Home

Enterasys (9E429-12) Expansion Module

image

Contents

1. 04 Jack for ESD 7 R Wrist Strap Metal Back Panel gt lt Module gt Module Guides Warning Ensure that the circuit card is between the card guides Lock down the top and bottom plastic tabs at the same time applying even pressure Figure 2 3 Installing the Module 2 6 Installing the 9E428 and 9E429 Modules The Reset Switch The Reset switch is located on the front panel under the top plastic tab as shown in Figure 2 4 It serves three functions resetting the i960 processor shutting down the module or restarting the module To reset the i960 processor press the reset switch twice within three seconds e To shut down the module press and hold the reset switch down for three or more seconds e To restart the module after it has been shut down press and release the Reset Switch For security SNMP management can be used to disable the functions of this switch Reset Switch s SMB O cru INB e e Figure 2 4 The Reset Switch 2 7 Installing the 9E428 and 9E429 Modules 2 8 Chapter 3 Operation The 9E428 12 and the 9E429 12 modules are 13 port devices Twenty four front panel ST connectors support 12 10BASE FL ports each port being a separate collision domain with the first port connecting to INB B The 9E428 36 and the 9E429 36 modules are 37 port devices Seventy two front panel ST conne
2. 335 3358 Modem setting 8N1 8 data bits No parity 1 stop bit For additional information about Cabletron Systems or our products visit our World Wide Web site http www cabletron com For technical support select Service and Support Before calling the Cabletron Systems Global Call Center have the following information ready Your Cabletron Systems service contract number A description of the failure A description of any action s already taken to resolve the problem e g changing mode switches rebooting the unit etc The serial and revision numbers of all involved Cabletron Systems products in the network A description of your network environment layout cable type etc Network load and frame size at the time of trouble if known The device history i e have you returned the device before is this a recurring problem etc Any previous Return Material Authorization RMA numbers 1 5 Introduction 1 6 Chapter 2 Installing the 9E428 and 9E429 Modules The 9E428 12 and the 9E429 12 modules occupy a single slot in the SmartSwitch 9000 chassis The 9E428 36 and the 9E429 36 occupy two slots in the chassis The INB Terminator Modules must be installed on the rear of the chassis before powering up this module Refer to the INB Terminator Modules Installation Guide for information and installation procedure Install the modules by following the steps starting below Unpacking the Module 1 Car
3. IEEE 802 1D IEEE 802 3j 10BASE FL Network Interfaces Straight through ST connectors 5 1 Specifications Safety It is the responsibility of the person who sells the system to which the module will be a part to ensure that the total system meets allowed limits of conducted and radiated emissions This equipment meets the safety requirements of UL 1950 CSA C22 2 No 950 EN 60950 TEC 950 The EMI Requirements of e FCC Part 15 Class A e EN 55022 Class A e VCCI Class I The EMC requirements of EN 50082 1 IEC 801 2 ESD IEC 801 3 Radiated susceptibility IEC 801 4 EFT Service MTBF MHBK 217E gt 200 000 hrs MTTR lt 0 5 hr Physical Dimensions 35 0 D x 44 0 H x 6 0 W centimeters 13 8 D x 17 4 H x 1 2 W inches Weight Unit 1 360 7 gr 3 Ibs Shipping 1 814 4 gr 4 lbs Specifications Environment Operating Temperature 5 to 40 C Storage Temperature 30 to 90 C Relative Humidity 5 to 95 non condensing Specifications 5 4
4. 6 6 8 ETETETT 6 6 68686860 CVS 6 8 68 CO CD ODED 60606068 6060060060 6868 6 8 68 60 6 0 FOS Sent SWITCH 9000 Smart SWITCH 9000 E a lt m o c a T a A ul e 65636363 60656368 6060606 Smart SWITCH 9000 10 BASE T 9E428 36 2 o o m 8 6 868 68 GD 686568 6 8 696086986 68658 6 8 6 60 6 0 6 6 6 6 6866 6 56 45 COED EED 8 66666868 606000060 Smart SWITCH 9000 SWITCH 9000 Smart s ul a lt a o 2 a e Al o SMB CPU I AS SII C0 66 6e 6e 000 Figure 1 1 The 9E428 12 36 and 9E429 12 36 Modules 1 4 Introduction Related Manuals The manuals listed below should be used to supplement the procedures and technical data contained in this manual SmartSwitch 9000 Installation Guide SmartSwitch 9000 9C300 1 Environmental Module User s Guide SmartSwitch 9000 9C214 1 AC Power Supply User s Guide SmartSwitch 9000 Local Management User s Guide INB Terminator Modules Installation Guide Getting Help If you need additional support related to this device or if you have any questions comments or suggestions concerning this manual contact the Cabletron Systems Global Call Center Phone 603 332 9400 Internet mail support ctron com FTP ctron com 134 141 197 25 Login anonymous Password your email address BBS 603
