Home
National Instruments DAQ 6527 Network Card User Manual
Contents
1. i Nub RN 1 a C Load Isolated Ground b Sourcing Current Figure 3 5 Signal Connections for Solid State Relays Writing a 0 logic low to an output bit closes the relay and writing a 1 logic high opens the relay To both sink and source current with one channel requires an external resistor You can use the solid state relays of a 6527 device with external resistors to drive voltages at TTL or non TTL levels from 60 to 60 VDC or 30 VAC 42 V peak For isolated power total current on all channels exceeding 1 A or voltages other than 5 V you can provide an external power supply For driving non isolated 5 V outputs totaling less than 1 A for example when using the 6527 as a TTL level output device you can use the 5 V line from the 6527 device as your voltage source 3 10 www ni com Chapter 3 Signal Connections Figure 3 6 shows a signal connection example for both sinking and sourcing current The example shows a TTL level application with a supply voltage of 5 V The 6527 provides sink current when the relay is closed Resistor provides source current when the relay is open When the relay is open little current flows through the resistor and the output voltage is close to 5 V a logic high When the relay is closed current flows through the load and the output voltage is close to O V a logic low If isolation is not a concern you can use the 5 V line from the 6527 d
2. 6527 User Manual Isolated Digital 1 0 Interface for PCI PXI and CompactPCI b f NATIONAL December 1999 Edition y INSTRUMENTS Part Number 322164 01 Worldwide Technical Support and Product Information www ni com National Instruments Corporate Headquarters 11500 North Mopac Expressway Austin Texas 78759 3504 USA Tel 512 794 0100 Worldwide Offices Australia 03 9879 5166 Austria 0662 45 79 90 0 Belgium 02 757 00 20 Brazil 011 284 5011 Canada Calgary 403 274 9391 Canada Ontario 905 785 0085 Canada Qu bec 514 694 8521 China 0755 3904939 Denmark 45 76 26 00 Finland 09 725 725 11 France 01 48 14 24 24 Germany 089 741 31 30 Greece 30 1 42 96 427 Hong Kong 2645 3186 India 91805275406 Israel 03 6120092 Italy 02 413091 Japan 03 5472 2970 Korea 02 596 7456 Mexico D F 5 280 7625 Mexico Monterrey 8 357 7695 Netherlands 0348 433466 Norway 32 27 73 00 Poland 48 22 528 94 06 Portugal 351 1 726 9011 Singapore 2265886 Spain 91 640 0085 Sweden 08 587 895 00 Switzerland 056 200 51 51 Taiwan 02 2377 1200 United Kingdom 01635 523545 For further support information see the Technical Support Resources appendix To comment on the documentation send e mail to techpubs ni com Copyright 1999 National Instruments Corporation All rights reserved Important Information Warranty The 6527 device is warranted against defects in materials and workmanship for a period of one year from the date
3. CATI Indoor use only National Instruments Corporation 3 6527 User Manual Technical Support Resources This appendix describes the comprehensive resources available to you in the Technical Support section of the National Instruments Web site and provides technical support telephone numbers for you to use if you have trouble connecting to our Web site or if you do not have internet access NI Web Support To provide you with immediate answers and solutions 24 hours a day 365 days a year National Instruments maintains extensive online technical support resources They are available to you at no cost are updated daily and can be found in the Technical Support section of our Web site at www ni com support Online Problem Solving and Diagnostic Resources e KnowledgeBase A searchable database containing thousands of frequently asked questions FAQs and their corresponding answers or solutions including special sections devoted to our newest products The database is updated daily in response to new customer experiences and feedback e Troubleshooting Wizards Step by step guides lead you through common problems and answer questions about our entire product line Wizards include screen shots that illustrate the steps being described and provide detailed information ranging from simple getting started instructions to advanced topics e Product Manuals A comprehensive searchable library of the latest editions
4. In this example the 6527 reports rising and falling edges on bits 7 6 5 and 4 rising edges only on bit 1 and falling edges only on bit 0 The 6527 reports no changes for bits 3 and 2 After receiving notification of a change you can read the port to determine the current values of all eight lines Table 4 2 Change Notification Example Bit Changes to wa Ff al el l lel Enable rising yes yes yes yes no yes no edge detection Enablefalling yes yes yes yes yes edge detection 4 6 WWW ni com Specifications This appendix lists the specifications for the 6527 devices These specifications are typical at 25 C unless otherwise noted Digital 1 0 PCUPXI 65327 ettet 24 optically isolated digital input channels and 24 solid state relay output channels Isolated Inputs Number of input channels 24 each with its own ground reference isolated from other channels Max input voltage sees 28 VDC Digital logic levels Level Min Max Input low voltage 0 VDC 1 VDC Input high voltage 2 VDC 28 VDC Input current S V mputs 1 5 mA channel max 24 V s acere cte 8 mA channel max Isolation crees 60 VDC channel to channel and from computer ground and National Instruments Corporation A 1 6527 User Manual Appendix
5. 32 terminals serves as the reference terminal from which the corresponding DIG line is measured A logic high data bit of 1 indicates input voltage and current are present 1 39 7 9 DIG 2 lt 7 0 gt Isolated input port 2 positive terminals Take measurements at 11 13 15 these terminals These terminals should be positive relative to their corresponding DIG lines A logic high data bit of 1 indicates input voltage and current are present 2 4 6 8 10 DIG 2 7 0 Isolated input port 2 negative terminals Each of these 12 14 16 terminals serves as the reference terminal from which the corresponding DIG line is measured A logic high data bit of 1 indicates input voltage and current are present 49 99 45V 5 Volts These pins are fused for up to 1 A total of 4 5 to 5 25 V from the computer power supply These pins are not isolated 50 100 GND Ground These pins are connected to the computer ground reference These pins are not isolated National Instruments Corporation 3 5 6527 User Manual Signal Connections Chapter 3 Signal Connections Table 3 2 Signal Descriptions for 6527 Device 1 0 Connectors Continued Pin Signal Name Description 83 85 87 89 DIG 3 lt 7 0 gt Isolated output port 3 first terminals Each of these is the first 91 93 95 97 of two terminals of a bidirectional solid state relay A logic low data bit of 0 closes the relay 8
6. Specifications for Relay Outputs Number of 24 each with two terminals that are isolated from other channels Relay Normally open form A solid state relays Max switching voltage AC cepe n Ue REPRE 30 42 peak DG stt e eter 60 VDC Max switching 1 120 mA Common mode isolation 60 VDC 30 Vrms 42 V peak channel to channel and channel to computer On resistance see Figure A 2 35 max 25 Q typ Output capacitance 55pFat1V Off leakage current 200 nA Relay set time 3 0 ms Relay reset time 3 0 ms Power on state essere Relays open Overcurrent protection on outputs typical at 25 C Veray 7 V Current 11 260 mA Shutdown time sess 1 us Overcurrent duration max 1 second Power Requirement 5 VDC 45 500 mA max Power available at I O connector 4 5 to 5 25 VDC fused at 1 A With all relays carrying 120 mA and all inputs driven to 28 V the total power dissipation can approach 20 W The maximum switching capacity in PCI and CompactPCI systems must be derated according to the ambient temperature The PXI chassis has built in fans to handle
