Home
Seagate Cheetah ST3300457FC-20PK hard disk drive
Contents
1.
2. Copyright year changes with actual year RX SCSI Revision support Refer to the SPC release documentation for definitions PP 50 Inquiry data for an Inquiry command received on Port A 70 Inquiry data for an Inquiry command received on Port B R Four ASCII digits representing the last four digits of the product firmware release number S Eight ASCII digits representing the eight digits of the product serial number Bytes 18 through 26 reflect model of drive in hex format 11 3 2 Mode Sense data The Mode Sense command provides a way for the drive to report its operating parameters to the initiator The drive maintains four sets of mode parameters 1 Default values Default values are hard coded in the drive firmware stored in flash E PROM nonvolatile memory on the drive s PCB These default values can be changed only by downloading a complete set of new firmware into the flash E PROM An initiator can request and receive from the drive a list of default values and use those in a Mode Select command to set up new current and saved values where the values are changeable 2 Saved values Saved values are stored on the drive s media using a Mode Select command Only parameter values that are allowed to be changed can be changed by this method Parameters in the saved values list that are not changeable by the Mode Select command get their values from default values storage When power is applied to the dr
3. SQ et ie SA Abate ida ee 33 8 5 DATA BANDS sd re re ea du e bg Mines et 33 8 6 CRYPTOGRAPHIC ERASE sada GE whe arate ERE ew al deed A ERE UE 33 8 7 AUTHENTICATED FIRMWARE 33 8 8 POWER REQUIREMENIS DERI LE S Rem See ER da ia 33 8 9 SUPPORTED COMMANDS 4 33 9 0 DEFECT AND ERROR 34 9 1 DRIVE INTERNAL 8 34 9 2 DRIVE ERROR RECOVERY PROCEDURES 34 9 3 FG AE SYSTEM ERRORS roo RU RIA RS e ESL ace 35 9 4 BACKGROUND MEDIA 2 36 9 5 MEDIA PRE SCAN ieee tr Pra ecd ea che dn doe il e ra 36 9 6 DEFERRED AUTO REALLOCATION l l La 36 9 7 IDLE READ AFTER WRITE 5222 242 hed ee erbe PU A 36 10 0 INSTALLATION c Ree id cael tes me RR 37 10 4 DRIVE ID OPTION 37 10 02 DRIVE ORIENTATION t s cis 2 rene SUR re dor oe CE AR te re ee 37 10 35 COOLING Lai oett
4. ou CER a Rs 8 3 3 PERFORMANCE 22 deia das TE aa CR n 8 3 4 RELIABILITY o Rd art Nora dd ai ede e Re aa 8 3 5 FORMATTED CAPACITIES parets 4 Peale eh We PURI eI RS 8 3 5 1 Programmable drive 9 3 6 FACTORY INSTALLED OPTIONS 1 9 3 7 USER INSTALLED ACCESSORIES 9 PERFORMANCE CHARACTERISTICS 10 4 1 INTERNAL DRIVE CHARACTERISTICS 1 10 4 2 SEEK PERFORMANCE CHARACTERISTICS accorso doarst Vla hn 10 4 2 1 ACCESS time au sued mcg hepar erect ul dO cede Eve ROSE 10 4 2 2 Format command execution time 11 4 2 3 General performance characteristics 11 4 3 START STOP TIME 22 rre rooted sagre Rec PR ooa DR S eR UR Pe 11 4 4 PREFETCH MULTI SEGMENTED CACHE CONTROL 12 4 5 GACHE OPERATION em eese a OS OE VE eie ee KU SLE 12 4 5 1 Caching write data wsi tiet ii ee ce ca a 13 4 5 2 Prefetcn operation a nsss ernia dates uad EROR ea 13 RELIABILITY SPECIFICATIONS 14 5 1 ERROR RATES i v
5. Typical DCX 1 6 10 49 1 04 0 53 1 03 Maximum DC 3s 1 0 53 1 07 0 57 1 07 Maximum peak DC 3s 1 36 2 80 1 40 2 84 CHEETAH 15K 7 FC PRODUCT MANUAL REV E 20 Table 4 ST3300657FC DC power requirements 4 Gbit Amps Amps Voltage 12V 2 5V 12V 2 Regulation 5 2 18590 5 2 Avg idle current DCX 0 59 0 39 0 59 Maximum starting current peak DC DC 3s 0 62 1 91 peak AC AC 3s 0 98 3 57 Delayed motor start max 3s 0 56 0 04 DC Peak operating current Typical DCX 0 48 0 91 Maximum DC 3s 0 53 0 95 Maximum peak DC 3s 1 32 2 72 1 2 3 4 5 6 7 Measured with average reading DC ammeter Instantaneous 12V current peaks will exceed these values Power sup ply at nominal voltage N number of drives tested 6 35 Degrees C ambient For 12 V 1090 tolerance is allowed during initial spindle start but must return to 5 before reaching 15000 RPM The 5 must be maintained after the drive signifies that its power up sequence has been completed and that the drive is able to accept selection by the host initiator See 12V current profile in Figure 1 This condition occurs when the Motor Start option is enabled and the drive has not yet received a Start Motor command See paragraph 6 2 1 Conducted noise immunity Specified voltage tolerance includes ripple noise and transient response Operating condition is defined as random 8 block reads at 375 I Os per seco
6. modes 4h 7h OEh and OFh CHEETAH 15K 7 FC MANUAL REV E 47 Table 16 Supported commands continued Command Supported code Y N 4 Command name Write combined header and data mode 0 Write data mode 2 Download microcode mode 4 Executable state of standard SCSI commands in the presence of LBA banding Affects entire Drive Y N applies to SED models only Affected LBA User Data Unlocked Accessed ReadLock Write Y N Lock False Affected LBA Locked ReadLock Write Lock True Download microcode and save modes 5 Download microcode with offsets mode 6 Download microcode with offsets and save mode 7 Firmware download option 2 3Ch 3Ch 3Eh Read buffer Mode 1Ch Error Retrieval Mode Read buffer N Executable N Check Condition Executable Check Condition Read combined header and data mode 0 Read data mode 2 Read descriptor mode 3 Read long Check Condition Check Condition 3Fh 40h Write long 10 WR_UNCOR 0 Check Condition Check Condition Write long 10 WR_UNCOR 1 Change definition Executable Executable Check Condition Check Condtion 4th Write same 10 Executable Check Condition PBdata LBdata 42 4Bh Not used 4Ch 4Dh Log Select Log Sense N Executable Executable Executable
7. Less than 1 error 1074 bits transferred with typical receive eye See Section 11 6 4 FC Differential input on page 65 Annualized Failure Rate AFR 0 55 Preventive maintenance None required 5 1 ERROR RATES The error rates stated in this manual assume the following The drive is operated in accordance with this manual using DC power as defined in paragraph 6 2 DC power require ments Errors caused by host system failures are excluded from error rate computations Assume random data Default OEM error recovery settings are applied This includes AWRE ARRE full read retries full write retries and full retry time Error rate specified with automatic retries and data correction with ECC enabled and all flaws reallocated 5 1 4 Recoverable Errors Recovereable errors are those detected and corrected by the drive and do not require user intervention Recoverable Data errors use retries and correction Application of ECC on the fly correction alone is not considered a Recovered Data error Recovered Data error rate is determined using read bits transferred for recoverable errors occurring during a read and using write bits transferred for recoverable errors occurring during a write 5 1 2 Unrecoverable Errors Unrecoverable Data Errors Sense Key 03h are specified at less than 1 sector in error per 1016 bits transferred Unrecoverable Data Errors resulting from the same cause are treated as 1 error for t
8. Seagate Product Manual Cheetah 15K 7 FC Standard models Self Encrypting Drive models ST3600057FC ST3600957FC ST3450857FC ST3450757FC ST3300657FC ST3300557FC SED FIPS 140 2 models ST3600857FC ST3450657FC ST3300457FC 100516225 Rev E December 2012 2012 Seagate Technology LLC All rights reserved Publication number 100516225 Rev E December 2012 Seagate Seagate Technology and the Wave logo are registered trademarks of Seagate Technology LLC in the United States and or other countries Cheetah and SeaTools are either trademarks or registered trademarks of Seagate Technology LLC or one of its affiliated companies in the United States and or other countries The FIPS logo is a certification mark of NIST which does not imply product endorsement by NIST the U S or Canadian governments All other trademarks or registered trademarks are the property of their respective owners No part of this publication may be reproduced in any form without written permission of Seagate Technology LLC Call 877 PUB TEK1 877 782 8351 to request permission When referring to drive capacity one gigabyte or GB equals one billion bytes and one terabyte or TB equals one trillion bytes Your computer s operating system may use a different standard of measurement and report a lower capacity In addition some of the listed capacity is used for formatting and other functions and thus will not be available for data storage Actual quantities wil
9. Support Log page 00h Write Error Counter page 02h Read Error Counter page 03h N Executable 2 lt lt lt lt lt 2 lt 2 Read Reverse Error Counter page 04h Verify Error Counter page 05h Non medium Error Counter page 06h Temperature page Application Client page OFh Self Test Results page 10h Background Medium Scan page 15h Cache Statistics Counter page 37h Factory Log page 3Eh 4E 4Fh Not used 50h 51h XD write XP write 52h Y N N N N XD read CHEETAH 15K 7 FC PRODUCT MANUAL REV E 48 Table 16 Supported commands continued Executable state of standard SCSI commands in the presence of LBA banding applies to SED models only Affected LBA Affected LBA User Data Unlocked Locked Command Supported Affectsentire Accessed ReadLock Write ReadLock Write code Y N 4 Command name Drive Y N Lock False Lock True 53 54h N Not used 55h Y Mode Select 10 3 56h Y Reserved 10 Y 3rd party reserve N Extent reservation 57h Y Released 10 58 59h N Not used 5Ah Y Mode Sense 10 3 5B 5Dh N Not used 5E A Persistent reserve in Executable Executable 5F A Persistent reserve out Executable Executable 60 7Eh N Not used 7Fh Y Pl only Write Same 32 Executable Check Condition 7Fh Y P
10. 5V current profiles are shown in the following figures Note All times and currents are typical See Section 6 2 for maximum current requirements C2 and F1 12V spinup current profile gt gt C3 and F2 5V spinup current profile 2 a 1 00 500 mA div 1 00 500 d 2 00 sidiv Stop 430V 3 000 A ofst 1 500 ofst 2 00 sidiv 2 00 sid 500 kS 25 kS s Edge Positive Figure 1 Typical ST3600057FC current profiles CHEETAH 15K 7 FC PRODUCT MANUAL REV E 22 C2 and F1 12V spinup current profile gt gt Figure 2 Typical ST3450857FC current profiles C2 and F1 12V current profile Figure 3 Typical ST3300657FC current profiles CHEETAH 15K 7 FC PRODUCT MANUAL REV E 23 6 3 POWER DISSIPATION 600GB model Typical power dissipation under idle conditions in 4 Gbit operation is 11 58 watts 39 52 BTUs per hour To obtain operating power for typical random read operations refer to the following I O rate curve see Figure 4 Locate the typical I O rate for a drive in your system on the horizontal axis and read the corresponding 5 volt current 12 volt current and total watts on the vertical axis To calculate BTUs per hour multiply watts by 3 4123 ST3600057FC CURRENT POWER vs THROUGHPUT FC 4GB Random 8 Block Reads 0 0 50 0 100 0 150 0 200 0 250 0 300 0 350 0 400 0 l Os per Second Figure 4 ST3600057FC DC current and power vs input outp
11. 6 2 3 se eek i REG ELS RSS SRA LLE 22 6 3 POWER DISSIPATION a ee e a a et 24 6 4 ENVIRONMENTAL LIMITS e khe AURA RR SU oe a a 26 6 4 1 Temperatur rdum a a o d Se e hos EA 26 6 4 2 Relative Humidity ois eae haley e A EL GR IAS 26 6 4 3 Effective altitude sea 26 6 4 4 Shock and vibration 27 6 4 5 ACOUSTCS Du d tu e o ec a EE ot 29 6 4 6 5 s RE RN as ada 29 6 4 7 Corrosive 29 6 4 8 Electromagnetic susceptibility 29 6 5 MECHANICAL SPECIFICATIONS 30 7 0 pied 31 8 0 ABOUT SELF ENCRYPTING 5 hh n nh nnn 32 8 1 DATA ENGRYPTION 45 erp EM ERES DERI AR arde d 32 8 2 CONTROLLED ACCESS pace uie d pare ade olde ae reet dp dg 32 8 2 1 AMI SS Pia bee PT 32 8 2 2 locking SP za ac Eb EI eed ena EX ep iu E E dM 32 8 2 3 Default password pre sia ada ug Rhe eR REMANET eh 32 8 3 RANDOM NUMBER GENERATOR 32 8 4 DRIVE LOCKING
12. A Y in the support column indicates the feature or condition is supported An N in the support column indicates the feature or condition is not supported Table 21 Miscellaneous features SUPPORTED FEATURE OR CONDITION FC AL selective reset LIP Reset Automatic contingent allegiance Asynchronous event notification Synchronized locked spindle operation Segmented caching Zero latency read Queue tagging up to 128 queue tags supported Deferred error handling Parameter rounding controlled by Round bit in Mode Select page 0 Reporting actual retry count in Extended Sense bytes 15 16 and 17 Adaptive caching Izi izi zizizi SMP 1 in Mode Select command needed to save RPL and rotational offset bytes Table 22 Miscellaneous status SUPPORTED STATUS Good Check condition Condition met good Busy Intermediate good Intermediate condition met good Reservation conflict Task set full ACA active gt 2 lt lt lt lt lt 1 lt lt active faulted initiator CHEETAH 15 7 FC PRODUCT MANUAL REV E 55 11 5 FC AL PHYSICAL INTERFACE Figure 12 shows the location of the J1 Fibre Channel single connection attachment FC SCA Figure 14 provides the dimensions of the FC SCA connector Details of the physical electrical and logical characteristics are provided within this section The operational aspects of Seagate
13. B Background Media Scan 36 backpanel 57 backplane 61 0 33 BandMasterX 32 basic link service frames 39 Basic_Accept BA_ACC 39 Basic Reject BA RJT 39 BB 41 44 Cheetah 15K 7 FC Product Manual Rev INDEX BB Credit 41 44 BMS 36 buffer data 7 space 12 busy status 55 bypass circuit 15 Byte chech command 47 C cache operation 12 cache segments 12 Caching parameters page 08h command 46 caching write data 13 Canadian Department of Communications 3 capacity unformatted 10 capacity drive programmable 9 CBC 32 42 43 CF 41 44 Change definition command 48 character sync 15 charge pins 59 check condition status 55 Cipher Block Chaining 32 Class 3 parameters 41 44 class B limit 3 Class valid 41 44 clear ACA function 40 clear task set function 40 commands supported 46 Common features 41 44 Company ID 42 43 Compare command 47 Concurrent sequences 41 condensation 26 condition met good status 55 connector illustrated 57 requirements 57 continuous vibration 29 Continuously increasing offset 41 44 control code values 63 Control mode page OAh command 46 cooling 37 Copy and verify command 47 Copy command 46 CRC 15 error 14 Cryptographic erase 33 CS 41 Current profiles 22 customer service 19 66 DAR 36 Data Bands 33 data bands 32 Data encryption 32 Data Encryption Rey 32 data heads read write 10 data rate internal 10 data transfer rate 11 data valid eye 65 Date code
14. Inquiry data nim cie ue doro a eae EUR De 50 11 3 2 Sense 50 11 4 MISCELLANEOUS OPERATING FEATURES AND CONDITIONS 55 11 5 PHYSICAL INTERFACE 56 11 5 1 Physical characteristics 56 11 5 2 Connector requirements 57 11 5 3 Electrical description 57 11 5 4 Pin descriptions mes awn no da LL a 58 11 5 5 FC AL transmitters and 59 11 5 6 POWGL cia EA Sa EG aa A RE mue AUC UD ESAE EES Es 59 11 5 7 Fault LED O t o EE e Ht a de 59 11 5 8 Active LED QUE RR RR EL LE 60 11 5 9 Enable port bypass signals 60 11 5 10 Motor start controls 2 xeu bie RES Ee En is 61 11 5 11 SEL 6 through SEL O ID lines 61 11 5 12 Device control codes 63 11 6 SIGNAL 5 63 11 6 1 TTL input characteristics 63 11 6 2 LED driver signals coe ae ice 64 11 66 3 F
15. Servo will not lock on track Drive cannot read configuration tables from the disk In these conditions the drive responds to a Test Unit Ready command with an 02 04 00 or 02 04 03 code 5 2 6 2 2 Invoking DST To invoke DST submit the Send Diagnostic command with the appropriate Function Code 001b for the short test or 010b for the extended test in bytes 1 bits 5 6 and 7 5 26 23 Short and extended tests DST has two testing options 1 short 2 extended These testing options are described in the following two subsections Each test consists of three segments an electrical test segment a servo test segment and a read verify scan segment Short test Function Code 001b The purpose of the short test is to provide a time limited test that tests as much of the drive as possible within 120 seconds The short test does not scan the entire media surface but does some fundamental tests and scans portions of the media A complete read verify scan is not performed and only factual failures will report a fault condition This option provides a quick confidence test of the drive Extended test Function Code 010b The objective of the extended test option is to empirically test critical drive components For example the seek tests and on track operations test the positioning mechanism The read operation tests the read head element and the media surface The write element is tested through read write read operations The integri
16. if RCD 0 the cache is first checked to see if any logical blocks that are to be written are already stored in the cache from a previous read or write command If there are the respective cache segments are cleared The new data is cached for subsequent Read commands If the number of write data logical blocks exceed the size of the segment being written into when the end of the segment is reached the data is written into the beginning of the same cache segment overwriting the data that was written there at the beginning of the operation however the drive does not overwrite data that has not yet been written to the medium If write caching is enabled VVCE 1 then the drive may return Good status on a write command after the data has been transferred into the cache but before the data has been written to the medium If an error occurs while writing the data to the medium and Good status has already been returned a deferred error will be generated The Synchronize Cache command may be used to force the drive to write all cached write data to the medium Upon completion of a Synchronize Cache command all data received from previous write commands will have been written to the medium Table 18 shows the mode default settings for the drive 4 5 2 Prefetch operation If the Prefetch feature is enabled data in contiguous logical blocks on the disk immediately beyond that which was requested by a Read command are retrieved and stored in the
17. information on the drive Error Recovery philosophy is presented in the Fibre Channel Interface Manual 9 2 DRIVE ERROR RECOVERY PROCEDURES When an error occurs during drive operation the drive if programmed to do so performs error recovery procedures to attempt to recover the data The error recovery procedures used depend on the options previously set in the Error Recovery Parameters mode page Error recovery and defect management may involve using several SCSI commands described in the Fibre Channel Interface Manual The drive implements selectable error recovery time limits required in video applications The error recovery scheme supported by the drive provides a way to control the total error recovery time for the entire command in addition to controlling the recovery level for a single LBA The total amount of time spent in error recovery for a command can be limited using the Recovery Time Limit bytes in the Error Recovery mode page The total amount of time spent in error recovery for a single LBA can be limited using the Read Retry Count or Write Retry Count bytes in the Error Recovery mode page The drive firmware error recovery algorithms consists of 13 levels for read recoveries and five levels for write Each level may consist of multiple steps where a step is defined as a recovery function involving a single re read or re write attempt The maximum level used by the drive in LBA recovery is determined by the read and write retry count