5. 9E428 12 36 and 9E429 12 36 feature SNMP for local and remote management Local management is provided through the RS 232 COM ports on the SmartSwitch 9000 Environmental Module using a standard VT 220 terminal or emulator Remote management is possible through Cabletron s SPECTRUM or any SNMP compliant management tool Included as management features are the IETF Standard Management Information Base MIBs RMON RFC1271 IETF MIB II RFC 1213 IETF Bridge MIB RFC 1493 and a host of other Cabletron enterprise MIBs These modules also offer you a wide variety of statistical network management information to enhance network planning and troubleshooting The 9E428 12 36 and 9E429 12 36 provide information for each front panel Ethernet 10BASE FL port including packet counts along with errored frame information such as collisions CRCs and Giants via a variety of industry standard and private MIBS Industry standard IEEE 802 1d bridging including Spanning Tree Algorithm is supported Connectivity The 9E428 12 36 and 9E429 12 36 modules have one interface to the INB and either 12 or 36 front port ST connectors The INB interface is a fixed connection to INB B that allows the 9E428 and 9E429 modules to communicate with other SmartSwitch 9000 modules supporting various LAN technologies including Token Ring FDDI Ethernet WAN and ATM The 9E428 12 36 multimode ST connectors provide 12 or 36 Ethernet 10BASE FL connections with links up to 20
6. for correct handling COR ARU E ERRE H AA VCCI DAR CEDI Y 7 XA ERE CT ZORE EKER CERNI D CBR HERA EITICEMBO ES TORA RANURAS DETERMINA LME O0 KT Notice DOC Notice This digital apparatus does not exceed the Class A limits for radio noise emissions from digital apparatus set out in the Radio Interference Regulations of the Canadian Department of Communications Le pr sent appareil num rique n met pas de bruits radio lectriques d passant les limites applicables aux appareils num riques de la class A prescrites dans le R glement sur le brouillage radio lectrique dict par le minist re des Communications du Canada iii Notice DECLARATION OF CONFORMITY ADDENDUM Application of Council Directive s 89 336 EEC 73 23 EEC Manufacturer s Name Cabletron Systems Inc Manufacturer s Address 35 Industrial Way PO Box 5005 Rochester NH 03867 European Representative Name Mr J Solari European Representative Address Conformance to Directive s Product Standards Equipment Type Environment Cabletron Systems Limited Nexus House Newbury Business Park London Road Newbury Berkshire RG13 2PZ England EC Directive 89 336 EEC EC Directive 73 23 EEC EN 55022 EN 50082 1 EN 60950 Networking Equipment for use in a Commercial or Light Industrial Environment We the undersigned hereby declare under our sole responsibility that the equipment packaged with this notice conforms to the above direct
7. interference and 2 this device must accept any interference received including interference that may cause undesired operation NOTE This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of the FCC rules These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment This equipment uses generates and can radiate radio frequency energy and if not installed in accordance with the operator s manual may cause harmful interference to radio communications Operation of this equipment in a residential area is likely to cause interference in which case the user will be required to correct the interference at his own expense WARNING Changes or modifications made to this device which are not expressly approved by the party responsible for compliance could void the user s authority to operate the equipment VCCI Notice This equipment is in the 1st Class Category information equipment to be used in commercial and or industrial areas and conforms to the standards set by the Voluntary Control Council for Interference by Information Technology Equipment VCCI aimed at preventing radio interference in commercial and or industrial areas Consequently when used in a residential area or in an adjacent area thereto radio interference may be caused to radios and TV receivers etc Read the instructions