7. output low Glossary signal conditioning to break ground loops and reject high common mode voltages to protect equipment and users and to ensure accurate measurements light emitting diode least significant bit meters maximum megabytes of memory minimum metal oxide semiconductor field effect transistor most significant bit National Instruments Corporation G 3 6527 User Manual Glossary 0 optocoupler optical isolation PCI port PXI rms SCXI signal conditioning 6527 User Manual a device that transfers electrical signals by utilizing light waves to provide coupling with electrical isolation between input and output the technique of using an optocoupler to transfer data without electrical continuity to eliminate high potential differences and transients Peripheral Component Interconnect a high performance expansion bus architecture originally developed by Intel to replace ISA and EISA a digital port consisting of four or eight lines of digital input and or output PCI eXtensions for Instrumentation an open specification that builds on the CompactPCI specification by adding instrumentation specific features root mean square samples seconds Signal Conditioning eXtensions for Instrumentation the National Instruments product line for conditioning low level signals within an external chassis near sensors so only high level signals are sent to DAQ boards in the noisy PC environ
8. 5 2 9 5 1 G 5 1 5 0 G 5 0 G 4 7 G 4 7 4 6 G 4 6 4 5 G 4 5 9 4 4 G 4 4 4 3 G 4 3 4 2 G 4 2 G 4 1 G 4 1 4 0 4 0 G 3 7 G 3 7 G 3 6 G 3 6 G 3 5 G 3 5 G 3 4 G 3 4 G 3 3 G 3 3 2 G 3 2 9 3 1 G 3 1 0 G 3 0 TTTS T TTT T rT GND 6527 User Manual Figure 3 1 6527 Device Connector Pin Assignments 3 2 www ni com Chapter 3 Table 3 1 shows the functionality of each port Table 3 1 Port Functionality for 6527 Devices Signal Connections Port Function 0 Input 1 Input 2 Input 3 Output with readback 4 Output with readback 5 Output with readback Cable Assembly Connectors The optional R1005050 cable assembly you can use with the 6527 device is an assembly of two 50 pin cables and three connectors Both cables are joined to a single connector on one end and to individual connectors on the free ends The 100 pin connector that joins the two cables plugs into the I O connector of the 6527 device The other two connectors are 50 pin connectors one of which is connected to pins through 50 and the other to pins 51 through 100 of the 6527 device connector Figures 3 2 and 3 3 show the pin assignments for the 50 pin connectors on the cable assembly National Instruments Corporation 3 3
9. E SEE EA EEE EEEE EE EUAE X Related Documentation oec ete e ege eee X Chapter 1 Introduction About the 6527 D AA sii eerie nee cages DR re P RO HERE E HET EUR D ERE QR 1 1 Using PXI with 1 2 What You Need to Get e 1 2 Unpacking ies Rn A AR e Ret ae eek as 1 3 Software Programming 1 3 National Instruments Application Software see 1 3 NI DAQ Driver Software enee a E E a a ear eas 1 4 Optional Equipment oero erii eene e teret E E e EE ehe ree coves 1 5 Custom Cabling o eos e eee Pepe HE DERIT IRR 1 6 Safety Information ee terere oett en eae cee oes 1 6 Chapter 2 Installation and Configuration Software Installation 2 1 Hardware Installation eet er rette RR Heb 2 1 Board Configuration 2 2 Chapter 3 Signal Connections VQ COMME COB ass 3 1 Cable Assembly 3 3 I O Connector Signal Descriptions 3 5 Power Connections 5 epe sehr aeo deen tee le PERDERE 3 6 Isolation Voltages x ebbe Fo i dentes 3 7 Optically Isolated Inputs eese nennen entren 3 7 Input Chann
10. amperes AC alternating current ANSI American National Standards Institute ASIC Application Specific Integrated Circuit a proprietary semiconductor component designed and manufactured to perform a set of specific functions National Instruments Corporation G 1 6527 User Manual Glossary CAT I cm CompactPCI DAQ DC DIG DIG DIO DMA GND 6527 User Manual Celsius installation category overvoltage category I equipment for which measures are taken to limit transient overvoltages to an appropriate low level Examples include signal level telecommunications and electronic equipment with transient overvoltages smaller than local level mains supplies centimeters refers to the core specification defined by the PCI Industrial Computer Manufacturer s Group PICMG data acquisition a system that uses the personal computer to collect measure and generate electrical signals direct current positive data terminal negative data terminal digital input output direct memory access a method by which data can be transferred to or from computer memory from or to a device or memory on the bus while the processor does something else DMA is the fastest method of transferring data to or from computer memory ground reference hertz G 2 www ni com isolation LED LSB max MB min MOSFET MSB current input high current input low inches input output current output high current
11. any damages resulting from signal connections that exceed these limits Optically Isolated Inputs On a 6527 device I O connector pins 1 through 48 shown in Figure 3 1 represent the optically isolated input signal pins Input Channels The optically isolated inputs of a 6527 device contain a light emitting diode LED a resistor for current limiting and digital filtering and change detection circuitry The 6527 boards offer 24 channels of isolated digital input Each channel has its own positive and negative terminals Always apply the higher voltage if any to the positive terminal The maximum input voltage on these channels is 28 VDC UN Caution Never apply a voltage to the positive DIG terminal of any input channel that is lower than the voltage on the channel s negative DIG terminal National Instruments is not liable for any damages resulting from incorrect signal connection National Instruments Corporation 3 7 6527 User Manual Chapter 3 Signal Connections Sensing DC Voltages When you apply a DC voltage of at least 2 V across the two input terminals the 6527 device registers a logic high for that input If no voltage is present a voltage difference of 1 V or less the 6527 device registers a logic low for that input DC voltages between V and 2 V are invalid and register an indeterminate value Thus you can use the 6527 device to sense a wide range of DC signals from TTL logic levels to DC p
12. cable assembly connectors reducing forward current for high voltages 3 8 to 3 9 relay outputs See solid state relay outputs requirements for getting started 1 2 safety information 1 6 safety specifications A 3 self resetting fuse 3 6 sensing DC voltages 3 8 signal connections 3 1 to 3 12 exceeding maximum ratings warning 3 1 connector 3 1 to 3 6 cable assembly connectors 3 3 to 3 4 pin assignments figure 3 2 port functionality table 3 3 signal descriptions table 3 5 to 3 6 isolation voltages 3 7 optically isolated inputs 3 7 to 3 9 input channels 3 7 reducing forward current for high voltages 3 8 to 3 9 sensing DC voltages 3 8 signal connection example 3 8 power connections 3 6 solid state relay outputs 3 9 to 3 12 output channels 3 9 to 3 11 overcurrent protection 3 12 National Instruments Corporation l 3 Index power on and power off conditions 3 12 software installation 2 1 software programming choices 1 3 to 1 5 National Instruments application software 1 3 to 1 4 NI DAQ driver software 1 4 to 1 5 software related resources B 2 solid state relay outputs 3 9 to 3 12 output channels 3 9 to 3 11 driving a load example 3 9 to 3 10 sinking and sourcing current example 3 11 overcurrent protection 3 12 power on and power off conditions 3 12 specifications A 2 specifications A 1 to A 3 digital I O A 1 environment A 3 isolated inputs A 1 physical A 3