18. 00 04 CF respectively subject to change UI Unique identifier This 24 bit field is uniquely assigned to the drive This same UI appears in the Port Name and Node Name fields P Port identifier field 1 FLOGI originated on Port A 2 FLOGI originated on Port B CHEETAH 15K 7 FC PRODUCT MANUAL REV E 43 11 1 9 Fibre Channel fabric accept login Table 14 lists the required content of the Fabric Login Accept ACC payload from the fabric Table 14 Fabric Login Accept ACC payload BYTES 0 15 Common 16 31 32 35 36 47 Class 1 48 51 52 63 Class 2 64 67 68 79 Class 3 80 83 84 95 Reserved 96 99 100 111 Vendor 112 115 Version X Indicates a four bit hex field is not checked X Indicates a single bit is not checked BB This field is not checked The FC AL drive uses BB Credit of zero 0 CF Common features This binary field selects the common features requested by the fabric login Continuously increasing offset x Random relative offset x Valid version level x N Port F Port Must 1 F Port Alternate credit model Must 1 Other bits reserved XX FS Receive buffer field size The FS field in the common and Class 3 parameters is checked for the range 128 lt FS lt 2 112 and a multiple of four bytes The receive buffer field size in the Class 3 parameters is used The drive uses the lower FS of Fabric Login Accept or N_Port Login when sending
19. 01 9F 2C 44 4C 57 87 E4 02 02 9E 2D 45 4B 58 88 E2 03 03 9D 2E 46 4A 59 89 El 04 04 9B 2F 47 49 90 05 05 98 30 48 47 5B 91 DC 06 06 97 31 49 46 5C 92 DA 07 07 90 32 50 45 5D 93 D9 08 08 8F 33 51 43 5 94 D6 09 09 88 34 52 3c SF 95 D5 10 84 35 53 60 96 D4 14 82 36 54 39 61 97 D3 0 12 81 37 59 36 62 98 D2 00 13 80 38 56 35 63 99 01 OE 14 7C 39 57 34 64 100 CE OF 15 7A 3A 58 33 65 101 CD 10 16 79 3B 59 32 66 102 CC 11 17 76 3C 60 31 67 103 CB 12 18 75 3D 61 2E 68 104 CA 13 19 74 3E 62 2D 69 105 C9 14 20 73 3F 63 2C 6A 106 C7 15 21 72 40 64 2B 6B 107 C6 16 22 71 41 65 2A 6c 108 C5 17 23 42 66 29 6D 109 C3 18 24 6D 43 67 27 110 BC 19 25 6C 44 68 26 6F 111 BA 1A 26 6B 45 69 25 70 112 B9 1B 27 46 70 23 71 113 B6 1C 28 69 47 71 72 114 5 1D 29 67 48 72 1E 13 115 B4 1E 30 66 49 13 1D 74 116 B3 1F 31 65 4A 74 1B 15 117 B2 20 32 63 4B 75 18 76 118 B1 21 33 5C 4C 76 17 77 119 22 34 40 77 10 78 120 AD 23 35 59 4E 78 OF 79 121 AC 24 36 56 4F 79 08 122 25 37 55 50 80 04 7B 123 AA 26 38 54 51 81 02 124 9 27 39 53 52 82 01 7D 125 AT 28 40 52 53 83 A6 29 41 51 54 84 5 2 42 4E 55 85 CHEETAH 15 7 FC PRODUCT MANUAL REV E 11 5 12 Device control codes The drive inputs a Device Control Code on the DEV CTRL CODE lines at power up to determine the link rate on the Fibre Channel ports Both ports run at the same rate If the does not connect to thes
20. 32 are currently factory set to 00 04 CF respectively subject to change FS buffer field size The drive returns and uses the receive buffer size from the Port Login Class receive buffer UI Unique identifier This 24 bit field is uniquely assigned to the drive This same UI appears in the Port Name and Node Name fields P Byte port identifier field 0 P LOGI received on Node 1 P LOGI received on Port A 2 P LOGI received on Port B 11 1 6 Fibre Channel Process Login Table 11 lists the process login payload data Table 11 Process Login PLRI payload BYTES 0 15 20 16 19 00 00 00 22 XXIndicates fields that not used CHEETAH 15K 7 FC PRODUCT MANUAL REV E 42 11 1 7 Fibre Channel Process Login Accept Table 12 lists Cheetah 15K 7 FC process login accept payload data Table 12 Process Login Accept ACC payload BYTES 0 15 16 31 11 1 8 Fibre Channel fabric login Table 13 lists the fabric login payload from the drive Table 13 Fabric Login FLOGI payload BYTES 0 15 Common 16 31 32 35 36 47 Class 1 48 51 52 63 Class 2 64 67 68 79 Class 3 80 83 84 95 Reserved 96 99 100 111 00 00 00 00 00 00 00 00 00 00 00 Vendor 112 115 00 00 00 00 Version CC Bytes 22 23 and 24 and 30 31 and 32 are currently factory set to
21. 7E is AL PA 00 which is not valid for an NL Port so is not included in the table Also SEL ID 7Fh does map to a valid AL PA however this value signals the drive that physical addresses are not being assigned using the SEL lines and that a soft address will be determined by FC AL loop initialization When the Parallel ESI line is low the enclosure backpanel logic switches to ESI mode if supported There are two modes of ESI seven bits of enclosure status and a bidirectional mode ESI support and the mode are determined by the drive using a discovery process Refer to the Fibre Channel Interface Manual for a description of ESI operation 11 5 11 1 Parallel Enclosure Services Interface ESI The parallel ESI line is an output from the drive This line provides the enclosure with an indication of the present function of the SEL lines A high level the default state indicates the drive requires address information on the SEL lines A low level indicates the drive is attempting an ESI transfer The enclosure may not support ESI on any or all drive locations It may only support the address function Support of ESI is discovered by the drive Refer to the Fibre Channel Interface Manual for a description of ESI operations CHEETAH 15K 7 FC PRODUCT MANUAL REV E 61 Table 27 AL PA values AL SELID Setting AL SELID Setting AL PA SELID Setting hex hex dec hex hex dec hex hex dec 00 00 2 43 40 56 86 8 01
22. Alternate credit model Must 1 Other bits reserved XX Receive buffer field size The FS field in the common and Class 3 parameters is checked for the range 128 lt FS lt 2 112 and a multiple of four bytes For multiple frame sequences all frames but the last frame of the sequence must be this size Only the receive buffer field size in the Class 3 parameters is used Port name initiator s saved with the login parameters If a change of the port name AL_PA address association is detected during a Port DISCovery and implicit logout occurs and the initiator returns a LS RJT Node name The node name is not checked or saved by the drive Service options Class 3 only MSB Class valid Must 1 Intermix x Stacked connection req XX Sequential delivery x Other bits reserved XX Initiator control MSB XID reassign XX Proc Assc 10 or 11 causes the login to be rejected Other values are accepted Other bits XXX Concurrent sequences Open sequences per exchange Must be a value greater than 0 Must be a value greater than 0 41 11 1 5 Fibre Channel port login accept Table 10 identifies the N Port Login access payload values Table 10 N_Port Login Accept ACC payload BYTES 0 15 Common 16 31 32 35 36 47 Class 1 48 51 52 63 Class 2 64 67 68 79 Class 3 80 83 84 95 Reserved 96 99 100 111 Vendor 112 115 Version Table 3 Bytes 22 23 24 and 30 31 and
23. Format in progress each cylinder change Toggles on off The Active LED Out signal is designed to pull down the cathode of an LED The anode is attached to the proper 5 volt supply through an appropriate current limiting resistor The LED and the current limiting resistor are external to the drive 11 5 9 Enable port bypass signals The Enable Bypass Port A EN BYP Port A and Enable Bypass Port B EN BYP Port B signals control the port bypass circuits PBC located external to the disk drive The PBC allows a loop to remain functional in the event of a drive failure or removal When these signals are active low the PBC bypasses the drive on the associated port When an Enable Bypass signal is active the corresponding Port Bypass LED signal in connector J1 is driven low by the disk drive A pull down resistor 1K located with the PBC should be used to insure the bypass is enabled if the disk drive is not installed The Enable Bypass signal is active under failing conditions within the drive on detection of the Loop Port Bypass primitive sequence or on removal of the drive In the bypass state the drive continues to receive on the inbound fibre Enable Bypass may be deactivated by detection of a Loop Port Enable primitive sequence if the drive has completed self test and a hardware failure is not present Failure modes detected by the disk drive that will enable bypass include Transmitter receiver wrap test failure Loss of
24. HDA case temperatures do not exceed the values specified in Section 6 4 1 Operation at case temperatures outside the specifications in Section 6 4 1 may increase the AFR decrease the MTBF AFR and MTBF statistics are poplulation statistics that are not relevant to individual units AFR and MTBF specifications are based on the following assumptions for Enterprise Storage System environments 8 760 power on hours per year 250 average on off cycles per year Operating at nominal voltages System provides adequate cooling to ensure the case temperatures specified in Section 6 4 1 are not exceeded 5 2 2 Preventive maintenance No routine scheduled preventive maintenance is required 5 2 3 Hot plugging the drive Inserting and removing the drive on the FC AL will interrupt loop operation The interruption occurs when the receiver of the next device in the loop must synchronize to a different input signal FC error detection mechanisms character sync running disparity word sync and CRC are able to detect any error Recovery is initiated based on the type of error The disk drive defaults to the FC AL Monitoring state Pass through state when it is powered on by switching the power or hot plugged The control line to an optional port bypass circuit external to the drive defaults to the Enable Bypass state If the bypass circuit is present the next device in the loop will continue to receive the output of the previous device to th
25. de places External cables are not required 57 11 5 4 Pin descriptions This section provides a pin out of the FC SCA and a description of the functions provided by the pins Table 24 FC SCA pin descriptions qe 5 S mm m SIGNAL NAME SIGNAL TYPE PIN SIGNAL NAME SIGNAL TYPE EN bypass port A Low Voltage TTL out 21 12 Volts charge put 12 Volts 22 Ground 12 Volts 23 Ground 12 Volts 24 PortA in FC Diff input pair Parallel ESI 25 PortA in Ground 26 Ground Active LED out Open collector out 27 PortB in FC Diff input pair Reserved 28 PortB in Start 1021 TTL input 29 Ground 212 input 305 out Diff output pair EN bypass port B Low Voltage TTL out 31 out SEL 6 TTL input output 32 Ground SEL 5 TTL input output 33 Port B out FC Diff output pair SEL 4 TTL input 34 PortB out SEL 3 TTL input output 35 Ground Fault LED out Open collector out 36 SEL 2 TTL input output DEV CTRL 2 TTL input 37 SEL 1 TTL input output DEV CTRL CODE 1 TTL input 38 SEL 0 TTL input output 5 Volts 39 DEV CTRL CODE 0 TTL input 5 Volts 40 5 Volts charge Short pins in mating backpanel connector 1 2 This pin may be connected to external logic to detect the presence of the drive The drive connects this pin to the com mon ground Pins 9 10 17 18 and 39 are option select pins and are tied high by the drive circuitry The preferre
26. frames to an initiator PN Name The fabric port name is saved with the login parameters If a change of the port name is detected dur ing a FAN an implicit logout occurs and a LS RJT is returned to the fabric NN Node Name The drive does not check or save the node name SO Service Options Class 3 only MSB Class valid Must 1 Intermix Stacked connection reg XX Sequential delivery Must 1 Other bits reserved XXX XX CHEETAH 15K 7 FC PRODUCT MANUAL REV E 44 11 1 10 Fibre Channel Arbitrated Loop options Table 15 lists the FC AL options supported by Cheetah 15 7 FC drives Table 15 FC AL options supported OPTION SUPPORTED OPEN Half Duplex Accepted from another device OPEN Full Duplex Sent to open another device Accepted from another device Private Loop Yes Public Loop Yes Old Port State No Loop Position Yes Loop Position Report Yes 11 2 DUAL PORT SUPPORT Cheetah 15 7 FC drives have two independent FC AL ports These ports be connected on independent loops or on the same loop Port A and Port B may be connected in any order or combination If both ports are connected on independent loops and hard addressing is used the drive interface address is selected through the interface connector both ports will seek the same loop address If no conflict both ports will have the same loop address If both ports are connected in the same loop and hard addressing is used at least one p
27. is in volatile temporary storage DRAM external to the encryption engine A unique data encryption key is used for each of the drive s possible16 data bands see Section 8 5 8 2 CONTROLLED ACCESS The drive has two security partitions SPs called the Admin SP and the Locking SP These act as gatekeepers to the drive security services Security related commands will not be accepted unless they also supply the correct credentials to prove the requester is authorized to perform the command 8 2 1 Admin SP The Admin SP allows the drive s owner to enable or disable firmware download operations see Section 8 4 Access to the Admin SP is available using the SID Secure ID password or the MSID Makers Secure ID password 8 2 2 Locking SP The Locking SP controls read write access to the media and the cryptographic erase feature Access to the Locking SP is available using the BandMasterX or EraseMaster passwords Since the drive owner can define up to 16 data bands on the drive each data band has its own password called BandMasterX where X is the number of the data band 0 through 15 8 2 3 Default password When the drive is shipped from the factory all passwords are set to the value of MSID This 32 byte random value is printed on the drive label and it can be read by the host electronically over the I O After receipt of the drive it is the responsibility of the owner to use the default MSID password as the authority to change all oth
28. page command 46 DC power 57 requirements 20 decrypt 32 default MSID password 32 defect and error management 34 defects 34 Deferred Auto Reallocation 36 deferred error handling 55 DEK 32 description 6 DEV_CTRL_CODE 63 Device Behavior page command 46 device control code values 63 Device Identification page command 46 device selection IDs 37 devices 37 dimensions 30 Disable page out command 47 Disconnect reconnect control page 02h command 46 disk rotation speed 10 Download microcode and save modes 5 48 Download microcode mode 4 48 Download microcode with offsets and save mode 7 48 Download microcode with offsets mode 6 48 drive 29 drive capacity programmable 9 drive characteristics 10 drive ID 37 drive ID option select headers 37 Drive Locking 33 drive mounting 30 38 drive orientation 37 drive select 57 driver signals 64 drivers and receivers 7 dual port support 45 E electrical description of connector 57 Cheetah 15K 7 FC Product Manual Rev E signal characteristics 63 specifications 20 electromagnetic compatibility 3 electromagnetic susceptibility 29 requirements 3 enable bypass port A 60 port B 60 signal 60 state 15 Enclosure Services interface 57 Enclosure services page command 47 encryption engine 32 encryption 33 environmental limits 26 requirements 14 environmental control 29 EraseMaster 32 error detection mechanisms FC 15 management 34 rates 14 error correction co
29. plane distortion 38 P P LOGI received on Port A 42 received on Port 42 package size 27 package test specification 5 packaged 27 parameter rounding 55 pass through state 15 password 32 passwords 32 PBC 56 60 PBdata 48 PCBA 38 peak bits perinch 10 peak operating current 20 21 peak to peak measurements 21 performance characteristics detailed 10 general 11 performance degradation 27 performance highlights 8 physical damage 29 physical interface 56 description 56 physical specifications 20 PI 42 43 pin descriptions 58 PN 41 44 port bypass circuit 15 56 60 Port DISCovery 41 Port Discovery PDISC 39 port identifier field 42 43 portlogin 41 69 42 Port 44 Port name initiators 41 59 dissipation 24 requirements 20 requirements DC 20 sequencing 22 Power control page 1Ah command 46 power distribution 3 power failure warning 63 PowerCycle 33 Prefetch command 47 prefetch multi segmented cache control 12 preventive maintenance 14 private loop FC AL options 45 Proc Assc 41 Process Accept ACC 43 Process Login PRLI 39 42 Process Login Accept ACC payload 43 process login payload data 42 Process Logout PRLO 39 programmable drive capacity 9 protection of data at rest 32 public loop FC AL options 45 pull down resistor 60 Q queue tagging 55 R radio interference regulations 3 Random number generator 32 Random relative offset 41 44 RCD bit 12 Read bu
30. receive clock Loss of transmission clock Drive interface hardware error CHEETAH 15K 7 FC PRODUCT MANUAL REV E 60 11 5 10 Motor start controls The drive s motor is started according to the Start 1 and Start 2 signals described in Table 26 The state of these signals can be wired into the backplane socket or driven by logic the backplane Table 26 Motor start control signals CASE START_2 START_1 MOTOR SPIN FUNCTION 1 Low Low Motor spins up at DC power on 2 High Low Motor spins up only when SCSI Start command is received 3 Low High Motor spins up after a delay of 12 seconds times the modulo 8 value of the numeric SEL ID of the drive from DC power on 4 High High The drive will not spin up 11 5 11 SEL 6 through SEL O ID lines The SEL 6 through SEL O ID lines determine drive address and optionally for an Enclosure Services Interface When the Parallel ESI line is high the enclosure backpanel must provide address information on the SEL line Refer to Table 27 for a mapping of SEL to FC AL physical addresses AL PA You can think of the SEL lines as the equivalent of a backpanel logic plug The drives does not provide pull up resistors on these lines The backpanel is required to provide high and low inputs to the SEL ID lines per the specifications in table 29 on page 63 Note Table 27 gives AL PA values for each SEL value The first entry in the table is SEL ID 00 The last entry is SEL ID 7D SEL ID