8. 00 meters in length when operating in half duplex The 9E429 12 36 single mode ST connectors provide 12 or 36 Ethernet 10BASE FL connections with links up to 5000 meters in length when operating in half duplex Standard Ethernet Full Duplex Operation The 9E428 12 36 and 9E429 12 36 modules support 10BASE FL The use of 10BASE FL allows each port on the modules to be configured through local and or remote management SNMP to operate in standard Ethernet mode simplex Introduction or full duplex mode Operating in standard Ethernet mode limits bandwidth to 10 Mbps per port while operating in duplex mode doubles bandwidth from 10 Mbps to 20 Mbps per port Management Information Base MIB Support The 9E428 12 36 and 9E429 12 36 modules provide MIB support including e RMON RFC 1271 e ETF MIB II RFC 1213 e IETF Bridge MIB RFC 1493 and a host of other Cabletron Enterprise MIBs For a complete list of supported MIBs refer to the release notes provided in the 9E428 12 36 and 9E429 12 36 modules package INB The 9E428 12 36 and 9E429 12 36 modules attach to INB B of the SmartSwitch 9000 Backplane The INB Backplane is designed to transport fixed length data blocks between modules in the SmartSwitch 9000 using an INB Time Division Multiplexing ITDM design The SmartSwitch 9000 INB bus delivers 2 0 Gbps of true data bandwidth with all control and management communication being serviced on the 8 bit out of band bus T
9. CRU RAS tre A ter O EW le Ear nee ha ene 5 1 M mory en WA En AA dd Te nad cadets a ti dete 5 1 Standards A NTE 5 1 Network Interfaces his ias 5 1 Safety cce cede ee ee SR O AE 5 2 SOE VIGO A A A Dre D ee a A IA ieee 5 2 A RR OR clad erence tases 5 2 Drme sI S OEE EE E E A sha E E Teen 5 2 A tae LL R A LAE 52 Environment a A Hd ene a p ONY ed eee 5 3 Chapter 1 Introduction The 9E428 12 36 and 9E429 12 36 Figure 1 1 are switching modules that provide either 12 or 36 ports depending on the module The 9E428 12 36 provide Ethernet fiber optic 10Base FL connectivity via multimode ST straight through connectors while the 9E429 12 36 modules use single mode ST connectors There are two ST connectors for each port one for transmit and one for receive Each module also provides an additional port that connects directly to the Internal Network Bus INB backplane interface These modules use a SmartSwitch ASIC design and an advanced Intel 960 microprocessor This microprocessor provides a platform for all management functions within a scalable RISC Based Architecture These modules can operate in two modes either as a 12 36 port Ethernet traditional switch using 802 1d standards with a high speed backbone connection or as a Secure Fast Switch SFS with 12 36 Ethernet connections Each port can be configured to operate in the Full Duplex mode This configuration allows each port to provide a full 20 Mbps of bandwidth for file
10. NIB I Switch N B 2 ENIB ENIB Figure 3 1 Packet Flow for the 9E428 36 and 9E429 36 ENIB The Ethernet Network Interface Block ENIB converts Ethernet data packets received through front panel ports into a common canonical format that allows the SmartSwitch ASIC Engine to determine the proper destination port The ENIB also converts data packets from the common canonical format back to Ethernet data packets for transmission out front panel ports Operation SmartSwitch ASIC The SmartSwitch ASIC is a hardware based switch design that is the key building block of the SmartSwitch 9000 hub The SmartSwitch ASIC makes all filtering forwarding decisions in custom hardware as opposed to software like in traditional bridges This custom hardware enables the SmartSwitch ASIC to process over 750K frames per second The SmartSwitch ASIC is designed to support up to 64 ports shared between the host processor the INB backplane and LAN WAN interfaces on the front panel of SmartSwitch 9000 modules The SmartSwitch ASIC can operate in two modes Traditional Switch When operating as a traditional switch the SmartSwitch ASIC makes filtering forwarding decisions based on Destination Address DA with standard IEEE 802 1d learning e SecureFast Switch SFS When operating as an SES switch the SmartSwitch ASIC makes all filtering forwarding decisions based on a Destination Address Source Addr