13. limiting resistor on the 6527 It is recommended you choose a resistance value allowing at least 1 mA to flow through the LED Assume a maximum drop across the LED of 1 5 V For example for 24 V inputs you could use a resistance of up to 24 V 1 5 mA 3 20 for Rs 6527 3 kQ Rs 0 25 W WV e o DIG x T Supply lr Load T _ YI DIG Isolation Isolated Ground V Figure 3 4 Reducing Input Current for High Voltage Signals Solid State Relay Outputs On a 6527 device I O connector pins 51 through 98 shown in Figure 3 1 represent the terminals of the solid state relays Output Channels The output channels of a 6527 device are solid state relays containing an LED and two MOSFETs connected together to form a bidirectional switch Depending on how the load is connected to the terminals an output can either source or sink currents Figure 3 5 shows two signal connection examples for driving a load with these solid state relays National Instruments Corporation 3 9 6527 User Manual Chapter 3 Signal Connections 6527 User Manual 45V 6527 LH1546 lt 390 Q 016 Lw os Q is i A Load A Digital Logic DIG Isolated Isolation Ground a Sinking Current 45V 6527 LH1546 390 Q DIG S05 Q T l Digital cen or Logic D DIG
14. provide information on local services You can access these Web sites from www ni com worldwide If you have trouble connecting to our Web site please contact your local National Instruments office or the source from which you purchased your National Instruments product s to obtain support For telephone support in the United States dial 512 795 8248 For telephone support outside the United States contact your local branch office Australia 03 9879 5166 Austria 0662 45 79 90 0 Belgium 02 757 00 20 Brazil 011 284 5011 Canada Calgary 403 274 9391 Canada Ontario 905 785 0085 Canada Qu bec 514 694 8521 China 0755 3904939 Denmark 45 76 26 00 Finland 09 725 725 11 France 01 48 14 24 24 Germany 089 741 31 30 Greece 30 1 42 96 427 Hong Kong 2645 3186 India 91805275406 Israel 03 6120092 Italy 02 413091 Japan 03 5472 2970 Korea 02 596 7456 Mexico D F 5 280 7625 Mexico Monterrey 8 357 7695 Netherlands 0348 433466 Norway 32 27 73 00 Poland 48 22 528 94 06 Portugal 351 1 726 9011 Singapore 2265886 Spain 91 640 0085 Sweden 08 587 895 00 Switzerland 056 200 51 51 Taiwan 02 2377 1200 United Kingdom 01635 523545 B 2 WWW ni com Glossary Prefix Meanings Value n nano 10 9 u micro 10 6 m milli 10 3 k kilo 103 Numbers Symbols 9 degrees negative of or minus Q ohms per percent plus or minus positive of or plus 5 5 Volts signal A
15. that the text following it applies only to a specific product a specific operating system or a specific software version This icon denotes a note which alerts you to important information This icon denotes a caution which advises you of precautions to take to avoid injury data loss or a system crash This icon denotes a warning which advises you of precautions to take to avoid being electrically shocked Italic text denotes variables emphasis a cross reference or an introduction to a key concept This font also denotes text that is a placeholder for a word or value that you must supply Text in this font denotes text or characters that you should enter from the keyboard sections of code programming examples and syntax examples This font is also used for the proper names of disk drives paths directories programs subprograms subroutines device names functions operations variables filenames and extensions and code excerpts Related Documentation 6527 User Manual The following documents also contain information that you may find helpful as you read this manual e Your computer s technical reference manual e PCI Local Bus Specification Revision 2 0 e National Instruments PXI Specification Revision 1 0 e PICMG 2 0 R2 1 CompactPCI X www ni com Introduction This chapter describes the 6527 devices lists what you need to get started software programming choices and optional equipment describes c
16. the external signal does not remain steadily high from one filter clock to the next In period C the filter passes the transition because the external signal does remain steadily high Depending on when the transition occurs the filter may require up to two filter clocks one full filter interval to pass a transition The figure shows a rising 0 0 1 transition the same filtering applies to falling 1 to 0 transitions External Signal Filter Clock Sample Clock 100 ns External H L Signal Sampled T gt Filtered Signal Figure 4 2 Digital Filter Timing Change Notification You can program the 6527 to notify you of changes on input lines Change notification can reduce the number of reads your software must perform to monitor inputs Instead of reading the inputs continuously your software reacts only to transitions You can monitor changes on selected input lines or on all lines You can monitor for rising edges 0 to 1 falling edges 1 to 0 or both When an input change occurs matching your criteria the 6527 generates an interrupt The NI DAQ driver can then notify your software using a DAQ event message or LabVIEW occurrence See your software documentation for information about support for event notificati
17. 25 W per slot 6527 User Manual A 2 WWW ni com Appendix A Specifications for Physical Dimensions not including connectors 88S Sees 17 5 x 10 7 cm 6 9 x 4 2 in PXP OIZ 16 x 10 cm 6 3 x 3 9 in VO connector esee 100 pin keyed female ribbon cable connector Environment Operating temperature 0 to 50 C Storage temperature 20 to 70 C Relative humidity 10 to 90 noncondensing Functional shock 6527 MIL T 28800 E Class 3 per Section 4 5 5 4 1 half sine shock pulse 11 ms duration 30 g peak 30 shocks per face Operational random vibration PX1 6527 ete herbe ebore dd 5 to 500 Hz 0 31 gims 3 axes Nonoperational random vibration PXI 6527 tiii 5 to 500 Hz 2 5 gins 3 axes Note Non operational random vibration profiles were developed in accordance with MIL T 28800E and MIL STD 810E Method 514 Test levels exceed those recommended in MIL STD 810E for Category 1 Basic Transportation Figures 514 4 1 through 514 4 3 Safety Designed in accordance with IEC EN 61010 1 UL 3111 1 and CAN CSA C22 2 No 1010 1 for electrical measuring and test equipment Maximum altitude 2000 m Pollution degree sess 2 Overvoltage
18. 4 86 88 90 DIG 3 lt 7 0 gt Isolated output port 3 second terminals Each of these is the 92 94 96 98 second of two terminals of a bidirectional solid state relay A logic low data bit of 0 closes the relay 67 69 71 73 DIG 4 lt 7 0 gt Isolated output port 4 first terminals Each of these is the first 75 77 79 81 of two terminals of a bidirectional solid state relay A logic low data bit of 0 closes the relay 68 70 72 74 DIG 4 7 0 Isolated output port 4 second terminals Each of these is the 76 78 80 82 second of two terminals of a bidirectional solid state relay A logic low data bit of 0 closes the relay 51 53 55 57 DIG 5 lt 7 0 gt Isolated output port 5 first terminals Each of these is the first 59 61 63 65 of two terminals of a bidirectional solid state relay A logic low data bit of 0 closes the relay 52 54 56 58 DIG 5 7 0 Isolated output port 5 second terminals Each of these is the 60 62 64 66 second of two terminals of a bidirectional solid state relay A logic low data bit of 0 closes the relay Power Connections Four of the pins on the I O connector are not isolated Pin 50 and pin 100 connect to GND the computer ground reference Pin 49 and pin 99 of the I O connector supply 5 V from the computer power supply via a self resetting fuse The fuse resets automatically within a few seconds after an overcurrent condition is removed The 5 V pins a
19. 6527 User Manual Chapter 3 Signal Connections 6527 User Manual DIG 2 7 DIG 2 6 DIG 2 5 DIG 2 4 DIG 2 3 DIG 2 2 DIG 2 1 DIG 2 0 DIG 1 7 DIG 1 6 DIG 1 5 DIG 1 4 DIG 1 3 DIG 1 2 DIG 1 1 DIG 1 0 DIG 0 7 DIG 0 6 DIG 0 5 DIG 0 4 DIG 0 3 DIG 0 2 DIG 0 1 DIG 0 0 5 112 DIG 2 7 3 4 DIG 2 6 5 6 DIG 2 5 7 8 DIG 2 4 9 10 DIG 23 11 12 DIG 22 13 14 DIG 2 1 15 16 DIG 2 0 17 18 DIG 1 7 19 201 DIG 1 6 21122 DIG 1 5 23 24 DIG 1 4 25 26 DIG 1 3 27 28 DIG 1 2 29 30 DIG 1 1 31 32 DIG 1 0 33 34 DIG 0 7 35 36 DIG 0 6 37 38 DIG 0 5 39 40 DIG 0 4 41 42 DIG 0 3 43 44 DIG 0 2 45 46 DIG 0 1 47 48 DIG 0 0 49 50 GND DIG 5 7 DIG 5 6 DIG 5 5 DIG 5 4 DIG 5 3 DIG 5 2 DIG 5 1 DIG 5 0 DIG 4 7 DIG 4 6 DIG 4 5 DIG 4 4 DIG 4 3 DIG 4 2 DIG 4 1 DIG 4 0 DIG 3 7 DIG 3 6 DIG 3 5 DIG 3 4 DIG 3 3 DIG 3 2 DIG 3 1 DIG 3 0 5 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 DIG 5 7 DIG 5 6 DIG 5 5 DIG 5 4 DIG 5 3 DIG 5 2 DIG 5 1 DIG 5 0 D
