Duo processor with 4 MB cache at of 60 1 C the required fan speed necessary to meet thermal specifications can be controlled by the fan inlet temperature and should comply with requirements in Table 5 2 Table 5 2 Acoustic Targets Fan seed Thermistor Thermal RP Set Point Requirements ca Case 1 High Thermal Design Power 2300 Ta 2 35 C LORBA 0 387 CI
69. al sensors to the corresponding processor or chipset device Tcontrot Value This is achieved by the use of a Proportional Integral Derivative PID control algorithm and a Fan Output Weighting Matrix The PID algorithm takes into account the difference between the current temperature and the target Tcontrot the rate of change and direction of change to minimize the required fan speed change The Fan Output Weighting Matrix uses the effects of each fan on a thermal sensor to minimize the required fan speed changes Figure 7 1 shows in a very simple manner how Intel QST works See the Intel Quiet System Technology Intel QST Configuration and Tuning Manual for a detail discussion of the inputs and response Thermal and Mechanical Design Guidelines 65 in tel Intel Quiet System Technology Intel QST Figure 7 1 Intel QST Overview 7 1 1 7 1 2 66 Intel QST Temperature sensing Fan to sensor Fan Commands and response Relationship Calculations PID Output Weighting Matrix PID SST PWM z Temperature S Sensors Fans C System Response Output Weighting Matrix Intel QST provides an Output Weighting Matrix that provides a means for a single thermal sensor to affect the speed of multiple fans An example of how the
70. alibrated in terms of mV V a data logger or scanner is required to supply 5 volts DC excitation and read the mV response An automated model will take the sensitivity calibration of the load cells and convert the mV output into pounds 3 With the test equipment listed above it is possible to automate data recording and control with a 6101 PCI card GPIB added to the scanner allowing it to be connected to a PC running LabVIEW or Vishay s StrainSmart software 4 IMPORTANT addition to just a zeroing of the force reading at no applied load it is important to calibrate the load cells against known loads Load cells tend to drift Contact your load cell vendor for calibration tools and procedure information 5 When measuring loads under thermal stress bake for example load cell thermal capability must be checked and the test setup must integrate any hardware used along with the load cell For example the Model 13 load cells are temperature compensated up to 71 C as long as the compensation package spliced into the load cell s wiring is also placed in the temperature chamber The load cells can handle up to 121 C operating but their uncertainty increases according to 0 0296 rdg F B 3 Test Procedure Examples The following sections provide two examples of load measurement However this is not meant to be used in mechanical shock and vibration testing Any mechanical device used along with the heatsink attach mechanism will ne
71. ance Processor numbers differentiate features within each processor family not across different processor families Over time processor numbers will increment based on changes in clock speed cache FSB or other features and increments are not intended to represent proportional or quantitative increases in any particular feature Current roadmap processor number progression is not necessarily representative of future roadmaps See www intel com products processor number for details Intel Pentium Intel Core Celeron Intel Inside and the Intel logo are trademarks of Intel Corporation in the U S and other countries Other names and brands may be claimed as the property of others Copyright O 2008 2010 Intel Corporation 2 Thermal and Mechanical Design Guidelines Contents 1 INCKOODUCHON c 11 1 1 Document Goals and Scop ETEO E ETEEN 11 1 1 1 Importance of Thermal 11 1 1 2 Document Goals asii ey n Ee t edes Ln S 11 1 1 3 Document SCOPE uu uu ar p a sap 12 1 2 References su ms uum ashanka 13 1 3 tI DUUM 13 2 Processor Thermal Mechanical 15 2 1 Mechanical Requirements eee 15 2 1 1 Proce
72. around the heatsink instead of through it unless air bypass is carefully managed Using air ducting techniques to manage bypass area can be an effective method for controlling airflow through the heatsink Heatsink Size The size of the heatsink is dictated by height restrictions for installation in a system and by the real estate available on the motherboard and other considerations for component height and placement in the area potentially impacted by the processor heatsink The height of the heatsink must comply with the requirements and recommendations published for the motherboard form factor of interest Designing a heatsink to the recommendations may preclude using it in system adhering strictly to the form factor requirements while still in compliance with the form factor documentation For the ATX microATX form factor it is recommended to use e The ATX motherboard keep out footprint definition and height restrictions for enabling components defined for the platforms designed with the LGA775 socket in Appendix G of this design guide e The motherboard primary side height constraints defined in the ATX Specification V2 1 and the microATX Motherboard Interface Specification V1 1 found at http www formfactors org The resulting space available above the motherboard is generally not entirely available for the heatsink The target height of the heatsink must take into account airflow considerations for fan performance for example
73. aterials animal and vegetable based adhesives grease oils and many hydrocarbons Synthetic materials such as PVC formulations certain polyurethane compositions such as polyester and some polyethers plastics that contain organic fillers of laminating materials paints and varnishes also are susceptible to fungal growth If materials are not fungal growth resistant then MIL STD 810E Method 508 4 must be performed to determine material performance Material used shall not have deformation or degradation in a temperature life test Any plastic component exceeding 25 grams must be recyclable per the European Blue Angel recycling standards Thermal and Mechanical Design Guidelines m Balanced Technology Extended BTX Thermal Mechanical Design Information intel 5 4 Safety Requirements Heatsink and attachment assemblies shall be consistent with the manufacture of units that meet the safety standards e UL Recognition approved for flammability at the system level All mechanical and thermal enabling components must be a minimum UL94V 2 approved e CSA Certification All mechanical and thermal enabling components must have CSA certification e All components in particular the heatsink fins must meet the test requirements of UL1439 for sharp edges e fthe International Accessibility Probe specified in IEC 950 can access the moving parts of the fan consider adding safety feature so that there is no risk of personal injur
74. be to achieve the desired cooling The wetting or filling characteristic of the thermal interface material is its ability under the load applied by the heatsink retention mechanism to spread and fill the gap between the processor and the heatsink Since air is an extremely poor thermal conductor the more completely the interface material fills the gaps the lower the temperature drops across the interface In this case thermal interface material area also becomes significant the larger the desired thermal interface material area the higher the force required to spread the thermal interface material Thermal and Mechanical Design Guidelines 83 84 Thermal Interface Management Thermal and Mechanical Design Guidelines m Case Temperature Reference Metrology n tel Appendix DCase Temperature Reference Metrology D 1 Objective and Scope This appendix defines a reference procedure for attaching a thermocouple to the IHS of a 775 land LGA package for Tc measurement This procedure takes into account the specific features of the 775 land LGA package and of the LGA775 socket for which it is intended The recommended equipment for the reference thermocouple installation including tools and part numbers are also provided In addition a video Thermocouple Attach Using Solder Video CD ROM is available that shows the process in real time The following supplier can do machining the groove and attaching a thermocouple to the IHS follow
75. bration Refer to Section 6 7 1 for the information on the structural design strategy for the reference design e Thermal interface performance Required preload depends on TIM Preload can be low for thermal grease In addition to mechanical performance in shock and vibration and TIM performance LGA775 socket requires a minimum heatsink preload to protect against fatigue failure of socket solder joints Solder ball tensile stress is originally created when after inserting a processor into the socket the LGA775 socket load plate is actuated In addition solder joint shear stress is caused by coefficient of thermal expansion CTE mismatch induced shear loading The solder joint compressive axial force induced by the heatsink preload helps to reduce the combined joint tensile and shear stress Overall the heatsink required preload is the minimum preload needed to meet all of the above requirements Mechanical shock and vibration and TIM performance AND LGA775 socket protection against fatigue failure Metric for Heatsink Preload for ATX uATX Designs Non Compliant with I ntel Reference Design Heatsink Preload Requirement Limitations Heatsink preload by itself is not an appropriate metric for solder joint force across various mechanical designs and does not take into account for example not an exhaustive list Heatsink mounting hole span e Heatsink clip fastener assembly stiffness and creep e Board stiffness
76. c Fan Speed Control Implementation LGA 775 Socket Thermal Sensor Controller Link Intel has engaged with a number of major manufacturers of thermal voltage sensors to provide devices for the SST bus Contact your Intel Field Sales representative for the current list of manufacturers and visit their web sites or local sales representatives for a part suitable for your design Thermal and Mechanical Design Guidelines in tel Intel Quiet System Technology Intel QST 7 3 7 4 Intel QST Configuration and Tuning Initial configuration of the Intel QST is the responsibility of the board manufacturer The SPI flash should be programmed with the hardware configuration of the motherboard and initial settings for fan control fan monitoring voltage and thermal monitoring This initial data is generated using the Intel provided Configuration Tool At the system integrator the Configuration Tool can be used again but this time to tune the Intel QST subsystem to reflect the shipping system configuration In the tuning process the Intel QST can be modified to have the proper relationships between the installed fans and sensors in the shipping system A Weighting Matrix Utility and Intel QST Log program are planned to assist in optimizing the fan management and achieve acoustic goal Contact your Intel field sales representative for availability of these tools Fan Hub Thermistor and Intel QST
77. ce design will be listed In this document when a reference is made to the datasheet the reader should refer to the Intel Core 2 Duo Processor E8000 and E7000 Series Datasheet Intel Pentium Dual Core Processor E6000 and E5000 Series Datasheet and Intel Celeron Processor E3x00 Series Datasheet If needed for clarity the specific processor datasheet will be referenced Chapter 2 of this document discusses package thermal mechanical requirements to design a thermal solution for the processor in the context of personal computer applications Chapter 3 discusses the thermal solution considerations and metrology recommendations to validate a processor thermal solution Chapter 4 addresses the benefits of the processor s integrated thermal management logic for thermal design Chapter 5 gives information on the Intel reference thermal solution for the processor in BTX platform Chapter 6 gives information on the Intel reference thermal solution for the processor in ATX platform Chapter 7 discusses the implementation of acoustic fan speed control The physical dimensions and thermal specifications of the processor that are used in this document are for illustration only Refer to the datasheet for the product dimensions thermal power dissipation and maximum case temperature In case of conflict the data in the datasheet supersedes any data in this document Thermal and Mechanical Design Guidelines Introduction 1 2 References