31. referred to as the Interval Counter S M A R T measures error rates All errors for each monitored attribute are recorded A counter keeps track of the number of errors for the current interval This counter is referred to as the Failure Counter Error rate is the number of errors per operation The algorithm that S M A R T uses to record rates of error is to set thresholds for the number of errors and their interval If the number of errors exceeds the threshold before the interval expires the error rate is considered to be unacceptable If the number of errors does not exceed the threshold before the interval expires the error rate is considered to be acceptable In either case the interval and failure counters are reset and the process starts over Predictive failures S M A R T signals predictive failures when the drive is performing unacceptably for a period of time The firmware keeps a running count of the number of times the error rate for each attribute is unacceptable To accomplish this a counter is incremented each time the error rate is unacceptable and decremented not to exceed zero whenever the error rate is acceptable If the counter continually increments such that it reaches the predictive threshold a predictive failure is signaled This counter is referred to as the Failure History Counter There is a separate Failure History Counter for each attribute CHEETAH 15K 7 FC PRODUCT MANUAL REV E 16 5 2 5 Thermal monitor
32. s Fibre Channel drives are provided in the Fibre Channel Interface Manual J1 interface connector Figure 12 Physical interface 11 5 1 Physical characteristics This section defines physical interface connector 11 5 1 1 Physical description Flbre Channel drives may be connected in a loop together or with other compatible FC AL devices A maximum of 127 devices may have addresses however one of the addresses is reserved for a fabric port switch device This means 126 addresses are available for FC AL devices More FC AL compatible devices may physically reside on the loop but they will not be functional because they would not be able to obtain valid addresses Port bypass circuits PBCs allow devices to be inserted into unpopulated locations or removed from the loop with loop operation recovery after a brief interruption These PBCs are located external to the FC AL device Figure 13 shows the relationship between the PBC and FC AL device Port Bypass Circuit E s ERE From Previous Drive Port Bypass Circuit N 1 Select 1 Drive N 1 Serial Serial In Out Drive N Port Bypass Circuit N 1 Drive N 1 Figure 13 Port bypass circuit physical interconnect CHEETAH 15K 7 FC PRODUCT MANUAL REV E 56 11 5 2 Connector requirements Table 23 Recommended mating SCA part numbers PART DESCRIPTION POSITIONS PART NUMBER FEATURES AMP Vertical SCA sequence 40 787317 1 Wit
33. to valid write command data resident in the drives data buffer Any sectors that fail the comparison result in the invocation of a rewrite and auto reallocation process The process attempts to rewrite the data to the original location If a verification of this rewrite fails the sector is re mapped to a spare location CHEETAH 15K 7 FC PRODUCT MANUAL REV E 36 10 0 INSTALLATION Cheetah 15K 7 FC disk drive installation is a plug and play process There are no jumpers switches or terminators on the drive Simply plug the drive into the host s 40 pin Fibre Channel backpanel connector FC SCA no cables are required See Section 11 5 for additional information about this connector Use the FC AL interface to select drive ID and all option configurations for devices on the loop If multiple devices are on the same FC AL and physical addresses are used set the device selection IDs SEL IDs on the backpanel so that no two devices have the same selection ID This is called the hard assigned arbitrated loop physical address AL PA There are 125 AL PAs available see Table 27 If you set the AL PA on the backpanel to any value other than 0 the device plugged into the backpanel s SCA connector inherits this AL_PA In the event you don t successfully assign unique hard addresses and therefore have duplicate selection IDs assigned to two or more devices the FC AL generates a message indicating this condition If you set the AL_PA on the bac
34. typical and minimum requirements to recover data at the specified interface error rate The inputs are AC coupled on the drive Figure 17 Receive eye diagram Table 33 Eye diagram data values LINK RATE Typical Minimum 1 GHz 4 GHz Bit time 941 ps 470 ps XMIT eye RCV eye Minimum 725 ps min 315 ps min Typical 659 ps 305 ps 235 ps 1581 1132 113 ps 1 Short Ideal load 2 End of compliance channel CHEETAH 15K 7 FC PRODUCT MANUAL REV E 65 Numerics 12 volt pins 59 3rd party reserve command 49 5 volt pins 59 A Abort Sequence ABTS 39 abort task set function 40 AC coupling 59 AC power requirements 20 ACA active status 55 ACA active faulted initiator status 55 Accept ACC 39 acoustics 29 active LED Out signal 60 Actual retry count bytes command 46 actuator assembly design 6 adaptive caching 55 Address Discovery ADISC 39 addresses 56 Admin SP 32 AES 128 data encryption 32 AFR 14 air cleanliness 29 air flow 37 illustrated 37 Alternate credit model 41 44 altitude 26 ambient 26 Annualized Failure Rates AFR 15 ANSI documents fibre channel 5 SCSI 5 arbitrated loop physical address AL_PA 37 arbitration 37 asynchronous event notification 55 audible noise 3 auto negotiation of link rate 63 auto write and read reallocation programmable 7 automatic contingent allegiance 55 average idle current 20 21 average rotational latency 10
35. 00957FC ST3600857FC 600 8 165 000 1 361 225 1 49 2 37 15k 2 0 INTERNAL DRIVE CHARACTERISTICS ST3450857FC ST3450757FC ST3450657FC 450 6 165 000 1 361 225 1 49 2 37 15k 2 0 ST3300657FC ST3300557FC ST3300457FC 300 Gbytes formatted rounded off value 4 165 000 TPI 1 361 KBPI 225 Gbits inch 1 49 2 37 Gbits sec max 15k RPM 2 0 msec One Gbyte equals one billion bytes when referring to hard drive capacity Accessible capacity may vary depending on operating environment and formatting 4 2 SEEK PERFORMANCE CHARACTERISTICS See Section 11 5 FC AL physical interface on page 56 and the Fibre Channel Interface Manual part number 77767496 for additional timing details 4 21 Access time NOT INCLUDING CONTROLLER OVERHEAD 2 6 READ WRITE Average Typical 3 4 3 9 Single track Typical 0 2 0 44 Full stroke Typical 6 6 7 4 1 Typical access times are measured under nominal conditions of temperature voltage and horizontal orientation as measured on a representative sample of drives 2 Access to data access time latency time CHEETAH 15K 7 FC PRODUCT MANUAL REV E 10 4 2 2 Format command execution time minutes When changing sector sizes the format times shown below may need to be increased by 30 minutes ST3600057FC ST3450857FC ST3300657FC Maximum with verify 119 88 58 Maximum without verify 60 44 29 Note There is approximately a 1 5 increase in time to fo
36. A ee fee dae PUR repe P RD Weleda 14 5 1 1 Recoverable Emmors 22222 ELO PS phe a Rede 14 5 1 2 Unrecoverable 14 5 1 3 Seek ENOTS NINE AERE wa RE 14 5 1 4 Interface 1 14 5 2 RELIABILITY AND SERVICE qae da a be 15 5 2 1 Annualized Failure Rate AFR and Mean Time Betvveen Failures 15 5 2 2 Preventive 15 5 2 3 Hot plugging the drive 15 5 2 4 SMART bes dni deeded dots tin debe go po On iie ip bte pes 15 5 2 5 Thermal 17 5 2 6 Drive Self Test DST iaia ee pea 17 5 2 7 Product warranty or rci cadet Ge d ES 19 PHYSICAL ELECTRICAL SPECIFICATIONS 20 6 1 AC POWER REQUIREMENTS 20 6 2 DC POWER REQUIREMENTS 20 6 2 1 Conducted noise 21 CHEETAH 15 7 FC PRODUCT MANUAL REV E CONTENTS 6 2 2 Power sequencing bee he lena e RES 22
37. Air cleanliness The drive is designed to operate in a typical office environment with minimal environmental control 6 47 Corrosive environment Seagate electronic drive components pass accelerated corrosion testing equivalent to 10 years exposure to light industrial environments containing sulfurous gases chlorine and nitric oxide classes G and H per ASTM B845 However this accelerated testing cannot duplicate every potential application environment Users should use caution exposing any electronic components to uncontrolled chemical pollutants and corrosive chemicals as electronic drive component reliability can be affected by the installation environment The silver copper nickel and gold films used in Seagate products are especially sensitive to the presence of sulfide chloride and nitrate contaminants Sulfur is found to be the most damaging In addition electronic components should never be exposed to condensing water on the surface of the printed circuit board assembly PCBA or exposed to an ambient relative humidity greater than 95 Materials used in cabinet fabrication such as vulcanized rubber that can outgas corrosive compounds should be minimized or eliminated The useful life of any electronic equipment may be extended by replacing materials near circuitry with sulfide free alternatives 6 4 8 Electromagnetic susceptibility See Section 2 1 1 1 CHEETAH 15K 7 FC PRODUCT MANUAL REV E 29 6 5 Refer to Figure 9 for detail
38. An automatic shipping lock prevents potential damage to the heads and discs that results from movement during shipping and handling The shipping lock disengages and the head load process begins when power is applied to the drive The drives also use a high performance actuator assembly with a low inertia balanced patented straight arm design that provides excellent performance with minimal power dissipation CHEETAH 15K 7 FC PRODUCT MANUAL REV E 6 3 1 STANDARD FEATURES Cheetah 15 7 FC drives have the follovving standard features 4 Gbit Fibre Channel interface Integrated dual port FC AL controller Concurrent dual port transfers Support for FC arbitrated loop private and public attachment Differential copper FC drivers and receivers Downloadable firmware using the FC AL interface Supports SCSI enclosure services via interface connector 128 deep task set queue Supports up to 32 initiators Drive selection ID and configuration options are set on the FC AL backpanel or through interface commands Jumpers are not used on the drive Supports SCSI Enclosure Services through the interface connector Fibre Channel worldwide name uniquely identifies the drive and each port User selectable logical block size 512 520 524 or 528 bytes per logical block Selectable frame sizes from 256 to 2 112 bytes Industry standard 3 5 inch low profile form factor dimensions Programmable logical block reallocation scheme Flawed logical block realloc
39. C Differential 64 11 6 4 Differential input llli ee 65 CHEETAH 15 7 FC PRODUCT MANUAL REV E I Seagate Technology Support Services For information regarding online support and services visit http www seagate com www en us about contact us Available services include Presales amp Technical support Global Support Services telephone numbers amp business hours Authorized Service Centers For information regarding Warranty Support visit http www seagate com support warranty and returns For information regarding data recovery services visit http www seagate com services software data recovery services For Seagate OEM and Distribution partner portal visit https direct seagate com portal system For Seagate reseller portal visit http spp seagate com Cheetah 15K 7 FC Product Manual Rev E 1 1 0 5 This manual describes Seagate Technology LLC Cheetah 15 7 FC Fibre Channel disk drives Cheetah 15K 7 FC drives support the Fibre Channel Arbitrated Loop and SCSI Fibre Channel Protocol specifications to the extent described in this manual The Fibre Channel Interface Manual part number 100293070 describes the general Fibre Channel Arbitrated Loop characteristics of this and other Seagate Fibre Channel drives The Self Encrypting Drive SED Users Guide part number 100515636 describes the interface general operati
40. C PRODUCT MANUAL REV E 31 8 0 ABOUT SELF ENCRYPTING DRIVES Self encrypting drives SEDs offer encryption and security services for the protection of stored data commonly known as protection of data at rest These drives are compliant with the Trusted Computing Group TCG Enterprise Storage Specifications as detailed in Section 2 3 The Trusted Computing Group TCG is an organization sponsored and operated by companies in the computer storage and digital communications industry Seagate s SED models comply with the standards published by the TCG To use the security features in the drive the host must be capable of constructing and issuing the following two SCSI commands Security Protocol Out Security Protocol In These commands are used to convey the TCG protocol to and from the drive in their command payloads 8 1 DATA ENCRYPTION Encrypting drives use one inline encryption engine for each port employing AES 128 data encryption in Cipher Block Chaining CBC mode to encrypt all data prior to being written on the media and to decrypt all data as it is read from the media The encryption engines are always in operation cannot be disabled and do not detract in any way from the performance of the drive The 32 byte Data Encryption Key DEK is a random number which is generated by the drive never leaves the drive and is inaccessible to the host system The DEK is itself encrypted when it is stored on the media and when it
41. CB8 836 812 167 31E0BD87 557 874 778 21407E5A Seagate drives also may be used at the maximum available capacity at a given block size but the excess capacity above the guaranteed level will vary between other drive families and from generation to generation depending on how each block size actually formats out for zone frequencies and splits over servo bursts This added capacity potential may range from 0 1 to 1 3 percent above the guaranteed capacities listed above Using the drives in this manner gives the absolute maximum capacity potential but the user must determine if the extra capacity potential is useful or whether their assurance of backward and forward compatibility takes precedence CHEETAH 15K 7 FC PRODUCT MANUAL REV E 8 3 5 1 Programmable drive capacity Using the Mode Select command the drive can change its capacity to something less than maximum See the Mode Select Parameter List table in the SCS Commands Reference Manual Refer to the Parameter list block descriptor number of blocks field A value of zero in the number of blocks field indicates that the drive shall not change the capacity it is currently formatted to have A number in the number of blocks field that is less than the maximum number of LBAs changes the total drive capacity to the value in the block descriptor number of blocks field A value greater than the maximum number of LBAs is rounded down to the maximum capacity 3 6 FACTORY INSTALLED OPTIONS Y
42. Cheetah 15K 7 FC drives implement a temperature warning system which 1 Signals the host if the temperature exceeds a value which would threaten the drive 2 Signals the host if the temperature exceeds a user specified value 3 Saves a S M A R T data frame on the drive which exceeds the threatening temperature value A temperature sensor monitors the drive temperature and issues a warning over the interface when the temperature exceeds a set threshold The temperature is measured at power up and then at ten minute intervals after power up The thermal monitor system generates a warning code of 01 0B01 when the temperature exceeds the specified limit in compliance with the SCSI standard The drive temperature is reported in the FRU code field of mode sense data You can use this information to determine if the warning is due to the temperature exceeding the drive threatening temperature or the user specified temperature This feature is controlled by the Enable Warning EWasc bit and the reporting mechanism is controlled by the Method of Reporting Informational Exceptions field MRIE on the Informational Exceptions Control IEC mode page 1Ch The current algorithm implements two temperature trip points The first trip point is set at 68 C which is the maximum temperature limit according to the drive specification The second trip point is user selectable using the Log Select command The reference temperature parameter in the temperature lo
43. EETAH 15K 7 FC PRODUCT MANUAL REV E 63 11 6 2 LED driver signals Fault and Active LED signals are located in the FC SCA connector J1 See Table 30 for the output characteristics of the LED drive signals Table 30 LED drive signal STATE CURRENT DRIVE AVAILABLE OUTPUT VOLTAGE LED off high 0 lt lt 100A LED on low lo lt 30 mA 0 lt Vo lt 0 8V 11 6 3 FC Differential output The serial output signal voltage characteristics are provided in Table 31 The outputs are not AC coupled in order to deliver maximum signal without rise and fall time degradation You must AC couple the receiver to isolate potentially different DC characteristics of the outputs and the receiver Table 31 FC Differential output characteristics DESCRIPTION PARAMETER NOTES Serial output voltage swing 600 lt Vout lt 1300 mV Centered at 1 32V Figure 16 provides the data output valid eye diagram relative to the bit cell time m Bit Time _ gt 4 Eye e Vout mv Figure 16 Transmit eye diagram CHEETAH 15K 7 FC PRODUCT MANUAL REV E 64 11 6 4 Differential input The serial input signal voltage characteristics are provided in Table 32 Table 32 FC Differential input characteristics DESCRIPTION PARAMETER Serial input voltage svving 200 lt Vi lt 1 300 mV NOTES AC coupled Figure 17 provides the data valid eye diagram for
44. Interface Manual Status reporting plays a role in systems error management and its use in that respect is described in sections where the various commands are discussed CHEETAH 15K 7 FC PRODUCT MANUAL REV E 35 9 4 BACKGROUND MEDIA SCAN Background Media Scan BMS is a self initiated media scan BMS is defined in the T10 document SPC 4 available from the T10 committee BMS performs sequential reads across the entire pack of the media while the drive is idle In RAID arrays BMS allows hot spare drives to be scanned for defects prior to being put into service by the host system On regular duty drives if the host system makes use of the BMS Log Page it can avoid placing data in suspect locations on the media Unreadable and recovered error sites will be logged or reallocated per ARRE AWRE settings With BMS the host system can consume less power and system overhead by only checking BMS status and results rather than tying up the bus and consuming power in the process of host initiated media scanning activity Since the background scan functions are only done during idle periods BMS causes a negligible impact to system performance The first BMS scan for a newly manufactured drive is performed as quickly as possible to verify the media and protect data by setting the Start time after idle to 5ms all subsequent scans begin after 500ms of idle time Other features that normally use idle time to function will function normally because BMS functi