20. I chassis or PCI bus computer 6527 User Manual 1 6 www ni com Installation and Configuration This chapter describes how to install and configure your 6527 device Software Installation Note Install your software before you install your 6527 device Refer to the appropriate release notes indicated below for specific instructions on the software installation sequence If you are using NI DAQ refer to your NI DAQ release notes Find the installation section for your operating system and follow the instructions given there If you are using LabVIEW LabWindows CVI or other National Instruments application software packages refer to the appropriate release notes After you have installed your application software refer to your NI DAQ release notes and follow the instructions given there for your operating system and application software package Hardware Installation hy Note Install your software before you install your 6527 device The following are general installation instructions for each device Consult your computer or chassis user manual or technical reference manual for specific instructions about installing new devices in your computer or chassis PCI 6527 You can install a PCI 6527 in any available 5 V PCI expansion slot in your computer Turn off and unplug your computer 2 Remove the top cover or access port to the expansion slots National Instruments Corporation 2 1 6527 User Man
21. IC MONITORING OR CONTROL DEVICES TRANSIENT FAILURES OF ELECTRONIC SYSTEMS HARDWARE AND OR SOFTWARE UNANTICIPATED USES OR MISUSES OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER ADVERSE FACTORS SUCH AS THESE ARE HEREAFTER COLLECTIVELY TERMED SYSTEM FAILURES ANY APPLICATION WHERE A SYSTEM FAILURE WOULD CREATE A RISK OF HARM TO PROPERTY OR PERSONS INCLUDING THE RISK OF BODILY INJURY AND DEATH SHOULD NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE TO AVOID DAMAGE INJURY OR DEATH THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES INCLUDING BUT NOT LIMITED TO BACK UP OR SHUT DOWN MECHANISMS BECAUSE EACH END USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS TESTING PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL INSTRUMENTS THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A SYSTEM OR APPLICATION INCLUDING WITHOUT LIMITATION THE APPROPRIATE DESIGN PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION Contents About This Manual How To Use the Manual 5 enne terne nne E E ix CONVENU ONS ee EE EREE E E E
22. IG 4 7 DIG 4 6 DIG 4 5 DIG 4 4 DIG 4 3 DIG 4 2 DIG 4 1 DIG 4 0 DIG 3 7 DIG 3 6 DIG 3 5 DIG 3 4 DIG 3 3 DIG 3 2 DIG 3 1 DIG 3 0 GND Figure 3 2 Cable Assembly Connector Pinout for the R1005050 Ribbon Cable www ni com Chapter 3 1 0 Connector Signal Descriptions Table 3 2 lists the signal descriptions for the 6527 device I O connector pins Table 3 2 Signal Descriptions for 6527 Device 1 0 Connectors Pin Signal Name Description 33 35 37 39 DIG 0 lt 7 0 gt Isolated input port 0 positive terminals Take measurements at 41 43 45 47 these terminals These terminals should be positive relative to their corresponding DIG lines A logic high data bit of 1 indicates input voltage and current are present 34 36 38 40 DIG 0 lt 7 0 gt Isolated input port 0 negative terminals Each of these 42 44 46 48 terminals serves as the reference terminal from which the corresponding DIG line is measured A logic high data bit of 1 indicates input voltage and current are present 17 19 21 23 DIG 1 lt 7 0 gt Isolated input port 1 positive terminals Take measurements at 25 27 29 31 these terminals These terminals should be positive relative to their corresponding DIG lines A logic high data bit of 1 indicates input voltage and current are present 18 20 22 24 DIG 1 7 0 Isolated input port 1 negative terminals Each of these 26 28 30
23. ble3 4 Figure 3 3 Signal Connection Example for Isolated 3 8 Figure 3 4 Reducing Input Current for High Voltage Signals 3 9 Figure 3 5 Signal Connections for Solid State 3 10 Figure 3 6 Signal Connections for Driving TTL Voltages esses 3 11 Ligui 4 1 6527 Block Diagramm te itte try 4 2 Figure 4 2 Digital Filter Timing eene nennen 4 5 6527 User Manual vi www ni com Contents Tables Table 3 1 Port Functionality for 6527 Devices sss 3 3 Table 3 2 Signal Descriptions for 6527 Device I O Connectors 3 5 Table 4 1 Digital Filter Characteristics essen 4 4 Table 4 2 Change Notification Example sess 4 6 National Instruments Corporation Vii 6527 User Manual About This Manual This manual describes the electrical and mechanical aspects of the 6527 devices and contains information concerning their operation and programming Unless otherwise noted the text applies to all devices in the 6527 family which includes the PCI 6527 and PXI 6527 How To Use the Manual Set The 6527 User Manual is one piece of the documentation set for your data acquisition system You could have any of several types of manuals depending on the hardware and software in your system Use th
24. configurable The PCI 6527 is fully compliant with the PCI Local Bus Specification Revision 2 0 and the PXI 6527 is fully compliant with the PX7 Specification Revision 1 0 Therefore all board resources are automatically allocated by the PCI system including the base address and interrupt level The board s base address is mapped into PCI memory space You do not need to perform any configuration steps after the system powers up 2 2 www ni com Signal Connections This chapter describes the pin arrangement signal names and signal connections on your 6527 device UN Caution Connections that exceed any of the maximum ratings of input or output signals on your 6527 device can damage the board and your computer The description of each signal in this chapter includes information about maximum input ratings National Instruments is not liable for any damages resulting from signal connections that exceed these maximum ratings 1 0 Connector The I O connector for the 6527 device has 100 pins that you can connect to 50 pin accessories with the R1005050 cable or to 100 pin accessories with the shielded SH100100 F cable Figure 3 1 shows the pin assignments for the 6527 device digital I O connector A signal description follows the figures National Instruments Corporation 3 1 6527 User Manual Chapter 3 Signal Connections B Note For input ports connect the higher voltage to the DIG pin and the lower voltage to the DIG pin Fo
25. digital filtering 4 4 to 4 5 National Instruments Corporation CompactPCI using with PXI 1 2 ComponentWorks software 1 4 configuration 2 2 connector See I O connector conventions used in manual x custom cabling 1 6 D DC voltages sensing 3 8 diagnostic resources online B 1 DIG 0 lt 7 0 gt signal table 3 5 DIG O0 lt 7 0 gt signal table 3 5 DIG 1 lt 7 0 gt signal table 3 5 DIG 1 lt 7 0 gt signal table 3 5 DIG 2 lt 7 0 gt signal table 3 5 DIG 2 lt 7 0 gt signal table 3 5 DIG 3 7 0 signal table 3 6 DIG 3 7 0 signal table 3 6 DIG 4 lt 7 0 gt signal table 3 6 DIG 4 lt 7 0 gt signal table 3 6 DIG 5 7 0 signal table 3 6 DIG 5 7 0 signal table 3 6 digital filtering 4 3 to 4 5 characteristics table 4 4 clocks 4 4 to 4 5 timing figure 4 5 digital I O circuitry functional overview 4 2 to 4 3 specifications 1 documentation conventions used in manual x how to use manual set ix related documentation x 6527 User Manual Index E environment specifications A 3 equipment optional 1 5 F filtering See digital filtering forward current for high voltages reducing 3 8 to 3 9 fuse self resetting 3 6 G GND signal description table 3 5 power connections 3 6 H hardware installation 2 1 to 2 2 input channels 3 7 inputs optically isolated See optically isolated inputs installa