78. chanical Design Figure 7 40 Figure 7 41 and Figure 7 42 in Appendix G provides detailed reference motherboard keep out information for the reference thermal mechanical enabling design These drawings include height restrictions in the enabling component region The maximum height of the reference solution above the motherboard is 71 12 mm 2 8 inches and is compliant with the motherboard primary side height constraints defined in the ATX Specification revision 2 1 and the microATX Motherboard Interface Specification revision 1 1 found at http www formfactors org The reference solution requires a chassis obstruction height of at least 81 28 mm 3 2 inches measured from the top of the motherboard refer to Sections 3 3 and 6 2 4 This allows for appropriate fan inlet airflow to ensure fan performance and therefore overall cooling solution performance This is compliant with the recommendations found in both ATX Specification V2 1 and microATX Motherboard Interface Specification V1 1 documents Thermal and Mechanical Design Guidelines 61 n tel ATX Thermal Mechanical Design Information 6 7 6 7 1 Reference Attach Mechanism Structural Design Strategy Structural design strategy for the reference design is to minimize upward board deflection during shock to help protect the LGA775 socket The reference design uses a high clip stiffness that resists local board curvature under the heatsink and minim
79. ction 2 3 4 and Appendix C for further information on TIM and on bond line management between the IHS and the heatsink base e The heat transfer conditions on the surface on which heat transfer takes place Convective heat transfer occurs between the airflow and the surface exposed to the flow It is characterized by the local ambient temperature of the air the local air velocity over the surface The higher the air velocity over the surface and the cooler the air the more efficient is the resulting cooling The nature of the airflow can also enhance heat transfer using convection Turbulent flow can provide improvement over laminar flow In the case of a heatsink the surface exposed to the flow includes in particular the fin faces and the heatsink base Active heatsinks typically incorporate a fan that helps manage the airflow through the heatsink Passive heatsink solutions require in depth knowledge of the airflow in the chassis Typically passive heatsinks see lower air speed These heatsinks are therefore typically larger and heavier than active heatsinks due to the increase in fin surface Thermal and Mechanical Design Guidelines 21 m e n tel Processor Thermal Mechanical nformation 2 3 1 2 3 2 22 required to meet a required performance As the heatsink fin density the number of fins in a given cross section increases the resistance to the airflow increases it is more likely that the air travels
80. d Technology Extended BTX Thermal Mechanical Design I nformation intel 5 2 1 2 1 5 2 1 2 2 5 2 2 Recommended Test Sequence Each test sequence should start with components that is motherboard heatsink assembly and so forth that have never been previously submitted to any reliability testing The test sequence should always start with a visual inspection after assembly and BI OS CPU Memory test refer to Section 6 3 3 Prior to the mechanical shock amp vibration test the units under test should be preconditioned for 72 hours at 45 C The purpose is to account for load relaxation during burn in stage The stress test should be followed by a visual inspection and then BIOS CPU Memory test Post Test Pass Criteria The post test pass criteria are 1 Nosignificant physical damage to the heatsink attach mechanism including such items as clip and motherboard fasteners 2 Heatsink must remain attached to the motherboard 3 Heatsink remains seated and its bottom remains mated flatly against IHS surface No visible gap between the heatsink base and processor IHS No visible tilt of the heatsink with respect to its attach mechanism 4 No signs of physical damage on motherboard surface due to impact of heatsink or heatsink attach mechanism 5 No visible physical damage to the processor package 6 Successful BIOS Processor memory test of post test samples 7 Thermal compliance testing to demonstrate that the ca
81. digital thermal sensor and a fan speed control method Designing to these specifications allows optimization of thermal designs for processor performance and acoustic noise reduction Processor Case Temperature For the processor the case temperature is defined as the temperature measured at the geometric center of the package on the surface of the IHS For illustration Figure 2 2 shows the measurement location for a 37 5 mm x 37 5 mm 1 474 in x 1 474 in 775 Land LGA processor package with a 28 7 mm x 28 7 mm 1 13 in x 1 13 in IHS top surface Techniques for measuring the case temperature are detailed in Section 3 4 Thermal and Mechanical Design Guidelines m Processor Thermal Mechanical nformation n te D Figure 2 2 Processor Case Temperature Measurement Location Measure T at this point geometric center of the package 37 5 mm 2 2 2 Thermal Profile The Thermal Profile defines the maximum case temperature as a function of processor power dissipation Refer to the datasheet for the further information 2 2 3 Thermal Solution Design Requirements While the thermal profile provides flexibility for ATX BTX thermal design based on its intended target thermal environment thermal solutions that are intended to function in a multitude of systems and environments need to be designed for the worst case thermal environment The majority of ATX BTX platforms are targeted to function in an enviro
82. e achieved at lower processor workload by using the Tcontrot Specifications described in Section 2 2 4 Intel s recommendation is to use the fan with 4 Wire PWM Controlled to implement fan speed control capability based the digital thermal sensor Refer to Chapter 7 for further details Appendix F gives detailed fan performance for the Intel reference thermal solutions with 4 Wire PWM Controlled fan Thermal and Mechanical Design Guidelines m Balanced Technology Extended BTX Thermal Mechanical Design I nformation intel 5 1 3 Note Effective Fan Curve The TMA must fulfill the processor cooling requirements shown in Table 5 1 when it is installed in a functional BTX system When installed in a system the TMA must operate against the backpressure created by the chassis impedance due to vents bezel peripherals and so forth and will operate at lower net airflow than if it were tested outside of the system on a bench top or open air environment Therefore an allowance must be made to accommodate or predict the reduction in Thermal Module performance due to the reduction in heatsink airflow from chassis impedance For this reason it is required that the Thermal Module satisfy the prescribed c4 requirements when operating against an impedance that is characteristic for BTX platforms Because of the coupling between TMA thermal performance and system impedance the designer should understand the TMA effective fan curve This effec
83. e any remaining contaminants Thermal and Mechanical Design Guidelines 101 m e n tel Case Temperature Reference Metrology 31 Fill the rest of the groove with Loctite 498 Adhesive Verify under the microscope that the thermocouple wire is below the surface along the entire length of the IHS groove Figure 7 33 Figure 7 33 Filling Groove with Adhesive 32 To speed up the curing process apply Loctite Accelerator on top of the Adhesive and let it set for a couple of minutes Figure 7 34 Figure 7 34 Application of Accelerant 102 Thermal and Mechanical Design Guidelines m Case Temperature Reference Metrology n tel Figure 7 35 Removing Excess Adhesive from HS 33 Using a blade carefully shave any adhesive that is above the IHS surface Figure 7 35 The preferred method is to shave from the edge to the center of the IHS Note The adhesive shaving step should be performed while the adhesive is partially cured but still soft This will help to keep the adhesive surface flat and smooth with no pits or voids If there are voids in the adhesive refill the voids with adhesive and shave a second time 34 35 36 37 38 Clean IHS surface with IPA and a wipe Clean the LGA pads with IPA and a wipe Replace the land side cover on the device Perform a final continuity test Wind the thermocouple wire into loops and secure or if provided by the vendor back on
84. e datasheet for further information on TM2 Operation and Configuration Thermal Monitor must be enabled to ensure proper processor operation The Thermal Control Circuit feature can be configured and monitored in a number of ways OEMs are required to enable the Thermal Control Circuit while using various registers and outputs to monitor the processor thermal status The Thermal Control Circuit is enabled by the BIOS setting a bit in an MSR model specific register Enabling the Thermal Control Circuit allows the processor to attempt to maintain a safe operating temperature without the need for special software drivers or interrupt handling routines When the Thermal Control Circuit has been enabled processor power consumption will be reduced after the thermal sensor detects a high temperature that is PROCHOT assertion The Thermal Control Circuit and PROCHOT transitions to inactive once the temperature has been reduced below the thermal trip point although a small time based hysteresis has been included to prevent multiple PROCHOT transitions around the trip point External hardware can monitor PROCHOT and generate an interrupt whenever there is a transition from active to inactive or inactive to active PROCHOT can also be configured to generate an internal interrupt which would initiate an OEM supplied interrupt service routine Thermal and Mechanical Design Guidelines m Thermal Management Logic and Thermal Monitor Feature In tel
85. e testing to demonstrate that the case temperature specification can be met Power Cycling Thermal performance degradation due to TIM degradation is evaluated using power cycling testing The test is defined by 7500 cycles for the case temperature from room temperature 23 2C to the maximum case temperature defined by the thermal profile at TDP Thermal and Mechanical Design Guidelines 59 a amp In tel ATX Thermal Mechanical Design Information 6 3 3 6 4 60 Recommended OS CPU Memory Test Procedures This test is to ensure proper operation of the product before and after environmental stresses with the thermal mechanical enabling components assembled The test shall be conducted on a fully operational motherboard that has not been exposed to any battery of tests prior to the test being considered Testing setup should include the following components properly assembled and or connected e Appropriate system motherboard e Processor e enabling components including socket and thermal solution parts e Power supply e Disk drive e Video card e DIMM e Keyboard e Monitor The pass criterion is that the system under test shall successfully complete the checking of BIOS basic processor functions and memory without any errors Material and Recycling Requirements Material shall be resistant to fungal growth Examples of non resistant materials include cellulose materials animal and vegetable based adh
86. e while ramping up the fan to bring the actual Thermal and Mechanical Design Guidelines m Intel Quiet System Technology Intel QST intel temperature to the target temperature As a result of its operation the PID control algorithm can enable an acoustic friendly platform Figure 7 2 PID Controller Fundamentals Integral time averaged Actual Temperature roportional Error Temperature Temperature Derivative Slope RPM For a PID algorithm to work limit temperatures are assigned for each temperature sensor For Intel QST the for the processor and chipset are to be used as the limit temperature The ME will measure the error slope and rate of change using the equations below e Proportional Error Tymit Tactuat e Integral 1 Time averaged error e Derivative D ATemp ATime Three gain values are used to control response of algorithm e Kp proportional gain e Integral gain e Kd derivative gain The Intel Quiet System Technology Intel QST Configuration and Tuning Manual provides initial values for the each of the gain constants In addition it provides a methodology to tune these gain values based on system response Finally the fan speed change will be calculated using the following formula APWM P Kp I Ki D Kd Thermal and Mechanical Design Guidelines 67 tel Intel Quiet System Technology Intel QST