11. SmartSwitch 9000 9E428 12 36 and 9E429 12 36 User s Guide CABLETRON YSTEMS The Complete Networking Solution Notice Notice Cabletron Systems reserves the right to make changes in specifications and other information contained in this document without prior notice The reader should in all cases consult Cabletron Systems to determine whether any such changes have been made The hardware firmware or software described in this manual is subject to change without notice IN NO EVENT SHALL CABLETRON SYSTEMS BE LIABLE FOR ANY INCIDENTAL INDIRECT SPECIAL OR CONSEQUENTIAL DAMAGES WHATSOEVER INCLUDING BUT NOT LIMITED TO LOST PROFITS ARISING OUT OF OR RELATED TO THIS MANUAL OR THE INFORMATION CONTAINED IN IT EVEN IF CABLETRON SYSTEMS HAS BEEN ADVISED OF KNOWN OR SHOULD HAVE KNOWN THE POSSIBILITY OF SUCH DAMAGES Copyright February 1998 by Cabletron Systems Inc P O Box 5005 Rochester NH 03867 5005 All Rights Reserved Printed in the United States of America Order Number 9032022 01 February 1998 LANVIEW isa registered trademark and SmartSwitch is a trademark of Cabletron Systems Inc CompuServe is a registered trademark of CompuServe Inc i960 microprocessor is a registered trademark of Intel Corp Ethernet is a trademark of Xerox Corporation Notice FCC Notice This device complies with Part 15 of the FCC rules Operation is subject to the following two conditions 1 this device may not cause harmful
12. ctors support 36 10BASE FL ports each port being a separate collision domain with the first port connecting to INB B As shown in Figure 3 1 Ethernet Network Interface Blocks ENIBs convert data packets received from any of the 10BASE FL ports into a canonical frame format before forwarding to the SmartSwitch ASIC while the Internal Network Bus Network Interface Block INB NIB converts data packets received from the INB into a canonical format before forwarding to the SmartSwitch ASIC All data packets destined for a front panel port the INB or the i960 are converted into the canonical format before forwarding to the SmartSwitch ASIC Network Interface Blocks NIBS check for valid data packets entering the system If an errored data packet is found the SmartSwitch ASIC flags the error and does not forward the errored data packet to any outbound ports Once in this common format the SmartSwitch ASIC decides from header information the port destination of data packets Data packets are then converted from the canonical format to the proper format for the interface destination whether it is a front panel port or connection to the INB Operation ENIB A SMB 1 ENIB Diagnostic i960 Controller 4 Processor SMB 10 ENIB DC DC Convertor ENIB 1 ENIB INB Fast _ gt Packet
13. e Only Reserved For Factory Use Only Reserved For Factory Use Only Reserved For Factory Use Only 1 Reserved For Factory Use Only Caution Do not toggle Switch 8 unless you intend to reset the user configured AN A passwords to the factory default settings Caution Do not toggle Switch 7 unless you intend to reset the user entered parameters to the factory default settings 2 4 Installing the 9E428 and 9E429 Modules Installing the Module in the SmartSwitch 9000 Chassis To install the 9E428 12 36 and the 9E429 12 36 modules in the SmartSwitch 9000 chassis follow the steps below 1 Remove the blank panel covering the slot in which the module will be mounted All other slots must be covered to ensure proper airflow and cooling Attach one end of the ESD wrist strap packaged with the SmartSwitch 9000 chassis to your wrist Plug the other end into the jack for the ESD Wrist Strap in the lower right corner of the SmartSwitch 9000 chassis shown in Figure 2 3 Install the module in the chassis by sliding it into slots and locking down both the top and bottom plastic tabs as shown in Figure 2 3 Take care that the module is between the card guides as shown it slides in straight and engages the backplane connectors properly Installing the 9E428 and 9E 429 Modules Plastic Tab