45. S Publication 140 2 is a U S Government Computer Security Standard used to accredit cryptographic modules It is titled Security Requirements for Cryptographic Modules FIPS PUB 140 2 and is issued by the National Institute of Standards and Technology NIST Purpose This standard specifies the security requirements that will be satisfied by a cryptographic module utilized within a security system protecting sensitive but unclassified information The standard provides four increasing qualitative levels of security Level 1 Level 2 Level 3 and Level 4 These levels are intended to cover the wide range of potential applications and environments in which cryptographic modules may be employed Validation Program Products that claim conformance to this standard are validated by the Cryptographic Module Validation Program CMVP which is a joint effort between National Institute of Standards and Technology NIST and the Communications Security Establishment CSE of the Government of Canada Products validated as conforming to FIPS 140 2 are accepted by the Federal agencies of both countries for the protection of sensitive information United States or Designated Information Canada In the CMVP vendors of cryptographic modules use independent accredited testing laborites to have their modules tested National Voluntary Laboratory Accreditation Program NVLAP accredited laboratories perform cryptographic module compliance conformance testin
46. abilized Non operating 40 to 158 F 40 to 70 C package ambient with a maximum gradient of 68 F 20 C per hour This specification assumes that the drive is packaged in the shipping container designed by Seagate for use with drive Figure 7 Locations of the HDA temperature check point 6 4 2 Relative humidity The values below assume that no condensation on the drive occurs a Operating 5 to 95 non condensing relative humidity with a maximum gradient of 20 per hour Non operating 5 to 95 non condensing relative humidity 6 4 3 Effective altitude sea level a Operating 1 000 to 10 000 feet 305 to 3 048 meters Non operating 1 000 to 40 000 feet 305 to 12 210 meters CHEETAH 15K 7 FC PRODUCT MANUAL REV E 26 6 4 4 Shock and vibration Shock vibration limits specified in this document are measured directly on the drive chassis If the drive is installed in an enclosure to which the stated shock and or vibration criteria is applied resonances may occur internally to the enclosure resulting in drive movement in excess of the stated limits If this situation is apparent it may be necessary to modify the enclosure to minimize drive movement The limits of shock and vibration defined within this document are specified with the drive mounted by any of the four methods shown in Figure 8 and in accordance with the restrictions of Section 10 4 Orientation of the side neare
47. allocate Band1 by specifying a start LBA and an LBA range The real estate for this band is taken from the Global Band An additional 14 Data Bands may be defined in a similar way Band2 through Band15 but before these bands can be allocated LBA space they must first be individually enabled using the EraseMaster password Data bands cannot overlap but they can be sequential with one band ending at LBA x and the next beginning at LBA x 1 Each data band has its own drive generated encryption key and its own user supplied password The host may change the Encryption Key see Section 8 6 or the password when required The bands should be aligned to 4K LBA boundaries 8 6 CRYPTOGRAPHIC ERASE A significant feature of SEDs is the ability to perform a cryptographic erase This involves the host telling the drive to change the data encryption key for a particular band Once changed the data is no longer recoverable since it was written with one key and will be read using a different key Since the drive overwrites the old key with the new one and keeps no history of key changes the user data can never be recovered This is tantamount to an instantaneous data erase and is very useful if the drive is to be scrapped or redispositioned 8 7 AUTHENTICATED FIRMWARE DOWNLOAD In addition to providing a locking mechanism to prevent unwanted firmware download attempts the drive also only accepts download files which have been cryptographically signed by
48. ation at format time Programmable auto write and read reallocation Reed Solomon error correction code Sealed head and disk assembly HDA No preventive maintenance or adjustments required Dedicated head landing zone Automatic shipping lock Embedded Grey Code track address to eliminate seek errors Self diagnostics performed at power on Zone bit recording ZBR Vertical horizontal or top down mounting Dynamic spindle brake 16 384 Kbyte data buffer see Section 4 5 Embedded servo design Reallocation of defects on command Post Format Fibre Channel interface transports SCSI protocol Cheetah 15K 7 SED models have the following additional features Automatic data encryption decryption Controlled access Random number generator Drive locking 16 independent data bands Cryptographic erase of user data for a drive that will be repurposed or scrapped Authenticated firmware download CHEETAH 15K 7 FC PRODUCT MANUAL REV E 7 3 2 MEDIA DESCRIPTION The media used on the drive has an aluminum substrate coated with a thin film magnetic material overcoated with a proprietary protective layer for improved durability and environmental protection 3 3 PERFORMANCE Programmable multi segmentable cache buffer 400 Mbytes sec maximum instantaneous data transfers per port 15k RPM spindle average latency 2 0 msec Command queuing of up to 128 c
49. bed in Section 6 4 1 In some cases forced airflow may be required to keep temperatures at or below the temperatures specified in Section 6 4 1 If forced air is necessary possible air flow patterns are shown in Figure 11 The air flow patterns are created by fans either forcing or drawing air as shown in the illustrations Conduction convection or other forced air flow patterns are acceptable as long as the temperature measurement guidelines of Section 6 4 1 are met dr D b Be sr 15 S Above unit a hi Under unit Under unit nder unit 7 Air flows in the direction shown back to front Air flows in the direction shown or or in reverse direction front to back in reverse direction side to side Figure 11 Air flow CHEETAH 15K 7 FC PRODUCT MANUAL REV E 37 10 4 DRIVE MOUNTING Mount the drive using the bottom or side mounting holes If you mount the drive using the bottom holes ensure that you do not physically distort the drive by attempting to mount it on a stiff non flat surface The allowable mounting surface stiffness is 80 Ib in 14 0 N mm The following equation and paragraph define the allowable mounting surface stiffness Kx X F lt 15lb 67N where is the mounting surface stiffness units in Ib in or N mm and X is the out of plane surface distortion units in inches or millimeters The out of plane distortion X is deter
50. buffer for immediate transfer from the buffer to the host on subsequent Read commands that request those logical blocks this is true even if cache operation is disabled Though the prefetch operation uses the buffer as a cache finding the requested data in the buffer is a prefetch hit not a cache operation hit To enable Prefetch use Mode Select page 08h byte 12 bit 5 Disable Read Ahead DRA bit DRA bit 0 enables prefetch The drive does not use the Max Prefetch field bytes 8 and 9 or the Prefetch Ceiling field bytes 10 and 11 When prefetch read look ahead is enabled enabled by DRA 0 the drive enables prefetch of contiguous blocks from the disk when it senses that a prefetch hit will likely occur The drive disables prefetch when it decides that a prefetch hit is not likely to occur CHEETAH 15K 7 FC PRODUCT MANUAL REV E 13 5 0 RELIABILITY SPECIFICATIONS The following reliability specifications assume correct host and drive operational interface including all interface timings power supply voltages environmental requirements and drive mounting constraints Seek error rate Less than 10 errors 10 seeks Read Error Rates Recovered Data Less than 10 errors in 1012 bits transferred OEM default settings Unrecovered Data Less than 1 sector in 1018 bits transferred Miscorrected Data Less than 1 sector in 1021 bits transferred Interface error rate Less than 1 error in 1012 bits transferred with minimum receive eye
51. c 00 00 02 00 MODE PAGES DEF 81 0a cO Ob ff 00 00 00 05 00 ff ff CHG 81 0a ff ff 00 00 00 00 ff 00 ff ff DEF 82 80 80 00 00 00 00 00 00 01 00 00 00 00 CHG 82 0e ff ff 00 00 00 00 00 00 ff ff 00 00 00 00 DEF 83 16 bb 40 00 00 00 00 03 80 04 4 02 00 00 01 00 CO 00 40 00 00 00 CHG 83 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 DEF 84 16 01 8a 9a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 3a a7 00 00 CHG 84 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 DEF 87 0a 00 Ob ff 00 00 00 00 00 ff ff CHG 87 0a Of ff 00 00 00 00 00 00 ff ff DEF 88 12 14 00 ff ff 00 OO ff ff ff ff 80 20 00 00 00 00 00 00 CHG 88 12 a5 00 00 00 ff ff ff ff 00 00 20 00 00 00 00 00 00 00 DEF 8a 0 02 00 00 00 00 00 00 00 0c 80 8a 0 03 10 00 00 00 00 00 00 00 00 DEF 99 06 00 00 00 00 00 00 CHG 99 06 00 ff 00 00 00 00 DEF 9a 0 00 02 00 00 00 05 00 00 8c a0 CHG 9a 00 03 ff ff ff 00 00 00 00 DEF 9c 0a 10 00 00 00 00 00 00 00 00 01 CHG 9 9d Of ff ff ff ff ff ff ff ff DEF dc 01 00 0c 01 01 00 18 00 18 00 00 00 00 00 00 CHG dc 01 00 Oc 00 01 ff ff ff ff O0 00 00 00 00 00 DEF 80 06 00 80 Of 00 00 00 CHG 80 06 b7 8f 00 00 00 READ CAPACITY DATA READ BUFFER 01234567898 ABCDEF ASCII 000000 22 EC B2 5B 00 00 02 00 CHEETAH 15K 7 FC PRODUCT MANUAL REV E 54 11 4 MISCELLANEOUS OPERATING FEATURES AND CONDITIONS Table 21 lists various features and conditions
52. cO Ob ff 00 00 00 05 00 ff ff CHG 81 0a ff ff 00 00 00 00 ff 00 ff ff DEF 82 80 80 00 00 00 00 00 00 01 00 00 00 00 CHG 82 0e ff ff 00 00 00 00 00 00 ff ff 00 00 00 00 DEF 83 16 bb 40 00 00 00 00 03 80 04 c4 02 00 00 01 00 CO 00 4c 40 00 00 00 CHG 83 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 DEF 84 16 01 8a 9a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 3a a7 00 00 CHG 84 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 DEF 87 0a 00 Ob ff 00 00 00 00 00 ff ff CHG 87 0a Of ff 00 00 00 00 00 00 ff ff DEF 88 12 14 00 ff ff 00 OO ff ff ff ff 80 20 00 00 00 00 00 00 CHG 88 12 a5 00 00 00 ff ff 00 00 20 00 00 00 00 00 00 00 DEF 8a 0 02 00 00 00 00 00 00 00 12 CHG 8a 0a 03 f0 00 00 00 00 00 00 00 00 DEF 99 06 00 00 00 00 00 00 CHG 99 06 00 ff 00 00 00 00 DEF 9a 0 00 02 00 00 00 05 00 00 8c a0 CHG 9a 00 03 ff ff ff 00 00 00 00 DEF 9c 0a 10 00 00 00 00 00 00 00 00 01 CHG 9 9d Of ff ff ff ff ff ff ff ff DEF dc 01 00 0c 01 01 00 18 00 18 00 00 00 00 00 00 CHG dc 01 00 Oc 00 01 ff ff ff ff O0 00 00 00 00 00 DEF 80 06 00 80 Of 00 00 00 CHG 80 06 b7 8f 00 00 00 READ CAPACITY DATA READ BUFFER 0123456789 ABCDEF ASCII 000000 34 65 F8 6F 00 00 02 00 CHEETAH 15K 7 FC PRODUCT MANUAL REV E 53 Table 20 Mode Sense data default and changeable values for ST3300657FC drives MODE DATA HEADER 00 be 00 10 00 00 00 08 BLOCK DESCRIPTOR 22 ec b2 5
53. cument this document takes precedence CHEETAH 15K 7 FC PRODUCT MANUAL REV E 3 0 GENERAL DESCRIPTION Cheetah 15K 7 FC drives provide high performance high capacity data storage for a variety of systems including engineering workstations network servers mainframes and supercomputers Cheetah 15K 7 FC drives support 4 Gbit Fibre Channel Cheetah 15K 7 FC drives support the Fibre Channel Arbitrated Loop FC AL and SCSI Fibre Channel Protocol as described in the ANSI specifications this document and the Fibre Channel Interface Manual which describes the general interface characteristics of this drive Cheetah 15K 7 FC drives are classified as intelligent peripherals and provide level 2 conformance highest level with the ANSI SCSI 1 standard Cheetah 15K 7 FC SED models have provisions for Security of Data at Rest based on the standards defined by the Trusted Computing Group see www trustedcomputinggroup org Note Never disassemble the HDA and do not attempt to service items in the sealed enclosure heads media actuator etc as this requires special facilities The drive does not contain user replaceable parts Opening the HDA for any reason voids your warranty Cheetah 15K 7 FC drives use a dedicated landing zone at the innermost radius of the media to eliminate the possibility of destroying or degrading data by landing in the data zone The heads automatically go to the landing zone when power is removed from the drive
54. d electrical connec tion at the backplane is either open or grounded open for the 1 setting grounded for the 0 setting Alternatively these pins may be driven by a 3 3V logic device pulled up to 3 3V through a pull up resistor recommended size of 10k ohm or grounded through some other means CHEETAH 15K 7 FC PRODUCT MANUAL REV E 58 11 5 5 FC AL transmitters and receivers A typical FC AL differential copper transmitter and receiver pair is shown in Figure 15 The receiver is required to provide the AC coupling to eliminate ground shift noise TX i Differential Receiver 5 fer Med amp ion Transfer Medium 25100 Transmitter 3 Figure 15 FC AL transmitters and receivers 11 5 6 Power Power is supplied through the FC SCA with support for 5 volts and 12 volts All of the voltage pins the drive connector are the same length Four 12 volt pins provide 12 volt power to the drive The current return for the 12 volt power supply is through the common ground pins The supply current and return current must be distributed as evenly as possible among the pins The maximum current typically occurs while the drive motor is starting Three 5 volt pins provide logic power to the drive The current return for the 5 volt power supply is through the common ground pins Distribute supply and return current as evenly as possible among the voltage and ground pins The mating connector pins use s
55. d for the reason reported in the field The drive will report the failure condition and LBA if applicable in the Self test Results Log parameter The Sense key ASC ASCQ and FRU are used to report the failure condition 5 2 6 2 5 Abort There are several ways to abort a diagnostic You can use a SCSI Bus Reset or a Bus Device Reset message to abort the diagnostic You can abort a DST executing in background mode by using the abort code in the DST Function Code field This will cause a 01 self test aborted by the application client code to appear in the self test results values log All other abort mechanisms will be reported as a 02 self test routine was interrupted by a reset condition 5 2 7 Product warranty Beginning on the date of shipment to the customer and continuing for the period specified in your purchase contract Seagate warrants that each product including components and subassemblies that fails to function properly under normal use due to defect in materials or workmanship or due to nonconformance to the applicable specifications will be repaired or replaced at Seagate s option and at no charge to the customer if returned by customer at customer s expense to Seagate s designated facility in accordance with Seagate s warranty procedure Seagate will pay for transporting the repair or replacement item to the customer For more detailed warranty information refer to the standard terms and conditions of purchase for Seagate pr
56. de 96 bit Reed Solomon 7 Error recovery page 01h command 46 errors 34 extended link service frames 39 reply frames 39 Extended sense command 46 Extent reservation command 49 F fabric 44 Fabric Address Notification FAN 39 Fabric Login FLOGI 39 FAN 44 fault LED out signal 59 FC differential input 65 FC AL document 5 interface 37 57 options supported 45 physical interface 56 SCA device connector illustrated 57 selective reset 55 FCC rules and regulations 3 FCP for SCSI document 5 response codes 40 task management functions 40 FC PH document 5 FDE features 7 features 7 interface 39 67 Federal Information Processing Standard 31 Fibre Channel documents 5 Fibre Channel Interface Control page 19h 46 Fibre Channel Interface Manual 2 3 Fibre Channel Services 39 Field pointer bytes command 46 FIPS 31 firmware 7 corruption 49 Firmware download option command 48 firmware download port 33 Firmware numbers page command 46 flawed sector reallocation 7 FLOGI received on PortA 43 received on PortB 43 Force unit access command 47 form factor 7 format 37 Format command execution time 11 Format page 03h command 46 Format unit command 46 FS 41 42 44 function complete code 00 40 not supported code 05 40 reject code 04 40 G Global Data Band 33 Good status 55 gradient 26 ground shift noise 59 grounding 38 H hard assigned arbitrated loop physical address AL_PA 37 HDA 38 heads read writ
57. e data 10 heat removal 37 host equipment 38 hot plugging the drive 15 humidity 26 humidity limits 26 41 ID and configuration options 7 Idle Read After Write 36 Implemented operating def page command 46 Information exceptions control page 1Ch command 47 Initiator control 41 Inquiry command 46 Cheetah 15K 7 FC Product Manual Rev E inquiry data 50 installation 37 interface 37 commands supported 46 description 56 errorrate 14 errors 14 illustrated 56 physical 56 requirements 39 intermediate condition met good status 55 intermediate good status 55 Intermix 41 44 internal data rate 10 internal defects errors 34 internal drive characteristics 10 IRAW 36 J J1 connector 37 Jumper settings page command 46 jumpers 37 L latency average rotational 10 11 LBdata 48 LED driver signals 64 Link Service Reject LS_RJT 39 link services supported 39 Locking SP 32 LockOnReset 33 Lock unlock cache command 47 Log select command 48 Log sense command 48 logic power 59 logical block address 12 logical block reallocation scheme 7 logical block size 7 11 logical segments 12 Logout LOGO 39 loop 56 60 disruption 15 initialization 37 loop position FC AL options 45 loop position report FC AL options 45 LS RJT 41 44 LSI circuitry 8 M maintenance 14 Makers Secure ID 32 maximum delayed motor start 20 21 maximum start current 20 21 68 mean time between failure MTBF 15 media descripti
58. e lines the drive has 10 ohm up resistors that default the device control code to 7 1 0625 GHz Table lists the supported codes Table 28 Device control code values 2 PIN 17 1 PIN 18 0 PIN 39 DEFINITION 0 0 0 Reserved for povver failure vvarning 0 0 1 Reserved for auto negotiation of link rate 0 1 0 Reserved 0 1 1 Reserved 1 0 0 Reserved 1 0 1 4 250 GHz operation both ports 1 0 2 125 GHz operation on both ports 1 1 1 0625 GHz operation on both ports 11 6 SIGNAL CHARACTERISTICS This section describes the electrical signal characteristics of the drive s input and output signals See Table 24 on page 58 for signal type and signal name information 11 6 1 TTL input characteristics Table 29 provides the TTL characteristics Table 29 TTL characteristics STATE VOLTAGE CURRENT Input high 1 9 lt Vip lt 5 5V liq 500 max Input low 0 5V lt Vi lt 0 9V lo 500nA max Output high EN Bypass A B 2 4 lt lt 5 25V lou lt 3mA Output low EN Bypass A B lt 0 5V lo lt 3mA Output high Parallel ESI 2 4 lt 0 9 Vec 2 4mA Vou gt 0 9Vcc lou lt 500pA Output low Parallel ESI 0 lt lt 45V lo lt 2 4mA Output high all other outputs 2 4 lt lt 0 9 Vcc lou 1 6mA Vou gt 0 9Vcc lou lt 500pA Output low all other outputs 0 lt Vg lt 45V lo lt 1 6mA CH