87. ed by the reference procedure The supplier is listed the table below as a convenience to Intel s general customers and the list may be subject to change without notice Supplier Contact Phone Email Address THERM X OF Ernesto 510 441 7566 ernestov therm x com 1837 Whipple Road CALIFORNIA B Valencia Ext 242 Hayward Ca 94544 D 2 Supporting Test Equipment To apply the reference thermocouple attach procedure it is recommended to use the equipment or equivalent given in the table below Measurement and Output Microscope Olympus Light microscope or equivalent SZ 40 Digital Multi Meter for resistance measurement Fluke 79 Series Thermal Meter Hand held thermocouple meter Multiple Vendors Solder Station see note 1 for ordering information Heater Block Heater assembly to reflow solder on IHS 30330 Heater WATLOW120V 150W Firerod 0212G G1A38 L12 Transformer Superior Powerstat transformer 05F857 Thermal and Mechanical Design Guidelines 85 e n tel Case Temperature Reference Metrology Miscellaneous Hardware Solder Indium Corp of America 52124 Alloy 57BI 42SN 1AG 0 010 Diameter Flux Indium Corp of America 5RMA Loctite 498 Super glue w thermal characteristics 49850 Adhesive Adhesive Loctite 7452 for fast glue curing 18490 Accelerator Kapton Tape For holding thermocouple in place Not Available Thermocouple Omega 36 gauge T Type OSK2K1280 5SR see note 2 for ordering info
88. ed to be included in the test setup that is back plate attach to chassis and so forth Prior to any test make sure that the load cell has been calibrated against known loads following load cell vendor s instructions 80 Thermal and Mechanical Design Guidelines Heatsink Clip Load Metrology in tel B 3 1 Time Zero Room Temperature Preload Measurement 1 Pre assemble mechanical components on the board as needed prior to mounting the motherboard on an appropriate support fixture that replicate the board attach to a target chassis e For example standard ATX board should sit on ATX compliant stand offs If the attach mechanism includes fixtures on the back side of the board those must be included as the goal of the test is to measure the load provided by the actual heatsink mechanism 2 Install relevant test vehicle TTV processor in the socket 3 Assemble the heatsink reworked with the load cells to motherboard as shown for the reference design example in Figure 7 10 and actuate attach mechanism 4 Collect continuous load cell data at 1 Hz for the duration of the test A minimum time to allow the load cell to settle is generally specified by the load vendors often of order of 3 minutes The time zero reading should be taken at the end of this settling time 5 Record the preload measurement total from all three load cells at the target time and average the values over 10 seconds around this target time as well
89. equests all bus traffic is blocked Edge triggered interrupts will be latched and kept pending until the processor resumes operation at the new frequency Once the new operating frequency is engaged the processor will transition to the new core operating voltage by issuing a new VID code to the voltage regulator The voltage regulator must support VID transitions in order to support TM2 During the voltage change it will be necessary to transition through multiple VID codes to reach the target operating voltage Each step will be one VID table entry that is 12 5 mV steps The processor continues to execute instructions during the voltage transition Operation at the lower voltage reduces the power consumption of the processor providing a temperature reduction Thermal and Mechanical Design Guidelines 35 m in tel Thermal Management Logic and Thermal Monitor Feature Once the processor has sufficiently cooled and a minimum activation time has expired the operating frequency and voltage transition back to the normal system operating point Transition of the VID code will occur first in order to insure proper operation once the processor reaches its normal operating frequency Refer to Figure 4 2 for an illustration of this ordering Figure 4 2 Thermal Monitor 2 Frequency and Voltage Ordering 4 2 4 36 Tae Temperature PROCHOT MAX TM2 Frequency VID Time Refer to th
90. esives grease oils and many hydrocarbons Synthetic materials such as PVC formulations certain polyurethane compositions such as polyester and some polyethers plastics that contain organic fillers of laminating materials paints and varnishes also are susceptible to fungal growth If materials are not fungal growth resistant then MIL STD 810E Method 508 4 must be performed to determine material performance Material used shall not have deformation or degradation in a temperature life test Any plastic component exceeding 25 grams must be recyclable per the European Blue Angel recycling standards Thermal and Mechanical Design Guidelines m ATX Thermal Mechanical Design I nformation intel 6 5 6 6 Safety Requirements Heatsink and attachment assemblies shall be consistent with the manufacture of units that meet the safety standards e UL Recognition approved for flammability at the system level All mechanical and thermal enabling components must be a minimum UL94V 2 approved e CSA Certification All mechanical and thermal enabling components must have CSA certification e All components in particular the heatsink fins must meet the test requirements of UL1439 for sharp edges e If the International Accessibility Probe specified in IEC 950 can access the moving parts of the fan consider adding safety feature so that there is no risk of personal injury Geometric Envelope for I ntel Reference ATX Thermal Me
91. g the back of the tweezers press down on the solder this will force out the excess solder Figure 7 30 Removing Excess Solder 26 Allow the device to cool down Blowing compressed air on the device can accelerate the cooling time Monitor the device IHS temperature with a handheld meter until it drops below 50 C before moving it to the microscope for the final steps D 5 4 Cleaning and Completion of Thermocouple Installation 27 Remove the device from the solder station and continue to monitor 5 Temperature with a handheld meter Place the device under the microscope and remove the three pieces of Kapton tape with Tweezers keeping the longest for re use 28 Straighten the wire and work the wire in to the groove Bend the thermocouple over the IHS Replace the long piece of Kapton tape at the edge of the IHS Note The wire needs to be straight so it doesn t sit above the IHS surface at anytime Figure 7 31 100 Thermal and Mechanical Design Guidelines m Case Temperature Reference Metrology n tel Figure 7 31 Thermocouple placed into groove 29 Using a blade carefully shave the excess solder above the IHS surface Only shave in one direction until solder is flush with the groove surface Figure 7 32 Figure 7 32 Removing Excess Solder Note Take usual precautions when using open blades 30 Clean the surface of the IHS with Alcohol and use compressed air to remov
92. hances the transfer of the heat from the processor case to the heatsink maximum power dissipated by semiconductor component Thermal Design Power a power dissipation target based on worst case TDP applications Thermal solutions should be designed to dissipate the thermal design power Integrated Heat Spreader a thermally conductive lid integrated into a IHS processor package to improve heat transfer to a thermal solution through heat spreading LGA775 The surface mount socket designed to accept the processors in the 775 Land Socket LGA package ACPI Advanced Configuration and Power Interface Bypass is the area between a passive heatsink and any object that can act to Bypass form a duct For this example it can be expressed as a dimension away from the outside dimension of the fins to the nearest surface Thermal A feature on the processor that attempts to keep the processor die Monitor temperature within factory specifications Thermal Control Circuit Thermal Monitor uses the TCC to reduce die TCC temperature by lowering the effective processor frequency when the die temperature has exceeded its operating limits DTS Digital Thermal Sensor Processor die sensor temperature defined as an offset from the onset of PROCHOT Fan Speed Control Thermal solution that includes a variable fan speed which FSC is driven by a PWM signal and uses the on die thermal diode as a reference to change the duty cycle of the PWM signal Tourney Tcontro
93. he fan to check its speed setting against air temperature When measuring T in a chassis with a live motherboard add in cards and other system components it is likely that the T measurements will reveal a highly non uniform temperature distribution across the inlet fan section For passive heatsinks thermocouples should be placed approximately 13 mm to 25 mm 0 5 to 1 0 in away from processor and heatsink as shown in Figure 3 3 The thermocouples should be placed approximately 51 mm 2 0 in above the baseboard This placement guideline is meant to minimize the effect of localized hot spots from baseboard components Testing an active heatsink with a variable speed fan can be done in a thermal chamber to capture the worst case thermal environment scenarios Otherwise when doing a bench top test at room temperature the fan regulation prevents the heatsink from operating at its maximum capability To characterize the heatsink capability in the worst case environment in these conditions it is then necessary to disable the fan regulation and power the fan directly based on guidance from the fan supplier Thermal and Mechanical Design Guidelines Thermal Metrology ntel Figure 3 2 Locations for Measuring Local Ambient Temperature Active ATX Heatsink 81 MM 3 2 IN FAN HUB SPOKES SOLID BARRIER TOP VIEW MEASURE AS INDICATED LOCATIONS ARE APPROXIMATE MEASURE T AS INDICATED BETWEEN HUB SPOKES LOCAT
94. he power dissipated by an actual processor is beyond the scope of this document Once the thermal solution is designed and validated with the TTV it is strongly recommended to verify functionality of the thermal solution on real processors and on fully integrated systems The Intel maximum power application enables steady power dissipation on a processor to assist in this testing This maximum power application is provided by Intel 3 3 Local Ambient Temperature Measurement Guidelines The local ambient temperature T4 is the temperature of the ambient air surrounding the processor For a passive heatsink T4 is defined as the heatsink approach air temperature for an actively cooled heatsink it is the temperature of inlet air to the active cooling fan It is worthwhile to determine the local ambient temperature in the chassis around the processor to understand the effect it may have on the case temperature is best measured by averaging temperature measurements at multiple locations the heatsink inlet airflow This method helps reduce error and eliminate minor spatial variations in temperature The following guidelines are meant to enable accurate determination of the localized air temperature around the processor during system thermal testing Thermal and Mechanical Design Guidelines 29 30 n te Thermal Metrology Note For active heatsinks it is important to avoid taking measurement in the dead flow zone that usual
95. heet for further information In case of conflict the package dimensions in the processor datasheet supersedes dimensions provided in this document Figure 2 1 Package HS Load Areas IHS Step Top Surface of IHS to interface with LGA775 to install a heatsink Socket Load Plate Substrate Thermal and Mechanical Design Guidelines 15 n tel Processor Thermal Mechanical I nformation The primary function of the IHS is to transfer the non uniform heat distribution from the die to the top of the IHS out of which the heat flux is more uniform and spread over a larger surface area not the entire IHS area This allows more efficient heat transfer out of the package to an attached cooling device The top surface of the IHS is designed to be the interface for contacting a heatsink The IHS also features a step that interfaces with the LGA775 socket load plate as described in LGA775 Socket Mechanical Design Guide The load from the load plate is distributed across two sides of the package onto a step on each side of the IHS It is then distributed by the package across all of the contacts When correctly actuated the top surface of the IHS is above the load plate allowing proper installation of a heatsink on the top surface of the IHS After actuation of the socket load plate the seating plane of the package is flush with the seating plane of the socket
96. hermal solutions in identical situations same heat source and local ambient conditions The thermal characterization parameter is calculated using total package power Note Heat transfer is a three dimensional phenomenon that can rarely be accurately and easily modeled by a single resistance parameter like v The case to local ambient thermal characterization parameter value Pc4 is used as a measure of the thermal performance of the overall thermal solution that is attached to the processor package It is defined by the following equation and measured in units of C W Yoa Te T P Equation 1 Where Yon Case to local ambient thermal characterization parameter C W Processor case temperature Ta Local ambient temperature in chassis at processor C Pp Processor total power dissipation W assumes all power dissipates through the IHS The case to local ambient thermal characterization parameter of the processor is comprised of cs the thermal interface material thermal characterization parameter and of Vs the sink to local ambient thermal characterization parameter Pon Yes Yo Equation 2 Where Thermal characterization parameter of the thermal interface material C W Ysa Thermal characterization parameter from heatsink to local ambient C W cs is strongly dependent on the thermal conductivity and thickness of the TIM between the heatsink and IHS Ther