14. e SmartSwitch ASIC then from the SmartSwitch ASIC to the front panel ports Operation System Management Buses There are two management channels within the SmartSwitch 9000 system the SMB 1 and the SMB 10 These buses provide side band management and inter module management communication SMB 1 Bus The SMB 1 is a 1Mbs management bus located within the SmartSwitch 9000 This bus is utilized by all diagnostic controllers in the system including connectivity modules power supply modules and the environmental module The SMB 1 transports inter chassis information between system components such as power and environmental information as well as diagnostic messages Periodic loop back test are performed by all modules that share this bus to ensure the validity of SMB 1 In the event a failure is detected on SMB 1 the SMB 10 may be used as an alternate communication channel SMB 10 Bus The SMB 10 is a 10Mbs management bus located within the SmartSwitch 9000 This bus is used for inter chassis communication of modules as well as serving as an side band management channel into the SmartSwitch 9000 The SMB 10 is externalized from the chassis via an optional Ethernet Port Interface Module EPIM located on the front of the Environmental Module Through an EPIM connection full SNMP management of the SmartSwitch 9000 is available side band from user data Modules that share the SMB 10 bus periodically send out loop back packets to ensure t
15. e with the lowest slot number is elected Monarch Chapter 4 LANVIEW LEDs The front panel LANVIEW LEDs indicate the status of the module and may be used as an aid in troubleshooting Shown in Figure 4 1 are the LANVIEW LEDs of the 9E428 12 module The LEDs positions and functions are the same for the 9E428 36 and the 9E429 12 36 modules 10 BASE T 9E428 12 System Status INB Receive Port INB Transmit Receive Gi Ta Port gt O Transmit y Oh e NO Figure 4 1 The LANVIEW LEDs The functions of the two System Status LEDs System Management Bus SMB and CPU Central Processing Unit are listed in Table 4 1 Table 4 1 System Status SMB and CPU LEDs LED Color State Description Green Functional Fully operational Yellow Testing Power up testing Yellow Blinking Crippled Not fully operational i e one port may be bad LANVIEW LEDs Table 4 1 System Status SMB and CPU LEDs Continued LED Color State Description Yellow Green Booting Module is performing its boot process Red Reset Module is resetting Red Blinking Failed Fatal error Off Power off Module powered off The functions of the INB Receive LEDs are listed in Table 4 2 Table 4 2 INB Receive LEDs LED Color State Green Link no activity port enabled Green Blinking Link port disabled Yellow Flashing Link activity port enabled Flash
16. efully remove the module from the shipping box Save the box and packing materials in the event the module must be reshipped 2 Remove the module from the plastic bag Observe all precautions to prevent damage from Electrostatic Discharge ESD 3 Carefully examine the module checking for damage If any damage exists DO NOT install the module Contact Cabletron Systems Technical Support immediately Installing the 9E428 and 9E429 Modules User Accessible Components Figure 2 1 shows the various components that can be accessed by users These consist of an eight position dip switch explained in the next section replaceable PROMs and sockets for memory and flash upgrades These will be used for future upgrades Instructions for installing the components will be supplied with the upgrade kit SMB 10 Prom Boot Prom Dip Switches Flash i960 Processor DRAM CNXSTATS Connector Figure 2 1 User Accessible Components 2 2 Installing the 9E428 and 9E429 Modules Setting the Module DIP Switch The DIP switch on the 9E428 and 9E429 Modules Figure 2 1 and Figure 2 2 is an eight switch DIP located near the bottom left corner of the module Each switch is set according to the functions described in Table 2 1 If switch settings are changed the processor on the module must be reset using the reset switch or repowering the module for changes to take effect 12345678 E Figure 2 2 Module DIP Swi