59. e newly inserted device If the bypass circuit is not present loop operation is temporarily disrupted until the next device starts receiving the output from the newly inserted device and regains synchronization to the new input The Pass through state is disabled while the drive performs self test of the FC interface The control line for an external port bypass circuit remains in the Enable Bypass state while self test is running If the bypass circuit is present loop operation may continue If the bypass circuit is not present loop operation will be halted while the self test of the FC interface runs When the self test completes successfully the control line to the bypass circuit is disabled and the drive enters the FC AL Initializing state The receiver on the next device in the loop must synchronize to output of the newly inserted drive If the self test fails the control line to the bypass circuit remains in the Enable Bypass state Note t is the responsibility of the systems integrator to assure that no temperature energy voltage hazard ESD potential hazard is presented during the hot connect disconnect operation Discharge the static electricity from the drive carrier prior to inserting it into the system Caution The drive motor must come to a complete stop prior to changing the plane of operation This time is required to insure data integrity 5 24 S M A R T S M A R T is an acronym for Self Monitoring Analysis and Repo
60. ected to periodic vibration not exceeding 15 minutes of duration at major resonant frequency Vibration occurring at these levels may degrade operational performance during the abnormal vibration period Specified operational performance will continue when normal operating vibration levels are resumed This assumes system recovery routines are available Operating abnormal translational random flat profile 5 500 Hz 0 75 G 0 to peak 10 300 Hz 0 0029 G2 Hz c Non operating The limits of non operating vibration shall apply to all conditions of handling and transportation This includes both isolated drives and integrated drives The drive shall not incur physical damage or degraded performance as a result of continuous vibration not exceeding 5 22 Hz 0 25 G 0 to peak linear swept sine 0 5 octive min 22 350 Hz 3 G 0 to peak linear swept sine 0 5 octive min 350 500 Hz 1 G 0 to peak linear swept sine 0 5 octive min Vibration may be applied in the X Y or Z axis 6 4 5 Acoustics Sound power during idle mode shall be 3 4 bels typical wnen measured to ISO 7779 specification Sound power while operating shall be 3 8 bels typical wnen measured to ISO 7779 specification There will not be any discrete tones more than 10 dB above the masking noise on typical drives when measured according to Seagate specification 30553 001 There will not be any tones more than 24 dB above the masking noise on any drive 6 46
61. ecutable 03h X Request sense Executable Executable Y Extended sense Y Field pointer bytes Y Actual retry count bytes 04h Y Format unit 1 Executable Check Condition 07h Y Reassign blocks Executable Check Condition 08h Y Read Executable Check Condition 0Ah Y Executable Check Condition OBh Y Executable Executable 12h Y Executable Executable Y Vital product data page 00h Y Unit serial number page 80h Y Implemented operating def page 81h Y Device Identification page A Date page C1h Y m 5 15h Y Mode select same pages as Mode Executable Sense command shown below 3 16h Y Reserve Executable Executable N 3rd party reserved N Extent reservation 17h Y Release Executable Executable 18h N Copy 1Ah Y Mode sense Executable Executable Y Y Y Disconnect reconnect control page 02h lt Format page 03h Rigid disk drive geometry page 04h Verify error recovery page 07h Caching parameters page 08h Control mode page 0Ah Fibre Channel Interface Control page 19h Power control page 1Ah CHEETAH 15K 7 FC PRODUCT MANUAL REV E 46 Table 16 Supported commands continued Command Supported code Y N 41 Y lt Command name Information exceptions control page 1Ch Background Scan mode subpage 01h Executable state of standard SCSI commands in the pres
62. ed physical dimensions See Section 10 4 Drive mounting Height Width Depth Weight max Figure 9 MECHANICAL SPECIFICATIONS 1 03 in 4 00 in 5 79 in 1 76 pounds 26 10 mm 101 60 mm 147 mm 0 80 kilograms es 7 T Z 5 REF Crk 1 Notes 2 11 Mounting holes are 6 32 UNC 2B three on each side and four on the bottom Max Screw penetration into side of drive is 0 15 in 3 81 mm Max screw tightening torque Mounting configuration dimensions CHEETAH 15K 7 FC MANUAL REV E C El is 6 0 in Ib 0 6779 nm with minimum full thread engagement of 0 12 in 3 05 mm Xs U dL 1h Dimension Table Inches Millimeters A 1 028 max 26 10 max B 5 787 max 147 00 max C 4 000 010 101 60 25 z D 3 750 4 010 9525 25 E 0 125 010 3 18 25 F 1 750 010 44 45 25 1 1 122 020 28 50 2 50 J 4 000 010 101 60 25 XI K 0 250 2 010 6 35 4 25 L 1 638 010 41 60 25 M 0 181 4 60 N 040 1 02 P 1 625 020 41 28 50 R 1 618 41 10 5 0 276 040 7 00 1 02 015 max 0 38 U 015 max 0 38 max E D 30 7 0 ABOUT FIPS The Federal Information Processing Standard FIP
63. ence of LBA banding applies to SED models only Affected LBA User Data Unlocked Affectsentire Accessed ReadLockzWrite Drive Y N Y N Lock False Affected LBA ReadLock Write Y Executable 1Bh Y Start unit stop unit 1Ch Y Receive diagnostic results N Executable Y Supported diagnostics pages Y Translate page Y Enclosure services page 1Dh Y Send diagnostics page N Executable Y Supported diagnostics pages Y Translate page 25h Y Read capacity N Executable 28h Y Read extended Y Disable page out Y Force unit access N Relative address 2Ah Y Write extended Y Disable page out Y Force unit access N Relative address 2Bh Y Seek extended 2Eh Y Write and verify Y Executable Check Condition Y Disable page out Y Byte check N Relative address 2Fh Y Verify 10 BYTCHK 0 Y Executable Y Verify 10 BYTCHK 1 Executable Check Condition Y Disable page out Y Byte check N Relative address 30h N Search data high 31h N Search data equal 32h N Search data low 33h N Set limits 34h N Prefetch Executable Check Condition 35h Y Synchronize cache Executable 36h N Lock unlock cache 37h Y Read defect data N Executable 39h N Compare 3Ah N Copy and verify 3Bh Y Write buffer N Y Check Condition Check Condition all modes except modes 4h 7h OEh and OFh Y N Executable
64. er passwords to unique owner specified values 8 3 RANDOM NUMBER GENERATOR RNG The drive has a 32 byte hardware RNG that it is uses to derive encryption keys or if requested to do so to provide random numbers to the host for system use including using these numbers as Authentication Keys passwords for the drive s Admin and Locking SPs CHEETAH 15K 7 FC PRODUCT MANUAL REV E 32 8 4 DRIVE LOCRING In addition to changing the passwords as described in Section 8 2 3 the owner should also set the data access controls for the individual bands The variable LockOnReset should be set to PovverCycle to ensure that the data bands will be locked if power is lost This scenario occurs if the drive is removed from its cabinet The drive will not honor any data read or write requests until the bands have been unlocked This prevents the user data from being accessed without the appropriate credentials when the drive has been removed from its cabinet and installed in another system When the drive is shipped from the factory the firmware download port is locked and the drive will reject any attempt to download new firmware The drive owner must use the SID credential to unlock the firmware download port before firmware updates will be accepted 8 5 DATA BANDS When shipped from the factory the drive is configured with a single data band called Band 0 also known as the Global Data Band which comprises LBA 0 through LBA max The host may
65. erminators 37 Test unit ready command 46 Third party Process Logout TRPLO 39 tracks perinch 10 Translate page command 47 transmit eye diagram 64 transmitters 59 transporting the drive 19 Trusted Computing Group 5 6 32 TTL input characteristics 63 U Ul 42 43 unformatted 8 unique identifier 42 43 Unit attention page 00h command 46 Unit serial number page command 46 Unrecoverable Errors 14 unrecovered media data 14 V Valid version level 41 44 Verify command 47 49 Verify error recovery page 07h command 46 vibration 27 29 Vital product data page command 46 W warranty 19 word sync 15 Write and verify command 47 Write buffer command 47 Write combined header and data mode 0 48 Write command 46 Write data mode 2 48 Write extended command 47 Write long command 48 Write same command 48 49 X XD read 48 XD write 48 XD write extended command 49 XID reassign 41 XP write 48 7 zero latency read 55 zone bit recording ZBR 7 71 Seagate Seagate Technology LLC AMERICAS Seagate Technology LLC 10200 South De Anza Boulevard Cupertino California 95014 United States 408 658 1000 ASIA PACIFIC Seagate Singapore International Headquarters Pte Ltd 7000 Ang Mo Kio Avenue 5 Singapore 569877 65 6485 3888 EUROPE MIDDLE EAST AND AFRICA Seagate Technology SAS 16 18 rue du D me 92100 Boulogne Billancourt France 33 1 4186 10 00 Publication Number 100516225 Rev E December 2012
66. eters page 02h 2 Ifthe prefetch feature is enabled refer to section 4 5 2 for operation from this point Each cache segment is actually a self contained circular buffer whose length is an integer number of logical blocks The drive dynamically creates and removes segments based on the workload The wrap around capability of the individual segments greatly enhances the cache s overall performance Note The size of each segment is not reported by Mode Sense command page 08h bytes 14 and 15 The value OXFFFF is always reported regardless of the actual size of the segment Sending a size specification using the Mode Select command bytes 14 and 15 does not set up a new segment size If the STRICT bit in Mode page byte 2 bit 1 is set to one the drive responds as it does for any attempt to change an unchangeable param eter CHEETAH 15K 7 FC PRODUCT MANUAL REV E 12 45 41 Caching write data Write caching is a write operation by the drive that makes use of a drive buffer storage area where the data to be written to the medium is stored while the drive performs the Write command If read caching is enabled RCD 0 then data written to the medium is retained in the cache to be made available for future read cache hits The same buffer space and segmentation is used as set up for read functions The buffer segmentation scheme is set up or changed independently having nothing to do with the state of RCD When a write command is issued
67. ff 00 ff ff DEF 82 0e 80 80 00 00 00 00 00 00 01 3a 00 00 00 00 CHG 82 0e ff ff 00 00 00 00 00 00 ff ff 00 00 00 00 DEF 83 16 bb 40 00 00 00 00 03 80 04 c4 02 00 00 01 00 cO 00 4c 40 00 00 00 CHG 83 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 DEF 84 16 01 8a 9a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 3a a7 00 00 CHG 84 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 DEF 87 0 00 Ob ff 00 00 00 00 00 ff ff 87 0a Of ff 00 00 00 00 00 00 ff ff DEF 88 12 14 00 ff ff 00 00 ff ff ff ff 80 20 00 00 00 00 00 00 CHG 88 12 a5 00 00 00 ff ff ff ff 00 00 20 00 00 00 00 00 00 00 DEF 8a 0a 02 00 00 00 00 00 00 00 19 00 8a 0a 03 10 00 00 00 00 00 00 00 00 DEF 99 06 00 00 00 00 00 00 CHG 99 06 00 ff 00 00 00 00 DEF 9a 0a 00 02 00 00 00 05 00 00 8c a0 CHG 9a 00 03 ff ff ff 00 00 00 00 DEF 9c 0a 10 00 00 00 00 00 00 00 00 01 CHG 9 9d Of ff ff ff ff ff ff ff ff DEF dc 01 00 0c 01 01 00 18 00 18 00 00 00 00 00 00 01 00 Oc 00 01 ff ff ff ff O0 00 00 00 00 00 DEF 80 06 00 80 Of 00 00 00 CHG 80 06 b7 8f 00 00 00 READ CAPACITY DATA READ BUFFER 01234567898 ABCDEF ASCII 000000 45 DD 2F AF 00 00 02 00 EJ CHEETAH 15K 7 FC PRODUCT MANUAL REV E 52 Table 19 Mode Sense data default and changeable values for ST3450857FC drives MODE DATA HEADER 00 be 00 10 00 00 00 08 BLOCK DESCRIPTOR 34 65 f8 70 00 00 02 00 MODE PAGES DEF 81 0a
68. ffer command 48 Read capacity command 47 Read combined header and data mode 0 48 Read command 46 Read data mode 2 48 Read defect datacommand 47 Read descriptor mode 3 48 readerrorrates 14 34 Read extended command 47 Read Link Status RLS 39 Read long command 48 read write data heads 10 Reassign blocks command 46 Receive buffer field size 41 44 receive buffer field size 42 Receive diagnostic results command 47 receive eye diagram 65 receivers 59 Cheetah 15K 7 FC Product Manual Rev E recommended mounting 28 Recoverable Errors 14 recovered media data 14 reference documents 5 Regenerate command 49 Register FC 4 Types RFT_ID 39 Relative address command 47 relative humidity 26 Release command 46 Released 10 command 49 reliability 8 specifications 14 reliability and service 15 repair and return information 19 reporting actual retry count 55 Request sense command 46 reservation conflict status 55 Reserve command 46 Reserved 10 command 49 resonance 27 return information 19 Rezero unit command 46 Rigid disk drive geometry page command 46 RNG 32 rotation speed 10 running disparity 15 5 safety 3 SCA part numbers 57 SCSI interface commands supported 46 Seagate Technology Support Services 1 Search data equal command 47 high command 47 low command 47 Secure ID 32 security partitions 32 Security Protocol In 32 Security Protocol Out 32 Seek command 46 seek error defined 14 rate 14 Seek extended com
69. g Seagate Enterprise SED The SED drives referenced in this Product Manual have been validated by CMVP and have been thoroughly tested to satisfy FIPS 140 2 Level 2 requirements In order to operate in FIPS Approved Mode of Operation these SEDs require security initialization For more information refer to Security Rules section in the Security Policy document uploaded on the NIST website Cert 1299 Seagate Secure Enterprise Self Encrypting Drives FIPS 140 Module http csrc nist gov groups STM cmvp documents 140 1 140val all htm Security Level 2 Security Level 2 enhances the physical security mechanisms of a Security Level 1 cryptographic module by adding the requirement for tamper evidence which includes the use of tamper evident coatings or seals on removable covers of the module Tamper evident coatings or seals are placed on a cryptographic module so that the coating or seal must be bro ken to attain physical access to the critical security parameters CSP within the module Tamper evident seals are placed on covers to protect against unauthorized physical access In addition Security Level 2 requires at a minimum role based authentication in which a cryptographic module authenticates the authorization of an operator to assume a specific role and perform a corresponding set of services Figure 10 Example of FIPS tamper evidence labels Note Image is for reference only may not represent actual drive CHEETAH 15K 7 F
70. g page see Table 1 can be used to set this trip point The default value for this drive is 68 C however you can set it to any value in the range of 0 to 68 C If you specify a temperature greater than 68 C in this field the temperature is rounded down to 68 C A sense code is sent to the host to indicate the rounding of the parameter field Table 1 Temperature Log Page ODh Parameter Code Description 0000h Primary Temperature 0001h Reference Temperature 5 26 Drive Self Test DST Drive Self Test DST is a technology designed to recognize drive fault conditions that qualify the drive as a failed unit DST validates the functionality of the drive at a system level There are two test coverage options implemented in DST 1 Extended test 2 Shorttest The most thorough option is the extended test that performs various tests on the drive and scans every logical block address LBA of the drive The short test is time restricted and limited in length it does not scan the entire media surface but does some fundamental tests and scans portions of the media If DST encounters an error during either of these tests it reports a fault condition If the drive fails the test remove it from service and return it to Seagate for service CHEETAH 15K 7 FC PRODUCT MANUAL REV E 17 5 2 6 1 DST failure definition The drive will present a diagnostic failed condition through the self tests results value of the diagnostic log
71. gulations of the Canadian Department of Communications The design characteristics of the drive serve to minimize radiation when installed in an enclosure that provides reasonable shielding As such the drive is capable of meeting the Class B limits of the FCC Rules and Regulations of the Canadian Department of Communications when properly packaged However it is the user s responsibility to assure that the drive meets the appropriate EMI requirements in their system Shielded I O cables may be required if the enclosure does not provide adequate shielding If the I O cables are external to the enclosure shielded cables should be used with the shields grounded to the enclosure and to the host controller 2 1 1 1 Electromagnetic susceptibility As a component assembly the drive is not required to meet any susceptibility performance requirements It is the responsibility of those integrating the drive within their systems to perform those tests required and design their system to ensure that equipment operating in the same system as the drive or external to the system does not adversely affect the performance of the drive See Table 2 DC power requirements CHEETAH 15K 7 FC PRODUCT MANUAL REV E 3 2 1 2 Electromagnetic compliance Seagate uses an independent laboratory to confirm compliance with the directives standards for CE Marking and C Tick Marking The drive was tested in a representative system for typical applications The selected syste
72. h polarization Berg 40 71781 With polarization Methode 40 512 220 91 101N Molex 717431040 The FC AL SCA device connector is illustrated in Figure 14 1 618 003 in With polarization With polarization 41 1 0 08 g Pin 20 Pin 1 40 Eli Pin 21 2 places 16 24 mm 1 28in 32 47 1 618 003 in e 41 10 0 08 mm I 0 226 in min 6 50 1 492 009 in nc P 37 90 0 24 6 71 0 18 mm Mating end E Pe Housing 0 25 mm A g 4 N UTT i d mm P Contact ae 22 lt 025 0 635 Figure 14 FC AL SCA device connector dimensions 11 5 3 Electrical description Fibre Channel drives use the FC SCA connector for DC power FC AL interface Drive select device identification Option selection Enclosure Services interface This 40 pin connector is designed to plug directly into a backpanel CHEETAH 15K 7 FC MANUAL REV E 0 394 004 in 10 0 0 10 mm 0 75 mm 0 024 in min 0 60 mm at t_ 0 079 010 in 2 00 25 mm initial point of contact na 0 060 010 in 1 52 0 25 mm 2061