97. hermal sensor As a result the Tcontrot value will always be a negative number See Chapter 4 for the discussion the thermal management logic and features and Chapter 7 on Intel Quiet System Technology Intel QST The value of Tcowraor is driven by a number of factors One of the most significant of these is the processor idle power As a result a processor with a high closer to 0 Tcontrot Will dissipate more power than a part with lower value farther from 0 such as larger negative number of Tcontro when running the same application Thermal and Mechanical Design Guidelines m Processor Thermal Mechanical nformation n te D This is achieved in part by using the Y versus RPM and RPM versus Acoustics dBA performance curves from the Intel enabled thermal solution A thermal solution designed to meet the thermal profile would be expected to provide similar acoustic performance of different parts with potentially different TcontroL values The value for Tcontror is calculated by the system BIOS based on values read from factory configured processor register The result can be used to program a fan speed control component See the appropriate processor datasheet for further details on reading the register and calculating Tcowrao See Chapter 7 Intel Quiet System Technology Intel QST for details on implementing a design using TcontroL the Thermal Profile 2 3 Heatsink Design Considerations To remove the heat
98. igure 5 6 e And no board stiffening device backing plate chassis attach and so forth The minimum load is required to protect against fatigue failure of socket solder joint in temperature cycling It is important to take into account potential load degradation from creep over time when designing the clip and fastener to the required minimum load This means that depending on clip stiffness the initial preload at beginning of life of the product may be significantly higher than the minimum preload that must be met throughout the life of the product For additional guidelines on mechanical design in particular on designs departing from the reference design assumptions refer to Appendix A For clip load metrology guidelines refer to Appendix B Thermal and Mechanical Design Guidelines 17 m tel Processor Thermal Mechanical I nformation 2 1 2 3 2 2 2 2 1 18 Additional Guidelines In addition to the general guidelines given above the heatsink attach mechanism for the processor should be designed to the following guidelines e Holds the heatsink in place under mechanical shock and vibration events and applies force to the heatsink base to maintain desired pressure on the thermal interface material Note that the load applied by the heatsink attach mechanism must comply with the package specifications described in the processor datasheet One of the key design parameters is the height of the top surface of the proces
99. integral to the cooling of the processor voltage regulator VR The reference design TMA will include a flow partitioning device to ensure an appropriate airflow balance between the TMA and the VR In validation the need for this component will be evaluated The BTX thermal management strategy relies on the Thermal Module to provide effective cooling for the voltage regulator VR chipset and system memory components on the motherboard The Thermal Module is required to have features that allow for airflow to bypass the heatsink and flow over the VR region on both the primary and secondary sides of the board The following requirements apply to VR cooling Table 5 3 VR Airflow Requirements 44 Item Target Minimum VR bypass airflow for 2 4 CFM 775 VR CONFIG 06 processors NOTES 1 This is the recommended airflow rate that should be delivered to the VR when the VR power is at a maximum in order to support the 775 VR CONFIG 06 processors at TDP power dissipation and the chassis external environment temperature is at 35 9C Less airflow is necessary when the VR power is not at a maximum or if the external ambient temperature is less than 35 2 This recommended airflow rate is based on the requirements for the Intel 965 Express Chipset Family Thermal and Mechanical Design Guidelines m Balanced Technology Extended BTX Thermal Mechanical Design I nformation intel 5 1 5 Altitude The reference TMA wil
100. ion in Machined Heatsink Base Pocket Bottom View 78 Figure 7 9 Load Cell Installation in Machined Heatsink Base Pocket Side View 79 Figure 7 10 Preload Test Configuration rr 79 Figure 7 11 Omega nemen 86 Figure 7 12 775 LAND LGA Package Reference Groove Drawing at 6 o clock Exit 88 Figure 7 13 775 LAND LGA Package Reference Groove Drawing at 3 o clock Exit COMA DE AWIRO eter 89 Figure 7 14 IHS Groove at 6 o clock Exit on the 775 LAND LGA Package 90 Figure 7 15 IHS Groove at 6 o clock Exit Orientation Relative to the LGA775 Socket 90 Figure 7 16 Inspection of Insulation on 91 Figure 7 17 Bending the of the 92 Figure 7 18 Securing Thermocouple Wires with Kapton Tape Prior to Attach 92 Figure 7 19 Thermocouple Bead Placement nr 93 Figure 7 20 Position Bead on the Groove 94 Figure 7 21 Detailed Thermocouple Bead 94 Figure 7 22 Third Tape 1 lt mem 95 Figure 7 23 Measuring Resistance between Thermocouple and IHS 95 Figure 7 24 Applying Flux to the Thermocouple
101. its third party test house program to evaluate third party solutions Vendor information now is available in Intel Core 2 Duo Processor Support Components webpage www intel com go thermal Core2Duo Thermal and Mechanical Design Guidelines m Heatsink Clip Load Metrology tel Appendix B Heatsink Clip Load Metrology B 1 Overview This appendix describes a procedure for measuring the load applied by the heatsink clip fastener assembly on a processor package This procedure is recommended to verify the preload is within the design target range for a design and in different situations For example e Heatsink preload for the LGA775 socket e Quantify preload degradation under bake conditions Note This document reflects the current metrology used by Intel Intel is continuously exploring new ways to improve metrology B 2 Test Preparation B 2 1 Heatsink Preparation Three load cells are assembled into the base of the heatsink under test in the area interfacing with the processor Integrated Heat Spreader IHS using load cells equivalent to those listed in Section B 2 2 To install the load cells machine a pocket in the heatsink base as shown in Figure 7 8 and Figure 7 9 The load cells should be distributed evenly as close as possible to the pocket walls Apply wax around the circumference of each load cell and the surface of the pocket around each cell to maintain the load cells in place during the heatsink i
102. izes in particular upward board deflection Figure 6 5 In addition a moderate preload provides initial downward deflection Figure 6 5 Upward Board Deflection during Shock Note 62 hock Load n O UIh Less curvature in region under stiff clip The target metal clip nominal stiffness is 540 N mm 3100 Ib in The combined target for reference clip and fasteners nominal stiffness is 380 N mm 2180 Ib in The nominal preload provided by the reference design is 191 3 N 44 5 N 43 Ib 10 Ib Intel reserves the right to make changes and modifications to the design as necessary to the reference design in particular the clip and fastener Thermal and Mechanical Design Guidelines ATX Thermal Mechanical Design I nformation intel 6 7 2 Mechanical I nterface to the Reference Attach Mechanism The attach mechanism component from the reference design can be used by other 3 party cooling solutions The attach mechanism consists of e metal attach clip that interfaces with the heatsink core see Appendix Figure 7 48 and Figure 7 49 for the component drawings e Four plastic fasteners see Appendix G Figure 7 50 Figure 7 51 Figure 7 52 and Figure 7 53 for the component drawings The clip is assembled to heatsink during copper core insertion and is meant to be trapped between the core shoulder and the extrusion as shown in Figure 6 6 Figure 6 6 Reference Clip Heatsink Assembly n
103. l Design Guidelines 7 Table 2 1 Heatsink Inlet Temperature of Intel Reference Thermal Solutions 24 Table 2 2 Heatsink Inlet Temperature of Intel Boxed Processor Thermal Solutions 24 Table 5 1 Balanced Technology Extended BTX Type 11 Reference TMA Performance41 Table 5 2 Acoustic 42 Table 5 3 VR Airflow Requirements mmm 44 Table 5 4 Processor Preload 4 41 51 Table 6 1 18764 001 Reference Heatsink Performance 55 Table 6 2 Acoustic Results for ATX Reference Heatsink 18764 001 56 Table 7 1 Board Deflection Configuration 72 Table 7 2 Typical Test 80 Table 7 3 Fan Electrical Performance 109 Table 7 4 Intel Representative Contact for Licensing Information of BTX Reference DeSIQN oce entren Exe 127 Table 7 5 E18764 001 Reference Thermal Solution Providers 127 Table 7 6 BTX Reference Thermal Solution 128 Thermal and Mechanical Design Guidelines Revision History e Added Intel Core
104. l be evaluated at sea level However many companies design products that must function reliably at high altitude typically 1 500 m 5 000 ft or more Air cooled temperature calculations and measurements at sea level must be adjusted to take into account altitude effects like variation in air density and overall heat capacity This often leads to some degradation in thermal solution performance compared to what is obtained at sea level with lower fan performance and higher surface temperatures The system designer needs to account for altitude effects in the overall system thermal design to make sure that the requirement for the processor is met at the targeted altitude 5 1 6 Reference Heatsink Thermal Validation The Intel reference heatsink will be validated within the specific boundary conditions based on the methodology described Section 5 2 and using a thermal test vehicle Testing is done in a BTX chassis at ambient lab temperature The test results for a number of samples will be reported in terms of a worst case mean 3o value for thermal characterization parameter using real processors based on the thermal test vehicle correction factors 5 2 Environmental Reliability Testing 5 2 1 Structural Reliability Testing Structural reliability tests consist of unpackaged system level vibration and shock tests of a given thermal solution in the assembled state The thermal solution should meet the specified thermal performance
105. l times THERMTRI P Signal In the event of a catastrophic cooling failure the processor will automatically shut down when the silicon temperature has exceeded the TCC activation temperature by approximately 20 to 25 C At this point the system bus signal THERMTRIP goes active and power must be removed from the processor THERMTRIP activation is independent of processor activity and does not generate any bus cycles Refer to the processor datasheet for more information about THERMTRI P2 The temperature where the THERMTRIP signal goes active is individually calibrated during manufacturing and once configuration cannot be changed Cooling System Failure Warning It may be useful to use the PROCHOT signal as an indication of cooling system failure Messages could be sent to the system administrator to warn of the cooling failure while the thermal control circuit would allow the system to continue functioning or allow a normal system shutdown If no thermal management action is taken the silicon temperature may exceed the operating limits causing THERMTRIP to activate and shut down the processor Regardless of the system design requirements or thermal solution ability the Thermal Monitor feature must still be enabled to ensure proper processor operation Thermal and Mechanical Design Guidelines m Thermal Management Logic and Thermal Monitor Feature tel 4 2 10 Digital Thermal Sensor Multiple digital thermal sensors ca