26. e manuals you have as follows e Your DAQ hardware user manuals These manuals have detailed information about the DAQ hardware that plugs into or is connected to your computer Use these manuals for hardware installation and configuration instructions specification information about your DAQ hardware and application hints e Software documentation Examples of software documentation you may have are the LabVIEW LabWindows CVI or ComponentWorks documentation sets and the NI DAQ documentation After you set up your hardware system use either the application software or the NI DAQ documentation to help you write your application If you have a large and complicated system it is worthwhile to look through the software documentation before you configure your hardware e Accessory installation guides or manuals If you are using accessory products read the terminal block and cable assembly installation guides or accessory board user manuals They explain how to physically connect the relevant pieces of the system Consult these guides when you are making your connections National Instruments Corporation ix 6527 User Manual About This Manual Conventions lt gt italic monospace The following conventions appear in this manual Angle brackets that contain numbers separated by an ellipsis represent a range of values associated with a bit or signal name for example DIG 0 lt 3 0 gt The symbol indicates
27. els to Ea Dicet ie eiie tinte e EUR RAE 3 7 Sensing DC 3 8 Signal Connection Example s es 3 8 Reducing the Forward Current for High Voltages sese 3 9 National Instruments Corporation V 6527 User Manual Contents Solid State Relay Outputs 3 9 Outp t Chanels pedet dir tete 3 9 Overcurrent ProtectiOn ccccccssccccecesssecesesseceecesseaececcesseececesessaeececeeeeecenes 3 12 Power on and Power off Conditions essen eene 3 12 Chapter 4 Device Overview Functional OVerview oc cos nach ott itid eter 4 1 PCI Interface Circuitry cece nennen nennen nennen 4 2 Digital IO Cir Custey der te e eerte eet 4 2 Optical Isolation 4 3 Digital Filtering atte e eter 4 3 Change Notification ener enr tenens 4 5 Appendix A Specifications Appendix B Technical Support Resources Glossary Index Figures Figure 1 1 The Relationship between the Programming Environment NI DAQ and Your Hardware sse 1 5 Figure 3 1 6527 Device Connector Pin Assignments esee 3 2 Figure 3 2 Connector Pinout for the R1005050 Ribbon Ca
28. es or other events outside reasonable control Copyright Under the copyright laws this publication may not be reproduced or transmitted in any form electronic or mechanical including photocopying recording storing in an information retrieval system or translating in whole or in part without the prior written consent of National Instruments Corporation Trademarks ComponentWorks LabVIEW MITE National Instruments ni com NI DAQ and PXI are trademarks of National Instruments Corporation Product and company names mentioned herein are trademarks or trade names of their respective companies WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS 1 NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT INJURY TO A HUMAN 2 IN ANY APPLICATION INCLUDING THE ABOVE RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE IMPAIRED BY ADVERSE FACTORS INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY COMPUTER HARDWARE MALFUNCTIONS COMPUTER OPERATING SYSTEM SOFTWARE FITNESS FITNESS OF COMPILERS AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION INSTALLATION ERRORS SOFTWARE AND HARDWARE COMPATIBILITY PROBLEMS MALFUNCTIONS OR FAILURES OF ELECTRON
29. evice in place of the external 5 V supply Choose a value of small enough to provide the source current you need but large enough to avoid reducing sink current or consuming unnecessary power For many TTL level applications a value of approximately 5 works well This gives a source current at 2 8 V of 5 V 2 8 5 440 uA The sink current at 0 5 V is then at least 0 5 V 35 Q 5 V 0 5 5 13 4 mA 6527 To External 5 V Supply 5 V R 5 390 Q a Voir os Q Y A Digital l Logic Isolated Isolation Ground Figure 3 6 Signal Connections for Driving TTL Voltages The maximum power ratings for the output channels on a 6527 device are as follows e Maximum DC voltage across the terminals Vou5 60 VDC e Maximum AC voltage across the terminals 30 Vrms 42 V Peak e Maximum current 120 mA With all relays carrying 120 mA and all inputs driven to 28 V the total power dissipation can approach 20 W The maximum switching capacity in PCI and CompactPCI systems must be derated according to the ambient temperature The PXI chassis has built in fans to handle 25 W per slot National Instruments Corporation 3 11 6527 User Manual Chapter 3 Signal Connections Overcurrent Protection The 6527 device outputs include circuitry to protect them from currents over the specified range When excessive current flo
30. hapter 4 Device Overview Port 0 Port 0 Isolation 16 Port 1 Port 1 PCI Isolation 16 s C Interface Digital m I lO Port 2 das 5 TAS lt _ _ _ a Circuitry Isolation 16 x FPGA S o EEPROM Port 3 Q a gt Port 3 zi Isolation Port 4 g Port 4 pe EEPROM Isolation 16 Port 5 ly Port 5 Isolation 16 Figure 4 1 6527 Block Diagram PCI Interface Circuitry Your 6527 board uses the PCI MITE ASIC to communicate with the PCI bus The PCI MITE was designed by National Instruments specifically for data acquisition The PCI MITE is fully compliant with PCI Local Bus Specification 2 0 Digital 1 0 Circuitry You can use your 6527 board as follows e Output ports Write Read back 6527 User Manual 4 2 www ni com Chapter 4 Device Overview Input ports Read Apply digital filtering software programmable Detect changes on selected lines software programmable Table 3 1 Port Functionality for 6527 Devices contains a summary of port functions Optical Isolation Circuitry The digital input ports of a 6527 device are optically isolated using Infineon IL55B optocouplers Each IL55B provides optical isolation for one channel of input Isolation on the output is provided by Infineon LH1546 solid state relays One solid state relay is used for i
31. maintains a consistent software interface among its different versions so that you can change platforms with minimal modifications to your code Whether you are using LabVIEW LabWindows CVI ComponentWorks or other programming languages your application uses the NI DAQ driver software as illustrated in Figure 1 1 1 4 WWW ni com Chapter 1 Introduction LabVIEW LabWindows CVI Conventional or Programming Environment ComponentWorks NI DAQ Driver Software A Personal EE di t Computer or ardware Workstation Figure 1 1 The Relationship between the Programming Environment NI DAQ and Your Hardware Optional Equipment National Instruments offers a variety of products to use with your 6527 device including cables connector blocks and other accessories as follows e Cables and cable assemblies shielded and ribbon e Connector blocks unshielded and shielded 50 and 100 pin screw terminals For more information about optional equipment available from National Instruments refer to your National Instruments catalogue or web site or call the office nearest you National Instruments Corporation 1 5 6527 User Manual Chapter 1 Introduction Custom Cabling National Instruments offers cables and accessories for you to prototype your application or to use if you frequently change board interconnections If you want t
32. ment the manipulation of signals to prepare them for digitizing G 4 www ni com TTL typ cc VDC VI Glossary transistor transistor logic or 5 V digital voltage levels originally used with transistor transistor logic typical volts supply voltage for example the voltage a computer supplies to its plug in devices volts direct current virtual instrument a combination of hardware and or software elements typically used with a PC that has the functionality of a classic standalone instrument volts input high volts input low input voltage volts output high volts output low watts National Instruments Corporation G 5 6527 User Manual Index Numbers 5 V signal description table 3 5 power connections 3 6 6527 devices block diagram 4 2 change notification 4 5 to 4 6 custom cabling 1 6 digital filtering 4 3 to 4 5 features 1 1 functional overview 4 1 to 4 3 optional equipment 1 5 requirements for getting started 1 2 safety information 1 6 software programming choices 1 3 to 1 5 National Instruments application software 1 3 to 1 4 NI DAQ driver software 1 4 to 1 5 unpacking 1 3 using PXI with CompactPCI 1 2 block diagram of 6527 devices 4 2 board configuration 2 2 cable assembly connectors overview 3 3 to 3 4 pinout for R1005050 ribbon cable figure 3 4 cabling custom 1 6 change notification example 4 6 purpose and use 4 5 to 4 6 clocks for