73. hat block 5 1 3 Seek errors A seek error is defined as a failure of the drive to position the heads to the addressed track After detecting an initial seek error the drive automatically performs an error recovery process If the error recovery process fails a seek positioning error Error code 15h or 02h will be reported with a Hardware error 04h in the Sense Key Recoverable seek errors are specified at Less than 10 errors in 10 seeks Unrecoverable seek errors Sense Key 04h are classified as drive failures 5 1 4 Interface errors An interface error is defined as a failure of the receiver on a port to recover the data as transmitted by the device port connected to the receiver The error may be detected as a running disparity error illegal code loss of word sync or CRC error The total error rate for a loop of devices is the sum of the individual device error rates CHEETAH 15K 7 FC PRODUCT MANUAL REV E 14 5 2 RELIABILITY AND SERVICE You can enhance the reliability of Constellation ES 3 SAS disk drives by ensuring that the drive receives adequate cooling Section 6 0 provides temperature measurements and other information that may be used to enhance the service life of the drive Section 10 2 provides recommended air flow information 5 2 1 Annualized Failure Rate AFR and Mean Time Between Failures MTBF These drives shall achieve an AFR of 0 55 MTBF of 1 600 000 hours when operated in an environment that ensures the
74. horter contacts to achieve power surge reductions and to aid in hot plugging the drives There are longer voltage contacts in the connector to enable the drive filter capacitors to charge Current to the drive through the long charge pins is limited by the system in which the drive operates Three of the 12 volt pins are shorter to allow capacitive pre charging through the longer 12 volt charge pin Two of the 5 volt pins are shorter to allow capacitive precharging through the longer 5 volt charge pin 11 5 7 Fault LED Out The Fault LED Out signal is driven by the drive when the drive detects failure of both ports the drive detects an internal failure the drive receives the appropriate fault LED command from the host The Fault LED Out signal is designed to pull down the cathode of an LED The anode is attached to the proper 5 volt supply through an appropriate current limiting resistor The LED and the current limiting resistor are external to the drive CHEETAH 15K 7 FC PRODUCT MANUAL REV E 59 11 5 8 Active LED Out The Active LED Out signal is driven by the drive as indicated in Table 25 Table 25 Active LED Out conditions NORMAL COMMAND ACTIVITY LED STATUS Spun and activity Slow blink 20 on and 80 off a 2 sec cycle Spun down and activity command executing On Spun up and no activity On Spun up and activity command executing Off Spinning up or down Blinks steadily 50 on and 50 off
75. hown below Values indicated apply at the drive connector Notes are shown following the last power requirements table The standard drive models and the SED drive models have identical hardware however the security and encryption portion of the drive controller ASIC is enabled and functional in the SED models This represents a small additional drain on the 5V supply of about 30mA and a commensurate increase of about 150mW in power consumption There is no additional drain on the 12V supply Table 2 ST3600057FC DC power requirements 2 Gbit 4 Gbit Notes Amps Amps Amps Amps Voltage 5V 12V 2 12V 2 Regulation 5 5 5 2 5 2 Avg idle current DCX 1 7 0 39 0 81 0 81 Maximum starting current peak DC DC 3s 3 0 67 1 93 1 92 35 3 1 02 3 73 3 61 589 motor 35 1 4 0 55 0 04 0 04 operating current Typical DCX 1 6 0 48 1 18 1 17 Maximum DC 35 1 0 50 1 19 1 19 Maximum peak DC 3s 1 30 3 00 2 98 Table 3 ST3450857FC DC power requirements 2 Gbit 4 Gbit Notes Amps Amps Amps Voltage 5V 12V 2 5V 12V 2 Regulation 5 5 2 14596 5 2 Avg idle current DCX 1 7 0 69 0 42 0 69 Maximum starting current peak DC DC 3s 3 1 85 0 72 1 85 35 3 3 77 1 08 3 49 0 04 0 61 0 04 iin motor start max 35 1 4 D Peak operating current
76. idle during the Pre Scan period In the event that the drive is in a high transaction traffic environment and is unable to complete a BMS scan within 24 power on hours BMS will disable Pre Scan to restore full performance to the system 9 6 DEFERRED AUTO REALLOCATION Deferred Auto Reallocation DAR simplifies reallocation algorithms at the system level by allowing the drive to reallocate unreadable locations on a subsequent write command Sites are marked for DAR during read operations performed by the drive When a write command is received for an LBA marked for DAR the auto reallocation process is invoked and attempts to rewrite the data to the original location If a verification of this rewrite fails the sector is re mapped to a spare location This is in contrast to the system having to use the Reassign Command to reassign a location that was unreadable and then generate a write command to rewrite the data DAR is most effective when AWRE and ARRE are enabled this is the default setting from the Seagate factory With AWRE and ARRE disabled DAR is unable to reallocate the failing location and will report an error sense code indicating that a write command is being attempted to a previously failing location 9 7 IDLE READ AFTER WRITE Idle Read After Write IRAW utilizes idle time to verify the integrity of recently written data During idle periods no active system requests the drive reads recently written data from the media and compares it
77. ions per second CHEETAH 15K 7 FC MANUAL REV E 25 6 4 ENVIRONMENTAL LIMITS Temperature and humidity values experienced by the drive must be such that condensation does not occur on any drive part Altitude and atmospheric pressure specifications referenced to a standard day at 58 7 F 14 8 C Maximum wet bulb temperature is 82 F 28 C 6 41 Temperature a Operating The maximum allowable continuous or sustained HDA case temperature for the rated Annualized Failure Rate AFR is 122 F 50 C The maximum allowable HDA case temperature is 60 C Occasional excursions of HDA case temperatures above 122 F 50 C or below 41 F 5 C may occur without impact to the specified AFR Continual or sustained operation at HDA case temperatures outside these limits may degrade AFR Provided the HDA case temperatures limits are met the drive meets all specifications over a 41 F to 131 F 5 C to 55 C drive ambient temperature range with a maximum temperature gradient of 68 F 20 C per hour Air flow may be needed in the drive enclosure to keep within this range see Section 8 3 Operation at HDA case temperatures outside this range may adversely affect the drives ability to meet specifications To confirm that the required cooling for the electronics and HDA case is provided place the drive in its final mechanical configuration perform random write read operations and measure the HDA case temperature after it has st
78. it identification number as a Marking it complies with Chinese National Standard CNS 13438 and meets the Electromagnetic Compatibility EMC Framework requirements of the Taiwanese Bureau of Standards Metrology and Inspection BSMI 2 2 EUROPEAN UNION RESTRICTION OF HAZARDOUS SUBSTANCES RoHS The European Union Restriction of Hazardous Substances RoHS Directive restricts the presence of chemical substances including Lead Pb in electronic products effective July 2006 A number of parts and materials in Seagate products are procured from external suppliers We rely on the representations of our suppliers regarding the presence of RoHS substances in these parts and materials Our supplier contracts require compliance with our chemical substance restrictions and our suppliers document their compliance with our requirements by providing material content declarations for all parts and materials for the disk drives documented in this publication Current supplier declarations include disclosure of the inclusion of any RoHS regulated substance in such parts or materials Seagate also has internal systems in place to ensure ongoing compliance with the RoHS Directive and all laws and regulations which restrict chemical content in electronic products These systems include standard operating procedures that ensure that restricted substances are not utilized in our manufacturing operations laboratory analytical validation testing and an internal a
79. ive it takes saved values from the media and stores them as current values in volatile memory It is not possible to change the current values or the saved values with a Mode Select command before the drive achieves operating speed and is ready An attempt to do so results in a Check Condition status On drives requiring unique saved values the required unique saved values are stored into the saved values storage location on the media prior to shipping the drive Some drives may have unique firmware with unique default values also On standard OEM drives the saved values are taken from the default values list and stored into the saved values stor age location on the media prior to shipping 3 Current values Current values are volatile values being used by the drive to control its operation A Mode Select command can be used to change the values identified as changeable values Originally current values are installed from saved or default val ues after a power on reset hard reset or Bus Device Reset message CHEETAH 15K 7 FC PRODUCT MANUAL REV E 50 4 Changeable values Changeable values form a bit mask stored in nonvolatile memory that dictates which of the current values and saved values can be changed by a Mode Select command A one 1 indicates the value can be changed A zero 0 indicates the value is not changeable For example in Table 18 refer to Mode page 81 in the row entitled CHG These are hex numbe
80. kpanel to a value of 0 the system issues a unique soft assigned physical address automatically Loop initialization is the process used to verify or obtain an address The loop initialization process is performed when power is applied to the drive when a device is added or removed from the Fibre Channel loop or when a device times out attempting to win arbitration Set all option selections in the connector prior to applying power to the drive If you change options after applying power to the drive recycle the drive power to activate the new settings It is not necessary to low level format this drive The drive is shipped from the factory low level formatted in 512 byte logi cal blocks You need to reformat the drive only if you want to select a different logical block size 10 1 DRIVE ID OPTION SELECTION All drive options are made through the interface connector J1 Table 24 provides the pin descriptions for the 40 pin Fibre Channel single connector J1 10 2 DRIVE ORIENTATION The drive may be mounted in any orientation All drive performance characterizations however have been done with the drive in horizontal discs level and vertical drive on its side orientations which are the two preferred mounting orientations 10 3 COOLING The host enclosure must dissipate heat from the drive You should confirm that the host enclosure is designed to ensure that the drive operates within the temperature measurement guidelines descri
81. l only Verify 32 BYTCHK 0 Executable Executable 7Fh Y Pl only Verify 32 BYTCHK 1 Executable Check Condition 80h N XD write extended 81h N Rebuild 82h N Regenerate 83 8Eh N Not used 8Fh Y Pl only Verify 16 BYTCHK 0 N Executable Executable 8Fh Y Pl only Verify 16 BYTCHK 1 N Executable Check Condition 93h Y Pl only Write same 16 N Executable Check Condition AOh Y Report LUNS Y Executable Executable A2h Y Security Protocol In Y Executable Executable SED only A3h Y Report Device Identifier Executable Executable SED only B5h Y Security Protocol Out Executable Executable SED only CO DFh N Not used 1 Cheetah 15K 7 FC drives can format to 512 520 524 or 528 bytes per logical block 2 Warning Power loss during flash programming can result in firmware corruption This usually makes the drive inopera ble 3 Reference Mode Sense command 1Ah for mode pages supported 4 Y Yes Command is supported N No Command is not supported A Support is available on special request CHEETAH 15K 7 FC PRODUCT MANUAL REV E 49 11 3 1 Inquiry data Table 17 lists the Inquiry command data that the drive should return to the initiator per the format given in the Fibre Channel Interface Manual Table 17 Cheetah 15 7 FC inquiry data BYTES DATA HEX 0 15 Vendor ID 16 31 Product ID 32 47 48 63 64 79 80 95 96 111 Copyright 112 127 notice 128 143
82. l vary based on various factors including file size file format features and application software Actual data rates may vary depending on operating environment and other factors The export or re export of hardware or software containing encryption may be regulated by the U S Department of Commerce Bureau of Industry and Security for more information visit www bis doc gov and controlled for import and use outside of the U S Seagate reserves the right to change without notice product offerings or specifications 1 0 2 0 3 0 4 0 5 0 6 0 5 SEAGATE TECHNOLOGY SUPPORT 1 SCOPE eco tiet ia bb eed debi hee een ee ete 2 APPLICABLE STANDARDS AND REFERENCE 3 2 1 STANDARDS te bate la dead mala bation e pa e e OS matunga dO n 3 2 1 1 Electromagnetic 3 2 1 2 Electromagnetic compliance 4 2 2 EUROPEAN UNION RESTRICTION OF HAZARDOUS SUBSTANCES 5 4 2 3 REFERENCE DOCUMENTS cata oa ERU A SPERARE RR e A oe Raa doles 5 GENERAL DESCRIPTION 2 725 eevee dE ceed da Se aie Se 6 3 1 STANDARD FEATURES NH PL edi Rada ed dude Ad Alene debe 7 3 2 MEDBIA BESGRIPTION dat era ea da de ted
83. m represents the most popular characteristics for test platforms The system configurations include Typical current use microprocessor Keyboard Monitor display Printer Mouse Although the test system with this Seagate model complies with the directives standards we cannot guarantee that all systems will comply The computer manufacturer or system integrator shall confirm EMC compliance and provide the appropriate marking for their product Electromagnetic compliance for the European Union If this model has the CE Marking it complies with the European Union requirements of the Electromagnetic Compatibility Directive 89 336 EEC of 03 May 1989 as amended by Directive 92 31 EEC of 28 April 1992 and Directive 93 68 EEC of 22 July 1993 Australian C Tick If this model has the C Tick Marking it complies with the Australia New Zealand Standard AS NZS3548 1995 and meets the Electromagnetic Compatibility EMC Framework requirements of Australia s Spectrum Management Agency SMA Korean KCC If this model has the Korean Communications Commission KCC logo it complies with paragraph 1 of Article 11 of the Electromagnetic Compatibility EMC Control Regulation and meets the Electromagnetic Compatibility Framework requirements of the Radio Research Laboratory RRL Ministry of Information and Communication Republic of Korea Taiwanese BSMI If this model has two Chinese words meaning certification followed by an eight dig
84. mand 47 seek performance characteristics 10 seek time average typical 10 full stroke typical 10 single track typical 10 segmented caching 55 SELID 37 lines 61 70 standard feature 7 Self Encrypting Drive SED Users Guide 2 self encrypting drives 32 Self Monitoring Analysis and Reporting Technology 8 15 Send diagnostics page command 47 Sequential delivery 41 44 Service Options 44 Service options 41 Set limits command 47 shielding 3 shipping 19 shipping container 26 shock 27 and vibration 27 shock mount 38 SID 32 signal characteristics 63 LED driver 64 single unit shipping pack kit 9 SMART 8 15 SMP 1 in Mode Select command 55 SO 41 44 spindle brake 7 Stacked connection req 41 44 standards 3 Start unit stop unit command 47 start stop time 11 Supported diagnostics pages command 47 surface stiffness allowable for non flat surface 38 switches 37 Synchronize cache command 47 synchronized spindle operation 55 system chassis 38 T target reset function 40 task management functions 40 Abort task set 40 Clear ACA 40 Clear task set 40 Target reset 40 terminate task 40 task management response codes 40 Function complete 00 40 Function not supported 05 40 Function reject 04 40 task set full status 55 TCG 32 TCG Storage Architecture Core Specification 3 temperature 26 37 limits 26 non operating 26 Cheetah 15K 7 FC Product Manual Rev E regulation 3 See also cooling terminate task function 40 t
85. mined by defining a plane with three of the four mounting points fixed and evaluating the out of plane deflection of the fourth mounting point when a known force F is applied to the fourth point Note Before mounting the drive in any kind of 3 5 inch to 5 25 inch adapter frame verify with Seagate Technology that the drive can meet the shock and vibration specifications given herein while mounted in such an adapter frame Adapter frames that are available may not have a mechanical structure capable of mounting the drive so that it can meet the shock and vibration specifications listed in this manual 10 5 GROUNDING Signal ground PCBA and HDA ground are connected together in the drive and cannot be separated by the user The equipment in which the drive is mounted is connected directly to the HDA and PCBA with no electrically isolating shock mounts If it is desired for the system chassis to not be connected to the HDA PCBA ground the systems integrator or user must provide a nonconductive electrically isolating method of mounting the drive in the host equipment Increased radiated emissions may result if you do not provide the maximum surface area ground connection between system ground and drive ground This is the system designer s and integrator s responsibility CHEETAH 15K 7 FC PRODUCT MANUAL REV E 38 11 0 INTERFACE REQUIREMENTS This section partially describes the interface requirements as implemented on Cheetah 15 7 FC drive
86. nd for 600GB models and 380 I Os per sec ond for 450GB and 300GB models Current and power specified at nominal voltages During idle the drive heads are relocated every 60 seconds to a random location within the band from three quarters to maximum track General DC power requirement notes 1 2 3 Minimum current loading for each supply voltage is not less than 1 2 of the maximum operating current shown The 5V and 12V supplies should employ separate ground returns Where power is provided to multiple drives from a common supply careful consideration for individual drive power requirements should be noted Where multiple units are powered on simultaneously the peak starting current must be available to each device Parameters other than spindle start are measured after a 10 minute warm up No terminator power 6 21 Conducted noise immunity Noise is specified as a periodic and random distribution of frequencies covering a band from DC to 10 MHz Maximum allowed noise values given below are peak to peak measurements and apply at the drive power connector 5 250 mV pp from 100 Hz to 20 MHz 12 800 mV pp from 100 Hz to 8 KHz 450 mV pp from 8 KHz to 20 KHz 250 mV pp from 20 KHz to 5 MHz CHEETAH 15K 7 FC PRODUCT MANUAL REV E 21 6 2 2 Power sequencing The drive does not require power sequencing The drive protects against inadvertent writing during power up and down 6 2 3 Current profiles The 12V and