106. ly develops above the fan hub and hub spokes Measurements should be taken at four different locations uniformly placed at the center of the annulus formed by the fan hub and the fan housing to evaluate the uniformity of the air temperature at the fan inlet The thermocouples should be placed approximately 3 mm to 8 mm 0 1 to 0 3 in above the fan hub vertically and halfway between the fan hub and the fan housing horizontally as shown in the ATX heatsink in Figure 3 2 avoiding the hub spokes Using an open bench to characterize an active heatsink can be useful and usually ensures more uniform temperatures at the fan inlet However additional tests that include a solid barrier above the test motherboard surface can help evaluate the potential impact of the chassis This barrier is typically clear Plexiglas extending at least 100 mm 4 in in all directions beyond the edge of the thermal solution Typical distance from the motherboard to the barrier is 81 mm 3 2 in For even more realistic airflow the motherboard should be populated with significant elements like memory cards graphic card and chipset heatsink If a barrier is used the thermocouple can be taped directly to the barrier with a clear tape at the horizontal location as previously described half way between the fan hub and the fan housing If a variable speed fan is used it may be useful to add a thermocouple taped to the barrier above the location of the temperature sensor used by t
107. mal and Mechanical Design Guidelines 27 n tel Thermal Metrology Ysa is a measure of the thermal characterization parameter from the bottom of the heatsink to the local ambient air Ysa is dependent the heatsink material thermal conductivity and geometry It is also strongly dependent on the air velocity through the fins of the heatsink Figure 3 1 illustrates the combination of the different thermal characterization parameters Figure 3 1 Processor Thermal Characterization Parameter Relationships 3 1 1 28 e N Heatsink gt Processor EE LGA775 Socket System Board Example The cooling performance is defined using the principle of thermal characterization parameter described above e The case temperature Tc max and thermal design power TDP given in the processor datasheet e Define a target local ambient temperature at the processor TA Since the processor thermal profile applies to all processor frequencies it is important to identify the worst case lowest cq for a targeted chassis characterized by T4 to establish a design strategy The following provides an illustration of how one might determine the appropriate performance targets The example power and temperature numbers used here are not related to any specific Intel processor thermal specifications and are for illustrative purposes only Thermal and Mechanical Desig
108. n Guidelines Thermal Metrology n te Assume the TDP as listed the datasheet is 100 W the maximum case temperature from the thermal profile for 100 W is 67 C Assume as well that the system airflow has been designed such that the local ambient temperature is 38 C Then the following could be calculated using equation 1 from above Yoa Tc Ta TDP 67 38 100 0 29 C W To determine the required heatsink performance a heatsink solution provider would need to determine performance for the selected and mechanical load configuration If the heatsink solution were designed to work with a TIM material performing at cs x 0 10 C W solving for equation 2 from above the performance of the heatsink would be 3 2 Processor Thermal Solution Performance Assessment Thermal performance of a heatsink should be assessed using a thermal test vehicle TTV provided by Intel The TTV is a stable heat source that the user can make accurate power measurement whereas processors can introduce additional factors that can impact test results In particular the power level from actual processors varies significantly even when running the maximum power application provided by Intel due to variances in the manufacturing process The TTV provides consistent power and power density for thermal solution characterization and results can be easily translated to real processor performance Accurate measurement of t
109. n be implemented within the package without adding a pair of signal pins per sensor as required with the thermal diode The digital thermal sensor is easier to place in thermally sensitive locations of the processor than the thermal diode This is achieved due to a smaller foot print and decreased sensitivity to noise Since the DTS is factory set on a per part basis there is no need for the health monitor components to be updated at each processor family The processor uses the Digital Thermal Sensor DTS as the on die sensor to use for fan speed control FSC The DTS is monitoring the same sensor that activates the TCC see Section 4 2 2 Readings from the DTS are relative to the activation of the TCC The DTS value where TCC activation occurs is 0 zero A Tcontrox Value will be provided for use with DTS The usage model for Tcontrot with the DTS as below e If the Digital thermal sensor reading is less than TCONTROL the fan speed can be reduced e If the Digital thermal sensor reading is greater than or equal to TCONTROL then TC must be maintained at or below the Thermal Profile for the measured power dissipation The DTS Tceontrot Value is factory configured and is written into Torrser MSR The BIOS can read the Torrser MSR and provide this value to the fan speed control device Figure 4 3 Tcontro for Digital Thermal Sensor Digital Thermometer Temperature
110. nch from the bead Thermal and Mechanical Design Guidelines 91 m e in tel Case Temperature Reference Metrology 5 Using the microscope and tweezers bend the tip of the thermocouple at approximately 10 degree angle by about 0 8 mm 030 inch from the tip Figure 7 17 Figure 7 17 Bending the Tip of the Thermocouple E D 5 2 Thermocouple Attachment to the I HS 6 Clean groove and IHS with Isopropyl Alcohol IPA and a lint free cloth removing all residues prior to thermocouple attachment 7 Place the thermocouple wire inside the groove letting the exposed wire and bead extend about 1 5 mm 0 030 inch past the end of groove Secure it with Kapton tape Figure 7 18 Clean the IHS with a swab and IPA 8 Verify under the microscope that the thermocouple wires are straight and parallel in the groove and that the bead is still bent Figure 7 18 Securing Thermocouple Wires with Kapton Tape Prior to Attach 92 Thermal and Mechanical Design Guidelines m e Case Temperature Reference Metrology tel 9 Lift the wire at the middle of groove with tweezers and bend the front of wire to place the thermocouple in the groove ensuring the tip is in contact with the end and bottom of the groove in the IHS Figure 7 19 A B Figure 7 19 Thermocouple Bead Placement B 10 Place the package under the microscope to continue with process It is also recommended
111. ness in the enabled state 2 3 4 Thermal I nterface Material Thermal interface material application between the processor 5 and the heatsink base is generally required to improve thermal conduction from the IHS to the heatsink Many thermal interface materials can be pre applied to the heatsink base prior to shipment from the heatsink supplier and allow direct heatsink attach without the need for a separate thermal interface material dispense or attach process in the final assembly factory All thermal interface materials should be sized and positioned on the heatsink base in a way that ensures the entire processor IHS area is covered It is important to compensate for heatsink to processor attach positional alignment when selecting the proper thermal interface material size When pre applied material is used it is recommended to have a protective application tape over it This tape must be removed prior to heatsink installation Thermal and Mechanical Design Guidelines 23 m e n tel Processor Thermal Mechanical nformation 2 4 2 4 1 System Thermal Solution Considerations Chassis Thermal Design Capabilities The Intel reference thermal solutions and Intel Boxed Processor thermal solutions assume that the chassis delivers a maximum Ty at the inlet of the processor fan heatsink The following tables show the T4 requirements for the reference solutions and Intel Boxed Processor thermal solutions Table 2 1 Heatsink
112. nment that will have up to a 35 C ambient temperature external to the system For ATX platforms an active air cooled design assumed be used in ATX Chassis with a fan installed at the top of the heatsink equivalent to the reference design see Chapter 6 should be designed to manage the processor TDP at an inlet temperature of 35 C 5 C 40 C For BTX platforms a front to back cooling design equivalent to Intel BTX TMA Type 11 reference design see the Chapter 5 should be designed to manage the processor TDP at an inlet temperature of 35 C 0 5 35 5 C The slope of the thermal profile was established assuming a generational improvement in thermal solution performance of the Intel reference design For an example of Intel Core 2 Duo Processor E8000 series with 6 ATX platform its improvement is about 15 over the Intel reference design E18764 001 This performance is expressed as the slope on the thermal profile and can be thought of as the thermal resistance of the heatsink attached to the processor Y Refer to Section 3 1 The intercept on the thermal profile assumes a maximum ambient operating condition that is consistent with the available chassis solutions Thermal and Mechanical Design Guidelines 19 a n tel Processor Thermal Mechanical nformation The thermal profiles for the Intel Core 2 Duo processor E8000 series with 6 cache Intel Core 2 Duo processor E7000 series with
113. nstallation on the processor and motherboard Refer to Figure 7 9 The depth of the pocket depends on the height of the load cell used for the test It is necessary that the load cells protrude out of the heatsink base However this protrusion should be kept minimal as it will create additional load by artificially raising the heatsink base The measurement offset depends on the whole assembly stiffness that is motherboard clip fastener and so forth For example the reference design clip and fasteners assembly stiffness is around 380 N mm 2180 Ib in In that case a protrusion of 0 038 mm 0 0015 will create an extra load of 15 N 3 3 Ib Figure 7 10 shows an example using the reference design Note When optimizing the heatsink pocket depth the variation of the load cell height should also be taken into account to make sure that all load cells protrude equally from the heatsink base It may be useful to screen the load cells prior to installation to minimize variation Thermal and Mechanical Design Guidelines 77 n tel Heatsink Clip Load Metrology Remarks Alternate Heatsink Sample Preparation As mentioned above making sure that the load cells have minimum protrusion out of the heatsink base is paramount to meaningful results An alternate method to make sure that the test setup will measure loads representative of the non modified design is e Machine the pocket in the heat sink base to a depth such that the tips of
114. ocket load A larger groove may cause the IHS to warp under the socket load such that it does not represent the performance of an ungrooved IHS on production packages Inspect parts for compliance to specifications before accepting from machine shop 90 Thermal and Mechanical Design Guidelines E Case Temperature Reference Metrology n tel D 5 Thermocouple Attach Procedure The procedure to attach a thermocouple with solder takes about 15 minutes to complete Before proceeding turn on the solder block heater as it can take up to 30 minutes to reach the target temperature of 153 155 C Note To avoid damage to the processor ensure the IHS temperature does not exceed 155 C As a complement to the written procedure a video Thermocouple Attach Using Solder Video CD ROM is available D 5 1 Thermocouple Conditioning and Preparation 1 Use a calibrated thermocouple as specified in Sections D 2 and D 3 2 Under a microscope verify the thermocouple insulation meets the quality requirements The insulation should be about 1 16 inch 0 062 0 030 from the end of the bead Figure 7 16 Figure 7 16 Inspection of Insulation on Thermocouple 3 Measure the thermocouple resistance by holding both contacts on the connector on one probe and the tip of thermocouple to the other probe of the DMM measurement should be about 3 0 ohms for 36 gauge type T thermocouple 4 Straighten the wire for about 38 mm 1 i
115. of proper controls for thermal measurements NOTES 1 It is recommended to follow company standard procedures and wear safety items like glasses for cutting the IHS and gloves for chemical handling 2 Ask your Intel field sales representative if you need assistance to groove and or install a thermocouple according to the reference process D 4 I HS Groove Cut a groove in the package IHS see the drawings given in Figure 7 12 and Figure 7 13 The groove orientation in Figure 7 12 is toward the IHS notch to allow the thermocouple wire to be routed under the socket lid This will protect the thermocouple from getting damaged or pinched when removing and installing the heatsink see Figure 7 37 Thermal and Mechanical Design Guidelines 87 intel Case Temperature Reference Metrology Figure 7 12 775 LAND LGA Package Reference Groove Drawing at 6 o clock Exit ETAIL 4 020 003 ENTERS 10 07 7 01504 0015 0 3814 mar Z 222222 2 A LA KATA DETAIL A SCALE 20 000 SECTION SCALE 6 UNLESS OTHERWISE SPECIFIED DESIGNED BY DATE DEPARTMENT m RE pour M m intel FO BO DM DIMENSIONS ABE IN INCHES CORP SANTA CLARA CA 95052 8119 TES FPSO 0 CHECKED BY DATE TITLE XXX 9 0 X ANGLE PROJECTION APBROVEDUBY e DATE LGA775 IFS GROOVE ron SOLOER DETAIL B X THERMOCOUPLE ATTACH SCALE 20 000 MATERIAL SIZE CAGE CODE DRAWING NUMBER REV GC FINISH COPPER D59693