33. o develop your own cable note that the 6527 device uses a 100 pin female cable header AMP Corporation part number 749621 9 may be used for the mating connector Backshells available for use on a cable with this connector include the following e AMP 749081 1 AMP 749854 1 These backshells have a different thread width than the I O connector on the 6527 A jackscrew to adapt the different thread widths is available from National Instruments the part number is 745444 01 Safety Information UN Cautions Do not operate the 6527 in an explosive atmosphere or where there may be flammable gases or fumes Do not operate the 6527 in a manner not specified in the manual Clean the 6527 and accessories by brushing off light dust with a soft nonmetallic brush Remove other contaminants with a stiff nonmetallic brush The unit must be completely dry and free from contaminants before returning it to service Connections including power signal to ground and ground to power signal that exceed any of the maximum signal ratings for the 6527 can damage any or all of the modules in the same PXI or CompactPCI chassis or PCI bus computer National Instruments is not liable for any damages or injuries resulting from incorrect signal connections All signal wiring must be properly insulated National Instruments is not liable for damage to equipment or injuries caused by improper signal wiring The 6527 must be used in a CE marked PXI or CompactPC
34. of National Instruments hardware and software product manuals e Hardware Reference Database A searchable database containing brief hardware descriptions mechanical drawings and helpful images of jumper settings and connector pinouts e Application Notes A library with more than 100 short papers addressing specific topics such as creating and calling DLLs developing your own instrument driver software and porting applications between platforms and operating systems National Instruments Corporation B 1 6527 User Manual Appendix Technical Support Resources Software Related Resources Instrument Driver Network A library with hundreds of instrument drivers for control of standalone instruments via GPIB VXI or serial interfaces You also can submit a request for a particular instrument driver if it does not already appear in the library e Example Programs Database A database with numerous non shipping example programs for National Instruments programming environments You can use them to complement the example programs that are already included with National Instruments products e Software Library A library with updates and patches to application software links to the latest versions of driver software for National Instruments hardware products and utility routines Worldwide Support 6527 User Manual National Instruments has offices located around the globe Many branch offices maintain a Web site to
35. of shipment as evidenced by receipts or other documentation National Instruments will at its option repair or replace equipment that proves to be defective during the warranty period This warranty includes parts and labor The media on which you receive National Instruments software are warranted not to fail to execute programming instructions due to defects in materials and workmanship for a period of 90 days from date of shipment as evidenced by receipts or other documentation National Instruments will at its option repair or replace software media that do not execute programming instructions if National Instruments receives notice of such defects during the warranty period National Instruments does not warrant that the operation of the software shall be uninterrupted or error free A Return Material Authorization RMA number must be obtained from the factory and clearly marked on the outside of the package before any equipment will be accepted for warranty work National Instruments will pay the shipping costs of returning to the owner parts which are covered by warranty National Instruments believes that the information in this document is accurate The document has been carefully reviewed for technical accuracy In the event that technical or typographical errors exist National Instruments reserves the right to make changes to subsequent editions of this document without prior notice to holders of this edition The reader should consul
36. on in your software environment The 6527 notifies you when any one of the changes you are monitoring occurs the 6527 does not report which line changed or whether the line rose or fell After a change you can read the input lines to determine the current line states The maximum rate of change notification is therefore limited by software response time and varies from system to system National Instruments Corporation 4 5 6527 User Manual Chapter 4 Device Overview 6527 User Manual If you anticipate noisy or rapidly changing input lines use digital filtering to reduce the changes to a manageable number excessive notifications can hurt system performance For example if you want to limit the rate of notifications and interrupts to a maximum of one change per line every 10 ms set a filter interval of 10 ms Table 4 2 shows configuring change notification for five bits of one port This example assumes the following line connections e Bits 7 6 5 and 4 are connected to data lines from a four bit TTL input device The 6527 detects any change in the input data so you can read the new data value e Bitlis connected to a limit sensor the 6527 detects rising edges on the sensor which correspond to over limit conditions e BitO is connected to a switch Your software can react to any switch closure represented by a falling edge If the switch closure is noisy you should also enable digital filtering for at least this line
37. ower supply levels up to 28 V Signal Connection Example Figure 3 3 shows signal connections for a supply and load connected to an isolated input In this figure the 6527 device is being used to sense that a load is being powered The load is connected to the power supply by means of a switch This power supply can be any DC voltage within the 6527 device range When the switch is open no current flows through the load and no voltage is applied to the load or to the 6527 device input The digital logic of the 6527 device then registers a logic low for the channel When the switch is closed current flows through the LED and the 6527 device registers a logic high for the channel 6527 5 15 IL55B 3 kQ 0 25 W Digital Logic lt ANN n DIG AN Load Computer Ground DIG Isolation Isolated Ground V 6527 User Manual Figure 3 3 Signal Connection Example for Isolated Input 3 8 www ni com Chapter 3 Signal Connections Reducing the Forward Current for High Voltages As input voltage increases above 5 V the input current drawn by the 6527 forward current Ig also rises At 24 V for example current is approximately 24 V 1 5 V 3 7 5 mA per line If you wish to reduce the current and power the 6527 draws to reduce the impact on a circuit you are monitoring for example you can add another resistor in series with the 3 current
38. power requirements A 2 relay outputs A 2 safety A 3 T technical support resources B 1 to B 2 U unpacking 6527 devices 1 3 W Web support from National Instruments B 1 to B 2 online problem solving and diagnostic resources B 1 software related resources B 2 Worldwide technical support B 2 6527 User Manual