87. ned for task management functions supported Table8 FC SCSI FCP response codes FUNCTION NAME RESPONSE CODE Function complete 00 Function not supported 04 Function reject 05 CHEETAH 15K 7 FC PRODUCT MANUAL REV E 40 11 1 4 Fibre Channel port login Table 9 identifies the required content of the N Port Login PLOGI payload from an initiator Table 9 N Port login PLOGI payload BYTES 0 15 16 31 32 35 36 47 48 51 52 63 64 67 68 79 80 83 84 95 96 99 100 111 112 115 BB CF FS PN NN SO CS OS CHEETAH 15K 7 FC PRODUCT MANUAL REV E 03 00 00 00 09 09 BB BB CF XX FS FS XX XX XX XX Common XX XX XX XX PN PN PN PN PN PN PN PN NN NN NN NN NN NN NN NN XX XX XX XX XX XX XX XX XX XX XX XX Class 1 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX Class 2 XX XX XX XX 50 50 XX FS FS XX CS XX XX Class 3 OS OS XX XX XX XX XX XX XX XX XX XX XX XX XX XX Reserved XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX Vendor XX XX XX XX Version Indicates a four bit hex field is not checked Indicates a single bit is not checked BB Credit This field is not checked The FC AL drive uses BB Credit of zero 0 Common features This binary field selects the common features requested by the initiator login MSB Continuously increasing offset Must 1 Random relative offset Not checked Port Login Accept will return a O not supported Valid version level x N Port F Port Must 0 Port
88. oducts on your purchase documentation The remaining warranty for a particular drive can be determined by calling Seagate Customer Service at 1 800 468 3472 You can also determine remaining warranty using the Seagate web site www seagate com The drive serial number is required to determine remaining warranty information Shipping When transporting or shipping a drive use only a Seagate approved container Keep your original box Seagate approved containers are easily identified by the Seagate Approved Package label Shipping a drive in a non approved container voids the drive warranty Seagate repair centers may refuse receipt of components improperly packaged or obviously damaged in transit Contact your authorized Seagate distributor to purchase additional boxes Seagate recommends shipping by an air ride carrier experienced in handling computer equipment Product repair and return information Seagate customer service centers are the only facilities authorized to service Seagate drives Seagate does not sanction any third party repair facilities Any unauthorized repair or tampering with the factory seal voids the warranty CHEETAH 15K 7 FC PRODUCT MANUAL REV E 19 6 0 PHYSICAL ELECTRICAL SPECIFICATIONS This section provides information relating to the physical and electrical characteristics of the drive 6 1 AC POWER REQUIREMENTS None 6 2 DC POWER REQUIREMENTS The voltage and current requirements for a single drive are s
89. ommands Background processing of queue Supports start and stop commands spindle stops spinning Adaptive seek velocity improved seek performance Note There is no significant performance difference between Self Encrypting Drive and standard non Self Encrypting Drive models 3 4 RELIABILITY Annualized Failure Rate AFR of 0 55 Increased LSI circuitry integration Self Monitoring Analysis and Reporting Technology S M A R T Dithering 5 year warranty 3 5 FORMATTED CAPACITIES Standard OEM models are formatted to 512 bytes per block The block size is selectable at format time and must be one of the supported sizes listed in the table below Seagate designs specify capacity points at certain block sizes that Seagate guarantees current and future products will meet We recommend customers use this capacity in their project planning as it ensures a stable operating point with backward and forward compatibility from generation to generation The current guaranteed operating points for this product are Table 1 ST3600057FC ST3450857FC ST3300657FC ST3600957FC ST3450757FC ST3300557FC SECTOR SIZE ST3600857FC ST3450657FC ST3300457FC DECIMAL HEX DECIMAL HEX DECIMAL HEX 512 1 172 123 568 45DD2FBO 879 097 968 3465F870 585 937 500 22ECB25C 520 1 147 307 694 446286AE 860 480 771 3349E503 573 653 848 22314358 524 1 132 015 600 43792 849 011 700 329AE3F4 566 007 800 21BC97F8 528 1 115 49 560 4280F
90. on 8 Media Pre Scan 36 miscellaneous feature support Adaptive caching 55 Asynchronous event notification 55 Automatic contingent allegiance 55 Deferred error handling 55 FC AL selective reset 55 Parameter rounding 55 Queue tagging 55 Reporting actual retry count 55 Segmented caching 55 SMP 1 in Mode Select command 55 Synchronized locked spindle operation 55 Zero latency read 55 miscellaneous status support ACA active 55 ACA active faulted initiator 55 Busy 55 Check condition 55 Condition met good 55 Good 55 Intermediate condition met good 55 Intermediate good 55 Reservation conflict 55 Task set full 55 miscorrected media data 14 Mode select 10 command 49 command 46 Mode sense 10 command 49 command 46 data table 50 52 monitoring state 15 motor start controls 61 option 11 mounting 38 holes 38 orientations 37 mounting configuration 30 mounting configuration dimensions 30 MSID 32 MTBF 15 N N_Port Login PLOGI 39 payload 41 payload values 42 NN 41 44 Node Name 44 Node name 41 noise audible 3 Cheetah 15K 7 FC Product Manual Rev E noise immunity 21 non operating 26 27 29 temperature 26 non operating vibration 29 office environment 29 old port state FC AL options 45 OPEN Full Duplex FC AL options 45 OPEN half duplex FC AL options 45 Open sequences exchange 41 operating 26 27 29 option configurations 37 option selection 57 options 9 45 orientation 27 OS 41 out of
91. on and security features available on SED drives From this point on in this product manual the reference to Cheetah 15K 7 FC models is referred to as the drive unless references to individuals models are necessary Unless otherwise stated the information in this manual applies to standard and Self Encrypting Drive models MODEL NUMBER CAPACITY SELF ENCRYPTING DRIVE SED FIPS 140 2 LEVEL 2 CERTIFIED ST3600057FC 600 GB No No ST3450857FC 450 GB No No ST3300657FC 300 GB No ST3600957FC 600 GB Yes No ST3600857FC 600 GB Yes Yes ST3450757FC Yes No ST3450657FC Yes Yes ST3300557FC Yes ST3300457FC Yes Yes Note Previous generations of Seagate Self Encrypting Drive models were called Full Disk Encryption FDE models before a differentiation between drive based encryption and other forms of encryption was necessary Note The Self Encrypting Drive models indicated on the cover of this product manual have provisions for Security of Data at Rest based on the standards defined by the Trusted Computing Group see www trustedcomputing group org For more information on FIPS 140 2 Level 2 certification see Section 7 0 on page 31 For product certification status visit http csrc nist gov groups S TM cmvp documents 140 1 1401vend htm CHEETAH 15K 7 FC MANUAL REV E 2 2 0 APPLICABLE STANDARDS AND REFERENCE DOCUMENTATION The drive has been developed as a system peripheral
92. ons for bursts of 800ms and then suspends activity for 100ms to allow other background functions to operate BMS interrupts immediately to service host commands from the interface bus while performing reads BMS will complete any BMS initiated error recovery prior to returning to service host initiated commands Overhead associated with a return to host servicing activity from BMS only impacts the first command that interrupted BMS this results in a typical delay of about 1 ms 9 5 MEDIA PRE SCAN Media Pre Scan is a feature that allows the drive to repair media errors that would otherwise have been found by the host system during critical data accesses early in the drive s life The default setting for Media Pre Scan is enabled on standard products Media Pre Scan checks each write command to determine if the destination LBAs have been scanned by BMS If the LBAs have been verified the drive proceeds with the normal write command If the LBAs have not been verified by BMS Pre Scan will convert the write to a write verify to certify that the data was properly written to the disk Note During Pre Scan write verify commands write performance may decrease by 50 until Pre Scan completes Write performance testing should be performed after Pre Scan is complete This may be checked by reading the BMS status To expedite the scan of the full pack and subsequently exit from the Pre Scan period BMS will begin scanning immediately when the drive goes to
93. ort will attempt taking a soft address to prevent an address conflict Note When a Cheetah 15K 7 FC drive is connected in loops with previous Seagate FC drive products Barracuda 4LP FC ST32171FC ST34371FC and ST34571FC Barracuda 9FC ST19171FC Cheetah 4LP FC ST34501FC Cheetah 9FC ST19101FC the connection of Port A and B for these products must follow the requirements in their product manuals Subject to buffer availability the Cheetah 15K 7 FC drives support Concurrent port transfers The drive supports receiving transfers on both ports at the same time when the ports are on independent loops Full duplex The drive supports sending Data FCP XFR RDY and ELS transfers while receiving frames on both ports CHEETAH 15K 7 FC PRODUCT MANUAL REV E 45 11 3 SCSI COMMANDS SUPPORTED Table 16 lists the SCSI commands supported by Cheetah 15K 7 FC drives Table 16 Supported commands Executable state of standard SCSI commands in the presence of LBA banding applies to SED models only Affected LBA Affected LBA Unit attention page 00h Error recovery page 01h User Data Unlocked Locked Command Supported Affectsentire Accessed ReadLock Write ReadLock Write code Y N 4 Command name Drive Y N Y N Lock False Lock True 00h Y Test unit ready Executable Executable 01 Y Rezero unit Executable Ex
94. ou may order the following items which are incorporated at the manufacturing facility during production or packaged before shipping Some of the options available are not an exhaustive list of possible options Other capacities can be ordered depending on sparing scheme and sector size requested Single unit shipping pack The drive is normally shipped in bulk packaging to provide maximum protection against transit damage Units shipped individually require additional protection as provided by the single unit shipping pack Users plan ning single unit distribution should specify this option The Safety and Regulatory Agency Specifications part number 75789512 is usually included with each standard OEM drive shipped but extra copies may be ordered 3 7 USER INSTALLED ACCESSORIES The following accessories are available All kits may be installed in the field e Evaluation kit part number 73473641 This kit provides an adapter to allow cable connections for two FC ports and DC power Single unit shipping pack CHEETAH 15K 7 FC PRODUCT MANUAL REV E 9 40 PERFORMANCE CHARACTERISTICS This section provides detailed information concerning performance related characteristics and features of Cheetah 15K 7 FC drives 4 1 Drive capacity Read write data heads Tracks per inch Peak bits per inch Areal Density Internal data rate disk rotation speed Avg rotational latency ST3600057FC ST36
95. page if a functional failure is encountered during DST The channel and servo parameters are not modified to test the drive more stringently and the number of retries are not reduced All retries and recovery processes are enabled during the test If data is recoverable no failure condition will be reported regardless of the number of retries required to recover the data The following conditions are considered DST failure conditions Seek error after retries are exhausted Track follow error after retries are exhausted Read error after retries are exhausted Write error after retries are exhausted Recovered errors will not be reported as diagnostic failures 5 2 6 2 Implementation This section provides all of the information necessary to implement the DST function on this drive 5 2 6 2 1 State of the drive prior to testing The drive must be in a ready state before issuing the Send Diagnostic command There are multiple reasons why a drive may not be ready some of which are valid conditions and not errors For example a drive may be in process of doing a format or another DST It is the responsibility of the host application to determine the not ready cause While not technically part of DST a Not Ready condition also qualifies the drive to be returned to Seagate as a failed drive A Drive Not Ready condition is reported by the drive under the following conditions Motor will not spin Motor will not lock to speed
96. r has been applied After the Motor Start command has been received the drive becomes ready for normal operations within 20 seconds excluding the error recovery procedure The Motor Start command can also be used to command the drive to stop the spindle There is no power control switch on the drive CHEETAH 15K 7 FC PRODUCT MANUAL REV E 11 4 4 PREFETCH MULTI SEGMENTED CACHE CONTROL The drive provides a prefetch read look ahead and multi segmented cache control algorithms that in many cases can enhance system performance Cache refers to the drive buffer storage space when it is used in cache operations To select this feature the host sends the Mode Select command with the proper values in the applicable bytes in page 08h Prefetch and cache operations are independent features from the standpoint that each is enabled and disabled independently using the Mode Select command however in actual operation the prefetch feature overlaps cache operation somewhat as described in sections 4 5 1 and 4 5 2 All default cache and prefetch mode parameter values Mode Page 08h for standard OEM versions of this drive family are given in Table 18 4 5 CACHE OPERATION Note Refer to the Fibre Channel Interface Manual for more detail concerning the cache bits Of the 16 Mbytes physical buffer space in the drive approximately 13 000 kbytes can be used as a cache The buffer is divided into logical segments from which data is read and to which data is
97. rmat a SED drive versus a non SED drive of the same capacity 4 2 3 General performance characteristics Sustainable disk transfer rate Minimum Maximum Fibre Channel Interface maximum instantaneous transfer rate 122 Mbytes sec typical 204 Mbytes sec typical 400 Mbytes sec per port Logical block sizes Default is 512 byte data blocks Sector sizes variable to 512 520 524 and 528 bytes Read write consecutive sectors on a track Yes Flaw reallocation performance impact for flaws reallocated at format time Negligible using the spare sectors per sparing zone reallocation scheme Average rotational latency 2 0 msec Assumes no errors and no relocated logical blocks Rate measured from the start of the first logical block transfer to or from the host 1MB sec 1 000 000 bytes sec 4 3 START STOP TIME If the Motor Start option is disabled the drive becomes ready within 20 seconds after DC power is applied If a recoverable error condition is detected during the start sequence the drive executes a recovery procedure and the time to become ready may exceed 20 seconds During spin up to ready time the drive responds to some commands over the FC interface in less than 3 seconds after application of power Stop time is 30 seconds maximum from removal of DC power If the Motor Start option is enabled the internal controller accepts the commands listed in the Fibre Channel Interface Manual less than 3 seconds after DC powe
98. roper drive operation SCSI defect and error management involves drive internal defect error management and FC system error considerations errors in communications between the initiator and the drive In addition Seagate provides the following technologies used to increase data integrity and drive reliability Background Media Scan see Section 9 4 Media Pre Scan see Section 9 5 Deferred Auto Reallocation see Section 9 6 Idle Read After Write see Section 9 7 The read error rates and specified storage capacities are not dependent on host initiator defect management routines 9 1 DRIVE INTERNAL DEFECTS ERRORS During the initial drive format operation at the factory media defects are identified tagged as being unusable and their locations recorded on the drive primary defects list referred to as the P list and also as the ETF defect list At factory format time these known defects are also reallocated that is reassigned to a new place on the medium and the location listed in the defects reallocation table The list is not altered after factory formatting Locations of defects found and reallocated during error recovery procedures after drive shipment are listed in the G list defects growth list The P and lists may be referenced by the initiator using the Read Defect Data command Details of the SCSI commands supported by the drive are described in the Fibre Channel Interface Manual Also more
99. rs representing the changeable values for Mode page 81 Note in columns 5 and 6 bytes 04 and 05 there is 00h which indicates that in bytes 04 and 05 none of the bits are changeable Note also that bytes 06 07 09 10 and 11 are not changeable because those fields are all zeros In byte 02 hex value FF equates to the binary pattern 11111111 If there is a zero in any bit position in the field it means that bit is not changeable Since all of the bits in byte 02 are ones all of these bits are changeable The changeable values list can only be changed by downloading new firmware into the flash E PROM Note Because there are often several different versions of drive control firmware in the total population of drives in the field the Mode Sense values given in the following tables may not exactly match those of some drives The following tables list the values of the data bytes returned by the drive in response to the Mode Sense command pages for SCSI implementation see the Fibre Channel Interface Manual Definitions SAV Current saved value DEF Default value Standard OEM drives are shipped configured this way CHG Changeable bits indicates if default value is changeable CHEETAH 15K 7 FC PRODUCT MANUAL REV E 51 Table 18 Mode Sense data saved default and changeable values for ST3600057FC drives MODE DATA HEADER 00 be 00 10 00 00 00 08 MODE PAGES DEF 81 cO Ob ff 00 00 00 05 00 ff ff CHG 81 0a ff ff 00 00 00 00