116. onflict with systems in strict compliance with the ATX specification which allows an obstruction as low as 76 2 mm above the motherboard surface in Area A Environmental Reliability Testing Structural Reliability Testing Structural reliability tests consist of unpackaged board level vibration and shock tests of a given thermal solution in the assembled state The thermal solution should meet the specified thermal performance targets after these tests are conducted however the test conditions outlined here may differ from your own system requirements Random Vibration Test Procedure Duration 10 min axis 3 axes Frequency Range 5 Hz to 500 Hz Power Spectral Density PSD Profile 3 13 G RMS Thermal and Mechanical Design Guidelines 57 a amp In tel ATX Thermal Mechanical Design Information Figure 6 3 Random Vibration PSD 0 1 3 13GRMS 10 minutes per axis 20 0 02 500 0 02 T 5 0 01 0 01 a o n 5 Hiz 500 Hz 0 001 1 10 100 1000 Frequency Hz 6 3 1 2 Shock Test Procedure Recommended performance requirement for a motherboard e Quantity 3 drops for and directions in each of 3 perpendicular axes that is total 18 drops e Profile 50 G trapezoidal waveform 170 in sec minimum velocity change e Setup Mount sample board on test fixture Figure 6 4 Shock Acceleration Curve omona gt Time milliseconds
117. pplications are then evaluated in a controlled thermal environment to determine their sensitivity to activation of the thermal control circuit This data is used to derive the TDP targets published in the processor datasheet Thermal and Mechanical Design Guidelines 37 m in tel Thermal Management Logic and Thermal Monitor Feature 4 2 7 4 2 8 4 2 9 38 A system designed to meet the thermal profile specification published in the processor datasheet greatly reduces the probability of real applications causing the thermal control circuit to activate under normal operating conditions Systems that do not meet these specifications could be subject to more frequent activation of the thermal control circuit depending upon ambient air temperature and application power profile Moreover if a system is significantly under designed there is a risk that the Thermal Monitor feature will not be capable of reducing the processor power and temperature and the processor could shutdown and signal THERMTRIP For information regarding THERMTRIP refer to the processor datasheet and to Section 4 2 8 of this Thermal Design Guidelines Operating System and Application Software Considerations The Thermal Monitor feature and its thermal control circuit work seamlessly with ACPI compliant operating systems The Thermal Monitor feature is transparent to application software since the processor bus snooping ACPI timer and interrupts are active at al
118. processor power consumption An on die thermal management feature called Thermal Monitor is available on the processor It provides a thermal management approach to support the continued increases in processor frequency and performance By using a highly accurate on die temperature sensing circuit and a fast acting Thermal Control Circuit TCC the processor can rapidly initiate thermal management control The Thermal Monitor can reduce cooling solution cost by allowing thermal designs to target TDP The processor also supports an additional power reduction capability known as Thermal Monitor 2 described in Section 4 2 3 4 2 Thermal Monitor mplementation The Thermal Monitor consists of the following components e A highly accurate on die temperature sensing circuit e A bi directional signal PROCHOT that indicates if the processor has exceeded its maximum temperature or can be asserted externally to activate the Thermal Control Circuit TCC see Section 4 2 1 for more details on user activation of TCC using the PROCHOT signal e Thermal Control Circuit that will attempt to reduce processor temperature by rapidly reducing power consumption when the on die temperature sensor indicates that it has exceeded the maximum operating point e Registers to determine the processor thermal status Thermal and Mechanical Design Guidelines 33 m in tel Thermal Management Logic and Thermal Monitor Feature Note 4 2 2 4 2 2 1
119. provide proper cooling for the VR and rely on bi directional PROCHOT signal only as a backup in case of system cooling failure A thermal solution designed to meet the thermal profile specifications should rarely experience activation of the TCC as indicated by the PROCHOT signal going active Thermal Control Circuit The Thermal Control Circuit portion of the Thermal Monitor must be enabled for the processor to operate within specifications The Thermal Monitor s TCC when active will attempt to lower the processor temperature by reducing the processor power consumption There are two methods by which TCC can reduce processor power dissipation These methods are referred to as Thermal Monitor 1 TM1 and Thermal Monitor 2 TM2 Thermal Monitor In the original implementation of thermal monitor this is done by changing the duty cycle of the internal processor clocks resulting in a lower effective frequency When active the TCC turns the processor clocks off and then back on with a predetermined duty cycle The duty cycle is processor specific and is fixed for a particular processor The maximum time period the clocks are disabled is 3 us This time period is frequency dependent and higher frequency processors will disable the internal clocks for a shorter time period Figure 4 1 illustrates the relationship between the internal processor clocks and PROCHOT Performance counter registers status bits in model specific registers MSRs
120. r preload The nominal preload design point for the Thermal Module is based on a combination of requirements of the TIM ease of assembly and the Thermal Module effective stiffness Figure 5 6 Minimum Required Processor Preload to Thermal Module Assembly Stiffness Minimum Preload Required for Socket Protection 300 0 250 0 200 0 150 0 Minimum Preload N 100 0 50 0 0 0 100 200 300 400 500 600 700 800 800 1000 Thermal Module Assembly Stiffness N mm NOTES 1 The shaded region shown is the acceptable domain for Thermal Module assembly effective stiffness and processor preload combinations The Thermal Module design should have a design preload and stiffness that lies within this region The design tolerance for the preload and TMA stiffness should also reside within this boundary Note that the lower and upper horizontal boundaries represent the preload limits provided in Table 5 4 The equation for the left hand boundary is described in note 2 2 The equation for this section of the preload Thermal Module stiffness boundary is given by the following relationship Min Preload 1 38E 3 k 2 1 18486k 320 24753 for k lt 300 N mm where k is the Thermal Module assembly effective stiffness Note that this equation is only valid in the stiffness domain of 93N mm lt k lt 282N mm This equation would not apply for example for TMA stiffness less than 93N mm 3 target stiffness for the 65W
121. r the thermal requirements of each component In addition acoustic noise constraints may limit the size number placement and types of fans that can be used in a particular design To ease the burden on thermal solutions the Thermal Monitor feature and associated logic have been integrated into the silicon of the processor By taking advantage of the Thermal Monitor feature system designers may reduce thermal solution cost by designing to TDP instead of maximum power Thermal Monitor attempts to protect the processor during sustained workload above TDP Implementation options and recommendations are described in Chapter 4 2 4 3 Summary In summary considerations in heatsink design include e The local ambient temperature T4 at the heatsink which is a function of chassis design e The thermal design power TDP of the processor and the corresponding maximum Tc as calculated from the thermal profile These parameters are usually combined in a single lump cooling performance parameter Yc case to air thermal characterization parameter More information on the definition and the use of ca is given Section 3 1 Heatsink interface to IHS surface characteristics including flatness and roughness e The performance of the thermal interface material used between the heatsink and the IHS The required heatsink clip static load between 18 Ibf to 70 Ibf throughout the life of the product Refer to Section 2 1 2 2 for further informa
122. rated by the processor and other system components out of the system The number size and relative position of fans and vents determine the chassis thermal performance and the resulting ambient temperature around the processor The size and type passive or active of the thermal solution and the amount of system airflow can be traded off against each other to meet specific system design constraints Additional constraints are board layout spacing component placement acoustic requirements and structural considerations that limit the thermal solution size For more information refer to the Performance ATX Desktop System Thermal Design Suggestions or Performance microATX Desktop System Thermal Design Suggestions or Balanced Technology Extended BTX System Design Guide documents available on the http www formfactors org web site Thermal and Mechanical Design Guidelines m Processor Thermal Mechanical nformation n te D In addition to passive heatsinks fan heatsinks and system fans are other solutions that exist for cooling integrated circuit devices For example ducted blowers heat pipes and liquid cooling are all capable of dissipating additional heat Due to their varying attributes each of these solutions may be appropriate for a particular system implementation To develop a reliable cost effective thermal solution thermal characterization and simulation should be carried out at the entire system level accounting fo
123. rations There are anticipated system operating conditions in which the processor power may be low but other system component powers may be high If the only Fan Speed Control FSC circuit input for the Thermal Module Assembly TMA fan is from the processor sensor then the fan speed and system airflow is likely to be too low in this operating state Therefore it is recommended that a second FSC circuit input be acquired from an ambient temperature monitor location within the system The location of the System Monitor thermal sensor is best determined through extensive system level numerical thermal modeling or prototype thermal testing In either case the temperature of critical components or the air temperature near critical components should be assessed for a range of system external temperatures component powers and fan speed operating conditions The temperature at the selected location for the System Monitor Point should be well correlated to the temperatures at or near critical components For instance it may be useful to monitor the temperature near the PSU airflow inlet near the graphics add in card or near memory The final system integrator is typically responsible for ensuring compliance with the component temperature specifications at all operating conditions and therefore should be responsible for specifying the System Monitor thermal sensor location However it is not always possible for a board supplier especially a channel
124. rmal Requirements Point e 0 50 C W Core 2 Duo processor E8000 series 6 MB e 0 52 C W Core 2 Duo processor E7000 series 3 MB Pentium dual core processor E6000 E5000 series 2 MB and Intel Celeron processor E3x00 series with 1 MB e 0 65 C W Core 2 Duo processor E8000 series Thermal Design with 6 MB Power Fan 0 68 C W Core 2 Duo processor E7000 series Speed limited MB Pentium dual core processor E6000 E5000 by the fan hub series 2 MB and Intel Celeron processor E3x00 thermistor series with 1 MB NOTES 1 Acoustic performance is defined in terms of measured sound power LwA as defined in ISO 9296 standard and measured according to ISO 7779 While the fan hub thermistor helps optimize acoustics at high processor workloads by adapting the maximum fan speed to support the processor thermal profile additional acoustic improvements can be achieved at lower processor workload by using the Tcontrot Specifications described in Section 2 2 4 Intel recommendation is to use the fan with 4 Wire PWM Controlled to implement fan speed control capability based digital thermal sensor temperature Refer to Chapter 7 for further details Appendix F gives detailed fan performance for the Intel reference thermal solutions with 4 Wire PWM Controlled fan Altitude Many companies design products that must function reliably at high altitude typically 1 500 m 5 000 ft or more Air cooled temperature calc