39. r output ports you can connect signals to the two pins of each line without regard to which voltage is higher The output lines consist of solid state relays and act as bidirectional switches DIG 2 7 D G 2 7 DIG 2 6 D G 2 6 DIG 2 5 D G 2 5 DIG 2 4 D G 2 4 DIG 2 3 D G 2 3 DIG 2 2 D G 2 2 DIG 2 1 D G 2 1 DIG 2 0 D G 2 0 DIG 1 7 D G 1 7 DIG 1 6 D G 1 6 DIG 1 5 D G 1 5 DIG 1 4 D G 1 4 DIG 1 3 D G 1 3 DIG 1 2 D G 1 2 DIG 1 1 D G 1 1 DIG 1 0 D G 1 0 DIG 0 7 D G 0 7 DIG 0 6 D G 0 6 DIG 0 5 D G 0 5 DIG 0 4 D G 0 4 DIG 0 3 D G 0 3 DIG 0 2 D 0 2 DIG 0 1 D G 0 1 DIG 0 0 D G 0 0 45V GND 1 51 2 52 3 53 4 54 5 55 6 56 7 57 8 58 9 59 10 60 11 61 12 62 13 63 14 64 15 65 16 66 17 67 18 68 19 69 20 70 21 71 22 72 23 73 24 74 25 75 26 76 27 77 28 78 29 79 30 80 31 81 32 82 33 83 34 84 35 85 36 86 37 87 38 88 39 89 40 90 41 91 42 92 43 93 44 94 45 95 46 96 47 97 48 98 49 99 50 100 5 7 G 5 7 45 6 G 5 6 45 5 G 5 5 45 4 G 5 4 5 3 G 5 3 9 5 2 9
40. re LabWindows CVI features interactive graphics and a state of the art user interface and uses the ANSI standard C programming language The LabWindows CVI Data Acquisition Library a series of functions for using LabWindows CVI with National Instruments DAQ hardware is included with the NI DAQ software kit The LabWindows CVI Data Acquisition Library is functionally equivalent to the NI DAQ software National Instruments Corporation 1 3 6527 User Manual Chapter 1 Introduction ComponentWorks contains tools for data acquisition and instrument control built on NI DAQ driver software ComponentWorks provides a higher level programming interface for building virtual instruments through standard OLE controls and DLLs With ComponentWorks you can use all of the configuration tools resource management utilities and interactive control utilities included with NI DAQ Using LabVIEW LabWindows CVI or ComponentWorks software will greatly reduce the development time for your data acquisition and control application NI DAQ Driver Software 6527 User Manual The NI DAQ driver software is included with most National Instruments DAQ hardware NI DAQ has an extensive library of functions that you can call from your application programming environment These functions allow you to use all features of your 6527 device NI DAQ addresses many of the complex issues between the computer and the DAQ hardware such as programming interrupts NI DAQ
41. re referenced to the GND pins and can be used to power external digital circuitry that does not require isolation e Power rating 1 A at 44 5 to 5 25 V Warning The power pins 5 V and GND are not isolated they connect to your computer power supply Never connect a 5 V power pin directly to GND Never connect a 5 V or GND pin to any other voltage source doing so can lead to injury National Instruments is not liable for any damages or injuries resulting from such a connection 6527 User Manual 3 6 WWW ni com Chapter 3 Signal Connections Isolation Voltages The positive and negative DIG and DIG terminals of each channel are isolated from the other input and output channels from the 5 V and GND pins and from the computer power supply Isolation barriers provide isolation up to 60 VDC or 30 VAC 42 V peak between any two terminals except between the two terminals making up a single digital I O channel Do not exceed 60 VDC or 30 VAC between any two terminals of the 6527 device including e two digital I O DIG or DIG lines of separate channels any DIG or DIG line and the GND or 5 V lines e the DIG line and the DIG line of any output channel Do not exceed 28 VDC or apply any negative or AC voltage between the DIG and DIG terminals of any input channel AN Warning You must not exceed the isolation voltage limits Exceeding the voltage limits can lead to injury National Instruments is not liable for
42. sis and controller 6527 User Manual 1 2 WWW ni com Unpacking Chapter 1 Introduction Your 6527 device is shipped in an antistatic package to prevent electrostatic damage to the board Electrostatic discharge can damage several components on the board To avoid such damage in handling the board take the following precautions e Ground yourself via a grounding strap or by holding a grounded object e Touch the antistatic package to a metal part of your computer chassis before removing the board from the package e Remove the board from the package and inspect the board for loose components or any other sign of damage Notify National Instruments if the board appears damaged in any way Do not install a damaged board into your computer e Never touch the exposed pins of connectors Software Programming Choices There are several options to choose from when programming your National Instruments hardware You can use LabVIEW LabWindows CVI ComponentWorks or other application development environments with the NI DAQ driver software National Instruments Application Software LabVIEW features interactive graphics a state of the art user interface and a powerful graphical programming language The LabVIEW Data Acquisition VI Library a series of VIs for using LabVIEW with National Instruments DAQ hardware is included with LabVIEW The LabVIEW Data Acquisition VI Library is functionally equivalent to the NI DAQ softwa
43. solation at each channel of output For diagrams of the complete input and output circuitry see Chapter 3 Signal Connections Digital Filtering of the inputs on the 6527 device contain a digital filter option Filtering can help eliminate glitches on input data When used with change notification filtering can also reduce the number of changes for you to examine and process You can configure any of the digital input channels from the optocouplers to pass through a digital filter You can also control the timing interval used by the filter The filter blocks pulses shorter than the specified timing interval treating them as glitches The filter passes pulses longer than twice the specified interval Intermediate length pulses pulses longer than the interval but less than twice the interval may or may not pass the filter The filter operates on the inputs from the optocouplers The optocouplers turn on faster than they turn off passing rising edges faster than falling edges The optocouplers can therefore add up to 100 us to a high pulse or subtract up to 100 us from a low pulse a 100 us change is typical at Ip 5 mA RL 100 As a result the pulse widths guaranteed to be passed and blocked are those shown in Table 4 1 National Instruments Corporation 4 3 6527 User Manual Chapter 4 Device Overview Table 4 1 Digital Filter Characteristics Pulse Width Passed Pulse Width Blocked Filter Inter
44. t National Instruments if errors are suspected In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it EXCEPT AS SPECIFIED HEREIN NATIONAL INSTRUMENTS MAKES NO WARRANTIES EXPRESS OR IMPLIED AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE CUSTOMER S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA PROFITS USE OF PRODUCTS OR INCIDENTAL OR CONSEQUENTIAL DAMAGES EVEN IF ADVISED OF THE POSSIBILITY THEREOF This limitation of the liability of National Instruments will apply regardless of the form of action whether in contract or tort including negligence Any action against National Instruments must be brought within one year after the cause of action accrues National Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control The warranty provided herein does not cover damages defects malfunctions or service failures caused by owner s failure to follow the National Instruments installation operation or maintenance instructions owner s modification of the product owner s abuse misuse or negligent acts and power failure or surges fire flood accident actions of third parti