17. ess DA SA pair and its receive port These DA SA pairs with the associated receive port are programmed into the switch using Cabletron s SecureFast Virtual Network Server SecureFast VNS This provides the network administrator with the ultimate network security without the performance degradation found when using routers or bridges with special filtering capabilities The SmartSwitch 9000 hub can support individual modules operating in the traditional switch mode or SFS mode providing security where needed 1960 Core The i960 core provides the SNMP protocol stacks to support industry standard MIBs Additionally Cabletron enterprise extension MIBs are supported for each media type Advanced management services such as the Distributed LAN Monitor telnet and network address to MAC address mapping are also provided by the i960 core The Host engine sends and receives packets via the CPU s SmartSwitch ASIC Interface This allows the bridge to perform spanning tree protocol and other bridging functions The SMB Interfaces provide communication to the Host Engine for management functions INB NIB Each module that attaches to the Internal Network Bus INB has an INB Network Interface Block NIB The INB NIB converts canonical frames to fixed length data blocks for transmission onto the INB For data blocks received from the INB the INB NIB reassembles the data blocks received from the INB back into canonical frames for transmission to th
18. he backplane When a module requests access to the backplane it will get access to it when it s slot number is placed onto the bus This will ensure predicted or predetermined access to the backplane Operation Round Robin Arbitration Level 2 This level makes use of idle time slices There is a token passed on every time slice to modules participating in this level of arbitration Only one module has the token at any one time slice If the module assigned to the next time slice is not requesting then the module with the token will be granted access if it is requesting The token is passed to the next highest slot number participating each time slice Lowest Slot Number Level 3 This level is only used if the other two levels fail in granting access to the backplane If the owner of the token is not requesting then the lowest slot number requesting will be granted access This ensures that a time slice will not be idle if there are modules requesting access Monarch Slave SmartSwitch 9000 Modules All modules in an SmartSwitch 9000 chassis that transfer packets across the INB backplane have identical INB interfaces However one of them has to be selected to perform the backplane arbitration The lowest slot number module will automatically be selected as the arbitrator This module will be called the Monarch and others will be Slaves to that module If the Monarch module is removed from the chassis a re election occurs and the modul
19. he time slices of the INB manager operates in all three modes at once without user intervention Arbitration for the backplane is accomplished in the INB Time Division Multiplexing ITDM logic The arbitration is a three level scheme that ensures that no one can get the backplane for more than one time slice at a time The ITDM RAM contains 256 4 bit locations This RAM is used to hold slot numbers of modules participating in INB backplane arbitration The arbitration engine accesses this RAM once every time slice to get a slot number That slot number will be granted access on the next time slice if it is requesting The arbitration engine is always one time slice ahead meaning that the value read from the RAM is for the next time slice not the current time slice LANVIEW LEDs The 9E428 12 36 and 9E429 12 36 modules use LANVIEW the Cabletron Systems built in visual diagnostic and status monitoring system With LANVIEW LEDs you can quickly identify at a glance system status as well as the device port and physical layer status Two LEDs indicate the transmission and reception of data from the INB SmartSwitch 9000 backplane connection Each of the 12 Ethernet front panel ports features two LEDs per port to indicate the port s Administrative status enabled disabled LINK status Link Nolink and Data Activity receiving and transmitting data Introduction 10 BASE T 9E429 36 SMB CPU 6S 60