125. rmal and Mechanical Design Guidelines m ATX Thermal Mechanical Design I nformation intel 6 ATX Thermal Mechanical Design Information 6 1 ATX Reference Design Requirements This chapter will document the requirements for an active air cooled design with a fan installed at the top of the heatsink The thermal technology required for the processor The Intel Core 2 Duo processor E8000 E7000 series Intel Pentium dual core processor E6000 E5000 series and Intel Celeron processor E3x00 series require a thermal solution equivalent to the E18764 001 reference design see Figure 6 1 for an exploded view of this reference design Note The part number E18764 001 provided in this document is for reference only The revision number 001 may be subject to change without notice The E18764 001 reference design takes advantage of an acoustic improvement to reduce the fan speed to show the acoustic advantage its acoustic results show in the Table 6 2 The E18764 001 reference design takes advantage of the cost savings for the several features of the design including the reduced heatsink height inserted aluminum core and the new TIM material Dow Corning TC 1996 grease see Figure 6 2 The overall 46 mm height thermal solution supports the unique and smaller desktop PCs including small and ultra small form factors down to the 5L size see uATX SFF Guidance for additional details on uATX SFF design Thermal and Mechanical Design G
126. rmation TC TT T 36 72 Calibration and Control Ice Point Cell Omega stable 0 temperature source for TRCIII calibration and offset Hot Point Cell Omega temperature source to control and CL950 A 110 understand meter slope gain 1 The Solder Station consisting of the Heater Block Heater Press and Transformer are available from Jemelco Engineering 480 804 9514 2 This part number is a custom part with the specified insulation trimming and packaging requirements necessary for quality thermocouple attachment See Figure 7 11 Order from Omega Anthony Alvarez Direct phone 203 359 7671 Direct fax 203 968 7142 E Mail aalvarezgomega com Figure 7 11 Omega Thermocouple 86 Thermal and Mechanical Design Guidelines E Case Temperature Reference Metrology n tel D 3 Thermal Calibration and Controls It is recommended that full and routine calibration of temperature measurement equipment be performed before attempting to perform temperature case measurement Intel recommends checking the meter probe set against known standards This should be done at 02 C using ice bath or other stable temperature source and at an elevated temperature around 802 C using an appropriate temperature source Wire gauge and length also should be considered as some less expensive measurement systems are heavily impacted by impedance There are numerous resources available throughout the industry to assist with implementation
127. s eroe Ee AY Kr inate 61 6 6 Geometric Envelope for Intel Reference ATX Thermal Mechanical Design 61 6 7 Reference Attach 62 6 7 1 Structural Design 5 62 6 7 2 Mechanical Interface to the Reference Attach Mechanism 63 Intel Quiet System Technology Intel QST n 65 7 1 Intel QST Algorithm m ee nme nnne nnn nnne nenas 65 7 1 1 Output Weighting MatriX rr 66 7 1 2 Proportional Integral Derivative PID 66 7 2 Board and System Implementation of Intel 68 Thermal and Mechanical Design Guidelines 7 3 Intel QST Configuration and Tuning 70 7 4 Fan Hub Thermistor and Intel QST n n 70 Appendix LGA775 Socket Heatsink Loading r esee nens 71 A 1 LGA775 Socket Heatsink Considerations 2 2 71 A 2 Metric for Heatsink Preload for ATX uATX Designs Non Compliant with Intel Reference DESION UTERE 71 A 3 Heatsink Preload Requirement 71 A 3 1 Motherboard Deflection Metric Definition 72 A 3 2 Board Deflection
128. s for Enabling Components Sheet 1 112 Figure 7 41 ATX UATX Motherboard Keep out Footprint Definition and Height Restrictions for Enabling Components Sheet 2 113 Figure 7 42 ATX UATX Motherboard Keep out Footprint Definition and Height Restrictions for Enabling Components Sheet 114 Figure 7 43 BTX Thermal Module Keep Out Volumetric Sheet 1 115 Figure 7 44 BTX Thermal Module Keep Out Volumetric Sheet 2 116 Figure 7 45 BTX Thermal Module Keep Out Volumetric Sheet 3 117 Figure 7 46 BTX Thermal Module Keep Out Volumetric Sheet 4 118 Figure 7 47 BTX Thermal Module Keep Out Volumetric Sheet 5 119 Figure 7 48 ATX Reference Clip Sheet 1 120 Figure 7 49 ATX Reference Clip Sheet 2 eect eee eee ee eee 121 Figure 7 50 Reference Fastener Sheet 1 2 2222 122 Figure 7 51 Reference Fastener Sheet 2 22222 123 Figure 7 52 Reference Fastener Sheet 124 Figure 7 53 Reference Fastener Sheet 4 125 Figure 7 54 Intel E18764 001 Reference Solution 126 Thermal and Mechanica
129. s in approximately a 539 N 117 Ibf dynamic load on the processor package If a 178 N 40 Ibf static load is also applied on the heatsink for thermal performance of the thermal interface material the processor package could see up to a 717 N 156 Ibf The calculation for the thermal solution of interest should be compared to the processor datasheet specification No portion of the substrate should be used as a load bearing surface Finally the processor datasheet provides package handling guidelines in terms of maximum recommended shear tensile and torque loads for the processor IHS relative to a fixed substrate These recommendations should be followed in particular for heatsink removal operations Thermal and Mechanical Design Guidelines m Processor Thermal Mechanical nformation n te D 2 1 2 2 1 2 1 Note 2 1 2 2 Heatsink Attach General Guidelines There are no features on the LGA775 socket to directly attach a heatsink a mechanism must be designed to attach the heatsink directly to the motherboard In addition to holding the heatsink in place on top of the IHS this mechanism plays a significant role in the robustness of the system in which it is implemented in particular e Ensuring thermal performance of the thermal interface material TIM applied between the IHS and the heatsink TIMs based on phase change materials are very sensitive to applied pressure the higher the pressure the better the initial
130. se temperature specification can be met Power Cycling Thermal performance degradation due to TIM degradation is evaluated using power cycling testing The test is defined by 7500 cycles for the case temperature from room temperature 232 C to the maximum case temperature defined by the thermal profile at TDP A Thermal Test Vehicle is used for this test Thermal and Mechanical Design Guidelines 47 m amp In tel Balanced Technology Extended BTX Thermal Mechanical Design Information 5 2 3 5 3 48 Recommended OS CPU Memory Test Procedures This test is to ensure proper operation of the product before and after environmental stresses with the thermal mechanical enabling components assembled The test shall be conducted on a fully operational motherboard that has not been exposed to any battery of tests prior to the test being considered Testing setup should include the following components properly assembled and or connected e Appropriate system motherboard e Processor e All enabling components including socket and thermal solution parts e Power supply e Disk drive e Video card e DIMM e Keyboard e Monitor The pass criterion is that the system under test shall successfully complete the checking of BIOS basic processor functions and memory without any errors Material and Recycling Requirements Material shall be resistant to fungal growth Examples of non resistant materials include cellulose m
131. sor IHS above the motherboard The IHS height from the top of board is expected to vary from 7 517 mm to 8 167 mm This data is provided for information only and should be derived from The height of the socket seating plane above the motherboard after reflow given in the LGA775 Socket Mechanical Design Guide with its tolerances The height of the package from the package seating plane to the top of the IHS and accounting for its nominal variation and tolerances that are given in the corresponding processor datasheet e Engages easily and if possible without the use of special tools In general the heatsink is assumed to be installed after the motherboard has been installed into the chassis e Minimizes contact with the motherboard surface during installation and actuation to avoid scratching the motherboard Thermal Requirements Refer to the datasheet for the processor thermal specifications The majority of processor power is dissipated through the IHS There are no additional components such as BSRAMs that generate heat on this package The amount of power that can be dissipated as heat through the processor package substrate and into the socket is usually minimal The thermal limits for the processor the Thermal Profile and Tcontrot The Thermal Profile defines the maximum case temperature as a function of power being dissipated Tcowraor is a specification used in conjunction with the temperature reported by the
132. ssor 15 2 1 2 Heatsink 17 2 1 2 1 General ee 17 2 1 2 2 Heatsink Clip Load 17 2 1 2 3 Additional 18 2 2 Thermal Requirements oce manusapa 18 2 2 1 Processor Case 18 2 2 2 Thermal Profile ee YAT ORE ERI E ete 19 2 2 3 Thermal Solution Design 19 2 2 4 BESOISRERNELOCDILOTIDTLM ETT 20 2 3 Heatsink Design Considerations rr 21 2 3 1 Heatsink SIze ueteres c 22 2 3 2 Heatsink Mass arp PI UM M DU PERI I 22 2 3 3 Package HS Flatness ceret EAR ERA RI CREER 23 2 3 4 Thermal Interface Material r e 23 2 4 System Thermal Solution Considerations 111 24 2 4 1 Chassis Thermal Design 24 2 4 2 Improving Chassis Thermal 24 2 4 3 SUMIMARLY 25 2 5 System Integration
133. t is the specification limit for use with the on die thermal diode Pulse width modulation is a method of controlling a variable speed fan The PWM enabled 4 wire fans use the PWM duty cycle from the fan speed controller to modulate the fan speed Health Any standalone or integrated component that is capable of reading the Monitor processor temperature and providing the PWM signal to the 4 pin fan header Component BTX Balanced Technology Extended TMA Thermal Module Assembly The heatsink fan and duct assembly for the BTX thermal solution Thermal and Mechanical Design Guidelines m Processor Thermal Mechanical nformation tel 2 1 2 1 1 Processor Thermal Mechanical Information Mechanical Requirements Processor Package The processors covered in the document are packaged in a 775 Land LGA package that interfaces with the motherboard using a LGA775 socket Refer to the datasheet for detailed mechanical specifications The processor connects to the motherboard through a land grid array LGA surface mount socket The socket contains 775 contacts arrayed about a cavity in the center of the socket with solder balls for surface mounting to the motherboard The socket is named LGA775 socket A description of the socket can be found in the LGA775 Socket Mechanical Design Guide The package includes an integrated heat spreader IHS that is shown in Figure 2 1 for illustration only Refer to the processor datas
134. targets after these tests are conducted however the test conditions outlined here may differ from your own system requirements 5 2 1 1 Random Vibration Test Procedure Recommended performance requirement for a system e Duration 10 min axis 3 axes e Frequency Range 5 Hz to 500 Hz 5 Hz 001 g2 Hz to 20 Hz 0 01 g2 Hz slope up 20 Hz to 500 Hz 0 01 g2 Hz flat e Power Spectral Density PSD Profile 2 2 G RMS Thermal and Mechanical Design Guidelines 45 m e In tel Balanced Technology Extended BTX Thermal Mechanical Design nformation Figure 5 2 Random Vibration PSD Vibration System Level 0 1 3 dB Control Limit 0 01 8 dB Control Limit D 0 001 0 0001 1 10 100 1000 Hz 5 2 1 2 Shock Test Procedure Recommended performance requirement for a system eQuantity 2 drops for and directions in each of 3 perpendicular axes that is total 12 drops eProfile 25 G trapezoidal waveform 225 in sec minimum velocity change systems gt 20 Ibm 250 in sec minimum velocity change systems lt 20 Ibm eSetup Mount sample system on tester Figure 5 3 Shock Acceleration Curve 80 T T Ti T 50 2469 G s 21 90 msec 205 02 In S 455 58 Filter Hz 37 17 MaxG s 6 46 Min G s 40 Acceleration G s Faired Magnitude Time msec 40 46 Thermal and Mechanical Design Guidelines m Balance
135. tel Figure 7 41 ATX pATX Motherboard Keep out Footprint Definition and Height Restrictions for Enabling Components Sheet 2 8 7 6 5 4 3 72 1 BOARD SECONDARY SIDE A AN D X 01000 E D COMPONENT VOLUMETRC NXN N EIN NON IN d SOCKET BALL 1 _ SOCKET amp PROCESSOR VOLUMETRIC KEEP N OUTLINE l ROUTING KEEP OUTS C E _ SOCKET BALL 1 F FRIDE B B ee SOCKET 8 PROCESSOR VOLUMETRICKEEPIN LEGEND A COMPONENT KEEP OUT MS A ROUTING KEEP OUT T imm 8 7 6 5 4 3 2 1 Thermal and Mechanical Design Guidelines 113 Mechanical Drawings intel Figure 7 42 ATX pATX Motherboard Keep out Footprint Definition and Height Restrictions for Enabling Components Sheet 3 8 7 6 5 4 3