45. tion board configuration 2 2 hardware installation 2 1 to 2 2 software installation 2 1 unpacking 6527 devices 1 3 I O connector 3 1 to 3 6 cable assembly connectors 3 3 to 3 4 pin assignments figure 3 2 port functionality table 3 3 signal descriptions table 3 5 to 3 6 isolated inputs See optically isolated inputs isolation voltages 3 7 6527 User Manual L LabVIEW software 1 3 LabWindows CVI software 1 3 manual See documentation National Instruments application software 1 3 to 1 4 National Instruments Web support B 1 to B 2 NI DAQ driver software 1 4 to 1 5 0 online problem solving and diagnostic resources B 1 optical isolation circuitry 4 3 optically isolated inputs 3 7 to 3 9 input channels 3 7 reducing forward current for high voltages 3 8 to 3 9 sensing DC voltages 3 8 signal connection example 3 8 specifications 1 output channels 3 9 to 3 11 driving a load example 3 9 to 3 10 sinking and sourcing current example 3 11 overcurrent protection 3 12 P PCI interface circuitry 4 2 PCI MITE ASIC 4 2 physical specifications A 3 pin assignments for I O connector figure 3 2 port functionality table 3 3 power connections 3 6 www ni com power rating 3 6 power requirement specifications A 2 power on and power off conditions 3 12 problem solving and diagnostic resources online B 1 PXI using with CompactPCI 1 2 R R1005050 cable assembly See
46. ual Chapter 2 Installation and Configuration 3 Remove the expansion slot cover on the back panel of the computer 4 Touch a metal part inside your computer to discharge any static electricity that might be on your clothes or body 5 Insert the PCI 6527 in a 5 V PCI slot It may be a tight fit but do not force the device into place 6 Screw the mounting bracket of the PCI 6527 to the back panel rail of the computer 7 Visually verify the installation 8 Replace the top cover of your computer 9 Plugin and turn on your computer PXI 6527 You can install a PXI 6527 in any available 5 V peripheral slot in your PXI or CompactPCI chassis 1 Turn off and unplug your or CompactPCI chassis 2 Choose an unused PXI or CompactPCI 5 V peripheral slot 3 Remove the filler panel for the peripheral slot you have chosen 4 Touch a metal part of your chassis to discharge any static electricity that might be on your clothes or body 5 Insert the PXI 6527 in the selected 5 V slot Use the injector ejector handle to fully inject the device into place 6 Screw the front panel of the PXI 6527 to the front panel mounting rails of the PXI or CompactPCI chassis 7 Visually verify the installation 8 Plug in and turn on the PXI or CompactPCI chassis Your 6527 is now installed You are now ready to configure your hardware and software Board Configuration 6527 User Manual Your 6527 device is completely software
47. ustom cabling options and explains how to unpack your board About the 6527 Device Thank you for purchasing a National Instruments 6527 device The 6527 devices are 48 bit parallel isolated digital I O interfaces for PCI bus computers and PXI or Compact PCI chassis The 6527 devices offer 48 channels of isolated digital data acquisition Twenty four of the channels are optocoupler inputs and 24 are solid state relay outputs You can sense digital levels up to 28 VDC and switch currents of up to 120 mA Digital filtering is available to eliminate glitches on the input lines All input lines can also generate interrupts on rising or falling edges to notify you of changing data The PCI 6527 and PXI 6527 devices are completely jumperless DAQ devices for PCI buses and PXI or CompactPCI chassis respectively All devices in this family contain the National Instruments PCI MITE interface The 6527 devices are ideal for low voltage isolation and switching in both industrial and laboratory environments You can use the optically isolated digital input lines to read the status of external digital logic at TTL and non TTL levels You can use the solid state relay outputs to switch external devices including those requiring high input currents and to control digital logic levels at both TTL and non TTL levels Because of the isolated nature of the 6527 devices you can decouple the noise and harsh ground of the computer from external signals and
48. val Low Pulse High Pulse Low Pulse High Pulse tinterval tinterval 100 Us linterval linterval 2 tinterval 2 100 us 6527 User Manual You can enable filtering on as many input lines as you wish filtered lines share the same timing interval The interval ranges from 100 ns to 100 ms However as shown in Table 4 1 an interval of 200 us or less does not guarantee blocking of high pulses Therefore an interval greater than 200 us is recommended Internally the filter uses two clocks The first a sample clock has a 100 ns period The second a filter clock is generated by a counter and has a period equal to one half your specified timing interval The input signal from the optocoupler is sampled on each rising edge of the sample clock every 100 ns However a change in the input signal is recognized only if it maintains its new state for at least two consecutive rising edges of the filter clock The two clocks serve different functions The filter clock which is programmable lets you control how long a pulse must last to be recognized The sample clock provides a fast sample rate to ensure that input pulses remain constant between filter clocks 4 4 WWW ni com Chapter 4 Device Overview Figure 4 2 shows a filter configuration with an 800 ns filter interval 400 ns filter clock In practice a much slower filter interval is recommended In periods A and B the filter blocks the glitches because
49. vice versa Detailed 6527 device specifications are in Appendix A Specifications National Instruments Corporation 1 1 6527 User Manual Chapter 1 Introduction Using PXI with CompactPCI Using PXI compatible products with standard CompactPCI products is an important feature provided by the PXI Specification Revision 1 0 If you use a PXI compatible plug in device in a standard CompactPCI chassis you will be unable to use PXI specific functions but you can still use the basic plug in device functions 6527 device functions are available in a CompactPCI chassis The CompactPCI specification permits vendors to develop sub buses that coexist with the basic PCI interface on the CompactPCI bus Compatible operation is not guaranteed between CompactPCI devices with different sub buses nor between CompactPCI devices with sub buses and PXI The standard implementation for CompactPCI does not include these sub buses Your 6527 device will work in any standard CompactPCI chassis adhering to the PICMG 2 0 R2 1 CompactPCI core specification What You Need to Get Started To set up and use your 6527 device you will need the following One of the following devices 6527 PXI 6527 6527 User Manual C One of the following software packages and documentation LabVIEW for Windows LabWindows CVI for Windows ComponentWorks NI DAQ for PC Compatibles Your computer or PXI or CompactPCI chas
50. ws through the relay the relay increases resistance Once the current level drops back under the specified range the relays return to normal operation The overcurrent protection ratings for a 6527 device are as follows typical at 25 C e Overcurrent protection limit 260 mA e Current limit time 1 us at 7 V e Duration of current above operating current 120 mA 1 s max at 7 V Caution Overcurrent protection is for protection against transient fault conditions only The 6527 should not normally be operated above 120 mA National Instruments is not liable for any damages resulting from signal connections that exceed 120 mA Power on and Power off Conditions At power up the initial state of the digital output lines are logic high and the solid state relays are open The solid state relays are also open when the computer and the 6527 device are powered off 6527 User Manual 3 12 www ni com Device Overview This chapter contains a functional overview of the 6527 device and explains the operation of each functional unit The digital filter and change detection options are also described Functional Overview The block diagram in Figure 4 1 illustrates the key functional components of your 6527 device The major components making up your 6527 device include the following e PCI interface circuitry e Digital I O circuitry e Optical isolation circuitry National Instruments Corporation 4 1 6527 User Manual C
Download Pdf Manuals
Related Search
Related Contents
PRO MIXER DX2000USB THP 94 Réseau Rural Rhône-Alpes, mode d`emploi avec les logos マルチダン取扱説明書 Instruction Manual INDASH MANUAL DO USUÁRIO Copyright © All rights reserved.
Failed to retrieve file