100. rting Technology This technology is intended to recognize conditions that indicate imminent drive failure and is designed to provide sufficient warning of a failure to allow you to back up the data before an actual failure occurs Note The drive s firmware monitors specific attributes for degradation over time but can t predict instantaneous drive failures Each monitored attribute has been selected to monitor a specific set of failure conditions in the operating performance of the drive and the thresholds are optimized to minimize false and failed predictions CHEETAH 15K 7 FC PRODUCT MANUAL REV E 15 Controlling 5 The operating mode of S M A R T is controlled by the DEXCPT and PERF bits the Informational Exceptions Control mode page 1Ch Use the DEXCPT bit to enable or disable the S M A R T feature Setting the DEXCPT bit disables all S M A R T functions When enabled S M A R T collects on line data as the drive performs normal read and write operations When the PERF bit is set the drive is considered to be in On line Mode Only and will not perform off line functions You can measure off line attributes and force the drive to save the data by using the Rezero Unit command Forcing S M A R T resets the timer so that the next scheduled interrupt is in two hours You can interrogate the drive through the host to determine the time remaining before the next scheduled measurement and data logging process occ
101. s Table 5 equates the read and write retry count with the maximum possible recovery time for read and write recovery of individual LBAs The times given do not include time taken to perform reallocations Reallocations are performed when the ARRE bit for reads or AWRE bit for writes is one the RC bit is zero and the recovery time limit for the command has not yet been met Time needed to perform reallocation is not counted against the recovery time limit When the RC bit is one reallocations are disabled even if the ARRE or AWRE bits are one The drive will still perform data recovery actions within the limits defined by the Read Retry Count Write Retry Count and Recovery Time Limit parameters However the drive does not report any unrecovered errors CHEETAH 15K 7 FC PRODUCT MANUAL REV E 34 Table 5 Read and write retry count maximum recovery times 1 READ RETRY MAXIMUM RECOVERY TIME PER LBA 5 MAXIMUM RECOVERY PER LBA COUNT CUMULATIVE MSEC COUNT CUMULATIVE MSEC 0 51 87 0 23 94 1 59 85 1 35 91 2 203 49 2 39 9 3 231 42 3 51 87 4 295 26 4 79 8 5 327 18 5 default 107 73 6 359 10 7 446 88 8 538 65 9 570 57 10 598 50 11 default 1 534 97 1 9 3 These values are subject to change Setting these retry counts to a value below the default setting could result in an increased unrecovered error rate which may exceed the value given in this product manual A
102. s Additional information is provided the Fibre Channel Interface Manual part number 100293070 11 1 FC AL FEATURES This section lists the Fibre Channel specific features supported by Cheetah 15K 7 FC drives 11 1 1 Fibre Channel link service frames Table 6 lists the link services supported by Cheetah 15K 7 FC drives Table 6 Link services supported TYPE OF FRAME LINK SERVICE Basic link service frames Abort Sequence ABTS Basic link service reply frames Basic_Accept BA_ACC Basic_Reject BA RJT Extended link service frames Extended link service reply frames Fibre Channel Services N_Port Login PLOGI Fabric Login FLOGI Logout LOGO Process Login PRLI Process Logout PRLO Read Link Status RLS Fabric Address Notification FAN Port Discovery PDISC Address Discovery ADISC Third party Process Logout TRPLO Accept ACC Link Service Reject LS_RJT Register FC 4 Types RFT_ID CHEETAH 15K 7 FC PRODUCT MANUAL REV E 39 11 1 2 Fibre Channel task management functions Table 7 lists the Fibre Channel SCSI Fibre Channel Protocol FC SCSI FCP task management functions supported Table 7 Fibre Channel SCSI FCP task management functions TASK NAME SUPPORTED Terminate task No Clear ACA Yes Target reset Yes Clear task set Yes Abort task set Yes 11 1 3 Fibre Channel task management responses Table 8 lists the FC SCSI FCP response codes retur
103. setting of zero 0 will result in the drive not performing error recovery For example suppose the Read Write Recovery page has the RC bit set to 0 read retry count set to 4 and the recovery time limit field Mode Sense page 01 bytes 10 and 11 set to FF FF hex maximum A four LBA Read command is allowed to take up to 253 11 msec recovery time for each of the four LBAs in the command If the recovery time limit is set to 00 C8 hex 200 msec decimal a four LBA read command is allowed to take up to 200 msec for all error recovery within that command The use of the Recovery Time Limit field allows finer granularity on control of the time spent in error recovery The recovery time limit only starts counting when the drive is executing error recovery and it restarts on each command Therefore each command s total recovery time is subject to the recovery time limit Note A recovery time limit of 0 will use the drive s default value of FF FF Minimum recovery time limit is achieved by setting the Recov ery Time Limit field to 00 01 FC AL SYSTEM ERRORS Information on the reporting of operational errors or faults across the interface is given in the Fibre Channel Interface Manual The FCP Response returns information to the host about numerous kinds of errors or faults The Receive Diagnostic Results reports the results of diagnostic operations performed by the drive Status returned by the drive to the initiator is described in the Fibre Channel
104. st the I O connector may be up or down 6 4 41 Shock a Operating normal The drive as installed for normal operation shall operate error free while subjected to intermittent shock not exceeding 15 Gs at a duration of 11 msec half sinewave 20 Gs at a duration of 2 msec half sinewave 60 Gs at a duration of 2 msec half sinewave when performing reads only Shock may be applied in the X Y or Z axis Shock is not to be repeated more than once every 2 seconds b Operating abnormal Equipment as installed for normal operation does not incur physical damage while subjected to intermittent shock not exceeding 40 Gs at a duration of 11 msec half sinewave Shock occurring at abnormal levels may promote degraded operational performance during the abnormal shock period Specified operational performance will continue when normal operating shock levels resume Shock may be applied in the X Y or Z axis Shock is not to be repeated more than once every 2 seconds c Non operating The limits of non operating shock shall apply to all conditions of handling and transportation This includes both isolated drives and integrated drives The drive subjected to nonrepetitive shock not exceeding the three values below shall not exhibit device damage or performance degradation 80 Gs at a duration of 11 msec half sinewave 300 Gs at a duration of 2 msec half sinewave 150 Gs at a duration of 0 5 msec half sinewave Shock ma
105. the appropriate Seagate Design Center Three conditions must be met before the drive will allow the download operation 1 The download must be an SED file A standard base drive non SED file will be rejected 2 The download file must be signed and authenticated 3 As with a non SED drive the download file must pass the acceptance criteria for the drive For example it must be appli cable to the correct drive model and have compatible revision and customer status 8 8 POWER REQUIREMENTS The standard drive models and the SED drive models have identical hardware however the security and encryption portion of the drive controller ASIC is enabled and functional in the SED models This represents a small additional drain on the 5V supply of about 30mA and a commensurate increase of about 150mW in power consumption There is no additional drain on the 12V supply See the tables in Section 6 2 for power requirements on the standard non SED drive models 8 9 SUPPORTED COMMANDS The SED models support the following two commands in addition to the commands supported by the standard non SED models as listed in Table 16 Security Protocol Out B5h Security Protocol In A2h CHEETAH 15K 7 FC PRODUCT MANUAL REV E 33 9 0 DEFECT AND ERROR MANAGEMENT Seagate continues to use innovative technologies to manage defects and errors These technologies are designed to increase data integrity perform drive self maintenance and validate p
106. to the highest standards of design and construction The drive depends upon its host equipment to provide adequate power and environment in order to achieve optimum performance and compliance with applicable industry and governmental regulations Special attention must be given in the areas of safety power distribution shielding audible noise control and temperature regulation In particular the drive must be securely mounted in order to guarantee the specified performance characteristics Mounting by bottom holes must meet the requirements of Section 10 4 2 1 STANDARDS The Cheetah 15K 7 FC family complies with Seagate standards as noted in the appropriate sections of this manual and the Seagate Fibre Channel Interface Manual part number 100293070 The drives are recognized in accordance with UL 60950 1 and CSA 60950 1 as tested by UL and EN60950 1 as tested by TUV The security features of Cheetah 15K 7 FC SED models are based on the TCG Storage Architecture Core Specification and the TCG Storage Workgroup Security Subsystem Classs Enterprise A specification with additional vendor unique features as noted in this product manual 2 1 1 Electromagnetic compatibility The drive as delivered is designed for system integration and installation into a suitable enclosure prior to use As such the drive is supplied as a subassembly and is not subject to Subpart B of Part 15 of the FCC Rules and Regulations nor the Radio Interference Re
107. ty of the media is checked through a read verify scan of the media Motor functionality is tested by default as a part of these tests CHEETAH 15K 7 FC PRODUCT MANUAL REV E 18 The anticipated length of the Extended test is reported through the Control Mode page 5 2 6 2 4 Log page entries When the drive begins DST it creates a new entry in the Self test Results Log page The new entry is created by inserting a new self test parameter block at the beginning of the self test results log parameter section of the log page Existing data will be moved to make room for the new parameter block The drive reports 20 parameter blocks in the log page If there are more than 20 parameter blocks the least recent parameter block will be deleted The new parameter block will be initialized as follows 1 The Function Code field is set to the same value as sent in the DST command 2 The Self Test Results Value field is set to Fh 3 The drive will store the log page to non volatile memory After a self test is complete or has been aborted the drive updates the Self Test Results Value field in its Self Test Results Log page in non volatile memory The host may use Log Sense to read the results from up to the last 20 self tests performed by the drive The self test results value is a 4 bit field that reports the results of the test If the field is set to zero the drive passed with no errors detected by the DST If the field is not set to zero the test faile
108. uditing process to ensure that all standard operating procedures are complied with CHEETAH 15K 7 FC PRODUCT MANUAL REV E 4 2 3 DOCUMENTS ANSI Fibre Channel Documents X3 230 1994 FC Physical and Signaling Interface FC PH 3 297 1997 2 Channel Physical Signaling Interface 2 X3 303 1998 FC PH 3 Fibre Channel Physical and Signaling Interface 3 3 272 1996 Arbitrated Loop FC AL 3 269 1996 Fibre Channel Protocol for SCSI FCP NCITS TR 19 Private Loop SCSI Direct Attach PLDA NCITS TR 20 Fabric Loop Attachment FC FLA SFF 8045 Specification for 40 pin SCA 2 Connector with Parallel Selection SFF 8067 Specification for 40 pin SCA 2 Connector with Bidirectional Enclosure Services Interface ANSI Small Computer System Interface SCSI Documents X3 131 1994 SCSI 2 X3 270 1996 SCSI 3 Architecture Model NCITS 305 199X SCSI 3 Enclosure Services Trusted Computing Group TCG Documents apply to SED models only TCG Storage Architechture Core Specification Rev 1 0 TCG Storage Security Class Enterprise Specification Rev 1 0 Self Encrypting Drives Users Guide Seagate part number 100515636 Specification for Acoustic Test Requirement and Procedures Seagate part number 30553 001 Package Test Specification Seagate P N 30190 001 under 100 Ib Package Test Specification Seagate P N 30191 001 over 100 Ib In case of conflict between this document and any referenced do
109. urs To accomplish this issue a Log Sense command to log page Ox3E This allows you to control when S M A R T interruptions occur Forcing S M A R T with the RTZ command resets the timer Performance impact S M A R T attribute data is saved to the disk so that the events that caused a predictive failure can be recreated The drive measures and saves parameters once every two hours subject to an idle period on the FC AL bus The process of measuring off line attrioute data and saving data to the disk is uninterruptable The maximum on line only processing delay is summarized below Table 2 Maximum processing delay On line only delay Fully enabled delay DEXCPT 0 PERF 1 DEXCPT 0 PERF O S M A R T delay times 42 milliseconds 163 milliseconds Reporting control Reporting is controlled by the MRIE bits in the Informational Exceptions Control mode page 1Ch Subject to the reporting method the firmware will issue to the host an 01 5Dxx sense code The error code is preserved through bus resets and power cycles Determining rate S M A R T monitors the rate at which errors occur and signals a predictive failure if the rate of degraded errors increases to an unacceptable level To determine rate error events are logged and compared to the number of total operations for a given attribute The interval defines the number of operations over which to measure the rate The counter that keeps track of the current number of operations is
110. ut operations per second 450GB models Typical power dissipation under idle conditions in 4 Gbit operation is 10 24 watts 34 94 BTUs per hour To obtain operating power for typical random read operations refer to the following I O rate curve see Figure 4 Locate the typical I O rate for a drive in your system on the horizontal axis and read the corresponding 5 volt current 12 volt current and total watts on the vertical axis To calculate BTUs per hour multiply watts by 3 4123 ST3450857FC CURRENT POWER vs THROUGHPUT FC 4GB Random 8 Block Reads 0 00 0 0 50 0 100 0 150 0 200 0 250 0 300 0 350 0 402 0 l Os per Second Figure 5 ST3450857FC DC current and power vs input output operations per second CHEETAH 15K 7 FC MANUAL REV E 24 300GB models Typical power dissipation under idle conditions in 4 Gbit operation is 9 06 watts 30 92 BTUs per hour To obtain operating power for typical random read operations refer to the following I O rate curve see Figure 4 Locate the typical I O rate for a drive in your system on the horizontal axis and read the corresponding 5 volt current 12 volt current and total watts on the vertical axis To calculate BTUs per hour multiply watts by 3 4123 ST3300657FC CURRENT POWER vs THROUGHPUT FC 4GB Random 8 Block Reads 0 0 50 0 100 0 150 0 200 0 250 0 300 0 350 0 400 0 Os per Second Figure 6 ST3300657FC DC current and power vs input output operat
111. written The drive keeps track of the logical block addresses of the data stored in each segment of the buffer If the cache is enabled see RCD bit in the FC Interface Manual data requested by the host with a read command is retrieved from the buffer if possible before any disk access is initiated If cache operation is not enabled the buffer is still used but only as circular buffer segments during disk medium read operations disregarding Prefetch operation for the moment That is the drive does not check in the buffer segments for the requested read data but goes directly to the medium to retrieve it The retrieved data merely passes through some buffer segment on the way to the host All data transfers to the host are in accordance with buffer full ratio rules See the explanation provided with the information about Mode Page 02h disconnect reconnect control in the Fibre Channel Interface Manual The following is a simplified description of the prefetch cache operation Case A read command is received and all of the requested logical blocks are already in the cache 1 Drive transfers the requested logical blocks to the initiator Case B A Read command requests data and at least one requested logical block is not in any segment of the cache 1 The drive fetches the requested logical blocks from the disk and transfers them into a segment and then from there to the host in accordance with the Mode Select Disconnect Reconnect param
112. xn tene dte dran an etude es a a 37 104 DRIVE MOUNTING or ela ria ee ek eet e P RR CE e 38 10 5 GROUNDING eo IRA Ote 6 38 11 0 INTERFACE 39 Vial FOAL FEATURES pd do m des LR Palas HR alan etu PS ata pete 39 11 1 1 Fibre Channel link service frames 39 11 1 2 Fibre Channel task management functions 40 11 1 3 Fibre Channel task management 40 11 1 4 Fibre Channel 41 11 1 5 Fibre Channel port login 42 11 1 6 Fibre Channel Process 42 CHEETAH 15K 7 FC PRODUCT MANUAL REV E T 5 11 1 7 Fibre Channel Process Login 43 11 1 8 Fibre Channel fabric login 43 11 1 9 Fibre Channel fabric 44 11 1 10 Fibre Channel Arbitrated Loop options 45 11 2 jDUAL PORT SUPPORT mn e ie ee redd ad 45 11 3 SCSI COMMANDS 5 46 TEST
113. y be applied in the X Y or Z axis d Packaged Disk drives shipped as loose load not palletized general freight will be packaged to withstand drops from heights as defined in the table below For additional details refer to Seagate specifications 30190 001 under 100 165 45 kg or 30191 001 over 100 Ibs 45 Kg PACKAGE SIZE PACKAGED PRODUCT WEIGHT DROP HEIGHT lt 600 cu in lt 9 800 cu cm Any 60 in 1524 mm 600 1800 cu in 9 800 19 700 cu cm 0 20 Ib 0 to 9 1 kg 48 in 1219 mm gt 1800 cu in gt 19 700 cu cm 0 20 Ib 0 to 9 1 kg 42 in 1067 mm gt 600 cu in gt 9 800 cu cm 20 40 9 4 to 18 1 kg 36 in 914 mm Drives packaged in single or multipacks with a gross weight of 20 pounds 8 95 kg or less by Seagate for general freight shipment shall withstand a drop test from 48 inches 1 070 mm against a concrete floor or equivalent CHEETAH 15K 7 FC PRODUCT MANUAL REV E 27 Figure 8 Recommended mounting 15 7 FC PRODUCT MANUAL REV E 28 6 4 4 2 Vibration Operating normal drive as installed for normal operation shall comply with the complete specified performance while subjected to continuous vibration not exceeding 10 300 Hz 1 0 G RMS 0 to peak 301 500 Hz 0 5 G RMS 0 to peak Vibration may be applied in the X Y or Z axis b Operating abnormal Equipment as installed for normal operation shall not incur physical damage while subj
Download Pdf Manuals
Related Search
Related Contents
Serie XC Guide de bonnes pratiques Sommaire - Complément alimentaire, mode d`emploi PC510 Philips S-video to scart cable SWV3612W このPDFをダウンロード Mise en œuvre de procédure de recalage modal Attenzione - Saunier Duval Copyright © All rights reserved.