136. the load cells are just flush with the heat sink base e Then machine back the heatsink base by around 0 25 mm 0 01 so that the load cell tips protrude beyond the base Proceeding this way the original stack height of the heatsink assembly should be preserved This should not affect the stiffness of the heatsink significantly Figure 7 8 Load Cell Installation in Machined Heatsink Base Pocket Bottom View Heatsink Base Pocket Package IHS Outline Top Diameter 29 mm Surface 1 15 Load Cells Thermal and Mechanical Design Guidelines Thermal and Mechanical Design Guidelines a e n tel Heatsink Clip Load Metrology B 2 2 Typical Test Equipment For the heatsink clip load measurement use equivalent test equipment to the one listed in Table 7 2 Table 7 2 Typical Test Equipment e e wmm Load cell Honeywell Sensotec Model 13 subminiature AL322BL Notes 1 5 load cells compression only Select a load range depending on load level being tested www sensotec com Data Logger or Vishay Measurements Group Model 6100 Model 6100 scanner scanner with a 6010A strain card one card Notes 2 3 4 required per channel 1 Select load range depending on expected load level It is usually better whenever possible to operate in the high end of the load cell capability Check with your load cell vendor for further information 2 Since the load cells are c
137. thin spec for specified duty cycle In addition to comply with overall thermal requirements Sections 5 1 1 and 6 2 and the general environmental reliability requirements Sections 5 2 and 6 3 the fan should meet the following performance requirements e Mechanical wear out represents the highest risk reliability parameter for fans The capability of the functional mechanical elements ball bearing shaft and tower assembly must be demonstrated to a minimum useful lifetime of 57 000 hours e In addition to passing the environmental reliability tests described in Sections 5 2 and 6 3 the fan must demonstrate adequate performance after 7 500 on off cycles with each cycle specified as 3 minutes on 2 minutes off at a temperature of 70 C See the Fan Specification for 4 wire PWM Controlled Fans for additional details on the fan specification Thermal and Mechanical Design Guidelines 109 i n tel Fan Performance for Reference Design 110 Thermal and Mechanical Design Guidelines Mechanical Drawings intel Appendix GMechanical Drawings The following table lists the mechanical drawings included in this appendix These drawings refer to the reference thermal mechanical enabling components for the processor Note Intel reserves the right to make changes and modifications to the design as necessary Drawing Description Page Number Motherboard Keep out Footprint Definition and Height 112 Restrictions for En
138. tion e Surface area of the heatsink e Heatsink material and technology e Volume of airflow over the heatsink surface area e Development of airflow entering and within the heatsink area e Physical volumetric constraints placed by the system 2 5 System Integration Considerations Manufacturing with Intel Components using 775 Land LGA Package and LGA775 Socket documentation provides Best Known Methods for all aspects LGA775 socket based platforms and systems manufacturing Of particular interest for package and heatsink installation and removal is the System Assembly module A video covering system integration is also available Contact your Intel field sales representative for further information Thermal and Mechanical Design Guidelines 25 26 Processor Thermal Mechanical nformation Thermal and Mechanical Design Guidelines Thermal Metrology n te Thermal Metrology This section discusses guidelines for testing thermal solutions including measuring processor temperatures In all cases the thermal engineer must measure power dissipation and temperature to validate a thermal solution To define the performance of a thermal solution the thermal characterization parameter V psi will be used 3 1 Characterizing Cooling Performance Requirements The idea of a thermal characterization parameter psi is a convenient way to characterize the performance needed for the thermal solution and to compare t
139. tive fan curve represents the performance of the fan component AND the impedance of the stator heatsink duct and flow partitioning devices The BTX system integrator can evaluate a TMA based on the effective fan curve of the assembly and the airflow impedance of their target system It is likely that at some operating points the fans speed will be driven by the system airflow requirements and not the processor thermal limits Figure 5 1 shows the effective fan curve for the reference design TMA These curves are based on analysis The boundary conditions used are the S2 6 9L reference chassis the reference TMA with the flow partitioning device extrusion and an AVC Type fan geometry When selecting a fan for use in the TMA care should be taken that similar effective fan curves can be achieved Final verification requires the overlay of the Type 11 MASI curve to ensure thermal compliance Thermal and Mechanical Design Guidelines 43 m e In tel Balanced Technology Extended BTX Thermal Mechanical Design Information Figure 5 1 Effective TMA Fan Curves with Reference Extrusion 5 1 4 0 400 0 350 Reference TMA 5300 RPM Reference TMA 9 2500 RPM 9 300 Reference TMA 1200 RPM 0 250 N 0 200 5 0 150 0 100 0 050 Em uem 0 0 5 0 10 0 15 0 20 0 25 0 30 0 35 0 Airflow cfm Voltage Regulator Thermal Management The BTX TMA is
140. to the plastic roll Figure 7 36 Figure 7 36 Finished Thermocouple Installation 39 Place the device in a tray or bag until it s ready to be used for thermal testing use Thermal and Mechanical Design Guidelines 103 e n tel Case Temperature Reference Metrology D 6 Thermocouple Wire Management When installing the processor into the socket the thermocouple wire should route under the socket lid as Figure 7 37 This will keep the wire from getting damaged or pinched when removing and installing the heatsink Note When thermocouple wires are damaged the resulting reading maybe wrong For example if there are any cuts into the wires insulation where the wires are pinched between the heatsink and the socket lid when installing the heatsink the thermocouple wires can get in contact at this location In that case the reported temperature would be the point of the heatsink socket lid area This temperature is usually much lower than the temperature at the center of the IHS Prior to installing the heatsink make sure that the thermocouple wires remain below the IHS top surface by running a flat blade on top of the IHS for example Figure 7 37 Thermocouple Wire Management 34 4 k x 104 Thermal and Mechanical Design Guidelines m e Balanced Technology Extended BTX System Thermal Considerations In tel Appendix E Balanced Technology Extended BTX System Thermal Conside
141. traints consist of the local ambient air temperature and airflow over the processor as well as the physical constraints at and above the processor The processor temperature depends in particular on the component power dissipation the processor package thermal characteristics and the processor thermal solution All of these parameters are affected by the continued push of technology to increase processor performance levels and packaging density more transistors As operating frequencies increase and packaging size decreases the power density increases while the thermal solution space and airflow typically become more constrained or remains the same within the system The result is an increased importance on system design to ensure that thermal design requirements are met for each component including the processor in the system Document Goals Depending on the type of system and the chassis characteristics new system and component designs may be required to provide adequate cooling for the processor The goal of this document is to provide an understanding of these thermal characteristics and discuss guidelines for meeting the thermal requirements imposed on single processor systems using the Intel Core 2 Duo processor E8000 E7000 series Intel Pentium dual core processor E6000 E5000 series and Intel Celeron processor E3x00 series The concepts given in this document are applicable to any system form factor Specific examples
142. uidelines 53 m tel ATX Thermal Mechanical Design Information 54 Figure 6 1 E18764 001 Reference Design Exploded View The ATX motherboard keep out and the height recommendations defined Section 6 6 remain the same for a thermal solution for the processor in the 775 Land LGA package Note If this fan design is used in your product and you will deliver it to end use customers you have the responsibility to determine an adequate level of protection such as protection barriers a cage or an interlock against contact with the energized fan by the user during user servicing Note Development vendor information for the reference design is provided in Appendix H Thermal and Mechanical Design Guidelines m ATX Thermal Mechanical Design I nformation intel 6 2 Validation Results for Reference Design 6 2 1 Heatsink Performance Table 6 1 provides the E18764 001 heatsink performance for the processors of Intel Core 2 Duo processor E8000 series with 6 MB cache Intel Core 2 Duo processor E7000 series with 3 MB cache Intel Pentium dual core processor E6000 E5000 series with 2 MB cache and Intel Celeron processor E3x00 series with 1 MB cache The results are based on the test procedure described in Section 6 2 4 The tables also include a T4 assumption of 40 C for the Intel reference thermal solution at the processor fan heatsink inlet discussed Section 2 4 1 Table 6 1 E
143. ulations and measurements at the test site elevation must be adjusted to take into account altitude effects like variation in air density and overall heat capacity This often leads to some degradation in thermal solution performance compared to what is obtained at sea level with lower fan performance and higher surface temperatures The system designer needs to account for altitude effects in the overall system thermal design to make sure that the requirement for the processor is met at the targeted altitude Thermal and Mechanical Design Guidelines m ATX Thermal Mechanical Design I nformation intel 6 2 4 Note 6 3 6 3 1 6 3 1 1 Heatsink Thermal Validation Intel recommends evaluation of the heatsink within the specific boundary conditions based on the methodology described Section 6 3 and using a thermal test vehicle Testing is done on bench top test boards at ambient lab temperature In particular for the reference heatsink the Plexiglas barrier is installed 81 28 mm 3 2 in above the motherboard refer to Sections 3 3 and 6 6 The test results for a number of samples are reported in terms of a worst case mean 3c value for thermal characterization parameter using real processors based on the thermal test vehicle correction factors The above 81 28 mm obstruction height that is used for testing complies with the recommended obstruction height of 88 9 mm for the ATX form factor However it would c
144. y 5 5 Geometric Envelope for Intel Reference BTX Thermal Module Assembly Figure 7 43 through Figure 7 47 in Appendix G provides the motherboard keep out information for the BTX thermal mechanical solutions Additional information on BTX design considerations can be found in the Balanced Technology Extended BTX System Design Guide available at http www formfactors org The maximum height of the TMA above the motherboard is 60 60 mm 2 386 inches for compliance with the motherboard primary side height constraints defined in the BTX Interface Specification for Zone A found at http www formfactors org Figure 5 4 Intel Type 11 TMA 65W Reference Design Development vendor information for the Intel Type II TMA Reference Solution is provided in Appendix H Thermal and Mechanical Design Guidelines 49 m e In tel Balanced Technology Extended BTX Thermal Mechanical Design I nformation 5 6 5 6 1 Preload and TMA Stiffness Structural Design Strategy Structural design strategy for the Intel TMA is to minimize upward board deflection during shock to help protect the LGA775 socket BTX thermal solutions use the SRM and TMA that together resists local board curvature under the socket and minimize board deflection Figure 5 5 In addition a moderate preload provides initial downward deflection Figure 5 5 Upward Board Deflection During Shock 5 6 2 50 Shock Load D H
Download Pdf Manuals
Related Search
Related Contents
SR87, CH33 / CH34 - Hegewald & Peschke Mess Tascam CD-601MKII CD Player User Manual LaCie Dupli Disc DVD121 8x Velleman MML16CN MMI ポータブル低圧持続吸引器 取扱説明書 Samsung SyncMaster User`s Manual Mizco TC-U100 battery charger Il Condizionamento di Precisione Copyright © All rights reserved.
Failed to retrieve file