20. he validity of SMB 10 If a fault is detected on the SMB 10 the SMB 1 can be used as an alternate communication channel by the modules System Diagnostic Controller This diagnostic controller is composed of a Z 80 microprocessor and its supporting logic The diagnostic controller is designed to control the power up sequencing of modules monitor the module input and output power parameters keep watch over the main host processor monitor the temperature and control the SMB LANVIEW diagnostic LEDs Although the system diagnostic controller and the main host processor can operate independently of each other if needed they exchange information about each others status and overall module condition The information gathered by the diagnostic controller is available to the network manager via local remote management and the LCD located on the environment module The module is designed to continue functioning in the event of a diagnostic controller fault Operation DC DC Converter The DC DC converter converts the 48 VDC on the system power bus to the necessary operating voltages for its host network services module The diagnostic controller monitors and controls the operation of the DC DC converter INB Interface The INB Backplane is designed to transport fixed length data blocks between modules in the SmartSwitch 9000 using an INB Time Division Multiplexing ITDM design The SmartSwitch 9000 INB bus delivers 2 0 Gbps of true data band
21. ing to steady on indicates rate Red INB fault not synchronized with the Monarch Off No link no activity port enabled The functions of the INB Transmit LEDs are listed in Table 4 3 Table 4 3 INB Transmit LEDs LED Color State Green Flashing Activity port enabled Flashing to steady on indicates rate Yellow Blinking Port in standby state Red INB fault Off Link port disabled The functions of the Port Receive LEDs are listed in Table 4 4 Table 4 4 Port Receive LEDs LED Color State Green Link no activity port enabled Green Blinking Link port disabled Yellow Flashing Link activity port enabled flashing to steady on indicates rate 4 2 LANVIEW LEDs Table 4 4 Port Receive LEDs Red Fault Off No link port disabled The functions of the Port Transmit LEDs are listed in Table 4 5 Table 4 5 Port Transmit LEDs LED Color State Green Flashing Data activity flashing to steady on indicates rate Yellow Blinking Port in standby state Red Flashing Collision with collision rate Red Fault Off No activity port can be disabled or enabled 4 3 LANVIEW LEDs 4 4 Specifications Technical Specifications CPU Intel 1960 RISC based microprocessor Memory 4Mb Local RAM expandable to 32 Mb 4Mb Flash Memory expandable to 32 Mb 2Mb Packet RAM 16 Mb DRAM Standards
22. ives Manufacturer Legal Representative in Europe Mr Ronald Fotino Mr J Solari Full Name Full Name Principal Compliance Engineer Managing Director E M E A Title Rochester NH USA Title Newbury Berkshire England Location Location Chapter 1 Introduction Peatures zero ee tv m e rece ESE c e e TIERE ec E bates ad de 1 2 Related Manuals Ee te ie eei RE E 1 5 Getting Help ssepe a E nn dali D 1 5 Chapter2 Installing the 9E428 and 9E429 Modules Unpacking the Modules SR re undue p ptio I ient 2 1 User Accessible Components sn 2 2 Setting the Module DIP SW iot osi tees te sen rp OCE 2 3 Installing the Module in the SmartSwitch 9000 Chassis sss 2 5 O ADA 2 7 Chapter 3 Operation ENIBA centies tuto ted desee te tee ves oust eat OO A 3 2 SmartSwitch AICA eoe Cachet assis ee ah 3 3 1960 COTE AT e ed LN e A NN 3 3 TINB NIB inen eite A eo pue A O ER Ue Pe WE 3 3 System Management Buses cccccsessssesessscesesescensnenesesssnesesesescecesesssesnenssesesesnenenesees 3 4 SMB T Bus outre iti ro eben da ettet opti de Ete Peoria 3 4 IIA A EET TUE Mod nt ncs fe tee aa 3 4 System Diagnostic Controller 3 4 DESDE Convert fussent Me dc 3 5 I B T tertace a A A e ess eis 3 5 ITDM Arbitration levels issus 3 5 Monarch Slave SmartSwitch 9000 Modules ss 3 6 Chapter 4 LANVIEW LEDs Contents Chapter 5 vi Specifications Technical Spectficatloris aa R nn a 5 1
23. servers or high end user intensive work stations Network management information is available through a variety of methods All information based on Simple Network Management Protocol SNMP is accessible either via an in band front panel port Side Band SMB 10 or via the Environmental Module s COM ports Serial Line Internet Protocol SLIP or Point to Point Protocol PPP is supported by the Environmental Module s COM ports For more information on the SMB 10 SLIP or PPP refer to the SmartSwitch 9000 Local Management User s Guide The 9E428 12 36 and 9E429 12 36 also feature front panel LANVIEW Diagnostic LED s to offer at a glance status information about each front panel port as well as the operation of the overall module 1 1 Introduction Features Processor The 9E428 12 36 and 9E429 12 36 modules are equipped with an advanced Intel i960 microprocessor This microprocessor provides a platform for all management functions such as Spanning Tree RMON and MIB support within a scalable RISC Based architecture Fast Packet Switching The 9E428 12 36 and 9E429 12 36 modules incorporate a hardware based switch design referred to as the SmartSwitch ASIC a collection of custom ASICs designed specifically for high speed switching Because all frame translation address lookups and forwarding decisions are performed in hardware these modules can obtain a throughput performance of greater than 750K pps Management The
24. tch location 2 3 Installing the 9E428 and 9E429 Modules See the Cautions at the end of this table Table 2 1 Function of DIP Switch Switch Function Description This module stores user entered passwords in NVRAM Nonvolatile random access memory To clear these passwords toggle this switch and then Clear reset the module s processor Once the module resets Password factory default passwords are placed in NVRAM You can use these default passwords or if desired enter new passwords To enter new passwords refer to the Module Local Management User s Guide This module stores user entered parameters such as IP addresses subnet masks default gateway default interface SNMP traps bridge configurations and module specific configurations in NVRAM To clear Clear these parameters toggle this switch and then reset the NVRAM module s processor Once the module resets factory default parameters are placed in NVRAM You can use the default parameters or if desired enter new parameters To enter new parameters refer to the Module Local Management User s Guide This module uses BOOTP Boot Strap Protocol to download new versions of the image file into Flash Memory This procedure forces image files to be downloaded from the PC or Workstation configured to act as the BOOTP server connected to the EPIM port in the Environmental Module Force 6 BOOTP Download 5 Reserved For Factory Us
25. width with all control and management communication being serviced on the 8 bit out of band bus The time slices of the INB manager operates in all three modes at once without user intervention Arbitration for the backplane is accomplished in the INB Time Division Multiplexing ITDM logic The arbitration is a three level scheme that ensures that no one can get the backplane for more than one time slice at a time The ITDM RAM contains 256 4 bit locations This RAM is used to hold slot numbers of modules participating in INB backplane arbitration The arbitration engine accesses this RAM once every time slice to get a slot number That slot number will be granted access on the next time slice if it is requesting The arbitration engine is always one time slice ahead meaning that the value read from the RAM is for the next time slice not the current time slice The RAM is programmed on system power up or when ever a module is inserted removed from the SmartSwitch 9000 chassis There is a module discovery program running that will detect these events The amount of RAM to be used and the position of the slot numbers in the RAM is determined by a higher level system management program ITDM Arbitration levels The three levels of arbitration guarantee that a module will get its allocated bandwidth plus some more depending on what levels of arbitration it is participating in ITDM RAM Allocation Level 1 This level guarantees access to t

Download Pdf Manuals

image

Related Search

Related Contents

User manual ALFANET 71-2SP Thermostat with 2 set points  電磁開閉器 - 春日電機  2008 MK74 Patriot Owner Manual    ficheiro pdf - J. ROMA, Lda.  取扱説明書 - カラーキネティクス・ジャパン 株式会社  Bakers Pride Oven FKM-FC User's Manual  エコマッハ取扱説明書    JVC PD-42X50BJ User's Manual  

Copyright © All rights reserved.
Failed to retrieve file